
Master in Security and Mobile Computing
July 2010
Danilo Gligoroski, ITEM
Hubert Baumeister, Technical University of Danmark

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Specification of security properties by
JML

Ilir Dulaj

Problem Description
This thesis proposal evaluates the feasibility of the Java Modelling Language (JML) for specifying
security properties. It investigates possible JML improvements for specifying security properties
like confidentiality (only authorized people are allowed to view data), access control (only
authorized people have access to data of their domain) etc.
To this end a case study model application for a medical clinic using Java security mechanisms is
defined and a risk analysis is conducted deriving security properties.
We examine how well the current JML is able to specify these properties and suggest
possible improvements.

Assignment given: 15. February 2010
Supervisor: Danilo Gligoroski, ITEM

1

Abstract

Nowadays, verification of programs is gaining increased importance. The software industry
appears more and more interested in methods and tools to ensure security in their applica-
tions. Java Modeling Language has been successfully used in the past by programmers to ex-
press their intentions in the Design by Contract fashion in sequential programming. One of
the design goals of JML was to improve the functional software correctness of Java applica-
tions. Regarding the verification of security properties, JML was mostly successful in Java
Smart Card applets due to the specifics of these applications.

In this thesis work we investigate the feasibility of JML to express high-level security
properties in Java applications that have more realistic requirements and are implemented in
the object oriented technology. We do a threat analysis of a case study regarding a medical
clinic and derive the required security properties to secure the application. We develop a
prototype application where we specify high-level security properties with JML and use a
runtime assertion checking tool to verify the code.

We model the functional behavior of the prototype that establishes the security proper-
ties as a finite state automaton. Our prototype is developed based on this automaton. States
and state transitions modeled in the automaton are expressed in the prototype with JML an-
notations and verified during runtime.

We observe that currently available features in JML are not very feasible to capture the
security related behavior of Java programs on the level of the entire application.

2

3

Acknowledgements

I wish to thank my primary supervisor, Professor Hubert Baumeister at Technical University
of Denmark for his valuable guidance.

I would also like thank my co-supervisor, Professor Danilo Gligoroski at the Norwegian
University Of Science And Technology in Trondheim, Norway for his help.

Special thanks to all the professors and lecturers whom I’ve met in both of these univer-
sities for time and effort spent in educating me during my two years of study.

4

5

Table of Contents

1. Introduction .. 9

1.1. Motivation ...10

1.2. Objective ..11

1.3. Outline ..12

2. Related work...13

2.1. Specification of applications and applets ..13

2.2. Protocol specification ..15

2.3. Other related work ...15

3. Background concepts ...17

3.1. An Overview of JML ..17

3.2. Java RMI ...35

3.3. Authentication and Access Control in Java ...38

4. Approaches of using JML to specify security properties ...43

4.1. Correctness of implementation ..44

4.2. State machine representation ...51

4.3. Language Based perspective ..55

4.4. Our approach ...59

5. Case Study analysis ..63

5.1. A general overview ...63

5.2. Use cases ..66

5.3. Threat analysis ...67

5.4. Attacker model ...69

5.5. Security goals ..70

5.6. Scope of implementation ...73

5.7. The application ...74

6. Implementation of properties ..77

6.1. Architecture of the application ...78

6

6.2. Sequence of operations .. 82

6.3. Modeling the behavior of the application ... 85

6.4. Specification of the program ... 89

6.5. Discussion ... 98

7. Testing and other implementation details.. 101

7.1. Data structure .. 102

7.2. Design of the application .. 103

7.3. Acceptance tests ... 106

7.4. Analysis of the test results ... 111

8. Conclusion .. 113

8.1. Discussion .. 114

8.2. Future Work ... 114

A. Running the prototype .. 117

The JAR archives ... 117

Using the assertion checker to verifying the JML annotations 118

B. Source code listings ... 119

Client.java ... 119

LoginImpl.java .. 123

ServerProxy.java ... 126

ServerImpl.java ... 129

ServerInterface.java .. 132

LoginModule.java ... 133

LoginInterface.java ... 137

MethodcallValidate.java ... 138

ServerPermission.java ... 139

MyPrincipal.java ... 140

MedRecord.java.. 141

Patient.java .. 142

Test.java ... 143

Server.java .. 144

C. C. Policy and configuration files ... 145

7

Authorizations.policy ...145

LoginModule.config ...146

codePermissions.policy ..147

8

9

Chapter I

1. Introduction

Today when private companies and governmental agencies gather information on us more
than ever, computer security becomes increasingly important for the society at large. Exam-
ples of data gathered at large information systems range from credit card numbers, biome-
tric data such as digital fingerprints and the history of patients’ illnesses.

At the same time, the need to share this information between relevant actors is nowa-
days an everyday practice. Examples include, sharing data between the judiciary system and
the courts, the insurance companies and the hospitals etc.

Despite numerous benefits from this collaboration, this puts us at greater risk from suf-
fering severe consequences in case of information theft or misuse. To prevent this, special
care needs to be dedicated into securing the applications that handle this information.

For this purpose, during the design of applications, software industry employs security
experts that formulate security requirements for applications in terms of security properties
that those applications must have. Developers then implement these properties.

In order to ensure high degree of security in the application, the software industry uses
common techniques such as careful design and testing.

Another way to ensure high quality of the source code is by using some tool that ensures
certain properties of the code. These tools statically examine the structure of the code and its
interdependencies (1).

Many tools are available, where each has its own specifics and techniques that it uses.
One of the tools (FindBugs (2)) enforces certain coding guidelines and uses techniques to
detect errorness coding patterns. Another tool(ESC/Java (3)) statically verifies the code
against the provided annotations which are inserted to capture the design decisions that the
programmer had in mind during development (3).

Another popular approach especially used for mission-critical applications is model
checking. A tool like Bandera (4), exhaustively checks a finite state-model of the application
for violations of the system requirements (or properties) formally specified in some tempor-
al logic (e.g. LTL1 (5)). The last technique involves full verification of the system by requiring

1 Linear temporal logic.

10

both additional annotations with detailed specifications and construction of a proof that the
code matches the specifications. The latter task is the most time consuming. Example tools
doing full verification are Jack (6), Loop (7) etc.

The number of tools that uses the Java Modeling Language for static analysis and full
program verification has been growing in the last decade. These tools rely on JML to specify
the intended code behavior in the Design by Contract (DBC) fashion. DBC is based on “con-
tracts” — a formal agreement between a client and its suppliers. To call a method, a client
class must satisfy the conditions imposed by a supplier class. If these conditions are satisfied,
the supplier class must guarantee certain properties, which constitute the supplier class ob-
ligations. On the other hand, if conditions are not satisfied, that is, there is a contract viola-
tion, then a runtime error occurs.

It is generally acknowledged that there is a considerable gap between properties ex-
pressed in this way, by method pre- and post- conditions and class constraints, and the prop-
erties and terms that system designers have in mind when they talk about properties in ap-
plications.

Even though the JML constructs contribute to ensuring correctness that ultimately results
in a more reliable software in the long run, they are far from being sufficient in capturing
high-level properties of applications.

1.1. Motivation

When it comes to specification of security related properties with JML and their verification,
the research community has been focusing mainly in Java Smart Card2 applets (8), (9), (10).
Because of the specifics of the hosting environment that has very limited memory and
processing capacity, applets are usually small programs and have less complexity. They can-
not be compared to a typical Java desktop or web application. The program behavior of these
applications is characterized by a compact life cycle. Usually each stage of the life-cycle has
precisely determined actions; allowed to be carried during the specific phase.

The resource constraints in their hosting platform dictate specific characteristics and se-
curity requirements for these applications (11). The programming language used in Java
Cards is a subset of Java with a number of Java constructs absent. It is ideal for application of
formal methods, since the language is small enough to be actually feasible for study from a
formal perspective, yet it is used in real world applications.

As a result, the specification and verification of security properties with JML in these
programs has been quite successful in the research community (12).

In the recent years much research effort3 has been put in JML by research groups from
around the world. Many new constructs were added to JML and different case studies done
on how to use JML for different verification purposes including security features.

2 A typical example of Java Cards are SIMs in mobile phones.
3 Papers regarding JML are available at http://www.eecs.ucf.edu/~leavens/JML/papers.shtml

11

Considering the success of JML in the Java Card world and the addition of many new se-
mantics to JML in the last years, we were motivated to see how far has this specification lan-
guage progressed and how useful it is in capturing high level security properties.

In this thesis work our main concern is how JML can be used for security aspects in ap-
plications. We have been motivated mainly by the following questions:

 How efficiently can JML be used for specification of larger Java programs that
resemble those from real-life scenarios?

 Is it possible to express security properties with JML in these aplications?

 Can we capture high-level security properties in the application level by using
JML?

1.2. Objective

Since JML includes constructs to capture additional aspects of the code behavior, we were
interested in exploring how well these constructs are able to specify security related behavior
of Java applications. Furthermore, we were interested in exploring if it is possible to “push
the boundary” of property specification with JML, by aiming at specifying high-level security
properties such as authentication, authorization etc.

The objective of the work done during this thesis work is twofold. It consists of:

 finding methods how JML can be used to specify high-level security properties
in Java programs, and

 applying the chosen method(s) to specify security properties on a prototype
application developed for a case study regarding a medical clinic.

After researching the JML capabilities, we apply our method for security property speci-
fication on a prototype application developed for a case study of our own. The problem defi-
nition of the case study that we will work on will be lightly simplified in comparison to possi-
ble requirements from real life medical clinics.

During our work on the case study we do a threat analysis of the given scenario where
we identify security properties required for this application. From the overall group of secu-
rity properties that we identify during the analysis, we choose a subset of them to implement
in the application prototype.

In this prototype, we specify the properties that we have implemented with Java Model-
ing Language and use a tool verify that there are no violations between the code and the in-
serted JML statements.

12

1.3. Outline

The reminder of this thesis is organized as follows. Chapter 2 presents related work showing
how JML was used in the past to reason about security. In Chapter 3 we provide the back-
ground of the concepts that will be used during this thesis work. We give an overview of the
main features and limitations of JML. We provide an insight on the RMI technology used dur-
ing development and the Java security mechanisms that we use during development. In
Chapter 4, we present the possible approaches for using JML to specify security properties
that were used in the past. We present the approach that we intend to use, listing its similari-
ties and differences with others approaches.

In Chapter 5 we present the scenario of our case study, the threat analysis and the de-
rived security properties from this process. In Chapter 6 we explain how we implement the
properties in the prototype and apply our specification method. We present problems and
observations during this process. In Chapter 7, we present additional details regarding the
implementation and the tests done on the system. Finally, in Chapter 8, we present conclud-
ing remarks and point out future works.

13

Chapter II

2. Related work

In this chapter we present previous work where JML was used to specify properties related
to security. The two areas where JML has been particularly successful in specifying security
properties are Java Card applets and protocol verification and less frequently, simple applica-
tions implemented in Java.

The software from both of first two categories is usually easy to express in a limited set
of precisely defined states which makes them feasible for specification and verification.

Because of the relatively limited size and complexity, JML has successfully been used to
specify the behavior of these programs in the past. The provided specifications (which come
in the form of annotations) can then be used to statically verify the programs with one of the
many tools available that support JML (13).

2.1. Specification of applications and applets

Schubert and Chrzaszcz (14) annotate a simple desktop application for remote password
storage. They do a security analysis from the source-code point of view therefore don’t take
under consideration threats of data storage and threats related to social security attacks.
Source-code point of view in this case uses JML to specify a certain behavior of code for
which they claim that it meets a set of security properties. This code is then statically verified
with the help of static analysis tool of ESC/Java2.

 A set of security properties is chosen and features are implemented in the code to coun-
ter those threats. These features are then specified using JML4.

They choose confidentiality, integrity and availability as security properties and list a set
of threats against each of these properties. They implement solutions for a number of these
threats in the program and specify the code formally using certain JML constructs to be able

4 Since their goal was to verify the application with ESC/Java2 static analysis tool, besides their own

classes, they also had to annotate the behavior of the used Java libraries.

14

to statically verify that the solutions implemented for achieving those security properties ac-
tually work the way they were specified.

A feature implemented in their programe is the analysis and verification of the control
flow of the programe. They analyze and express the control flow of the application with the
help of ghost fields. When a state of interest occurs in the program the set keyword is used to
modify the ghost field to mark the occurrence of that state in the program.

States expressed in ghost fields are then used in pre- and post- conditions of methods to
ensure the general program flow. Object invariants are used to monitor the consistency of
objects during the entire execution of the program.

Pre- and post- conditions ensure context of the sequence of method calls. They ensure
that certain conditions are met before a method is called. For example, when a method call
occurs, pre- and post- conditions ensure that certain variables have been initialized. They can
ensure that certain objects are created inside the execution of that method and not before it’s
execution etc.

In their work, they propose a solution to trace the information flow of the confidential
data by inserting a ghost field to express the type of data. However they’re proposal has one
deficiency - it is incapable of tracing the flow of primitive data types.

Despite that they were able to statically verify their application with ESC/Java2 tool, they
state that this kind of verification “does not guarantee full security, but provides a certain
standardized level of assurance that the source code is well written with regard to the as-
sumed threat analysis”.

Jacobs, Oostdijk & Warnier (15) do a case study in formal verification and development
of secure Java smart card applications. They specify the control flow of an elementary Java
Card applet for a rechargeable phone card. By verifying this flow they are able to prove the
correctness of the applet in general. The card life cycle is modeled in finite state machines
where program states are marked by ghost fields.

They specify the behavior of cryptographic functions which they use for the challenge-
response mechanism in place to ensure secure transactions.

They define high level functional and security requirements of the applet and capture
them in the global class invariants and constraints. The functional behavior is captured in the
pre- and post- conditions of methods.

In (16) a method for automatically translating high level security properties for applets
into JML annotations is shown. The annotations generated by this method are however main-
ly related to functional correctness of the applet. The first group of properties annotates the
applet life cycle, describing the different phases that an applet can be in and actions that can
be performed in a certain phase. The second group of properties deals with the transaction
mechanism ensuring its atomicity. The third group expresses the properties that restrict the
exceptions allowed to be thrown and restricts access control of different applications inte-
racting with each other.

Ostdijk and Warnier (17), present how to use JML to annotate applets that use Java Card
RMI5. They use model variables to specify interfaces that remote objects implement and for-
mally verify the applet with the help of the LOOP (18) tool.

5 Java Card Remote Method Invocation.

15

2.2. Protocol specification

Poll and Schubert (19) present a case study in the specification (and verification) of an open
source Java implementation of the SSH protocol. They propose a methodology to formalize
this security protocol using finite state machines. JML is used to express the properties they
wish to verify for in the source code.

The protocol is represented as a finite state machine which describes how the state of
the protocol changes in response to the different messages it can receive. This is of course
only a partial specification, as it specifies the order of messages but not their precise format.
Nevertheless it is interesting enough because during specification of the implementing code
they were able to find security flaws in the implementation. This occurs because specification
contributes to a better understanding of the code.

It appears that the specification of this kind is easy to read for non-experts as well. It is
beneficial to include in the official protocol specification because it clarifies the specification
and makes it easier for developers to implement.

The formal specification of an abstract description for a security protocol for Java smart
cards is given in (20). They refine an abstract description of the bilateral key exchange (BKE)
protocol into finite state machines. This protocol is described in (21) and it allows two agents
to agree on a session key.

JML is used to specify the implementation code and static verification tools are used to
verify if the code conforms to the behavior defined in the state machines.

In both of these cases of protocol specification, state-transitions are expressed as a com-
bination of JML invariants, constraints, and method specifications. Static analysis tools are
then used to verify if these specifications hold during program execution. If they hold then
they assume that the implementation really behaves in the manner it was specified.

2.3. Other related work

(22) introduces a security automata as a convenient way to describe security policies. It pro-
poses a translation mechanism for security properties into program annotations. The securi-
ty properties are expressed as a finite state automaton and annotations are written in JML.
The automaton contains a trap state to model the occurrence of an error.

The authors define their own semantics of the annotated programs and a few additions
to JML to accommodate their semantic constructs.

They use the JML assert statement to evaluate a condition on the program state.
The semantics of their language is restricted to a very limited subset of (sequential) Java,

excluding typical object-oriented features. The method declarations are limited to containing
only one parameter.

(23) uses JML to specify non-interference properties such as confidentiality and integrity
from a language-based perspective. They use a simple security lattice Σ, defined as {High,

Low} with Low ⊆ High. A secure information flow policy maps variables to security levels

and the sets of variables corresponding to those levels.

16

They’re work is based on previous work done by Josh and Leno (24). Confidentiality is
guaranteed by restricting the dependency of the fields belonging to the Low confidentiality
level from the ones belonging to the High confidentiality level. They use the \old keyword
from JML to ensure this separation.

Cheo and Perumandla (25) propose an extension to JML to specify the order of method
calls. This approach is especially of use when specifying protocols. They propose to separate
the protocol assertions from the functional assertions. The specification of the functional
properties continues is written in the pre- and post- conditions of methods, but the protocol
properties are written directly as separate annotation form proposed by them. For this, they
introduce a new sequence clause called call_sequence.

The call_sequence specification constrains the order in which methods of a class
should be called by clients. It specifies the allowed sequences of method calls.

17

Chapter III

3. Background concepts

This chapter is meant to give a foundation of the concepts used later on during the thesis
work. Before we look into how JML has been used in the past to specify security properties,
and attempt to do the same in the program of our case study, we explain some of the tools,
concepts and programming technologies that we will use during this process.

In this chapter we present a more detailed picture of JML. We begin by presenting some
of the most notable features of this specification language, to then continue listing some of
it’s more advanced features. We list some of the JML limitations that we have identified,
when JML is used to specify security properties in Java programs.

We compare JML with another language of a similar purpose, namely with Object Con-
straint Language (OCL). We point out what are JML’s advantages in contrast to OCL, when the
design features of the Java programs are specified.

Since the foundation of our case study application is built using the Java Remote Method
Invocation technology (RMI), in this chapter, we provide a short description of this pro-
gramming technology. We show the steps of how to program applications with distributed
objects using RMI.

Besides the RMI technology, in our case study we also use Java Authentication and Au-
thorization (JAAS) mechanism. This system authenticates the users based on a built-in au-
thentication mechanism and provides access control depending on their authentication sta-
tus. In the end of this chapter we explain the architectural components of this system and
show how they work together to provide user authentication and authorization.

3.1. An Overview of JML

JML (26), which stands for “Java Modeling Language”, is a behavioral interface specification
language (BISL) tailored to Java. JML combines the practicalities of design by contract (DBC)
principle to specify the behavior of Java classes and interfaces.

During this specification, JML concentrates on two aspects of Java modules:

18

 syntactic interface – consists of names and static information (e.g., method
names, arguments or return type) found in Java declarations;

 functional behavior – describing how the module should behave when used.

JML specifications are written in special annotation comments, which start with the @
sign.

Specifications are written in two forms: //@ <JML specification> or
/*@ <JML specification> @*/ depending on if we are writing a one line (the first form) or
multiple line (second form) specification.

The specification comments are ignored by the Java compiler and interpreted by the JML
compiler named JMLC (27). There are numerous languages for this purpose but JML is par-
ticularly popular firstly, because its syntax is heavily based on Java (thus easy to use and
learn) and, it has a large tool support.

These tools support DBC, runtime assertion checking, discovery of invariants, static
checking, specification browsing and even formal verification using theorem provers (28)6.

As in Eiffel, JML uses Java’s expression syntax to write the predicates used in assertions,
such as pre- and post- conditions. As a consequence of heavy reliance on Java syntax, JML
lacks some expressiveness that makes more specialized assertions difficult to express. To
counter this, JML uses various constructs, such as quantifiers.

3.1.1. Assertions and expressions

Assertions and expressions in JML specifications are written using Java’s expression syntax.
However, they must be pure. This means that side effects cannot appear in JML assertions or
expressions.

To prevent side effects, the following Java operators are not allowed within JML specifi-
cations:

 assignment — assignment operators like =, += and -= are not allowed

 increment and decrement operators — all forms of increment and decrement
operators like ++ and -- are not allowed

In addition to this, only pure methods7 can be used in JML expressions. The purity in JML

is expressed by using the assignable keyword. Only the fields listed in an assignable clause
can be modified by a method. Two JML keywords can be used with the assignable clause:
\nothing and \everything. We can indicate that a method does not have any side effects by:
writing assignable \nothing.

6 JML is a large and very active research project. More documentation, available tools that support JML and

background papers are available at: http://www.jmlspecs.org
7 A method is considered pure is it does not modify the state e.g. by assigning values to any fields or ob-

jects.

19

Below in the method example getName() we show two possibilities of declaring a me-
thod as pure – not being able to modify any fields outside their body. However, we should
note that they can modify fields declared inside of their body.

public /*@ pure @*/ int getName() { return name; }

The same can be expressed also by using a one line annotation as listed in Figure 3.1:

/@ assignable \nothing;

public int getName() {

 return Name;

}

Figure 3.1. JML specification with an assignable clause.

This method declaration denotes a method with no side-effects; it is not allowed to modi-
fy the program state. The use of the JML modifier pure is equivalent to the assignable
\nothing clause.

Besides assignable, JML provides a rich set of constructs, some of which make extensions
to the Java’s expression syntax to provide more expressive power in JML specification; they
can be used in JML assertions and expressions. For example, \old(E) represents the pre-
state value of expression E. An expression with a pre-state value refers to the value before
method execution. The \result construct specifies the return value of a method. Note that in
JML such constructs start with a backslash (\) in order to avoid interfering with identifiers
present in a user program.

JML also provides the use of logical connectives such as conjunction (&&), disjunction(||),
negation (!), forward (==>) and reverse implications (<==), equivalence (<==>), and inequiva-
lence (<=!=>). Regarding quantifiers, JML supports several types such as universal quantifier
(\forall), existential quantifier (\exists), and generalized quantifiers (\sum, \product, \min,
and \max). The quantifiers \sum, \product, \min, and \max are generalized quantifiers that
return respectively the sum, product, minimum, maximum of the values present in JML ex-
pressions.

Note also that sometimes during development it is more convenient to insert an informal
description when specifying a piece of code. Such descriptions are ignored by JML compiler
but are there for clarity. They are inserted between (* and *) signs as below:

(* some text describing a JML predicate *)

As we can see, this description is informal and is entirely left to the reader to interpret it.

In-line assertions

20

JML provides the use of a specific kind of assertion known as in-line assertions which are
specified in the method body. They are bundled together with Java code as shown below in
Figure 3.2.

public class AssertionExample {

 public void m() {

 //@ assert y1 != 0 && y2 != 0

 y1++;

 y2++;

 }

}

Figure 3.2. In-line assertions.

In this example when the execution of method m() reaches line:
//@ assert y1 != 0 && y2 != 0 the assertion must be satisfied or otherwise, an assertion
violation is reported.

JML provides several kinds of in-line assertions, such as assume statements, henceby
statements, unreachable statements, set statements, and loopinvariant and variant
statements.

Default value of declarations

Null pointer exceptions are among the most common faults raised by components writ-
ten in object-oriented languages such as Java. Because of this, in JML a declaration is by de-
fault non-null. So, unless it is explicitly declared by keyword nullable, it is required to have
a non-null value assigned to it.

Moreover, a class or interface that implicitly contains nullable declarations is specified
by using the nullable_by_default class annotation.

3.1.2. Method specification

In JML, method specifications contain pre-, post- condition predicates. Methods can be speci-
fied by lightweight and heavyweight specifications, normal and exceptional postconditions,
and frame conditions. All these features are briefly described.

States of method specifications

JML constructs used for method specifications are divided into three larger groups of
states:

21

 pre-state specifications — these specifications must be evaluated in the pre-
state, immediately before the execution of the method body. Example of these
specifications are: requires clauses, old variables and old expressions. It is
important to note that expressions such as old appear in post-state
specifications, but they must be evaluated in the pre-state (before method ex-
ecution);

 post-state specifications — these specifications must be evaluated in post-
state, immediately after the execution of the method body. Clauses such a
ensures, and signals are example of post-state specifications;

 internal-state specifications — these specifications must be evaluated in inter-
nal states, during the evaluation of the method body. In-line assertions are ex-
amples of internal specification state.

Specification clauses

JML provides a number of specification clauses that can be used to specify the behavior
of methods (see Table 3.1) the requires clauses specifies preconditions; the assignable
clauses specifies frame conditions; the ensures clauses specifies normal postconditions, whe-
reas signals clauses specifies exceptional postconditions.

requires preconditions
ensures normal postconditions
signals exceptional postconditions
assignable frame conditions

Table 3.1. JML clauses for method specifications.

Preconditions are predicates that must hold before method execution. Figure 3.3 shows
an example of a precondition of the method sum. According to this specification, the argu-
ments a and b of the method sum must be non-negatives; otherwise an assertion violation is
reported.

//@ requires a >= 0 && b >= 0;

public int sum(int a , int b) {

 return a + b ;

}

Figure 3.3. Example of JML precondition specification.

Normal postconditions are predicates that must hold after method execution without
throwing any exception. Figure 3.4 shows an example of a normal postcondition of the me-
thod sum. According to this specification, the result of the method (indicated by the \result

22

construct) must be equal to the sum of the arguments a and b; otherwise a assertion viola-
tion error is raised.

//@ ensures \result == a + b;

public int sum(int a , int b) {

 return a + b ;

}

Figure 3.4. Example of JML normal postcondition specification.

//@ signals (Exception) a >= 0 && b > = 0;

public int sum(int a , int b) {

// Throws a java.lang.Exception

 return a + b ;

}

Figure 3.5. Example of JML exceptional_postcondition specification.

Exceptional postconditions are predicates that must hold when the method terminates
by throwing an exception. Each exceptional postcondition can consist of several signals
clauses.

In this way, each signals clause must hold when the specified method terminates abnor-
mally by throwing an exception of a type specified in the signals clause. Figure 3.5 shows an
example of an exceptional postcondition for the method sum. According to this specification,
when the method sum throws an exception, the arguments a and b must be non-negative;
otherwise the original exception is intercepted signaling an assertion violation.

Heavyweight and Lightweight specifications

In JML, one can use two different styles on method specifications: heavyweight
specifications, and lightweight specifications (29). A heavyweight specification can start with
the keyword behavior, which indicates a “complete” specification that includes both normal
and abnormal situations. Figure 3.6 shows an example of a behavior specification, including
normal (lines 2 to 4), and abnormal situations (line 5).

The normal_behavior keyword is used only to define specifications that include only
normal situations, that is, no method can terminate abnormally by throwing an exception —
the signals clause cannot appear in these specifications cases. Figure 3.6 (lines 1 to 3)
shows an example of normal behavior specification. Unlike the normal_behavior, the

exceptional_behavior is employed to specify abnormal situations using the signals
clause. Such specifications cannot terminate normally. We emulate this behavior by introduc-
ing an implicit ensures false.

Figure 3.5 shows an example of an exceptional_behavior specification. When an excep-
tion is thrown, both input parameters (a and b) must be greater than zero (lines 1 to 3).

23

/∗@ behaviour
@ requires (a >= 0) && (b >= 0);

@ assignable \nothing ;

@ ensures \result == a + b;

@ signals (Exception) a > 200 && b > 100;

@∗/
public int sum (int a , int b){

 return a + b ;

}

Figure 3.6. Example of behavior specification.

/∗@ normalbehaviour
@ ensures \result == a + b;

@∗/
public int soma (int a , int b){

 return a + b ;

}

Figure 3.7. Example of normal behavior specification.

A heavyweight specification has a well-defined interpretation for each clause in the
specification. When one omits a particular clause, JML assumes that it is interpreted as true.
On the other hand, a lightweight s pecification does not start with a behavior keyword. Thus,
only the clauses of interest are specified. In other words, it defines an “incomplete”
specification. For example, a method can specify its normal behavior (by defining only pre-
condition or normal postcondition clauses), or its exceptional behavior (by defining only ex-
ceptional postcondition clauses). In lightweight specifications, when a particular clause is
omitted, the \not_specified interpretation is assumed.

The JML semantics states that the keyword \not_specified is used to denote that a par-
ticular omitted clause has no condition. The JML compiler interprets omitted clauses in
lightweight specifications similar to ones in heavyweight specifications which means true.

Old expressions

In JML, the keyword old is used to refer to pre-state expressions and variables in post-
state expressions (e.g., normal postconditions). An old expression, (\old(E)), and old varia-
ble, (\old(v)), denotes the value of the expression E and value of variable v respectively, in
pre-state (i.e. before the method was called).

24

3.1.3. Type Specifications

Invariants are predicates that must hold in all visible (reachable) states8. An invariant is an-
notated in a type declaration by using the keyword invariant, also known as type invariant.
Figure 3.8 shows an example of invariant. In this example, the invariant

(weight >= 0.0) must be preserved in all visible states. In this way, if a call to the me-
thods setWeight or getWeight violates the invariant, an error is raised.

public clas s Person {

 public double weight;

 //@ invariant weight >= 0.0;

 public void setWeight (double weight) {

 this.weight = weight;

 }

 public double getWeight () {

 return this.weight;

 }

}

Figure 3.8. JML invariant specification.

JML uses the keyword helper to provide more flexibility for invariants. The helper
modifier (4, Section 7.1.1.14) can only be used on a private method or private constructor. By
using this modifier, such methods and constructors are also called helper methods and helper
constructors. In this way, helper methods and constructors are “free” from the obligation of
preserving type assertions (e.g., invariants). Suppose that the help method m is part of the
class Person (see Figure 3.8).

private /*@ helper @*/ void m (){ this.weight = -10; }

Since it is declared of type helper, it does not need to satisfying the invariant
(weight >= 0.0). The example presented in Figure 3.8 refers only to instance invariants.

In JML, the invariants are distinguished into static and instance invariants. The former refers
only to static fields and methods. On the other hand, the latter can refer to both static and in-
stance fields and methods.

The following states of the program execution must be preserved by an object in order to
keep an instance invariant integrity:

 after execution of all non-helper constructors;

 before execution of a non-helper finalizer method;

 before and after execution of all non-helper non-static non-finalizer methods.

8 Visible states are all the possible states in the program execution.

25

On the other hand, instance invariants need not be preserved in the following states:

 after execution of constructors declared with the helper modifier;

 before and after execution of methods declared with the helper modifier

public clas s TemporaryInvariantBreak {

 public int f;

 //@ invariant f >= 0;

 public void m() {

 this.f = −10; // temporary invariant break!

 System.out.println("internal -state");

 System.out.println("f:" + f) ;

 this.f = 0; //re−establishment of the invariant

 }

}

Figure 3.9. Example of temporary invariant violation in a JML specification.

An invariant may be explicitly declared to be a static or an instance by using the
modifiers static or instance during the declaration of the invariant. If an invariant is de-
clared in a class without the modifier, it is an instance invariant by default, whereas if an in-
variant is declared in an interface without the modifier, it is an static invariant by default.

Regarding invariant violations in JML, there is only one way to temporarily break an in-
variant that consequently throws no assertion violation error. This temporarily invariant
break is established in an internal-state during evaluation of a method’s body. However, be-
fore the method returns to the caller, the invariant must be reestablished, that is, a method
during the execution of its body can break an invariant many times, but before the end of its
execution all invariants must be reestablished, otherwise an error is raised indicating the in-
variant assertion violation. The example in Figure 3.9 demonstrates the temporarily violation
of an invariant assertion even in presence of callbacks (recursive assertion checking). In this
example the class TemporaryInvariantBreak has an invariant condition (line 3) that refers
to the field f (line 2). For the invariant break purpose, the class TemporaryInvariantBreak
has a method m (lines 5 to 10) that temporarily breaks the invariant declared in line 3. The
invariant break occurs in line 6 of the method m. Once broken, one can use the values of the
internal-state (line 8 is printed the value of field f). However, before the method terminates
its execution, the invariant is established again (line 9) in order to prevent invariant asser-
tion violation. Regarding invariants and method termination, methods and constructors must
preserve invariants in the case of normal and abnormal terminations. For example, even if a
method terminates abnormally by throwing an exception, the invariant check must be per-
formed.

Methods and constructors must preserve invariants in the case of normal and abnormal
terminations. For example, even if a method terminates abnormally by throwing an excep-
tion, the invariant check must be performed.

An invariant can be declared with any Java’s access modifiers (private, protected, and
public). As in class members, if an invariant is declared in a class with no one of the Java

26

access modifiers, this means that it has a package visibility (default access). An invariant de-
clared in an interface with no modifiers has public visibility.

History constraints

History constraints, known as constraints for short, are used to specify the way that ob-
jects can change their values from one state to another (i.e., pre-state to a post-state) during
the program execution.

In JML, a constraint is written in a constraint clause with the keyword constraint.
Moreover, constraint clauses are usually written using old expressions to relate the previous
state (pre-state) with the resultant state (post-state), because they are two-state predicate.
On the other hand, invariants (discussed in a previous section) cannot use old expressions,
because they are one-state predicates. The constraints are applied to methods, and they must
hold in the post-state of every (non-helper) method execution.

public class ConstraintExample {

 public int index ;

 //@ constraint index == \old (index + 1);

 public void incIndex () {

 index++;

 }

 // . . . other methods

}

Figure 3.10. Example of constraint in JML specification.

Class ConstraintExample in Figure 3.10 includes an example of constraint in JML. The
example defines the public field index and the method intcIndex. The constraint
index == \old(index + 1) states that after execution of the method incIndex (in a post-
state), the specified constraint must be checked. If the constraint does not hold, an error is
raised indicating the constraint assertion violation. A scope problem is observed in the con-
straint defined in Figure 2.15. Here, the constraint is applied to all methods in class
ConstraintExample. In this way, we can have calls to other methods in class
ConstraintExample which do not modify the field index, thus leading to a constraint asser-
tion violation. To deal with such a scope problem, JML also allows one to specify constraints
that are applicable only to a specific set of methods.

//@ constraint index == \old(index + 1) for incIndex();

Below we show how to rewrite the constraint in order for it to be obligatory only for me-

thod incIndex(). If the for clause is omitted, it becomes an universal constraint that con-
strains all methods. The constraint specification in Figure 3.10 is an example of universal
constraint.

27

As with invariants, JML makes a distinction between instance constraints and static con-
straints. An instance constraint must hold only for instance methods, whereas a static con-
straint must hold both for instance and static methods. It is important to note that: (1) in-
stance constraints do not apply to constructors and finalizers because there is no well-
defined pre-state for constructors and no post-state for finalizers. Moreover, helper methods,
like invariants, do not have to preserve history constraints; and (2) unlike instance con-
straints, static constraints must be satisfied by all constructors (after constructor execution).

Concerning constraints and method termination, just like invariants, constrained me-
thods must preserve constraints in the case of normal and abnormal terminations. In relation
to access modifiers, like invariants, constraints can also be declared with any Java’s access
modifiers (private, protected, and public). The rules of visibility for invariants are the
same on constraints.

Specification for interfaces and inheritance

As we previously mentioned, JML is used to specify Java’s modules such as classes and
interfaces. Thus, interfaces may have specifications as well. The JML specifications that are
present into interfaces provide two semantics differences between JML and Java:

 stateful interfaces — in Java, interfaces are stateless in the sense that there are
no time-varying fields in interfaces. In JML, however, interfaces become state-
ful as one can declare instance fields into interfaces by using model fields (this
is one feature of the model programs). Accordingly to JML, locations should be
allocated somewhere for storing state information attributed to the interfaces;

 multiple inheritance — Java allows only single inheritance of code whereas
JML supports multiple inheritance of specifications. That is, an interface in JML
can have its own (model) fields and (model) methods.

In JML, a subclass inherits specifications such as preconditions, postconditions, and inva-

riants from its superclasses and interfaces that it implements. An interface also inherits
specifications of the interfaces that it extends. The semantics of specification inheritance re-
sembles that of code inheritance in Java; e.g., a program variable appearing in assertions is
statically resolved, and an instance method call is dynamically dispatched (30).

There are several ways to inherit specifications: subclassing, interface extension and im-
plementation, and refinement. A subtype inherits not only fields and methods from its super-
types, but also specifications such as pre- and postconditions, and invariants. To provide the
effect of specification inheritance, JML employs the keyword also, which denotes a combina-
tion (join) of specification cases, which consist of clauses including pre-, postconditions and
so forth.

28

3.1.4. Visibility of Specifications

As in Java, JML provides rules of visibility for JML annotations. It imposes extra rules to the
usual Java visibility rules. One rule states that an annotation cannot refer to names (e.g.,
fields) that are more hidden than the annotation visibility. Suppose x is a name declared in
package P with type T (P.T), by applying this JML visibility rule, we have the following restric-
tions:

 An expression in a public method specification can refer to x only if x is de-
clared as public;

 An expression in a protected method specification can refer to x only if x is de-
clared with public or protected visibility, and x must also respect Java’s visibili-
ty rules — if x has protected visibility, then the reference must occur from
within P or outside P only if the reference occurs in a subclass of T;

 An expression in a method with default (package) visibility can refer to x only
if x is declared with public, protected or default visibility, and x must also re-
spect Java’s visibility rules — if x has default visibility, then the reference must
occur from within P;

Note that the visibility access modifiers used in JML only occur in heavyweight method
specifications. In a lightweight method specification, the privacy level is the same of the me-
thod. For example, a public method with a lightweight method specification is considered to
have a public visibility annotation.

Still regarding privacy of specifications, JML also offers the keywords spec_public and
spec_protected. Both are used to provide means to make a declaration that has a nar-

rower visibility become wider (public or protected), and thus, respecting the rules of JML vi-
sibility. For instance, the declaration:

private /*@ spec_public@ */String name;

introduces a field name of type string that Java considers private but JML considers pub-

lic. In this way, this declaration can be referred to, for example, in a public method
specification.

3.1.5. Advanced JML features

When JML is used to specify high level properties and then to verify formally modules of pro-
grams written in modern object-oriented languages like Java, features listed in the previous
section are unfortunately not sufficient. In this section we will present the necessary extra
constructs for specifying object-oriented modules: datagroups, ghost fields, model fields etc.

29

Datagroups

It was previously mentioned that frame properties specify which parts of the system may
change as a result of a method execution. So, any location left outside the frame property
(expressed by the assignable keyword) is guaranteed to have the same value as in the pre-
state.

Consider the following example from Figure 3.11.

public class Time {

 // some invariant

 protected int hour, min;

 . . .

 /*@ requires ...; // some pre-condition

 @ assignable hour, min;

 @ ensures ...; // some post-condition

 @*/

 public void setTime(int hr, int m) {

 this.hour = hr; this.min = m;

 }

}

Figure 3.11. Frame properties.

In the Figure 3.11 we have the class Time with two variables hour and min. Their values
get updated by the setTime method. Note that the assignable clause of this form is highly
problematic because it contradicts good object-oriented practices for two reasons: 1) it ex-
poses implementation details by mentioning names of the protected fields and 2) the specifi-
cation is restrictive for any future subclasses.

Thus, if in the future we are required to express time more precisely (e.g by adding a
field for seconds and milliseconds respectively) then the newly added fields in the extended
class would not be explicitly mentioned in the assignable clause.

Datagroups (31) provide a solution to this problem. The idea is that that a datagroup is
an abstract piece of an object’s state that may still be extended by future subclasses.

The specification in Figure 3.12 declares a (public) datagroup _time and declares that
the three (private) fields belong to this datagroup. This avoids exposing any private imple-
mentation details, and it’s subclasses may extend the datagroup with additional fields.

Using the datagroup principle the example from Figure 3.11 is modified as presented in
Figure 3.12.

30

public class Time {

 //@ public model JMLDataGroup _time;

 protected int hour; //@ in _time;

 protected int min; //@ in _time;

 protected int sec; //@ in _time;

 protected int milisec; //@ in _time;

 . . .

 // the rest of the class

 }

}

Figure 3.12. Datagroup with three fields.

Model fields

Model fields serve for the purpose of data abstraction. A model field is used for
specification-only purposes that provide an abstraction of (part of) the concrete state of an
object. The specification in Figure 3.13 illustrates the use of a model field.

Note that the _currentDay model field in class Month is public, and hence visible to
clients, though its representation is not. The represents clause must be declared private, be-
cause it refers to private fields. For every model field there is an associated datagroup, so
that the model field can also be used in assignable clauses. An object can have several mod-
el fields, providing abstractions of different aspects of the object (31).

public class Month {

 //@ public model long _currentDay;

 //@ private represents _currentDay = month + date + day;

 private int month; //@ in _currentDay;

 private int date; //@ in _currentDay;

 private int day; //@ in _currentDay;

 . . . // the rest of the class

}

Figure 3.13. Model field with its associate datagroup.

Model fields are especially useful in the specification of Java interfaces, as interfaces do
not contain any concrete representation we can refer to in specifications. We can declare

31

model fields in a Java interface, and then every class that implements the interface can define
its own represents clause relating this abstract field to its concrete representation.

Ghost fields

Ghost fields are also specification-only fields, which means that they cannot be referred
to by Java code. They’re difference with model fields is that while model fields are there to
provide data-abstraction, a ghost field can provide an additional state of the object.

The change of the state of the ghost fields is done by the set keyword. The setting of the
ghost fields can be (and usually is) done not in the specification, but rather during the pro-
gram control. In this way the objects state can be monitored during different program execu-
tion paths.

public class Person {

 private String name;

 private int age;

 //@ public ghost boolean _invalidAge = false;

 //@ requires age >= 0;

 //@ assignable age;

 //@ ensures age >= 0;

 public void setAge(int age) {

 if (age < 0) {

 age = 0; // set age to zero, since invalid value

 // was provided

 //@ set _invalidAge = true;

 }

 else {

 this.age = age;

 //@ set _invalidAge = false;

 }

}

Figure 3.14. Setting the value of the ghost field based on program execution.

In Figure 3.14. we provide an example of using ghost fields to monitor the state of object
based on input provided from the user. Namely, in the method setAge of class Person, if a
negative parameter is provided as input, than the value of the ghost field is set to true indi-
cating that the age is invalid. Note that since the ghost field was declared public it can be
seen, and thus this objects state verified, from outside the Person object itself.

32

3.1.6. Some additional JML operators

Java Modeling Language has some operators which are useful for the definition of the me-
thod API’s. The operators mentioned here can be used in both normal and exceptional pre-
conditions (i.e. in ensures and signals clauses) and in history constraints.

The first mentioned, is the \not_assigned operator which specifies the data groups that
were not assigned during the execution of the method being specified (29). The example be-
low specifies that the datagroups _gr1 and _gr2 defined in the class Person, are not assigned
during the execution of the method increaseWeight.

public class Person {

 . . .

 int weight;

 //@ public model JMLDataGroup _age, _stamina;

 /∗@ requires true;
 @

 @ ensures (\result = \old(weight) + a) &&

 @ \not_assigned(_age, _stamina);

 @∗/
public int increaseWeight(int a) {

 weight = weight + a;

return weight ;

}

}

Figure 3.15. Restricting field modification with the \not_assigned operator.

The next operator is the \not_modified operator used to assert fields whose values are
the same in the post-state as in the pre-state. For example, the \not_modified(xval, yval)
says that xval and yval have the same value in the pre and post state (their values are equal)
of the method execution (see Section 11.4.4 in (29)).

The operator \only_accessed specifies that the method’s execution only reads from a
subset of data groups named by the given fields. For example, \only_accessed(xval, yval)
says that no fields of the data groups named xval and yval were read by the method. This
includes both direct reads in the body of the method, and reads during calls that were made
by the method (and methods that this method might have called, etc.) (see Section 11.4.5 in
(29) for more).

The operator \only_assigned specifies that the method’s execution only assigns new
values to a subset of the data groups named by the given fields. For example,
\only_assigned(xval,yval) says that no fields, outside of the data groups of xval and yval
were assigned by the method (see Section 11.4.6 in (29)).

33

Keyword Description return type

\not_assigned specifies the data groups that are not as-
signed during method execution

boolean

\not_modified specifies fields whose values should remain
the same in the post-state as in the pre-state.

boolean

\only_accessed specifies that only a subset of data groups
named in the given fields should be read during
the method execution

boolean

\only_assigned during the method execution only a subset
of the data groups are assigned new values

boolean

\only_called method’s execution only called from a sub-
set of methods given in the method-name-list

boolean

\only_captured method’s execution only captured refer-
ences from a subset of the data groups named
by the given fields

boolean

\fresh objects were freshly allocatedbound as a
result of this method execution. They did not
have values assigned in the pre-state.

boolean

assert check that the specified predicate is true at
the given point in the program

assume assume that the given predicate is true

Table 3.2. The description of some of the JML predicates and specification expressions.

The \only_called operator specifies that the method’s execution is only allowed to call
from a subset of methods given in the method-name-list. For example, \only_called(p,q)
says that no methods, apart from p and q, were called during this method’s execution.

Similarly, the operator \only_captured specifies that only the method’s execution only
captured references from a subset of the data groups named by the given fields.

Another handy operator is the \fresh operator which specifies that the objects created
in this method are freshlly allocated; for example, \fresh(x,y) asserts that x and y are not
null and that the objects bound to these identifiers were not allocated in the pre-state.

Two other keywords of interest are defined here. Namely, the assert and assume state-
ments. An assert statements tells JML to check that the specified predicate is true at the given
point in the program (29). The runtime assertion checker checks such assertions during ex-
ecution of the program, when control reaches the assert statement. The assume statement is
used when we to tell the analysis tool that the given predicate is assumed to be true (29).

The difference between the assert and the assume statement is that that the static check-
er just uses the assumption without checking if it is correct, while with an assert statement, it
checks if a condition can be deduced.

34

3.1.7. Limitations of JML

Despite that JML is able to specify quite rigorous specification it has limitations which have a
particularly impact when it comes to specifying properties related to security.

JML specifications are restricted to a single class. This makes it especially hard to reason
about security related behavior because some of the design decisions determining this beha-
vior are made in different classes. Furthermore, at least in larger (Java) desktop applications,
this behavior is usually spread in many classes located in different packages.

It is difficult to specify the allowed sequences of method calls with JML. Such sequences
are essential properties of reusable object-oriented classes and application frameworks.

Another key limitation is related to one of the design goals of JML. JML was designed for
specifications exclusively restricted to the functional behavior of programs. For this reason
most of the up to date security related research involving JML tends to reason about security
from a functional point of view as well. This means that reasoning about security properties
with JML depends from the implementation of solutions for those security properties. JML as
a design by contract language, in this context is used to reason about the correctness of im-
plementation of these solutions.

The third limitation of JML is that it has not much support for refinement. The only re-
finement support that JML has is the possibility to express the data abstraction of fields of
objects by the JML construct of model fields [For more on model fields go to page 28]. No re-
finement is possible for any JML clauses representing behavior. As a result of this, it is not
possible to define any sort of dynamic annotations, that would for example reflect on beha-
vior based on a given pre condition.

The motivation for JML is to provide support for ensuring that the program works
under the assumptions the programmer had in mind during development (32). That is,
improve program development so that assumptions of specific actions are recorded and en-
forced. The specific actions ensure that method implementations behave as expected.

3.1.8. A comparison of JML and OCL

JML does have some things in common with the Object Constraint Language (OCL), which is
part of the UML standard. Like JML, OCL can be used to specify invariants and pre- and post-
conditions. An important difference is that JML explicitly targets Java, whereas OCL is not
specific to any one programming language.

JML clearly has the disadvantage that it can not be used for, say, C++ programs, whereas
OCL can. But it also has obvious advantages when it comes to syntax, semantics, and expres-
sivity. Because JML sticks to the Java syntax and typing rules, a typical Java programmer will
prefer JML notation (33) over OCL notation.

JML supports all the Java modifiers such as static, private, public, etc., and these can
be used to record detailed design decisions. Furthermore, there are legal Java expressions
that can be used in JML specifications but that cannot be expressed in OCL.

More significant than these limitations, or differences in syntax, are differences in se-
mantics (26). JML builds on the (well defined) semantics of Java. So, for instance, the equals

35

keyword has the same meaning in JML and Java, as does ==, and the same rules for overrid-
ing, overloading, and hiding apply. This is not the case for OCL.

3.2. Java RMI

In this section we present Java Remote method Invocation mechanism that we used during
the implementation of the prototype in our case study. Namely, first we give a short overview
of the Java RMI technology (that has been in existence for more than twenty years) and se-
condly, we give an outline of necessary steps to create distributed objects with this technolo-
gy.

3.2.1. Remote Method Invocation (RMI)

The primary goal of Remote Method Invocation (RMI) is to make it possible to develop dis-
tributed Java applications with same syntax and semantics as if they were used in non-
distributed applications. RMI allows developers to create programs that share objects (usual-
ly located on the server side) and make them remotely accessible for other programs (usual-
ly on client side), allowing them to invoke methods and access attributes in the same way as
it is done in local objects. RMI requires only a TCP/IP based network infrastructure for com-
munication between Java virtual machines, but all network related communication is hidden
from the developer.

The core of the RMI lays in the definition of objects and the implementation of objects
(34). In RMI, the definition of a remote object is coded using an interface. The implementa-
tion of the remote object is coded using a class. Clients that invoke methods on the remote
object use the interface (definition) of the remote object and do not know the implementa-
tion.

Figure 3.16 shows an example of remote method invocation. Both the client and server
know the Example interface. The server has the implementation of this object and has made
it available to the client to contact it remotely. The client only knows the definition of the
class; methods of this class that are invoked on the client side will function as a proxy.

The way the server shares the objects is by placing them on the RMI registry using a
string as a name to identify them (34). When clients want to access the objects that the serv-
er advertises, they request the name together with a hostname (Internet address) to identify
the virtual machine that serves the object.

36

Figure 3.16. The conceptual overview of distributed objects with RMI.

Steps for creating distributed objects with RMI

Below we show steps in a typical usage of RMI technology. The steps are organized as
follows:

1. Creating an interface

import java.rmi.*;

public interface ServerObj extends Remote

{

 public void methodA() throws RemoteExcetption;

}

This is the interface of the ServerObj. By extending the java.rmi.Remote class, the ob-

jects that implement this interface can be available remotely. The method signatures need to
throw RemoteExcetption exception because they are not executed locally.

2. Creating the implementation

37

public class ServerObjImpl extends java.rmi.server.UnicastRemoteObject

{

 public void methodA()throws java.rmi.RemoteExcetption

 {

 // … implementation code

 }

}

The ServerObjImpl is the implementation of the ServerObj class. It extends the
UnicastRemoteObject to have it registered into the RMI registry and thus make it avail-

able to get called remotely.

3. Serializing objects

In order to be able to pass objects as arguments to remote methods, object serialization
must take place. Therefore each objects that will be passed through the network has to im-
plement the Serializable interface.

This way, these objects can be flattened and streamed over the network.

4. Creation of Stubs and Skeletons

In Java, manual creation of the stubs was necessary until the version 1.4.2 which coinci-
dently, is the version that we will be using.

To create the stub and skeleton files, the RMI compiler is used. It is a command line tool
that is shipped with the Java SDK and is named rmic. After running it on
ServerObjImpl.class a ServerObjImpl_Stub.class and ServerObjImpl_Skel.class are
created.

In these two files resides all the network communication details. So when the client calls
a remote method he is actually calling the stub will contain the code to connect to the remote
skeleton, to send details about the function to be invoked, to send the parameters, and to get
the results back.

5. The server side

ServerObj s = new ServerObjImpl();

Naming.rebind("rmi://localhost:1099/Service”, s);

Naming.rebind() is a static method that is used to bind a remote object to an URL. The

number 1099 is the default port that is used with RMI registry.

6. Client Side

38

ServerObj so = (ServerObj);

Naming.lookup(“rmi:// localhost:1099/Service”);

Naming.lookup() returns a java.rmi.Remote object (proxy stub), that can be

used like a normal, local object.

7. Running the Applications

First, the RMI registry server has to be started where we register the remote object

ServerObj. Next, the client can be started. It will connect to the registry and obtain a refer-
ence to the ServerObj by specifying the name that was used by the server to register it.

3.3. Authentication and Access Control in Java

In this section we present Java Authentication and Authorization Service (JAAS). We use this
mechanism to implement security properties in our prototype application.

JAAS was introduced in the Java 2 SDK. It represents a framework that authenticates us-
ers and allows them (or not) to run certain code, based on the privileges that were assigned
previously for each user individually (35).

3.3.1. Java Authentication and Authorization Service

JAAS is mainly formed of two components, authentication and authorization. The authentica-
tion part is used to determine the identity of the user, while the authorization component is
there to restrict the execution of the sensitive tasks that users can perform. The latter com-
ponent does this by checking if the (authenticated) user has privileges to run that particular
source code.

JAAS is a pluggable interface that can be developed independent of the application and
irrespective if it’s an applet, servlet or an ordinary desktop application. (35)

Subjects and Principals

Users or processes in JAAS are represented as Subjects which represent single identities
and are implemented by the Subject class (36). A single subject class can have numerous as-
sociated identities, each of which is represented by a Principal object.

For e.g., a single Subject represents a medical employee which requires access to both,
email system and the patient database. This Subject will have two Principals, one asso-
ciated with the employee's user ID for e-mail access and the other associated with his user ID
for patient database. Each time this user logs in successfully, both of these principals are (dy-

39

namically) associated to him gaining him execution privileges for both of these functions.
When the user logs out, all his associated principals are removed from the subject.

Policy files

Policy files are the main mechanism to control access to system resources and sensitive
code execution. They can be used for three main purposes, to specify the login configuration
type, to assign system resources and to assign execution privileges to authenticated users.

grant signedBy “Erik”, codebase “file:Querry.jar”

{

 permission java.io.FilePermission “/DB/Access”, “read”;

}

Figure 3.17. The policy file my.policy for access control.

Access control to system resources is specified in a separate file and loaded at start-up as
an argument. This file contains statements as shown in the Figure 3.17. This policy file serves
to create the java.security.policy object.

Statements in Figure 3.17 allow code signed by “Erik” located in the file Querry.jar file
read access privileged to the files in /DB/Access directory.

In this way, Subjects discussed previously, are assigned specific system resource per-
missions through the policy file.

To authorize code execution-privileges to certain Principal of a Subject, we can give a
policy as an argument to the java.security.auth.policy object with grant entries that
look as in the Figure 3.18.

grant Principal MyPrincipalIml “user1”

{

 permission PersonnelPermission “*”;

};

grant Principal MyPrincipalIml “user2”

{

 permission PersonnelPermission “doOperationA”;

};

Figure 3.18. Assigning different privileges to different users.

In Figure 3.18 user1 is permitted to execute all methods, while user2 is permitted to ex-
ecute only the method named doOperationA.

Every time we try to execute code whose access is monitored by JAAS in that access con-
trol context, a facility called AccessController, iterates through the permission objects

40

created by the grant statements that were listed in the policy file for that particular Subject
(35).

Login Context

To set up a login module for an application we need to implement the LoginContext
class.

The LoginContext class authenticates Subjects by using built-in methods. This class can
take two parameters, the Configuration object that associates the login module to be used
in the application and a CallbackHandler class. The CallbackHandler reads the username
and password9 from the user.

3.3.2. Flow of operation in JAAS

As we mentioned previously, in JAAS operations are split in two phases. First, a Subject has to
be authenticated and then various JAAS authorization features can be used to restrict access
to the system resources. Both phases of authentication and authorization are explained be-
low.

User authentication in JAAS

JAAS establishes the identity of the user based on the credentials the user provides. Fig-
ure 3.19 presents the sequence diagram of processes when JAAS establishes the identity of
the user.

To authenticate a Subject instance, an application instantiates a LoginContext object.
This is done so the credential information of the Principals are presented to JAAS. The
LoginContext instance loads the login module(s) that was configured for that application.
Then, the application invokes the login method of the LoginContext class. The login me-
thod, in turn, invokes all the login modules, which call the CallbackHandler to read the user-
name and password from the user represented by a Subject. If these modules successfully
authenticate the Subject, they (according the authorization policy grant entries supplied)
associate his corresponding Principals with that Subject. The LoginContext class returns
the (authentication) status to the application. If the authentication is successful, the user’s
identity has been verified and this Subject instance is retrieved from the LoginContext in-
stance.

Now that the Subject has been authenticated, a fine-grained access control can be en-
forced to verify his permissions before the JAAS systems allows him to perform actions that
he requests.

9 Note that different features, such as voice recognition, can be used to determine the identity of the user.

41

Verifying the authorizations of users with JAAS

After the identity has been established and the Subject class created for that identity, a
fine-grained access control can be enforced by invoking the built-in doAs and doPrivileged
methods of this class. Using JAAS access control can be enforced every time when user
acesses/creates different system resources such as files on the disk, different system options
etc.

Figure 3.19. A typical JAAS Authentication sequence.

Related to authorization control, in our application we mainly use JAAS to ensure that

only users who have permissions for the methods that they attempt to call are actually al-
lowed to do call them. To provide access control of methods we use the built-in methods of
Subject10 and AccessController11 class of Java API.

By invoking the internal doAs method the Subject class, verifies if it a permission object
named like the method he is trying to call. To verify that the call done by the Subject is in
compliance with the current security policy the checkPermission method of AccessControl

10 javax.security.auth.Subject
11 java.security.AccessController

42

is called. If this call is allowed, then checkPermission returns quietly. If the call is not permit-
ted, an AccessControlException is thrown.

This concludes the control of authorization for that Subject making the method call.
After discussing the background concepts and programming technologies that will be

used during this thesis work, we continue in the next chapter, by looking at the possible ap-
proaches where JML was used to specify programs.

43

Chapter IV

4. Approaches of using JML to specify security properties

In this chapter we discuss the approaches that we have identified on how JML was used be-
fore to reason about security properties. Some approaches attempt to formally verify the
properties or while others just to prove that their program is correct in relation to their in-
tent. We present examples of these approaches and explain the approach that we plan to use
when specifying security properties.

One approach views security properties as a problem of correct implementation of the
intended behavior. The problem here is how to ensure that the functional part of the pro-
gram which implements the security properties is implemented correctly. Correctly in this
context means that the implemented functionalities match the behavior that the developer
had in mind. The goal of this approach is to verify that the behavior which was specified with
JML (as the intended behavior), really matches the actual implementation. And if so, it is
claimed that because the implementation is correctly implemented, the specified properties
also hold for that implementation.

Another approach identifies states in the program and models the program, based on the
states, as a finite state automaton. The security related behavior of the program is also mod-
eled in the state automata. The problem here is how to capture the behavior and state transi-
tions of the program with JML constraints. The goal is to verify that transitions of states in
the program match the transitions in the state automata. If this is verified then the program
meets the security properties modeled in the automata.

In the field of language based security, the security properties of confidentiality and in-
tegrity are defined in terms of non-interference in the data flow. The fields involved in the
data flow are assigned different security levels. The problem here is how to ensure that con-
fidential data from fields belonging to the higher security levels don’t leak to the lower fields
intended for public data. The goal is by using JML, how to specify that no data flow should oc-
cur from high (secret) fields to low (public) fields.

We will explain these approaches in more detail below. During our explanations, on oc-
casion, we use the following abbreviations:

44

Abbreviation Represents

P The program that implements the intended be-
havior (where the JML specifications will be
inserted)

S The down finite state automata modeling the
states of the program P

SJ All the JML statements used to represent S
Φ The property that we are specifying

Table 4.1. Explanation of used abbreviations.

Each of the following three sections address one the afore mentioned approaches. Each
section illustrates the approach with example(s). At the end of each section we identify is-
sues related to that particular approach.

4.1. Correctness of implementation

This approach of specifying security properties views security from the correctness point of
view. Some of the examples of this approach are (14), (37) and partly (38).The foundation of
this approach lays on the principle that even though a correct implementation does not nec-
essarily represent a secure application, the opposite of this claim certainly implies (among
others) an erroneous and possibly insecure application. Thus, it is considered important to
have a correct implementation of the intended behavior. In this sense JML is used as a second
assurance for the correctness of implementation. Thus, we have the code behavior establish-
ing the given property, and we have JML statements which should capture the requirements
of the method implementor and responsibilities of the method caller.

This approach starts by claiming that the program P meets certain security properties
because of its specific implementation details. It informally argues that because P has certain
features it meets the claimed properties. An example claim can be, since P implements a
cryptographic protocol when party A communicates with party B, this program meets the
property of confidentiality of communication between these parties.

However, to be sure that the implementation of P really implements the argued behavior
correctly it uses different JML constructs to capture the behavior of P in annotations. In other
words, in order to be sure that confidentiality is achieved we specify the behavior of the code
implementing the cryptographic protocol used in communication between party A and party
B. Inserted JML annotations are to be understood as predicates for the code (17).

We denote the total of JML statements required to annotate P as SJ. Thus, SJ would for
example specify the behavior of code in terms of when a nonce is generated, how public and
private keys are being administered, how the program encrypts and decrypts the provided
messages etc.

45

Further on, static analysis tools (such as ESC/Java2) 12 are used to verify that P reports
no violations in relation to the SJ. If no violations are reported then by inference it claims
that P has been implemented correctly in relation to SJ and thus it meets the claimed proper-
ty.

In essence JML here is used to specify the behavior of the code that has been imple-
mented. The motivation for this is twofold, first; some of the basic errors can be reported by
static analysis tools such as lack of null checks, unnecessary leakage of object references etc.
and secondly, by reasoning about the code in the contractual manner between the caller and
the implementor, it should contribute to a better understanding of the code and point out
possible mistakes or design errors made during the implementation phase (26).

In the following, we provide a simple example to show how JML is used to verify proper-
ties with this approach. Note that this program is a simple “toy” example and is showed he-
reby to only illustrate the principle of how JML can be used to claim that an implementation
of a program is correct and thus that program meets the given property.

An example

Our simple example is presented to only show is this principle used to claim correctness
of the application. The program in question P presented in Figure 4.1 is very simple and has
one policy defining confidentiality. The policy specifies that the program only prints to the
screen objects of type UserData that are not confidential and ignores the received confiden-
tial objects of the same type. In this example we show how this behavior respecting the given
policy can be modeled by JML. The purpose of the modeling is that, if the annotated P is stati-
cally verified then we can claim that the policy is correctly implemented and thus P is confi-
dential in respect to the definition of confidentiality in our policy. Note that usually security
properties are more complex and programs larger, thus the JML constructs used to specify
those properties are more advanced than the ones used in this example. However this exam-
ple should suffice to illustrate the principle.

The method starts by claiming that the java program P presented in Figure 4.1 has the
property Φ. P contains a class UserData with two fields to hold a username and password as
well as a boolean field named isConfidential to keep track of state of that object during
program execution. The isConfidential field is updated during the program flow at differ-
ent points according the program logic that we are implementing.

Below we show only the relevant parts of P and hide the rest for clarity. The other ele-
ments such as the definition of PrintException and toString method are omitted in the
Figure 4.1 as they do not contribute the purpose of our explanation.

The definition of property Φ which should hold in P, states that the method
printToScreen prints only objects of type UserData which are not marked as confidential and
ignores the rest.

12 Available at: http://secure.ucd.ie/products/opensource/ESCJava2/

46

class P {

class UserData {

 private String username;

 private String password;

 private boolean isConfidential;

 public UserData(String usr, String pwd) {

 username = usr;

 password = pwd;

 }

 . . .

}

. . .

public boolean printToScreen (UserData ud)

 throws PrintException {

 if (ud.isConfidential==true) {

 throw pe;

 }

 else {

 ud.toString();

 return true;

 }

}

. . .

}

Figure 4.1. Program P.

Our claim that property Φ holds in program P is based on the particular behavior that we
have implemented in P. This behavior is defined as follows: “the method printToScreen in
program P checks if the parameter object received has the field isConfidential set to false.
If so, it prints his string representation to screen and if not, it throws a PrintException
without printing the object”. Based on this behavior we claim that P fulfils property Φ. The
behavior explained in the statement below is implemented in the if statement of the
printToScreen method of program P.

However, in order for us to be sure that P really implements Φ we use JML to express the
intended behavior with annotations. After annotating the program with JML it now becomes:

47

class P {

 . . .

 class UserData {

 private /*@ spec_public @*/ String username;

 private /*@ spec_public @*/ String password;

 private /*@ spec_public @*/ boolean isConfidential;

 }

 . . .

 /*@ requires usr!=null && pwd!=null;

 @ ensures username==usr && password==pwd;

 @*/

 public UserData(String usr, String pwd) {

 username = usr;

 password = pwd;

 }

 . . .

 }

 . . .

 /*@ requires ud!=null;

 @ ensures \result==true;

 @

 @ signals_only (PrintException pe)

 ud.isConfidential==true;

 @*/

 public boolean printToScreen (UserData ud)

 throws PrintException {

 if (ud.isConfidential==true) {

 throw pe;

 }

 else {

 ud.toString();

 return true;

 }

 }

. . .

}

Figure 4.2. Annotated version of program P.

By inserting the JML annotation we capture the previously defined behavior of P with
JML. Note that we have additionally required a check of the isConfidential field by JML be-

48

fore we print the object. This should make it clearer that such check is necessary in the pro-
gram code as well. By doing the annotations of our program the requirements should become
clearer leading to a better understanding of the code.

This annotation ensures that when the printToScreen method is called, the object re-
ceived as parameter should not be null and is required to have the isConfidential field set
to false. Only if this holds, the object will be printed, on the contrary a PrintException is
raised.

So, when a static analysis tool is used to verify P against the provided JML annotations
and if no violations are reported during verification, then our claim is considered to have
been verified. In that case, program P does indeed meet property Φ because the behavior in P
is implemented correctly in relation to the annotations which specify the claimed behavior
for establishing property Φ - as it has been defined in the policy. Note that because the pro-
gram we have shown is very simple, the JML used here is straight forward. When the pro-
gram is more complex and when policies deal with more advanced security properties, then
these JML constructs do not suffice any longer, new and more advanced ones have to be used.

Despite that the JML features used with this approach depend on the specific program
behavior being implemented and the properties that are being specified, there is a group of
constructs from JML that are often used when specifying properties with emphasis to securi-
ty. Next we present the most important constructs of this group.

4.1.1. Employed JML constructs

The JML constructs used most often for preventing coding errors that might lead to a com-
promised security in the application are listed below. They include a special specification-
only field marking the state, object invariants keeping track of consistency through the object
life cycle, pre- and post- conditions expressing context of method calls and exception control.

Ghost fields

Ghost fields are used to mark the states when analyzing the information flow property
(39) of data. Variables of this kind are auxiliary fields which are not used by the implementa-
tion, but occur in specifications only. For example if we have an object that is being received
by another object and if we mark the state of the first object with a ghost variable like below:

//@ public ghost boolean isConfidential = false;

In the precondition of the method that receives this object we can ensure that only the

objects with the appropriate state are received. Furthermore, we can specify this as an inva-
riant in the receiving object, at which case we ensure that the received object maintains one
of the states from a fixed set of previously defined states. This enables us to specify the state
of that object during its flow through the program.

49

Information flow is just one example where ghost fields can be used. Besides using them
for information flow monitoring they can be used to mark any state in the code by only set-
ting their value appropriately at that point in the code.

Object Invariants

Object Invariants express properties which should hold at the entry and exit to each me-
thod. The invariants describe the meaning of the consistency of the object data.

An object invariant that verifies if the state of the receiving object is true looks as in the
following example:

//@ invariant obj.isConfidential == false;

Here obj is the reference of the object being received. In this way, when objects are re-

ceived we can check if they are in the appropriate state. In the information flow control do-
main, this allows us to monitor the flow of data in the program based on their current state.
Note that is possible only for immutable types as ghost fields can only be assigned to them.

Pre- and Post- Conditions

Each method in Java code is supposed to be called in certain context i.e. it assumes that
certain fields of its object are appropriately set, that the parameters come from specific
ranges (e.g. between 0 and 10), that a particular parameter has a particular type, and in gen-
eral that certain relations hold between the input data and/or the fields of the object. Here is
an example of such a precondition:

/*@ requires obj.isConfidential!=true && param1!=null

 @*/

private String m(Password obj) {

 . . .

}

Figure 4.3. A precondition for method m.

The above invariant states that when method m is called it should only accept Password
objects of type confidential, that is, where the state variable named isConfidential is set
to true.

Similarly, it is often needed for a method to guarantee that certain fields are set, certain
relations between the object states hold or, a relation between the result and the input data
of the method hold. This is done by means of pre- and post- conditions.

50

/*@ … ensures \result.isConfidential && \fresh(\result) …

 @*/

private … String m(Password obj) {

 . . .

}

Figure 4.4. A postcondition for method m.

For example if we want to specify that the result of m is confidential and should be pro-
tected from exposure in the code of the application we annotate as in Figure 4.5.

Additionally we have required that the result generated after the method m is executed
needs to be generated inside this method. This solution is one way how to prevent an uncon-
trolled aliasing of data considered to be confidential.

Exception control

The specification of exceptions can be used to clearly mark the conditions guaranteed to
hold after an exception has been raised. This leads to a clearer understanding the code. It can
also mark types of exceptions that are possible to be thrown and the pre- and post- condi-
tions separately for each exception.

/*@ … signals_only (NullpointerException e) param1==null &&

 @ … signals_only (SecurityException se)

 @*/ obj.isConfidential==false

private … String m(String param1, Password obj) {

 . . .

}

Figure 4.5. Catching the behavior of exceptions in JML.

In this invariant we have specified that when method m is called, if the provided param1 is
null or if the object obj of type Password is not confidential then the corresponding exception
will be raised.

4.1.2. Issues

We have stated previously that this method of specifying security properties enables us to
capture the intended program behavior by JML annotations and then verify that the code cor-
rectly implements that behavior. And since this is the case then we claim that security prop-
erties claimed in the implementation are also met.

However, in principle there is no guarantee that the annotations are really correct, or
that they really capture the intended behavior accurately. As (14) claims; the annotations do

51

not provide full proof security but only an additional standardized level of assurance that the
source code is well written with regard to the intended behavior.

This approach brings to a better clarification of the requirements of the software, be-
cause reading of the specifications is easier than reading the actual source code as the anno-
tations provide a certain abstraction of the functionality (14). They also give a stable repre-
sentation of the expected functionality during development which can be a huge asset in
areas of development where cost of implementing flaws is way too high. This cost can be
matched with the higher cost during development process, because adding these annotations
is a costly and labor intensive process which contributes to the rise of the total cost of devel-
opment.

 The cost of development rises because (a) the code needs to be specified in detail with
annotations and (b) the behavior of Java API’s need to be specified as well in order for the
verification to be possible. There have been projects like Daikon (40) to automatically detect
annotations. However these annotations do not represent the intended behavior but the ob-
served properties of the program. Therefore if the behavior of the code is not the intended
one then the generated annotations are not correct either.

The explained method has been used in somewhat larger Java (desktop) applications and
applets to ensure that functional and security requirements are properly implemented.
Another approach aiming towards narrowing the gap between the actual code behavior and
the JML annotations is the approach presented below. Namely, capturing the behavior of the
program by representing it as a state machine.

4.2. State machine representation

This approach is widely used in the Java smart Card applications (9) and will be explained
below in more detail. A similar approach is used in (16) with a slight difference that no state
automata is created but the state of the program is still established and maintained by JML
constraints, the same as in (9). Java applets running on browsers can also use a similar ap-
proach (41). The common ground of all these examples is that they precisely define the
states occurring during program execution, express them in JML and then verify if the transi-
tions of the states in the program match the states transitions defined in annotations.

Based on their architecture these Java Smart Card applications can easily be modeled as
state machines. These applications are also called applets and usually have their Installation,
Personalization, Processing and Locked states as their main life-cycle stages (42).

Each phase corresponds to a different moment in the applet’s life-cycle. First, the applet
is loaded on the card, and then it is properly installed and registered with the Java Card Run-
time Environment. Next, the card is personalized, i.e. all information about the card owner,
permissions, keys etc. are stored in the device running the programe. After this, the applet is
selectable, which means that it can be repeatedly selected, executed, and deselected. Howev-
er, if a serious error occurs, for example, if there have been too many attempts to verify a pin
code, the card can get blocked or even become dead. From the latter state, no recovery is
possible.

52

Figure 4.6. Default life cycle model for a Smart Card application.

The default stages of a smart card applet are presented in Figure 4.6. In most of the
smart card applications additional stages can be derived based on the particular functionality
that the smart card application implements.

This approach models all the stages of the applet in a finite state machine, which we de-
note as S. The transitions between the identified states represent the methods which trans-
form the state of the program from one state into the other, as defined in the automaton. This
change of state in P comes as a result of the code being executed in these methods. The me-
thods that take the program from one state to another are specified with annotations, pre-
cisely defining their behavior. This behavior is among others, defined with pre and post con-
ditions.

If states of S are modeled from states of the program P then we say that S mirrors the
program P.

The part of the program behavior which ensures that security properties are met is also
modeled in the finite state machine. For example, in Java Smart Card applications, modeling
the following set of security properties is of particular interest: Atomicity, Applet life cycle,
Exception handling and Access Control (16).

Atomicity in this context refers to the requirement that all the transactions should not be
nested but atomic and, there should be no uncaught exceptions in transactions. When the
applet gets into operation for the first time, this initialization should be carried out by an au-
thenticated authority, usually by a PIN number or alike. Once it is in operation, if it gets into
the blocking state, it should be able to be unblocked only by an authenticated authority,
usually accomplished by a PIN number. This personalization can be carried out only once.

The program P closely mirrors the automata S because S was modeled based on P. To en-
sure that state transitions occurring in P indeed mirror the transitions occurring in S, JML
annotations are added to P. The role of the annotations is to define constraints that specify
legal transitions of states in the program P. These transitions are initiated by methods and

INIT

PERS

PROCESS

LOCKED

53

expressed in class constraints. The class constraints reflect the set of legal states for each ob-
ject created from that class at any point in time during the program execution.

Static analysis tools can be used to verify that the order of state-changes during execu-
tion of program P indeed matches the one of S. If no violations are reported, it is claimed that
P really matches the behavior of S and since S models the security behavior as well, it is in-
ferred that P also meets the security properties of S.

An example

To provide an example about how JML is used to specify security properties of Java Card
applets we will show the specification of atomicity as one of the security properties of ap-
plets. Note that in this example we will not model the whole life cycle of the applet, nor we
will model the state changes in the applet execution. Our intention is to show only the speci-
fication of the property of atomicity. Atomicity ensures that no nested transactions are al-
lowed to be carried out during the applet operation.

This is important in smart cards because they do not have a power supply, thus a brutal
retrieval from the terminal could interrupt a computation and bring the system in an incohe-
rent state. To avoid this, the Java Card specification recommends the use of a transaction me-
chanism which controls the synchronised updates of sensitive data.

A statement block surrounded by the methods beginTransaction() and
commitTransaction() can be considered atomic. If something happens while executing the
transaction (or if abortTransaction() is called), the card will roll back its internal state to
the state before the transaction was started.

This transaction mechanism should ensure that (a) only one transaction happens at a
time, (b) if a variable maintaining the number of transactions in place is one when the applet
initializes, that means that it was previously shut down abruptly (without committing the
transaction) and thus us it should revert the state back to it’s previous, and (c), when the
transaction is completed the variable keeping track of the numbers of transaction should go
to zero enabling the applet to process the next transaction.

To enforce the proper implementation of this behavior we model it with JML by a static
ghost variable named TRANSAC. This variable keeps track of the number of transactions in
progress at any time:

/*@ static ghost int TRANSAC == 0; @*/

Each time a transaction is initiated this variable is set to one and when the transaction is

finished it is set back to zero again. Thus the method beginTransaction is annotated as fol-
lows:

54

/*@ requires TRANSAC == 0;

 @ assignable TRANSAC;

 @ ensures TRANSAC == 1;

 @ signals_only (TransactionException te)

 @ requires TRANSAC == 1

 @ ensures te.getMessage()!=null;

 @*/

public static void beginTransaction() throws TransactionException {

 . . .

}

This annotation requires that there are no transactions in progress when this method is

called. After it is called the value of TRANSAC should be set to one, indicating that there is a
transaction in progress. And if there is a transaction already being completed when this me-
thod is called then a TransactionException is thrown. This specification also states that
during the implementation of this method the value of the ghost field monitoring the number
of the transactions needs to be set to one.

The method commitTransaction() has the following annotation:

/*@ requires TRANSAC == 1;

 @ assignable TRANSAC;

 @ ensures TRANSAC == 0;

 @ signals_only (TransactionException te)

 @ requires TRANSAC == 1

 @ ensures te.getMessage()!=null;

 @*/

public static void commitTransaction() throws TransactionException {

 . . .

}

The annotation of this method on the other hand, states that a transaction must have
been started before commitTransaction() method can be called. Which makes sense, be-
cause there needs to be a transaction in place prior to it being committed and recorded into
the smart card memory. After it is finished the state variable should be set to zero.

Note that in the annotations of this example the implementation of methods is not pro-
vided because it is straight forward.

4.2.1. Issues

This approach has mostly been applied to programs for Java smart cards13. There has been a
considerable success in preventing errors that might lead to security flaws in these applica-
tions. Since they run on devices with very limited memory and processing capacity, the de-
sired security properties are mostly related with this limitation of resources. For this reason
these applications are small, so the state transitions in these programs can be modeled accu-

13 http://java.sun.com/javacard/

55

rately and verified easily. This approach contributes to an increase of dependability of soft-
ware from smart card application providers (38).

Note that applying the same approach of modeling all the program states in regular
large-scale application, in comparison to applications of smart cards, can be tedious and even
impossible because of one fundamental problem. Namely, the state explosion problem. The
number of states of almost any system of interest is huge even when using different tech-
niques of reducing this state (43).

It should be noted that this approach does also not provide full proof security for high
level properties such as confidentiality, authentication or integrity. The constructed automa-
ton which the program mirrors, is in no way verified for all possible threats against the antic-
ipated security properties. It is there to just model the security related behavior in more de-
tail and express it in JML so it is clearer during implementation. However after such behavior
is implemented and verified we still have no guarantee that both the model and the annota-
tions are not faulty. This is simply left on our sound judgment to decide.

Considering that smart card applications have limited complexity compared to, for ex-
ample Java desktop applications, detailing their behavior in a state machine, specifying their
code with JML and formally verifying it in this manner, is a strong guarantee for their securi-
ty.

However, expressing program-wide high level security properties such as authentica-
tion, confidentiality or integrity is far harder to express in JML (42). This is because of the
overall limitations of JML (See Section 3.1.73.1.7).

4.3. Language Based perspective

Another approach where JML was used to specify security properties is in the Language-
Based information flow security. This branch within computer security tries to enforce end-
to-end secure information flow for programs (44). In modern programming languages in-
formation flow is tackled by access control modifiers. However, this can not guarantee an
end to end secure information flow. The basic question raised here is how one can ensure
that public information is completely independent from sensitive (secret) information.

In (42) specification of confidentiality with JML is presented from a language based secu-
rity point of view expressed from an information flow perspective. Here confidentiality is
formalized using the notion of non-interference. i.e. it deals with all possible runs of the pro-
gram that terminate normally, without for example exceptions being thrown.

The notion of non-interference was first introduced by Goguen and Meseguer (45). They
define non-interference in an automata. This automata has input and output channels. The
input and output channels are labeled with security levels, typically using levels High for se-
cret and Low for public information. By fixing the low input channels and varying (all) the
high input channels, one can check if high input channels are indeed independent of low out-
puts. In this way, we can guarantee that data flowing from the high input remains indepen-
dent from the data in the low output and thus, non-interference is preserved. This work was
later picked up by Volpano and Smith (46) showing that type systems are especially well
suited for (automatically) enforcing non-interference properties.

56

In order to be able to verify that a program is non-interfering, all output and input chan-
nels need to be labeled with appropriate security levels. This labeling defines a secure infor-
mation flow policy. Instead of just labeling the inputs and outputs of a program, typically all
global variables (fields) are labeled and those that are only used locally are discarded.

To monitor non-interference, security levels need to be ordered in some way. We use a
security lattice for this ordering and denote the ordering with the ⊆ symbol. This (basic) lat-
tice will suffice to explain the main ideas in most cases, but if a more complicated policy is
used than a more complicated lattice is required. Building such a lattice is just a matter of
doing more ‘book-keeping’ (42). This simple Security Lattice Σ is defined below:

Σ = {High, Low} with Low ⊆ High

A secure information flow is then given by the function Sif : Var → Σ which maps va-

riables to security levels in the simple security lattice. Sif denotes a secure information flow
policy represented by a function. Security levels can now be identified as sets of variables
corresponding to those levels, i.e. High = {v ∈ Var | Sif(v) = High} and
Low = Var \ High.

As stated before, this approach formalizes confidentiality as a notion of non-interference.
The definition of this term is taken from (45) and defined as:

 Noninterference of programs essentially means that a variation of confidential
(high) input data does not cause a variation of public (low) output data.

From this definition we can see that confidentiality involves a relation between the pre-
and post- state. In other words defining confidentiality means ensuring that we don’t have a
flow of data from high fields to the low fields. The reasoning behind is that data from the high
fields should be kept secret from data flowing in the low fields because low fields are of low-
er security level than the high ones.

Integrity on the other hand involves the definition of data that keeps secret data of the
high fields safe from modification coming from the low fields. It ensures that secret data
flows only in high fields and there is no ‘leakage’ of data from high fields to the low ones.

In JML it is possible to express such relations using the keyword \old. If used in a post-
condition, variables encapsulated by \old are evaluated in the precondition. This feature
makes it possible to build a formulation of confidentiality in JML. Note that formalization of
confidentiality is guaranteed only for executions that terminate normally (where no excep-
tions are raised). This non-interference is referred to as termination-insensitive non-
interference.

With the help of non-interference this approach defines security properties of confiden-
tiality and integrity by establishing corresponding specification patterns (42). The first pat-
tern defines confidentiality as:

ensures low == \old(χLow);

For each low ∈ Low the expression χLow should not contain any fields high ∈ High.

57

A specification like this for a Java method enforces that all fields low ∈ Low in the post-

state are independent of the values of fields high ∈ High in the pre-state. This proves
confidentiality for that Java method.

The JML pattern for specification of integrity is:

ensures high == \old(χHigh);

For each high ∈ High the expression χHigh should not contain any fields low ∈ Low.
The second pattern expresses that all high fields are independent of low fields. Thus low

fields cannot alter high fields, thereby ensuring integrity for all high fields belonging to the
High set.

Examples

We illustrate specification of confidentiality with JML in the first example. The example
has two methods m1 and m2 with two fields declared. The high field belongs to security level
High and low to security level Low. According to the pattern definition m1 and m2 maintains
confidentiality but m2 does not maintain integrity.

int high, low; // high:H, low:L

/*@ normal_behavior

 @ requires true;

 @ assignable low;

 @ ensures low == \old(0);

 @*/

public int m1() {

 low = 5;

 low = low*low;

return low;

}

/*@ normal_behavior

 @ requires true;

 @ assignable high;

 @ ensures high == \old(low);

 @*/

void m2() {

 high = m1();

}

Figure 4.7. Example with both methods maintaining confidentiality.

58

Confidentiality is maintained because in both methods the flow in high fields is indepen-
dent from the low fields. In the m2 method we have a flow from a low to a high field, which is
not a breach of confidentiality because public data can be read by a higher security level. This
however, is a violation of integrity, because the high fields are updated by low ones which
have lower security level and this is a violation. Thus, method m2 does not respect the defini-
tion of the second pattern.

In the second example we have an interdependency between methods. We have method
m3 and m4, where m4 internally calls m3. There are only two fields, high and low which have
security level High and Low respectively.

Whether method m3 is confidential depends on the parameter i. In case i is a low field
the method does not leak information, otherwise, it leaks information of a high field via its
return value.

In m4 we see that there is a dependency between the low field and the value of high in the
pre state. This represents a violation of the second pattern in the ensures clause. So, we con-
clude that the method m4 leaks information.

int high, low; // high:H, low:L

/*@ normal_behavior

 @ requires true;

 @ assignable high;

 @ ensures \result == \old(high) &&

 @ high == \old(high + 1);

 @*/

int m3(int i){

high = high + 1;

return i;

}

/*@ normal_behavior

 @ requires true;

 @ assignable low,high;

 @ ensures low == \old(high) &&

 @ ensures high == \old(high + 1);

 @*/

void m4(){

low = m3(high);

}

Figure 4.8. Dependencies appearing when we have method calls.

59

4.3.1. Issues

The main limitation of this approach is that it does not scale well on an application with ‘real
life’ requirements. To apply this on an application it would require a very large number of
security levels making the security lattice complex. Defining and maintaining the flow be-
tween a large number of security levels would be cumbersome.

It is very hard to develop an application where the flow of data occurs within static secu-
rity levels as is suggested in this approach. Another problem here is that no (controlled) re-
lease of confidential data is possible. We know that this is often a crucial functional require-
ment of applications. Very often, (secret) data that is declassified needs to be released. This
represents a problem for this approach because such a declassification represents a violation
of the main principle on which this approach defines confidentiality.

After presenting the approaches that have been taken in the past for specifying security
properties with JML in Java programs, we now explain the approach that we will use to speci-
fy security properties in the application of the case study examined in the next chapter. Our
approach is more similar to the second approach where the Java Card applets are presented
with finite state automata’s.

4.4. Our approach

The method that we will use to specify security properties in our application models the pro-
gram behavior implementing those properties in a finite state automaton. The states and
transitions of this automaton are expressed in JML annotations. We do implementation of
our programe mirroring this automaton. All the states and transitions defined in the automa-
ton are also defined in the programe. We show that the states and their transitions defined in
the automaton also occur in the implementation of the programe.

We start by choosing the security property Φ that we want to implement in our pro-
grame P. We informally explain how the security property Φ should be implemented in the
programe P. Since we will use this approach in the case study that we develop in the next
chapter, we explain the architecture and the solutions employed in the implementation that
should establish Φ in the given architecture. Solutions in this case represent the features and
mechanisms of our programe that should establish the required properties.

Speaking in general terms, depending on the property that is chosen, different solutions
are necessary to establish different properties. For example, in the event of establishing con-
fidentiality to ensure a secure communication between two communicating parties, for ex-
ample, an encryption algorithm would be implemented. In this case, the behavior of the en-
tire programe flow, and not just the implemented protocol that ensures this property would
be explained.

 After explaining the behavior of the programe that should establish the property Φ in
terms of the program flow, we model this behavior in a finite state automaton, denoted by S.
The modeled behavior will actually be an abstraction of the programe P, capturing its overall
flow that establishes that property but at the same time, abstracts away from the low-level

60

implementation details of the implemented mechanisms that serve to establish that proper-
ty.

We implement the program flow of P based on the behavior modeled in S. To ensure that
this behavior is implemented correctly in the programe P, we translate the transitions be-
tween states in S, into methods which implement the behavior of P. These methods are then
specified with ordinary design by contract pre and post conditions.

The states defined in the automaton are expressed in the programe P by a ghost variable.
To ensure that the method execution in P follows the same order as the transitions of states
in S, class constraints and invariants expressed in JML are inserted in P. These are predicates
which have to be maintained by all methods. JML statements are to be understood as predi-
cates which should hold for the associated Java code (17).

We show how the states and their transitions defined in S, closely follow the execution
flow of the programe P.

Since we previously argued that the behavior modeled in S meets the property Φ, then
we can claim that the programe P also meets that property, since all the states and transi-
tions in P are identical as in S.

Discussion

Note that during this thesis work, we show that the program flow in P is actually identic-
al as the state transitions in S, but we do not use any static analysis tool to verify that the an-
notations hold for every execution path of the programe P. This is the case because this of
thesis work concentrates on methods (principles) of how to specify high-level security prop-
erties with JML, but does not include work on verification of those properties. The focus of
our work has been to find ways to express these high-level security properties with JML.

Even though, we are aware of the importance of the two going together, the verification
part is left out for future work.

During our work we use the open source plugin named JML214 for Eclipse IDE that does
runtime assertion checking. Details on downloading and configuring Eclipse to run this plugin
are included in the Appendix XX1.2.

This tool checks JML specifications such as preconditions, normal and exceptional post-
conditions, invariants, and history constraints during runtime (13).

4.4.1. Comparison to other approaches

The closest to our approach, perhaps is the work done in (42). Here they specify security
related properties of a Java Card applet. They design a simplified version of a client side part
of the applet, and specify some of the security properties which are related to the specific ar-
chitecture of Java Card applets.

They’re applet is implemented in one class. Because of this, most of the JML limitations
do not pose a problem for them (see Section 3.1.7 for more details on JML limitations). As a

14 The plugin is developed and maintained at Swiss Federal Institute of Technology in Zurich, Switzerland.

61

result, they were able to clearly define the states of the object created from that class in one
state automaton and implement the program based on that automaton.

One difference is that they’re implementation maintains the state with an ordinary vari-
able. This variable is updated as the state of the object changes during the execution of the
program. Their application is designed very closely to the automaton. It contains the state
and the state-transitions implemented as methods.

In our program, we use a ghost field to ensure the state of the application. No hard-coded
state is implemented in the programe itself. Instead, this ghost field is used to maintain state.
This field is also used to ensure the flow of method execution.

Note that in our case study, the application will require multiple classes. This gives a sig-
nificant impact of the JML limitations in the specification process in our application. This im-
pact will come with the price of the assumptions that we will be forced to make, in order to
model the behavior of our application comprised of multiple classes in a state automaton.

Because of the limitation that JML annotations were designed to capture behavior of
code in one class, when we have design decisions spreading in multiple classes, as is often the
case with the implementation of security features, this makes it harder to capture and ex-
press these features with JML.

In the next chapter we proceed by analyzing the case study of a medical clinic and deriv-
ing the security properties required to secure this application.

62

63

Chapter V

5. Case Study analysis

This chapter presents a case study for a small medical clinic where we develop a prototype
application in Java. This application will be used in the next chapter to specify its security
properties with the approach just defined in the previous chapter.

The work on this case study starts by first doing a threat analysis for the application,
where we look into what are the assets that are important to protect. After defining the as-
sets, we turn to identifying the possible threats against those assets.

We establish the attacker model which looks into how these threats can be turned into
valid attacks for our application. The attacker model helps us see how these attacks can be
carried out in our application, therefore giving us a view of the protection measures re-
quired. Based on the threats and the possible attacks that we listed, we look into the security
goals that we need to pursue in our application.

These goals come in the form of high-level security properties that our application should
have in order to achieve the level of security that we want it to have.

From the overall properties that we identify, we choose a set of them to implement in the
application. At the end of this chapter we explain the design decisions and implementation
technologies used to achieve those properties in our application.

We use the architecture set-up of the prototype developed for this case study as an ex-
ample application, to explore how well can high-level properties be specified with Java Mod-
eling Language, using our approach from the previous Chapter.

5.1. A general overview

In this section we present the problem statement of the case study which gives us a short de-
scription of the problem. We then list the functional requirements of the application describ-
ing what our application should do and afterwards, we present the basic design decisions of
our architecture and a discussion on features of the architecture layout that we have chosen.

64

Problem statement

A small to mid size medical clinic requires an information system for their everyday
work. The number of employees using the system is estimated at 20-30 with the prospect of
growth of up to 20% in the upcoming 10 years. The users of the application are classified in
two categories: the medical and administration personnel.

Each category of employees has separate duties with no overlap between them. The new
(digital) system is intended to replace their manual paper-based system of data administra-
tion that the clinic currently has in place. The new information system should have the func-
tionalities of the old paper based system. This information system should have limited access
to registered users only. Registered users should only be able to access functionalities which
fall under their authorization.

The medical clinic operates in at most seven locations inter-connected via ordinary
TCP/IP connection. Thus the system needs to be a distributed application operating from
these locations and enabling its users a centralized access to data.

5.1.1. Functional requirements

The required functionalities for this information system are the following. The users need to
be able to:

a. add new patients

b. find a patient

c. edit personal data of the patient

d. add new medical records to patients history, and

e. list all medical history records of a patient

There’s a clear separation between what the admin staff can access and what the medical
staff can access. The admin staff can work on patient’s personal data, while the medical staff
can only work on the patient’s medical records.

Personal data include personal information belonging to the patients identity. They in-
clude the CPR ID of the patient, name, date of birth and address. The medical records on the
other hand include data related to the medical history of the patient. They include: test name,
remarks/comments related to that test, date when the tests were done and costs of the tests.
More on this will be discussed in the implementation section 7.1.

In respect to the functionalities listed below the system should also:

a. grant access to authenticated users only

b. the registered users are assigned privileges to perform corresponding opera-
tions/tasks. Only if they have required permissions assigned to them, they are
allowed to perform the requested task.

65

The distribution of authorization privileges is done for each user separately in accor-
dance with company policy. The company policy separates users in two categories: adminis-
tration and medical staff. As we have stated previously, the administration staff is granted
privileges to perform of a), b) and c), while the medical staff is granted permission for d) and
e).

5.1.2. Design choices of the architecture

This application will be built on the principles of the client/server architecture with client
software installed in the workstations in the branches of the clinic. The clients should have
minimum load and complexity while the server implements the core functionalities.

Figure 5.1: The system architecture.

The clients are connected to the server who in turn is connected to the database server

that provides the centralized data storage. This connection is shown in Figure 5.1.
The database server resides on a separate machine located on a controlled network such

as a Local Area Network. This machine has no public access to the internet. The clients are
connected to the server through the Internet. The server is connected to the database on a
dedicated LAN connection.

After initially giving the functional requirements of the application and afterwards a
high-level overview of this application, we proceed by discussing the choices we have made
for the architecture.

66

5.1.3. Discussion

The client/server architecture is chosen particularly because it is feasible to handle potential
changes of the functional requirements that might come in the future. In case this is required,
since all the functionality is implemented in the server, we only need to update the server in
accordance with the new given requirements. A downside of this layout is that if we concen-
trate all the functionality on a single server station, this introduces the concern of a single
point-of-failure in our architecture. If the server is down the whole system cannot offer ser-
vices.

Another approach to this would be a distributed approach where parts of the functional-
ities are spread in multiple nodes offering services that are independent but complimentary
to each other. This type of architecture would require multiple stations to communicate and
coordinate in order for the system to service its users. In case any of these stations are out of
service then only its residing functionality will be unavailable and the rest will function nor-
mally.

The database facility is placed in a local area network without access to the internet thus
the database cannot be accessed by the outside world. Only the server machine can access it.
This restriction will most likely be enforced by an implemented firewall and is intended to
limit the penetration attempts from the outside adversaries.

5.2. Use cases

In this section we present the identified used cases including the actors involved in the use
case diagram. Use cases are derived from functional requirements listed in section 5.1.1. The
diagram is presented in Figure 5.2.

After initially giving the functional requirements and a high-level overview of the appli-
cation we proceed to the next section where we analyze the threats of the system.

67

Figure 5.2. The diagram representing use cases and actors involved.

5.3. Threat analysis

In this section we identify assets which are important for the security of our application and
list possible threats against the security of those assets. Threats serve as a basis for establish-
ing security goals of our application.

5.3.1. Assets

The integrity of data is the main asset to be protected in information systems. A crucial con-
cern for us is maintaining the integrity of data while it is being processed in any of the nodes
of our architecture and during the exchange of data between those nodes. The workstations
of our system which are considered as untrusted because of the amount of malware in circu-
lation today. The data exchange that needs to be protected in our architecture occurs when
client machines send requests and receive responses from the server, and when the server
accesses the database.

In light to this, we identified two assets that require scrutiny in our threat analysis:

a. data flow

b. integrity of the data in the database server

68

5.3.2. Threat model

The threats that we have identified in regard to our assets will be presented in several cate-
gories. They are listed in categories based on what asset they target. We have grouped them
into three categories based on what they target. The listed threats can target the flow of data
in the application itself, the integrity of the data at the storage site or the functional require-
ments our application.

Category one

The first categories lists threats that are predominantly common for most of the distri-
buted applications and in regard to asset a of section 5.3.1. These threats appear mostly due
to the nature of distributed applications where components are spread in different remote
locations connected via internet connection.

In this category we identified the following threats regarding the asset a:

 communication between parties occurs in an open network exposing our asset
to the possibility of different vulnerabilities such as:

- sniffing - reading the data by an unauthorized party
- tampering - changing the contents by an unauthorized party
- message removal - In this context message removal refers to reading the data,

identifying a particular message of interest and removing that from the rest of
the traffic

 identity of the parties involved in the communication process can be spoofed

 resource exhaustion can be achieved by sending a large number of fake con-
nection requests from multiple locations to the server

 different malware programs can be running in the nodes that host our applica-
tion and compromise it

Category two

Category two present threats related to asset b. Threats related to database protection
usually come from two areas. They are connected to: how well has the system where the data-
base resides been hardened and how well is the access controlled to the database.

The main threats coming from these areas are listed below:

 database server penetration

 excessive privilege abuse

 theft and fraud of data

 the inference problem

69

The main threats (47) coming from these areas can cause:

 The loss of the integrity of data through unauthorized modification. For exam-
ple an unauthorized modification of the medical records of patients

 The loss of availability of the data because the database in no more operational
thus the server has no access to the data and the entire system is out of opera-
tion.

 The loss of confidentiality of data(also referred to as the privacy of data), for
example by an unauthorized access of patients personal data

Category three

In the third category we present threats that are more specific for our case study. These
threats are directed towards compromising the functional requirements of our application.
They explain threats of the application being used inappropriately.

These threats include:

 attackers can attempt to gain access to the system without authenticating

 legitimate users can attempt to perform functions which are outside of their
domain

5.4. Attacker model

In this section we determine the possible attacks to the system based on the previously iden-
tified threats. We research how the previously named threats can be turned into actual at-
tacks that would compromise our application. Our analysis classifies the potential attackers
in three groups based on which asset they target.

The first group includes the Dolev-Yao (48) model of attackers which have full control of
the network traffic. This type of attacker is able to eavesdrop on the entire network traffic,
modify, replay or fabricate messages, as well as analyze the network traffic. Among the most
known attacks is the man-in-the-middle attack where the attacker impersonates the identity
of the other party involved in communication and tricks him into receiving all his traffic.
Another attack is the Denial of Service attack when the server receives a large number con-
nection requests from multiple locations. All its resources are used to deny these invalid
connection requests and no resources are left to establish communication with valid re-
quests. The only limitation of the Dolev-Yao attacker is that it is unable to break existing
cryptographic protocols.

The attackers of the second group exploit weaknesses coming from the threats of catego-
ry two in section 5.3.2 related to the integrity of the data in database server. If the current
patches are not installed on the database server it is relatively easy for attackers to learn the
weaknesses of the software that has not been updated to the latest patches. This offers them

70

an opportunity to exploit the weaknesses and perform attacks that the newest patches would
prevent.

If access control privileges are not regulated properly and users have unnecessary privi-
leges exceeding their requirements then they can abuse them and cause unauthorized mod-
ification of data or even destruction. For example if ordinary users are given administrator
privileges in accessing the database then they have permission to do much more than they
usually need and in this way they can seriously compromise it. For example they can manipu-
late the access control lists of the database.

Even though communicating between the server and the database is done on a dedicated
connection the database connection strings need to be encrypted during transmission as
these strings can be abused by attackers. With connection strings at hand attackers that have
access to the local area network can attempt to connect to the database as regular legitimate
users.

SQL injection can be attempted by attackers thus data should only be accessible through
stored procedures as they provide another layer of data access control. This attack is per-
formed when user input is either incorrectly filtered for string literal escape characters em-
bedded in SQL statements or user input is not strongly typed and thereby unexpectedly ex-
ecuted. It is an instance of a more general class of vulnerabilities that can occur whenever
one programming or scripting language is embeded inside another (49).

With the emerging of more sophisticated data mining tools in the recent years the infe-
rence problem (50) has gained increasing attention. As a result of this problem the interfe-
rence of data in the database occurs. Interference is the process of users posing queries and
deducing unauthorized information from the legitimate responses that they receive (51).

For the third group of attacks we assume that they have physical access to the work sta-
tions running the application. Attackers belonging to this group are clinic employees who are
not listed as registered users of the clinic information system and yet, they attempt to gain
access to the system. An example attack for this model could be performing a dictionary at-
tack trying to guess the password of any of the user names that they have previously ac-
quired for example by social engineering.

Another case of attacks of this group can be the attackers that are legitimate users of the
system in the clinic but attempt to gain access to functionalities which fall outside of their
domain of authorization. For ex. an administration employee attempting to edit medical
records of a patient – a functionality exclusively reserved for the medical staff.

5.5. Security goals

Based on our threat analysis and the possible attacks that we have listed we set the security
goals for our solution. Every goal represents a security property that we want to achieve in
our application. Security properties tell about the security-related features of our applica-
tion. In other words, security goals are the standards that we impose on the behavior of our
application in order to ensure that our application is secured.

We will divide the security goals of our application in two groups. The first group con-
cerns the goals for ensuring security of the application running in the clients and server ma-

71

chines and the second group of goals concerns ensuring security in the database storage. In
our case the application authenticates and authorizes users, but the application itself has to
be identified to the database (for ex. by a database password).

5.5.1. Application security goals

In order to achieve security in our system we extract several goals that need to be imple-
mented in the architecture of our application. Goals relevant to the security of the application
and its hosting platforms are listed here. The goals are extracted from the identified threats
in section 5.3 and presented in the following.

a. Confidentiality: Data exchange between parties involved in the communica-
tion process has to be kept secret from intruders that are able to read and ana-
lyze traffic in an (open) network. Data can be read during transmission by au-
thorized parties only.

b. This goal counters the threat defined in category one resulting from the com-
munication occurring in an open network.

c. Integrity: Data integrity in general is defined as safeguarding the accuracy and
completeness of information15. In this case if data is altered during transport in
an unauthorized way, this change has to be detected.

d. This goal counters the threat data communication occurs in an open network,
and as such is vulnerable to sniffing, tampering and other forms of unautho-
rized message alterations.

e. Mutual site authentication: If party A is communicating with party B, a me-
chanism to verify the identity of the two communicating parties has to be in
place. In other words, if party A is communicating with party B, they have to
mutually be sure that they are actually communicating with each other and not
with a third party.

f. This goal secures the system from the threats of identity spoofing between two
communicating parties.

g. Availability: The system should be up-and-running for users who require its
services.

h. This goal protects the system from the threat of resource exhaustion identified
in the group of threats in category one.

i. Authentication: Access to the application is permitted only if the user pro-
vides proof of a legitimate identity.

j. Authorization: Authenticated users are allowed to perform certain actions on-
ly if they are previously assigned corresponding rights from the security policy
of the company.

15 A definition given by International Standard Organization in the ISO-17799 standard: www.iso.org

72

5.5.2. Database security goals

To ensure security of the data in the database facility we establish several goals that we re-
quire to be implemented in the architecture of the data storage system. Notice that these
goals tremendously resemble the security goals which deal with the security of the applica-
tion because they both have to do with data protection. The only major difference is the con-
text and the environment of where this data protection occurs.

a. Access control: Only properly authenticated requests to the server can add,
edit or delete the data from the database

b. Confidentiality: The data in the database can only be accessed by the autho-
rized server requests.

c. Reliability: Database has to be up and running providing data to the applica-
tion upon its request. The copy of data that the application works with as pro-
duction data when it accesses the database has to be current (the latest up-
date).

d. Integrity: Refers to the requirement that information needs to be protected
from improper modification. Modification of data includes creation, insertion,
modification, changing the status of data, and deletion. Integrity is lost if unau-
thorized changes are made to the data by either intentional or accidental acts.

e. Recovery: The database server is protected by a firewall and should be mir-
rored into a separate server. The application forwards queries to the mirror
who hosts production data. The data from the mirroring server is periodically
copied back to the ‘real’ database server (behind firewall). In case of corrup-
tion, this enables us full recovery of the data as it was in the latest state before
it was last saved.

f. The data in the databases server should be mirrored into separate server(s).
The application server interacts with the mirror(s) to answer queries from his
clients. The actual databases server is periodically synchronized with the mir-
ror(s). It should be protected by a firewall (or, if possible stored on a different
perimeter – different LAN). This enables us to be safe in case the application
server and the mirrors are corrupted. We can still do full recovery of the data
in the state from when it was last synchronized.

g. The database server should not offer ‘live’ data. The data in the database
should be mirrored to separate servers that are connected to the application
server. The database server where data is stored is synchronized with the mir-
rors every fixed period of time. The application works with the mirrors of the
‘real’ data. This enables us in case of corruption full recovery of the data in the
latest state before it was last saved.

73

5.6. Scope of implementation

The system is a three-tier client/server application16 presented in Figure 5.3. It is composed
of the presentation tier, the middle tier and the data tier. The presentation tier presents data
to the user and permits data entry though the user interface. The middle tier or commonly
referred to as the application server, implements the application logic and interacts with data
tier. The data tier, or data storage, represents the database management system for storing
data.

Figure 5.3. A three tier application.

Our scope of our work will include implementing the application logic in the application
server. Developing the data and the presentation tier is not in the scope of this thesis work.
In the middle tier we also leave out of the scope the implementation of the module that con-
nects the application server to the database management system. This module allows the ap-
plication server to query and update the database.

On Chapter 7 acceptance tests of our application are provide. For the purpose of (tem-
porary) storing data, we use a simple data structure presented in Section 7.1.

We implement the application logic in the application server were the identified use cas-
es are implemented.

Regarding the implementation of security properties in the application, the scope of this
work includes implementing solutions for establishing the properties of Authentication and
Authorization listed in section 5.5.1 under i) and j). Ultimately, since the data layer is out of

16 One of the primary advantages of a three-tier architecture is that, as the data storage needs grow, we can

change the way data is stored without affecting the clients. The middle layer usually serves to centralize the
processing of business rules for the application.

74

scope, establishing security properties in the database server is also not included in the
scope of work.

In the next section, we list the design architecture of the application and the technologies
we intend to use during the implementation of the application for this case study.

5.7. The application

In this section we explain the design decisions during the implementation of the prototype
application. We shortly discuss how the security properties included in the scope of work
will be established in this application.

It was already mentioned that this application will be built on the principles of the
client/server architecture with all the functionality implemented on the server. The client
software (even though it is not included in the scope of work) would be a simple graphical
user interface (GUI) application which would validate data entries by the user, send that data
to the server and present results back.

Since the full implementation of the presentation tier is not in the scope of work, and we
need to provide the interaction between the user and the application (which would be made
possible though the presentation tier), we provide only one simple class to compensate for
this. This class fills the gap for the presentation tier and enables the interaction between the
user (running the client software) and the sever. This class statically connects to the server,
calls methods on the server, forwards data there and receives the results back. Statically re-
fers to the fact that this is done only once and then the program exits. Thus, in this prototype
application we do not implement a ‘real’ interaction that one would find in an ordinary appli-
cation where the user is able to repeatedly interact with the application.

To gain access to the system the user will need to be assigned a username and a pass-
word from the administration. The administration also assigns permissions for each user
about the tasks they are allowed to perform. The tasks are defined based on the identified
use cases defined in Section 5.2 of this chapter. Each use case is implemented in the applica-
tion server within one method and that use case can be completed by the user calling the
corresponding method for that use case. So the administration basically gives permissions
separately for each user, about what methods he is permitted to call.

The user first submits his login credentials in the form of a username and password from
the client to the server to prove his identity. If credentials are valid he is allowed access to
the system and allowed to call methods on the server. Each method that the user calls on the
server is subject to verification of his authorizations.

Since we don’t implement the presentation tier to do this interactively, we do this stati-
cally in the class provided to compensate the interaction between the user and the applica-
tion.

75

5.7.1. Technologies used

The implementation technology used to connect the clients and the server is Java Remote Me-
thod Invocation. It is a relatively old technology, it has been around for almost fifteen years17,
and it simplifies remote communication by not having to deal with sockets during program-
ming (see Section 3.2, on how Java-RMI works). This technology provides us with a high-level
interface of interacting with the remotely located services as if they were local.

Since we use JML compilers to parse annotations that specify the security properties, we
are forced to use Java version 1.4. At the time when we started working on our application,
on May-June 2010, this was the latest version of Java that current stable JML compilers could
work with.

To achieve properties of authentication and authorization we implement the Java Autho-
rization and Authentication (JAAS) mechanism on the server (see Section 3.3 for more details
on JAAS). So, clients now connect to the RMI server where JAAS restricts user access by
checking their login credentials callers and enforces authorization control to the (authenti-
cated) users when they attempt to execute methods on the RMI server. The concept on how
this is achieved is explained below.

5.7.2. The concept behind restricting public access to the RMI server

We have stated earlier that once a RMI service is made available in the registry anyone can
access it. Any client knowing its address can bind to the registry, obtain a reference to the
object, and call its methods (52). This poses a problem for us if we want to restrict its use to
only a limited number of users.

Here, we briefly introduce the concept of how we intend to use JAAS to deal with re-
stricting access to publicly available RMI methods18. Namely, how we intend to restrict
access to the RMI server to only the authenticated users calling methods from the client pro-
grams installed in the workstations of the clinics.

Note that the user and the server in this case are operating on two different, remotely lo-
cated Java Virtual Machines. In order to control access and to allow only authorized calls to
the server, we implement JAAS in the server and use it to control access to (the part of) our
program which implements the functionalities required by use cases.

So, the user first connects to the server who has been configured to use JAAS, authenti-
cates and then is able to call methods on the server based on the privileges that he has. These
privileges are assigned to users individually in the JAAS policy file by the administration. In-
itially, when the user log’s in, his (previously) assigned permissions are dynamically attached
to his identity. So, when an (authenticated) user calls methods on the server, JAAS verifies if
his identity has necessary permissions for that call. If the identity of the calling user pos-
sesses the necessary permissions, it allows the call (see Section 3.3 for more details on JAAS).
If it doesn’t, an exception is raised. The basic concept of this architecture is pres-

17 It was first added to Java version 1.1 in the year of 1997.
18 We are aware that the idea of exposing functionalities that we want to limit access to only a number of

users, is not a smart idea, but we wanted to explore how this can be achieved when using RMI.

76

Figure 5.4. A sketch of the logic of the RMI server with access control by JAAS.

ented in the figure above. A security manager is installed in the RMI server, who verifies if
the calling authority has been previously assigned permission for that call.

In the next chapter we explain some of the features of JAAS when used in this layout, we
explain this concept in more detail and argue how these features will meet the properties of
authentication and authorization control in our prototype application. We show the proper-
ties are specified with JML.

In the next chapter we proceed by explaining in more detail how do we intend to imple-
ment the properties included in the scope of work and apply our method defined in Section
4.4 to specify those properties with JML.

77

Chapter VI

6. Implementation of properties

In this chapter we explain how we intend to implement the properties of authentication and
authorization in our application. We explain how these properties are achieved functionally
in the architecture of our application. We show how our application establishes these prop-
erties by implementing the features of Java Authentication and Authorization mechanism in
the architecture of our case study.

For better clarity, we present sequence diagrams of the processes that interact in the ap-
plication that achieves the given properties. After explaining the intended behavior for estab-
lishing the above mentioned properties we model this behavior as a finite state automaton
with defined states and transitions between those states. We do this because we want to ex-
press this automaton with JML.

This automaton is used as a model for the implementation of this case study application.
The goal for modeling the behavior of the program is that the states and transitions defined
are translated into invariants and class constraints expressed by JML annotations in the ap-
plication. The annotations can be used to verify that the implementation of the program in-
deed mirrors the behavior defined in the automaton in terms of states and state transitions.

Since these states and state transitions establish the properties of authentication and au-
thorization and; if the implementation of our program holds for the provided annotations,
then we can claim that the program also establishes the properties defined in the automaton.

This approach of specifying security properties enables us to ensure that the behavior
the programmer had in mind to implement security properties in the application, indeed cor-
responds the behavior represented in the JML annotations.

The remainder of this chapter is organized as follows. The next section gives a high level
description of how the properties are established in the implementation. Section 6.2 de-
scribes this behavior with sequence diagrams. Section 6.3 models this behavior on a state au-
tomaton listing the assumptions made. Section 6.4 shows how we have specified the imple-
mentation of our program with JML annotations that that express the intended behavior and
Section 6.5 discusses problems and benefits of taking this approach.

78

6.1. Architecture of the application

In this section I explain in more detail the architecture of our application and how we intend
to achieve properties of Authentication and Authorization using JAAS19. We give some more
details and background on how JAAS functions in general and how its implementation in our
architecture will establish the two properties.

We have stated earlier that JAAS is implemented on the server. At the server the JAAS
mechanism first verifies the identity of the caller and then checks if he has the necessary
permissions to call that method. Only if the (authenticated) user has the corresponding per-
missions to call that method, the call is allowed and otherwise an exception is raised.

To verify the identity of the user we implement a login module which is a built-in feature
of JAAS. The login module creates a login context for each (successfully authenticated) user
individually. As part of this login context, a proxy is created also and its reference is returned
to the caller. When the proxy is created it contains the identity of the user. The user uses this
reference to call the methods on the server.

So, when the user calls the methods on the server, the proxy checks his permissions. If
the caller has the necessary permission then the proxy calls the method on his behalf. If it
doesn’t, an exception is raised. The authorizations are checked at runtime to verify if the call-
er has execution privileges for the requested method. Each of the methods that the proxy can
call completes a corresponding use case of our application.

A more detailed concept behind this approach is presented in Figure 6.1. The steps oc-
curring when the identity of the user is authenticated and his execution privileges checked
are presented in the Figure 6.1. They are ordered numerically.

Initially, the server advertises the JAAS login module object to the RMI registry system so
that clients can connect to it. In step 1, users of the client software attempt to authenticate
themselves to the server. In step 2, when correct credentials are presented by the user a new
login context is created for the identity of that user in the server. The login context is a built-
in mechanism of JAAS. In JAAS the identity of the user is represented by a Subject class. All
permissions that have been assigned to the user in the policy file by the administration are
attached to the subject representing his identity in the application. In this way after each suc-
cessful user authentication, JAAS creates a login context for that user and attaches his
Permission objects to his Subject class.

Next, a proxy object for that particular user (containing his identity) is created in step 3
by the login object. In step 4, the reference of this proxy is returned to that particular user,
for which the proxy was created initially. So now, only he can reference the methods of the
proxy because he is the only one that has the reference to it. And on the other side, the proxy
knows the identity of the user as well, so it only accepts calls from the user that it was
created for.

The role of the proxy is to only check if the user has necessary permissions to call that me-
thod while the functionality of the method itself is implemented in another object; in Figure
6.1 denoted as Server Impl. So, when the user actually calls the methods on the RMI server,
he is actually referencing the proxy first, who verifies his authorizations and then calls that
method for him.

19 Java Authentication and Authorization Service

79

Figure 6.1. The simplified concept of restricting access on the RMI server with a proxy.

In step 5 the user requests a method by using the proxy reference which he got in step 4.
When the user references a method on the proxy, the proxy first checks if that user has per-
mission to call that method by using the built-in feature of the JAAS system. This step is de-
noted as step 6. Only if the user has been assigned the required permission to execute that
method, the proxy calls the method on the server object where the real method functionality
is implemented. This step is denoted as step number 7. After method execution, the result is
returned to the client in step 8.

Note that this architecture creates a corresponding login context and proxy object for
each (authenticated) user but the actual use cases are implemented is a single object listed in
the figure as ServerImpl. So, all the created proxies verify the authorizations of their corres-
ponding user and call methods in this object for him.

Figure 6.2 shows this scenario with two users authenticated at the same time. After their
successful authentication a login context and a dedicated proxy is created for each of them.
The reference to the proxy objects is returned to the corresponding clients who can after
wards use it to call the methods on the server. And since only the authenticated users have
references to their corresponding proxies then only they can call methods on the server by
having the proxy call them on their behalf. This limits the completion of use cases on the
server to only the users that have logged-in successfully, which is goal that we wanted to im-
plement in our application.

80

Figure 6.2. Dedicated proxies and login contexts created for each authenticated user.

We wanted to allow only authenticated users to be able to have access to the methods on the
server, subject to verification of access control rights (permissions) required by the adminis-
tration for that particular method call on the server.

6.1.1. JAAS features in our application

Verification of access control rights of users in our application is done by the policy system of
JAAS. The policies defined are enforced by installing a security manager. Starting from ver-
sion 1.4, Java implements a code-centric security mechanism (35). This means that permis-
sions can be granted based on code characteristics: where the code is coming from, whether
it is digitally signed and if so by whom. (for more details on how permissions are expressed
in the policy file go to Section 3.3.1). By using the JAAS authorization mechanism we are able
extend the existing code-centric access controls of Java with new user-centric access controls.

Now we can restrict execution by not just where the code is coming from and who signed
it but also by identity of the user who is trying to execute that code. This is done by creating
policies that list which user is allowed to execute which classes and what system resources

81

are these classes allowed to access. In other words, permissions can be granted based, not
just on what code is running but also on who is running it.

How is the JAAS policy enforced?

When a Java application starts by default, it has no security manager installed. At its op-
tion, the application can install one. If it does not install a security manager, no restrictions
are placed on any activities requested of the Java API; the Java API will do whatever it is
asked. If the application does install a security manager, then that security manager will be in
charge for the entire lifetime of that application. It cannot be replaced, extended, or changed.
From that point on, the Java API will fulfill only those requests that are sanctioned by the se-
curity manager (35).

We require that application install a security manager20. The security manager controls
the permitted operations based on security policies that we create. These policies are placed
on separate files that security manager reads when it is invoked at the start of the applica-
tion.

We will use three policies defined for our application. Each of them deals with a particu-
lar aspect of our application.

The first policy defined in the codePermissions.policy file is the most important for
our application. It specifies which .class files on the server are allowed to use and create
what resources. We split the files on server into two JAR archives, putting all the files that
need to use security sensitive resources in the server.jar archive, and the other ones (that
don’t need such resources) in the actions.jar. The policy that we have just mentioned as-
signs permissions for each of the archives separately on the resources they can use. This lim-
its the harm that the files can do to our application if they’re compromised.

In the event that they become compromised by malware and tricked into doing harm to
our application, their access to the system resources is restricted. For example, if the
server.jar file is compromised by malware and tries to establish a TCP/IP connection with
a remote host to copy all the data there, this is not possible, because the archive file is not
permitted to make new TCP/IP connections to hosts. The security manager will not allow
such actions because in our policy we have instructed him that this archive is to accept only
connection requests not initiate new ones. The requests that are accepted can also only come
from a fixed IP address and port number.

This policy is listed in Appendix C. Basically, here we list which sensitive resources can
be created and used by the JAR archives in the server.

The second security policy in our application, enables the administration to assign per-
missions for users individually. The permissions are given in the form of method-names (of
use cases) that each user is allowed to execute.

When permissions are assigned to the users, they map the names of the methods imple-
menting use cases to the usernames of the staff in the clinic. (The methods that implement
use cases are covered in Section 7.2.1). This policy is presented in the file named

20 We invoke it by adding it as an argument to JVM when we first start the application. The argument re-

quired is: -Djava.security.manager

82

Authorizations.policy. It needs to be associated with the environment variable
java.security.auth.policy so that the Login Context can create permission objects for us-
ers that it authenticates.

The third policy defines which login module to implement for authentication and is given
in the file called LoginModule.config It specifies the name, options and the package location
of the login module to be implemented. This naming of the modules is necessary because it is
possible to have more than one login module implemented per application. In this case each
module would impose different levels of restrictions. All the policy files are listed in Appen-
dix C.

Our application implements only one login module. We invoke it with the option
required so that the authentication needs to be successful in order for the overall login of
the user to succeed. The login module is used to establish the property of authentication in
our application.

This way of controlling which users are allowed to execute which use cases is convenient
for us because it is not defined internally in the code but in a ordinary textual file that is
loaded when the application starts up. Thus if changes are needed, no interventions in the
code are necessary. All we need to do is edit the grant statements in this textual file.

The mechanisms and their features explained here will establish the properties of au-
thentication and authorization included in the scope of work. They enable us to control
access to the application and to verify if the (authenticated) users are allowed to execute the
requested methods which in turn, implement the use cases of the application.

In the next section we explain how this intended behavior would look in an actual imple-
mentation. The term intended behavior refers to the functional behavior of our program with
mechanisms of JAAS and its features that will establish the security properties in the imple-
mentation of our program.

 We present the numbered steps of this behavior from Figure 6.1 through sequence dia-
grams. The sequence diagrams capture the order of processes and show how they work
when these steps are actually implemented in the classes of an application.

6.2. Sequence of operations

In this section we explain the interactions of processes in the program behavior that should
establish authentication and authorization in our case study.

Since the application is built on RMI technology first the remote object needs to be ad-
vertised in the RMI-Registry. The application starts by the client software looking up into the
registry to obtain the reference of the (remote) object. The client must provide the address of
the remote object he is looking for. If this remote object has been advertised previously, its
reference is found and returned to the caller. This is presented in the Figure 6.3.

83

Figure 6.3. Obtaining the reference to the remote object.

The client software using this reference requests methods on the remote object of the
server. The object declared as remote by the RMI system in the server implements the login
module which creates a login context for the calling user. The remote object is denoted in the
figure as Login Impl and the login context created as Login Context. The caller calls the
built in method login() of the module which creates a login context and authenticates the
caller. If the caller has provided correct username and password the user is authenticated
successfully, a proxy is created and the reference of this proxy is returned to the caller. The
proxy has now established the identity of the user.
Note that when the login() method is called in the Login Context it creates the identity of
the user and it dynamically binds his permissions to his identity. So based on the grant
statements that the administration has listed for that user in the policy file the object from
the Subject class gets the corresponding Permission objects binded to him. This part of how
JAAS functions internally is not presented in the figure. For more details on this, read Section
3.3.2. This completes the authentication phase.

The authorization phase starts by the caller requesting to execute a method on the serv-
er. Using his reference the client can now call methods on the server object which implement
the use cases of our application.

Both the proxy and the other server class implement the same interface, which means
that both of them implement the same methods. The difference is that the proxy object (de-
noted here as Server Proxy) only checks if the caller possesses the necessary authorizations
and the implementation class (in the figure denoted as Server Impl) implements their ac-
tual functionality. The verification of authorization of the caller is done by executing the
built-in method doAs of the Subject class. This class represents the identity of the user. This
class stores all the permission objects that the user has been binded to when his identity was
created. The doAs method looks through all these objects to find the necessary permission. If
it is found then no exception is raised and the proxy calls the method on user’s behalf in the
Server Impl objects where the use case functionality is completed.

84

Figure 6.4. A proxy is created when the user is successfully authenticated.

An architecture that implements the sequence of steps shown in this section establishes
the anticipated properties in the application.

In the next section we model the flow of these steps in a finite state automaton that cap-
tures the behavior of the application in terms of states and state-transitions. The implemen-
tation of our case study is done based on this modeling. In fact our program mirrors the au-
tomaton. Mirrors in this context means that states and state transitions appearing in the au-
tomata will identically appear in the program as well. To ensure that they indeed do appear
identically as in the automaton, we express the states and their transitions with JML annota-
tions.

The goal of this modeling is to show that since the application actually mirrors the auto-
maton, and since we have showed how this behavior defined in the automaton meets proper-
ties of authentication and authorization then the implementation of our program also meets
these properties.

85

Figure 6.5. The proxy verifies the permissions of the caller.

6.3. Modeling the behavior of the application

In this section we model the flow of the program as a finite state automaton. This type of an
automaton is a mathematical abstraction used to model computer programs. It is a behavior
model composed of a finite number of states, transitions between those states, and actions,
similarly to a flow graph in which one can inspect the way logic runs when certain conditions
are met (53). The start of the finite state automaton begins in the start state and goes
through the other states depending on the input that it gets from the states it has previously
been in.
This automaton will capture the intended behavior of the program explained in the previous
section with states and actions defined for each state. Actions here represent the methods al-
lowed to be called in the corresponding states that lead to state transitions and the (possible)
exceptions that can be raised as a result of method execution.

One of the intentions of this modeling is to abstract away from the actual implementa-
tion details which establish these properties but still be able to capture the intended (high-
level) behavior of the program. Since this model is based on the abstraction of the actual ap-
plication some assumptions are necessary for this model to hold. These assumptions are pre-
sented in the following section.

86

6.3.1. Assumptions

In the model of our application we include the JAAS mechanism but abstract away from how
this system works internally. In the automaton we only model the requirements that a Login
Context and a Subject representing the identity of the user is created by JAAS and assume
that JAAS works correctly.

We assume that no unauthorized tampering of messages during communication between
the client and the server takes place.

Recall that one of the limitations of JML in regard to security is that specifications are de-
fined for each class separately (see Section 3.1.7 for more details). As of result of this design
of JML, the static checking tools, also verify the annotations for each class separately. This
poses a great problem for us since, the overall flow of the program that we want to model
happens in more than one classes. More specifically, it begins in the Client class, which inte-
racts with the LoginImpl and ServerProxy classes.

 To model the continuity of state transitions between these classes into one state ma-
chine which represents the entire program behavior, when the predecessor state of the pro-
grame occurs in another class we assume the value of the previous state. To model this, we
use the assume keyword of JML. By using this assumption, when the flow control of the pro-
grame goes from a state in one class into a new state in another class, we instruct the static
checker to assume that the program flow came from a particular state. This assumption
enables us to capture the continuity of the state transitions in the overall program.

Thus, in the case when we need to express the two consecutive transitions occurring in
two different states with JML annotations, we manually check the predecessor state from our
automaton and insert it in the programe as an assumption statement expressed in JML.

This is done so we could model the overall flow of the application in one state automa-
ton. We require this because the properties that we are specifying depend on the behavior
implemented in multiple classes.

The transition of states occurring in two different classes happens for example, when we
go from the state when the client class calls a remote method, to the state when the server
verifies the authorizations of that user (more on this will be explained when we do the actual
specification in Section 6.4.

6.3.2. The state automata

We present the automaton modeling the life-cycle of the application in the Figure 6.6. The
states are represented by ovals; transitions are represented by arrows and exceptions by
broken line arrows of grey color. The automaton depicts the behavior of program occurring
in the client side (marked with C) and the server side (marked with S). The dotted gray line
represents the separation of the states occurring in the client side of the program shown on
the left side of the automata, from the states occurring on the server side shown on the right

87

Figure 6.6. The program behavior modeled as a state automaton.

TERMINATE

S

CALL

METHOD

VERIFY

AUTHORIZATION

REQUEST

METHOD

AUTHENTICATED

performTask()

m()

NEW_SUBJECT

NEW_PROXY

checkPermission(m)

login()

lookupRemoteObj()

LOGIN

 EXCEPTION

INITIAL

CREATE_LOGIN

CONTEXT

SECURITY

 EXCEPTION

createNewProxy(subject)

C

FOUND

requestLogin()

getSubject()

m()

88

side of the figure. Since we are modeling the behavior of a prototype application, the client
behavior that we model here calls statically one method on the server21 and exits.
The automaton has ten states. It begins in the INITIAL state when the application starts.
From this state the program calls the method lookupRemoteObj() for searching the refer-
ence of the remote object in the server which is advertised in the (global) RMI registry. If the
(remote) object is found, the program goes into the state of FOUND and the reference of this
object is returned to the caller.

From the FOUND state the requestLogin() method reads the credentials from the user
and forwards them to the remote object in order to prove the identity of the calling authority
to the server.

When the remote object receives credentials, it creates a new login context for the (au-
thenticated) user; the program goes in the CREATE_LOGIN_CONTEXT state. JAAS verifies the
credentials when the built-in method of login() is called. If the provided credentials are
invalid then a Login Exception is thrown, the program gets in the TERMINATE state and exits.

If the credentials are valid the getSubject() method is executed to get the Subject
(with its permission objects binded) for that user from the login module of JAAS. This gets
the program in the state of NEW_SUBJECT. Then a new proxy is created for that user by the
createNewProxy() method which puts the system in the NEW_PROXY state. The reference of
the newly created proxy is returned back to the caller.

After receiving this reference at the client, the program goes into the AUTHENTICATED
state. From this state, the client program calls the performTask() method which calls a re-
mote method on the proxy. This brings the application in the state of REQUEST_METHOD. The
requested (remote) method is denoted here with m(). m() in this case is just an example
name for a remote method that implements the functionality of a used case in the server. For
example m() can be a method that adds patients, lists the records of the patients or com-
pletes any other use case defined in Section 5.2.

When the proxy receives the request it enters the state of VERIFY_AUTHORIZATION. In this
state, checkPermission method is called to verify if the caller is permitted to execute m(). If
the user making the call is permitted to execute that method, then the proxy enters the state
of CALL_METHOD and calls m() on the object where it is actually implemented. In this object
the actual work of the used case is completed. After it is completed m() returns the result to
the caller and enters the TERMINATE state and exits.

On the other hand, if the user does not have the required permissions for method m a Se-
curity Exception is raised and the program again gets in the TERMINATE state and exits with-
out the user completing that use case.

This marks a complete lifecycle of the application starting from first verifying the identi-
ty of the user, checking if that user has corresponding permissions to execute the requested
method and at last, executing the method.

The lifecycle defined in the automata is implemented on the program of our case study.
The implementation is listed in the Appendix B. In the next section we show how we specify
the defined states of the automata and the transitions between the states in the program. The
states and transitions are specified with JML annotations.

21 This modeling simplifies from a typical application behavior where the user interacts with the applica-

tion by calling different methods that complete different tasks for him.

89

6.4. Specification of the program

In this section we show how we specify the properties of authentication and authorization in
our program. By explicitly modeling the behavior of the programe that implements these
(high-level) properties, it becomes easier to formulate the JML statements when specifying
the program.

Note that we do not specify all the classes of the programe with annotations that would
enable us to verify the correctness of the entire programe. Instead, we are only concerned in
verifying the correctness of the security properties that we have implemented.
We will show that all the states and the transitions between the states defined in the automa-
ton will also occur in the classes of our program. JML ghost fields are used to mark the states,
while the order of transitions between them is translated into constraints and invariants
placed in the corresponding classes where they are implemented.

Remember that when invariants are defined for the class then they must hold for any ex-
ecution of the program statements. On the other hand constraints must hold at every entry
point and exit point of each method (26). They may however, become broken temporarily in-
side the method but are established again when the method returns [see Section 3.1 for
more].

Ghost fields are used to mark the state because, in comparison to other JML annotations
which are defined before the method and can’t be updated later, the value of this type of
fields can be updated inside the method itself. In this way, when we want to mark a change in
the state of the object (that has occurred as a result of some program flow) we update the
value of this field correspondingly at that point in the code (see Section 3.1.5 for more de-
tails). The ghost field used in our implementation for this purpose is called state.

The complete program is listed in the Appendix B. The actual implementation of the
functionalities required by the used cases is discussed in the next chapter. Here we discuss
only the classes that define the behavior presented in the automata. By behavior we mean
the defined states and the state transitions in our program. We show how we have modeled
states and expressed transitions between these states in terms of constraints to ensure that
the defined behavior is implemented correctly in the application. Correctly in this context
means that the implementation actually behaves as specified in the JML annotations.

The complete life-cycle defined in the automaton occurs in three classes of our program.
The behavior defined for the client is implemented in the Client class listed in the Appendix
B page on page 111. This class finds the reference of the server, sends credentials of the user
to there and calls methods on the server which complete the use cases for the user.

The behavior of the server occurs in the LoginImpl and ServerProxy class. The first
class is listed in Appendix B on page 115 and implements the behavior of user authentication
and creation of the proxy. The second class is shown in the Appendix B page 118 and imple-
ments the verification of authorizations of the user when he invokes methods.

Specification of the Client class

In the Client class we define the possible states for this class in the invariant below.

90

/*@ invariant

 @ (state==INITIAL || state==CONNECTED ||

 @ state==AUTHENTICATED || state==REQUEST_METHOD ||

 @ state== CREATE_LOGIN_CONTEXT || state==TERMINATE);

 @*/

Figure 6.7. States of the Client object.

To specify the transitions between these states during the object life cycle we use the con-
straint listed in the Figure 6.8. With this constraint we specify the order of occurrence of
transitions between the states of this class. For each state we specify what are the pre states
that can lead to that state and post states that can follow from it. For example in line four we
specify that prior to state AUTHENTICATED, the FOUND state must have been in place.

/*@ constraint

 @ (state==INITIAL ==> \old(state==null) &&

 @ (state==FOUND ==> \old(state)==INITIAL) &&

 @ (state==AUTHENTICATED ==> \old(state)==FOUND) &&

 @ (state==REQUEST_METHOD==>\old(state)==AUTHENTICATED)&&

 @ (state==TERMINATE ==> \old(state)==INITIAL

 @ || \old(state)==FOUND

 @ || \old(state)==AUTHENTICATED

 @ || \old(state)==CREAT_LOGIN_CONTEXT

 @ || \old(state)==VERIFY_AUTHORIZATION

 @ || \old(state)==REQUEST_METHOD);

 @*/

Figure 6.8. Constraint specifying state transitions.

Note that there are many states listed in this constraint that can lead to the TERMINATE state.
This is because we build an RMI application where communication between the client and
the server is done though the web and anything can go wrong with the connection at any of
these states. These interruptions will raise a RemoteException, the program goes into the
TERMINATE state and exits. These transitions are implemented and specified in our program
but not visible in the Figure 6.6 for two reasons. Since they are part of the RMI functionality
and not directly linked to the establishing of our properties and to simplify the representa-
tion of the automaton in the figure.

Note one important detail in Figure 6.8 which comes as a result of one of the assump-
tions we have made for the purpose of modeling the consecutive state transitions in the pro-
grame, when they occur in two different classes.

We have the transition of states from CREAT_LOGIN_CONTEXT and TERMINATE on one side,
and the transition of REQUEST_METHOD to TERMINATE state on the other side. The two transi-
tions occur if an exception is thrown in another class and returned at the Client class where
it is caught. This happens in two situations: (a) when the user is not authenticated successful-
ly or, (b) when he does not have necessary authorizations to make that method call.

91

Note that the state CREAT_LOGIN_CONTEXT is not defined as an admissible state in the in-
variant of this class in the Figure 6.7. The reason is that this state actually occurs in another
class – in the LoginImpl class, when the user attempts to authenticate.

When the user makes this attempt to authenticate, the state of the program goes into the
state of CREAT_LOGIN_CONTEXT but, if the authentication is not successful, an exception is re-
turned to the Client. In this case, the application goes into the TERMINATE state and exits. To
model this exception being thrown; in the code where we catch it, we instruct the static
checker that the predecessor state was VERIFY_AUTHORIZATION. So this transition is covered
by the assumption.

Please consult the actual code listings of these classes listed in Appendix B to see the
code and the annotations provided to support the modeling of these inter-class transitions.

The application starts by calling the start() method in the constructor which sets the
state of the program to INITIAL. This method implements the following behavior: it first
looks for the reference of the remote object; if found than forwards the credentials that the
user has provided to the server in an attempt to authenticate him, and if authentication is
successful then it calls a (remote) method. If any of the two conditions is not met the applica-
tion exits. The following annotation presented in the Figure 6.9 models this.

 /*@ requires state==null;

 @

 @ ensures (lookupRemoteObj() && requestLogin() ==>

 @ \only_called(performTask)) &&

 @

 @ (!lookupRemoteObj() || !requestLogin())

 @ ==> \only_called(exit))

 @*/

private void start() {

 //@ set state = INITIAL;

 if (lookupRemoteObj()) {

 if (requestLogin()) {

 performTask();

 }

 } else {

 exit();

 }

 }

Figure 6.9. Specification of the behavior in the start method.

The first method called by the remote lookupRemoteObj() method gets the reference to
the remote object from the RMI registry.

The annotation for this method states that when this method is called the state must be
INITIAL and the reference of the remote object must be null. There must not be a (old) refer-
ence to the remote object. By using the assignable clause we restrict that the only variable
allowed to be modified in this method is the loginServer reference. It also states that during

92

the method execution only the lookup method called. By using the \fresh keyword we speci-
fy that that when the method terminates the result stored in the reference of loginServer
must have been generated “freshly”; as a result of this particular method execution and not
some other (prior) method.

In the postconditions we specify what conditions need to be met in order for the result to
be true, and what conditions are required for it to be false. Note that in annotation for this
method (and for the other methods as well), we don’t need to catch the value of the state
after the method returns, because this is defined in the general class constraint from Figure
6.8.

/*@ requires state == INITIAL && loginServer == null;

 @

 @ assignable loginServer;

 @

 @ ensures \only_called(lookup) &&

 @ ((loginServer==null ==> result==false) &&

 @

 @ ensures (loginServer!=null ==> result==true &&

 @ \fresh(loginServer));

 @*/

private boolean lookupRemoteObj() {

 . . .

 loginServer=(LoginInterface) Naming.lookup(serverObject);

 //@ set state = FOUND;

 . . .

 }

Figure 6.10. Specification of the lookupRemoteObj.

After the method lookupRemoteObj() executes, it brings the object in the FOUND state. In
this state the requestLogin() method is called.

This method forwards the credentials read from the user to the server. Note that in the
lack a presentation layer component for this application, we enter the user credentials stati-
cally (by hardcoding they’re values inside this method).

In the specification we use the assignable clause again to limit that only user, pass and
theServer variables can be modified during this method. During the method execution only
the forwardCrds method can be referenced and the reference to the remote object should
not be null and must have been updated during this method execution.

93

 /*@ requires state == FOUND && loginServer != null;

 @

 @ assignable user, pass, theServer;

 @

 @ ensures \only_called(forwardCrds) &&

 @ ((theServer==null ==> result==false) &&

 @

 @ (loginServer!=null ==> result==true &&

 @ \fresh(loginServer));

 @*/

 private boolean requestLogin() {

 user="admin1"; pass="admin1";

//USERNAME AND PASSWORD OF THE user

 try {

 theServer = (ServerInterface)

 loginServer.forwardCrds(user,pass);

 //@ set state = AUTHENTICATED;

 } catch (Exception e) {

 //@ assume state == CREATE_NEW_LOGIN_CONTEXT;

 return false;

 }

 return true;

 }

Figure 6.11. Specification of the method that requests to authenticate the user to the server.

In this method we face the problem mentioned earlier when the state transition occurs
between two different classes. This has been covered in the assumptions, where we decided
that every time a state transitions occurring between two classes, we assume the value of the
predecessor state.

So, in the specification of this (remote) method, if an exception is thrown in the server
during the attempt to authenticate the user, at which point the state of the programe enters
the CREATE_NEW_LOGIN_CONTEXT state, then the (remote) method forwarding the login cre-
dentials also throws an exception. After this exception, the program should go into
TERMINATE state and exit because incorrect credentials were provided and the user must not
be allowed access of the application.

To model this continuity of state transitions, going from state
CREATE_NEW_LOGIN_CONTEXT (that occurred in the LoginImpl class) into the TERMINATE state
(that occurs in the Client class) we assume the value of the first state in the catch clause af-
ter which the program goes into the second state.

On the other hand, if the authentication succeeds, the program enters the state of
AUTHENTICATED allowing the user access to the application. Note that prior to entering the
state of AUTHENTICATED, the state of the program was transformed through all the states de-
fined for the LoginImpl class. Namely the programe has gone through

94

 CREATE_NEW_LOGIN_CONTEXT, NEW_SUBJECT and NEW_PROXY states as defined in the automa-
ton in Figure 6.6.

Now that the user has authenticated and the server has established his identity, he can
begin calling methods that complete use cases.

The performTask() method requests to complete one of the use cases by calling the cor-
responding (remote) method in the proxy object in the server. The choice of which use case
to request, is again done statically in this class.

The specification of the predecessor state occurring in another class (in this case the
ServerProxy class) is also specified here. This inter-class transition occurs when the user
does not have required permission to make method call that he requested; at which case an
exception is thrown.

The specification of the method performTask is straight forward, not listed here.

Specification of the LoginImpl class

In the LoginImpl class the possible states are also defined in an invariant. The invariant is
straight forward and is not listed here. The constraint specifying the state transitions of this
class is presented below in Figure 6.12.

 /*@ constraint

 @ (state==NEW_SUBJECT ==>

 @ \old(state)==CREATE_LOGIN_CONTEXT) &&

 @ (state==NEW_PROXY ==> \old(state)==NEW_SUBJECT) &&

 @ (state==CREATE_LOGIN_CONTEXT ==> \old(lc)!=lc);

 @*/

Figure 6.12. State transitions in the LoginImpl class.

In the last line of this constraint we specify that if the state of the program is in
CREATE_NEW_LOGIN_CONTEXT then a new login contest must have been created.

The implementation of the (remote) method that handles credentials from the user call-
ing the JAAS login module to verify the credentials of the user has the following annotation.
Since exceptions can be thrown their behavior is also specified.

We define precisely the behavior of the method when it returns normally and when ex-
ceptions are thrown. When this method is called we require that the values of its parameters
be non null, we define which variables it can modify and ensure that a login context and
the Subject is created during this method execution (see Section 3.3 for more details about
Subjects). It also specifies that when a LoginException is thrown no login context is
created. The reason for this is that the user did not authenticate successfully.

95

/*@ normal_behavior

 @ requires username != null && password != null;

 @ assignable lc, user;

 @ ensures \fresh(lc, subject);

 @ also

 @ exceptional_behavior

 @ requires lc==null;

 @ signals (LoginException le)

 @ le.getMessage()!=null&&\fresh(le);

 @ also

 @ exceptional_behavior

 @ requires lc!=null || lc==null;

 @ signals RemoteException;

 @

 @*/

public ServerInterface forwardCrds(String username,

String password) throws RemoteException, LoginException {

 //@ assert state==FOUND;

 lc = new LoginContext("JAASLogin", new

 RemoteCallbackHandler(username, password));

 //@ set state=CREATE_LOGIN_CONTEXT;

 lc.login();

 Subject subject = lc.getSubject();

 //@ set state=NEW_SUBJECT;

 // Return the reference of a proxy to the calling client.

return createNewProxy(subject);

}

Figure 6.13. Specification of user authentication.

Note that even though the state changes twice inside this method and the sequence of
this transition is not captured in the annotation, it is captured in the global class constraint
from Figure 6.12.

In the second exceptional_behavior specification we list the RemoteException, to tell
that it can be throw. This clause is not really useful during verification, but is given for better
clarity of the method behavior.

 The specification of the next method createNewProxy is similar and straight forward
and thus not listed here. The function of this method is to create a new proxy for the (authen-
ticated) user and return its reference to the caller.

96

Specification of the ServerProxy class

Since in our program a proxy is created everytime a user is authenticated, in the proxy class
invariant we specify that during the life-cycle of the proxy there needs to be a Subject; its
value must be non null. This basically means that when a proxy is created there needs to be a
Subject class also in place. We also require that the reference to the object where the use
case functionality is implemented is non null. This invariant also lists the possible states that
can occur in this class. These elements constitute the invariant for this class and are pre-
sented in Figure 6.14.

/*@ invariant

 @ (subject!=null && theServer!=null) &&

 @ (state==VERIFY_AUTHORIZATION || state==CALL_METHOD);

 @*/

Figure 6.14. Defined states for the proxy.

We add a global constraint to specify the state transitions occurring in this class. Note that if
the program is in the VERIFY_AUTHORIZATION state we assume (in accordance with our
model) that prior to this state the program was in the REQUEST_METHOD state. Since this state
occurred in the previous Client class in order to model the continuity of the program flow
we assume that the predecessor state in that class was VERIFY_AUTHORIZATION. Thus, is the
assert statement in the definition of this constraint.

So, this assumption is made to model the continuation of the program flow from the pre-
decessor class Client where the request for calling the (remote) method came from.

/*@ constraint

 @ (state==VERIFY_AUTHORIZATION ==>

 @ assert \old(state)==REQUEST_METHOD) &&

 @ (state==CALL_METHOD ==>

 @ \old(state)==VERIFY_AUTHORIZATION);

 @*/

Figure 6.15. Class constraint for the ServerProxy class.

In this class all the (remote) methods exercise the same behavior. Namely, they first
check for the permissions of the user and then call the requested method under the condi-
tions that the user making the call has sufficient permissions. We show the specification of
the insert method. The other methods are similarly specified. The only difference between
them is the number of parameters that they take. Thus, the specification that we did for them
will not be listed here.

For this method we specify that its parameters are non null, and only the insert and
checkPermission methods can be called. The reference of the class where the method func-
tionality takes place is denoted as theServer.

97

The method functionality is implemented in the ServerImpl class listed in Appendix B
page 121. The insert method and its specification are listed in Figure 6.16.

/*@ normal_behavior

 @ requires cpr!=null && fName!=null &&

 @ lName!=null && adress!=null && DOB!=null;

 @ ensures \only_called(checkPermission, insert);

 @

 @ also

 @ exceptional_behavior

 @ signals_only RemoteException, SecurityException;

 @*/

public boolean insert(String cpr, String fName,

 String lName, String adress, String DOB)

 throws RemoteException, SecurityException {

 //@ set state=VERIFY_AUTHORIZATION;

 checkPermission("insert");

 //@ set state=CALL_METHOD;

return theServer.insert(cpr, fName, lName, adress, DOB);

}

Figure 6.16. The specification for the insert method in the proxy class.

Everytime a (remote) method is called from the Client class in the ServerProxy class,
the proxy checks if the user has the necessary authorizations to run that method. To do this,
inside of every (remote) method defined in the proxy we call the checkPermission method
which in turn, uses the JAAS features to verify permissions of the user.
The specification for the checkPermission method specified the behavior similarly and de-
fines the possible exception being thrown if the user does not have the required permission
for that method. Here we specify that the doAs (built-in) method of the Subject class is
called. The annotation for this method is shown below in Figure 6.17.

/*@ normal_behavior

 @ requires methodName!=null;

 @ assignable \nothing;

 @ ensures \only_called(doAs);

 @ also

 @ exceptional_behavior

 @ signals (SecurityException se)

 @ se.getMessage()!=null && fresh(se);

 @*/

private void checkPermission(String methodName)

 throws SecurityException{

98

 Subject.doAs(theUser,new MethodcallValidate(methodName));

}

Figure 6.17. Specification of the method that verifies permissions of the user.

Since our application uses RMI technology to implement the communication between the
remote parties, an interface of all the remotely accessible methods has to be defined. This is a
requirement of the RMI technology (see Section 3.3 for more details on RMI implementa-
tion). The interface class is then implemented by all the classes where the remote methods
are implemented. In our case, this interface is defined in class ServerInterface listed on
page 124 and implemented by the ServerProxy and ServerImpl class.

In the event that we were to specify all the classes of our application with JML, including
these three classes, we could use model fields (54) (55). With these fields we define one (or
more) model fields in the interface marked with keyword instance. This keyword indicates
that the actual fields on the implementation class have to be linked to this variable.

All the classes implementing this interface can then relate the model fields defined in the
interface with the fields that they implement (see section 3.1 for more on model fields). Oth-
er advantages of specifying interfaces with these fields can be found in (31). For a more ex-
tensive discussion of model fields regard (56).

We did not use this method, since we do not specify all the classes of our program, but
only the classes that establish the security properties thus the aforementioned benefits
would not help us.

6.5. Discussion

In this section we discuss problems encountered and our experience during specifying prop-
erties with this method. We point out the reasons behind these problems and discuss the
benefits and outcome of doing property specification with this method.

6.5.1. Problems

The specification of properties with this method brings additional assurance that the beha-
vior the programmer had in mind is correctly implemented in relation to the JML annotations
provided. However, the fundamental problem remains; there is no formal proof of the auto-
maton modeling this behavior.

A problem that we encountered during specification of our application was related to
specifying the remote exceptions that the RMI methods throw when the connection is inter-
rupted. It is not possible to express in pre and post conditions when this type of exception is
thrown because it does not depend internally from our application but from an external fac-

99

tors (the interruption of the TCP/IP connection). Based on our experience, we are convinced
that specifying exceptions is not useful for verification.

We have experienced that getting the specifications right is a labor intensive work. The
JML2 Eclipse plugin that we used for doing run-time assertion checking does not report the
possible logical errors in the specifications. Thus it is very easy to include annotations in the
programe that are syntactically correct, but do not express any valuable pre- or post- condi-
tion that could be used during verification because their logic is erroneous.

Furthermore, sometimes the JML2 compiler did not report even the syntactical errors.
On occasion when we compiled the annotations with the JML2 plugin, it did not show us

warnings of syntactical errors even though we were sure about them. On these cases, it
helped restarting the Eclipse IDE and recompiling the annotations back again. This time, the
warnings were shown.

In the past, correctness has been formally proofed on small and relatively simple Java
Card applets (41) (16). Since their behavior is considerably simpler it is possible to model
their security related behavior as a protocol and verify this protocol for the given properties.
Despite this being possible, the properties specified do not constitute high-level properties
such as authentication, authorization or alike. The properties specified there are usually low
level properties which are specific to the architecture of the processing device (the chip)
where these applications run. An example of a property specified here is atomicity of trans-
action.

It is generally acknowledged that there is a substantial gap between modeling the high
level properties such as authenticity, confidentiality and similar with specifications done on
the implementation level, usually consisting of pre- and post- conditions for methods and
invariants or class-wise history constraints (42).

Modeling Java desktop applications with real-life requirements as protocols is however
considerably more challenging because of the complexity involved in them.

When modeling the behavior of the application for our case study, a number of abstrac-
tions from the actual implementation details are done. It is generally known that, it is at the
implementation level that often errors compromising security of the application appear. For
example, our model of the application uses the JAAS features of login context and the Subject
representation of the user identity but it abstracts away from the implementation of JAAS
that creates these features. So if verification of the program is done, we are only assured that
that these features are created but no assurance on their actual implementation of JAAS.

Some of the major problems when doing the specifications of (high-level) properties
modeled in this fashion comes as a result of the limitations of JML [see section 3.3]. Usually
design decisions related to security are (most often) implemented in multiple classes which
affect other sections of the program. On the other hand, JML is meant for specifications of
single classes thus, specifying design decisions that spread over multiple classes is proble-
matic in JML. We face this problem in our implementation when modeling the flow of states
between two classes. We go around this issue in our implementation by assuming when
states change between two classes; we use the assume keyword of JML which basically as-
sumes the predecessor state in the previous class.

Our experience during implementing this prototype application with states and state
transitions defined in a state automaton has shown that additional complexity is added to the

100

application when the program statements have to be encapsulated in the methods which
represent the transitions of the automaton.

6.5.2. Observations

The research efforts in the JML community were mostly concerned in developing features of
JML that deal with sequential22 programming in Java. As a result, JML lacks proper constructs
to support the specification of Object Oriented programming in Java.

Based on the experience that we had during the specification of our programe, we as-
sume that the costs of writing a fairly complete functional specification for program behavior
is usually about the same as that of writing the code to implement it.

We think that capturing the behavior of code in the application level can be done easier if
the programe is developed in a modular fashion. In this case annotations for modules can be
written in separate files and static checking tools such as ESC/Java2 can interpret them.

Even though we don’t use concurrency in our application, we notice that the specifica-
tion of the ordering of events would be highly problematical in such programs. Simply be-
cause, specifying contracts between the caller and implementor using only the Hoare style
logic (57) does not suffice to specify sequences of operations in concurrency.

6.5.3. Benefits

Modeling the program behavior as a state automaton enables us to easier write JML specifi-
cations for high-level security properties intended to be implemented in the application.

Writing the JML annotations contributes to a better understanding of the code in general.
Because the programmer is thinking twice about the implementation details in the code, so
the chances for discovering inconsistencies are greater.

Static analysis tools (such as ESC/Java2) can be used to discover programming errors
occurring during implementation by using the JML annotations. This tool checks for common
run-time errors for each class separately and issues warnings if violations of annotations are
encountered. For example it checks if invariants, constraints, pre- and post- conditions are
broken.

By specifying security properties of authentication and authorization in our case study,
we give an example of how it is possible to actually narrow the gap when specifying high-
level security properties on one side, and the low-level implementation details on the other
side.

22 Also referred to as procedural programming.

101

Chapter VII

7. Testing and other implementation details

In this chapter we explain how our application implements the functionalities defined in the
case study. We show how the use cases are implemented and we do acceptance tests for
them. Tables of acceptance tests are provided in Section 7.3 showing the relation between
the test input data and the generated output.

Our functional testing involves identifying and testing all the functions of the system as
defined within the requirements. This form of testing is an example of black-box testing since
it involves no knowledge of the implementation of the system.

We test if the users are authenticated properly when they provide appropriate creden-
tials to the system. We also test the system if it controls the authorizations of users properly
when they initiate remote method calls to the server.

Our test cases serve to assure that the policy of separating the duties in the clinic is
properly implemented in the application. Namely, we test to ensure that only users that were
assigned privileges belonging to the administration staff can work with patients’ personal
data and, only users assigned privileges of the medical staff can work with patients’ medical
records.

In Section 7.3.3 we do test cases to see if the application implements the use cases with
the requirements that we have defined them.

In this prototype application we use a data structure to store data in the memory. The
details of the design choices for this data structure are explained in Section 0.

In the previous chapters when discussing the architecture of the application, we have
stated that the proxy object created for the (authenticated) user calls methods for him in the
ServerImpl class (listed in Appendix B pg. 121). In Section 7.2 we explain both the class that
implements the use cases and the class of the proxy object. This section includes their class
diagrams.

In the end of the chapter we analyse of the results that we got from testing.

102

7.1. Data structure

The data structure used in this application is comprised of three Java collections for storing
data of the application. They hold the list of users that are allowed to access the system and
the data related to the registered patients of the clinic. The patient data is held in two sepa-
rate collections, each recording the personal data of the patient and the medical records.

The following data collections are used in the application:

 a HashTable is used in the LoginModule class to hold the username and pass-
word of the users that are allowed access to the application in the clinic. The
login credentials provided by the user are searched for in this table. If they are
found then that caller is a registered user and he is allowed to access the appli-
cation.

 the list of patients is stored in a HashTable. It maps the unique CPR number’s
(of type String) with the patient objects from the Patient class. This collection
is presented in Figure 7.1.

 the list of the medical records for patients is stored in a HashMap. Since the CPR
number is used to uniquely identity the patient, we map this ID to an
ArrayList. This ArrayList holds all the medical records for that patient and
every time we insert a new medical record for the patient we just append it to
this list. This collection is presented in Figure 7.2.

The patient class has fields for storing first name, last name, address and the date of birth
of the patient.

Figure 7.1. The HashTable for holding the list of patients.

The objects of this ArrayList holding medical records for patients are from the class of
MedRecords presented in Appendix B pg. 133.

The fields of the MedRecords class hold the date when the tests were conducted, a field
for additional comments, the total cost of the tests that were performed during that visit to
the clinic and a list of tests done during the visit.

The list of tests for each medical record is again, stored in a new ArrayList. This
ArrayList contains objects from the Test class. The test class is listed in Appendix B page
135 and holds the name of the test that was done and the result of that test.

103

Figure 7.2. The HashMap for medical records of patients maps CPR to array list holding all the
medical records of that patient.

The symbol used to express the relationships between entities in the two previous
figures represents a one to one relationship. s

Note that this data structure satisfies only the very basic data storage needs which are
not complete for an actual real-world medical clinic. The simplification was done because the
data layer for the application is not implemented in our application. Thus we chose a limited
data structure with basic needs for the application.

However, in case the application is extended with an actual database, this data structure
can serve as a good layout model for designing a more extensive relational data base.

In the next section we proceed by explaining some of the other design elements concern-
ing our application. They are related to the implementation of use cases and the internal
structure of class files in the application.

7.2. Design of the application

In this section we explain how the use cases are implemented. We explain the methods that
implement their functionality and show the class diagram of the class where these methods
are implemented. We list the internal structure of the class files of the application grouped in
packages and JAR archives.

7.2.1. The implementation of use cases

Here we explain classes of the program in the server side of the application, where the re-
quired functionality for the use cases is implemented. The class diagram of the ServerImpl
class that implements these methods is listed below in Figure 7.3.

In the previous chapters we have stated that the functionality of each use case from Sec-
tion 5.1 is implemented in one atomic method. In Table 7.1 we list the names of the methods
and the corresponding use cases that they complete. But first we show the class diagram of
the class where these methods are implemented.

104

Figure 7.3. The class diagram of ServerImpl.

Method name Use case

insertP add new patients
findP find a patient
editP edit personal data of the patient

addMedicalRecords add new medical data to a patient
listRecords list all medical history records of a patient

Table 7.1. The method names that complete the use case functionalities.

105

The insertP method, first checks if the received CPR ID for the new patient to be in-
serted exists, and if it doesn’t it inserts it. If the patient is inserted true is returned, and if not,
false is returned to the caller.

The findP method returns the string representation of the patient object to the caller.
The editP method edits only the fields of the patient object for which the received para-

meters are an empty string. The caller of this method gives only values to the fields that he
wishes to update. The parameters that he leaves as empty strings are neglected in the up-
date.

The addMedicalRecords method first checks if that patient exists, if he exists then it
checks if he has any previous records listed. If not it creates an ArrayList and places the
(newly created first) medical record in this list. If there are records listed, it just appends to
them by inserting the object in the (existing) ArrayList.

The listRecords returns the string representation of the medical records from the pa-
tient identified by the CPR id that it received as a parameter.

The Proxy class

The class creating proxies for users that are authenticated successfully is named
ServerProxy and listed on page 118. This class implements the same interface as
ServerImpl class. Remember that the role of the proxy is to check if the caller has the per-
missions for the method call he is making. This verification is done in the checkPermission
method.

Figure 7.4. The ServerProxy class.

106

7.2.2. How is access control enforced in the server

We have discussed earlier that JAAS performs authorization control of users based on
principles which in our application are defined in the MyPrincipal class. They are basically
objects that get inserted in the Subject class which is created after the user is authenticated
and signify all the permissions that the user has.

The principal objects are added to the subject class at the start-up of the application ac-
cording to the policy file defined earlier and loaded then.

The principle authorization is enforced through the use of
javax.security.auth.Subject.doAs method, which allows a piece of code to be executed
with the privileges of a specific principal. The Subject.doAs method is called in the proxy
class which requires the code to be executed as an object. For this purpose the
MethodcallValidate class serves, where the java.security.AccessController calls it’s
checkPermission method to see if the Subject class (representing the user making that is
making the call) has the required permission object. If the Subject has the required permis-
sion object, the code is executed and if not, a security exception is raised and the actual privi-
leged code is never reached.

After a security manager is installed in the application, all the method calls are for-
warded to the java.security.AccessController class who makes the final decision. This
class decides, based on the principals that the user making the call has, if the code is allowed
to execute or not.

7.3. Acceptance tests

In this section we present tests done on the system. We have chosen to test our application
with acceptance tests. These tests ensure that the used cases of the system are implemented
as required in the functional specification of the system. Using this method of testing, the ap-
plication is tested from the user’s point of view. We run a suite of tests providing the user-
input and we verify if the outcome is as expected.

We use acceptance testing with column fixture. This form of acceptance testing
represents input data entered in the system and the output data generated during testing in
the form of rows of tables (58). Each test case is presented in a separate table. It is best used
for testing functional behavior, i.e. the relation between inputs and outputs.

It is possible to use frameworks for integrated testings, such as Fitnesse23 that does tests
automatically by using software tools available online. In this case the coding of fixtures is
necessary to connect the tables with the tool that executes the tests on the program being
tested and reports back the results. Fixtures are the coding done by the programmer to ex-
press the HTML tables in the format that the online tool can process.

However, we did not use this framework. Instead we choose to do the tests manually, by
entering the test data in the application and using print statements to read the generated

23 www.fitnesse.org

107

outcome. After placing the outcome in the corresponding columns we examined it if it was
correct.

The first test that we have done was to test if the authentication and authorization is
functioning properly.

7.3.1. Authentication

After registering the credentials of two users in the LoginModule class where the authentica-
tion takes place we test if the clients providing correct credentials are allowed to login.

user password requestLogin
admin1 admin1pass true

med1 med1pass true

admin1 A false

med1 MED false

admin admin1pass false

Med med1pass false

 Table 7.2. Acceptance test for user authentication.

From this table we see that when users enter valid credentials to the system, they are au-
thenticated successfully (the first two cases). In the four last cases where the incorrect user-
name or password is given, the authentication of the subject fails.

7.3.2. Authorization control for method execution

In this test case we test if the application correctly implements the of separation of duties be-
tween the administration staff and the medical staff in the clinic. The company policy states
that only the administration staff of the clinic can work with the personal data of the patients,
while the medical staff can operate with the data related to the medical history.

As a result of this policy the administration staff is only allowed to call methods insert,
findP and editP, while the medical staff is allowed to call methods of addMedicalRecords
and listRecords.

In our system, we register two users (one admin and one medical user) in the system
and assign them corresponding permissions in the policy file. Namely, the user admin1 is as-
signed permission to execute methods insert, findP and editP while the med1 user is as-
signed permission to execute methods addMedicalRecords and listRecords.

To verify that the application allows only method calls from authorized users we do the
following test. First we login with the admin user and call all the methods and then we do the
same with the med user.

108

user performTask throws Security Exception
admin1 insert no

admin1 findP no

admin1 editP no

admin1 addMedicalRecords yes

admin1 listRecords yes

med1 insert yes

med1 findP yes

med1 editP yes

med1 addMedicalRecords no

med1 listRecords no

Table 7.3. Test results for the authorization control during method calls.

We see that in accordance with the policy, exceptions are thrown only when users call
methods that they do not have permission to call.

Note that since this is a prototype application the implementation of the client software
statically calls only one method and exists. So, to do this test we manually changed the refer-
ence to the (remote) method call for each test.

After testing the authentication and authorization control in the application, we proceed
by testing if the application meets the functional requirements defined.

7.3.3. Implementation of use cases

Next, we test if the use cases defined are correctly implemented in the application. Note that
during these test the user went through the same authentication and authorization proce-
dure as in the previous tests, but is not shown here for simplicity. Instead, here we focus only
on how methods function.
We start with testing the insertion of new patients when the insert method is called by the
user.

Insert a new patient

In this test case we check the implementation of the insert24 method. We test if we can
insert more patients with the same CPR ID.

CPR ID first name lastname adress DOB insert
0101903989 John Doe Street 1, Copenhagen 01-01-90 true

0101903989 John Doe Street 1, Copenhagen 01-01-90 false

24 This method first checks if the patient exists and only if he doesn’t it inserts it. Patients are uniquely

identified by their CPR ID

109

0101903989 John Hanssen Street 1, Copenhagen 01-01-90 false

Table 7.4. Acceptance tests for inserting new patients.

From the test results we see that when we try to insert patients with the same CPR ID,
those attempts fail.

Find patient

In this test case we test if the application, when provided a CPR number of the patient,
can find the personal records of that patient25.

CPR ID findP
0101903989 John Doe

Street 1, Copenhagen
01-01-90

0503979895
0101903988

Table 7.5. Acceptance tests for finding an existing patient.

Only when we provide a CPR ID of an existing patient, the method returns the string re-
presentation of the patient. Otherwise it returns an empty string.

Edit patient

In this test case we test the application to edit any of the personal data of the patient
such as update his first name, last name or address. This method takes three parameters, and
depending on which parameter is given a value (not equal to an empty string), that field of

CPR ID first name lastname adress editP
0093930900 Leila Knudsen false

0101903989 Stenssen true

0101903989 Johan true

0101903989 Elektrovej 10, Lyngby true

Table 7.6. Acceptance tests for editing data of an existing patient.

the object should be replaced. The parameters whose value is an empty string are just
skipped during the update.

25 An existing patient refers to the patient that has previously been inserted in our data structure.

110

In the first case when we try to edit a patient that doesn’t exist, false is returned, but in
the last three tests when attempting to update a field of a patient that exists, they all return
true.

We use the findP method to see if the patient object has been updated correctly.

CPR ID findP
0101903989 Johan Stenssen

Elektrovej 10, Lyngby
01-01-90

Table 7.7. The result after the update.

We see that the fields of the object have correctly changed with the values that were
provided during the previous update of the patients personal data.

Adding a medical record to the patient’s medical history

In this test case we test the application when the patient visits the clinic and a medical
record needs to be added to his history to record this visit. The medical record that is added
during each visit contains the date when the patient visited the clinic, a list of tests that were
done during that visit - with each test containing the name and the result of the test, any ad-
ditional comment for that visit and, the total cost of that treatment in the clinic.

CPR ID date tests comment totalCost addMedicalRecords
0101903000 01-06-10 T1name: testA,

result: 23.34
visit scheduled
for next Friday

2500.99 false

0101903989 01-06-10 T1name: testA,
result: 23.34,
T2name:testB,
result: 99.67

visit scheduled
for next Friday

900.00 true

0101903989 02-06-10 T3name: testC,
result: 77.0

patient is re-
leased on home
care

1100.00 true

Table 7.8. Acceptance tests for adding medical records to the patients.

Our second test, tests the application for an insertion of a record for a client that is com-
ing to the clinic for his first time visit (and does not have a previous history in the system). In
the following we test the application when the patient comes back and has already a medical
history created in the system from his previous visits.

When the client software initiates this activity, the tests are sent as (Serializable) objects
placed on an array list. In the table above we denote them in short as T1, T2 and T3. They are
created on the client side, placed on the array list and sent over the network as a parameter
to the receiving method on the server.

111

We see that we get true when we try inserting records for patients that exist and false
when we attempt to enter records for patients that don’t exist. The first successful insertion
is during the first visit, and the second one is on the returning visit to the clinic of the same
patient.

List the records of a patient

In this test case we test the listing of the medical history for the patients. First, we at-
tempt to list the medical history of a patient that doesn’t exist in our system and then we list
the history of an existing patient.

CPR ID listRecords medicalRecords.toString()
0101903000
0101903989 medicalRecords 01-06-10 testA 23.34 testB 99.67 visit scheduled for

next Friday 900.00
02-06-10 testC 77.0 1100.00 patient is released on
home care 1100.00

Table 7.9. Acceptance test for listing of the patient records.

We see that after listing records of the patient that was added in the previous testing
suite, both of the objects from two visits to the clinic were inserted. The first object having
two tests, and the second object having one test. To see their content we show their string
representation on the objects that were received in the arraylist.

As expected, when trying to list the history of a patient that is not registered in the sys-
tem, we get the null value returned.

7.4. Analysis of the test results

Based on the test cases we have done, we conclude that the application correctly implements
the use cases as defined in Section 5.2 (for the given test data). The application enforces
access control permitting access only to the registered users.
It also restricts which methods the (authenticated) users can call, based on the execution
privileges they are assigned by the administration.

Discussion on the complexity of the prototype implementation

During the development of this prototype application we developed only one class for
the client side of the software. Furthermore, this class is very simple because all the actions
and methods that the user initiates are coded statically. For example, if we want the user to
authenticate with different credentials, or execute a different use case we have to manually

112

alter the code to do this. This class connects to the server, sends the credentials of the user,
executes one use case for him and then exits.

We are aware that perhaps this is an oversimplification. However, our intention during
the development of this prototype was to include only those programming constructs that
directly implement the anticipated security features. We tried to avoid, as much as possible,
implementing other commonly found constructs that do not deliberately contribute in the
establishment of the given security properties.

This simplification was applied because we wanted to avoid adding code complexity that
does not deliberately contribute to the establishing of the security properties that we model
in the state automaton. With a more simple code, the automaton that models the program
behavior is also less complex. And if the model is less complex, it is easier to see the draw-
backs and advantages of the applied method for property specification, which was our goal in
the first place.

113

Chapter VIII

8. Conclusion

During this work we did a comprehensive threat analysis from the system designers point-
of-view on the case study. During the threat analysis we derive all the identified security
properties necessary to secure the system. We built a prototype application implementing
Authentication and Authorization properties. By abstracting the program behavior that im-
plements these properties we were able to model the relevant behavior in a finite state au-
tomaton. States and state transitions of the automaton are expressed with JML annotations.
We use a run-time assertion checking tool to verify the program for violations against the be-
havior captured in the JML annotations.

The design purpose of JML is to record the intentions of the programmer with annota-
tions that can be used to verify the programe with the help of tools. The intentions are ex-
pressed in classical Hoare logic “contracts“. Contracts contain pre- and post- conditions ex-
pressing properties that the methods should satisfy when they’re invoked and afterward re-
turning. Constraints are added to keep track of states of objects.

Based on our experience, we have observed that the feasibility of using JML to capture
high-level security properties in Object Oriented Java applications turned out worse than ex-
pected. This is due to the design limitations of JML. Namely, JML was designed to primarily be
used in sequential programming and provide annotations for each class separately. There is
no support to read, use, or interact in any way, with the specifications that are defined in
another class.

This became an obstacle for us, when we wanted to specify with JML annotations the ab-
straction of the programe implemented in multiple classes.

In our opinion, using JML for verification purposes increases dependability during soft-
ware production. It contributes to a better understanding of the program behavior and a pre-
cise definition of its requirements.

114

8.1. Discussion

In the method that we have used to specify high-level security properties the assumption of
the predecessor state from another class remains the greatest challenge.

When two consecutive state transitions occur in different classes, it is not possible to ex-
press the occurrence of the predecessor state as a precondition for the current state – which
would allow us to model the continuity of the program flow in one state automaton.

In our work we managed to model the continuity of state transitions in one automaton
by assuming the value of the predecessor state. During these transitions we instruct the run
time annotation checker to assume the value of the state that the program was previously in.

We observe that this approach introduces scaling issues. If the model of the program that
is being specified with this method has a relatively large amount of states, keeping track of
the inter-class states and providing assumptions them can become overwhelming.

During the modeling of the behavior of our prototype we abstract away from the actual
implementation details that establish the (high-level) security properties. However, care
must be taken during this abstraction, in order not to miss, modeling the important details of
the implementation which ensure the properties in the program level.

8.2. Future Work

We have stated previously that this prototype has only one class to substitute for the client
software. This class simulates the client that is using the software by statically invoking (re-
mote) methods. We plan on restructuring the client class by including additional methods
which can be invoked from the user interface.

We plan on continuing the specification of the remaining classes of the prototype appli-
cation so we could verify the correctness of all the classes in the prototype.

During the threat analysis of the case study scenario, besides authentication and autho-
rization we have identified other security properties necessary to secure this application.
From these properties, we intend to implement confidentiality and integrity in the prototype
and try the approach we have used here to specify these properties. We intend to implement
a protocol for these properties and try to specify this protocol with our approach.

Explore the possibility of doing refinements to the states of the model with the aim of in-
creasing precision during abstraction by adding more states and implementation details in
the model.

Finally, we plan to investigate the feasibility of using Petri nets (59) to represent the ab-
straction of our programe. Petri nets are a mathematical modeling language. They are good
for visualizing processes. They show states, actions and conditions for actions to be executed.
These constructs seem quite close to the ones available in the Java Modeling Language. They
can also show interactions between processes.

115

116

117

Appendix A

D. Running the prototype

The code of the prototype application was developed on the Microsoft Windows platform us-
ing the Eclipse IDE26. It was compiled with Java version 1.4.2_09.

To run this prototype application, please create a new project in the Eclipse IDE. Add
new packages in the project with same directory tree as the one we have provided. Include
all the java files in the corresponding packages.

Put all the JAR, policy and configuration files, in the root directory of the newly created
project.

Before you run the application, ensure that your current configuration of the Virtual Ma-
chine allows you to install a security manager.

Instruct your Virtual Machine to use the following arguments:

-Djava.security.manager

-Djava.security.auth.login.config=LoginModule.config

-Djava.security.policy=codePermissions.policy

-Djava.security.auth.policy=Authorization.policy

These arguments instruct the VM to install a security manager and to read the provided

policies.

The JAR archives

Since this application installs a security manager, the class files are put into JAR archives27 in
order for the security manager to be able to control the system resources used by the arc-
hives. The JAR archives have to be imported in the root directory of the project.

26 Integrated Development Environment
27 Note that security policies can only be defined for JAR archives, and not for .class files.

118

Since we use the JDK version 1.4, we had to generate manually the stubs and the skeleton
classes of the remote objects28 in the server by using the rmic tool. These files are placed in
the server.jar file.

Using the assertion checker to verifying the JML annotations

We used an Eclipse plugin named JML2 to check assertions at runtime. This plugin is devel-
oped and maintained at Swiss Federal Institute of Technology in Zurich, Switzerland.

It is freely available for download for from:

http://pm.inf.ethz.ch/research/univer-ses/tools/eclipse/

Note that we could not install this plugin on the latest version of Eclipse. We had to use

the version 3.4.1 of the Eclipse IDE to use this plugin. The latest version of Eclipse was not
able to detect the plugin from this link.

28 The stub and the skeleton files unable the remote objects programmed with the RMI technology to

communicate remotely.

http://pm.inf.ethz.ch/research/universes/tools/eclipse/

119

Appendix B

E. Source code listings

Client.java

package src.client;

import java.rmi.Naming;

import java.util.Date;

import src.common.*;

public class Client {

/* The Server and the port used is localhost, port:6000 */

 private static final String server = "127.0.0.1:6000";

 // Change this string if you wish to use a different port

 private String /* spec_public */ user, pass;

 // Username and pasword of the identity to be authenticated

 private static final String serverObject = "rmi://" + server + "/"

 + "RemoteLoginServer";

 // Full adress and name of the remote object.

 private /* spec_public */ LoginInterface loginServer;

 // Interface to the login object that authenticates users

 private /* spec_public */ ServerInterface theServer;

 /**

 * The ghost variable used to mark the state that

 * the program is currently in

 */

 //@ private static ghost String state=null;

120

 /*@ invariant

 @ (state==INITIAL || state==CONNECTED ||

 @ state==AUTHENTICATED || state==REQUEST_METHOD ||

 @ state == CREATE_NEW_LOGIN_CONTEXT || state==TERMINATE);

 @*/

 /*@ constraint

 @ (state==INITIAL ==> \old(state==null) &&

 @ (state==FOUND ==> \old(state)==INITIAL) &&

 @ (state==AUTHENTICATED ==> \old(state)==FOUND) &&

 @ (state==REQUEST_METHOD ==> \old(state)==AUTHENTICATED) &&

 @ (state==TERMINATE ==> \old(state)==INITIAL

 @ || \old(state)==FOUND

 @ || \old(state)==AUTHENTICATED

 @ || \old(state)==CREATE_NEW_LOGIN_CONTEXT

 @ || \old(state)==REQUEST_METHOD));

 @*/

 // CONSTRUCTOR

 /*@ requires state==null;

 @

 @ ensures state==INITIAL &&

 @ loginServer==null && theServer==null &&

 @ \only_called(start);

 @*/

 public Client() {

 //@ set state = INITIAL;

 loginServer = null;

 theServer = null;

 start();

 }

 /**

 * Looks up the reference to the remote object; if found attempts to

 * athenticate the user and then calls methods for him. If any of the

 * methods called by this method returns false it exits the programe.

 */

 /*@ requires state==INITIAL;

 @

 @ ensures (lookupRemoteObj() && requestLogin() ==>

 @ \only_called(performTask)) &&

 @

 @ (!lookupRemoteObj() || !requestLogin())

 @ ==> \only_called(exit))

 @

 @*/

 private void start() {

 //@ set state = INITIAL;

 if (lookupRemoteObj()) {

 if (requestLogin()) {

 performTask();

 }

 } else {

 exit();

121

 }

 }

 /**

 * Looks up the reference to the remote object on the server

 */

 /*@ requires state == INITIAL && serverObject != null

 @ && loginServer == null;

 @

 @ assignable loginServer;

 @

 @ ensures \only_called(lookup) &&

 @ ((loginServer==null ==> result==false) &&

 @

 @ (loginServer!=null ==> result==true) &&

 @ \fresh(loginServer));

 @*/

 private boolean lookupRemoteObj() {

 try {

 loginServer = (LoginInterface) Naming.lookup(serverObject);

 //@ set state = FOUND;

 } catch (Exception e) {

 return false;

 }

 return true;

 }

 /**

 * Attempt to login the user.

 */

 /*@ requires state == FOUND && loginServer != null;

 @

 @ assignable user, pass, theServer;

 @

 @ ensures \only_called(forwardCrds) &&

 @ ((theServer==null ==> result==false) &&

 @

 @ (theServer!=null ==> result==true) &&

 @ \fresh(theServer));

 @*/

 private boolean requestLogin() {

 user="admin1"; pass="admin1"; // USERNAME AND PASSWORD

 // YOU WANT TO AUTHENTICATE WITH

 // update these fields with credentials of the identity

 // you want to authenticate

 try {

 theServer=(ServerInterface) loginServer.forwardCrds(user,pass);

 //@ set state = AUTHENTICATED;

 } catch (Exception e) {

 //@ assume state == CREATE_NEW_LOGIN_CONTEXT;

 return false;

 }

 return true;

 }

122

 /**

 * Call a remote method for the (authenticated) user

 */

 /*@ requires state==AUTHENTICATED && theServer!=null;

 @

 @ ensures \only_called(insert, exit);

 @*/

 private void performTask() {

 try {

 //@ set state = REQUEST_METHOD;

 theServer.insert("cpr", "Stephen", "Nielsen",

 "Elektrovej 330, Lyngby 2800", new Date(901205));

 } catch (Exception e) {

 //@ assume state==VERIFY_AUTHORIZATION;

 // User is not authorised for this method.

 exit(); // Exit the program

 }

 exit(); // Method completed successfully. Exit program.

 }

 /*@ reqiures true;

 @ ensures state==TERMINATE;

 @*/

 private /* spec_public */ void exit() {

 //@ set state = TERMINATE;

 System.exit(0);

 }

}

123

LoginImpl.java

package src.server;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

import src.common.LoginInterface;

import src.common.ServerInterface;

public class LoginImpl extends UnicastRemoteObject implements LoginInterface {

 // The referece to the object in the server where functionality

 // of the methods is implemented.

 private /* spec_public */ ServerInterface myServer;

 //@ private static ghost String state;

 private /* spec_public */ LoginContext lc;

 /*@ invariant

 @ state==CREATE_LOGIN_CONTEXT ||

 @ state==NEW_SUBJECT || state==NEW_PROXY;

 @*/

 /*@ constraint

 @ (state==NEW_SUBJECT ==> \old(state)==CREATE_LOGIN_CONTEXT) &&

 @ (state==NEW_PROXY ==> \old(state)==NEW_SUBJECT) &&

 @ (state==CREATE_LOGIN_CONTEXT ==> \old(lc)!=lc);

 @*/

 // Constructor

 protected LoginImpl(ServerInterface theServer) throws RemoteException {

 myServer = theServer;

 }

 /**

 * Allows the client to login by creating a proxy for him and

 * returning him the reference so that he can call methods on it

 */

 /*@ normal_behavior

 @ requires username != null && password != null;

 @ assignable lc, user;

 @ ensures \fresh(lc, subject);

 @ also

 @ exceptional_behavior

 @ requires lc==null;

 @ signals (LoginException le)

 @ le.getMessage()!=null && \fresh(le);

 @ also

124

 @ exceptional_behavior

 @ requires lc!=null || lc==null;

 @ signals RemoteException;

 @

 @*/

 public ServerInterface forwardCrds(String username, String password)

 throws RemoteException, LoginException {

 //@ assert state==FOUND;

 lc = new LoginContext("JAASLogin",

 new RemoteCallbackHandler(username, password));

 //@ set state==CREATE_LOGIN_CONTEXT;

 lc.login();

 Subject subject = lc.getSubject();

 //@ set state==NEW_SUBJECT;

 // Return the reference of a proxy to the calling client.

 return createNewProxy(subject);

 }

 /*@ normal_behavior

 @ requires subject!=null && myServer!=null;

 @ ensures \result==(ServerProxy(subject, myServer));

 @ also

 @ exceptional_behavior

 @ requires lc!=null;

 @ signals RemoteException;

 @*/

 private ServerProxy createNewProxy(Subject subject)

 throws RemoteException {

 //@ set state==NEW_PROXY;

 return new ServerProxy(subject, myServer);

 }

}

 /**

 * The inteface between the user input and the security mechanisms.

 * It decouples the service provider from the specific input device

 * being used to enter credentials.

 */

class RemoteCallbackHandler implements CallbackHandler {

 private String username;

 private String password;

 RemoteCallbackHandler(String username, String password){

 this.username = username;

 this.password = password;

 }

 public void handle(Callback[] cb) {

 for (int i = 0; i < cb.length; i++){

125

 if (cb[i] instanceof NameCallback){

 NameCallback nc = (NameCallback)cb[i];

 nc.setName(username);

 } else if (cb[i] instanceof PasswordCallback){

 PasswordCallback pc = (PasswordCallback)cb[i];

 pc.setPassword(password.toCharArray());

 password = null;

 }

 }

 }

}

126

ServerProxy.java

package src.server;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import javax.security.auth.Subject;

import java.util.ArrayList;

import java.util.Date;

import src.permissionvalidation.*;

import src.common.ServerInterface;

/**

 * Proxy implements the same interface as the server.

 *

 * Protects the server from direct calls by clients. All calls by

 * clients have to pass security checks in the proxy.

 * Hides the implementation of the actual methods on the server.

 *

 * All the methods check is the caller has permissions, and only then

 * call methods for him. If the user doesnt have permission they throw

 * a SecurityException.

 */

public class ServerProxy extends UnicastRemoteObject implements ServerInterface {

 // A reference to the REAL server

 private /* spec_public */ ServerInterface theServer;

 // The particular user that is associated to this proxy

 private /* spec_public */ Subject theUser;

 //@ public ghost String state;

 // Constructor

 /*@ requires true;

 @ ensures subject!=null && theServer!=null;

 @ signals_only RemoteException;

 @*/

 protected ServerProxy(Subject subject, ServerInterface theServer)

 throws RemoteException {

 this.theServer = theServer;

 this.theUser = subject;

 }

 /*@ invariant (subject!=null && theServer!=null) &&

 @ (state==VERIFY_AUTHORIZATION || state==CALL_METHOD);

 @*/

 /*@ constraint

 @ (state==VERIFY_AUTHORIZATION ==>

 @ assert \old(state)==REQUEST_METHOD) &&

 @ (state==CALL_METHOD ==> \old(state)==VERIFY_AUTHORIZATION);

 @*/

 /*@ normal_behavior

127

 @ requires cpr!=null && fName!=null && lName!=null &&

 @ adress!=null && DOB!=null;

 @ ensures \only_called(checkPermission,insert);

 @

 @ also

 @ exceptional_behavior

 @ signals_only RemoteException, SecurityException;

 @*/

 public boolean insert(String cpr, String fName,

 String lName, String adress, Date DOB)

 throws RemoteException, SecurityException {

 //@ set state==VERIFY_AUTHORIZATION;

 checkPermission("insert");

 //@ set state==CALL_METHOD;

 return theServer.insert(cpr, fName, lName, adress, DOB);

 }

 /*@ normal_behavior

 @ requires cpr!=null;

 @ ensures \only_called(checkPermission, findP) &&

 @ \result=!null && \fresh(\result);

 @ also

 @ exceptional_behavior

 @ signals_only RemoteException, SecurityException;

 @*/

 public String findP(String cpr)

 throws RemoteException, SecurityException{

 //@ set state==VERIFY_AUTHORIZATION;

 checkPermission("findP");

 //@ set state==CALL_METHOD;

 return theServer.findP(cpr);

 }

 /*@ normal_behavior

 @ requires cpr!=null;

 @ ensures \only_called(checkPermission, editP) &&

 @ \fresh(\result);

 @ also

 @ exceptional_behavior

 @ signals_only RemoteException, SecurityException;

 @*/

 public boolean editP(String cpr, String fName, String lName,

 String adress) throws RemoteException,SecurityException {

 //@ set state==VERIFY_AUTHORIZATION;

 checkPermission("editP");

 //@ set state==CALL_METHOD;

 return theServer.editP(cpr, fName, lName, adress);

 }

 /*@ normal_behavior

 @ requires cpr!=null && date!=null && test!=null &&

 @ comment!=null && totalCost!=null;

 @ ensures \only_called(checkPermission,

 @ addMedicalRecords)&& \fresh(\result);

 @ also

 @ exceptional_behavior

128

 @ signals_only RemoteException, SecurityException;

 @*/

 public boolean addMedicalRecords(String cpr, Date date,

 ArrayList test, String comment, Double totalCost)

 throws RemoteException, SecurityException {

 //@ set state==VERIFY_AUTHORIZATION;

 checkPermission("addMedicalRecords");

 //@ set state==CALL_METHOD;

 return theServer.addMedicalRecords(cpr, date, test, comment, totalCost);

 }

 /*@ normal_behavior

 @ requires cpr!=null;

 @ ensures \only_called(checkPermission, listRecords) &&

 @ \fresh(\result);

 @ also

 @ exceptional_behavior

 @ signals_only RemoteException, SecurityException;

 @*/

 public ArrayList listRecords(String cpr)

 throws RemoteException, SecurityException {

 //@ set state=VERIFY_AUTHORIZATION;

 checkPermission("listRecords");

 //@ set state=CALL_METHOD;

 return theServer.listRecords(cpr);

 }

 /**

 * Check if the current client can call a certain method.

 * The check is made through JAAS and its policy file.

 *

 * @param methodName The name of the method to verify if

 * the user has permission to run.

 */

 /*@ normal_behavior

 @ requires methodName!=null && theUser!=null;

 @ assignable \nothing;

 @ ensures \only_called(doAs);

 @ also

 @ exceptional_behavior

 @ signals_only SecurityException;

 @*/

 private void checkPermission(String methodName) throws SecurityException {

 Subject.doAs(theUser, new MethodcallValidate(methodName));

 }

}

129

ServerImpl.java

package src.server;

import java.io.*;

import java.rmi.RemoteException;

import java.util.*;

import src.common.ServerInterface;

 /*

 * The class where the use cases are actually implemented.

 */

public class ServerImpl implements ServerInterface {

 private Patient P;

 // The patient class

 private MedRecord M;

 // The Class containing a single medical record entry for a patient

 private ArrayList medicalRecords;

 // The list containing all medical records of a single Patient

 private Hashtable patientList;

 // Maps CPR-ids to the patient object

 private HashMap patientRecords;

 // Maps Patient CPR-ids to the ArrayList containing his records

 // CONSTRUCTOR

 public ServerImpl() {

 patientList = new Hashtable();

 patientRecords = new HashMap();

 }

 /**

 * Check if this patient ID exists, if it doesnt; insert a new patient

 * in the patient list

 */

 public boolean insert(String cpr, String fName,

 String lName, String adress, Date DOB)

 throws RemoteException, SecurityException {

 if (patientList.containsKey(cpr)==false) {

 // Patient does not exist. Insert it

 patientList.put(cpr, new Patient(fName, lName, adress, DOB));

 return true;

 } else {

 return false;

 // This Patient already exists. Do nothing.

 }

 }

 /**

130

 * Looks for the patient registered with this cpr ID.

 * If found it returns the patient data.

 * If NOT found it returns null.

 */

 public String findP(String cpr) throws RemoteException, SecurityException {

 if (patientList.containsKey(cpr)) {

 P = (Patient) patientList.get(cpr);

 return P.toString();

 } else

 return null;

 }

 /**

 * Edits patients name, lastname or adress. Edits them only if the value

 * of their parameter is NOT an empty string. If it is an empty string

 * is given, then that field is not updated.

 */

 public boolean editP(String cpr, String fName, String lName, String adress)

 throws RemoteException, SecurityException {

 // Check which of the fields has been provided by the caller

 // to be update that field

 if (patientList.containsKey(cpr)){

 P = (Patient) patientList.get(cpr);

 if (fName!="")

 P.setfName(fName);

 if(lName!="")

 P.setlName(lName);

 if(adress!="")

 P.setAdress(adress);

 // Place the newly updated object into the hashtable

 patientList.put(cpr, P);

 return true;

 }

 // no user exists with this cpr ID.

 return false;

 }

 /**

 * Check if patient exists. If not, no data is added.

 * If yes, check if he as previous records and append the newest record

 * to his list, if no he as previous records then create a record

 * list for him and append the newest record to his list.

 *

 */

 public boolean addMedicalRecords(String cpr, Date date, ArrayList test,

 String comment, Double totalCost)

 throws RemoteException, SecurityException

{

 if (patientList.containsKey(cpr)) {

 // This Patient exists in the list of patients

 // Check if he has a privious history

 if(patientRecords.containsKey(cpr)) {

131

 // Patient has already a history of records

 medicalRecords = (ArrayList) patientRecords.get(cpr);

 // Get his list of medical records

 M = new MedRecord(date, test, comment, totalCost);

 // Create a new Record with the data recieved

 // through parameters to add it to his previous records.

 medicalRecords.add(M);

 //Insert the newly created record in his list

 return true;

 } else {

 // This is the first record being entered for this patient

 medicalRecords = new ArrayList();

 // Create an (empty) history for him

 M = new MedRecord(date, test, comment, totalCost);

 // Create a new Record with the data recieved

 // through parameters

 medicalRecords.add(M);

 //Insert the newly created record in his list

 return true;

 }

 }

 return false;

 // This patient is not registered in our patients list thus,

 // no records can be added for him.

 }

 /**

 * List records of the patient with the given CPR ID number.

 * Return NULL if patient does not exist

 */

 public ArrayList listRecords(String cpr) throws RemoteException,SecurityException{

 // Check if this patient ID exists

 if (patientList.containsKey(cpr)) {

 // This Patient exists

 medicalRecords = (ArrayList) patientRecords.get(cpr);

 // Get the history of Patient

 return medicalRecords;

 // Return the ArrayList with history objects

 }

 return null;

 // Patient does not exist

 }

}

132

ServerInterface.java

package src.common;

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.util.*;

/**

 * Server interface. Containes the privileged

 * methods that require permissions to be executed.

 *

 * @throws SecurityException when the client

 * doesn't have proper permissions to invoke the method.

 */

public interface ServerInterface extends Remote {

 public boolean insert(String cpr, String fName,

 String lName, String adress, Date DOB)

 throws RemoteException, SecurityException;

 public String findP(String cpr)

 throws RemoteException, SecurityException;

 public boolean editP(String cpr, String fName,

 String lName, String adress)

 throws RemoteException, SecurityException;

 public boolean addMedicalRecords(String cpr, Date date,

 ArrayList test, String comment, Double totalCost)

 throws RemoteException, SecurityException;

 public ArrayList listRecords(String cpr)

 throws RemoteException, SecurityException;

}

133

LoginModule.java

package src.server;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.LoginException;

import java.util.*;

/**

 * Extends the built-in class of JAAS that makes the yes/no decission

 * related to the user authentication.

 * LoginModule authenticates users from credentials, and adds the

 * permissions that were listed for that user in the policy.

 */

public class LoginModule implements javax.security.auth.spi.LoginModule {

 private boolean debug = false;

 private Subject subject;

 private MyPrincipal entity;

 private CallbackHandler callbackHandler;

 private Map sharedState;

 private Map options;

 /* Table holds credentials of the registered users.

 * It holds their usernames and their passwords.

 */

 private Hashtable userList;

 // tracking the authentication status

 private static final int NOT = 0, OK = 1, COMMIT = 2;

 private int status;

 // current user

 private String username;

 private char[] password;

 //CONSTRUCTOR

 protected LoginModule() {

 userList = new Hashtable();

 // Username & passwords of registered users in the clinic.

 // Inserted for testing of the application.

 userList.put("admin1", "admin1");

 userList.put("admin2", "admin2");

 // users with Administration priveleges

 userList.put("med1", "med2");

 userList.put("med2", "med2");

 // users with Medical staff priveleges

 }

 /*

 * This method is called if the LoginContext's overall authentication

 * failed. Cleans up any state if any of modules succeded but the overal

134

 * authentication doesnt succed.

 */

 public boolean abort() throws LoginException {

 if(status == NOT) {

 return false;

 } else if(status == OK) {

 // login succeeded but overall authentication failed

 username = null;

 if(password != null) password = null;

 entity = null;

 } else {

 // overall authentication succeeded and commit succeeded,

 // but someone else's commit failed

 logout();

 }//end if/else

 status = NOT;

 return true;

 }

 /*

 * Called if the overall authentication succeeds. Associates a

 * MyPrincipal object with the Subject located in the LoginModule.

 */

 public boolean commit() throws LoginException {

 if(status == NOT || subject == null) {

 return false;

 } else {

 // add a Principal (authenticated identity) to the Subject

 // assume the user we authenticated is the MyPrincipal

 entity = new MyPrincipal(username);

 Set entities = subject.getPrincipals();

 if(!entities.contains(entity))

 entities.add(entity);

 // in any case, clean out state

 username = null;

 password = null;

 status = COMMIT;

 return true;

 }

 }

 /**

 * Initialize the LoginModule

 */

 public void initialize(Subject subject, CallbackHandler cbH,

 Map sharedState, Map options) {

 status = NOT;

 this.subject = subject;

 this.callbackHandler = cbH;

 this.sharedState = sharedState;

 this.options = options;

 }

135

 /**

 * Authenticate the user based on provided credentials.

 * If the credential matches the expected one,

 * authentication succeeds - otherwise it doesnt.

 */

 public boolean login() throws LoginException {

 if(callbackHandler == null)

 throw new LoginException("Error: no CallbackHandler " +

 "available to retrieve user credentials");

 Callback[] callbacks = new Callback[2];

 callbacks[0] = new NameCallback("\nuser name: ");

 callbacks[1] = new PasswordCallback("password: ", false);

 try {

 callbackHandler.handle(callbacks);

 //get the user credentials

 username = ((NameCallback)callbacks[0]).getName();

 char[] tmpPassword =

 ((PasswordCallback)callbacks[1]).getPassword();

 if (tmpPassword == null)

 // treat a NULL password as an empty password

 tmpPassword = new char[0];

 password = new char[tmpPassword.length];

 System.arraycopy(tmpPassword, 0,password, 0,

 tmpPassword.length);

 ((PasswordCallback)callbacks[1]).clearPassword();

 //wipe out occurrences in memory

 }

 catch(java.io.IOException ioe) {

 throw new LoginException(ioe.toString());

 }

 catch(UnsupportedCallbackException uce) {

 throw new LoginException("Error: " +

 uce.getCallback().toString() +

 " not available to authenticate user.");

 }

 // Lookup the given credentials in our HashMap to see if they're

 // legitimate users of the clinic

 if (lookupUser(username, password))

 // because the given username and passwords is

 // found in list, authentication succeeded!

 return true;

 else

 // authentication failed

 return false;

 }

 /**

 * Check if username and password exist in the userList HashTable.

136

 *

 * @param usr username provided by the client

 * @param pwd password provided by the client

 * @return true if username and password was correct

 * false if username and/or password incorrect

 */

 private boolean lookupUser(String usr, char[] pwd) {

 if(userList.containsKey(usr)) {

 String key = (String) userList.get(usr);

 // Retrive that username

 if((userList.get(key)).toString().toCharArray()==pwd) {

 // The password maches.

 // This is a valid user.

 key = null;//Clean up the String location in the memory

 //containing the password of the user;

 return true;

 }

 }

 return false;

 // Username does not exist

 }

 /**

 * Logout the user.

 * Removes the MyPrincipal added by the .commit() method.

 */

 public boolean logout() throws LoginException {

 subject.getPrincipals().remove(entity);

 status = NOT;

 username = null;

 if(password != null) password = null;

 entity = null;

 return true;

 }

}

137

LoginInterface.java

package src.common;

import java.rmi.Remote;

import javax.security.auth.login.LoginException;

/**

 * The interface of the login object to which (remote) users connect

 * to authenticate.

 */

public interface LoginInterface extends Remote {

 /**

 * Remote method that forwards the credentials from the

 * client software to the server for user authentication.

 */

 public ServerInterface forwardCrds(String username, String password)

 throws java.rmi.RemoteException, LoginException;

}

138

MethodcallValidate.java

package src.permissionvalidation;

import src.permissions.ServerPermission;

import java.security.AccessController;

import java.security.PrivilegedAction;

/*

 * Test if the user has the neccessary permissions to call

 * the method in the login context of his authentication.

 * For verifying the availability of the permission,

 * a ServerPermission object is required.

 */

public class MethodcallValidate implements PrivilegedAction {

 // Name of the method to be checked

 private String priveledgedMethodName;

 public MethodcallValidate (String method) {

 priveledgedMethodName = method;

 }

 public Object run() {

 // Check if the appropriate ServerPermission is owned by

 // the user. If not an exception is thrown.

 AccessController.checkPermission(new

 ServerPermission(priveledgedMethodName));

 return null;

 }

}

139

ServerPermission.java

package src.permissions;

import java.security.BasicPermission;

/*

 * Class for creating permission objects attached to the Subject class

 * when the the user is authenticated successfully.

 */

public class ServerPermission extends BasicPermission {

 public ServerPermission(String name) {

 super(name);

 }

 public ServerPermission(String name, String actions) {

 super(name, actions);

 }

}

140

MyPrincipal.java

package src.server;

import java.io.Serializable;

import java.security.Principal;

 /*

 * The implementation of the java.security.Principal interface that adds

 * an identity to the user.

 * To this user identity permission objects are added based on

 * the privileges that the administration has assigned to the user

 * through the policy file.

 *

 */

public class MyPrincipal implements Principal, Serializable {

 private String name;

 // Name of the principal

 // Constructor

 public MyPrincipal(String n) {

 name = n;

 }

 public String getName() {

 return name;

 }

 public String toString() {

 return("MyPrincipal: " + name);

 }

 public boolean equals(Object o) {

 if(o == null)

 return false;

 if(this == o)

 return true;

 if(!(o instanceof MyPrincipal))

 return false;

 MyPrincipal that = (MyPrincipal) o;

 if(this.getName().equals(that.getName()))

 return true;

 return false;

 }

 public int hashCode() {

 return name.hashCode();

 }

}

141

MedRecord.java

package src.server;

import java.io.Serializable;

import java.util.*;

 /*

 * The medical record contains an ArrayList of test (objects),

 * the test date, related coments and the cost of the tests during

 * the visit to the clinic.

 */

public class MedRecord implements Serializable {

 private Date date;

 // Date when the (medical) test was done

 private ArrayList tests;

 // Test objects

 private String comment;

 private Double totalCost;

 public Iterator it;

 // Constructor

 public MedRecord(Date d, ArrayList t, String c, Double tc) {

 date = d;

 tests = t;

 comment = c;

 totalCost = tc;

 }

 /**

 * Return a string representation of a Medical record object

 */

 public String toString() {

 String allTests = "";

 // First, get a string representation of all Test objects

 for (int index = 0; index <= tests.size(); index++) {

 Test t = (Test) tests.get(index);

 allTests = allTests + t.toString() + "\n";

 }

 // Join the other records with the tests string

 String record = date.toString() + " " + allTests +

 " " + comment + " " + totalCost.toString() + "\n";

 return record;

 }

}

142

Patient.java

package src.server;

import java.util.Date;

 /*

 * The patient class, for holding all the Patient data.

 */

public class Patient {

 String fName;

 // First name of the patient

 String lName;

 // Last name of the patient

 String adress;

 // Adress of the patient

 Date DOB;

 // Constructor of the patient class

 public Patient(String fName, String lName, String adress, Date DOB) {

 this.fName = fName;

 this.lName = lName;

 this.adress = adress;

 this.DOB = DOB;

 }

 // Getter methods to retrieve values of the fields in the patient object

 public String getfName() {

 return fName;

 }

 public String getlName() {

 return lName;

 }

 public String getAdress() {

 return adress;

 }

 // Setter methods to update values of the fields in the patient object

 public void setfName(String fn) {

 fName = fn;

 }

 public void setlName(String ln) {

 fName = ln;

 }

 public void setAdress(String ad) {

 adress = ad;

 }

 public String toString() {

 return fName + " " + lName + "\n " + adress + " " + "\n " +DOB;

 }

}

143

Test.java

package src.server;

import java.io.Serializable;

 /*

 * Medical Tests done on the patient.

 */

public class Test implements Serializable {

 private String name;

 private String result;

 public Test(String n, String t) {

 setName(n);

 setResult(t);

 }

 // Getter and setter methods for name & result fields

 public void setName(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

 public void setResult(String result) {

 this.result = result;

 }

 public String getResult() {

 return result;

 }

 public String toString() {

 return name + " " + result + " ";

 }

}

144

Server.java

package src.server;

 /**

 * The main class for the server.

 */

import java.rmi.registry.*;

import java.util.Date;

import src.common.*;

public class Server {

 public static void main(String[] args) {

 /* Ensures that the identifiers generated for the server objects

 * will be secure

 */

 System.setProperty("java.rmi.server.randomID", "true");

 try {

 ServerInterface theServer = new ServerImpl();

 LoginInterface loginObject = new LoginImpl(theServer);

 Registry loginRegistry = LocateRegistry.createRegistry(6000);

 //Creates and exports a Registry on the local host

 // that accepts requests on the specified port.

 loginRegistry.bind("RemoteLoginServer", loginObject);

 // Binds a remote reference of the specified object name

 // in the registry.

 System.out.println(new Date() + ": Server up and running");

 // Print a message to know that the server is operational

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

145

Appendix C

F. Policy and configuration files

Authorizations.policy

 // The Authorization policy file granting executions priveleges

 // to each user seperatelly, for invoking methods that complete

 // the use cases.

 // ADMINISTRATION users

grant Principal src.server.MyPrincipal "admin1"

{

 permission src.permissions.ServerPermission "insert";

 permission src.permissions.ServerPermission "find";

 permission src.permissions.ServerPermission "editP";

};

grant Principal src.server.MyPrincipal "admin2"

{

 permission src.permissions.ServerPermission "insert";

 permission src.permissions.ServerPermission "find";

 permission src.permissions.ServerPermission "editP";

};

 // MEDICAL STAFF users

grant Principal src.server.MyPrincipal "med1"

{

 permission src.permissions.ServerPermission "addMedicalRecords";

 permission src.permissions.ServerPermission "listRecords";

};

grant Principal src.server.MyPrincipal "med2"

{

 permission src.permissions.ServerPermission "addMedicalRecords";

 permission src.permissions.ServerPermission "listRecords"; };

146

LoginModule.config

 // Name of the login module to initiate.

JAASLogin {

 src.server.LoginModule required;

};

147

codePermissions.policy

 // The list of permissions assigned to to JAR archives about the

 // system resources thay can use.

grant codebase "file:server.jar"

{

 permission java.util.PropertyPermission

 "java.rmi.server.randomID", "write";

 permission java.net.SocketPermission "127.0.0.1:1024-","accept";

 permission javax.security.auth.AuthPermission

 "createLoginContext.JAASLogin";

 permission javax.security.auth.AuthPermission "modifyPrincipals";

 permission javax.security.auth.AuthPermission "addMedicalRecords";

 permission javax.security.auth.AuthPermission "editP";

 permission javax.security.auth.AuthPermission "findP";

 permission javax.security.auth.AuthPermission "insert";

 permission javax.security.auth.AuthPermission "listRecords";

 // Names of the permissions that the users can have

 // when a login context is created for them.

 permission src.permissions.ServerPermission "*";

};

grant codebase "file:actions.jar"

{

};

148

149

Bibliography

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming

system: An overview. In Construction and Analysis of Safe, Secure and Interoperable
Smart devices (CASSIS). 2004, Vol. 3362, Springer.

2. Pugh., D. Hovemeyer and W. Finding bugs is easy. s.l. : ACM Press, 2004.

3. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for Java. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implementation.
ACM Press., 2002.

4. James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Roby. Bandera: source-level
interface for model checking Java programs. s.l. : ACM Press, 2000.

5. Pnueli., Z. Manna and A. The Temporal Logic of Reactive and Concurrent System:
Specification. s.l. : Springer-Verlag, 1991.

6. L., Requet. A and Burdy. Jack: Java Applet Correctness Kit. In Gemplus Developer
Conference. 2002.

7. Jacobs, Joachim van den Berg and Bart. The LOOP Compiler for Java and JML. London,
UK : Springer-Verlag, 2001.

8. Mariela Pavlova, Mariela Pavlova, Gilles Barthe, Gilles Barthe, Lilian Burdy, Lilian
Burdy , Marieke Huisman , Marieke Huisman, Jean-louis Lanet, Jean-louis Lanet,
Thme Gnie Logiciel. Enforcing High-Level Security Properties for Applets. Sophia
Antipolis, France : INRIA, 2004 .

9. Source code verification of a secure payment applet. Bart Jacobs, Martijn Oostdijk and
Martijn Warnier. Issues 1-2, Nijmegen, The Netherlands. : Elsevie, 2004, Vol. Volume
58.

10. Umberto Costa, Anamaria Moreira, Martin Musicante, and Placido Souza Neto.
Specification and Runtime Verification of Java Card Programs. Salvador, Brazil : s.n.,
2008.

11. Rischpater, Ray. Beginning Java ME Platform. s.l. : Apress, 2008. 1430210613.

12. Implementing a Formally Verifiable Security Protocol in Java Card. Engelbert Hubbers,
Martijn Oostdijk, and Erik Poll. Berlin : Springer Verlag.

13. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary
T. Leavens, K. Rustan M. Leino and Erik Poll. An overview of JML tools and
applications. Berlin : Springer, 2004.

150

14. Aleksy Schubert, Jacek Chrzaszcz. ESC/Java2 as a Tool to Ensure Security in the
Source Code of Java Applications. Software Engineering Techniques: Design for Quality.
Boston : Springer, 2007.

15. Source code verification of a secure payment applet. Bart Jacobs Martijn Oostdijk,
Martijn Oostdijk and Martijn Warnier. Issues 1-2, Nijmegen, The Netherlands. :
Elsevie, 2004, Vol. Volume 58.

16. Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman and Jean-Louis
Lanet. Enforcing High-Level Security Properties for Applets. s.l. : INRIA Sophia Antipolis,
France and INRIA Dir DRI, France, 2003.

17. Warnier, Martijn Oostdijk and Martijn. On the combination of Java Card Remote
Method Invocation and JML. Nijmegen, The Netherlards : Dept. Computer Sci., Univ.
Nijmegen, 2003.

18. Jacobs., J. van den Berg and B. The LOOP compiler for Java and JML. [book auth.] T.
Margaria and W. Yi. Tools and algorithms for the construction and Analysis of Systems.
Berlin : Springer, 2002.

19. Erik Poll, Aleksy Schubert. Verifying an implementation of SSH. Proceedings of the
17th Workshop on Information Technology and Systems (WITS’07). Montreal, Canada :
Concordia University, 2007.

20. Engelbert Hubbers, Martijn Oostdijk, and Erik Poll. Implementing a Formally
Verifiable Security Protocol in Java Card. Security in Pervasive Computing. Berlin,
Heidelberg : Springer, 2004.

21. J. Clark, J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. 1997.

22. Tamalet., Marieke Huisman and Alejandro. A Formal Connection between Security
Automata and JML Annotations. Berlin, Heidelberg : Springer-Verlag, 2009.

23. Oostdijk, Martijn Warnier and Martijn. Non-interference in JML. Nijmegen, The
Netherlands : Nijmegen Institute for Computing and Information Sciences, 2005. ICIS-
R05034.

24. Leino, R.Joshi K. A semantic approach to secure information flow. Science of Computer
Programmimg. 2000, Vols. 37(1-3), 113–138.

25. Perumandla, Yoonsik Cheon and Ashaveena. Specifying and Checking Method Call
Sequences in JML. s.l. : CSREA Press., February 2005.

26. Cheo, Gary T. Leavens and Yoonsik. Design by Contract with JML. August 17, 2005.

27. Cheon, Yoonsik. A runtime assertion checker for the Java Modeling Language. s.l. : Iowa
State University, Department of Computer Science., April 2003.

28. Gary T. Leavens, Yoosnik Cheon, Curtis Clifton, Clyde Ruby and David Cok. How the
design of JML accommodates both runtime assertion checking.

29. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David R.
JMLReference Manual. s.l. : Available from http://www.jmlspecs.org, October 2007.

30. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a
behavioral interface specification language for Java. s.l. : SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2005.

151

31. Patrice Chalin, Joseph R. Kinry, Gary Leavens and Erik Poll. Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2. Formal Methods for
Components and Objects. s.l. : Springer, 2006.

32. Meyer, Bertrand. Object-Oriented Software Construction, Second. s.l. : Prentice Hall,
1997.

33. Gary T. LEavens, Albert L. Baker and Clyde Ruby. JML: A Java Modeling Language.
Ames, Iowa, USA. : Department of Computer Science, Iowa State University., 1998.

34. Cay S. Horstmann, Gary Cornell. Core Java™ 2 Volume II - Advanced Features, Seventh
Edition. s.l. : Prentice Hall, November 22, 2004. 0-13-111826-9.

35. Ganguli, Harpreet. Java Security. Cincinati, Ohio 45208, USA : Premier Press, 2002. 1-
931841-85-3.

36. Rubin, James. Java security: Authentication and authorization. s.l. : IBM Corporation.,
2002.

37. Nestor Catatano, Tim Wahls. Executing JML Specifications of Java Card Applications: A
Case Study. Hawaii : In Proceedings of the ACM Symposium on Applied Computing,
Software Engineering Track (SAC-SE), March, 2009.

38. Mariela Pavlova, Gilles Barthe, Gilles Barthe, Lilian Burdy, Lilian Burdy , Marieke
Huisman , Marieke Huisman, Jean-louis Lanet, Jean-louis Lanet, Thme Gnie
Logiciel. Enforcing High-Level Security Properties for Applets. Sophia Antipolis, France :
INRIA, 2004.

39. Christian Haack, Erik Poll, Aleksy Schubert. Explicit information flow properties in
JML. 2008.

40. The Daikon system for dynamic detection of likely invariants. Michael D. Ernst, Jeff H.
Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz,
and Chen Xiao. 1--3, s.l. : Science of Computer Programming, 2007, Vol. 69.

41. B. Jacobs, C. March and N. Rauch. Formal verification of a commercial smart card
applet with multiple tools. [book auth.] S. Maharaj and C. Shankland C. Rattray. Algebraic
Methodology and Software Technology. Berlin : Springer, 2004.

42. Warnier, Martijn. Language Based Security for Java and JML, Phd thesis. Nijmegen, The
Netherlands : Radboud University, 2006. 90-9020922-0.

43. Valmari, Antti. The state explosion problem. [book auth.] Grzegorz Rozenberg
Wolfgang Reisig. Lectures on Petri nets I: basic models : advances in petri nets. 1998.

44. Myers, A. Sabelfeld & A.C. Language-Based Information-Flow Security. s.l. : IEEE Journal
on selected areas in communications, 2003.

45. Meseguer, J. Goguen and J. Security policies and security models. s.l. : IEEE Symp. on
Security and Privacy, pp. 11–20, IEEE Comp. Soc. Press, 1982.

46. A Type-Based Approach to Program Security. Smith, D. Volpano and G. s.l. : In Proc. 7th
International Joint Conference on the Theory and Practice of Software Development,
1997, Vol. 1214.

47. Peter Rob, Carlos Coronel, Keeley Crockett. Database Systems: Design,
Implementation & Management. London : Thomson Learning, 2008. 978-1844807321.

152

48. Yao, D. Dolev and A.C. On the security of public key protocols. IEEE - Annual
Symposium on Foundations of Computer Science. 22nd, 1981, Vols. pp. 350-357.

49. Watson, Carl. Beginning C# 2005 databases. 2006. ISBN 978-0-470-04406-3.

50. C. Farkas, T. Toland, C. Eastman. The Inference Problem and Updates in Relational
Databases. s.l. : Working Conference on Database and Application Security, 2001.

51. Kose, Ilker. Distributed Database security. GYTE, Computer Engineering. 2002.

52. Kumar, Pankaj. J2EE Security for Servlets, EJBs, and Web Services. s.l. : Prentice Hall,
2003. 0131402641.

53. Wagner, F. Modeling Software with Finite State Machines: A Practical Approach. s.l. :
Auerbach Publications, 2006. 0-8493-8086-3.

54. Breunesse, E. Poll & C. B. Verifying JML specifications with model fields. In formal
techniques for Java-like programs. Proceeding of the ECOOP, 2003 Workshop., 2003.

55. Gary T. Leavens, Albert Baker, Clyde Ruby. JML: A Nnotation for Detailed Design.
[book auth.] Berhard Rumpe and William Harvey. Haim Kilov. Behavioral Specification
for Business Systems, chapter 12. s.l. : Kluver Academic Publishers, 1999.

56. Yoosnik Cheon, Gary T. Leavens, Murali, Sitaraman, and Stephen Edwards. Model
variables: Cleanly supporting abstraction in design by contract. May 2005. 35(6):583-
599.

57. Hoare, C. A. R. An axiomatic basis for computer programming. s.l. : Communications of
the ACM, 1969. 12(10):576-583.

58. Cunningham, R Mugridge & W. Fit for Developing Software: Framework for Integrated
Tests. s.l. : Prentice Hall PTR, 2005. 0-321-63049-1.

59. Murata, Tadao. Petri Nets: Properties, Analysis and Applications. 1989.

	Title Page
	Problem Description
	masteroppgave.pdf

