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Abstract

This thesis presents a novel technique for fuel prediction of ships in transit considering exter-
nal environmental factors such as current, wind and waves. Among the many performance
monitoring systems and methods, less common are performance forecasting grounded in
available monitored data. A new methodology for accurate prediction of fuel consumption
by combine well established physical and empirical methods with state of the art machine
learning algorithms and artificial neural networks forms the foundation of this thesis .

In order to apply data-driven methods, a framework for in-service operational data were
developed to identify and process measurements. By use of hindcast climate data, unreliable
measurements were replaced by simulated entries from ECMWF and Tidetech to ensure high
quality data for the prediction model. The result of the data analysis are discussed in extent
to illustrated pitfalls, bias and random errors.

By isolating wind and frictional resistance acting on a ship in transit with empirical models,
a set of methods were proposed for determination of the residual resistance. Attempting
to decouple the calm water wave resistance and added resistance due to waves, and con-
sidered the residual resistance as one were among the methods explored. Shallow artificial
neural network and Gaussian process regression showed an impressive precision with a mean
deviation of 2.5% in the prediction of fuel consumption.

Bootstrapping showed a model behavior that reflects the involved physics in the system and
confirmed that these type of prediction models are suitable for fuel prediction. As a result, the
models are expected to predict even more accurate as the amount of training data increase.
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Sammendrag

Denne masteravhandlingen presenterer en ny teknikk for drivsto↵sprediksjon for skip i tran-
sitt som tar hensyn til eksterne miljømessige faktorer som strøm, vind og bølger. Blant de
mange ytelsesoverv̊akingssystemene og metodene, er det mindre vanlig med ytelsespredik-
sjoner basert p̊a tilgjengelig måledata. En ny metode for nøyaktig prediksjon av drivsto↵or-
bruk ved å kombinere veletablerte fysiske og empiriske metoder med det siste innen maskin-
læringsalgoritmer og kunstige nevrale nettverk danner grunnlaget for denne avhandlingen.

For å anvende de datadrevne metodene, ble et rammeverk utviklet for å identifisere avvik,
samt å prosessere målerverdier fra driften av skip. Ved å benytte historisk værdata kunne
unøyaktige og up̊alitelige målepunkter erstattes av simulerte verdier fra ECMWF og Tidetech
for å forsikre høykvalitets data for trening av prediksjonsmodellen. Resultatet av denne
analysen er diskutert i sin helhet for å illustrere fallgruver, systematiske og tilfeldige feil i
målesystemet.

Ved å isolere vind og friksjonsmotstanden som virker p̊a et skip i transitt med empiriske
modeller, ble et sett metoder foresl̊att for å bestemme restmotstanden. Forsøk p̊a å analy-
sere koblet og frikoblet bølgemotstand i stille vann og økt motstand grunnet bølger, samt å
betrakte disse samlet var blant de foresl̊atte metodene. Grunne nevrale nettverk og Gaussian
prosess regresjon viste imponerende presisjon med et gjennomsnittlig avvik p̊a kun 2.5% i
prediksjonen av drivsto↵orbruk.

Bootstrapping viste en modelloppførsel som reflekterer den involverte fysikken i systemet
og bekreftet dermed at disse type prediksjonsmodeller er godt egnet for drivsto↵prediksjon.
Dermed kan det forventes av disse modellene å predikere enda mer nøyaktig i takt med at
mengden treningsdata øker.
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Preface

This thesis is written by Jonas Munch Wahl as a part of a Master’s degree at the Maritime
Technology Department at the Norwegian University of Science and Technology (NTNU) in
Trondheim. The topic was motivated and carried out in collaboration with Wilhelmsen Ship
Management.

During the autumn of 2018, a pre-study was conducted as preparatory work for the master’s
thesis. The primary focus of this study was to familiarize with machine learning and how
it is used for prediction purposes within ship resistance. Parallel with the study of machine
learning, a data acquisition process of in-service data was initiated and a preliminary analysis
of the data quality was conducted.

An important part of the master thesis has been to conduct a detailed analysis of the in-
service operational data by evaluating di↵erent preprocessing approaches and methods. Fur-
ther, with the available data explore the various state of the art methods for performance
monitoring and predictions. Development and testing of a new prediction method form a
major part of the work conducted.

This thesis is the result of a major within the field of hydrodynamics even though it explores
fields of study that usually is considered as statistic and elements from computer science.
It shows how these disciplines are beneficial and applicable across traditional conventions.
Precisely this symbiosis of disciplines have been challenging to carry out due to the lack of
experience, but have in return given a substantial learning outcome.

Jonas Munch Wahl, 11.06.2019
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Introduction

Background and Motivation

Fuel consumption of a ship in service is a measurement of the amount of energy consumed in
order to obtain a certain operational state. These states are defined by short term parameters
such as speed, trim, loading- and weather condition and long term parameters as fouling and
erosion. Over a ship’s lifespan, the rate of consumed fueled is expected to increase as the
performance decrease due to the long term parameters.

It is of the ship owners and operators interest to get a su�cient overview of both the short
and long term trends in the performance as it is directly related to the fuel consumption.
A performance deterioration of 5% on a cruise ship that daily consuming an average of 50
tonnes of the heavy fuel oil at the price of 450 USD/t and another 10 tonnes to marine gas
oil at the price of 600 USD/t an annual penalty of approximately 500 000 USD could be
expected.

The short term parameters are equally important to describe the total fuel consumption of a
ship in transit. Maruo (1957) showed that additional resistance due to waves are proportional
to the square of the wave height whereas the wind and air resistance is proportional to
the squared of projected superstructure area. Kim et al. (2017) showed that an added
resistance due to wind and waves in a Beaufort 6 (MetO�ce 2016) environment would lead to
a speed loss of approximately 5%. A thorough understanding of how environmental factors
influence the fuel consumption allow the owners and operators to optimize route planing,
better budgeting and most important satisfy the stricter emission regulatory framings stressed
by the International Maritime Organization, IMO.

With increasing number of measured parameters and more frequent sampling, the complexity
of the performance monitoring increase with the same rate; an operational state can be
described as a function of numerous sensor inputs. Conventional analytic and empirical
methods are not taking advantage of the valuable information in these inputs. Hansen et al.
(2011) showed promising results in a more advanced performance monitoring analysis using
the bond graph method and Pedersen et al. (2014) illustrated that artificial neural networks

1



2 Nomenclature

and Gaussian process regression are well suited for prediction of performance at a long term
perspective.

Data-driven models, also known as machine learning models are being used in an increasing
number of fields and there are several machine learning models available and their areas of
applications seems to expand rapidly. Due to their natural flexibility and ability to mimic
both physical and unphysical processes solidly based on the the data, its magnitude and
correlations, these models should also be able to predict the short term e↵ect of current,
wind and waves on a ship in transit.

Objective

The main objective of this thesis is to develop and validate a machine learning based predic-
tion model for fuel consumption for a ship in transit that consider consider the short term
parameters. This includes a detailed study of the in-service operational data as well as a de-
tailed description of the developed methods where logic reasoning is communicated clearly.
For quantification of prediction performance it is beneficial to compare di↵erent methods
using di↵erent approaches to the problem.

Scope of Work and Limitations

To accomplish the objective it is expected to develop a framework for preprocessing of ship
monitoring data. The framework is expected to identify faults, bias and random errors
with assistance and interpretation for better decision making. The machine learning models
involved are expected to be validated and their performance quantified, and it is beneficial
to explore di↵erent algorithms for the purpose of prediction.

It is not within the scope of hydrodynamics and thereby this masters thesis to establish a
framework for route generation and optimization for testing. Benchmarking of the precision
should therefore be performed with a fraction of the existing data.

Structure of Thesis

The following is an explanation of the flow of the thesis:
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Part I: Theory review the necessary literature required for a complete understanding of the
argumentation in the results. Chapter 1 summarize aspects of naval hydrodynamics related
to ship resistance and propeller theory. Chapter 2 gives an introduction to the fundamentals
within machine learning and represents most of the literature study conducted in this thesis.
Following, chapter 3 is a review of data preprocessing methods and techniques which are
utilized to obtain the results.

Part II: Methodology review how the theory should be applied to achieve the overall
objective. Chapter 4 gives an overview of the available data sources in this thesis and
complements the next chapter. Chapter 5 gives a detailed description of the stepwise process
from preprocessing of data, to how the resistance is decomposed and isolated, and how
machine learning should be applied for this purpose. Followed by how the predicted resistance
will be correlated with fuel consumption.

Part III: Results presents the findings in this thesis. Chapter 6 review a thorough data
analysis of the in-service operational data including a continuous discussion of the quality.
Recommendations and conclusions to which parameters are reliable and not are found con-
secutively. Chapter 7 presents the results from the resistance and fuel predictions from one
vessel, followed by a brief discussion of the overall performance, including results from the
study of a second vessel. Part III finishes with a formulation of a conclusion to the objective
and recommendations for further work in chapter 8.
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Part I

Theory
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Chapter 1

Naval Hydrodynamics

1.1 Ship Resistance

The objective of this chapter is to give an understanding of what ship resistance is being
caused by, how it can be more easily understood and calculated by dividing into di↵erent
components.

A prerequisite in the analysis of ship resistance is fluid mechanics. To fully understand
di↵erent aspects of the analysis, chapter 5 and chapter 7 in White (2011) are recommended
literature. These chapters introduce how and why dimensionless properties are useful in fluid
mechanics, as well as an introduction to viscous flow.

1.1.1 Decomposing Resistance

A fundamental classification of the resistance consist of

• Pressure resistance - acting normal to the surface of the hull

• Frictional resistance - acting tangential to the surface of the hull

Frictional resistance is caused by viscous e↵ects. In ideal fluids, where potential theory is
valid such viscous e↵ects are not present, hence the use of potential theory to describe the
flow field around the hull will only consider pressure resistance.

Further, in potential theory there is no resistance on a deeply submerged body - this phe-
nomenon is known as d’Alembert’s paradox - meaning that the pressure resistance in potential
theory is caused by free surface e↵ects. In the case of a ship, the free surface e↵ects are the
generation of waves, hence the pressure resistance is often known as wave resistance. The

7
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observant reader will note that waves change the flow field at the surface and thereby a↵ect
the frictional contribution, but this is an e↵ect that normally is neglected in ship resistance
calculations, meaning that frictional resistance and wave resistance is calculated indepen-
dently.

However, this assumption does not reflect the whole nature of pressure resistance since it
gives rise to viscous e↵ects, such as flow separation - a viscous pressure component. Viscous
pressure is di�cult to quantify in a general matter, but add a minor contribution to the total
resistance. Hence simplified methods have been developed to account the e↵ect.

A common division of resistance components, suitable for calculation of the total resistance
consist of

• Frictional resistance

• Viscous pressure resistance

• Wave resistance

• Wind resistance

• Appendage resistance

1.1.2 Frictional Resistance

Whereas dry friction is dependent on the pressure, fluid friction is described by shear forces
occurring when fluid layers are moving relative to each other. One could, therefore, assume
that the frictional resistance on a ship is described by a flow on a flat plate with the same
surface area and the same Reynolds number as the submerged part of the hull.

Expressing the frictional resistance in a dimensionless manner, the frictional coe�cient occur
as

CF =
RF

1
2⇢V

2
s S

= f(RN), RN =
VsLWL

⌫
(1.1.1)

The magnitude of the resistance force dependents on whether the flow is laminar or turbulent,
which is described by the Reynolds number. For laminar flow, the frictional coe�cient is
expressed by Blasius formula

CF =
1.327
p
RN

(1.1.2)

and for turbulent flow, the ITTC’57 correction line are
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CF =
0.075

(log10(RN)� 2)2
(1.1.3)

There exist several other friction lines for turbulent flow, but the di↵erences between these
lines are not significant, such that the ITTC’57 line will be used in this thesis. Describing
the flow field around a ship will in all practical cases involve turbulent flow, as the Reynolds
number is in order of 109.

Form factor

Even though the pressure di↵erences are neglected when calculating the frictional resistance,
there exists a pressure distribution around the hull with the coherent velocity distribution -
in line with Bernoulli’s equation. In the bow and stern, there are lower local velocities due
to the local higher pressure, while on the longitudinal sides and bottom the velocities are
relatively higher. The increasing velocities give rise to an increasing frictional resistance -
the coe�cient is proportional to the velocity squared, equation (??).

However, expressing the velocity distribution as a function of the geometry is not convenient
for practical use. By introducing a factor based on the geometry this e↵ect can be accounted
for. Determining this factor - known as the form factor - can be done in multiple waves,
e.g, empirical methods, Prohaska’s method or by towing a model in low speed where wave
resistance is negligible. MARINTEK’s formula is fully based on the geometry and loading
conditions

k = 0.6�+ 145�3.5
, � =

CB

LWL

p
(TAP + TFP )B (1.1.4)

1.1.3 Roughness and Fouling

An important assumption when calculating the frictional resistance by either Blasius or
ITTC’57 is that it assumes smooth surfaces, which not reflect the true nature of a ship
hull. Welds, flaking paint or fouling are properties that will increase the friction and should,
therefore, be taken into account.

For newly painted or docked vessels, the roughness is in the area of 50-150 µm, while for
vessels exposed to fouling, the roughness could be significantly higher. There exists an
empirical method to account for this e↵ect, and is given as

�CF = [110(HVs)
0.21

� 403]C2
F (1.1.5)
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where H is the roughness in µm and V is the velocity in m/s.

1.1.4 Viscous Pressure Resistance

As indicated, viscous pressure resistance appears mainly as a result of flow separation. When
the flow separates from the body, a low-pressure field occur causing a drag force in the
opposite direction of the course. This phenomenon can occur at propeller shafts, shaft
brackets, stabilizer fins, tunnel thruster openings, bilge keels, rudders and behind transom
stern.

When the transom stern is wetted, the resistance coe�cient can be expressed as

CDB = 0.029
(SDB/S)3/2

p
CF

(1.1.6)

In cases where the transom stern is dry, the resultant force will be more significant and could
be expressed by

For high-speed vessels with a transom stern, the water separates at the crossing between the
transom, the sides and the bottom leaving the transom exposed to atmospheric pressure.
The hydrostatic pressure that acts on all other parts of the hull below the waterline results
in a resultant force.

Ctransom =
⇢g

R H

0 zB(z)dz
1
2⇢V

2
s S

= 2
g

V 2
s

Z H

0

B(z)
z

S
dz (1.1.7)

1.1.5 Air Resistance

The presence of the superstructure of a ship will result in a resistance component from the
relative wind (section A.3). The wind resistance is found by use of a drag coe�cient, CD

RAA =
1

2
⇢aV

2
relCDAp (1.1.8)

In order to relate the wind resistance to ship resistance, the coe�cient should be related to
the wet surface to the hull, such that

CAA =
⇢aCDAp

⇢wS
(1.1.9)
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As seen from equation (1.1.8), the resistance is proportional to the relative velocity squared,
meaning that for low-speed vessels with relatively small projected areas exposed to wind,
the wind resistance can be safely neglected. However, for high-speed vessels and vessels with
significant superstructures, like cruise, container and cargo vessels the wind resistance can
potentially contribute significantly to the total resistance.

The drag resistance coe�cient in equation (1.1.8) is not trivial to determine, as it highly
depends on the shape of the superstructure. There exist methods and standards with a
reference value for di↵erent ship types, such as ISO (2015, Annex C) which includes a method
to estimate the added resistance due to the wind. Usage of wind tunnel tests the drag
coe�cients is another method and enables the opportunity to find the coe�cients for all
angles. Such a test would be more suitable for the specific ship than the generalized standards
and other literature suggests.

1.1.6 Wave Resistance

The displacement of the vessel changes the velocities along the hull, as mentioned in section
1.1.2. In the bow, the water will be forces outwards and on the stern, the water will return to
the centerline of the vessel. With the increasing velocity in the bow, Bernoulli (1.1.10) states
that the pressure decrease accordingly, however, at the free surface the pressure is equal to
the atmospheric pressure. Hence, an elevation of the free surface (⇣) ensure equilibrium, i.e
a wave is generated.

1

2
⇢V

2
s + ⇢g⇣ + p = constant (1.1.10)

The same applies to the stern, where the relative velocity decrease and a wave system is
generated. Generation of waves consumes energy and should, therefore, be considered as a
resistance component. However, quantifying and isolating the wave resistance is not trivial. A
method using in resistance scaling methods is to subtract the known and measured resistance
components from the total resistance and then assume that the remaining resistance is the
wave resistance (also known as the residual resistance), i.e

Cr = CT � (CF +�CF )(1 + k)� CAA � CDB (1.1.11)

Analytic Estimation of Added Resistance of Ships in Waves

Faltinsen (1993) derived a formula for added resistance of ships in waves based on direct
pressure integration (integrate pressure field from Bernoulli’s equation). Valid for small
Froude numbers, i.e. Fn < ⇡ 0.2 and head sea
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F̄1

⇣2a

=
1

2
⇢g(1 +

2!0U

g
)

Z

L1

sin2(✓)n1dl (1.1.12)

where !0 is the circular frequency of oscillation of the waves and U is the forward speed of
the ship. L1 is the exposed surface to the waves.

Gerritsma & Beukelman (1972) have derived a formula based on strip-theory approximation
where the added resistance is quantified as

RAW =
k

2!e

Z

L

(B(2D)
33 + U

d

dx
A

(2D)
33 )V 2

za(x)dx (1.1.13)

which is an integral along the length of the ship and Vaz(x) is the amplitude of the relative
vertical velocity between the ship and the waves. k is the wave number and !e is the encounter
frequency.

E↵ect of Bulb

A bow wave system and an independent stern wave system gives rise to the use of bulbs.
By manipulation the e↵ective length of the waterline, there should be possible to set up a
bow wave system that is equalized by the stern system. In such a case the resulting wave
resistance is decreased since the bow wave crest is canceled by the wave trough from the
stern. Opposite e↵ect if the bow crest is amplified by the stern crest making the contributing
range of bulbs limited.

When the relations between the ship velocity and wave velocity are

Vs =

r
��g

n⇡
=

(
Increased resistance for n = 1, 3, 5...

Reduced resistance for n = 2, 4, 6...
(1.1.14)

or in a more general way

FN =
Vs

p
gLWL

=

r
�

n⇡
, 0.8  �  1.0 (1.1.15)

where � is the wave-making length of the ship.
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1.2 Propeller Theory

1.2.1 Propeller Geometry

A propeller is a complex object where a three-dimensional model is required to give a complete
description of its shape and geometry. However, for practical and applicational purposes,
there is a need to describe the same geometry with a limited set of parameters. Figure 1.1
defines the main dimensions, such as the propeller diameter D, radius R, chord length c(r),
as well as boss diameter d and boss radius rB.

Figure 1.1: Propeller main dimensions, from Steen & Minsaas (2014)

Each vessel has its own uniquely designed propeller. Even though figure 1.1 shows a propeller
with four blades there exists propellers with fewer and more blades and controllable pitch.

1.2.2 Performance and E�ciency

When measuring a propeller’s performance and e�ciency, it is based on the ability to produce
thrust T. Mechanical torque Q provided through the shaft for a given velocity of advance Va
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and the shaft’s rotational speed n is input to the e�ciency analysis. The velocity of advance
should not be confused with the velocity of the ship, but as

Va = Vs(1� w) (1.2.1)

where Vs is the speed through water and w the wake.

The vessel’s total resistance RT together with the speed through water reflect the e↵ective
power

PE = VsRT (1.2.2)

Together with the shaft power the propulsive e�ciency can be defined as

⌘D =
PE

PD
PD = 2⇡nQ (1.2.3)

where n is the rate of revolutions of the shaft. There are several e�ciency components
reflected in the propulsive e�ciency which can be decomposed into

⌘D = ⌘H⌘R⌘0 (1.2.4)

where ⌘H is the hull e�ciency, ⌘R the relative rotative e�ciency and ⌘0 is the propeller
e�ciency. The relative rotative e�ciency accounts for the e↵ect of a non-homogenous wake
field in front of the propeller. By separating the relative rotative e�ciency from the propeller
e�ciency, the propeller e�ciency could be measured in a more controllable environment. An
open water environment could be replicated in a towing tank or cavitation tunnel where the
performance of the propeller is only caused by the geometrical properties.

1.2.3 Open Water Diagram

When adding up all resistance components the total resistance the vessel will face for a given
speed is known. At this constant, given speed equilibrium implies that the thrust of the
propeller is equal to the resistance. Hence the propeller’s performance is measured in the
ability to produce thrust. For a given geometry this ability is measured in an open water
test, where the presence of the hull is neglected. A model scale open water test reveals the
characteristics of the propeller.

When conducting an open water test the propeller thrust, torque, rate of revolutions and
velocity of advanced is measured. In a cavitation tunnel, the velocity of advance is represented
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by the velocity of the uniform flow, while in a towing tank the velocity of the carriage is
utilized for the same purpose. The measured parameters are made dimensionless by

Ja =
Va

nD
: Advance Ratio (1.2.5)

KT =
T

⇢n2D4
: Thrust Coe�cient (1.2.6)

KQ =
Q

⇢n2D5
: Torque Coe�cient (1.2.7)

The torque is a parameter of which represents the power consumption by the system while
the thrust represents the power produced, hence the e�ciency of the propeller is

⌘0 =
TVa

2⇡nQ
=

Ja

2⇡

KT

KQ
(1.2.8)

These dimensionless parameters are presented in an open water diagram, where the thrust
and torque coe�cients are plotted as a function of the advance ratio align with the e�ciency,
as seen on figure 1.2.
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Open Water Diagram for Wageningen B-series propeller
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Figure 1.2: Wageningen B-series open water diagram

Figure 1.2 illustrates a propeller operating under a wide range of loading conditions; repre-
sented by the advance ratio. An advance ratio of zero implies that the velocity of advance
is zero, resulting in the consumed and produced power while the vessel in standing still.
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Negative thrust and torque coe�cients are unphysical or would imply that the vessel is being
towed.

Maximum utilization of the propeller’s design is found at the propulsion point where the
e�ciency is maximum.

Scaling of Propeller Characteristics

The open water diagram is the result of an open water test, which is a model scales version of
the propeller. Scaling e↵ects occur and the model scale experiment does not truly replicate
the environment the full-scale propeller will be operating in. Whereas geometrical similar-
ity of ensures length scaling is correct, kinematic similarity ensures that the ratio between
velocities are satisfied

� =
LF

LM
: Geometrical similarity (1.2.9)

VF

nFDF
=

VM

nMDM
) JF = JM : Kinematic similarity (1.2.10)

Dynamic similarity ensures that the ratio between forces is the same for model and full scale.
From decomposition of the total resistance of the vessel, the same sources of forces occur at
the propeller: inertia, viscous, gravitational and pressure forces are present and dependent
on the parameters found in geometrical and kinematic similarity, i.e.

Inertia: Fi / ⇢V
2
L (1.2.11)

Viscous: Fv / µV L (1.2.12)

Gravitational: Fg / ⇢gL
3 (1.2.13)

These similarities address an issue with scaling from model to full size; ensuring geometrical,
kinematic and dynamic similarity at the same time is not practically possible. The conflict
occurs if trying to ensure that both inertia and viscous forces are properly scaled and since
both these force contributions are significant for a propeller a scaling error occurs. The ITTC
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method for correction of the thrust and torque coe�cients are

KTS = KTM ��KT , �KT = ��CD0.3
PcZ

D2
(1.2.14)

KQS = KQM ��KQ, �KQ = ��CD0.25
cZ

D
(1.2.15)

where �CD = CDM � CDS and P/D is the pitch ratio.

CCM = 2(1 + 2
t

c
)[
0.044

R

1
6
nco

�
5

R

2
3
nco

] (1.2.16)

CDC = 2(1 + 2
t

c
)(1.89 + 1.62 log

c

kp
)�2.5 (1.2.17)

Rnco =
c

p
(V (1� w))2 + (0.75⇡/J)2

⌫
(1.2.18)

1.2.4 Powering Prediction

To predict the required power delivered to the propeller shafts to obtain a certain speed,
the link between the propeller characteristics and the vessel’s resistance (section 1.1) must
be established. Since equilibrium require that the total resistance is equal to the produced
thrust a relation can found to be

KT

J2
=

RT

⇢w(1� t)D2V 2
s (1� w)2

(1.2.19)

where the full-scale propulsion point J⇤ can be found by converting the open water diagram
to aKT/J

2
�J - curve. These propulsion points for each velocity are used to find the coherent

thrust and torque coe�cients. Following, the rate of revolution and power are found from

RPM =
60(1� w)

D

Vs

J⇤ (1.2.20)

PD(kW ) =
2⇡

1000
⇢sD

5(
RPM

60
)3
K

⇤
Q

⌘R
(1.2.21)
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Chapter 2

Machine Learning

This chapter will look into the fundamental of machine learning, the di↵erent segments and
areas of utilization. The chapter first considers ordinary regression with a detailed description
of the methods and techniques. Further, classification is exemplified with logistic regression
before unsupervised clustering is discussed. These three branches in both supervised and un-
supervised learning are building block for the neural network discussion, hence the thorough
introduction to these methods within machine learning. At the end of this chapter, it should
be clear that artificial neural networks are a clever composition of familiar mathematical
models.

2.1 Introduction to Machine Learning

There is no specific and uniform definition of machine learning. However, a common informal
definition was proposed by Mitchell (1997) stating that algorithms should improve their
prediction performance based on experiences gained on performing a task, i.e

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measured P, if its performance at tasks in T,
as measured by P, improves with experience E.

There are di↵erent ways to train a program to perform task T with a better performance
P. One approach is to tell the algorithm what to learn by feeding it with some past data
containing both input features and an output target. This is known as supervised learning.
Unsupervised learning, on the other hand, is an approach whereas the algorithm itself try to
find hidden structures and patterns without knowing explicitly what to look for.

Figure 2.1 illustrates the major branches within the field of machine learning.
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Machine Learning

Supervised Learning

Neural Network Regression Classification
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Figure 2.1: Major branches within machine learning

For the purpose of prediction fuel consumption for a ship in transit where the past opera-
tional data are available, both supervised and unsupervised learning are relevant. Supervised
learning since the true fuel consumption is known, however, due to the numerous input vari-
ables and their dependency of each other, unsupervised learning could reveal hidden patterns
in the data and will, therefore, be of interest in this project.

2.1.1 Supervised Learning

As indicated in figure 2.1, supervised learning is one of the major branches within machine
learning. The term itself reveals the idea behind the technique; teach the computer to perform
a task given an input scenario and the corresponding outcome. This is done by splitting a
complete set of data into a training set and a validation set, utilize the training set to train
the algorithm and then validate the performance with the validation set.

Within supervised learning, there exist other sub-branches that utilized the concept of train-
ing and validation set in di↵erent ways; in regression tuning of parameters such that the
continuous hypothesis function makes the best fit with the sample data, and classification is
trying to map the input variables into a set of discrete output categories.

2.1.2 Unsupervised Learning

In contrast to supervised learning, the concept of unsupervised learning is to find a structure
among the unlabeled data. Instead of establishing a hypothesis function and make the best
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possible fit to the measured data, unsupervised learning aims to categorize data without
knowing in advance what to look for. In unsupervised learning the data sets are not divided
into training and validation sets; the whole set is utilized at all time.

Clustering is the most common approach within unsupervised learning and there are multiple
approaches and algorithms available, such as K -means clustering, hierarchical clustering and
even unsupervised neural networks that self-organize the data (most probably in a structure
similar to what K -means or hierarchical clustering do).

2.2 Regression

As indicated in figure 2.1, regression is one of the branches within supervised learning. In
regression, the objective is to tune parameters such that a continuous hypothesis function
makes the best possible fit to the sample data. In this section, the procedure of regression
will be described.

2.2.1 Training a Model

When training a model in general, the objective is to find the algorithm and mapping function
which fits the training set in best possible way. A training set for a supervised learning
model consisting of N samples with M dimensions, the set of inputs variables (features)
are given as x(i) = (x1, x2, ..., xM)T where i = 1, 2, ..., N , such that all input variables are
given as x = (x(1), x(2), ..., x(N))T (be aware that the superscript has nothing to do with
exponentiation). For each set of features x(i), there exist an output target y(i), such that
y(i) = (y1, y2, ..., yM)T , and a pair of features and targets are (x(i), y(i)) are known as a
training example. The mapping of input feature to output target is done by an unknown
function f , such that

y = f(x) + ✏ (2.2.1)

where ✏ is noise. The function f is unknown and the idea in supervised learning is to come
up with a hypothesis function h that perform the mapping. The concept of establishing the
hypothesis function h is best described with linear regression.
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Linear Regression

The simplest version of regression is univariate linear regression (regression with one variable)
where the input is mapped to the output through a relation on the form of h✓(x) = ✓0 + ✓1x,
where ✓0 and ✓1 are unknown tuning parameters.

The most common way of determining the tuning parameters are with the method of squared
error function, where the idea is to minimize the di↵erence between the hypothesis function
and the sample data measurement, i.e., minimise

✓0,✓1
J(✓0, ✓1), where

J(✓0, ✓1) =
1

2N

NX

i=1

(h✓(x
(i))� y

(i))2 =
1

2N

NX

i=1

(✓0 + ✓1x
(i)

� y
(i))2 (2.2.2)

and J is known as the squared error function or the cost function.

Further interpretation of the cost functions reveals that the combination of tuning parame-
ters that provide the minimum cost function value implies that the di↵erence between the
hypothesis and the true values are minimal. Hence the hypothesis function h maps the input
features to the output target with the best possible performance if J(✓0 = a, ✓1 = b) = 0, i.e
a perfect hypothesis function.

Gradient Descent

A technique to establish the unknown tuning parameters is the gradient descent technique
which is an iterative method for finding the minimum of a function. The idea of the method
is to evaluate the derivative at a given point along with the function in order to determine
in which direction the function value decrease by the highest rate. With the direction of the
steepest increment established, the size of the step is defined by the learning rate parameter
↵.

Figure 2.2 illustrate the surface elevation of irregular waves at a given time for a Jonswap
spectrum. In the analogy of regression, the surface elevation represents the cost function
J with coherent tuning parameters. The scatter dots represent the iterative process of the
gradient descent method. Hence the distance between the scatters are defined by the learning
rate.
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Figure 2.2: Irregular wave from Jonswap spectrum

Initial values for the tuning parameters are important for the final results, as the gradient
method not guarantee that a global minimum is found. Just as important in terms of
computational power is the choice of the learning rate, which determines the size of step
from one iteration to the next, since the learning rate is proportional to the convergence rate
(or divergence rate if chosen inappropriate).

The iterative algorithm for the gradient method is as follow

✓j = ✓j � ↵
@

@✓j
J(✓0, ..., ✓n) (2.2.3)

where the partial derivatives are included. As a result, the cost function must be di↵eren-
tiable.

Establishing the cost function and then di↵erentiate it the respect to all the tuning parameters
is a computational expensive activity. This is illustrated by the cost function in figure 2.2,
which consist of only two tuning parameters, but with a discrete increment of 0.1 the matrix
containing the cost function is a 10 000 ⇥ 10 000 matrix. Each element in this matrix is
a result of a sum over 10 000 evaluations (see equation (2.2.2)), resulting in a O(n3) time
complexity problem. Adding more complexity by introduction more tuning parameters and
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higher order hypothesis increases the computational cost with a high rate.

2.2.2 Validate the Model

With the tuning parameters established, the hypothesis function and thereby the regression
model is also known. These parameters are found based on the training set; a portion of
the total available data set. The input features X of the validation set are tested on the
regression model and the predicted outcome targets Y are evaluated with the true outcomes
from the validation set.

A parameter describing how accurate the regression model mapped the input features to the
output is the coe�cient of determination or the R

2-value. The coe�cient describe the ratio
of the variance of the dependent variable (X,Y) and the independent variables (Y, Ȳ) where
Ȳ is the mean of Y, i.e.

R
2 = 1�

PN̂
i (f

(i)
� Ȳ)2

PN̂
i (y

(i) � Ȳ)2
(2.2.4)

where N̂ is the number of samples in the validation set.

Observe that the numerator in equation (2.2.4) is the same as the cost function established
in section 2.2.1. However, whereas the objective with establishing the cost function was to
minimize it to get the best possible fit represented by a J = 0, the coe�cient of determination
quantifies the degree of correlation between Ypred and Yobs. If scatter occur in the validation
set, meaning that yi fluctuate for similar xi�s and otherwise, the coe�cient of determination
will be influenced in a way the gives a lower R2-value. Hence the coe�cient of determination
is not an appropriate parameter to evaluate the quality of a fit but should be used as a
guideline

2.2.3 Adding More Complexity

To this point the linear regression model consisting of two tuning parameters, (✓0, ✓1), and

one feature x
(i) = x

(i)
1 have been illustrated. However, for a multivariate process a linear

model may not be su�cient, hence the need for a more complex model. By assuming that
the process is better described by a second-order polynomial, an input feature space would
be fully described by

x = [1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2, x1x

2
2, x

2
1x

2
2] (2.2.5)
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which would require a hypothesis function h(x1, x2). Determining the order of the hypothesis
function is not trivial with a multivariate input feature. A too complex hypothesis function
does not necessarily describe the behavior of the features and a too simple hypothesis will not
see the details. These two phenomena are known as over- and underfitting within machine
learning and could potentially compromise the prediction model if not taken care of.

Bishop (2013) exemplifies these phenomenon by generating a synthetic sample set with a
sinusoidal function and some noice, i.e f(x) = sin(2⇡x) + ✏. The scatter dots in figure 2.3
are the training examples, the green line is the underlying function and the red line is the
polynomial hypothesis function of order M = 0,1,3,9. The order of the hypothesis is given
on the form h(x) = w0 + w1x + w1x

2 + ... + wMx
M , where wi, i = 0, 1, ...,M is the tuning

parameters.

Figure 2.3: Illustration of over- and underfitting by Bishop (2013)

The constant and linear hypothesis functions (M = 0,1) are examples of underfitting; these
do not represent the oscillating behavior of the system. The highest order (M = 9) is an
example of overfitting. Even though the hypothesis polynomial passes through all training
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points, the curve oscillates between the points in a non-sinusoidal way. The third order (M
= 3) polynomial represents the sinusoidal function best among these four polynomials, even
though minimization of the cost function not would state otherwise.

Figure 2.3 is an example of why the coe�cient of determination (discussed in section 2.2.2)
not should be used to determine the accuracy of the hypothesis. For M = 9, R2 = 1 i.e.
perfect fit. This is not by coincidence since the polynomial contain 10 degrees of freedom (w);
exactly the same as the number of points in the data set so there exists a unique solution.
However, the tuning coe�cients are in this case finely tuned in order to fit all points, and
the oscillating behavior is a result of these tuning parameters.

These faults reveal why over- and underfitting can cause inaccurate regression models even
though the hypothesis seems to be a good fit to the data points. Since the power series
of a sinusoidal function contain terms of all polynomial orders, one should imagine that a
higher order polynomial would represent the true function better. In addition, the higher
order polynomial contains all the lower order polynomials (the third order polynomial could
be produced from the ninth order by eliminating the higher order components by w = 0),
which is another argument in favor of the higher orders. However, the root of the problem is
not in polynomials itself, it is the principle of minimizing the cost function that causes the
problems. By introducing a regularization term to the cost function, the overfitting problem
can be solved.

J =
1

2N

NX

i=1

(h✓(x
(i))� y

(i))2 +
�

2
h✓(x

(i)) (2.2.6)

where � is a regularization coe�cient that ensures that the tuning parameters decay towards
zero if they are not supported by a data point, also called weight decay.

2.3 Classification

Just as in regression, the principle of classification is mapping an input feature to an output
target. Even though regression analysis is appropriate for some cases, it is not necessarily
appropriate for all situations.

Figure 2.4a illustrates some input feature x and output target y. A linear regression model
on these sample data turns out to be inappropriate as the input feature x ! ±1 since that
would give y ! ±1.
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Figure 2.4: Motivation for classisfication

2.3.1 Logistic Regression

Figure 2.4 illustrate that a new type of hypothesis and cost function are needed to make
a mathematical model that fits the sample data in figure 2.4a. In logistic regression, the
hypothesis is on the form

h✓ = g(⇥T
x), g(z) =

1

1 + e�z
(2.3.1)

The logistic function g have the property of 0  g(z)  1 which is more appropriate the for
the sample data in figure 2.4a. Just as in regression, the tuning parameters ✓ occur, now
in a matrix form ⇥ and the need to be determined. The same procedure is used in logistic
regression as in ordinary regression; minimize a cost function with respect to the tuning
parameters.

Logistic Regression Cost Function

The cost function for the logistic regression model is on the form

Cost(h✓(x
(i)), y(i)) =

(
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0
(2.3.2)



28 CHAPTER 2. MACHINE LEARNING

Summaries all contributions to establish the cost function

J =
1

m

mX

i=1

Cost(h✓(x
(i)), y(i)) (2.3.3)

Determining if tuning parameters is done by minimizing the cost function, just as in ordinary
regression. Gradient descent method could be used for such a purpose, but was mentioned in
section 2.2.1 computational costly. Other algorithms such as conjugate gradient, BFGS, and
L-BFGS have the advantage of determining the learning rate ↵ automatically and usually
converge faster. However, they are more complex and is therefore not further considered in
this project.

2.4 K -means Clustering

Whereas least error and logistic regression are examples of supervised learning, K -means
clustering is an example of unsupervised learning. The output target y is in this case not
known and the data sets consist of unlabeled attributes. Hence the intention for a clustering
algorithm is not to predict an output target given a set of input features, but to find hidden
structures and relationships between the attribute’s values.

Suppose a given data set with N samples and M with unlabeled variables for each sample,
such that the data sets are described by x = (x(1)

, x
(2)
, ..., x

(N)) and each sample by x
(i) =

(x(i)
1 , x

(i)
2 , ..., x

(i)
M ). The objective in the K -means clustering algorithm is to initially distribute

K clusters or centroids in the M -dimensional sample space and then assign each cluster to a
group of data points where the inter-point distances are small.

The iterative process first finds the special distance between each point and all clusters by

dnk =
NX

n=1

KX

k=1

q
(x(n) � µk)2 (2.4.1)

where µk, k = 1, ..., K is the clusters features in the sample space. Next, each cluster is
assigning to the data points with the minimum distance between and then finally the features
of each cluster is recalculated by the mean of the features from the assign data points.

By repeating this algorithm until the attribute values of the cluster converge the clusters
will eventually gather in special areas where the input features are concentrated. Applica-
tion of such an algorithm expresses data sets with thousands of measurements and multiple
attributes with just a few clusters.
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The whole algorithm is illustrated on figure 2.5, where figure 2.5a shows the eight data points
(in blue) and two clusters (in red). It seems like there is a relation between the features
(x1, x2) forming two groups of data points where the inter-point distances are significantly
lower among the two groups. On figure 2.5b the clusters features are updated by the mean of
the assign data points. On figure 2.5c the cluster features are updated once again and finally
on figure 2.5d the cluster features are unchanged and the convergence has been achieved.
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Figure 2.5: Concept of K -means clustering
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2.4.1 Elbow Method

How many clusters that should be used was from visual interpretation of figure 2.5a obvious.
However, when the number of features for each sample increase, a visual interpretation is not
possible.

A method to determine the optimal number of clusters is the elbow method; evaluate the
sum of squared distances between each data point and the cluster. When the rate of change
in sum approach to zero, it indicates that additional clusters do not represent a new group
of related points. Figure 2.6 shows how the rate of change in the sum of squared distance
decrease rapidly as the number of clusters increases, i.e. from k = 4 to k = 5 the change is
marginal. Hence four clusters are su�cient in this synthetic data set.
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Figure 2.6: Elbow method

2.5 Principle Component Analysis - PCA

Similar to K -means clustering, the objective of a principal component analysis is to examine
the variability in among the attributes in the data set. Instead of finding the hierarchy among
the attributes, the idea in PCA is to convert a correlated variable into linear uncorrelated
(independent) variables known as principal components. As a result, the dimension space of
the data set could be reduced by either uses the principal components for further analysis or
extract a few of the correlated variable to represent the variation in the data set.

Exemplified by an imaginary data set consisting of typical measurements on a vessel where
the engine power, RPM, shaft torque, speed over ground, air temperature and heading are
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available. It is reasonable to believe that the engine power, RPM, torque, and SOG are
closely correlated, while a change in air temperature or heading not could be expected to
be transparent in the engine power measurements. Hence a PCA analysis would most likely
show that two principal components would be su�cient to describe the majority of variation
on the data set. A PCA would, in this case, reduce the dimension space for the data set from
six to two.

Dimension reduction is a powerful tool in data analytics and useful in machine learning, as
training algorithms and prediction methods are complex and computer wise expensive in
terms of time complexity. For further details, mathematics, and implementation, the reader
is referred to Jolli↵e (2011), Wold et al. (1987)

2.6 Artificial Neural Networks

Artificial neural networks are the final block from figure 2.1 within supervised learning. ANNs
is inspired by the brain and aims to mimic how neurons communicate in order to process
inputs into an output. From a biological point of view, neurons make up a network that
responds to impulses from other neurons in the network. Neurons in the input layer triggers
neurons in the hidden layers in which perform a calculation depending on the inputs which
again trigger the output layer where the response is the result.

2.6.1 Simple Neural Network with Logistic Activation Function

A neural network is assembled by one or more neurons, so for exemplification, a simple
network a neuron with logistic activation function (see section 2.3.1) is used. In fact, the
model used in this example is replicate exactly the logistic regression example.

h✓(x)

x0

x1

a
(2)
1

Input OutputHidden

Figure 2.7: Simple neural model
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Figure 2.7 shows a neuron receiving a bias unit x0 and an input feature x1. The neuron
perform a calculation from its activation function a

(2)
1 , which in this case is chosen to be the

logistic function, as described by equation (2.6.1).

a
(2)
1 = g(x) =

1

1 + e⇥
Tx

, x = [x0 x1]
T (2.6.1)

where ⇥ is a vector containing weights (or tuning parameters). Finally, the hypothesis

function is established through a second activation function h⇥(x) = a
(3)
1 = g(a(2)1 ) (recall

the hypothesis function from section 2.3.1). The superscript refers to the layer whereas the
subscript refers to the unit in that layer.

Activation functions (sigmoid functions) are function that transform any input x such that
�1  g(x)  1, which is an important feature in a neural network (Nielsen 2015). Other
activation functions with the same properties are the hyperbolic tangent function tanh(x)
and the error function erf(x). A common feature for these functions is that they have
derivatives, which will be shown to be important when training the network.

2.6.2 Adding More Neurons

The previous section showed the simplest neural model, but by combining multiple neurons
in the hidden layer, more complex networks are possible. Each neuron can have a unique
bias and weight, even unique activation functions are possible.

Input OutputHidden
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Figure 2.8: Neural model with multiple neurons



2.6. ARTIFICIAL NEURAL NETWORKS 33

Figure 2.8 shows a neural model with three neurons in the hidden layer. All input features
are parameters in each node and their biases and weights evaluated individually in the hid-
den layer. In the output layer, the outputs from the hidden layer are evaluated before the
prediction is complete. The equation system corresponding to figure 2.8 is

a
(2)
1 = g(⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3)

a
(2)
2 = g(⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3)

a
(2)
3 = g(⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3)

h⇥(x) = a
(3)
1 = g(⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3 )

where ⇥i0 is the weight of the bias unit x0. This algorithm starting from the input layer,
evaluating the weights and biases in the hidden layer and eventually find a predictive value
is known as forward propagation. Since the hypothesis is a key element in the cost function,
forward propagation can be interpreted as an important tool when establishing the cost
function.

2.6.3 Training a Neural Network

Training a neural network follows the same procedure as for linear and logistic regression.
Establish a cost function that represents the di↵erence between a measured sample point
and the hypothesis function and minimizes this di↵erence be changing the weights and biases
(tuning parameters). For neutral network this logistic activation functions the cost function
is

J = �
1

m
[

mX

i=1

KX

k=1

y
(i)
k log h✓(x

(i))k+(1�y
(i)
k ) log(1�h✓(x

(i))k))]+
�

2m

L�1X

l=1

slX

i=1

sl+1X

j=1

(⇥(l)
ji )

2 (2.6.2)

where L is the total number of layers in the network, sl is the number of neurons in layer l,
K the number of output targets and m the number of input feature. Note the regularization
term known from section 2.2.3. Further interpretation of equation 2.6.2 illustrates the concept
of forward propagation through the indices of the sums which starts with the input layer and
ends up at the output layer
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Backward Propagation

The cost function itself is not su�cient to train the network; finding the partial derivatives
are equally important. In ordinary regression and logistic regression finding these partial
derivatives involved di↵erentiating a set of functions independently and update the tuning
parameters until convergence (see equation (2.2.3)). However, finding these derivatives are
not as trivial due to the multiple layers in the network.

Backward propagation is an algorithm that finds these derivatives and involves some advanced
mathematical proofs which not will be elaborated further in this project. The algorithm is
as follows

1. Evaluate the error in the output layer with the true sample result: �(L) = a
(L)

� y.

2. Back propagate and find the error in the second last layer �(L�1) = (⇥(T ))�(L) ·g0(z(L�1)).

3. Initialise �(l)
ij = 0.

4. For each layer and neuron, find �(l)
ij = �(l)

ij + a
(l)
j �

l+1.

By the mathematical proof, the partial derivatives D(l)
ij are

D
(l)
ij =

(
1
m�(l)

ij + �⇥(l)
ij if j 6= 0

1
m�(l)

ij if: j = 0
(2.6.3)

With the partial derivatives known the training of the model is complete when the minimum
of the cost function is found. The results are a set of biases and weights that are components
in each neuron as it evaluates input and produces an output, either as an input to another
neuron or as a predictive outcome.

2.6.4 Adding More Complexity

When training a neural network (or any other model) to describe a phenomenon, the objective
is to find a function that fits the sample data in the best possible way by changing the biases
and weights in the functions that perform this mapping. When the network becomes more
complex, consisting of multiple layers in serial, parallel and possibly recursive the number
of weights and biases increase significantly. In order to train all neurons to get an accurate
prediction, a large number of training data is necessary. As seen from techniques as gradient
descent and backward propagation, the computational complexity means that these processes
are also computational time-consuming.
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Imagining a neural network as a set of neurons that receives and sends impulses of di↵erent
intensity to the neighboring neurons as a way of transferring information, the same analogy
can be replicated in mathematics. The mathematical version of the neural network is a set
of matrices where the transferred information is reviled by multiplication. For a network
with multiple layers (deep learning) and where the number of neurons per layer decrease, the
matrices describing the system will consist of multiple ”blanks”. As matrices (n⇥n) directly
results in time and space complexity of O(n2), these blanks are computationally expensive.
That being said, step 2 in backward propagation consists of vector multiplication, making
this technique a very e�cient learning scheme.

When designing a neural network the same challenges as when deciding number of clusters (in
K -means clustering section 2.4) arise; how many neurons makes the best prediction and which
sigmoid function should are better. A deep neural network is a multilayered network capable
of replicating more advanced phenomenon. However, just as more clusters not necessarily
performed better than a smaller number of clusters, a deep neural network will not necessarily
outperform a single layer network. The structure of the network should coincide with the
complexity of the phenomenon.

Another issue with deep networks is the vanishing gradient problem (Nielsen 2015) which is
a direct result of the increasing number of layers. In the backward propagation scheme, the
partial derivatives of the cost function were evaluated, or more precisely the gradient of the
activation functions. These derivatives are usually small and when multiplied with a weight
�1  ✓  1 they get closer to zero. These small values are inputs to the next layer, making
the result even closer to zero. Eventually, they gradient vanish, making the training of a
deep network an issue.
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Chapter 3

Preprocessing of Data

The following chapter describes the challenges of data preprocessing and how to detect mea-
surement errors. This includes an overview of the di↵erent categorize of errors and available
techniques to handle these errors.

3.1 General Methods

Systems measuring multiple variables at a high frequency over a long period of time generates
large data sample sets. The quality of these data sets depends on a number of parameters,
but the source or measuring device is the crucial factor (Frank et al. 2009). Despite the
e↵ort of reducing the deviation from the measured parameter and its true value errors do
still occur.

Preprocessing of measurements after being logged is the next step in the attempt of obtaining
high quality data sets. Two general methods that can be utilized for error detection is

1. Statistical: Simple statistical parameters such as mean and standard deviation could
reveal outliers and other errors in a time series of measurements. Fitting the measure-
ments to a probability model and evaluation of the measurements with a confidence
interval would uncover the most likely and most extreme measurements. For initial
studies a statistical interpretation are suitable for univariate analysis, whereas for mul-
tivariate analysis error propagation could be di�cult to handle.

2. Clustering: Unsupervised machine learning is applicable for the purpose of the detect-
ing errors in data sets. The same techniques used to categorize groups of measurements
could be utilized to determine the inter-point distance. Measurements with a signifi-
cant Euclidian distance from a cluster could therefore be considered as an outlier. As

37
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indicated in section 2.4 this method is computationally complex and expensive.

Both methods have individually limitations, however, common for both are that the should
be applied on a steady state part of the time series. Mean and standard deviation of a ship
velocity over a year’s time would not produce a logical result. By isolating time periods where
e.g. the velocity measurements are fairly constant these methods are applicable. During
acceleration of the vessel the machinery is exposed to heavy load and extreme measurements
could occur and still describe the true nature the measured parameter.

3.2 Outliers

Outliers are measurements that deviates significantly from the other measurements in the
same steady state period. It does not necessarily implies that the observation is wrong, but
that there are some irregularities in the nature of what is measured. Telling the di↵erence be-
tween an extreme value and an error in the measurement system could be di�cult, especially
if the system is multivariate and thereby dependent on a number of inputs.

A reliable measurement quantify the true nature of the phenomenon of interest such that
other observations must be wrong. Technical issues when transmitting the data from the
measuring device itself to the measurement system, or the device miss out an occurrence
would compromise the overall quality and integrity of the data.

Abnormal situations occur from time to time and should be present in the data sets. Waves,
wind and current are elements that could influence the operational profile both over a short
and long period of time. These measurements are important to capture the true nature of
the circumstances and should be evaluated with care before filtered out.

3.2.1 Statistical Outliers

Statistical properties from a time series of a measured parameter can be utilized to reveal
outliers. For a measurement that deviates a given number of standard deviations from the
mean could be classified as an outlier. More formal; if a measurement xi � µx + ✏�x or
xi  µx� ✏�x, where µx is the mean and �x is the standard deviation of theo time series of x.
✏ is the number of standard deviations allowed before a measurement is defined as an outlier.

Using statistical properties blindly on a time series should not be considered best practice.
Transient states in the time series where the measure system is changing its nature, a sta-
tistical cleaning scheme is inappropriate if it labels measurements as outliers solidly on a
predetermined deviation (✏) from the mean.
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3.2.2 Smoothing of Data

Fluctuating data could occur due to the presence of environmental disturbance and result in a
time series including noise and thereby a misleading representation of the physical measured
system. Before mining the data and feature extraction, it could be beneficial to smooth the
time series to remove spikes while at the same time preserve the information in the series;
sharp transitions and gradients should be retained if these are intended.

Running mean or moving average (Gu & Zhou 2010) algorithm is useful for reducing fluctu-
ations in short term data series and defined as

ŷk =
yk + yk�1 + ...+ yk�(n�1)

n
=

1

n

n�1X

i=0

yk�i (3.2.1)

Denote that when calculating the successive values, the previous mean value occur in the
sum such that an e�cient algorithm (O(n)) is

ŷi = ŷi�1 +
yi � yi�n

n
(3.2.2)

Running or moving median (Pitas & Venetsanopoulos 2013) is another algorithm that is
useful for the purpose of smoothing the data series with the presence of outliers. Whereas a
running mean would use an outlier value, a running median filter numerically sort O(log(n))
the entries within the window and find the median among these. The algorithm is therefor
slower O(n log(n)) then the running mean, but have di↵erent capabilities.

ŷi = median(yi, yi�1, ..., yi�(n�1)) (3.2.3)

3.3 Missing Values

Missing values often occur in big data sets and can be di�cult to handle. Depending on the
measurement system and how it preprocess the data before publishing, missing values can
appear as a frozen or constant value, or explicit set to zero or NaN. The two latter are easier
to observe, while frozen or constant measurements can compromise the quality of the data if
not taken care of.

For missing values, Frank et al. (2009) describe four techniques on how they should be treated.
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1. Deleting cases with missing values. Delete all attributes from the same time
instant in the time series. Whether this method is applicable depends on the size of
the data set and how frequent missing values occur.

2. Assign the most common value. The missing values are replaced with either the
mean of the existing values or the most probable value if a probability model is fitted
to the existing values.

3. Assign all possible values to the attribute. For an attribute with boolean values
(0 or 1) a duplicate of all attributes at the time instant of the missing value is created
and the missing value is assigned with 0 or 1. For a continuous attribute values this
method is not practical applicable.

4. Interpolate between the known values. Linear interpolation between the start
and stop of the drop-out period. Applicable for continuous processes if the size of the
data set is limited.

3.4 Drifting

Unlike outliers related to error in the measuring device or system, drifting is a phenomenon
that develops over time. Instead of varying randomly about a mean, the mean of the obser-
vations change over time, i.e. µx(t0,t1) 6= µx(t2,t3).

3.5 Visual Interpretation

Visual interpretation of the time series could uncover and reveal both systematic and random
errors (Keaveny et al. 1997) such as outliers, missing values and drifting. Identification of
outliers and missing values from mono variate analysis by statistical analysis is suitable.
For multivariate analysis a scatter plot analysis illustrates drifting, unphysical relations and
allows a subjective evaluation grounded in theoretical principles.

Experience and domain knowledge are key factors in a visual interpretation. Understanding
underlying theories and assumptions in the phenomenon under investigation are equally
important as well developed data cleaning software.
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3.6 Normalization

The range and magnitude of the data varies from attribute to attribute in the data set. For
quantification of physical properties the magnitude of each entry combined with its unit is
necessary to describe the behavior of the system. However, for a learning algorithm, the
magnitude itself can slow down the learning rate if not normalized (Io↵e & Szegedy 2015).

Discrepancy between two variables can lead to faulty interpretation of the variable relation.
When K-means clustering (section 2.4) identifies the Euclidian distance between the entries,
the variables with smaller magnitudes may be masked. Therefore, normalization of the input
data is necessary so that all variables are in the same range and thereby weight. Two common
methods (and suggested by Kotsiantis et al. (2006)) for scaling are

zi =
(zmax � zmin)(xi � xmin)

xmax � xmin
+ zmin (3.6.1)

zi =
xi � µx

�x
(3.6.2)

where zmax and zmin defines the range of the desired output, typically �1  zi  1 or
0  zi  1. µx and �x are respectively the mean and standard deviation of x.

3.7 Cleaning Methodology

Combined all the listed methods and techniques represents a general procedure for data
preprocessing. Depending on the system or process under investigation the preprocessing
methodology must customized to be applicable. For a continuous process such as an for an
operating ship, a proposed procedure would be

1. Identify steady states on the time series. By evaluating the change or variance in
moving window along the time series, steady states can be identified.

2. Data cleaning and smoothing for detection of outliers, signal spikes and noice. Running
median filtering for smoothing the time series preserve sharp transitions and gradients
in the signal, and filter out single outliers (Arce 2005). The running window passes
through entry by entry and replacing the entry itself with the median of the neighboring
entries. The size of the filter window should be adjusted to preserve the properties of
the signal.
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3. Linear interpolation of missing values. Alternatively, remove all attributes on the same
time instant if it not reduce the size the data set by significance.

4. Visual interpretation of a multivariate analysis where known physical relations are
evaluated. E.g observe if the measured power produced by the engine is coherent
with the measured torque on the shaft. Such a multivariate analysis could reveal
irregularities in either the measurement of power, torque or rate of revolution on the
shaft, whereas the univariate analysis of the individual attributes would miss out any
faults.

5. For data sets consisting of multiple variables, whereas some are expressed by a large and
others by a small magnitude, normalization of each variable ensure that the learning
routines not interpreter all variables with the same initial weight.
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Chapter 4

Data Description

This chapter describe the available data used in for this thesis, including their source, format
and amount of data. The previous chapters have been general and an introduction to relevant
theory in terms of data driven prediction and data preprocessing, as well as domain based
theory within naval hydrodynamics.

It is primarily used two di↵erent data sets in this thesis; ship monitoring data from four
sister cruise ships and weather data from di↵erent sources. The ship monitoring data are
measurements from an on-board system on the vessels, whereas the weather data are simu-
lated and interpolated data from the European Centre for Medium-Range Weather Forecasts
(ECMWF), Norkyst800 and Tidetech. All weather data are collected from APIs where the
time and location of the vessels are input features, such that these data sets include the
current weather at the time and place of the vessels.

4.1 Ship Monitoring Data

The four sister cruise ships are equipped with a system which monitors a wide range of
attributes. These attributes are continuously sampling and stores the measurements in a
cloud based system. By use of an API these measurements are available on demand in real
time.

All vessels are equipped the a diesel-electric propulsion system, meaning that diesel engines
and generators produce electricity to the motors. In addition, the auxiliary propulsion system
and hotel operations consume power provided by the generations. Despite being an important
and significant consumer of power and thereby fuel, the auxiliary systems and hotel operations
are not a part of the performance analysis; measurements and attributes related to the main
propulsion system are of interest in this thesis.
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Table 4.1 summarize the relevant attributes from the ship operational data

Table 4.1: Relevant attributes from ship monitoring system

Variable name Unit/Format Comment
Time YYYY-MM-DD HH:MM:SS -
Heading [�] -
Latitude [�] -
Longitude [�] -
GPS speed [kn] Speed over ground
LOG speed [kn] Speed through water
Rate of revolution [RPM] Port and starboard
Thrust [N] Port and starboard
Torque [kNm] Port and starboard
Power motors [MW] Port and starboard
Power engines1 [MW] -
Fuel consumption [L/h] -
Relative wind direction [�] Relative to heading
Relative wind speed [kn] Relative to speed over ground

Other key features about the attributes and samplings are

• Measurements are averaged other a period of 1, 5 and 30 minutes, i.e. there are three
data sets available for each of the four vessels containing all attributes from table 4.1.

• Continuously measurements from January 1st 2018 to February 22th 2019.

• None of the vessels are dry docked during this period, but hull and propeller cleaning
are performed at an unknown frequency and time.

• For confidential reasons the vessels are named Vessel A, Vessel B, Vessel C and Vessel
D in this thesis.

4.1.1 Operational Profile

All four vessels continuously measured all attributes during the thirteen and a half month
which makes out the data sets. However, for the purpose of prediction fuel consumption for
ships in transit, operational states as maneuvering and when in port are less relevant. Figure
4.1 shows the distribution of time the four vessels spend in each state; blue shows time in

12 ⇥ 6.54 MW and 2 ⇥ 4.90 MW.
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port, orange shows time spend on maneuvering and yellow shows time spend in transit state.
The states are defined by the speed over ground criteria given in table 4.2.
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Figure 4.1: Operational profile from January 1st 2018 to February 22th 2019

Table 4.2: Speed over ground criteria for operational state

State Limits [kn]
In port SOG  0.2
Maneuvering 0.2 < SOG  5
Transit 5 < SOG

The observant reader notice that the height of each column varies from vessel to vessel,
indicating that there are missing values among the speed over ground measurements.

4.2 Climate Data

In addition to the onboard measurement system describing internal processes the environ-
mental conditions are in interest in order to quantify the performance. The presence of
currents, waves and wind will contribute to either increase or reduce the necessary power
to obtain a certain speed, hence the need for a precise representation of the environmental
conditions.
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4.2.1 Norkyst800

The Norkyst800 model (Albretsen et al. 2011) from Havforskningsinstituttet simulates ocean
currents, salinity and temperature over a grid resolution of 800x800 meters on di↵erent water
depths in the water column. At each grid point for multiple depths the current velocity is
decomposed in a north (u) and east (v) component with units of m/s for each timestamp
in a serial date format. To reduce the size of the data sets an averaged value of the current
velocities at the surface and on 3 meters depth from July 1st 2018 to August 31th 2018
was utilized. Among the ship monitoring data time, latitude and longitude positions were
available, hence the size of the data sets were reduced to only contain data coinciding with
the time and location of the vessels.

Conversion of current velocities in global north and east components to ship longitudinal
current velocity was done as described in appendix A.3.1. The resulting attributes of the
data set was at the format shown in table 4.3

Table 4.3: Format of Norkyst800 data set

Serial Date Latitude Longitude Longitudinal Longitudinal North East
[s] [�] [�] [m/s] [kn] [m/s] [m/s]
(...) (...) (...) (...) (...) (...) (...)

The model only contain data close to the Norwegian shore, whereas the ships are sailing in
other national and international waters. Hence the need for a second source of weather data.

4.2.2 European Centre for Medium-Range Weather Forecasts -
ECMWF

A secondary source of climate data describing the is obtained from ECMWF. ECMWF pro-
vide analysis and reanalysis for weather for more or less all o↵shore areas in the world. Based
on observation and measurements from di↵erent key locations they simulate the atmospheric
and oceanographic conditions. The trade-o↵ is that these analysis are made on a courser
resolution, i.e. 80x80km on a 6-hourly basis. Attempting to increase the resolution would be
a result of an interpolation in both time and space.

The upside is that ECMWF provide both atmospheric and oceanographic analysis, whereas
Norkyst800 is limited to current only. With that said the oceanographic analysis include
properties of the waves and not current. Thus, the data sets from ECMWF is on the format
as shown in table 4.4.
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Table 4.4: Format of ECMWF data set

Variable name Unit/Format Comment
Time [s] Serial date
U wind component [m/s] Eastward wind component at 10m above sea level
V wind component [m/s] Northward wind component at 10m above sea level
Mean wave direction [�] Spectral mean direction. Zero degree means waves

propagation from north to south. 90 degrees
means wave propagating from east to west

Mean wave period [s] Spectral mean wave period
Significant wave height [m] Defined as 4 times the square root of the area un-

der the wave spectrum or the mean of the 1/3 high-
est waves

4.2.3 Tidetech

A third source of data describing the climate is the data sets provided by Tidetech. In fact,
Tidetech provides a wide range of simulated weather data obtain from di↵erent sources as
well as their own product. Wave data are supplied by the ECEP WW3 model, ocean models
from the Mercator (NEMO) model, atmospheric data from numerous sources (GFS, ECMWF
and CMC) and tidal elevation and currents using in-house developed methods. In addition,
Tidetech provide supplementary simulations such as on ice, temperatures in ocean and air,
humidity and atmospheric pressure, but these are not utilized in this thesis.

Hence the Tidetech data set provide a more detailed product than Norkyst800 and ECMWF
in terms of climate data. There are coinciding data in Tidetech with other sources and an
unknown interpolation in time and space must be conducted to get the full data set. The
format of Tidetech data set is as shown in table 4.5.
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Table 4.5: Format of Tidetech data set

Variable name Unit/Format Comment
Time [s] Serial date
U wind component [m/s] Eastward wind component at 10m above sea level
V wind component [m/s] Northward wind component at 10m above sea level
Mean wave direction [�] Spectral mean direction. Zero degree means waves

propagation from north to south. 90 degrees
means wave propagating from east to west

Mean wave period [s] Spectral mean wave period
Significant wave height [m] Defined as 4 times the square root of the area un-

der the wave spectrum or the mean of the 1/3 high-
est waves

Current magnitude [kn]
Current direction [�] Relative to north. 0 degrees means from north to

south, 90 degrees means from east to west.



Chapter 5

Methodology

This chapter reflects the methodology and the steps involved to predict the fuel consumption
for vessels in transit. It should be by the end of this chapter clear for the reader how the
di↵erent fields of studies in the previous chapters are relevant, and how they contribute to
the solution.

5.1 Preprocessing of Data

Chapter 3 introduced and suggested a general procedure on data preprocessing and chapter
4 presented the available attributes both from the operating ship and the climate data.
Quantifying the quality and evaluate their reliability through uni- and multivariate analysis
are essential for trustworthy result in the end.

Hence a univariate analysis of the attributes in table 5.1 are necessary. To exclude extreme
values from the time series, the steady states are identified from analysis of the rate of
revolution on the propeller’s shaft.

Whereas a univariate analysis could exclude extreme values and missing values from the
time series, it could be di�cult to evaluate whether their values are unphysical or bias. A
multivariate analysis on the other hand could reveal such phenomenons.

Chapter 1 introduced the open water diagram as summary of the characteristics of the
propeller where speed through water, thrust, shaft torque and rate of revolutions were input
variables (density of the water and propeller diameter are constants). This summary would
therefore reveal whether any of these variables deviates from their expected values relative
to the other variables.
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Table 5.1: Summary of the preprocessed univariate attributes

Variable name Unit/Format Comment
Speed [kn] Speed through water and speed over ground
Wind [kn] Attribute analysis of wind direction and

speed from operational data, ECMWF and
Tidetech

Fuel [L/h] Fuel consumption
Power [MW] Power produced by the engines/generators
Power [MW] Power consumed by the motors
Torque [kNm] Torque measurements on the shaft
Thrust [kN] Thrust measurement

From mechanical engineering the relation between fuel consumption and provided power
from a diesel engine is familiar. Studies of the e�ciency of such engine evaluate the ratio
between the delivered power (or torque) and the potential energy in the fuel. As the open
water diagram summary the characteristics of the propeller, a specific fuel consumption curve
summarize the e�ciency of a combustion engine as a function of the engine thrust.

From a hydrodynamic point of view, the speed through water are usual more relevant for
the study than the speed over ground. Whereas the speed over ground are measured by an
accurate and well-developed GPS system, the speed through water measurement devices are
considered less reliable. In theory, the di↵erence between speed through water and speed
over ground should reflect the current, both ocean and tidal current. A comparison between
the measured current on the vessels and the simulated currents would to a certain degree
reflect whether the speed through water measurements are reliable. For deep water voyages1

the simulated current and measured current are expected to coincide more than closer to
shore where local di↵erences and lack of resolutions in the simulations could compromise the
solution. Both the Norkyst800 and Tidetech model are suitable for the purpose of validation
of the speed through water measurements.

Cross validation of the climate data and the coinciding attributes are of interest. As men-
tioned in chapter 4, the Tidetech data sets are a merge of di↵erent data sources and sim-
ulations where conventions are di↵erent. Conventions and reference frames are defined in
appendix A.3.1.

1Deep water in this context means voyages far away from shore and coastlines
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Table 5.2: Summary of the multivariate analysis

Variable name Involved variables
Current Speed through water and speed over ground. Compari-

son with Norkyst800 and Tidetech
Propeller characteristics Open water analysis: thrust, torque, rate of revolutions

and speed through water
SFC Specific fuel consumption: fuel consumption and engine

thrust

5.2 Decomposing Resistance

With the available attributes described in chapter 4, di↵erent methods for prediction of
fuel consumption appears and are excluded. Suitable methods are also dependent on the
preprocessing results and the quality of the measurements. The benefit of having reliable
thrust measurements allows a resistance decomposition on the form

1. Frictional resistance: Cf = f(RN), �Cf = f(Vs, H, Cf )

2. Air and wind resistance: CAA = f(Vs, �rw)

3. Residual resistance: Cr = f(Vs, Hs, Tp,  , �w, TAP , TFP )

4. Total resistance: CT = f(T, Vs)

The third point is however challenging to find analytically or empirically. A method is to
rearrange the problem and find the residual resistance in the same manner as in scaling from
model to full size resistance. Equation (1.1.11) is applicable for the same purpose, now in a
di↵erent scenario.

As indicated in the same point, the residual resistance is a function of several parameters, all
of them with di↵erent level of accuracy, randomness and variation. Di↵erent methods and
approaches on how to describe the variation and randomness are given in table 5.3.

Method 1 takes advantage of the ISO15016 annex D (STAWAVE1) procedure for determining
the added resistance due to waves. The procedure assume limited wave heights and relative
wave direction as described in table 5.3. Note that the procedure accounts for the added
resistance due to waves, such that the wave generation from the vessel itself is not included.
Hence the need for a residual component that reflects the resistance from the wave system
initiated by the vessel, Cr0.

Method 2 is an extend of method 1. Whereas method 1 is limited by the wave height and
direction, method 2 exploit the excluded sea states from method 1 by use of a data driven
machine learning algorithm.
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Method 3 do not include the ISO-standard like the two first methods did. The residual
resistance is still assumed to be a sum of the calm water wave resistance and the added
resistance due to waves, but the contribution from waves are solidly described by a data
driven machine learning model.

Method 4 tends to describe the residual resistance by the use of machine learning. In contrast
from the first three methods, method 4 do not separate the calm water wave resistance from
the resistance added resistance due to waves.

Method 5 is an extend of method 4, and exploit the fact that the speed through water could
be a to significant weight in a learning algorithm. This method use a data driven machine
learning model to describe the error between the predicted and true total resistance as a
function of the sea state. Hence method 5 implicitly assume that the residual resistance
components (as in method 1-3) should be considered independently.

Table 5.3: Di↵erent approaches for determining the residual resistance

Approach2

Method 1 Cr = Cr0 + Cr1

Cr0 = f(Hs ! 0, Tp ! 0, stw)
Cr1 = ISO15016 = f(Hs < 3m, �rw < 45�)

Method 2 Cr = Cr0 + Cr1 + Cr2

Cr0 = f(Hs ! 0, Tp ! 0, stw)
Cr1 = ISO15016 = f(Hs < 3m, �rw < 45�)
Cr2 = ML(Hs > 3m, �rw > 45�)

Method 3 Cr = Cr0 + Cr1

Cr0 = f(Hs ! 0, Tp ! 0, stw)
Cr1 = ML(Hs, Tp, �rw, stw)

Method 4 Cr = ML(Hs, Tp, �rw, stw)

Method 5 Cr = ML(Hs, Tp, �rw, stw)
C

e
r = C

pred
T � C

true
T

C
e
r = ML(Hs, Tp, �rw)

2ML: Machine learning
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5.3 Predicting Resistance

By assuming at this stage that a su�cient model exist for the residual resistance component
as a function of the parameters listed in the previous section, predicting the total resistance
will consist of adding the di↵erent resistance components together. From the operational
data, the speed through water and heading are the only two attributes required, while from
the climate data waves and wind parameters are required.

At this point it should be clear for the reader how the analogy with training set (chapter 2)
coincide with decomposing the resistance to estimate the residual resistance and composing
the resistance components with the test data sets.

5.3.1 Measuring Performance

There are multiple methods to quantify the performance of the trained model; visual inter-
pretation of the time series of the predicted and true target and by statistical properties such
as MAE, MAPE, MSE, NMSE and REP Ghelardoni et al. (2013), Elattar et al. (2010) i.e

MAE =
1

N

NX

i=1

|yi � ŷi| (5.3.1)

MAPE = 100
1

N

NX

i=1

|
yi � ŷi

yi
| (5.3.2)

MSE =
1

N

NX

i=1

(yi � ŷi)
2 (5.3.3)
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NX
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2 �2 =
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N � 1

NX

i=1

(yi � ȳ)2 (5.3.4)

REP = 100
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n
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i=1

(yi � ŷi)2 (5.3.6)
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5.3.2 Bootstrapping of Model

Another method to evaluate the performance is to perform a so called bootstrapping of the
model. The idea is to generate synthetic data and observe how the model responds to the
data. This is somehow similar to Monte Carlo simulations in terms of generating data to test
a model, despite that in bootstrapping some attributes are predetermined whereas others are
their true value.

For the purpose testing the models in method 2-5, bootstrapping is performed by observing
how the models responds when e.g the wave height in the testing set is overwritten to a fixed
value. Hence the variation in residual resistance should be a result of varying wave period,
relative wave angle and speed through water. This method could reveal whether the models
responds as expected to a change in the inputs.

5.4 Thrust to Fuel Consumption

At this stage it is assumed that the resistance is su�ciently described by empirical and
data driven methods such that the remaining part is to relate the predicted thrust to fuel
consumption. There are multiple methods and approaches to do this conversion; follow the
energy transformation from thrust, through the shaft torque, to the power from the motor, to
the power from the engine and the coherent fuel consumption for the given engine power based
on the specific fuel consumption. All these steps require accurate and reliable measurement
in order to reduce the propagation in variation.

5.4.1 Thrust to Motor Power

Relating provided thrust from the propeller to the torque on the shaft is dependent on the
characteristics of the propeller. These characteristics are described by the open water diagram
where speed through water and rate of revolutions are input variables.

Preceding from torque, motor power is the following measurement of the energy transforma-
tion. Determining the motor power from torque follows known relations, either from (1.2.21)
or by the more general torque - power relation3

P =
2⇡nQ

⌘m
(5.4.1)

3Note: motor power P refers to the consumed power by the motor, hence the e�ciency term ⌘m.
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5.4.2 Motor Power to Engine Power

For these diesel-electric cruise vessels, the motor power (P ) and engine power (PD) would
deviate significantly due to the consumed power from the hotel and other auxiliary power
consuming processes. However, quantifying the auxiliary power consume by physical relations
is not suitable nor accurate, hence a mean di↵erence between the motor and engine power
would represent this consume, i.e.

Pa = PD � P (5.4.2)

Major varying auxiliary power consuming processes on a cruise vessels should be accounted
for when using equation (5.4.2) to reduce spread and randomness in the prediction. Such
processes could be production of fresh water (reverse osmosis) and air-conditioning in warm
climate, which are dependent on external factors related to the geographical location.

5.4.3 Engine Power to Fuel

From section 5.1 the specific fuel consumption relations were established with the intension
of serving the purpose of relate engine power to fuel consumption. Depending on the result
from the multivariate analysis the SFC curve could be established from operational data, or
from documentation from the producer of the engines.
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Chapter 6

Data Analysis

This chapter summarize the results of a thorough data analysis of measured attributes on
vessel B with the 5 minutes average data set. Simulated entries from ECMWF, Norkyst800
and Tidetech are used for verification purposes.

The structure and format of this chapter is similar to the equivalent chapter in the project
thesis (Wahl 2018), but the content and analysis is conducted again with new techniques and
thereby some new conclusions.

6.1 Data Cleaning, Smoothing and Steady State Iden-
tification

Ensuring data integrity before mining and variable analysis, filtering the data for noice and
error and smooth out transitions are beneficial. Each variable in the data set where treated
according to point 1-3 in section 3.7; a running median filter with window length of 5 remove
spikes and noice, while a running variance window of length of 5 identify steady states (RPM-
attribute were used for this purpose). Missing values within each steady state was linearly
interpolated between the neighboring entries when the number of consecutive missing values
not exceeded 3 entries (15 minutes). For missing values over a longer period of time, all
measurements at these time stamps were excluded.

As a result, the RPM time series on figure 6.1 shows the filtered signal, including the steady
states regions. Note how the time series miss out some values after noon May 18th where a
consecutive period of NaN values occurred and were removed from the data set.
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Figure 6.1: Identification of steady states along filtered RPM time series

6.2 Univariate Attribute Analysis

6.2.1 Speed

Measurements of speed through water and speed over ground are analyzed separately and
in combinations. The vessel measure speed over ground using an onboard GPS system and
is initially assumed to a su�ciently accurate for the purpose of this thesis. Measuring the
speed through water on the other hand is traditionally considered more di�cult to perform
with a high level of accuracy.

Figure 6.2a and figure 6.2b shows the distribution of respectively speed over ground and
speed through water after filtering and cleaning. If any in the raw data, the figures shows
that outliers are removed or smoothed out in the time series. Among the remaining steady
state data, the figures indicate that the most common cruising speed is in the range of 15-18
knots (SOG).

However, it seems like there are di↵erences between the distributions in figure 6.2; speed
through water measurements shows a denser and more narrow distribution around 17 knots
than speed over ground, and the speed over ground measurements exceed 20 knots. Hence
a more informative relation is shown in figure 6.3, where the filtered (figure 6.3a) and raw
(figure 6.3b) speed over ground is illustrated in a scatter plot agains speed through water.

The di↵erence between speed through water and speed over ground should reflect the current1,
which is shown in figure 6.3 by the color index of the scatters. In addition to the scatter plots,

1Current = STW - SOG
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(a) PDF of speed over ground (b) PDF of speed through water

Figure 6.2: Velocity distribution

a linear regression line is to be found in both figure 6.3a and figure 6.3b. When operation in
the absence of current, the speed over ground and speed through water measurements should
be equal and upstream operation should indicate a positive current. The regression line
indicate that the vessel operates equally (based on the regression coe�cients) in an upstream
and in a downstream environment. Based on this analysis there are no reason to suspect any
bias error.

Another aspect that emerge from figure 6.3a is the alleged increasing current with increasing
speed measurements, i.e. the spread between SOG and STW are significantly larger for SOG
> 10 knots. The most extreme current measurements indicate both up- and downstream
current at ⇠ 3 knots, which should be further evaluated by comparison with independent
sources at the time and location of interest.

Norkyst800

When comparing the measured current with the simulated current in the Norkyst800 model,
the result do not show a strong correlation between the entries, as figure 6.4 indicate. The
Norkyst800 measurements are (as described in section 4.2.1) converted relative to the heading
such that the longitudinal current is plotted in figure 6.4 against the measured current. Hence
the transverse current component is neglected.
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Figure 6.3: Scatter plot of SOG and STW

Aug 17 Aug 18 Aug 19 Aug 20 Aug 21 Aug 22 Aug 23

2018   

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
u
rr

e
n
t 
[k

n
]

Current measured from vessel and longitudinal current from Norkyst800

Norkyst800

Measured current

Figure 6.4: Measured current from vessel and longitudinal current from Norkyst800

The available data from Norkyst800 is limited to less than a week (the time the vessel were
within the range of the model), and spend during that week a significant amount of hours in
port. However, what is not shown in figure 6.4 is that in the time period around August 17th,
the vessel sailed in open water between the British Islands and the west coast of Norway.
In this period of time, the measurements and simulated entries are fairly similar in terms of
magnitude and direction (up- or downstream). Whereas from August 20th to August 22th
the vessel sailed in sheltered water along the Norwegian coast and the di↵erences are more
frequent and significant. Local di↵erences in e.g. tidal water is a possible explanation to the
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deviating current measurements.

As a result, the Norkyst800 model could neither verify nor contradict whether the speed
through water measurements are reliable and further analysis is required.

Tidetech

The second data set containing simulations regarding current is the Tidetech data set. Unlike
the Norkyst800 model, Tidetech provide simulations all over the world and is therefore more
applicable for purpose of comparing the measurements from a world wide sailing vessel.

Figure 6.5 shows the measured current from the vessel and the simulated longitudinal current
from Tidetech over a two week time period. The results are over this particular period more
coinciding than for the Norkyst800 model. Short term di↵erences occur at all time, while the
longer trends are more similar. Note how the extreme values ( > 3 kn) measured from the
vessel are of significantly larger magnitude than the simulated values at the same time and
place.

The measured current seems to be more fluctuating and could benefit of being smoothed
through a stricter low-pass filter than the running median filter with length of 5 entries.
However, all entries in the data set are a mean value over the previous 5 minutes, hence
applying another stricter filter be obtain a better fit with the Tidetech model could potentially
compromise the integrity of measurements.
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Figure 6.5: Measured current from vessel and longitudinal current from Norkyst800

As a result, there are reasons to believe that the speed through water measurements are
somewhat reliable. Further analysis including the speed through water measurements should
also evaluate the sensitivity of using the measured or simulated values.
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6.2.2 Wind

The wind is quantified by the direction and magnitude by an onboard measuring device.
Hence the measured properties are the relative direction relative to the bow and relative to
the speed over ground. Both these features are illustrated in figure 6.6a where the angular
position describe the relative angle to the bow, and the radial position (and scatter color)
describe the relative wind speed. The angular position refers to the source of the wind,
meaning that a relative wind direction of 90 degrees implies that the wind is approaching
from the starboard side.
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(a) Relative wind direction and speed (b) Measured wind direction relative to bow

Figure 6.6: Measured wind properties

Figure 6.6b illustrate an important aspect from the wind direction measurements; it seems
like head wind in the range of ±5 degrees rarely occur, which is questionable. Outside this
blind zone there are frequent occurrences for all angular positions, indicating that measuring
device have the required resolution to measure head wind.

A more likely explanation is the location of the measuring device itself. Ideally the device
should have been mounted such that the presence of other physical objects not disturb the
wind flow, e.g in the top of a mast. However, figure 6.6b indicate that this is not the case for
this device. Consequently, there are reasons to believe that the measured wind direction are
compromised and the wind properties should be described by either ECMWF or Tidetech.
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Wind from ECMWF and Tidetech

By comparison with the hindcast data from ECMWF and Tidetech the wind assumption
of unreliable wind measurements were to a degree verified. After conversion to the same
reference frame and sign convention the wind hindcast from the two sources are showed in
figure 6.7 and figure 6.8 for January 2018. The figures show a strong correlation between
the two hindcasts, both with respect to the direction and speed, whereas the measured wind
properties varies frequently and randomly.
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Figure 6.7: True wind direction from ECMWF, Tidetech and vessel
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Figure 6.8: True wind speed from ECMWF, Tidetech and vessel

Whether ECMWF or Tidetech are more accurate is di�cult to determine with the given
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data. The important result is that when wind properties are involved in further analysis the
hindcast data are the preferred data source.

6.2.3 Thrust

Equivalent to the total resistance experienced by the vessel is the thrust provided by the
propeller. Thus, a reliable measurements of the thrust is valuable for quantification of hy-
drodynamic performance.

The vessel with its twin screwed propulsion configuration measure the thrust on both port
and starboard side which is plotted against each other in figure 6.9. The color index on the
scatter represents the rate of revolutions and the fitted curve shows the best linear regression
between port and starboard thrust.

While the vessel sails on a steady course and heading and not need to compensate for any
environmental external forces, the thrust on port and starboard side should be similar (under
the assumption that the hull is symmetrical and no other geometrical properties cause a
turning moment).
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Figure 6.9: Port and starboard thrust scatter plot with regression line: PSthrust =
1.194⇥SBthrust + 25.14

Figure 6.9 shows that there are irregularities between the thrust measurements where the port
side measurements are consistently of larger magnitude than for the starboard side. Further,
the regression coe�cients shows that extrapolation to zero thrust at starboard side gives a
port side thrust of 25.15 kN. In addition to the deviation in the zero point extrapolation, the
port side thrust is increasing with a rate of 19.4% faster than the starboard side.
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Evaluation of how the port and starboard thrust measurements deviates shows a correlation
with the rate of revolution2, as illustrated in figure 6.10a. The figure includes a least square
polynomial regression line of second order with regression coe�cients as given in table 6.1
where x = RPM.

By correction of the port side thrust according to the regression coe�cients in table 6.1
the measurements shows in figure 6.10b a more linear correlation with a minor bias in the
extrapolation.
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Figure 6.10: Error analysis of thrust measurements

Table 6.1: Regression coe�cients from deviation analysis of thrust measurements

Format ax2 + bx + c
a 0.005
b 0.08
c 6.69

Figure 6.10 and the analysis of the thrust deviation assume that the port side measurements
are too larger and that starboard side is more reliable. There are no aspects in this analysis
that support this assumption, hence the port side could be the benchmark for thrust mea-
surements. Further analysis is required (section 6.3.1) and depending on the findings, the
error analysis could be performed with respect to the port side measurements if necessary.

2The same correlation is found with the speed through water, torque, motor power etc.
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6.2.4 Torque

Next after thrust, torque is the second measure of energy conversion from speed through
water to hydrocarbons in the fuel.

Figure 6.11 shows the correlation between port and starboard side torque including a linear
regression line. Based on these regression coe�cients, there are no reason to believe that the
measurements have some bias or other random error.
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Figure 6.11: Port and starboard torque scatter plot with regression line: PStorque =
0.998⇥SBtorque + 4.72

6.2.5 Motor Power

Motor power and shaft torque are closely related as both are a measure of how the energy
transform over the motor from electrical power to mechanical torque. The consumed power
of the port and starboard motor are shown in figure 6.12. Note how the linear regression
line indicate a strong correlation between port and starboard side, with a minor extrapolated
bias and spread.

The vertical spread from the regression line could either be related to faults in the mea-
surements, or to physical properties as maneuvering, external environmental forces or even
a non-symmetric hull. Figure 6.13 shows how the torque and power on port and starboard
side respectively are correlated through relation (5.4.1).

Figure 6.13 shows significantly less vertical spread than when evaluating the power consume
from port and starboard side at the same time instant. Thus, it is reasonable to believe that
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Figure 6.12: Port and starboard motor power scatter plot with regression line: PSP =
1.00⇥SBP + 0.08

both the power, torque and rate of revolution measurements are all reliable. The figures
also illustrate that further preprocessing with respect to detection of outliers are unnecessary
for the involved attributes, even thou a handful of entries deviates substantial. The minor
deviation from the mean line illustrate that the measurements are in fact measured, not
calculated from known physical relations.

The slope of the regression line in figure 6.13a and figure 6.13b illustrates the e�ciency of
the motors; 2⇡nQ/P ⇡ 0.96. An e�ciency in the range of ⌘m = 0.96 for an electrical motor
is not unlikely (Ådnanes 2003).

As a result, both torque and motor power measurements are considered reliable due to the
correlation between the attributes when separating port and starboard side. Hence, the
vertical spread in figure 6.11 and figure 6.12 were explained by external factors and not
faults in the measurement system.

6.2.6 Engine Power

Unlike the motor power which produce power for propulsion purposes, the main engines
produce power for all systems and operations on the vessel. This include the propulsion
as well as operation of the hotel, auxiliary propulsion systems, fresh water production, air
conditioning etc. Hence the engine power could be analyzed relative to the motor power by
equation (5.4.2).

Figure 6.14 shows how the engine power varies relative to the motor power. The scatter
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Figure 6.13: Torque - motor power correlation

indicate that there is an underlying change happening when the engine power increase while
the motor power stays the same, hence there are two linear parallel correlation between the
power measurements. When adding the sea temperature represented by the color index,
another correlation is illustrated. It seems like the increase in produced power by the engine
is partly described by the increase in environmental temperature.

By separating the high (� 17.5�C) and low temperatures, linear regression shows the addi-
tional power consumed as a function of environmental temperature. When sailing in hotter
climate, the hotel and other auxiliary processes consume 4.11 MW, while in colder climate
3.53 MW is the mean consume. Thus, there are no reason to believe that the engine power
measurements are unreliable, but the fraction of produced power spend for propulsive pur-
poses are dependent on environmental factors.
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Figure 6.14: Engine power relative to motor power

6.3 Multivariate Analysis

6.3.1 Propeller Characteristics

As seen in section 1.2.3, an open water diagram is a result of combination of multiple variables
related to the propeller, i.e. thrust, torque, rate of revolutions and speed through water.

Among these variables the preliminary analysis of thrust revealed some irregularities in terms
of whether the port or starboard had a bias o↵set. Based on the thrust measurements itself,
it was not concluded which measurement were more likely to represent the most accurate
thrust. However, since the torque measurements were found to be reliable, the same relations
as for the open water diagram allows a more thorough study of the measured characteristics.

Figure 6.15 shows the open water diagram for respectively the port and starboard propulsion
system based on the operational data points. Unlike the experimentally established open
water diagram in figure 1.2, the operational diagram shows a significantly narrower range of
advance ratio along the horizontal axis, i.e. the ratio between speed through water and rate
of revolutions do not change significantly.

There is an noticeable di↵erence between figure 6.15a and figure 6.15b and that is the magni-
tude of the e�ciency ⌘0. The underlying factor that cause this di↵erence is the thrust, which
has been discussed previously. Observe how the e�ciency in figure 6.15a are in range of 0.8
and seems to be greater than 1 at certain high advance ratios. Compared to Wageningen
B-series open water diagram (figure 1.2) where the maximum e�ciency is 0.8, the starboard
side operational open water diagram (6.15b) is more similar. As a result, the starboard side
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thrust measurements are considered more reliable, and the port side measurements should
be corrected after the result of error analysis in section 6.2.3.
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Figure 6.15: Open water diagram from operational data

The vertical spread in thrust and torque coe�cients in figure 6.15 is of interest, as a change in
these coe�cients at the same advance ratio should indicate that the thrust or torque varies
independently of the rate of revolutions. For a controllable pitch propeller this would be
natural, but that is not the case for these vessels. However, as illustrated on figure 6.16
the vertical spread is a result of a minor part of the measurements; the mean and standard
deviation are µKT = 0.203, �KT = 0.013. Thus, it is more likely that the spread is caused by
some noice and uncertainness in the measurements.

6.3.2 Specific Fuel Consumption

Since the engine power was found to be reliable, the credibility of the fuel consumption
measurements could be verified by the use of a specific fuel consumption curve. Plotting these
curves from the operational data and comparing with reference curves from the literature
(Mollenhauer & Tschoke 2010) allows such a verification.

Figure 6.17 show the SFC curves for each of the engines. On the vertical axis the is ratio
between mass flow of fuel and produced power (ṁf/P ) and horizontal axis if the percentage
of maximum engine load3. The majority of sampling points on DG1, DG3 and DG4 follows

3DG1 and DG4 are of equal size while DG2 and DG3 are equal.
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Figure 6.16: Open water diagram histogram for starboard side

what seems to be a trend line similar to what is found in the literature, with some scatter,
while DG2 on the other hand show less convincing reliability. On ⌘ = 0.8 DG1 and DG4
shows a SFC = 220 kg/MWh and DG3 a SFC = 195 kg/MWh.

As a result, these SFC values on ⌘ = 0.8 represents the fuel consumption to a satisfactory
degree and will be used for further analysis. Hence the fuel consumption for propulsive
purposes can be found by evaluating the consumption based on motor power and varying
hotel and auxiliary process consumption can be neglected.
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Figure 6.17: Specific fuel consumption curves for each of the four diesel generators

6.4 Summary of Data Analysis

The qualitative study of the data shows promising results and form a solid basis for further
data mining and applications.

Using a running median filter demonstrated powerful properties during cleaning and smooth-
ing of time series. Measurements of the speed through water were concluded reliable after an
extensive data acquisition including both Norkyst800 and Tidetech. From a hydrodynamic
point of view reliable speed through water measurements are valuable as it represents the
operational environment more precise than speed over ground measurements.

Wind measurements from the vessel were found to be unreliable. Apparently the vessel never
experienced head wind in the range of ±5 degrees which seemed odd. After comparison with
simulated wind data from ECMWF and Tidetech it was concluded that the simulated data
should be used to represent the wind instead of the measured parameters.

A bias error was found in the thrust measurements. A correction as a function of the RPM was
suggested such that the port and starboard measurements were consistent. By establishing
the open water diagram from the operational data the starboard side was concluded the most
reliable such that for further use the port side should be corrected, alternatively the total
thrust assumed to be two times the starboard measurement.

Torque, motor and engine measurements were all found to be reliable, both on port and
starboard side. Hotel and auxiliary power consume were uncovered by evaluation of the
di↵erence between motor and engine power, where an environmental temperature dependency
was found.
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Fuel consume measurements showed a tendency to be fluctuating and less reliable. After a
study of the operational SFC curves it was concluded that a constant should be used for
further analysis, which allows a study of fuel consumption for propulsive purposes only.
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Chapter 7

Resistance and Fuel Prediction

7.1 Frictional Resistance

As discussed and assumed in section 1.1.2 the frictional resistance is a function of the Reynolds
number, meaning the speed through water, length between the perpendiculars and the kine-
matic viscosity. In addition, the roughness on the hull paint add contribute to some added
resistance, which were discussed in section 1.1.3. This also implies that the frictional resis-
tance is angular independent, such that it contribute with a resistance component against
the heading.

From the ITTC friction line, equation (1.1.3), the frictional coe�cient decrease with increas-
ing Reynolds number and is illustrated in figure 7.1. With increasing Reynolds number the
e↵ect of roughness occur and is illustrated by the orange line in the same figure. This is in
the same range at for the vessels, meaning that the frictional resistance is fairly constant at
Cf +�Cf = 1.6 · 10�3.

79
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Figure 7.1: ITTC’57 friction line

7.2 Air and Wind Resistance

As the onboard wind measurements were found to be unreliable, it was concluded that the
wind properties must be described by either the ECMWF or Tidetech data set.

After conversion from true to relative reference frame the resistance from caused by air and
wind is presented in figure 7.2. It is assumed that the resistance is symmetric along the
center line, such that the figure illustrate the resistance in the range from 0 to 180 degrees.
The radial position represents the resistance in newton, while the color index represents the
relative wind velocity. Further, the figure indicate that the e↵ect of wind decrease significantly
for relative angles larger than 30 degrees.
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Figure 7.2: Wind resistance as a function of relative wind

7.3 Residual Resistance

With an estimate of the frictional resistance and the wind resistance, residual resistance
represent a major contributor to the total resistance that should be quantified. However, as
indicated in chapter 1, there are no generic accurate method to predict the residual part other
than isolating the remaining resistance from the total when frictional and wind resistance
are subtracted.

Chapter 5 described five di↵erent approaches on how to quantify the residual resistance.
The first three approaches assume that the residual resistance is best quantified by isolating
resistance added by the wave system generated by the vessel and the added resistance due
to incoming waves.

7.3.1 Method 1

Figure 7.3 shows the resulting residual resistance coe�cient as a function of the significant
wave height Hs and the mean wave period Tp. The surface in the same figure is a third order
polynomial best fitting surface from the measured coe�cients. The red line at Cr(Hs =
0, Tp) = 2.0 · 10�3 is a mean value established from visual interpretation where the surface
intersect with (Hs = 0, Tp). Thus, Cr0 = 2.0 · 10�3 represents the resistance due to waves
initiated by the vessel, or the wave resistance in calm water.

In theory, the calm water wave resistance should converge to the same value independently
of whether Hs ! 0 or Tp ! 0 since both represents calm water. However, from the fitted
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surface in figure 7.3 this is not the situation where intersection Cr(Hs, Tp = 0) seems to vary
a lot. The surface do not reflect the variation of Cr, but is an unfortunate result of fitting
the surface to min(Tp) ⇡ 3s where extrapolation not is suitable.

Figure 7.3: Regression of residual resistance as a function of Hs and Tp

With the calm water established at Cr0 = 2.0 · 10�3, method 1 assume that the added resis-
tance due to waves is calculated accordingly to the ISO15016 annex D standard (STAWAVE1).
As described in table 5.3 the procedure is limited by relative wave angle and significant wave
height. Thus, the test cases are limited by these criteria.

Figure 7.4 shows how method 1 performed in calculating the total resistance relative to
the true thrust. By the color index there is clear that the e↵ect of waves are present,
as the predicted and true resistance increase with increasing wave height. However, the
vertical spread (di↵erence between the predicted and true resistance) is significant and varies
randomly.
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Figure 7.4: Testing results from method 1

7.3.2 Method 2

Method 2 is an extend of method 1, where a machine learning model is trained to predict
the added resistance due to waves beyond the limitations of method 1. The input features to
the training model are the significant wave height, return wave period, relative wave angle
and speed through water, whereas the target is the total measured resistance corrected for
friction and wind resistance. By some trail and error the network that performed best had
the properties as given in table 7.1. The results of the trail and error are shown in figure 7.5
where the mean squared error between predicted and true error is plotted as a function of
the total number of neurons in the network.

Table 7.1: Properties of neural network, method 2

Property Value/Format
# input layers 1
# input neurons 4
# hidden layers 2
# hidden neurons 31
Kernel function Sigmoid
Training algorithm Levenberg-Marquardt1

# rows in training set 606 (70%)
# rows in validation set 130 (15%)
# rows in test set 130 (15%)

1The algorithm use a early stop method to prevent overfitting
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The training of the neural network is quantified by how the MSE develop as a function of
total number of neurons in the network in figure 7.5. When exceeding 20 neurons, additional
neurons do not seem to reduce the error as it has converges to a MSE ⇡ 0.05 · 10�7. Figure
7.6 shows how the MSE develops as a function of total number of neurons in the network
when predicting with the testing data set. The error increase for all networks with more than
10 neurons.

The available training data is given in appendix B, which consist of a limited number of
observations (⇡ 2000). Another aspect of the training set is the variation among the samples
i.e. the sample space is limited. This could be unfortunate if the model would have to
extrapolate beyond the training sample space.

As a result, method 1 and 2 do not show convincing prediction precision, but both STAWAVE1
and neural networks shows potential in terms of detecting the added resistance do to waves,
but are not su�ciently accurate. The performance parameters for method 2 are found in
table 7.2
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Figure 7.5: MSE as a function of neurons in
network for training set, method 2
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Figure 7.6: MSE as a function of neurons in
network for testing set, method 2

7.3.3 Method 3

From the findings in the previous attempts on estimating the residual resistance, the use
of neural networks will exploited further. By use of an alternative training algorithms,
bayesian learning algorithm (Burden & Winkler 2009, MacKay 1992, Foresee & Hagan n.d.),
the prediction could improve. In addition, a new prediction model is introduced, namely
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Table 7.2: Performance coe�cients, method 2

Neural network
Levenberg-Marquardt

MSE (10�6) 1.72
MAPE (%) 15.15
NMSE 7.48
RMS (10�3) 1.3
REP (%) 31.21

a Gaussian process regression which instead of fitting a weight and bias to a neuron fits
a probability distribution to relate the features to the target. This means that the three
machine learning models used in method 3 are as given in table 7.3

Table 7.3: Properties of machine learning algorithms, method 3

Neural network Neural network Gaussian process regression
Training algorithm/kernel function Levenberg-Marquardt Bayesian regularization Exponential
Training/Validation/Test ratio [%] 70/15/15 70/15/15 70/15/15

Development of the neural networks are the same as in method 2; the total number of neurons
are increased until the MSE on the training set have converged. Figure 7.7a shows how the
precision increase by the increasing number of neurons in the network for the Levenberg-
Marquardt training algorithm, and it seems like there is no significant increased precision
when exceeding 140 neurons. Figure 7.7b on the other hand shows another behavior for
increasing number of neurons; more than 40 neurons to not influence the MSE significantly.
Despite a more stabile development of MSE in for the Bayesian regularization algorithm the
MSE value have converge to a larger value then the Levenberg-Marquardt algorithm.

Testing method 3

As seen in chapter 2, measuring the goodness of a regression model only on the mean squared
error value could be dangerous if a better fit is caused by overfitting. Even though figure
7.7a indicate that more neurons are better the models should be tested with the testing data
set.

Figure 7.8 shows a clear tendency of overfitting for the LM algorithm and substantiates the
assumption that 200 neurons in a network with four input features and one output is too
complex. The figure shows that approximately 40 neurons are suitable - independently of
training algorithm - for the purpose of describing the variation in residual resistance. More
neurons increase the mean squared error.



86 CHAPTER 7. RESISTANCE AND FUEL PREDICTION

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3
10

-7

(a) Levenberg-Marquardt training algorithm
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(b) Bayesian regularization training algorithm

Figure 7.7: MSE as a function of neurons in network for training set, method 3

Table 7.4 summarize the performance parameters from method 3 where the bold numbers in-
dicate the best observation per parameter. The neural network with a Levenberg-Marquardt
training algorithm perform better at most points, while the di↵erence between GPR and
Bayesian regularization algorithm is neglishable, but with an edge to the neural network.

Table 7.4: Performance coe�cients, method 3

Neural network Neural network Gaussian process regression
Levenberg-Marquardt Bayesian regularization Exponential

MSE (10�7) 5.62 8.65 9.00
MAPE (%) 11.28 10.99 10.57
NMSE 0.71 2.66 2.66
RMS (10�4) 7.49 9.30 9.48
REP (%) 16.19 20.69 21.09

7.3.4 Method 4

Instead of separating the residual resistance into calm water wave resistance and added
resistance due to waves, method 4 treat the residual resistance as one. For practical purposes,
this means that Cr0 from method 1 is neglected and data-driven methods are left to describe
the residual resistance by Cr = f(Hs, Tp, �rw, stw).

The change in the initial assumptions means that the models from method 3 not are applicable
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Figure 7.8: MSE as a function of neurons in network for testing set, method 3

and they must be retrained. The mean squared errors as a function of the total number of
neurons in the network are plotted in figure 7.9. The shapes of the plots are similar to what
in seen in figure 7.7 (MSE for method 3) and the accuracy increase with increasing number
of neurons for LM algorithm and is more stabile when using BR.

Testing method 4

Training networks and evaluating their performance and accuracy by MSE have been shown
unfortunate and testing is crucial. Figure 7.10 illustrates the same behavior as seen in method
3; overfitting occur when the network exceed approximately 60 neurons. At 40 neurons the
testing set perform at its best, MSE ⇡ 0.8 ·10�6, which is more or less the same as in method
3.

Table 7.5 summarize the performance parameters from method 4 where the bold numbers
indicate the best observation per parameter. The Levenberg-Marquardt learning algorithm
had the most accurate prediction at the measured parameters, with a small margin. The
Gaussian process regression model proves to by less applicable for this particular purpose2.

Based on the performance parameters in method 3 and 4, there are for all practical purposes
no di↵erence between the two. Anyhow, neural networks proved to outperform GPR in this
particular study.

2Training a model depends on initial seed numbers, such that these results and thereby conclusion could
change if training was repeated (Lera & Pinzolas 2002). Hence a series of training sessions with di↵erent
seed numbers are recommended.
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(a) Levenberg-Marquardt training algorithm
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(b) Bayesian regularization training algorithm

Figure 7.9: MSE as a function of neurons in network for training set, method 4

Table 7.5: Performance coe�cients, method 4

Neural network Neural network Gaussian process regression
Levenberg-Marquardt Bayesian regularization Exponential

MSE (10�7) 6.27 7.47 9.06
MAPE (%) 12.65 10.44 10.62
NMSE 0.45 1.86 2.75
RMS (10�4) 7.91 8.64 9.51
REP (%) 17.02 19.03 21.19

7.3.5 Method 5

Promising results by the machine learning models in the previous methods substantiates the
assumption that such models are applicable for the purpose of prediction resistance. Even
though good regression models are established, method 5 assume that the error in predictions
could be corrected for by reducing the number of input variables and use a second model to
reduce the prediction error.

Table 7.6 summarize the performance coe�cients from method 5. The same models from
method 4 were utilized at first and then a new set of model were trained with Hs, Tp, �rw

as features and the prediction error (Cpred
T � C

true
T ) as target. The table shows decreased

performance compared to method 4 and table 7.5, meaning that the new models could not
find a systematic pattern among the features that resulted in a predictive error.
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Figure 7.10: MSE as a function of neurons in network for testing set, method 4

Table 7.6: Performance coe�cients, method 5

f(Hs, Tp, �rw, stw) Neural network Gaussian process regression
Levenberg-Marquardt Exponential

f(Hs, Tp, �rw) Gaussian process regression Neural network
Exponential Levenberg-Marquardt

MSE (10�7) 8.95 9.39
MAPE (%) 11.64 10.93
NMSE 1.77 2.72
RMS (10�4) 9.46 9.69
REP (%) 20.67 21.66

7.4 Bootstrapping of Prediction Model

Based on the performance coe�cients it was method 4 that predicted the most accurate
resistance. As an extend to validate the model, bootstrapping allows a study of whether the
model responds as expected to a change in the inputs.

Figure 7.11 shows how the predicted Cr responds to varying wave height when the wave
period, speed through water and relative wave angle is fixed. On the left vertical axis and in
blue is the predicted residual coe�cient and on the right vertical axis and in orange is the
wave height. From the figure it is clear that the wave resistance is closely correlated to the
wave as the resistance increase with increasing wave height. Observe how the wave resistance
decrease at the sample points around 700 when the waves are higher than 4 meters. This
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could be a result of limited number of occurrences of this particular sea state in the training
set and the model i is extrapolating. As a result it is recommended to be aware of inaccurate
predictions in height head waves.
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Figure 7.11: Bootstrapping with fixed Tp = 1s, STW = 15kn, �rw = 10� and varying Hs

Similar, in figure 7.12 where the relative wave angle are plotted together with the residual
coe�cient the response is as expected. Head waves results in a higher wave resistance whereas
following waves reduce the resistance.
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Figure 7.12: Bootstrapping with fixed Tp = 1s, STW = 15kn, Hs = 1m and varying �rw

As a result, it is reasonable to conclude that the neural network replicates the physical
behavior of the vessel in waves. However, the magnitude of the residual resistance predictions
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are neither confirmed nor denied from this analysis, only the trends relative to the free variable
should be interpreted.

7.5 Thrust to Fuel Consume

The data analysis showed an almost perfect correlation between torque and motor power
(equation (5.4.1) and figure 6.13). Thus, relating thrust to torque by use of open water
diagrams and then find the coherent power are equivalent to relate the thrust directly to
motor power via a simple regression. This will introduce some uncertainty into the prediction
of fuel due to error propagation from thrust to power, and the performance coe�cients on
power prediction are expected to show a reduction on precision. Further, fuel for propulsive
purposes is obtained from a SFC = 200 kg/MWh.

Table 7.7 summarize the performance parameters for motor power prediction after conversion
from thrust to motor power. MAPE (mean absolute percentage error) and REP (relative
percentage error) are comparable with the performance coe�cients from method 4 and as
expected the precision have decreased with 1 and 1.5 percentage points respectively.

Table 7.7: Performance parameters, power prediction [MW]

Method 4 Neural network
Levenberg-Marquardt

MSE 3.82
MAPE (%) 13.91
NMSE 0.81
RMS 1.95
REP (%) 18.51

7.6 Method Summary and Discussion

The overall objective of this thesis has been to predict the fuel consumption of a ship in
transit by including machine learning models in the predictions. The solution to this task
included development of a data preprocessing framework for operational monitoring data
which utilize external climate data for a better insight the data quality. These data were
input to an approach where the total ship resistance were decomposed into frictional, wind
and wave resistance. For better performance and faster learning rate for the machine learning
models, frictional and wind resistance were isolated using well established empirical models,
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whereas the wave resistance were to be determine by the models. Eventually, the predicted
resistance were correlated to the required motor power and finally to fuel consumption.

Ensuring data integrity were an essential part for further mining and feature extraction.
Filtering, smoothing, statistical analysis and visual interpretation facilitated e�cient training
of the data-driven models. The results presented in chapter 6 and 7 summarize the analysis
of vessel B, which showed more promising data quality in a preliminary analysis.

Development of the framework for decomposing the resistance such that the machine learning
models could be trained was the second part of the solution. Friction and wind resistance
were isolated by empirical methods, whereas 5 methods were proposed for determination of
the wave resistance. During training and testing of these methods, the concept and pitfall of
overfitting occurred and illustrated the danger of blindly trust a machine learning algorithms
performance. As for the framework for preprocessing, this framework are applicable for vessel
A, C and D as well.

Among the di↵erent suggested approaches to predict the residual resistance method 3 and 4
were found to be more or less equally accurate for vessel B. However, when correlating the
predicted resistance to power and fuel, it was shown in table 7.7 a RMS = 1.95 MW, which
with a SFC = 200 kg/MWh results in a prediction error of 390 kg/h. In context, if the vessel
on average consume 5 metric tons per hour in transit, the predictions are on average o↵ by
⇡ 8 %.

In method 5 where the prediction errors where analyzed by two machine learning algorithms,
no systematic pattern were discovered when the wave properties were input. A similar
study was conducted with the wind attributes as well, without any systematic pattern and
thereby no increase in performance. Hence, among the external environmental parameters,
current is not directly involved in the prediction, but should be reflected in the speed through
water measurements. Varying quality in these measurements is a possible source of errors.
Another, and more likely explanation to the uncertain prediction is the limited sample space
the training data set. Extrapolation beyond the training sample space could be unfortunate,
especially if the network work is overfitted and extrapolated values diverge.

This hypothesis was substantiated when applying both frameworks to vessel A (results are
shown in appendix C). Predictions using method 4 gave a RMS = 0.61 on motor power
predictions, or an average error of ⇡ 2.5 % in fuel consumption per hour. These results
indicate that the approach and methods used and developed in this thesis are promising for
this particular purpose. It could be argued whether the results from vessel A are due to a
limited testing sample space or more reliable thrust or speed through water measurements,
but the prepossessing results did not indicate di↵erence of significance compared to vessel B.

Applying the prediction model from vessel A on vessel B did not result in any increase in
performance. Nor did merging the training set and retrain the models and make predictions
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on based on a more extensive training sample space.
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

The research goal in this thesis has been to apply state of the art machine learning to
predict the fuel consumption of a ship in transit. An extensive literature study within naval
hydrodynamics, machine learning and data cleaning were conducted in order to establish the
theoretical basis for further application and analysis. These fields of studies were combined
in the development and validation of a framework for preprocessing of monitoring data and a
second framework for decomposition of the ship resistance, training and validation machine
learning models.

Preprocessing of the data were considered as an essential part of the required work and were
therefore conducted to an extent. Moving median filter showed itself powerful to eliminate
outliers, to smooth the time series and at the same time preserve the gradients and sharp
transitions in the time series of measurements. Irregularities were found in some attributes
and replaced with coherent simulated data from ECMWF and Tidetech to ensure high quality
and reliable data for further data mining and feature extraction.

Prediction of fuel consumption consisted of isolating wind and frictional resistance and es-
timate the residual resistance by use of machine learning models. Five di↵erent methods
on how to predict the residual resistance were proposed with a varying degree of machine
learning dependency. Among the ML models tested where two shallow neural networks with
Levenberg-Marquardt and Bayesian regularization training algorithms, and a Gaussian pro-
cess regression model with an exponential kernel function. During validation a text-book
example of overfitting were reveled and illustrated the importance of a thorough understand-
ing of the mechanisms involved when using these black-box models. Due to the extensive
literature study within machine learning the overfitting problem were avoided.

95
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The precision of the prediction were found to be marginal better when the models were trained
without any interference from other routines (method 4). A mean deviation of 2.5% from the
true consume were found for vessel A as the best prediction which substantiate that these
models are applicable for the purpose of predicting ship resistance and fuel consumption.
Further evaluation on how the model responds to changing inputs are promising. Higher
waves causes an increase in residual resistance and following waves cause a reduction.

Thus, predicting fuel consumption of a ship in transit using machine learning have showed
itself both possible and promising.

8.2 Recommendations for Further Work

• The thrust measurements showed itself to be less reliable than other measurements
of energy transformation from fuel to thrust. By correlating e.g. torque to the resis-
tance the scatter in which the machine learning models are training could be reduced.
Chances of overfitting could potentially be reduced and more accurate predictions ob-
tained.

• An important attribute that not is included in the analysis is the trim. The e↵ect of
trim should and could potentially be accounted for

• Optimization of operational profile. The diesel engines are not operating on maximum
e�ciency at all time (possibly out of the scope of hydrodynamics)

• This thesis assume more accurate prediction by isolating known and well established
physics and let machine learning account for other aspects. A study of whether a
machine learning model with all the same inputs would outperform this thesis approach
is interesting (possibly out of the scope of hydrodynamics)
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Appendix A

Reference Frames

The purpose of this chapter is to provide the reader with the sign and direction conventions
for this thesis.

A.1 Vessel Reference Frame

A vessel have the ability to move in six degrees of freedom (DOF) where three are in trans-
lation and three in rotation, figure A.1. Surge, sway and heave are refer to the translation
in x, y and z-direction, while roll, pitch and yaw represents rotation around x, y and z-axis.
The origin coincide with the midship at the waterline.

The heading of a vessel refers to the relative angle between north and the bow, whereas the
course refers to the cardinal direction the vessel is to be steered. When there is no lateral
drift in sway direction heading and course coincide, but ocean currents or wind could cause
drift. Hence the course is to be distinguished from the heading.

I
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Figure A.1: Six degree of motion of a vessel (Fossen 2011)

A.2 Geographic Reference Frame

When analyzing a vessel at sea, it is convenient to define a reference frame to describe a
specific location on the Earth surface, as indicated in figure A.2. Latitude describes a specific
north-south position ranging from 0� at the Equator to ±90� at the North and South Pole.
Longitude specifies the east-west position ranging from 0� namely the Prime Meridian which
passes through Greenwich, England west- and eastwards by ±180�. Longitude together with
latitude is used to specify a precise location on the surface on the Earth.
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Figure A.2: Geographic reference frame



A.3. WIND REFERENCE FRAME III

There exists other conventions and reference frames where latitude range from 0� at the
South Pole to 180� at the North Pole, whereas longitude range from 0� to 360�.

Hence there are valid latitude and longitude values for both reference frames, but they would
refer to di↵erent location on the surface of the Earth. When working with di↵erent systems,
caution should be made to the describe a precise location by use of latitude and longitude
coordinates.

A.3 Wind Reference Frame

While wind in general is defined as the movement of air relative to the surface of the earth, a
mathematical description of the wind is quantified with vectors with magnitude and direction.
Figure A.3 refers to these vectors and how it is related to a vessel. Wind from west to east
is described by an angle �w = 90, while a vessel heading south is described by  = 180.

Figure A.3: Definition of wind angles relative to vessel, (Fossen 2011)

A.3.1 Conversion from True to Relative Direction and Speed

For a vessel in motion exposed wind change as a function of the speed over ground and the
heading. The relative wind velocity and angle are defined as
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Vrw =
p
u2
rw + v2rw (A.3.1)

�rw = �atan2(vrw, urw) (A.3.2)

where

urw = u� uw, uw = Vw cos(�w �  ) (A.3.3)

vrw = v � vw, vw = Vw sin(�w �  ) (A.3.4)

and u, v are the velocities of the vessel in surge and sway.
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Training Data

Figure B.1: Distribution of significant wave
height Figure B.2: Distribution of return wave period
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Figure B.3: Distribution of speed through wa-
ter Figure B.4: Distribution of relative wave angle



Appendix C

Resistance and Fuel Prediction for
Vessel A

Table C.1 summarize the performance parameters from method 4 with vessel A. The Bayesian
regularization algorithm performed better in this particular test. Development of MSE as a
function of neurons in network are shown in figure C.1 where a di↵erent behavior occur; as
few neurons as possible seems to be the better. Note how the MSE for BR converge at a
significantly smaller value (< 3 ·10�7) for vessel A whereas vessel B converged to (> 8 ·10�7).

Observe how the REP decreased in the transition from prediction of resistance to power.
The regression between resistance and power appears to be more suitable for vessel A then
for vessel B. Gaussian process regression with exponential kernel function did perform the
most accurate prediction of fuel consumption of a ship in transit.

Table C.1: Performance coe�cients on resistance predictions, method 4 for vessel A

Neural network Neural network Gaussian process regression
Levenberg-Marquardt Bayesian regularization Exponential

MSE (10�7) 3.24 3.08 3.12
MAPE (%) 11.99 11.47 11.85
NMSE 1.33 1.86 1.43
RMS (10�4) 5.69 5.55 5.58
REP (%) 15.25 15.01 15.15

VII
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Figure C.1: MSE as a function of neurons in network for testing set, method 4 vessel A

Table C.2: Performance parameters on power prediction [MW], method 4 for vessel A

Neural network Neural network Gaussian process regression
Levenberg-Marquardt Bayesian regularization Exponential

MSE 1.63 0.42 0.37
MAPE (%) 19.57 11.36 11.53
NMSE 0.12 0.03 0.03
RMS 1.27 0.64 0.61
REP (%) 17.77 9.45 8.85
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