
Marine Cybernetics

Laboratory Handbook

Faculty of Engineering Science and Technology
Department of Marine Technology

Device network addresses

Qualisys PC 192.168.0.10 surface
192.168.0.20 underwater

MCLab router 192.168.0.50 SSID: MC Lab
RPi 192.168.1.22:51717 for all
cRIO primary port 192.168.0.71 IIMT-HILLAB1-cRIO

192.168.0.72 IIMT-HILLAB2-cRIO
192.168.0.73 IIMT-HILLAB3-cRIO
192.168.0.75 CSE1-cRIO
192.168.0.55 CSAD-cRIO

cRIO secondary port 192.168.1.21 for all
Assigned by DHCP From 192.168.0.100

to 192.168.0.254
Subnet mask 255.255.255.0 for all

Introduction

This handbook is Version 2.0 of the Marine Cybernetics Laboratory Handbook.
The handbook gives a description of the equipment in the MCLab, and instruc-
tions on some of the software used. Every student using the MCLab should
read this document before using equipment in the lab. In addition to this
Handbook, there are separate handbooks for CS Enterprise 1 and CS Arctic
Drill Ship, which are found on GitHub. As of July 2017, the other vessels do
not have a separate Handbook, and thus the reader is referred to the old MCLab
Handbook for complementary information about the specific vessel.

Structure

Chapter 1 describes the different equipment found in the Laboratory, and how
to use it.
Chapter 2 gives a description of some of the software used in the lab. This
includes formatting and installing software on cRIO, creating FPGA modules,
mapping of channels in VeriStand etc.

i

Contents

1 Marine Cybernetics Laboratory equipment 1
1.1 Introduction . 1

1.1.1 Safety . 1
1.2 Qualisys Motion Capture System 3

1.2.1 User Manual . 3
1.2.2 Importing Data from the Qualisys System into ROS and

MATLAB(Linux) . 9
1.3 Towing carriage . 12

1.3.1 Preparation before startup 12
1.3.2 Manual Operation of the Carriage 12
1.3.3 Operation Controlled automatically from PC 15
1.3.4 Troubleshooting . 16
1.3.5 Note . 16

1.4 Wave Generator . 17
1.4.1 User Manual . 17

1.5 Video-Camera System . 18

2 Software 19
2.1 Laptop . 19
2.2 cRIO . 19
2.3 Update customized simulink code 21
2.4 Data logging . 24

2.4.1 In Workspace . 24
2.4.2 In Simulink . 24

A Advanced software topics 27
A.1 Creating FPGA and XML files 27

A.1.1 Create FPGA target and XML 27
A.1.2 Install in VeriStand . 29

A.2 Custom Device . 40
A.2.1 Install . 40

A.3 Raspberry Pi . 42
A.3.1 Raspbian installation and setup 43
A.3.2 Sixaxis installation and configuration 46

ii

Chapter 1

Marine Cybernetics
Laboratory equipment

1.1 Introduction

The laboratory is equipped for experimental testing of marine control systems
and hydrodynamic tests. It consists of a wave basin with an advanced instru-
mentation package and a towing carriage. The basin, depicted in Figure 1.1,
has dimensions 40m x 6.45m x 1.5m (LxBxD). The laboratory consists of the
following fixed equipment:

� Qualisys Motion Capture System

� Towing Carriage

� Wave Generator

� Video-camera

These parts are thouroghly described in the next sections, with a user manual
and technical description of the equipment.

1.1.1 Safety

1.1.1.1 Personnel injury

Drowning It is required to have two or more persons present when using the
basin.

Electric shock The towing catenary should not be approached or touched.

Carriage collision It is forbidden to run the towing carriage when there are
people alongside the basin.

1

Figure 1.1: Marine cybernetics laboratory basin

Thruster blade cuts Vessels must stay in the water as long as actuators are
active. Before removing the vessels from the water, the control system must be
stopped and disabled, for instance by undeploying in the VeriStand project.

1.1.1.2 Material damage

Towing carriage Stop before automatic stop at high speeds.

Towing carriage rails The rails are made of steel, not stainless. Hence,
avoid getting water on the rails, as this will lead to corrosion.

2

1.2 Qualisys Motion Capture System

Qualisys provides 6 degrees of freedom data tracking. The system has millimeter
precision, works in real time and is configured to 50Hz.

The positioning system consists of three Oqus high speed infrared cameras
registering infrared reflectors placed on the vessels. Peer-to-peer (P2P) network-
ing is used to transmit camera data to a dedicated computer running Qualisys
Track Manager (QTM) software. QTM performs triangulation and broadcasts
the vessel position over the wireless network. The system is operated from a
dedicated PC in the Lab, labeled with QTM Surface. Add info

on zyx-
convention

Add info
on zyx-
convention1.2.1 User Manual

Start Qualisys Track Manager

1. Execute the program. The first displayed window is as in Figure 1.2.

Figure 1.2: Qualisys Track Manager start window

2. Push the white sheet icon to start a new measurement. The main window
should then display the 2D view, as in Figure 1.3. The squares numbered
#1, #2 and #3 show the basin as seen from the respective cameras. The
white dots are the vessel reflectors. A minimum of three reflectors must
be visible in each camera.

Aquire body

1. Push the gear icon to access Project Options. Navigate to 6DOF Tracking,
as in Figure 1.4.

3

Figure 1.3: Qualisys Track Manager 2D view

Figure 1.4: Qualisys Track Manager 6 DOF Tracking

4

2. Remove previous bodies, if any.

3. Align the vessel with 0°heading (i.e. with the bow pointing towards the
command center) and push “Acquire Body” to get the position of the
reflectors. A list appears, as in Figure 1.5.

Figure 1.5: Qualisys Track Manager aquired body

4. To redefine the body fixed coordinate frame, choose a reference reflector.
As highlighted in Figure 1.5, it may be practical to choose the highest-
most, in this case reflector 3. Push “Translate” and enter the coordinates
of the chosen reflector in the desired frame. See the Handbook for the
specific vessel for information of the position of this reflector in the body-
frame.

5. Verify that Qualisys is set to zyx -convention for the rotations. In the left-
pane navigation tree, expand 6DOF Tracking, select Euler Angles. Figure
1.6 show the correct setting for zyx -convention.

6. Finally, select 3D view to confirm that the body-fixed frame is indeed
located as desired, as in Figure 1.7.

Troubleshooting

Long waiting for camera If the operation depicted in Figure 1.8 is un-
successful after a couple of minutes, reboot the cameras by unplugging and
reconnecting the power cord on the rack.

5

Figure 1.6: QTM rotation convention

Reflectors visible in 2D, but not in 3D window When aqcuiring the
body, the vessel must be in the calibrated area for the cameras. If the reflectors
are visible for all 3 cameras in 2D visualization, but not in 3D visualization,
verify that the vessel is placed inside the calibrated area. In 3D, on the left
pane, press the box and choose to show calibrated area, as illustrated in Figure
1.9

6

Figure 1.7: Qualisys Track Manager 3D view

Figure 1.8: Qualisys Track Manager waiting for cameras

7

Figure 1.9: QTM calibrated area

8

1.2.2 Importing Data from the Qualisys System into ROS
and MATLAB(Linux)

The following approach may be used to read Qualisys data into ROS and MAT-
LAB. The method is convenient for Qualisys data into to MATLAB independent
on whether the rest of the system use ROS or not. The method, as described is
limited to Linux-operating systems.

The first part of the manual describe how import Qualisys data into ROS,
while the second part describe how to get the data from ROS into MAT-
LAB/Simulink.

Please note the following:

� In the manual, the dollar sign $ indicate a line of text that should be
written in the Linux- terminal window.

� In the manual gedit is used as text editor. This can be replaced with the
readers favourite text editor.

� The manual is written and tested for ROS-Indigo and MATLAB 2015b.
It is based on MATLAB’s manual for importing custom messages (Math-
Works, 2016), which is and adapted and expanded to fit that of the MC
lab and the Qualisys system.

� You need MATLAB version 2015a or newer in order to proceed with the
MATLAB section of the manual.

1.2.2.1 Manual

If not already installed on the machine you should start by installing ROS.
Follow the instructions on the ROS download page: http://wiki.ros.org/

indigo/Installation/Ubuntu.
You should now make a ROS workspace in your home directory:

$mkdir -p ~/catkin_ws/src

$cd ~/catkin_ws/src

$catkin_init_workspace

You now need to make sure that one are sourcing the setup.bash file in your
ROS workspace each time you open your terminal window. This can be done
by changing the bash file with the following command:

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

Now import the Qualisys driver from GitHub. (The driver (KumarRobotics,
2016) is avaiable through the Apache License)

$ cd ~/catkin_ws/src

$ git clone https://github.com/KumarRobotics/qualisys

$ cd ~/catkin_ws

$ catkin_make

Open the qualisys.launch file in a text-editor

$ sudo gedit ~/catkin_ws/src/qualisys/launch/qualisys.launch

9

http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/indigo/Installation/Ubuntu

Edit the ip address and port number for the Qualisys system. (As of March
2016 the IP is: 192.168.0.10 and the port is 22222)

The driver should now be set for interfacing with Qualisys in ROS. To test
it, first check that you are able to ping the Qualisys system over the MC lab
WiFi.

$ ping 192.168.0.10

If you successfully pinged the qualisys system it should now be possible to
listen to the data from the Qualisys system.

(Note that the Qualisys system need to recognize the IR-markers in the
MC lab in order to transmit data. It may be smart to first to check that the
computer running Qualisys software in the MC-Lab sees the marker)

$ roslaunch qualisys qualisys.launch

$ rostopic list

The command “rostopic list” prints the ROS active ROS topics. It should
now be printed a qualisys topic in terminal. The name will depend on the
name set on the Qualisys computer. In this manual the topic is named /qual-
isys/CSE1.

You can now listen to the data as it is published to ROS

$ rostopic echo /qualisys/CSE1

1.2.2.2 Getting Qualisys data to MATLAB

The message sent from the Qualisys system is a custom message that MATLAB
does not recognize (most messages in ROS is not custom, and will be recognized
by MATLAB). In order to get the Qualisys data into MATLAB you one to
facilitate so that MATLAB recognize the custom message.

Start by creating a new folder ˜/qualisysDir. Now copy the folder named
qualisys, located in ˜/catkin ws/src and paste it into the folder ˜/qualisysDir

Now one want to edit the package file so that MATLAB recognizes the
messages.

Sudo gedit ~/qualisysDir/qualisys/package.xml

Add the following two lines somewhere in the main body of the package.xml
file.

<build_depend>geometry_msgs</build_depend>

<build_depend>std_msgs</build_depend>

Now open MATLAB. The first step in MATLAB is to download the ROS
custom message package. Type the following lines into the MATLAB command
window, and follow instructions to download the ROS custom message package.

roboticsAddons (in MATLAB 2016)

roboticsSupportPackages (in MATLAB 2015)

When the download is finished paste the following commands in the MAT-
LAB command window.

10

folderpath= ’~/qualisysDir’

rosgenmsg(folderpath)

Now follow the instructions generated by MATLAB in order generate the
needed message type. In this process you may need allow writing permission to
the file “pathdef.m”

You are now ready to get the data into MATLAB.
Remember that the Qualisys node always need to be launched before reading

signals in MATLAB.

roslaunch qualisys qualisys.launch

You can now get the data into Simulink by the Subscriber block, or to
MATLAB workspace by typing the following commands:

Subb = rossubscriber(’/qualisys/CSE1’);

posedata = receive(Subb,10);

11

1.3 Towing carriage

Figure 1.10: Towing carriage

The scope of this section is to explain how to safely operate the carriage
without any damage towards humans or equipment.

1.3.1 Preparation before startup

To start with, you must make sure that any items mounted or fixed to the
carriage are securely fitted, so they don’t prevent the operation of the carriage.
All personnel must stay on the operation platform during the travel of any axis.

Locate the Emergency Button and place it so that you can easily reach it
from where you are sited. DO NOT USE THE EMERGENCY BUTTOM AS
A BRAKE. YOU MUST ONLY OPERATE IT WHEN YOU ARE IN REAL
EMERGENCY SITUATIONS.

Operation console

The operation console is an All-in-one PC. The Power button is on the bottom
right side of the screen. If the operation panel is not on the desktop, you can
start it by double clicking on desktop Icon, shown in Figure 1.11.

1.3.2 Manual Operation of the Carriage

Setup

It is very important to select the Setup tab first before you start any operation
of the carriage. As you can see in Figure 1.14, it is possible to change the travel
parameters for all available axes. In principle, all axis parameters have different
range limits. These are listed in Table 1.1.

All axes can be activated or deactivate by using the ON button.

12

Figure 1.11: Towing console

Figure 1.12: Coordinate system

Figure 1.13: Coordinate system

For the X axis it is possible to activate a list of predefined Forward speeds.
You will then have the ability to automatically change to a different speed on
the next run. The list can be edited in the Main Tab Window.

13

Forward/Backward Acceleration Position
Axis Speed Deceleration Pos./Neg. Limit
X 0 - 2.0 [m/s] % of 0 - 0.5 m/s2 0 - 22 [m]
Y 0 - 1.0 [m/s] % of 0 - 1.0 m/s2 0 - 4.5 [m]
U 0 - 1.0 [m/s] % of 0 - 1.0 m/s2 0 - 1 [m]
C 0 - 10 [deg/s] % of 0 - 20 deg/s2 0 - 255 [deg]
Z 0 - 1.0 [m/s] % of 0 - 2.0 m/s2 0 - 0.5 [m]
W 0 - 1.0 [m/s] % of 0 - 2.0 m/s2 0 - 0.5 [m]

Table 1.1: Operation Limit

Figure 1.14: Setup

By selecting the “Lock Z-W” button the Z-W axis will operate in parallel.
They will use the Z-axis parameter setup.

Main/Standard Operation

All the activated axes will operate within the limits set in the Setup. Only one
axis can operate at a time. If you hit the button for another axis than the
running one, it will instantly stop and new one will start running. To stop the
running axis, simply hit the stop button. If no buttons are operated carriage
axis will run it hit limit position of the current axis.

If an error occurs, for some reason, it can be cleared by hitting the “Power”
button. If the error keeps reoccurring, please look at the Troubleshooting section
of this document or contact responsible MC Lab personnel.

The current speed and position of the active axis are displayed referred to
the selected limits.

14

Figure 1.15: Main

Figure 1.16: Run From File

1.3.3 Operation Controlled automatically from PC

The Trajectory Input File

All trajectories must be defined in a .mcl input file. The format of the file is
slightly more general than allowed here and is the same as for the sloshing rig
input. The entries in the file are

1. Time Step in ms, double precision integer (int32). Must be set to 10.

15

2. Number of channels, double precision integer (int32). Must be 6.

3. Position references in sequence: X(1),Y(1),U(1),C(1),Z(1),W(1), X(2),Y(2),
double precision real (float32).

The following MTALAB lines write the matrix body (6xN) to file on the correct
format:

fid=fopen(filename,’wb’);

head=[10;6];

count=fwrite(fid,head,’int32’);

count=count+fwrite(fid,body,’float32’);

fclose(fid);

The resulting input file must be transferred to the realtime computer at
/home/ntuser/inputpos.mcl. Normally this is done automatically when the
Load button on the LabVIEW GUI is pressed.

Figure 1.17: Operation Limit Amplitude vs. Frequency

1.3.4 Troubleshooting

1.3.5 Note

When the wagon is moving, no one is allowed to move on the sides of the basin.

16

1.4 Wave Generator

The wave maker is a single paddle wave making machine with a width of 6
meter and it is equipped with an Active Wave Absorption Control System
(AWACS 2). The single paddle wave generator is controlled by a dedicated
computer. The machine can produce both regular and irregular waves because
of the DHI Wave Synthesizer the system has. Available spectrum are first order
Stoke, JONSWAP, Pierson-Moskowitz, Bretschneider, ISSC and ITTC. Table
1.2 summarizes the generation capacity.

Height [m] Period T [s]
Regular waves H < 0.25 0.3 - 3.0
Irregular waves Hs < 0.15 0.6 - 1.5

Table 1.2: Wave generator capacity

1.4.1 User Manual

Add a de-
scription
on how
to use the
system
once the
NEW wave
genera-
tor is in-
stalled(fall
2017)

Add a de-
scription
on how
to use the
system
once the
NEW wave
genera-
tor is in-
stalled(fall
2017)

17

1.5 Video-Camera System

The laboratory is equipped with 2 high-resolution cameras for recording of ac-
tivity in the basin, one on each side. The cameras are remotely operated from
a dedicated PC in the command center using the Intelligent Video Manage-
ment System 4200 (iVMS-4200 client) software. The computer is located on
the floor, is connected to the TV-monitor mounted on the wall, and has wireless
mouse and keyboard(labeled Camera system). The software user-interface is
illustrated in Figure 1.18.

The manual control of the cameras are found in the PTZ Control tab. The
cameras feature auto-tracking of objects, which is enabled by right-clicking in
the video window. The menu is illustrated in Figure 1.18, with highlighted op-
tions for auto-tracking and manual control of the camera position. The camera
system also support recording. Note that the recorded files are large, typi-
cally several GB for some minutes of recorded video. Hence, the files should be
moved to a USB-disk(and not copied). The recorded files are found in the path:
C:\ivms4200\video\RecordFile\YYYYMMDD.

Figure 1.18: User interface iVMS-4200 camera system

18

Chapter 2

Software

2.1 Laptop

As of July 2017, there is a Virtual Machine with all necessary software installed.
To use cRIO, the following software is needed:

� LabVIEW Full Development system, with the following modules:

– LabVIEW Real-Time Module

– LabVIEW FPGA Module

– NI-RIO driver

� MATLAB and Simulink

� VeriStand with all modules included in the installation file(especially NI
VeriStand Model Framework)

� WindRiver GNU Toolchain that supports VxWorks.

Version compatibility is an important issue, see http://digital.ni.com/public.
nsf/allkb/10BBA745CD5A2FAE86257F9A0054FF71. The Virtual Machine has
LabVIEW 2017, VeriStand 2017 and Matlab 2016b installed. For use of CS
Enterpris 1 or CS Arctic Drill Ship, it is highly recommended to use the Virtual
Machine in stead of installing all the software. To use the Virtual Machine, in-
stall VirtualBox and copy the Virtual Machine from one of the LAB-computers,
or contact Hans-Martin Heyn for a copy.

However, if installing the software, it is recommended to install the different
software parts in the order given above. The installation files are found on the
webpage of National Instruments, and the product key is found on software.

ntnu.no.

2.2 cRIO

Updating and changing software on cRIO is done in NI MAX. In order to update
the cRIO(e.g. updating to a newer version), follow this procedure:

1. Make sure the cRIO and the laptop are on the same network(either both
connected to MCLab or by an Ethernet cable)

19

http://digital.ni.com/public.nsf/allkb/10BBA745CD5A2FAE86257F9A0054FF71
http://digital.ni.com/public.nsf/allkb/10BBA745CD5A2FAE86257F9A0054FF71
software.ntnu.no
software.ntnu.no

2. Open NI MAX. In the left pane, navigate to the cRIO. Press restart, and
verify that the correct cRIO is restarting.

3. Right-click on the cRIO → Format Disk.

4. Select ”Attempt to restart into safe mode” and ”Preserve the setting for
all network adapters”, as illustrated in Figure 2.1.

5. When successfully formated, install software. Expand the cRIO, right-
click on Software and select Add/Remove Software. See Figure 2.2

6. Select NI CompactRIO *Version* → Next → Next → Next. There is
no need to alter the software here, NI MAX installs the recommended
software for the cRIO. Press Finish

7. Right-click on Software once more, and select Add/Remove Software.
Now, select Custom software installation. Choose Yes in the warning.
Navigate to NI VeriStand Engine YYYY, and choose Install the feature.
Press Next → Next → Finish. See Figure 2.3

8. The cRIO has now been updated with the necessary software with the
version selected.

Figure 2.1: Format cRIO

20

Figure 2.2: Install software on cRIO

Figure 2.3: Install NI VeriStand Engine on cRIO

2.3 Update customized simulink code

This section describes the process of updating the customized Simulink model,
and building it as a cRIO-compatible code. For illustration, the CSE1 is
used here, but the process is similar for all cRIOs. First, go to GitHub and
download/clone the repository related to the vehicle of interest. Then, open
ctrl custom.slx. The model should be similar to the one shown in Figure 2.4.

21

You should not alter the input/output subsystems, as these are already mapped

Figure 2.4: ctrl custom.slx initial window

properly in VeriStand. Implement your control system as desired, and include
as many NI VeriStand Input/Output blocks as desired. These blocks are used
to read/change parameters when the code is running on the cRIO. When the
ctrl custom.slx Simulink project is updated with the desired control system, the
code must be compiled to C-language for exporting to the cRIO. First, make sure
the active folder directory in MATLAB is CSE1\simulinksystem\. In Simulink,

open the Model Configuration (press), and make sure the following settings
are applied(see Figure 2.5):

Solver: Stop time: inf, Solver type: Fixed-step, Solver: discrete or ode3,
Fixed-step size: 0.01

Code Generation: System target file: NIVeriStand VxWorks.tlc. If an-
other file is shown, press Browse and find the correct one.

Code Generation/NI Configuration: WindRiver GNU Path: C:\gccdist\
supp\setup-gcc.bat. If supp does not work, change it to supplemental.

You are now ready to compile the code and include it in the VeriStand project:

1. Compile the Simulink model by pressing Ctrl+B or in the Simulink
window. MATLAB is now compiling your code, and it will update the
folder CSE1\Simulinksystem\ctrl_custom_niVeriStand_VxWorks_rtw with
a cRIO compatible simulation model.

2. Open the VeriStand project (CSE1.nivsproj), and then open the System
Explorer as illustrated in Figure ??.

3. Navigate to the ctrl custom Simulation Model, verify the modification
date/time is correct (time stamp from when you compiled the simulink
model) and then press Reload as illustrated in Figure 2.6.

22

Figure 2.5: Model Configuration window

4. Save and close the System Explorer window.

Your Simulink model is now updated and included in the VeriStand project.
Continue with preparing the vessel and uploading the code to the cRIO, as
described in the vessel specific Handbook.

23

Figure 2.6: System Explorer window

2.4 Data logging on cRIO

Logging of data can be done in 2 ways:

2.4.1 In Workspace

Logging channels/parameters from Workspace is done with a Data Logging
Controller, found in Workspace Controls. This is the preferred method, as you
set the start and stop of data logging and avoid problems if the code does not
deploy correctly. The data log is also saved on the laptop, not on the cRIO.
Add a Data Logging Control in your Workspace window, set the desired path
for the file and add the channels/parameters of interest. See Figure 2.7.

2.4.2 In Simulink

In the Simulink model, it is possible to add ”Write to File” blocks linked to
the different parameters. By using this method, the cRIO logs the parameters
continuously after deployment, until the VeriStand project is undeployed. The
data is logged as binary numbers, and if the code is not undeployed correctly(e.g.
some error/loss of power etc.), the data log becomes corrupted. However, if this
method still is chosen, the data files must be copied from the cRIO to the laptop.
Open NI MAX, in the left pane, browse to CSE1, right click on it and choose

24

Figure 2.7: Data logging in Workspace

File Transfer. Copy the logged files to the laptop, which can then be loaded in
MATLAB.

25

Bibliography

KumarRobotics, 2016. Kumarrobotics/qualisys source code. Retrieved 10th of
March 2016. https://github.com/KumarRobotics/qualisys. 1.2.2.1

MathWorks, 2016. Create custom messages from ros package. Retrieved 10th
of March 2016. http://se.mathworks.com/help/robotics/ug/create-custom-
messages-from-ros-package.html. 1.2.2

26

Appendix A

Advanced software topics

A.1 Creating FPGA and XML files

A.1.1 Create FPGA target and XML

If you do not have a Veristand FPGA target at your disposal, follow the steps
below. If you have a target available and just need to install it in NI Veristand,
please jump to Section A.1.2. For CS Enterprise 1 and CS Arctic Drill Ship,
the FPGA targets are found on GitHub.

1. Open LabVIEW and create new project. In this guide, LabVIEW 2013 is
used, but the procedure should be similar on newer versions.

2. Choose NI Veristand FPGA Project in project templates and proceed.

3. Choose CompactRIO Reconfiguarble Embedded System and click next.

4. You will now get the choice between letting LabVIEW detect your cRIO
system or configure it yourself. If you are connected to the cRIO and it
has all of the I/O ports connected, the option “Discover existing system”
is simpler and therefore recommneded. If you do not have your cRIO
connected choose “Create new system”, this is the version that will be
worked through here.

5. Select your controller, in our case cRIO-9024.

6. Select your FPGA target, in our case cRIO-9113.

7. Then you select your I/O modules to the correct slots. In our case NI
9215 in slot 1 and NI 9474 in slot 4.

8. You are now finished with configuring your project. Press next.

9. The project menu will now appear and should look something like Figure
A.10. Select the LabVIEW VI as demonstrated our is called Custom
Personality FPGA.vi

10. The UI window will now present itself, select window and show block
diagram.

27

11. You should now see a block diagram similar to Figure A.11. You will
now have to redesign this to look like Figure A.12. This will be valid for
our system, if you have different I/O modules the block diagram need to
reflect this.

12. Now, return to the Project explorer and select Build Specifications and
Custom Personality FPGA

13. A new window will open. Check that the name and project path is correct
and press build.

14. Select your preferred compile server. The compilation process will take
quite some time (approx 15-30 min).

15. When the compilation process is finished, the last step is to edit the au-
tomatically generated XML file. You will now have to find you project
directory in Windows. Here there will be a folder called bitfiles which
contains the files you compiled in the last step, there will also be a .XML
file. The point of editing this file is to match the actually compiled VI,
meaning the packets must match the connected I/O. The recommended
way to edit the file is to copy our XML file from: Dropbox\TMR4243 -
LAB\04 cRIO software\FPGA IO. You will have to make sure that the
name of your bitfile matches the name in the XML file as seen in Figure
A.17, also make sure the I/O modules matches your setup.

16. Copy the bitfiles from the bitfile folder to the level above so that the bitfile
aand the XML file is in the same folder.

Documentation: https://decibel.ni.com/content/docs/DOC-13815

Figure A.1: Create Labview FPGA target and XML - 1

28

https://decibel.ni.com/content/docs/DOC-13815

Figure A.2: Create Labview FPGA target and XML - 2

Figure A.3: Create Labview FPGA target and XML - 3

A.1.2 Install in VeriStand

The Veristand software does not recognize the physical I/O components of the
cRIO. It is necessarry to write a specific FPGA mapping for the specific setup.
This results in a XML file that maps the ports.

To add this file to your Veristand project, enter the system explorer and find
the FPGA pane under targets\controller\hardware\chassis, as seen in Figure
A.18. The next step is to find your XML file. In this case called cRIO-9113 Ex,
it is very important that the XML file is placed on level above the FPGA bitfile
folder in the directory system, as the files are really being used are the FPGA
bitfiles. The menu in should now look something like Figure A.19, here you can
see the analogue input signals and the digital output PWM signals. These can
again be linked to other signals as seen in FigureA.25.

29

Figure A.4: Create Labview FPGA target and XML -4

Figure A.5: Create Labview FPGA target and XML - 5

Figure A.6: Create Labview FPGA target and XML - 6

A.1.2.1 Ticks

tick = FPGA clock pulse

tick in seconds =
1

frequency
=

1

40MHz
=

1

40 ∗ 106
= 25 ∗ 10−9 = 25ns

30

Figure A.7: Create Labview FPGA target and XML - 7

Figure A.8: Create Labview FPGA target and XML - 8

output at 50 Hz demands output every

40MHz

50Hz
=

40 ∗ 106

50
= 800000tick

31

Figure A.9: Create Labview FPGA target and XML -9

Figure A.10: Create Labview FPGA target and XML - 10

32

Figure A.11: Create Labview FPGA target and XML - 11

33

Figure A.12: Create Labview FPGA target and XML - 12

34

Figure A.13: Create Labview FPGA target and XML - 13

Figure A.14: Create Labview FPGA target and XML - 14

35

Figure A.15: Create Labview FPGA target and XML - 15

Figure A.16: Create Labview FPGA target and XML - 16

36

Figure A.17: Create Labview FPGA target and XML - 17

37

Figure A.18: FPGA1

Figure A.19: FPGA2

38

Figure A.20: FPGA3

39

A.2 Custom Device

A.2.1 Install

As of July 2017, there are 3 different Custom Device drivers developed for use
in MCLab:

WL Joystick - used for reading sixaxis data sent from the RPi. Created by
Torgeir Wahl

Oqus - used for reading position and orientation data sent from the Qualisys
system. Created by Torgeir Wahl

IMU - used for reading IMU data from 4 IMU’s, mainly intended for CSAD.
Created by Guttorm Udjus

To install a Custom Device driver, the first step is to copy the folder with
the driver to the path: C:\Users\Public\Documents\NationalInstruments\

NIVeriStand201X\CustomDevices The directory should now contain something
like Figure A.21. The next step is to add custom device to your project. This

Figure A.21: Custom device folder

is done in the system explorer, which is found as seen in Figure A.22. When

Figure A.22: VeriStand launch system explorer

40

in the system explorer, adding the custom device should be as simple as right
clicking the custom device pane and choosing WL Joystick, as in Figure A.23.
If you do not find the custom device WL Joystick, the most likely problem is
that the placement of the custom device folder from step 1 is wrong. If the

Figure A.23: Custom device selection

installation is successful you should be able to see WL Joystick folder under
custom devices as seen in the red box in Figure A.24. Here you will also see
the different inputs from the custom device, in this case it is joystick axis. To
connect the joystick to the input ports of the Simulink model. You open the
system configuration mappings (click the button marked by the arrow in Figure
A.24). You the simply find the ports you would like to connect, mark them and
click the connect button. Figure A.25 a joystick output is connected to a input
port on the Simulink model.

41

Figure A.24: VeriStand

Figure A.25: VeriStand System Configuration Mappings

A.3 Raspberry Pi

The unit is configured with Raspbian Linux-kernel-based operating system

42

A.3.1 Raspbian installation and setup

This section describes how to install and access the Raspbian operating system
on the RPi from a Windows computer. The operations are also possible from
an OSX or Linux computer.

A.3.1.1 Download operating system and utilities

Download and extract the newest Raspbian1 operating system (OS) image. Nec-
essary utilities for the setup are

� Win32 Disk Imager2 to write the OS image to the RPi SD card

� Advanced IP scanner3 to find the RPi address on the network

� Putty terminal emulator4 for SSH connection

� WinSCP5 for file transfer

Windows Linux, OSX
Win32 Disk Imager dd
Advanced IP scanner nmap
Putty ssh
WinSCP sftp

Table A.1: RPi installation and setup utilities

See Table A.1 for a list of the equivalent software for OSX and Linux.

A.3.1.2 Write image to SD card

Since the .iso file is raw, it needs to be written to the SD card in way that makes
it bootable. Win32 Disk Imager does this. Run the program as administrator.

Figure A.26: Disk Imager

Select the correct image file and device, as in Figure A.26. Make sure that
you have selected the correct drive before you push Write. Once the write is
complete, insert the SD card in the RPi and boot.

1raspberrypi.org/downloads
2sourceforge.net/projects/win32diskimager
3by Famatech, advanced-ip-scanner.com
4www.chiark.greenend.org.uk/˜sgtatham/putty/download.html
5by Martin Prikryl, winscp.net/eng/download.php

43

A.3.1.3 Terminal access

RPi can be accessed through the network, i.e. without having to directly connect
a monitor and keyboard. At first boot, the RPi by default waits to be assigned

Figure A.27: Advanced IP Scanner

an IP address by DHCP. If this address is not known, scan the network with
Advanced IP Scanner. It is advicible to sort the results by manufacturer since
it is fixed (Raspberry Pi Foundation). The name is typically raspberrypi. See
Figure A.27. Once the IP is known, it is specified in the Putty settings, as in

Figure A.28: Putty settings

Figure A.28, and a connection can be opened. The default login is pi, and the
default password raspberry. Figure A.29 shows the terminal output on first
login.

A.3.1.4 Finalize configuration

Enter the

sudo raspi-config

44

Figure A.29: SSH connection

Figure A.30: RPi configuration tool

command to start the RPi Software Configuration Tool, as in Figure A.30. Use
the menu to apply the following

1. Update configuration tool: 8 Advanced Options >A9 Update

2. Change password: 2 Change User Password

3. Expand filesystem: 1 Expand Filesystem >Finish

Exit the configuration tool and select Yes for reboot. Reconnect through Putty.
Finally, update the repository package lists and upgrade all packages currently
installed on the RPi:

sudo apt-get update

sudo apt-get upgrade -y

This process took approximately 10 minutes on a 90 Mbps internet connection.

A.3.1.5 Transfer files to RPi from computer

WinSCP can be used to transfer files to the RPi. This is useful for instance when
transferring code, or when the RPi is not directly connected to the internet.

45

A.3.1.6 Set fixed IP address

When the RPi is connected directly to the cRIO or computer, a fixed IP is
necessary since there is no DHCP server in that network. During most of this
setup, however, it is preferable to keep the default DHCP assigned IP setting.
To set a fixed IP

1. Open the network interface configuration information file for editing

sudo nano /etc/network/interfaces

2. Alter the eth0 settings from dhcp to static and add address and netmask
as

auto eth0

iface eth0 inet static

address 192.168.1.22

netmask 255.255.255.0

3. Save the changes by the key combination Ctrl+X.

The new IP is applied on the next reboot.

A.3.2 Sixaxis installation and configuration

This section describes how to install and configure the Sixaxis gamepad for
Bluetooth connection to the RPi, and how to add a server for sending joystick
signals to the cRIO.

A.3.2.1 Download and install bluetooth support

BlueZ is the official Linux Bluetooth stack. It provides support for core Blue-
tooth layers and protocols. To download and install, type

sudo apt-get install bluez-utils bluez-compat bluez-hcidump

libusb-dev libbluetooth-dev joystick checkinstall -y

The process takes a few minutes. To confirm the installation, use the hciconfig

Figure A.31: Bluetooth configuration tool

command to print name and basic information about Bluetooth devices installed
in the system. The output should include UP RUNNING PSCAN, as in Figure A.31.
If instead it says DOWN, some error har occured. Most experienced errors were
due to typos.

46

A.3.2.2 Bluetooth pairing

Sixaxis does not support the standard Bluetooth paring prcedure, instead, pair-
ing is done over USB. The sixpair command-line utility6 searches USB buses
for Sixaxis devices and tells them to connect to a new Bluetooth master.

Download and compile the program by the following commands:

wget http://www.pabr.org/sixlinux/sixpair.c

gcc -o sixpair sixpair.c -lusb

Connect the Sixaxis by USB before running the paring utility

sudo ./sixpair

The output should be similar to

Current Bluetooth master: 00:02:72:BF:BC:8F

Setting master bd_addr to: 00:02:72:BF:BC:8F

The addresses at the end of each line will only be the same if you have already
paired the Sixaxis with the Bluetooth dongle. First time they will be different.
The Sixaxis USB cable may now be disconnected.

A.3.2.3 Joystick manager system service

QtSixA7 reads the Sixaxis signals and makes them available to other programs.
This program needs to run automatically whenever the RPi is booted.

To download the program, type

wget http://sourceforge.net/projects/qtsixa/files/QtSixA%201.5.1/QtSixA-1.5.1-src.tar.gz

To install, type

tar xfvz QtSixA-1.5.1-src.tar.gz

cd QtSixA-1.5.1/sixad

make

sudo mkdir -p /var/lib/sixad/profiles

sudo checkinstall -y

Update the system service list with sixad driver and reboot

sudo update-rc.d sixad defaults

sudo reboot

To test the program, turn on the Sixaxis (round PS button in the middle) and
start the test program

sudo jstest /dev/input/js0

The terminal should now fill up with numbers that change as you move the
analogue sticks and press the buttons on the Sixaxis. Exit the program by the
key combination Ctrl+C.

6by Pabr Technologies, www.pabr.org
7the Sixaxis Joystick Manager by falkTX, qtsixa.sourceforge.net

47

A.3.2.4 Joystick signal server

A server must run to make joystick signals available over the RPi ethernet port.
This should also start whenever the RPi is booted.

Transfer the source file jscont.c to the RPi (see Section A.3.1.5), then
compile:

g++ -o jscont jscont.c

To verify that the program runs correctly, turn off (hold PS3 button for
about 10 seconds) the previously paired Sixaxis and start the program

./jscont

Figure A.32: Joystick signal server test

The program should then wait until you turn on the Sixaxis before giving
output simular to Figure A.32. To exit the server use the key combination
Ctrl+C.

Next, disable login at start-up in the bootup service description inittab:

1. Open the file for editing

sudo nano /etc/inittab

2. Change the line that reads

1:2345:respawn:/sbin/getty --noclear 38400 tty1

by adding --autologin pi to get

1:2345:respawn:/sbin/getty --autologin pi --noclear 38400 tty1

Warning: Typos here may result consequences hard to correct.

3. Save and exit the changes by the key combination Ctrl+X.

Finally, add jscont to the login execution file:

1. Open the file for editing

sudo nano /home/pi/.bashrc

2. At the very end of the file, add

sudo ./jscont

3. Save the changes by the key combination Ctrl+X.

RPi should now be sending joystick signals at start-up.

48

