
K
ristian O

lof Ejdfors
U

se of in-service data to determ
ine the added pow

er of a ship due to fouling

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e 

Te
ch

no
lo

gy

M
as

te
r’

s 
th

es
is

Kristian Olof Ejdfors

Use of in-service data to determine
the added power of a ship due to
fouling

Master’s thesis in Marine Technology
Supervisor: Sverre Steen

June 2019





Kristian Olof Ejdfors

Use of in-service data to determine the
added power of a ship due to fouling

Master’s thesis in Marine Technology
Supervisor: Sverre Steen
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology





    NTNU  Trondheim 

                 Norwegian University of Science and Technology 

    Department of Marine Technology 

 

MASTER THESIS IN MARINE TECHNOLOGY 

 

SPRING 2019 

 

FOR 

 

Kristian Olof Ejdfors 
 

Use of in-service data to determine the added power of a ship due to fouling 
 

Ships are increasingly equipped with automatic data collection systems to collect a large number of 

variables describing the performance of the ship and its systems. In a hydrodynamic context, variables 

such as speed over ground, speed through water, position, wind speed and direction, shaft speed and 

power, air and water temperature are examples of interesting and commonly collected variables. The 

collected data are often transferred to the ship operator’s office for further analysis, but currently, there is 

a lack of routines and methods to utilize these data in an efficient way.  

It is of interest to ship owners and operators to know which speed they can expect their ship to achieve on 

different routes and with increasing time since last hull and/or propeller cleaning (the effect of hull and 

propeller roughness is significant).  In this master thesis, methods to determine the added power of a ship 

due to fouling shall be formulated and tested, using in-service data of real ships.  

 

In the thesis, the in-service data shall be described in detail. The data processing performed shall be 

described, and methods used in the processing be properly documented. Different methods to determine 

the added power shall be formulated and the results compared, in order to recommend the best method for 

the studied case(s). 

In the thesis the candidate shall present his personal contribution to the resolution of problem within the 

scope of the thesis work.  

Theories and conclusions shall be based on mathematical derivations and/or logic reasoning identifying 

the various steps in the deduction. 

The thesis work shall be based on the current state of knowledge in the field of study. The current state of 

knowledge shall be established through a thorough literature study, the results of this study shall be 

written into the thesis. The candidate should utilize the existing possibilities for obtaining relevant 

literature. 

The thesis shall be organized in a rational manner to give a clear exposition of results, assessments, and 

conclusions. The text should be brief and to the point, with a clear language. Telegraphic language should 

be avoided. 

The thesis shall contain the following elements: A text defining the scope, preface, list of contents, 

summary, main body of thesis, conclusions with recommendations for further work, list of symbols and 

acronyms, reference and (optional) appendices. All figures, tables and equations shall be numerated. 



    NTNU  Trondheim 

                 Norwegian University of Science and Technology 

    Department of Marine Technology 

The supervisor may require that the candidate, in an early stage of the work, present a written plan for the 

completion of the work. The plan shall include a budget for the use of laboratory or other resources that 

will be charged to the department. Overruns shall be reported to the supervisor. 

The original contribution of the candidate and material taken from other sources shall be clearly defined. 

Work from other sources shall be properly referenced using an acknowledged referencing system. 

The thesis shall be submitted electronically (pdf) in Inspera: 

- Signed by the candidate 

- The text defining the scope (this text) (signed by the supervisor) included 

 

The candidate will receive a printed copy of the thesis.  

 

Supervisor : Professor Sverre Steen 

Start  : 15.01.2019 

Deadline : 11.06.2019 

 

 

Trondheim, 15.01.2019 

 
Sverre Steen 

Supervisor 



Preface

This master thesis takes on the topic of how in-service performance monitoring data can be used
to determine the added power due to fouling. It is the final work done in a five years integrated
master program in Marine Technology at Norwegian University of Science and Technology (NTNU)
in Trondheim. The work has been carried out during the spring of 2019, and it is a part of the
hydrodynamic specialization.

The theme for this master thesis was one of many available topics proposed by the Institute of Marine
Technology. I chose the topic of performance monitoring of ships because I find it interesting, and I
formed it to have a focus on the added power due to fouling. I would like to thank my supervisor,
Professor Sverre Steen. He proposed this topic and has helped me with guidance meetings thought out
the semester. I would also like to thank Hans Anton Tvete from DNV GL, which provided me with
the performance monitoring data and AIS data for the studied vessel.

Kristian Olof Ejdfors
June 6, 2019
Trondheim

i





Summary

The focus on energy efficiency is increasing in the world today, and the shipping industry is no ex-
emption. New and stricter regulations concerning emissions is one clear example of this. Today, ships
are increasingly fitted with automatic data collection systems, and the development of information
technology and communication allows these data to be communicated to an on-shore team automat-
ically. So that ship owners and operators can utilize this data to ensure more efficient operations of
the vessels. In this thesis, the focus is on how to utilize performance monitoring data to determine the
added power of a ship due to fouling. The objective is to develop different methods to determine the
added power and test them using in-service data from a real ship.

In-service performance data for a 2500 Twenty-foot Equivalent Unit (TEU) container ship are acquired
and used for analysis in this thesis. The collected data are from an automatic data collection system
with a sampling period of 15 minutes. The vessel is five years old, and performance monitoring data
for the whole lifetime of the vessel are acquired. The Automatic Identification System (AIS) database
is used to obtain location data, and the European Center for Mid-range Weather Forecasts (ECMWF)
database is used to acquire weather data. All the different data sources had various sampling periods,
which means that some initial processing had to be done in order to combine the data. Parameters
used in the analysis were; timestamp, shaft power, shaft speed, draft, ship speed, significant wave
height, wave period, wave direction, wind speed, wind direction, longitude, and latitude.

In this thesis, three methods to determine the added power due to fouling by using in-service per-
formance monitoring data are developed. Method 1 and 2 use different methods to account for
environmental effects such as wave and wind resistance, but they both evaluate the change in the
Admiralty coefficient and the resistance coefficient over time. Method 1 removes the data points with
bad weather, which means wind speeds higher than 5.5 m/s and significant wave heights over 1 meter.
Method 2 includes the data point with bad weather but compensates for the wind and wave resistance
by applying methods described in the ISO 15016 standard. However, the limitations for the environ-
mental condition in the standard are followed in Method 2, which mean that a maximum significant
wave height of 3 meters is implemented. Method 3 is a little bit different than Method 1 and 2. It
uses machine learning in order to predict the shaft power based on input data containing information
about the loading condition, speed, and environmental condition. Then the change in relative pre-
diction error over time is evaluated to determine the added power rate and the added power due to
fouling because the models are trained on a dataset containing values form the first year of operation,
where the fouling is assumed to be small. Two different regression models were used, a custom linear
regression model and a Gaussian regression process.

The added power was found by determining the trend lines based on the data from the methods.
The ship had three propeller cleanings and one hull cleaning in the given period, so trend lines were
calculated based on data between each event resulting in five successive trend lines for each model.
The different models yielded some variations in the trend lines. However, at the end of the period, all
the trend lines gave an added power between 19 and 30 %, which was compared with experimental
values for a hull with similar conditions and found to be a reasonable prediction. Most of the lines
give a slope (added power rate) that follows the theory as well.
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Method 1 had some difficulties regarding the few available data points in some periods, which gave neg-
ative trend lines between the two last propeller cleanings. The assumption that the relative prediction
error from Method 3 could be interpreted as the added power was not so reasonable, as it was found
that the vessel changed operating condition over time. This change provides a larger prediction error
regardless of the condition of the hull, as the machine learning model was not adequately trained on the
new operating condition. These two concerns gave that Method 2 with the Admiralty coefficient model
was recommended as the best model. Further, in order to improve the model, a benchmark model that
takes into account different loading conditions should be implemented. It is also recommended that a
cost function which takes into account the economic cost of a propeller and hull cleaning, as well as
the potential savings in the reduction of the added power is developed. This cost function can then be
used by ship owners and operators to decide when a propeller or hull cleaning should be conducted.
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Sammendrag

Det er et økende fokus p̊a energi effektivitet i verden og shipping industrien er ikke noe unntak. Nye og
strengere regler om utslipp er ett eksempel p̊a dette. Flere og flere skip blir utstyrt med automatiske
data samlings systemer og nylig utvikling i informasjons og kommunikasjons teknologi gjør at disse
dataene automatisk blir sendt til teamet p̊a land for videre analyser. Dette gir muligheter for redere
og skips operatører til å bruke disse dataene til å gi mer effektiv operasjon av skipene. I denne
avhandlingen ligger fokuset p̊a hvordan man kan bruke disse dataene til å bestemme tilleggs effekt
behovet til et skip p̊a grunn av begroing. Avhandlingen g̊ar ut p̊a å utvikle forskjellige metoder for å
determinere denne tilleggs effekten og teste de metodene p̊a ytelses data fra ett virkelig skip.

I denne master oppgaven er ytelses data for et 2500 TEU kontainer skip brukt. Dataen kommer fra ett
automatisk datasamlings system som logger data hvert 15 minutt. Skipet er 5 år gammelt og ytelses
dataen er for hele levetiden til skipet. I tillegg er lokasjons data fra AIS databasen og vær data fra
European Center for Mid-range Weather Forecasts (ECMWF) brukt i analysen. Dataene fra de tre
forskjellige data kildene ble kombinert og prosessert slik at uønskede verdier, som da skipet akselererer
er fjernet. De forskjellige parameterne som ble brukt i analysen var; motor kraft, omdreininger per
minutt, dypgang, hastighet, signifikant bølge høyde, bølge periode, bølge retning. vind hastighet, vind
retning, lengdegrad og breddegrad.

Tre forskjellige metoder for å determinere tilleggs effekten p̊a grunn av begroing ved bruk av ytelses
data ble utviklet. B̊ade Metode 1 og 2 evaluerer endringen i Admiralitets koeffisienten og motstands
koeffisienten over tid, men de bruker forskjellige metoder for å redegjøre for vær effektene. Metode 1 tar
bort data punkter som kan klassifiseres som d̊arlig vær, alts̊a at vind styrken er under 5.5 sekundmeter
og signifikant bølgehøyde er under 1 meter. Metode 2 inkluderer data punktene med d̊arlig vær men
tar bort ekstra motstanden fra været ved hjelp av metoder beskrevet i ISO 15016. Metode 3 er
litt annerledes da den bruker maskin lærings metoder til å predikere motor kraften basert en rekke
parameter som beskriver operasjons tilstanden til skipet samt været. Forskjellen i relative prediksjons
feil over tid er s̊a analysert til å finne effekten av begroing. To forskjellige regresjons modeller ble bruk,
nemlig en egendefinert linjer regresjons modell og Gaussian regresjons prosess.

Tilleggs effekten ble funnet ved å lage trend linjer basert p̊a resultatene fra de forskjellige metodene.
Propellen ble vasket tre ganger og skroget en gang i løpet av den gitte perioden. Trend linjene ble
derfor funnet basert p̊a dataene mellom disse begivenhetene, dette gave fem trendlinjer per metode.
De forskjellige metodene gav forskjellige trend linjer, men alle metodene gav en tilleggs effekt p̊a grunn
av begroing mellom 19 og 30 % i slutten av tidsperioden. Detter er i samsvar med erfaringer fra andre
skip. De fleste linjene har ogs̊a et stignings tall som er i samsvar med teorien. Metode 1 har noen
problemer med antall data, noe som gir negative trend linjer mellom de to siste propell rengjøringene.
Noen av antagelsene Metode 3 er bygget p̊a viste seg å ikke være s̊a bra for dette data settet. Dette
gir at Metode 2 basert p̊a Admiralitets koeffisienten er anbefalt som den beste metoden.

Videre er det anbefalt å implementere en ny referanse modell som inkluderer last kondisjonen for å
forbedre Metode 1 og 2. Det er ogs̊a anbefalt å lage en kostfunksjon som baserer seg p̊a resultatene fra
metodene gitt i denne master oppgaven til å finne potensielle besparelser en propell eller skrog vask
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kan gi. Dette kan da bli brukt til å optimalisere tiden mellom propell og skrog vask og dermed gi store
besparelser i form av redusert drivstoff forbruk.
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Chapter 1

Introduction

1.1 Background

Fouling on ships has always been an important factor for ship performance. Even in the early days of
sail were the issues of fouling well known and the vessels were sailed upriver or beached in order to
remove the marine growth on the hull. Today ships are docked in dry docks to be cleaned and fitted
with new antifouling coating. In between the dry docking, divers or robots are used to clean the hull
while the ships are in port. Fouling increases the resistance of the hull and decreases the propeller
efficiency, both increasing fuel consumption [1]. The added resistance due to fouling on the hull and
propeller varies from 6% to 80 % of the total resistance [2]. On average an added resistance of 30% is
common for an ocean-going vessel if no special attention is paid to it [3]. Even a thin slime layer can
increase the local skin friction by 25% compared to a clean hull [4]. This shows that fouling is a major
contributor to the operational performance of a vessel.

Energy efficiency and reduced emissions have become more and more important in recent years. The
International Maritime Organization (IMO) has ratified stricter environmental regulations for emis-
sions from ships, for example restrictions in NOx and SOx emissions [5]. With the Energy Efficiency
Design Index (EEDI), IMO aims to provoke more energy efficient ship designs [6]. Shipping companies
also want to save money on fuel costs and be able to market themselves as a green alternative. It is
therefore of interest to ship owners and operators to know the effect of added resistance due to fouling
in order to predict the fuel consumption, the attainable speed and optimizing the time between hull
cleanings.

More and more ships today are equipped with automatic data collection systems describing the per-
formance of the ship and its systems. It is of interest to utilizing this data to ensures more effective
operation. Some of the parameters collected can be used to find the added resistance due to fouling [7].
However, currently there is no standardized way to do this, but some solutions exist such as Propul-
sion Dynamic´s CASPER [3] and BMT SeaTech´s SMART system [8]. These solutions use collected
data to monitor the ship performance by comparing the performance with historical data and sea trial
results. Other methods of determining the added resistance due to fouling are to use added resistance
diagrams which adjusts the speed power diagram for the effect of fouling based on statistical models
[3, 7]. Utilizing performance monitoring data to determine the effect of fouling is also in the interest
of companies that specialize in antifouling systems so they can evaluate how well their solution work.
Its estimated (based on some broad assumptions) that if the global fleet shift to the best antifouling
coating available to the vessels a global saving in fuel consumption and thereby air emissions by 7 to
10 % [6]. As the shipping industry accounts for 3.1 % of the global CO2 emissions [9], will this result
in a significant decrease in the global greenhouse gas emissions.
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Chapter 1. Introduction

1.2 Objective

The objective of this thesis is to develop different methods to determine the added power of a ship
due to fouling and test them using in-service data from a 2500 TEU container ship. The results from
the different methods shall be compared with another in order to recommend the best method for the
studied case. The in-service data used shall be described in detail, and the data processing performed
and methods used in the processing shall be properly documented.

1.3 Structure

This master thesis consists of 10 chapters with the structure given below. Chapters 2-5 are largely
based on work carried out by the author in the project thesis [10].

Chapter 2 presents the theory behind ship resistance and powering. Both the concept of
calm water resistance and the effect of environmental factors like wind, waves, and current are
presented.

Chapter 3 covers the topic of fouling. It includes a description of the different kinds of fouling,
how it can be measured, and how one can determine the resistance due to fouling. A presentation
of different antifouling systems is also included.

Chapter 4 takes on the topic of performance monitoring of ships with a focus on how to collect
and use the data. At the end of the chapter are some examples of performance monitoring
systems used today presented.

Chapter 5 gives a brief introduction to machine learning and how to use it in regression analysis.
How to split a data set into a training set and a validation set is presented as well as methods
to prevent over and under fitting.

Chapter 6 presents the data used in the analysis. The data set consists of data from three
different sources, and a presentation of the different data sources is given as well as a description
of the content and how it has been processed.

Chapter 7 presents the methods developed to determine the added power due to fouling.

Chapter 8 presents the results from the analysis.

Chapter 9 gives a discussion about the methods used, the data set, and the results. It also
gives a recommendation of the best method based on the results and discussion.

Chapter 10 presents the conclusions and recommendations for further work.
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Chapter 2

Resistance and Powering

This chapter describes the basic theory behind ship resistance and powering. The chapter starts by
describing calm water resistance and how it can be determined. Then some methods to determine the
environmental effects on the ship’s resistance is presented. Lastly, some theory about ship powering is
presented. The theory described in this chapter is used to develop methods presented in Chapter 7.

2.1 Calm Water Resistance

To be able to determine the added resistance due to fouling, it is necessary to have an understanding
of ship resistance. Ship resistance is a complex problem, so it is common to divide it and see what
kinds of physical components it consists of. The simplest form of ship resistance is for a ship moving
in calm water. Then the resistance can be considered as forces acting on the hull from the fluid, which
can be subdivided into frictional resistance and pressure resistance [11] as seen below.

Frictional resistance
The frictional resistance is due to tangential shear forces acting on the hull. The tangential shear
forces occur as skin friction between water and the hull, due to the viscosity of the water.

Pressure resistance
The pressure resistance is due to forces acting normal to the hull surface. The major part of
the pressure resistance is the resistance caused by the ship’s wave-making due to the pressure
differences along the hull. Another part comes from viscous effects like 3D flow separation.

There are many different ways one can calculate the calm water resistance. Model testing and scaling
the results is a standardized and well-known method [12]. Other methods include utilizing mathemat-
ical models based on empirical data from model tests and/or sea trials. Examples of such models are
the Holtrop and Hollenbach. Software using CFD solvers have become more and more common as
computational power has rapidly increased the recent years. These methods are not used in this thesis
and will not be explained further. However, an extensive overview of such methods can be found in
Molland’s or Carlton’s textbooks [11, 7]. In this thesis are some of the principles from model testing
used, so an overview of this method is given below.

The main idea behind model testing is to tow a geometrically scaled model of the hull in a towing tank
and to measure the towing force for different velocities. For a detailed description of how to execute
a resistance test, see ITTC recommended practice [13]. To find the full-scale velocities Froude scaling
is applied, which means similarity in Froude number. The Froude number is given by the equation

3
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below.

Fn = VS√
gL

(2.1)

The measured resistance is then expressed as a dimensionless resistance coefficient CTm.

CTm = RTm
0.5ρm SmV 2

m

(2.2)

Where RTm is the measured towing force, ρm is the density of the water, Sm is the wetted surface
area, and Vm is the towing speed. By applying the division above the total resistance coefficient for
the model CTm becomes [11].

CTm = CFm(1 + k) + CWm (2.3)

CFm is the frictional resistance coefficient of the model and can be found according to the ITTC-1957
line, k is the form factor and CWm is the resistance coefficient for the wave making. When scaling to
full scale it is assumed that the resistance due to wave making is the same i.e., the wave coefficient
for the model and full scale is the same CWm = CWs = CW [11]. This assumption gives that the
resistance coefficient for full scale becomes [12]

CTs = (1 + k)CFs +∆CF + CA + CW + CAAS (2.4)

Where CFs is the frictional resistance coefficient of the ship, ∆CF is the roughness allowance, CA
is the correlation allowance, CW is the wave resistance coefficient calculated from the model test by
CW = CTm−(1+k)CFm and CAAS is the air resistance coefficient for the full-scale ship. The roughness
allowance ∆CF accounts for the roughness of the hull. Since model testing estimates the resistance of
a clean hull is the roughness allowance meant to compensate for the roughness of a clean hull. Thus,
the surface roughness is assumed to be small (< 230 µm), and is usually set to 150 µm [11]. The
flow around a ship hull is usually a fully rough flow. Then the frictional resistance and the roughness
allowance CF +∆CF becomes independent of the Reynolds number and only dependent on the surface
roughness. The surface roughness on a fouled hull can be much larger than the estimated 150 µm for
a clean hull, which means that other methods have to be used to determine the effect of fouling. A
discussion about this is given in Chapter 3. As seen from Equation 2.4, the form factor k is essential
when estimating the full-scale resistance based on a model test. There exist different methods to find
the form factor and for an extensive overview, see Molland’s textbook [11]. For more details about
how to scale from model to full scale, see ITTC recommended procedures and guidelines [12].

2.2 Environmental Factors

As vessels are operating at sea, it often experiences conditions where waves, wind, and current are
present. In order to separate the resistance due to fouling from the total resistance, it is necessary to
account for these environmental resistance components. This compensation is also important for sea
trials as a speed-power curve often is contracted for a specific sea state, usually calm water. Different
procedures to compensate for environmental effects during a sea trial have been developed. Some
examples are the ISO 15016 standard, and ITTC recommended procedures. MARIN [14] through the
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STA-JIP project has also developed a set of recommended procedures for sea trials based on the ISO
19019 standard, and ITTC recommended the practice.

However, there exists also other methods to determine environmental effects. As waves usually have
the most substantial impact on the added resistance due to environmental factors, are there many
different methods to calculate the added resistance of waves. These methods can be split into two main
approaches, the far-field and the near field approach. The far-field approach is based on momentum
conservation, while the near field approach is based on direct pressure integration. Seo et al. [15]
have performed a study where different methods such as strip theory, Rankine panel, and Cartesian
grid method to find the added resistance in waves have been compared. A review of all the different
methods to calculate added resistance due to environmental factors would be a study in itself and is
thereby not performed.

In this thesis, it is chosen to focus on the methods given in the international standard ISO 15016
[16], which is an international guideline for assessment of speed and power performance by analysis
of the speed trial data. As the standard is developed for sea trials, it has limitations regarding the
magnitude of the sea state. The criteria to carry out a sea trial is for wind – maximum Beaufort 6 for
LPP ≥ 100m and Beaufort 5 for Lpp < 100m. The Beaufort wind scale is a standard wind scale that
relates wind speed to wave conditions. In addition it is limitations regarding the maximum significant
wave height – for LPP ≥ 100m HS ≤ 0.015LPP or 4 meters and HS ≤ 1.5 meter for Lpp < 100m. The
environmental effect on the resistance is corrected in the following way in the standard.

RCW = RT −∆R (2.5)

Where RCW is the calm water resistance, RT the total resistance and ∆R is the resistance due to
environmental effects. ∆R is given by the equation below.

∆R = RAA +RAWL +RAS (2.6)

Where RAA is the added resistance due to the wind, RAWL is the added resistance due to waves and
RAS is the resistance due to water temperature and density deviations. The methods to calculate
these parameters given in the ISO 15016 standard [16] are described in the following sections and will
be used in the analysis of the performance monitoring data.

2.2.1 Wind Resistance

The added resistance due to the wind is related to the wind speed and cross section area above the
waterline. As ships have large volumes above the waterline, the added resistance due to wind can be a
significant part of the total resistance. The added resistance due to the wind is defined by the equation
below.

RAA = 0.5ρa · CAA(ψWRef ) ·AXV · V 2
WRef − 0.5ρa · CAA(0) ·AXV · V 2

G (2.7)

Where RAA is the added wind resistance in newtons, ρa is the density of the air, CAA(ψWRef ) is the
wind resistance coefficient for the relative wind direction, ψWRef , at a reference height (usually 10
meters above the free surface), CAA(0) is for headwind, AXV is the transverse projected area above
the waterline including superstructure, VWRef is the wind velocity at the reference height, and VG is
the ship’s speed over ground.
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The wind velocity and direction changes often, so the input for Equation 2.7 is averaged over a given
time. The wind resistance coefficients are either found by model tests in a wind tunnel or by using
table data for similar ships, the latter being less accurate. Graphs for CAA values for different relative
wind angles and ship types are given in ISO Standard 15016 [16].

2.2.2 Wave Resistance

The ISO Standard 15016 [16] gives two different simplified methods for calculating the added resistance
due to waves, STAWAVE-1 and STAWAVE-2. Both methods are based on representing irregular waves
as a linear superposition of different regular waves. The first method is only valid for small heave and
pitch motions, while the second model takes the effect of these motions into account.

STAWAVE-1
The effects of wave-induced motions are neglected in this method so that the wave reflection determines
the added resistance. Equation 2.8 gives the added resistance for head sea (less than ± 45 degrees off
the bow).

RAWL = 1
16ρgH

2
1/3B

√
B

LBWL
(2.8)

Where RAWL is the added resistance due to waves, ρ is the density of the seawater, H1/3 is the sig-
nificant wave height, B is the breadth of the ship and LBWL is the distance from the bow to the 95%
of the maximum breadth in the waterline. In order to use this approximation, the significant wave
height has to be less than 2.25

√
Lpp/100, and the heave and pitch motions have a maximum vertical

acceleration at the bow less than 0.05g. The criteria for head sea must also be satisfied, incoming
waves less than ± 45 degrees off the bow.

STAWAVE-2
In this approach, the ship’s heave and pitch motion due to the waves are taken into account. Thus,
the total wave resistance is split into two components, RAWRL due to wave reflection and RAWML

due to the motions.

RWave = RAWML +RAWRL (2.9)

The reflection component is dominant for short waves while the motion component is dominant for
longer waves as illustrated by the STA project [17] in Figure 2.1.
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Figure 2.1: Added resistance in waves as a function of wave length over ship length [17]

The following equation calculates the motion component.

RAWML = 4ρgζ2
A

B2

LPP
raw(ω) (2.10)

Where ζ2
A is the wave amplitude and raw(ω) is defined by Equation 2.11.

raw(ω) = ωb1 exp
[
b1

d1

(
1− ωd1

)]
a1F

1.50
n exp (−3.50Fn) (2.11)

ω is defined by the Equation 2.12, b1 by Equation 2.13, a1 by Equation 2.14 and d1 by Equation 2.15

ω =

√
LP P

g
3
√
kyy

1.17F−0.143
n

ω (2.12)

Where kyy is the non-dimensional radius of gyration in the lateral direction, and ω is the circular
frequency of regular waves in radians per second.

b1 =
{

11 for ω < 1
−8.50 elsewhere

(2.13)

a1 = 60.3 C1.34
B (2.14)

CB is the block coefficient of the ship.

d1 =
{

14. for ω < 1
−566

(
LP P

B

)−2.66
elsewhere

(2.15)

The reflection component RAWRL is given by Equation 2.16.
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RAWRL = 0.5ρgζ2
ABα1(ω) (2.16)

Where α1(ω) is defined by Equation 2.17

α1(ω) = π2I2
1 (1.5kTM )

π2I2
1 (1.5kTM ) + K2

1 (1.5kTM )f1 (2.17)

I1 is the modified Bessel function of the first kind of order 1, K1 is the modified Bessel function of
the second kind of order 1, k is the wave number, TM is the draft midships, and f1 is defined by the
equation below.

f1 = 0.692
(

Vs√
TMg

)0.769
+ 1.81C6.95

B (2.18)

RWave is an empirical transfer function for the mean increase of resistance in regular waves. To obtain
the mean increase of resistance in irregular waves, RAWL, Equation 2.19 is applied.

RAWL = 2
∫ inf

0

RWave

ζ2
A

Sη(ω)dω (2.19)

Sη is the frequency wave spectrum in m2/s, it depends on the location, but the Pierson-Moskowitz
spectra is used for wind-generated waves. For the North-Sea it is common to use the JONSWAP
spectra. These are two different standardized wave spectra. The limitations of the STAWE-2 method
is that it is only valid for had sea, incoming waves less than ± 45 degrees of the bow. The following
criteria must also be satisfied.

• LPP > 75 m

• 4.0 < LP P

B < 9.0

• 2.2 < B
TM

< 9.0

• 0.10 < Fn < 0.30

• 0.50 < CB < 0.90

2.2.3 Effect of Current

The current will affect the ship’s speed through water relative to the speed over ground. The ship
resistance is proportional with speed through water squared [13], which means that the effect of current
can be significant. One can take the difference between the vessel speed obtained from the GPS signal
and the measured speed through water to find the speed of the current in the direction of the ship’s
movement. However, the sensors that measure the speed through water can be unreliable [18], and this
difference should be checked with tables for current for the given area if it is available. If the difference
between the speed through water and speed over ground is found to be caused by the current and not
a faulty sensor. Then the speed through water measurements can be used in an analysis, and it is not
necessary to compensate for the current. As the effect of the current on the ship’s speed is measured
directly by the speed through water sensor. In this thesis, the speed through water measurements was
found to be reliable, and the effect of current is therefore not needed to be taken into account.
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2.3. Powering

2.2.4 Effect of Water Temperature and Density

Water temperature and density affect the viscosity of water, which affects the ship resistance. The ISO
standard [16] operates with a standard seawater temperature of 15 °C and density of 1026 [kg/m3].
The effect of change in water temperature and density is defined in the ISO standard by the following
equation.

RAS = RT0

(
ρs
ρs0
− 1
)

+RF

(
CF0

CF
− 1
)

(2.20)

Where ρs is the density of seawater for the actual temperature and salt content, ρs0 is the standard
density, CF is the frictional coefficient for the actual water temperature and density, CF0 is the frictional
coefficient for the reference temperature and density and RT0 is the total resistance for the reference
water temperature, and density is given by Equation 2.21 and RF is the frictional resistance for the
actual water temperature and density given by Equation 2.22.

RT0 = 0.5ρs0SV
2
S · CT0 (2.21)

RF = 0.5ρsSV 2
S · CF (2.22)

However, as temperature measurements were not available in the performance monitoring data set was
the above method for compensation for temperature and density deviations not used.

2.2.5 Effect of Shallow Water

If the ship operates in shallow water, the effect of shallow water will decrease the ship’s speed. Therefore
it is common to account for this during sea trials [17]. The ISO standard proposes the following method
to account for the speed loss due to the effect of shallow water.

∆V

VS
= 0.124 · 2

(
AM
h2 − 0.05

)
+ 1−

(
tanh

(
gh

V 2
S

))0.5
for

AM
h2 ≥ 0.05 (2.23)

Where ∆V is the speed loss due to shallow water, AM is the midship section area under water, and h
is the water depth. However, as the vessel operates deep sea and water depth measurements were not
available in the performance monitoring data set was the above method for compensation for shallow
water not used.

2.3 Powering

The resistance as a force is not measured on board a ship, so it is necessary to relate the resistance as
a force to the power and speed of the vessel. This relationship is established by defining the effective
power PE as the product of the total ship resistance RT and the ship’s speed VS , as given by Equation
2.24.

PE = RT · VS (2.24)
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Chapter 2. Resistance and Powering

The effective power is the power needed to tow the vessel at the given speed. The delivered power PD
is the power delivered to the propulsion unit at the tail shaft [11]. A performance monitoring system
can measure this by measuring the torque and rotational speed and using the relationship given in
Equation 2.25.

PD = 2π nQ = PE
ηD

(2.25)

Where Q is the torque delivered by the shaft, n is the rotational speed of the shaft. It is also shown by
Equation 2.25 that the delivered power can be found by using the relationship between the effective
power PE and the quasi-propulsive efficiency coefficient ηD [11]. ηD depends on the efficiency of the
propulsive-device and the hull-propeller interaction. So, ηD defines the losses that occur between the
actual towing power PE and the power delivered at the tail shaft PD. It is determined by

ηD = η0 ηH ηR (2.26)

where η0 is the open water efficiency, ηH is the hull efficiency, and ηR is the relative rotational efficiency.
A detailed description of how these efficiency coefficients are calculated can be found in Molland’s and
Carlton’s textbooks [11, 7] . Another important relationship is the relationship between the brake
power PB and the delivered power PD, and it is given by

PB = PD
ηM

(2.27)

where ηM is the mechanical efficiency, which contains the losses in the transmission between the
engine and the tail shaft i.e., the gear and shaft, both the brake power and the delivered power can be
measured by the aboard performance monitoring system. The aboard performance monitoring systems
often give something called the shaft power, which can be placed somewhere in between PD and PB
based on how it is obtained. If the shaft power is based on fuel consumption measurements, then it is
the brake power PB that is measured. If it is based on torque and rotational speed measurements, then
it depends on where the torque measurement is placed, as there is a small loss in the shaft between
the measurement location and the tail shaft.
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Chapter 3

Fouling

In this chapter takes on the topic fouling. First, different kinds of fouling are presented followed
by different methods to determine the surface roughness due to fouling. Methods to determine the
resistance due to fouling are presented as well as some types of antifouling systems.

3.1 Types of Fouling

Fouling also called biofouling is due to colonization of a surface by living organisms [4]. Fouling will
increase the roughness of the surface, which will give an increase in the frictional resistance of the hull
and a decrease in propeller performance. As stated in the previous chapter, the flow around a ship
can be described as fully rough, which gives that the frictional resistance is a function of the surface
roughness and independent of the Raynolds number. The surface roughness of the hull can be divided
into two separate components, permanent and temporary roughness. The permanent roughness is the
surface of the hull after the hull is cleaned and a fresh layer of coating is applied. Some factors that
influence the permanent roughness are corrosion, mechanical damage, a build-up of old coating, poor
cleaning before re-painting, etc. [7]. The temporary roughness is due to fouling organisms, Townsin
[1] divides fouling organisms into three categories based on their properties, namely slime, weed, and
shell.

3.1.1 Slime

A slime film is the first fouling type to develop on the hull. This layer is easily cleaned off by soft
brushes that usually does not hurt the antifouling coating. However, it can resist relative high shear
stresses caused by high speeds and cause a significant increase in the frictional resistance of the vessel.
Bohander performed a full-scale experiment on a frigate in 1991 [1], where a mature slime layer had
developed without the presence of weed or shells. Speed and power trials were performed before the
ship was drydocked and cleaned. New speed and power trials were conducted after new antifouling
coating had been applied, and it was measured a decrease in total propulsive power between 8 to 18
%. This full-scale experiment shows that a slime layer has a significant contribution to the added
resistance. Figure 3.1 and 3.2 shows two different examples of slime fouling on a hull.
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Figure 3.1: Continuous slime layer [19]
Figure 3.2: Interspersed slime [19]

3.1.2 Seaweed

Seaweed, together with slime, is often referred to as soft fouling and consists of filamentous algae that
have a root attached to the hull while the rest will move with the flow. It is difficult to estimate
the added resistance due to seaweed since it is hard to determine the influence seaweed has on the
boundary layer. Some research has been done by Schultz [20], who performed experiments with different
filamentous algae in a Circulating Water Tunnel (CWT). He found that the two species tested gave
an average increase in frictional resistance coefficient of 125 % and 110 % compared to the smooth
surface. This increase in frictional resistance shows that seaweed gives a significant added resistance.
Two examples of seaweed fouling are shown in Figure 3.3 and 3.4.

Figure 3.3: Filamentous algae [19] Figure 3.4: Tubeworms [19]

3.1.3 Shell

Shell and barnacle fouling is often referred to as hard fouling as it is not moving with the water like
seaweed. The fouling penalty is determined by the characteristic like height, diameter, and distribution
density. If these parameters are known, the fouling penalty can be calculated. However, it is not always
easy to determine these characters. As discussed in the next section. Shells and barnacles are important
for the added resistance. It has been shown that for a 120 meter long vessel with 75 % coverage of
shells with a height of 4.5 mm, the increase in skin friction was 85 % [1]. An example of barnacle
fouling is shown in Figure 3.5 and 3.6.
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Figure 3.5: Barnacle fouling [19] Figure 3.6: Dense barnacle fouling [21]

3.2 Measuring Methods

Fouling will increase the surface roughness of the hull. For clean and freshly painted hulls, the surface
roughness is measured by a Hull Roughness Analyser, which measures the maximum difference in
height over a given length [18]. The surface roughness is noted as Rt(50) if measured over a 50 mm
sample length. Figure 3.7 shows how Rt(50) is defined, it also shows that surface roughness has an
arbitrary shape, and it is only the maximum peak height that is measured. However, the shape of
the surface has a huge influence on the flow over the surface and consequently, the boundary layer.
Hence, the equivalent sand-grain height ks is a popular parameter to use instead. It expresses the
surface roughness as a height, which is the height of sand grains covering a surface that would give the
equivalent surface roughness. So, the parameter ks accounts for the shape of the surface as well.

Figure 3.7: Definition of Rt(50) [7]

To find the Average Hull Roughness (AHR) is the local Mean Hull roughness (MHR) measured at
different locations around the hull. MHR can be expressed as either Rt(50) or ks [7], then AHR is
expressed as

AHR =
∑m
j=1 (wj(MHR))∑m

j=1 wj
(3.1)

where wj is a weight function depending on the localization of the measured surface. wj is not
standardized and has many different shapes [7]. For example, added roughness at the bow has the
most influence on the resistance of the hull, but parameters such as distribution density and fouling
type also play a significant part and must be considered when determining wj . For the hard fouling like
shells and barnacle, the characteristics such as height, diameter, and distribution density are measured
to express the AHR. The following relationship is purposed to express the equivalent sand-grain height
for barnacle fouling [19].
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ks = 0.059 kt (%cover)0.5 (3.2)

Where kt is the height of the largest barnacle. The Naval Ship’s Technical Manual, used by the US
Navy, provides a different method to determine the fouling with a rating index ranging from 0-100.
The parameter is based on visual observation of the fouling before a ship is cleaned. An explanation
of the NSTM rating is provided by Schultz [2] and given in Table 3.1.

Table 3.1: The NSTM rating [2]

Description of condition NSTM rating ks(µm) Rt(50)

Hydraulically smooth surface 0 0 0

Typical as applied AF coating 0 30 150

Deteriorated coating or light slime 10 - 20 100 300

Heavy slime 30 300 600

Small calcareous fouling or weed 40 - 60 1 000 1 000

Medium calcareous fouling 70 - 80 3 000 3 000

Heavy calcareous fouling 90 - 100 10 000 10 000

There are other methods to determine the fouling rate, especially related to the weight function wj in
Equation 3.1, but it will not be discussed further in this thesis.

3.3 Resistance Due to Fouling

The roughness increases the boundary layer around the hull, which causes more fluid to be dragged
along with the vessel, which gives more kinetic energy to the fluid. The added surface roughness may
also change the wave pattern of the hull, which may increase the wave resistance [22]. In order to
understand how the surface roughness of the hull influences the resistance, it is common to study
the roughness of a flat plate and scale up the results [2, 22]. The mean longitudinal velocity on the
boundary layer for a rough surface u, is derived in the same way as for a smooth plate. It is expressed
as [23]

u

ν∗ = f

(
y

ks

)
(3.3)

where ν∗ is the wall friction velocity given as
√
τw/ρ, τw is the frictional stress on the hull surface and

ks is the equivalent sand-grain height. For closely spaced sand grains and if the flow can be considered
fully rough, Equation 3.3 can be expressed as

u

ν∗ = 2.5ln
(
y

ks

)
+ 8.5 (3.4)

For a fully rough flow ksν
∗/ν > 60 the frictional coefficient for the flat plate can be expressed by

CF =
(

1.89 + 1.62log10

(
L

ks

))−2.5
(3.5)
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Equation 3.5 is only valid for a fully rough flow otherwise, the friction coefficient is dependent on the
Reynolds number [23]. However, as stated in Chapter 2, the flow around a full-scale ship can almost
always be considered as fully rough. The International Towing Tank Conference (ITTC) [12] gives
another method to determine the frictional coefficient for a rough surface. ITTC uses Equation 3.6 to
calculate the roughness allowance, ∆CF .

∆CF · 103 = 44
[(

ks
LWL

) 1
3

− 10(Re)− 1
3

]
+ 0.125 (3.6)

The problem with this equation is that it is only valid for ks < 230 µm and AHR (Rt(50)) for fouled
ships is often larger than this as given in Table 3.1. The added resistance can be calculated by Equation
3.7.

RFouling = 0.5ρ S V 2
S ·∆CF (3.7)

Where ρ is the density of seawater, and S the area of the wetted surface. CF from Equation 3.5 is
actually CF + ∆CF , where CF is for a smooth plate. So, in order to use CF from Equation 3.5 in
Equation 3.7 the effect of the smooth plate has to be removed. However, it is difficult to measure the
roughness of the hull when fouling is present, as discussed in the previous section. Schultz made some
predictions of the resistance due to fouling on a US Naval ship by scaling results for an equivalent flat
plate and compared those to experimental values. Table 3.2 shows these results and that the added
resistance is a significant part of the total resistance.

Table 3.2: The effect of fouling for a US Naval ship [2]

Description of condition %∆RT @ Vs = 7.7 m/s %∆RT @ Vs = 15.4 m/s

Hydraulically smooth surface - -

Typical as applied AF coating 2 4

Deteriorated coating or light slime 11 10

Heavy slime 20 16

Small calcareous fouling or weed 34 25

Medium calcareous fouling 52 36

Heavy calcareous fouling 80 55

It is important to note that even though the percentage is lower at a higher velocity, the value of the
resistance is larger because the frictional resistance is a smaller part of the total resistance for higher
speeds. Oliveira et al. [22] discussed how the form factor could be applied in the scaling of the flat plate
result by comparing Schultz’s method with CFD calculations. He concluded that ”...the hypothesis of
a form factor affecting hull penalties due to roughness cannot be generalized for all speeds, since the
effect of hull roughness on wave pattern cannot be neglected” [22]. This statement means that hull
roughness affects both the frictional resistance and the wave resistance.
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3.4 Types of Antifouling Systems

Today almost all ships are fitted with an antifouling paint coating covering the underwater surface of
the hull. This coating is to limit the occurrence of biofouling. During the 1800s wooden ships were
protected by cobber sheathing, mainly to protect the wood from teredo worm, but it also showed
effectiveness against biofouling [1]. This led to attempts where iron ships were cladded with copper,
but it had an undesired side effect of increasing the corrosion of iron. Because iron works as a sacrificial
anode for copper according to the galvanic series [24]. Copper cladding was not the only antifouling
system at the time, the first patent on antifouling coating was issued already back in 1625 to William
Beale, and in 1865 more than 300 antifouling paints were patented [1]. In the 1960s a new super
effective coating system was introduced, namely Self-Polishing Copolymer (SPC) with Tributyltin
(TBT) [1, 2]. The TBT coatings could ensure a foul-free hull for up to 5 years. Vessels are required
by classification societies to dock each 5th year for the renewal survey, so in practice, the TBT coating
system could ensure foul-free hulls. However, because of the environmental impact the TBT coating
systems had on the marine coastal environment, especially oysters, it was partially banned in 2003,
and a total worldwide ban came in 2008 [25]. Since the ban on TBT coating, the primary replacement
has been copper based SPC systems [2]. Other available solutions are non-toxic surfaces, hydrogels,
and low energy surfaces [26]. The problem with today’s solutions is that they are not as effective as the
TBT coating and some coating types give a rough hydrodynamic surface after it is applied. So there
are many different considerations to take into account when choosing an antifouling coating. Claire
Hellio and Diego Yebra [26] give an extensive overview of the development of antifouling systems and
the different solutions available.

In addition to antifouling paint coating, other control methods such as hull cleanings and propeller
polishing are popular. The benefit of these methods is that they can be performed while the ship is
doing cargo handling operations in port, which means it does not cause downtime for the vessel. Both
divers and ROVs can perform hull cleanings. The procedure is to use special brushes or high-pressure
water jets to remove marine growth. A diver can clean approximately 200-400 m2 per hour [27] while
a ROV can clean 800-1000 m2 per hour [21]. The drawback of a hull cleaning is that if it is not done
properly, it may damage the antifouling paint, which will result in a decrease in ship performance over
time [3]. Propeller cleaning follows the same procedure as a hull cleaning, where a diver polishes the
propeller manually. It is more common to use divers for propeller cleaning as the geometry makes it
harder to use an ROV.
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Chapter 4

Performance Monitoring of Ships

In this chapter, a brief review of performance monitoring systems is presented. First, a little motivation
for performance monitoring is given. Then different data collection methods are discussed, followed
by a description of the parameters typically collected. Lastly some examples of current solutions what
they are used for.

4.1 Motivation for Performance Monitoring of Ships

Martin Stopford [28] states that we are now undergoing the fourth revolution of shipping.

”I’m going to call it Smart-Shipping and it is different from previous waves. Its focus is on managing
and improving every aspect of sea transport by using systems made possible by recent advances in
Information and Communications Technology (ICT).”

By this, he means that the increasing usage of sensors, data collection, and cloud technology can be
seen as a huge change in how the shipping industry operates. He divides the revolution into three
segments:

Smart Ships
Ships are fitted with more and more sensors that communicate data to both the on-shore team and
the crew. These data are used to improve the ships performance, management, and automation.

Smart Fleet Management
By utilizing the data from different ships, the shipping companies can work across the fleet to
improve the efficiency of the entire fleet.

Smart Shipping Logistics
Increasing communication and specialization between sea transport, cargo handling, and land
transport systems will increase efficiency.

Performance monitoring of ships is an important factor in all these segments, especially the first two.
The main motivation behind the digitization of the world fleet is to improve ship performance and
thereby decrease the operation and maintenance costs. The fuel cost for a ship can account for as much
as 50% of the total operational costs [29]. Another benefit of reduced fuel consumption is a reduction
in greenhouse gas emissions. The performance monitoring data of the equipment aboard a ship can
be used to optimize maintenance schedules and repairs. Classification societies can also benefit from
this by evaluating the utilization of the hull and optimize surveys accordingly. Automation of different
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ship functions can reduce the number of crewmembers and thereby, the operation cost.

4.2 Data Collection Methods

There are different practices of how performance data is collected. More and more vessels have au-
tomatic data logging that logs data continuously, which then is stored typically as an average over a
period between 1 to 15 minutes. Another common method is daily performance monitoring, which
often means that the crew registers a daily average of the performance data collected. This average is
called noon-data. Other solutions are to log data less frequently like weekly or monthly [3].

Continuous logging excludes the possibility of human error as the logging is done automatically, but
creates an extensive data set with many data points. This has both positive and negative sides. A
positive side is that there are many data points that can be analyzed, which makes it easier to compare
data with similar operating conditions. A negative side is the storage of the amount of data collected,
and that it is difficult to work with large data sets.

The crew typically reports the noon-data. It is useful for many things, such as predicting the estimated
time of arrival, fuel consumption, and calculating the emissions produced by the ship. Since the noon-
data is averaged over one day, it is not that reliable for added-resistance calculations as the operating
conditions seldom are the same over a 24h period. Noon-data reporting is still the most used reporting
system in 2014 [18].

4.3 Examples of Parameters Typically Collected

Carlton [7] provides a table of traditionally recorded parameters in ship logbooks, the table is given
below. The parameters are divided into two categories Deck log and Engine log.

Table 4.1: Traditionally recorded parameters in ship log books [7]

Deck log Engine log

Ship drafts (fore and aft) Cooling sea water temperature at inlet and outlet

Time and distance travelled (over ground) Circulating freshwater cooling temperature and
pressures for all engine components

Subjective description of the weather Lubricating oil temperature and pressures

Ambient air and sea water temperature fuel lever, load indicator and fuel pump settings

Ambient air pressure Engine/shaft revolution count

General passage information Turbocharger speed

Scavenge and injection pressures

Exhaust gas temperatures

Main engine fuel and lubricating oil temperatures

Bunker data

Generator and boiler performance data

Evaporator and boiler performance data

Torsion meter reading
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Parameters from both categories are of interest in this thesis but not all. Automated collection systems
lead to an increase in the parameters collected. With more parameters, one has more information,
but the time it takes to review the data set increases, which makes it harder to work with. Figure 4.1
shows the location of 15 automatic logging sensors of an example ship.

Figure 4.1: Location of sensors on an example ship [30]

1. Speed log 2. Echo sounder 3. RPM and torque meter 4. Shaft motor 5. Thrust meter 6. Rudder
indicator 7. Stabiliser fins 8. Wind anemometer 9. GPS 10. Air temperature 11. Gyrocompass 12.
Accelerometer 13. Sea water temperature 14. draft aft 15. draft forward

As shown above, there are many parameters collected by a performance monitoring system. A discus-
sion about how some of these parameters are collected and their usage is given below. The discussion
is based on Pedersen’s [18] and Hansen’s [30] PhD thesis.

4.3.1 draft and Trim

The draft and trim can be measured in different ways. The simplest way is a visual observation of the
markings on the ship side before the vessel leaves the port. The trim is then obtained by calculating
the difference between the draft aft and fore. All ships are also fitted with a loading computer which
gives the ship draft and trim based on the weight and placement of the cargo, ballast water, fuel, etc.
The draft calculated by the loading computer is derived based on ship particulars, which means that
it can be less accurate than the visual observation. The advantage of the loading computer is that it
can automatically update the draft based on the daily consumption of fuel, oil, and water. Another
method is to use pressure gauges at the fore and aft, which measures the hydrostatic pressure. These
sensors need to be robust to withstand environmental forces. The advantage of these sensors is that
in addition to measuring the draft can it be used to measure the wave elevation. However, since the
pressure gauges need to be sensitive to be able to cope with large pressure fluctuations from waves in
rough sea are they usually unreliable.

Both the draft and trim changes the wetted surface of the ship and the wetted surface is proportional
to the frictional resistance and thus the fouling resistance of the ship. The draft and trim will also
affect the wave resistance of the ship, especially when a bulbous bow is present. However, this effect
is difficult to determine. The draft and trim are also an important factor for the ship safety as it
determines the restoring forces and moments for the ship.

4.3.2 Speed

The ship’s speed is usually measured through both a speed log and a GPS signal. The speed log is
mounted near the bow to reduce the effect of non-laminar flow over the sensor. It uses the Doppler
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principle to measure the acoustic reflection in the water and thereby finds the speed of the vessel.
Environmental factors such as water density, aeration, eddy currents, and sea states may influence
the speed log measurements. It is an accurate sensor as long as it is regularly calibrated, as the
measurements tend to drift over time. The speed measured through GPS signal is usually a very
reliable source. The difference between the two methods is that the speed log measures the speed
through water while the GPS measures the speed over ground, which means that when there is no
current present the two should show the same speed. Usually, the first filtering of a data set is done
by comparing these two values and disregard points where the difference is much larger than what a
reasonable current would be. The ship resistance is proportional with the speed through water squared,
which means that speed measurements are an important factor.

4.3.3 Wind

A wind anemometer is a standard way of measuring the relative wind speed and direction. A propeller
measures the wind speed, and it rotates so it is facing the wind head-on, which gives the relative
wind direction. To reduce the influence of the ship’s superstructure and deck cargo on the wind
measurements, the anemometer is usually mounted in the bow high above the deck. In addition to
cause air resistance, the normal component of the wind force may create a moment that results in a
rudder angle that gives an increased resistance. Another method to find wind speed and direction is
the usage of hindcast data. These data are often coarse and an average for a large area. An example
of a hindcast database is The European Centre for Medium-Range Weather Forecasts (ECMWF).

4.3.4 Waves

Waves cause a significant increase in resistance, but unfortunately, it is difficult to measure by an
aboard measuring system. A wave radar can measure the wave environment given as the wave specter
around the vessel. However, this system is costly and only mounted on special purpose ships e.g.,
research vessels and some special vessels for the offshore industry. Traditionally the sea state is visually
estimated by experienced crew members. Hindcast data is also available for waves and can be used
to estimate the sea state the vessel has experienced. There are also methods to estimate the wave
height based on the accelerations in the ship bow. The motions of the vessel can be measured by a
Motion Reference Unit which gives the vessels six motions, represented as statistical parameters. These
statistical parameters provides a motion specter, and the spectral moments of the motion specter can
be used to describe the waves. The first spectral moment m0 describes the energy of the specter, and
by combining these for all the motions, an estimate of the energy in the wave specter can be found.
Through the relationship HS = 4√m0 the significant wave height of the sea state is estimates and the
period is estimated by T02 =

√
m0/m2, this is described by Vanem and Brandsæter [31, 32].

4.3.5 Shaft Power

The best way of estimating the shaft power is to measure the shaft thrust, torque, and rotational
speed. The rotational speed is often given as an engine output, but optical sensors can also measure it.
The thrust and torque can be measured by strain gauges glued directly to the shaft or by commercial
power meters using optical sensors. The shaft power can also be estimated based on fuel consumption,
but it is not a good alternative as it depends on the efficiency of both the fuel, engine, and propulsion
system.
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4.4 Example of Performance Monitoring Systems

There are many different performance monitoring systems today, which use different approaches and
data for analysis of the ship’s performance. Some systems monitor different components of the engine
to be used in maintenance decisions. Other systems are more complex and monitor the ships overall
performance. Some systems are also used for fleet monitoring, which uses data collected from multiple
vessels. Systems and parameters that are used to monitor the hydrodynamic performance of a vessel
are of interest in this thesis, and some examples are given below.

The Admiralty coefficient AC , is a parameter which traditionally has been used in performance analysis.
The coefficient uses the relationship between the weight displacement∆, ship speed VS , and shaft power
PS .

AC = ∆2/3 V 3
S

PS
(4.1)

This relationship accounts for different loading conditions, but not for environmental effects. In calm
water for a smooth hull AC is assumed to be constant [32]. So, when the environmental conditions are
accounted for, the added resistance can be found by the decrease in AC over time. Added resistance
diagrams based on the Admiralty coefficient are made and used to monitor the vessel’s performance
over time. An example of an added resistance diagram is given in Figure 4.2.

Figure 4.2: Added resistance diagram [3]

Here, it is shown that propeller and hull cleanings decrease added resistance significantly. Initially,
the vessel had a high added resistance and the first hull cleaning, after approximately 1850 days,
had a remarkable effect. It reduced the added resistance with about 20%. However, it damaged the
antifouling coating as seen by the steep increase in resistance after the cleaning.

Propulsion Dynamics [33] has developed the CASPER (Computer Analysis of Ship PERformance)
system. The system utilizes noon-data for hull and propeller performance monitoring. The procedure is
to calculate the speed through water from propeller revolutions, the power delivered to the propeller and
propeller design. Then corrections for the sea state are made before the performance data is compared
with sea trial data, and the added resistance is reported as a percentage of the total resistance [34].
These results can then be used in economic analysis, such as speed loss and increased fuel consumption.

SMART (Ship-board Monitoring, Analysis, and Recording Technologies) is another performance mon-
itoring system which is developed by BMT SeaTech [8]. The system is built up by three subsystems,
SMARTPOWER, SMARTSTRESS, and SMARTSHORE. SMARTPOWER monitors the ship’s speed, fuel
consumption, RPM, and torque together with navigational and environmental parameters in order
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to analyze the trends by applying different mathematical models which account for trim, draft, and
environmental factors. SMARTSTRESS monitors and logs stress at different locations on the hull in
real time. This provides the ship owners with information about the ships operation and fatigue uti-
lization, which again can be used by class societies to make surveys more effective. SMARTSHORE

gathers the data from the two other systems, together with data from the other vessels managed by
the ship manager so that extensive analysis of fleet can be performed. For example, the performance
of two sister vessels are compared.

In addition to these two commercially available systems, performance monitoring of ships is an inter-
esting research topic. Benjamin Pedersen [18] wrote his PhD thesis about how one can utilize noon
reports combined with machine learning methods to evaluate the ship propulsion performance. Søren
Hansen [30] has also written a PhD about performance monitoring of ships where he focuses on au-
tomatic data logging, data filtering, and performance evaluation based on the data. More recently
Soner, Akyuz and Celik [35] used data from a 2h ferry route over two months, for ship operational
performance based on statistical learning methods Ridge and Lasso.
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Chapter 5

Machine Learning

This chapter aims to give a brief overview of the concepts of statistical learning, also called machine
learning and how this can be applied to a data set of performance monitoring data. The chapter
starts with a section about the basic concept of machine learning, followed by an introduction to
regression. Then an introduction of how to split a data set into a training and validation set, and
different methods to evaluate the model’s performance. The theory in this chapter is mainly based on
the textbook ”Elements of statistical learning” by Hastie, Tibshirani, and Friedman [36] and ”Pattern
recognition and machine learning” by Bishop [37].

5.1 Basic Theory

Machine learning is fitting data based on statistical models with the usage of computers. The aim is
to develop a model that can learn to perform a task based on a set of data without being specifically
programmed to perform that task. So, based on a data set the program makes predictions for similar
data sets. Machine learning can be split into two main categories, supervised learning and unsupervised
learning.

Supervised learning
The model is first trained with a data set that contains input data with corresponding output
data. This means that the program is given both the variables and the response. Based on the
chosen statistical model, the program captures the relationship between the output and input
data. Then this relationship is used to predict the response for a similar data set only containing
input variables.

Unsupervised learning
In unsupervised learning, there is no specified output data, so the aim is for the model to
cluster the data in groups of similar characteristics. Unsupervised learning is used to find hidden
structures in the data.

The concept of unsupervised learning will not be discussed further in this thesis, as it is not used.
Supervised learning can be used for both classification problems and regression problems. Trying to
predict the added resistance due to fouling is most sensibly posted as a regression problem. Thus, it
is natural to present some different methods of regression. A regression problem can be generalized by
Equation 5.1 [18].
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y = f(x) + εtr (5.1)

y is the response variable and f(x) is the function or model that uses the input variables x to predict
the response, εtr is the training error or noise, which is assumed to be standard Gaussian distributed.
The aim of is to choose a model that minimizes the error between the predicted response and the given
response. By training the function f(x) with a data set where both x and y are known and testing it
on a different test set also containing inputs with corresponding output values. In order to understand
the theory given in this chapter better are an explanation of the notation used given below.

The notation used in theis thesis is the same used by Bishop [37]. The data set consists of training
data from D different sensors and each sensor have N samples. The input variables is noted as X and it
consists of N samples of input variables x, which gives us in mathematical terms x = (x1, x2, . . . , xD)T
and X = (x(1),x(2), . . . ,x(N))T . The training set will also have some response variables corresponding
to the input sample. The response variables will be noted as y, where y is a vector of dimension N such
that we have a response for each input, which gives us in mathematical terms y = (y(1), y(2), . . . , y(N))T .

5.2 Regression Methods

For linear regression, it is assumed that there is a linear relationship between the input and output
variable. It is the simplest form of regression. The main idea is that the output f(x) is a function of
weight parameters here noted as w.

f(x) = w0 + w1x(1) + w2x(2) + · · ·+ wNx(N) (5.2)

ω0 is called bias, if we introduce a dummy variable x(0) = 1 we can rewrite Equation 5.2 to matrix
form.

f(x) = wTX (5.3)

As mentioned above the model uses the training set to estimate the wight parameters by minimizing
the prediction error. It is most common to use the sum of squared errors to express the error. This
minimization of the error is also referred to as the cost function (C(·)). The sum of squared errors is
given by the equations below.

C(w) =
N∑
i=0

(
y(i) − f̂(x

(i)
)
)2

(5.4a)

C(w) =
N∑
i=1

y(i) −
D∑
j=0

x
(i)
j wj

2

(5.4b)

C(w) = (y−Xw)T (y−Xw) (5.4c)

Equation 5.4a to 5.4c expresses the same, in 5.4b is Equation 5.2 used to express the estimated values
f̂(x), note that the dummy variable x(0) = 1 is included. Equation 5.4c is the cost function written
in vector form. The estimated output based in the w parameters is noted as f̂(x) in Equation 5.4a
and y is the true response given in the training set. By differentiating Equation 5.4c with respect to
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w and setting the first derivative equal to zero, we obtain the unique solution for the best estimate of
w.

ŵ = (XTX)−1Xy (5.5)

An easy way to extend the linear regression model is to introduce a basis function Φ(x). The basis
function can be non-linear which means that f(x) is non-linear. However, it still has a linear form as
it is linear in w.

f(x) =
N∑
i=0

(wi φi(x)) = wTφ(x) (5.6)

As stated above can the basis functions have many different forms. For polynomial regression we have
Φ(x) = xj other popular functions is different forms of exponential functions. These functions can be
customized to fit the data set, based on the knowledge the user has of the data set [18]. The cost
function in Equation 5.5 is modified to fit the basis function by the following equation.

ŵ = (ΦTΦ)−1Φy (5.7)

The problem with the least square method is that the full data set is processed at once, which is very
costly for large data sets. It is therefore common to use sequential learning for large data sets. Here
the data points are considered one at the time, and the weight function is updated simultaneously
using the principle of gradient descent given below.

w(τ+1) = w(τ) − η∇C(w(τ)) (5.8)

where τ is the iteration number, η is the learning rate parameter and ∇C is the gradient of C with
respect to the parameters in w. By using the cost function defined by the least square method in
Equation 5.5, Equation 5.8 expands to

w(τ+1) = w(τ) + η
(
yn −w(τ)TΦ(xn)

)
Φ(xn) (5.9)

These are some of the many statistical models that may be used in a statistical learning algorithm.

5.3 Splitting the Data Set

As mentioned above is the basic idea of supervised learning to split the available data set into a training
part and a testing part. There is no standard way to split the data set, but it is common to use the
largest part for training and a smaller part for testing/validation. Pedersen [18] splits his data so that
20 % of the data are the test/validation part and 80 % are for training the model. One can also split
the training and test sets into smaller parts for cross-validation [31, 32], then one can utilize all the
data for both training and testing.

It is important to have in mind that the model makes predictions based on the training set. So, if one
wants to predict the performance of a ship at a given state, it is important that the model has been
trained with data for a similar state. Otherwise, the model will not be able to predict the performance
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correctly. This means that one can use the model as a benchmark for how the ship should perform and
compare it with the true value to see the increase/decrease of the performance [18]. Because machine
learning methods use regressions based on known data, it is essential to know the states the ship has
experienced in the training data, in order to be able to use a model correctly.

5.4 Model Selection

The concept of linear regression is given above together with the extension where the input parameter
is given as a function Φ. This section will focus on how to choose the right model. To illustrate
this, the example provided in Bishop´s textbook [37] is used. In this example, the aim is to find a
polynomial model that best fits points that follows the function sin(2πx) + ε, where ε is some noise
which is standard Gaussian distributed. Ten points are used in the example to represent one wave, as
shown by Figure 5.1.

Figure 5.1: Sample data with underlying function [37]

The blue points are the observed sample data, and the green line is the underlying function that is not
known by the model. The aim is to predict new values of t for a given x value based only on the blue
points. Four polynomial functions of a different order, M , are investigated to see which gives the best
prediction. , and the expressions are found by minimizing the cost function described by Equation
5.4a. The resulting predictions are given in Figure 5.2.
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Figure 5.2: Polynomial prediction functions of different degree M [37]

It is shown that for the polynomial functions with order M = 0 and M = 1 are too simple for predicting
the data. The error is large and they do not capture the underlying function well, which is an example
of underfitting. The model was too simple. The polynomial function of order M = 3 is a good estimate
for both the underlying function and data. For the polynomial function of order M = 9, an interesting
phenomenon occurs. The regression fits the data perfectly, but the underlying function is not captured
in a good way. Thus, the model is too complex, which is called over-fitting. By this, its shown that
finding the regression which captures the data best is not always easy, and one has to be careful not
to have under- and over-fitting. Some strategies of how to choose the right model are presented below.

Another approach to finding the best regression is to plot the root mean square error, for the different
polynomial functions for both the training and testing set, as shown in the figure below.

Figure 5.3: Error vs. complexity [37]

Here it is shown that the error decreases for both the test and training set between M = 0 to M = 3,
which indicates that the model gives a better prediction of the data set. For M = 9 is it seen that the
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training error goes to zero while the test error is large. This indicates that the model only makes a
good (perfect) estimate for the training set, but it does not capture the underlying function indicated
by the large error for the test/validation set. A plot like Figure 5.3 can be used to evaluate if the
model is over-fitting. Another method for reducing the over-fitting problem is to increase the size of
the data set as shown by Figure 5.4. Both the red lines are a polynomial with order M = 9 but the
number of data points is 15 on the left and 100 on the right, and it is clearly shown that the regression
captures the underlying function best for the larger data set.

Figure 5.4: Polynomial regression M = 9 with varying sample size [37]

Another method to reduce over-fitting is to introduce a regularization coefficient, λ, which penalizes
large parameter values. It is known that large values in the weight vector w tend to overfit the data,
especially for linear regression. To handle this problem the cost function from Equation 5.4 is modified
to include the regularization coefficient.

C(w) = 1
2

(
N∑
i=1

(
yi −wTΦ(xi)

)2 + λwTw
)

(5.10)

28



Chapter 6

Data Set

This chapter describes the data sets used in the further analysis. The vessel used in the analysis is
a five years old 2500 TEU container vessel. The data set contains data from three different sources,
all with different sampling rates. The vessel’s performance data are from the aboard performance
monitoring system, information about the weather condition is re-analysis of hindcast weather data
from the ECMWF database, and the location data are obtained from the AIS system. The main
characteristics of the container vessel are given in Table 6.1

Table 6.1: Ship particulars (Design condition)

Parameter Abbreviation Magnitude unit

Length overall LOA 208.9 [m]

Length between perpendiculars LPP 196.9 [m]

Breadth B 29.8 [m]

Draft D 10.1 [m]

Displacement ∇ 37 718 [m3]

Block coefficient CB 0.64 -

The first three sections describe the different data and data sources, while the last section describes
the processing of the data.

6.1 Performance Monitoring Data

The performance monitoring data set consists of data logged by the aboard performance monitoring
system. The data set contains values from vessel delivery in March 2014 to the beginning of 2019. The
sampling period for this system is approximately 15 minutes. Figure 6.1 gives a bar chart over how
many measurements that are available per day.
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Figure 6.1: Available Performance data per day

From the figure, it is shown that most dates have 96 samples are available, which corresponds to the
sampling period of 15 minutes. It is not known why the sampling rate for some dates is different from
15 minutes. It may indicate that something was wrong with the data and to make it simpler in the
analysis were all data points with sampling rates of less than 10 minutes have been removed. There
are 34 different parameters in the ship performance monitoring data set, they are listed in Table 6.2.
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Table 6.2: Parameters sampled from the aboard monitoring system

Parameter unit Parameter unit

Date yyyy-mm-dd ME Fuel Mass Tot In kg

Time hh:mm:ss ME Fuel Mass Tot Ret kg

ME Fuel Mass Net kg/hr ME Fuel Mass In kg/hr

AE Fuel Mass Net kg/hr ME Fuel Mass Ret kg/hr

Ship Speed Log knot AE Fuel Mass Tot In kg

Ship Speed GPS knot AE Fuel Mass Tot Ret kg

Ship Course deg AE Fuel Mass In kg/hr

ME Shaft Power kW AE Fuel Mass Ret kg/hr

ME Shaft Speed rpm ME Fuel Temp In °C

Wind Speed Abs. knot ME Fuel Density In kg/m3

Wind Speed Rel. knot ME Fuel Temp Ret °C

Wind Dir. Rel. deg ME Fuel Density Ret kg/m3

Draft Fwd m AE Fuel Temp In °C

Draft Aft m AE Fuel Density In kg/m3

ME Fuel Vol Tot In l AE Fuel Temp Ret °C

ME Fuel Vol Tot Ret l AE Fuel Density Ret kg/m3

AE Fuel Vol Tot In l AE Fuel Vol Tot Ret l

It is some uncertainty in how the data are measured, and a full investigation of how all the different
parameters are measured has not been conducted, which means that the uncertainty related to the
measurement of the data is unknown and assumed not to have a great impact on the analysis. However,
a general overview of how some of the most critical parameters are usually sampled is given in Chapter
4. The data are processed in order to identify false values. A discussion of how the data are processed
is given in Chapter 6.4. Not all the data in Table 6.2 were used further in the analysis, Table 6.3 states
which parameters that are used in further.
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Table 6.3: Parameters used in further analysis

Parameter unit Comment

DateTime yyyy-mm-dd hh:mm:ss Date and time in UTC

Timestamp s Epoch time, calculated from DateTime

Ship Speed Log knot Speed through water

Ship Speed GPS knot Speed over ground

Ship Course deg -

ME Shaft Power kW -

ME Shaft Speed rpm -

Wind Speed Abs. knot Only compared with ECMWF data

Wind Speed Rel. knot Only compared with ECMWF data

Wind Dir. Rel. deg Only compared with ECMWF data

Draft Fwd m -

Draft Aft m -

Draft mid m Calculated from draft Aft and Fwd

Trim m Calculated from draft Aft and Fwd

6.2 Weather Data

The weather data used in this thesis are obtained from the European Center for Medium-Range
Weather Forecasts (ECMWF). ECMWF is a research and 24/7 operational institute providing weather
predictions and other weather-related services. It has one of the worlds largest databases of meteoro-
logical data. The archived data are continuously reanalyzed using updated weather forecast models
and observations. The data used in this thesis are a part of their ERA-Interim re-analysis data set
which has data available from 1979 to present. A detailed description of the re-analysis process and
data set can be found in [38].

To obtain the data from the ECMWF’s database, one has to specify which parameters that are of
interest, the area, spatial and temporal resolution. As the vessel operates worldwide was the area set to
cover the whole globe, the spatial resolution used was 0.75x0.75 degrees, and the temporal resolution
was 6 hours. The downloaded files contain information about the wind and wave conditions. The
parameter used in the analysis is given in Table 6.4.
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Table 6.4: Description of ECMWF parameters

Parameter Unit Description

10 metre eastward wind component m/s The eastward horizontal wind component 10 me-
ter above the sea surface

10 metre northward wind component m/s The northward horizontal wind component 10
meter above the sea surface

Absolute wind velocity m/s Calculated from the 10 metre eastward and
northward wind component

Wind direction m/s Calculated from the 10 metre eastward and
northward wind component

Significant wave height m 4 times the square root of the integral over
all directions and all frequencies of the two-
dimensional wave spectrum

Mean wave direction degrees The mean wave direction over all frequencies and
directions of the two-dimensional wave spectrum

Mean wave period s The mean wave period over all frequencies and
directions of the two-dimensional wave spectrum

6.3 Location Data

Automatic Identification System (AIS) is mandatory and it is an automatic tracking system that gives
the vessel’s position, speed, course, and identification. It is mostly used to avoid collisions between
ships. The location data in this thesis are obtained from the AIS database. The AIS data consists of a
timestamp and the GPS coordinates (longitude and latitude). The sampling rate is not constant and
varies from a couple of seconds to several hours, even days. Figure 6.2 shows a bar chart of how many
samples that are available for the vessel each day. From the figure, it is shown that the sampling rate
is fluctuating. This fluctuation gave that the main source of loss in data comes from the location data
set.
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Figure 6.2: Available AIS data per day

6.4 Processing of Data

In this section, the processing of the data is described. A data point is removed by removing all the
variables with the corresponding timestamp.

6.4.1 Combining Different Data Sources

The first step in the data processing was to collect the data from the three different sources and
combine them into readable data files. The performance monitoring data were obtained as one .csv
file per day, while the AIS data was given as one large unsorted .csv file. In order to combine these,
the AIS data were sorted and split into one file per year, and the performance data were combined
into one file per year. The AIS data and performance monitoring data were connected by linearly
interpolating the AIS data in time to match the performance monitoring data. A restriction was set
so the difference between the timestamp in the performance data and AIS data was smaller than 1
hour. The MATLAB script Save Variable.m was used to combine the performance monitoring and
AIS data, the script is given in Appendix A.1.

A .m file containing both AIS data and performance data were made for each year. In order to
combine the weather data to this data set, the weather data were linearly interpolated both in time
and space. As mentioned above the temporal resolution for the weather data are 6 hours while
the temporal resolution for the performance data is 15 minutes. The weather data have a spatial
resolution of 0.75x0.75 degrees, which means that the data set only contains information about the
weather conditions in the corners, as illustrated in Figure 6.3. The blue points are the grid position,
which contains information about the weather condition, and the red points represent the vessel’s
position. In order to obtain the weather condition at the vessels location, the weather condition at the
blue points are linearly interpolated to the vessels position in space for both the time instant before
and after the timestamp. Then the weather condition is linearly interpolated in time. The longitude
values in the AIS data had values between -180 to 180 while the ECMWF operates with longitude
from 0 to 360, so the longitude form the AIS data had to be converted in order to obtain the correct
weather condition.
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Figure 6.3: Definition of ECMWF grid

Figure 6.3 shows two different vessel positions. For the position to the right, all the grid points are
at sea, so all contain information about both wind and wave conditions. For the position to the left,
the grid point over land does not contain information about the wave condition, which is natural since
there are no waves on land. The wave condition for this grid point is therefore set to be the mean
of the other points. The mean value was chosen because it represents the wave condition better than
setting the values to zeros as this might be artificially low. How this processing of the weather data
and combining it with the performance monitoring data was done are given in Appendix A.2 and A.3.
Figure 6.4 gives a bar chart over the number of available data points per day for the combined data
set, the total amount is 77 738.

Figure 6.4: Data samples per day after processing

The figure shows that the number of available data points is nicely spread over in time, but there are
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more data points available in the end than the beginning. There are a lot of missing values in July
2016. This is due to a lack of AIS data for that period, as shown in Figure 6.2. The vessel operates
worldwide, as shown in Figure 6.5, which gives the complete travel history of the vessel.

Figure 6.5: Complete travel history of the vessel

6.4.2 Draft and Trim

The performance monitoring data contains values for the draft fore and aft. The draft midships is
calculated as the mean of these two drafts, and the trim is the difference. It was observed that the
draft measurements for the vessel in transit were scattered, which is assumed to be caused by the fact
that the draft measuring sensors are sensitive to the ship velocity. In order to reduce the measurement
error, the drafts were averaged. First, the vessels speed below 8 knots, and data points where the
vessel was accelerating were removed. This initial processing was done, so the vessel always was in
transit and not undergoing loading operations at the port. Then the drafts were averaged over time so
that the maximum time difference between two succeeding measurements was two hours. Figure 6.6
illustrates how this was done by showing a scatter plot of the original draft and the mean values for a
short time window. The velocity of the vessel was between 16 and 20 knots in the given time window.
In addition to averaging the draft measurements over time were data points for drafts below 6 meters
removed because the draft in ballast condition is 6.2 meters, so drafts below this are either considered
as false or un-normal operation. About one percent of the measurements were below 6 meters.
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Figure 6.6: Draft

The calculated trim was also averaged as explained above. Trim values above 4 meters were also
considered to be false and thereby removed from the data set. It is also observed that the trim and
draft have some correlation, as shown by Figure 6.7.

Figure 6.7: Correlation between draft and trim

Most of the measurements gave a draft of around 10.7 meters and trim around -0.4 meters.

6.4.3 Speed

There are two different speed measurements for the vessel, speed over ground and speed through water.
A description of how these parameters usually are measured is given in Chapter 4.3.2. As the vessel
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is mostly operating deep sea, it is expected that the currents are small. So, it is expected that the
speed through water and speed over ground should be approximately the same. It was found that the
difference in speed through water and speed over ground was smaller than 1.5 knots for 96.5 % of the
data, which means that the accuracy of the speed through water sensor is good. Further analysis of
the speed measurements gives that the ship’s speed is zero for 40 % of the measurements. Figure 6.8
shows how the speeds is distributed.

Figure 6.8: Distribution of speed over ground

Figure 6.8 does not show the top of the bar for speeds equal to zero as it contains over 31 000
measurements. The added power in transit is of interest, so the data points for speeds below 8
knots, both speed over ground and speed through water, were removed. Also, the data points where
the difference between the speed over ground and speed through water was greater than 1.5 knots
were disregarded. When the vessel is accelerating is the speed-power ratio different than for normal
operation, therefore are the data points where the vessel is accelerating removed. This is done by
letting the maximum difference in vessel speed between two measurements be 0.5 knots. By applying
these requirements, about 60 % of the total data were removed.

It was also found that before February 2016 the vessel was operating at a significantly lower speed
than after February 2016 as shown by Figure 6.9. The mean speed before was 13.5 knots while the
mean speed after was 16.4 knots. This is believed to be correlated with the oil price, which had a drop
around the same time. The spread in draft and trim were also smaller at the end of the time period.
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Figure 6.9: Speed variations over time

6.4.4 RPM

In addition to the above-mentioned data processing was the RPM values evaluated. It was found that
the RPM data had some negative values, so all these were removed. This was done by removing all
RPM values below 50 as these correspond to vessel speed below 8 knots.
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Chapter 7

Methods

This chapter describes the methods used in this thesis to determine the added power of a ship due
to fouling by using in-service performance monitoring data. As previously stated, this is a complex
problem where different loading conditions, speeds, and environmental conditions have a significant
influence on the power need. There are therefore necessary to compensate for these factors in order
to compare the different data points and evaluate the change in power need over time. In this thesis,
three methods are developed to determine the added power due to fouling.

The first two methods aim to produce data sets where the environmental effects such as wind and
waves are accounted for. Then both the Admiralty coefficient and resistance coefficient are used to
account for different loading conditions and speeds. The last method uses machine learning trained
on data from the first year of operation to predict the shaft power. Then the relative prediction error
is analyzed over time, to find the added power due to fouling. Appendix B shows how the methods
presented below were implemented in MATLAB.

7.1 Benchmark

To be able to determine the added power due to fouling, it is necessary to have a reference for what the
expected power need for a clean hull is. Usually, this benchmark is obtained during the speed-power
test at the sea trial. However, for this vessel, the speed-power test was conducted for higher speeds than
achieved during normal operation. Therefore, was it necessary to make another benchmark model. An
exponential fitted curve was made to fit the lower part of the speed-power curve, for calm water. The
values for calm water were found by filtering the data set by a maximum Beaufort number of 3 and
a maximum significant wave height of 1 meter, as explained in Chapter 7.4. The line was calculated
using the curve fitting toolbox in MATLAB. Figure 7.1 shows a scatter plot of the speed-power for
calm water with the orange line representing the fitted curve that will be the benchmark model.
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Figure 7.1: Speed-power data for calm water with benchmark line

The benchmark model is given by Figure 7.1 and describes the following relationship between the shaft
power and speed through water. The speed through water is in knots and the shaft power in kilowatts.

Shaft Power = 304.1e0.192·STW (7.1)

In order to check how the drafts influence the speed-power model, the data in Figure 7.1 are split into
two different groups, drafts higher and lower than 10 meters. The result is shown in Figure 7.2.

Figure 7.2: Speed-power data with benchmark line for different drafts

Drafts above 10 meters require more power to obtain the same speed as a draft below 10 meters,
but the difference is small. For speeds below 18 knots is the difference minimal, and the benchmark

42



7.2. Admiralty Coefficient

model gives a reasonable estimate for all loading conditions. Above 18 knots is the difference more
significant between the benchmark and drafts above 10 meters. However, the difference is still small,
so the benchmark model is considered to be a reasonable estimate for the power need of a clean hull.

7.2 Admiralty Coefficient

As explained in Chapter 4.4, the Admiralty coefficient is a traditional parameter used for performance
analysis. It is a simple formula that accounts for different loading conditions and speeds, but not for
different sea states. The Admiralty coefficient AC uses the following relationship between the weight
displacement ∆, ship speed VS , and shaft power PS .

AC = ∆2/3 V 3
S

PS
(7.2)

The weight displacement ∆ is not logged by the aboard performance monitoring system and needs
to be estimated. It is estimated based on the mean draft T , which is a logged parameter. Then the
following relationship was used to estimate the weight displacement.

∆ = ρ ·B · LWL · T · CB (7.3)

Both the block coefficient CB , water density ρ, breadth B, and length in waterline LWL were all
assumed to be constant in lack of better information. This assumption gives a linear relationship
between the weight displacement and the draft. However, all of these parameters will change with
the draft and trim because of the submerged hull’s geometry changes. A more accurate relationship
between the displacement and draft and trim can be obtained by using drawings or a 3D model of the
vessel. However, this was not available. The water density will change with the seawater temperature,
which means that there is also some error related to the assumption of constant density.

The Admiralty coefficient is assumed to be constant in calm water [32], for ships with small variations
in speeds and loading conditions. Then the variation over time is caused by fouling. Then the shaft
power can be estimated based on the Admiralty coefficient with a given weight displacement and speed,
as shown by Equation 7.4.

PEstimate = ∆2/3 V 3
S

AC
(7.4)

Then the estimated power is compared with the benchmark and the added power due to fouling is
found by Equation 7.5. The benchmark is the expected power for the given loading condition and
speed for a clean hull in calm water.

PAdded = PEstimate − PBench
PBench

· 100% (7.5)

The added power PAdded is plotted over time to obtain trend lines, and these trend lines determine
the added power due to fouling.
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7.3 Resistance Coefficient

The difference between the resistance coefficient based on the measured performance data and the
resistance coefficient based on the benchmark will give the added power. The following equation gives
the resistance coefficient, as given in Chapter 2.

CTS = RTS
0.5ρV 2S

(7.6)

Where RTS is the total resistance of the vessel given by Equation 7.7, ρ is the density of the seawater,
V is the vessel speed, and S is the wetted surface area. Here the different loading conditions are
accounted for by the wetted surface area.

RTS = PB · ηD
V

(7.7)

PB is the measured shaft power given by the performance monitoring system, and ηD is the propulsion
efficiency, which is assumed to be constant and 0.7. The propulsion efficiency is assumed to be the
same for both the benchmark and performance data. The propulsion efficiency ηD is not constant and
usually changes with the load on the propellers. However, there is no information given about the
propulsion efficiency, and as it is assumed to be the same for the benchmark, the error related to the
propulsion efficiency is assumed to be small. Equation 7.8 estimates the wetted surface area

S = k ·
√
∇LWL (7.8)

where k is given by Figure 7.3, ∇ is the volume displacement and LWL is the vessel´s waterline length.
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Figure 7.3: Diagram for determination of k used to estimate the wetted surface of a ship [39]

In order to determine the wetted surface constant k of the ship are both the midship coefficient CM
and the breadth of the ship assumed to be constant, while the draft changes. CM is assumed to
be 0.90, which is a reasonable assumption for modern container ships. When estimating the volume
displacement ∇, both the block coefficient and the length in waterline are also assumed to be constant.
The difference between the total resistance coefficient based on performance monitoring data and the
benchmark is assumed to be caused by fouling. So, the change in frictional coefficient ∆CF can be
found by Equation 7.9. If all the other parameters in Equation 2.4 are assumed to be the same for the
fouled and clean hull.

∆CF = CTSMeasured
− CTSBench

(7.9)

The resistance due to fouling can be expressed by Equation 3.7 as discussed in Chapter 3, which gives
that the following equation can estimate the added power due to fouling.

PAdded = ∆CF
0.5 ρ S ηD V 3

PBench
· 100% (7.10)

The added power PAdded is plotted over time in the same way as for the Admiralty coefficient to obtain
trend lines.
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7.4 Method 1: Removing Data With Bad Weather

The first method used to compensate for the environmental effects was to filter out the data points
with bad weather, by establishing criteria for bad weather and then remove every point, which is
classified as bad weather. This filtering reduces the size of the data set. The Beaufort wind scale is a
standardized scale that describes the weather condition [16]. In this thesis, a Beaufort number of 3 or
less, which means wind velocity between 0 and 5.5 m/s, are classified as calm water. In addition, was
a limit of 1 meter significant wave height applied. When these conditions have been removed the wind
and wave resistance are assumed to be small compared with the calm water resistance and thereby
neglected. That data points left are then dominated by calm water resistance, and the increased
resistance over time is caused by fouling. Then both the Admiralty and resistance coefficient are used
to compensate for different speeds and loading conditions. In addition to the wind and wave resistance
will the density and temperature of the water and air influence the resistance of the vessel. The water
depth will also influence the resistance of the vessel. However, nighter the temperatures or the water
depth was measured, so these resistance components are not taken into account in this thesis. As the
speed through water measurement is found to be reliable is the effect of current handled by using this
measurement instead of the speed over ground.

7.5 Method 2: Including Environmental Effects

The second method used was to calculate the environmental effects, i.e. wind and wave resistance.
These resistance components are removed from the total resistance so that only calm water resistance
is left. This method aims to obtain a calm water data set that contains more data points than in
Method 1.

7.5.1 Wind Resistance

The added power due to the wind resistance is calculated according to ISO 15016 standard for sea trails
[16]. This procedure is explained in Chapter 2.2.1. The wind data obtained from the ECMWF database
are found to be more reliable than the wind data from the performance monitoring system. The wind
data from the ECMWF database are therefore used to determine the wind resistance. Equation 2.7 is
modified so that the last part of the equation is removed. This gives Equation 7.11 which is used to
determine the added wind resistance.

RAA = 0.5ρa · CAA(ψWRef ) ·AXV · V 2
WRef (7.11)

Both the transverse projected area above the waterline AXV and the wind resistance coefficient CAA,
for all angles, needs to be known in order to use this procedure. The wind resistance coefficient was
estimated based on Figure 7.4, which is given in the ISO standard [16].
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Figure 7.4: Wind resistance coefficient [16]

This figure is based on a 6800 TEU container ship. The ship analyzed in this thesis is a 2500 TEU
container ship, which means that it is smaller than the ship Figure 7.4 is based on. However, this is
the best available estimate for the wind resistance coefficient, and the error is assumed to be small as
the form of the ships is similar. The vessel is always assumed to be loaded with some containers, so
the dashed line is used to determine CX . Then CAA is determined as CAA = −CX . The transverse
projected area above the waterline was estimated based on the height above the waterline and the
width of the vessel. It was estimated to be 580 m2.

7.5.2 Wave Resistance

The added power due to the wave resistance was also calculated according to ISO 15016 and is explained
in Chapter 2.2.2. The limitations of this procedure mean that the wave resistance only be accounted for
in small waves, waves with significant wave height less than three meters. This method only accounts
for effects of waves in head sea ± 45°off the bow. The resistance for the waves that are not classified
as head sea is set to 0. This is not a good assumption as beam sea might give large roll motions which
will influence the vessel considerably and following sea might even give the vessel a boost.

7.6 Method 3: Machine Learning

The third method used to determine the added power due to fouling is to apply machine learning on
the data set. The basic principles of how to use machine learning in regression analysis are given in
Chapter 5. The machine learning models in this thesis are used to predict the shaft power based on a
set of input parameters. They are trained on data for the first year of operation, where the fouling on
the hull and propeller is assumed to be small. The data for the first year of operation is split into a
training set and a validation set. The split is done randomly in time (within the first year) so that the
training set has 80 % of the data and the validation set has the remaining 20 %. After the training
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of the machine learning model, the model is fed with the remaining data, and the relative prediction
error is calculated. The increase in the relative prediction error over time is assumed to be caused
by fouling [18]. Three different machine learning models were tested, linear regression, custom linear
regression, and Gaussian process regression.

7.6.1 Linear Regression

Linear regression is the simplest form for regression and can be used on any regression problems. The
model assumes that there is a linear relationship between the parameters so that a weighted sum of
explanatory variables can explain the desired variable.

y = ω0 +
N∑
i=1

ωixi (7.12)

Where y is the shaft power, determined by the sum of weight parameters ω and input parameter x.
As previously explained the shaft power, speed through water, and loading condition are not linearly
dependent and therefore will this model probably be too simple (under fit) for the problem at hand.

7.6.2 Custom Linear Regression

A custom linear regression model allows the designer to assign non-linear dependencies to the model
by using prior knowledge about the problem. A custom non-linear model can be made to predict the
shaft power, based on previous knowledge about the relationship between the shaft power, speed and
loading condition.

Speed
From the relationship between the ship resistance and the resistance coefficient, it is given that the ship
resistance is proportional to the speed squared. It is also known that the shaft power is proportional to
the resistance times the ship’s speed. This gives the following relationship between power and speed,
P ∝ V 3. The Admiralty coefficient also gives this relationship. From this, the following relationship
is applied in the custom regression model.

ωiV
3 (7.13)

Draft
The draft influences both the displacement and wetted surface of the vessel. It is previously stated
that it is assumed that the displacement is proportional with the draft, T ∝ ∇. From the Admiralty
coefficient it is given that P ∝ ∇2/3 which gives P ∝ T 2/3. Then the following relationship is applied
in the custom regression model.

ωiT
2/3 (7.14)

Trim
The trim will also influence both the displacement and wetted surface of the vessel. As the vessel has
a bulbous bow will the effect of the bulbous bow change with the trim as well. Since the changes
in trim have such a complex influence on the resistance of the vessel, it is difficult to determine the
relationship between the trim and power. However, a trim optimization test can be carried out in
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order to find out how the trim influences the resistance. Results from a trim optimization test are
not known for this vessel, so the relationship between trim and power is therefore not known. Thus,
the trim will not have a custom regression parameter but are assumed to be linearly. Which gives the
following input used in the model.

ωiTrim (7.15)

Time
The power will change in time due to fouling of the hull and propeller. This influence are as previously
stated assumed to be linear.

ωiTime (7.16)

Final Model
By including the custom model in Equation 7.12 it becomes

y = ω0 + ω1V
3 + ω2T

2/3 + ω3Trim+ ω4Time+
N∑
i=5

ωixi (7.17)

where i = 5 to N are other input parameters for the environmental condition given in table 7.1,
where a custom relationship have not been made. Figure 7.5 gives a scatter plot of the different
custom models against the shaft power to see how well the data fit a linear relationship.

Figure 7.5: Linear correlation for custom model

The figure shows that the model for the ship’s speed gives an excellent linear relationship with a R2

almost 0.97 while the model for the trim and draft does not represent a linear relationship very well.
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7.6.3 Gaussian Process Regression

The Gaussian process for regression analysis is built on a complex mathematical and statistical frame-
work, so only a few sentences about the method are given here. For a detailed description, see ”Gaussian
Process for Machine Learning” by Rasmussen and Williams [40]. A Gaussian process is a generaliza-
tion of the Gaussian probability distribution where the Gaussian probability distribution describes the
variables in the process [18]. Then the input variables for the regression model have a joint Gaussian
distribution, and the parameters of these distributions can be obtained by training the input set with
a corresponding output set. Then these joint distributions are used to predict new values for similar
input sets.

7.6.4 Input analysis

Since this problem is best solved by supervised learning, it is necessary first to choose which variables
that shall be the input for the model. An analysis of different input sets was conducted in order to
choose the set of input variables that gave the smallest prediction error. The different input sets are
given in Table 7.1.

Table 7.1: Input sets

Variable Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

Draft midship x x x x x x x

Trim x x x x x x

Seed through water x x x x x x x

Time x x

Rel. wind direction x x x

Wind speed x x x

Rel. wave direction x x x

Significant wave height x x x

Wave period x x x

The table above is split into three parts. The first part contains parameters with information about
the loading condition and speed, the middle part is time from delivery, and the last part contains
information about the environmental condition. The draft and speed through water are the most
important parameter for determining the shaft power, therefore are these input parameters in all the
data sets. The input sets 2, 3, 4, and 7 contain information about the environmental condition as well.
Time is included in two of the input sets to see if it will have a large impact on the accuracy of the
model. In order to find the best input set, the mean prediction error is evaluated. The mean prediction
error is calculated based on the results obtained by applying the trained models on the validation set.
It is defined by Equation 7.18.

Mean prediction error = 1
N

N∑
i=1

∣∣∣∣Truei − PredictediTruei

∣∣∣∣ · 100% (7.18)

Figure 7.6 gives the mean prediction error for the different input sets and models.
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Figure 7.6: Mean prediction error for different input sets

It is given from the figure that the custom linear regression model gives the same or a better prediction
than the linear regression model, which indicates that the changes applied to the linear model were
good. However, they both have a higher prediction error than the Gaussian regression model. The
difference between the three fist input sets is the environmental condition, and here it is shown that
as expected, that the wave condition has the most significant influence on the prediction error. By
comparing input set 1 with 5 and 4 with 7, it is shown that the time variable has a positive influence
on the Gaussian regression model, but a negative influence on the linear and custom regression model.
Input set 4 contains information about both the loading condition, speed, and environmental condition.
It also gave the least mean prediction error for the three regression models without containing a time
variable. It is therefore chosen as the input set to be used in the analysis. Since the custom linear
regression model gives better or the same result as the linear regression model, the linear regression
model is disregarded in further analysis.
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Chapter 8

Results

The following chapter presents the results obtained by the methods described in the previous chapter.
The results are presented in figures, and results from different models are compared. This will provide
a discussion about the reliability of the models a recommendation of the best model given in the next
chapter. The results in this chapter use the data set described in Chapter 6.

8.1 Method 1: Removing Data With Bad Weather

The first method used to determine the effect of fouling is to filter the data set by the weather condition.
As previously stated was all the data points where the Beaufort number was higher than 3 and the
significant wave height higher than 1 meter removed. By filtering out these conditions, approximately
70 % of the data points were removed.

8.1.1 Power Over Time

The simplest method to determine the added power due to fouling is to choose a speed, then plot the
power over time. The calm water data set contains about 11 000 values, and Figure 8.1 shows how
these are spread over the different speeds.
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Figure 8.1: Distribution of speeds for the calm water data set

As shown by the figure are the speeds quite evenly distributed. It is also shown that the number
of data points rapidly decreases when a speed is selected. For example, if a speed between 17.9 and
18.1 knots is chosen, then the number of data points is reduced to 279, without filtering the loading
condition. If different loading conditions are filtered as well, there are almost no data points left. A
plot of the added shaft power relative to the benchmark given by Figure 7.1 for velocities between 17.9
and 18.1 over time is shown in the figure below.

Figure 8.2: Power over time for 18 knots, calm water

It is clearly shown by Figure 8.4 that there are not enough sample points to draw any conclusions
about what the added power is. This method is therefore disregarded. However, it shows that there
is a trend that the power increases towards the end of the time series.
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8.1.2 Admiralty Coefficient

Following the method described in Chapter 7.2, the Admiralty coefficient for the calm water data set
is calculated. Figure 8.3 shows a scatter plot of the Admiralty coefficient for the calm water data. The
thick red lines are the trend lines between the events marked by the vertical lines. The trend lines are
assumed to be linear and calculated by minimizing the root mean square error. The vertical red lines
indicate dates where the propeller was cleaned, and the vertical blue line indicates the date when the
hull was cleaned.

Figure 8.3: Admiralty coefficient over time for Method 1

A decrease in the Admiralty coefficient is a decrease in vessel performance. From the figure, it is shown
that from vessel delivery and to the first propeller cleaning, the trend for the Admiralty coefficient is
decreasing. It has decreased by approximately 16%. The first propeller cleaning has an obvious effect,
as shown by the second trend line. It restores the Admiralty coefficient to a 6% decrees relative to
the first value. The second propeller cleaning gives a decrease according to the trend line, while the
data points right after the cleaning show an increase in the Admiralty coefficient. The third propeller
cleaning gives no effect on the Admiralty coefficient, according to Figure 8.3. However, the hull cleaning
shows a significant increase in the Admiralty coefficient, from about a decrease of 20% up to a decrease
of 13% relative to the first value.

An estimate for the shaft power for design loading condition and a speed of 18 knots was calculated
based on the Admiralty coefficients in Figure 8.3. The shaft power used as a benchmark was calculated
based on the line in Figure 7.1.
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Figure 8.4: Added power based on Admiralty coefficients for design loading condition and speed 18
knots, Method 1

To show the trend lines more clearly are the limits on the y-axis set to be -50 to 150 %, so there are
a few data points outside these limits. Form the trend lines in the figure it is given that at vessel
delivery, the added power is almost zero, which is expected. Right before the first propeller cleaning
the increased power was approximately 16 % and the first propeller polishing had a significant effect,
with a 10 % drop to an increased power of 6 %. Between the two last propeller cleanings, the trend
lines show an increase in vessel performance, which is not as expected. The hull cleaning had a good
effect and as expected are the slope of the trend line more steep after the hull cleaning. At the end of
2018, the increased power according to this method was 25%, which implies that there is significant
fouling present.

This method is fast, simple and easy to implement, but as shown by Figure 8.3 and 8.4 the data has
much spread which means that there is some uncertainty in the method. To cope with this one needs
a lot of data, which means that to be able to use this method to determine the added power due to
fouling one has to see the trend over a long period at least a couple of months to be able to draw any
conclusion.

8.1.3 Resistance Coefficient

The resistance coefficient was also used to determine the added power due to fouling. Following the
procedure explained in Chapter 7.3. Figure 8.5 shows the estimated resistance coefficient plotted
against time.
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Figure 8.5: Resistance coefficient over time for Method 1

An increase in the resistance coefficient will increase the power needed. The figure clearly shows from
the trend lines, that the resistance coefficient increases over time and that there is a drop after each
event as expected. Except between the two propeller cleanings in July 2016 and February 2017, where
the resistance coefficient decreases over time, which is the same that was shown by the Admiralty
coefficient. Based on the resistance coefficient given in Figure 8.5 were the added power due to fouling
estimated and are shown in Figure 8.6.

Figure 8.6: Added power based on the resistance coefficients for Method 1

The first thing to notice is that the limits on the y-axis are different than for Figure 8.4, because there
is less spread in the data for this method, and all the data points are within the limits. Less spread
in the data implicates that this might be a more accurate method. The results are also as expected
with an increase of power over time, except between the last two propeller cleanings. However, from

57



Chapter 8. Results

the first trend line, it is shown that the vessel starts with an increase of the shaft power about 6 %,
this is higher than the expected zero. The last trend line gives that the added power due to fouling at
the end of 2018 is estimated to be 22 %, which is lower than what the added power estimation based
on the Admiralty coefficient. However, it still implies a significant added power due to fouling.

8.1.4 Comparison

Figure 8.7 gives a comparison of the trend lines calculated based on the Admiralty and resistance
coefficient given in Figure 8.4 and 8.6.

Figure 8.7: Comparison of trend lines for Method 1

The red line gives the added power based on the Admiralty coefficient, and the blue line gives the added
power based on the resistance coefficient. From the figure, it is shown that the resistance coefficient
gives a more conservative estimate than the Admiralty coefficient. The slope of the trend lines for the
resistance coefficient is lower than for the Admiralty coefficient for most of the lines. The difference
between the models is small except before the first propeller cleaning. It is also shown that between
the two last propeller cleanings the slope of the trend lines is negative for both methods. This is the
opposite of what is expected, and both methods even give that the power needed increases after the
second propeller cleaning. It was found that the number of data points available between the two last
propeller cleanings was lower than between the other events. In addition, there were few data points
right after the second propeller cleaning, which influences the results and is believed to be the reason
why the trend line has a negative slope. Figure 8.8 shows how the number of available data points per
day for Method 1 are distributed. The propeller and hull cleaning events are marked with vertical red
and blue lines.
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Figure 8.8: Number of data points per day for calm water data set

The holes represent the missing data points due to bad weather (or other data possessing criteria given
in Chapter 6). When these holes are close to a propeller or hull cleaning event, it influences the result,
so the effect of these events is not captured well. It is shown that around the second propeller cleaning,
there are two big holes in the data points both before and after.

8.2 Method 2: Including Environmental Effects

The second method used to determine the added power due to fouling was to calculate the wind and
wave resistance and remove them from the total ship resistance, as explained in Chapter 7.5. All data
points with significant wave height above 3 meters were removed as the model used to calculate the
wave resistance is only valid for small waves. This accounted for approximately 4 % of data, which gives
that the total amount of data for this method is much more than for Method 1. The determination
of the environmental conditions is however based on some assumptions stated in Chapter 7.5, which
gives some uncertainty in the results.

8.2.1 Admiralty Coefficient

After the added power due to wind and wave resistance were accounted for was the Admiralty coefficient
calculated. The calculated Admiralty coefficients are given in Figure 8.9.
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Figure 8.9: Admiralty coefficient over time for Method 2

It is shown here that the Admiralty coefficient is decreasing between each event and that each event
gives a positive effect on the performance, which is the expected behavior of the Admiralty coefficient.
From the figure, it is also shown that there are some outliers and that the spread is larger than for
Method 1. It implies that not all the weather effects were accounted for. Following the same procedure
as in Method 1, the shaft power was estimated based on the calculated Admiralty coefficient. Figure
8.10 gives the added power for the design loading condition and speed of 18 knots, the same condition
as Method 1.

Figure 8.10: Added power based on Admiralty coefficient for design loading condition and speed 18
knots, Method 2

The y-limits are fixed to show the trend lines better and which means that some outliers are not
shown in Figure 8.10. It is given form the trend lines that the added power starts at zero, which is
the expected value. Right before the first propeller cleaning the increased power was approximately
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14%, which is 2 % less than the added power Method 1 gave. The added power after the first propeller
cleaning is almost reset to zero. The trend lines increase between all events, which indicates that more
data points around the cleaning dates have helped the model to capture the effect of the cleaning.
At the end of 2018 gives this model an increased power due to fouling of 19 %, this is 5 % less than
Method 1 gave.

8.2.2 Resistance Coefficient

The resistance coefficient was also calculated for this data set. Figure 8.11 shows the calculated
resistance coefficient.

Figure 8.11: Resistance coefficient for Method 2

The figure shows that the spread in the resistance coefficient is larger for Method 2 than Method 1.
When comparing Figure 8.11 with Figure 8.5 it is important to notice that the y-limits are different.
The trend lines are hard to see in this figure, but they show that the resistance coefficient has a slight
increase between all events. The effect of the propeller cleanings are however not identified well, but
a little decrease is shown. Based on the resistance coefficients given Figure 8.11 the added power due
to fouling was determined and are shown in Figure 8.12.
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Figure 8.12: Added power based on resistance coefficients for Method 2

From the figure, it is given that the added power at vessel delivery is 8 %, which is much more than
expected. The resistance coefficient gave a large initial added power for Method 1 as well, which
indicates that something is wrong with the benchmark for this model. The added power increases
between all the events, as expected. However, the slopes are small, and the effect of the first and last
propeller cleaning gives a small drop in added resistance of about 1 %, which is smaller than expected.
The analysis identifies a clear drop of 8 % in added power after the hull cleaning and lands on an added
power of 21 % at the end of 2018 which is approximately the same that the Admiralty coefficient gave.

8.2.3 Comparison

A comparison of the trend lines given by the two models for Method 2 is given in Figure 8.13.
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Figure 8.13: Comparison of trend lines for Method 2

The red lines give the added power based on the Admiralty coefficient, and the blue lines are based on
the resistance coefficient. Here, the slope of the trend line for the admiralty coefficients all are steeper.
The Admiralty coefficient clearly shows the effect of each event. It is also shown that the difference
between the two methods is significant right after an event and small right before, which indicates that
the resistance coefficient fails to identify a cleaning event. The Admiralty coefficient gives the expected
zero added resistance at vessel delivery as well as identifying all events that indicate that this is the
most accurate model between the two.

8.3 Method 3: Machine Learning

The third method used to determine the added power due to fouling is to apply machine learning the
data set. As explained in Chapter 7.6 is the machine learning models trained on a data set containing
values form the first year of operation. It is assumed that the fouling on the hull and propeller during
the first year of operation are small so that the increase in the relative prediction error over time is
caused by fouling. Input set 4 from Table 7.1 are used. The mean relative prediction error shown in
Figure 7.6 is based on the absolute value, which means that it can not be directly compared with the
trend lines in this section.

8.3.1 Custom Linear Regression

The custom linear regression model is explained in Chapter 7.6.2 and the modifications are done to
the draft and speed through water. The relative prediction error over time for input set 4 are shown
in Figure 8.14.
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Figure 8.14: Relative prediction error, custom linear regression

The data starts in April 2015 and not at vessel delivery, so the training data are not used in the
analysis. It is shown by the figure that before the first propeller cleaning the slope of the trend line is
negative. This negative trend is unexpected as it is assumed that fouling on the hull will increase the
prediction error. After the first propeller cleaning all the trend lines shows an increase in the relative
prediction error. The effect of each event is also clearly shown by a drop in the relative prediction
error. This drop indicates that the condition of the hull after an event is more similar to the condition
of the hull during the first year of operation than before an event. If one assumes that the model is
perfect, the expected relative prediction error for a clean hull is zero. Then the relative prediction
error gives the added power due to fouling. Then the added power due to fouling based on this model
at the end of 2018 is 25.33 %, which is very close to the result for Method 1 and a little bit higher
than the result for Method 2. However, the model is not perfect as shown by Figure 7.6. The expected
relative prediction error was calculated to be -2.10 %, by calculating the mean prediction error without
absolute value. Adding this value to the data in Figure 8.14 gives a better estimate of the increase of
shaft power. Then the added power due to fouling by the end of 2018 becomes 23.23 %, which is close
to what both Method 1 and 2 gave.

8.3.2 Gaussian Regression

Gaussian regression was also used to find the effect of fouling. The relative prediction error over time
for input set 4, and the Gaussian regression model is shown in the figure below.
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Figure 8.15: Relative prediction error, Gaussian regression

The figure shows that the data points are more scattered for the Gaussian regression model than
for the custom linear regression model, which was not expected as the mean prediction error for the
Gaussian regression model was almost half that for the custom regression model. The first trend line
for this method is also decreasing. All the other trend lines show the expected positive slope. The
effect of the last propeller cleaning and the hull cleaning gives the expected drop in relative prediction
error, while the second propeller cleaning gave no effect on the relative prediction error according to
the figure. At the end of 2018, the relative prediction error was 29.44 %, which is larger than what
the custom regression model gave. The expected relative prediction error for the Gaussian regression
model was -0.33 %, which gives that the relative prediction error is a reasonable assumption for the
increased shaft power.

8.3.3 Comparison

A comparison between the trend lines for the custom linear regression and Gaussian regression is given
in Figure 8.16.
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Figure 8.16: Comparison of trend lines Method 3

The red lines give the trend for the relative prediction error based on the custom linear regression
model while the blue lines give the trend based on the Gaussian regression model. It shows that both
trend lines before the first propeller cleaning have a negative slope, while the rest of the lines have a
positive slope. The Gaussian regression model gives a larger relative prediction error than the custom
regression model, but the slopes for the custom regression model are steeper except for the last line
where the slopes are almost identical. The slope of the trend lines determines the fouling rate, which
means that the custom regression model predicts a higher fouling rate than the Gaussian regression
model.
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Discussion

The different methods give different results, as seen in the previous chapter. In this chapter, the
reliability of the different methods are discussed, and a comparison of the different results are given in
order to recommend the best method. Some of the points discussed in this chapter have already been
discussed in previous chapters. This part will then be a summary to support the recommendation of
the best method.

9.1 Benchmark

The benchmark model is given as a relationship between speed through water and shaft power for the
un-fouled ship in calm water. The benchmark was obtained as the lower part of the speed-power curve
for calm water, based on the sampled performance monitoring data. As mentioned earlier, this model
does not account for different loading conditions. Figure 7.1 shows that there is a lot of scattering in
the data, with a difference in shaft power up 50 % for some speeds. A study of how the draft influenced
the speed power cure was conducted and as shown in Figure 7.2. The drafts were split into two groups,
above and below 10.1 meters. Here, it shows that for low speeds the influence the draft had was smaller
than for higher speeds. However, the differences were small. Since the vessel has a bulbous bow will
the trim also influences the speed power relationship. This influence was difficult to determine as the
correlation between the trim and shaft power was low. The correlation between the draft and trim
is shown in Figure 6.7, the R2 value was 0.74 which means that there is some correlation, but the
draft alone cannot be used to determine the whole loading condition. The ISO 15016 [16] standard for
sea trails requires adjustment of the speed power curve if the displacement changes with more than
2 % during the speed power trail. For the trim is the limit set to 0.1 % of the ship’s length. These
requirements indicate that both the draft and trim have an influence on the speed power curve, and
the benchmark model should compensate for different loading conditions in order to get more accurate
results. Thus, the benchmark model may be too simple and therefore cause spread in the result and
give wrong trend lines, which again gives wrong added power estimation.

9.2 Admiralty Coefficient

The Admiralty coefficient is a useful parameter to evaluate the vessel’s performance over time. It
accounts for different speeds and displacements, but only when the changes are small. If the vessel
usually operates around the same loading condition and speed, the Admiralty coefficient is constant,
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in calm water. However, when the changes in speed and loading conditions are large, the Admiralty
coefficient will no longer be constant. So, the benchmark Admiralty coefficient for a clean hull also
will change with the loading condition and speed. As presented in Chapter 6, the case ship operates
at many different loading conditions and speeds. This is also seen in Figure 8.3 and 8.9, which gives a
lot of scatter in the Admiralty coefficient. However, the trend lines give the expected decrease in the
Admiralty coefficient over time. As the benchmark Admiralty coefficient changes with large changes
in speed and displacement, will the results presented in the previous chapter change when another
operating condition than 18 knots and design loading condition are used as the benchmark. The
Admiralty Coefficient model only gives the added power based on a specific operating condition.

9.3 Resistance Coefficient

The main uncertainty in the resistance coefficient model lies in the estimation of the wetted surface.
The estimation of the wetted surface is based on the assumption that the midship coefficient is 0.9
and that it is constant for all drafts. The trim of the vessel will also influence the wetted surface, but
as stated in Chapter 7.3 is the effect of trim not included in the estimation. A better estimation of
the wetted surface can be done based on the drawings of the ship or a 3D model. However, this was
not available for the case ship. From Figure 8.6 and 8.12 it is shown that the added power at vessel
delivery are around 7.5 % which is much higher than expected. However, it may be correct as fouling
could have developed on the hull and propeller while the vessel was at the yard, but according to the
sea trial test was this not the case. This indicates that the benchmark for the resistance coefficient
model is wrong.

9.4 The Data

There is also some uncertainty in the data used in the analysis. As previously stated, the data comes
from three different sources, the aboard performance monitoring system, the AIS, and the ECMWF
database. The location data from the AIS database have changing sampling rate, which influences the
available data points per day. It is shown from Figure 6.2 that there are more location data towards
the end of the period than in the beginning. This influenced the data set, as seen in Figure 6.4,
which shows the available data points per day for the combined data set. The regression lines are
made by reducing the mean square error, which means that a cluster of data points will have more
influence than single data points even though the time difference between the data points in the cluster
is small. These data clusters have a greater influence on the trend lines than it should. This problem
is illustrated in Method 1, especially for the trend line between the two last propeller cleanings. Here,
there are almost no data points right after the second propeller cleaning while there are more data
before the third propeller cleaning, shown in Figure 8.8.Figure 8.4 and 8.6 shows that the few data
points right after the second propeller cleaning are represented poorly by the trend line. However, this
problem was reduced significantly for Method 2 when more data points were available, but the lack of
data around July 2016 (the second propeller cleaning) is still a problem.

Another problem with the data set is related to environmental data. The environmental conditions,
especially waves and wind conditions, have a significant impact on the ship’s performance. Thus, it is
necessary to have accurate information about the actual weather conditions. The environmental data
have a temporal resolution of 6 hours and a spatial resolution of approximately 83x83 km (0.75x0.75
degrees). However, the local weather condition at the vessels location can change a lot during 6 hours
and be significantly different from the observed condition at the grid points. Therefore, may weather
conditions used in this thesis not be accurate, which can explain some of the spread in the results. The
most accurate method to determine the local environmental conditions is to measure them aboard the
ship. It is common to measure the wind conditions, and it was measured by the aboard performance
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monitoring system. The wave conditions are however more difficult to determine by an aboard system.
The wind sensor is sensitive to the location and things around it that may influence the flow of the
wind. As there was no information available of the location of the wind sensor and the environment
around it, was the reliability of the sensor challenging to determine. The data from the sensor was
compared with the data from the ECMWF database, and the differences were not too substantial.
Besides, the wave conditions had to be determined by the ECMWF or similar databases, so it was
therefore decided to use the ECMWF database to determine the environmental conditions.

The operational profile of the vessel changes significantly after February 2016. The speed increases as
shown by Figure 6.9 and the spread in drafts and trim decreases. The mean speed increases from 13.5
to 16.4 knots after February 2016. The Admiralty coefficient is sensitive to large changes in speed and
displacement, so when the operational profile of the vessel changes over time will this influence the
result. Method 3 is also sensitive to these changes as the training data consists of data for the first
year of operation where the vessel has a different main operational profile than after February 2016.
The machine learning model is thereby trained on data that does not represent the full data set in the
right way. Then the prediction error is expected to increase because of the change in operation profile
as the models have not been properly trained on these operational profiles, which may explain why
the relative prediction error is so high for Method 3 towards the end of the time series.

9.5 Results

The characteristics of the trend lines for the different methods are given in Table 9.1. ∆CF means
that the trend lines are based on the resistance coefficient model. Line 1 is the trend line before the
first propeller cleaning, Line 2 is the trend line between the first and second propeller cleaning and so
on. V1 and V2 give the increase of shaft power in percent at the beginning and end of the trend lines.
In order to get the best estimate for the increase of shaft power based on the relative prediction error,
the expected relative prediction error is subtracted from the relative prediction error for V1 and V2
for Method 3. The expected relative prediction error is -2.10 % for the custom regression model and
-0.33 % for the Gaussian regression model. α is the slope of the trend lines. The slopes are given as
percent increase in shaft power per year, added power [%]

year .

69



Chapter 9. Discussion

Table 9.1: Summary of trend lines

Method 1: Method 1: Method 2: Method 2: Method 3: Method 3:

Admiralty ∆CF Admiralty ∆CF Custom Gaussian

Line 1
V1 -1.13 7.07 0.39 8.21 - -

V2 16.21 11.01 14.11 10.38 -6.82 0.69

α 10.64 2.41 8.42 1.33 -16.97 -2.10

Line 2
V1 5.81 6.04 1.77 9.24 1.33 4.46

V2 10.51 12.38 16.14 13.57 8.53 14.29

α 8.20 11.08 25.10 7.57 12.58 17.17

Line 3
V1 20.82 16.10 2.81 10.47 7.92 15.08

V2 9.57 13.20 12.06 12.91 16.32 22.48

α -19.15 -4.94 15.74 4.15 17.70 12.59

Line 4
V1 11.99 9.79 5.51 10.72 8.07 16.24

V2 17.50 18.08 16.90 18.34 16.96 21.16

α 8.83 13.29 18.26 12.21 14.24 7.88

Line 5
V1 8.12 11.54 5.51 10.82 10.34 16.59

V2 25.77 22.71 19.25 21.22 23.23 29.11

α 13.97 8.84 10.87 8.24 10.20 9.91

Table 9.1 shows that the different methods give different results, but there are some similarities worth
mentioning. Line 1 shows that both the Admiralty coefficient model and the resistance coefficient
model gives almost the same line for Method 1 and 2. However, the difference between the two models
is large. For Line 2 is the slope for Method 1, Admiralty and resistance coefficient, Method 2 resistance
coefficient and Method 3 custom regression model similar with a minimum value of 7.57 % per year and
maximum value of 12.58 % per year. While Method 2 Admiralty coefficient and Method 3 Gaussian
regression model gives a much larger estimate. For Line 3, Method 1 gives a negative slope while
Method 2 Admiralty and Method 3 gives a large positive slope between 12.59 % per year and 17.7
% per year. The slopes of Line 4 varies from 7.88 % per year to 18.26 % per year. However, four of
the trend lines end at an increased shaft power between 17 and 18.4 %. The slopes of Line 5 are very
similar with a minimum value of 8.24 % per year and a maximum of 13.97 % per year. Four of the
lines also estimate an added power at the end of 2018 between 19 and 23 %. The trend lines given in
Table 9.1 are plotted in Figure 9.1 to show the similarities graphically.
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Figure 9.1: Comparison of trend lines for Method 1, 2 and 3

It is seen from Table 9.1 and Figure 9.1 that the added power due to fouling lies between -1 and
up to 30 % for all models. The power is proportional to the resistance, which means that they can
be compared. According to Munk [3], approximately one-third of all ships have an added resistance
under 20 % and half of the world’s ships have an added resistance between 20 % and 40 %. Munk also
states that the added resistance rate normally is between 0.5 % and 2 % per month, which gives a rate
between 6 % and 24 % per year. From Table 9.1 most of the slopes are between these estimations. As
mentioned above, Method 1 has some problems with available data points per day, and the benchmark
for the resistance coefficient method seems to be wrong. The slopes give the rate for the added power
for Method 3, but to interpret the relative prediction error as the added power directly may not be
the best assumption. The regression models are trained on data from the first year of operation with
the assumption that the added power due to fouling is small. However, the results for Method 1 and
2 estimates an added power at the end of the first year of approximately 10 %, which is significant.
The change in operating condition over time also gives that the relative prediction error is expected to
increase. So the assumption Method 3 is built on is not that good. The best method is then Method
2 based on the Admiralty coefficient. It is also important to mention that these methods are based on
the assumption that the added power over time is only caused by fouling, this is however not correct
as other factors influence the performance over time as well. For instance, wear and tear on the engine
and damages to the hull and propeller.

9.6 Dry Dock March 2019

The vessel was dry-docked in March 2019, and the condition of the hull was investigated. The fouling
on the hull are shown in Figure 9.2 and 9.3.

71



Chapter 9. Discussion

Figure 9.2: Fouling on the side

Figure 9.2 show the condition of the side of the hull. Here it is shown that a heavy slime layer and
some hard fouling have developed on the hull. Schultz [2] made some predictions of the resistance due
to fouling on a US Naval ship, the results are given in Table 3.2. Table 3.2 shows that a heavy slime
layer and small calcareous fouling gives an added resistance are between 16 and 34 %. From the results
in Table 9.1 gave Method 2 with the Admiralty coefficient an added power of 19 % and all the different
methods gave added power between 19 and 30 %, which is consistent with Schultz predictions. Figure
9.3 shows the heavy slime layer at the bottom of the vessel.

Figure 9.3: Fouling under
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Chapter 10

Conclusions and Further Work

The main objective of this master thesis was to develop different methods to determine the added
power of a ship by using in-service performance monitoring data. This topic is important for ship
owners and operators as knowing the added power due to fouling gives them a better estimation for
attainable speed and sea margin. It also gives them information regarding the hull condition, which
can be used to optimize the time between hull and propeller cleanings. This optimization can give
substantial economic savings and ensure more effective operations.

Performance monitoring data for a five year old 2500 TEU container vessel were acquired and used
in the analysis. Location data were obtained from the AIS database, and environmental data were
gathered from the ECMWF database. Some initial processing of the data was necessary in order to
run the analysis. First, the data from the three different sources were combined, then some undesirable
data points were removed, like when the vessel was accelerating. Some limitations to minimum speed,
RPM, and draft were also applied as well as limitations to maximum significant wave height. During
the relevant period, the vessel was subjected to three propeller cleanings and one hull cleaning.

In this thesis, three different methods have been developed to determine the added power due to fouling.
Method 1 removes data points with bad weather in order to create a dataset that only contains values
for calm water operations. Method 2 follows the weather restrictions given in ISO 15016 standard,
and use the methods described in the standard to compensate for the environmental effects. Method 3
uses the same data set as Method 2, which means that Method 2 and 3 contained approximately 70 %
more data than Method 1. Both Method 1 and 2 evaluate the change in the Admiralty and resistance
coefficient over time to determine the added power due to fouling. Method 3 uses two different machine
learning algorithms to predict the shaft power based on input data containing information about the
loading condition, speed, and environmental condition. It was assumed that the fouling during the
first year of operation was small, so the models were trained on this data. Thus, the change in relative
prediction error over time could be used to determine added power due to fouling.

Trend lines between each event (propeller and hull cleanings), were made by reducing the mean square
error based on the data points. It was found that the added power due to fouling was between -1 and
30 % for all methods, as per Munk’s [3] experiences. He states that about 80 % of the world’s ships
have an added resistance between 0 and 40 % due to fouling. The vessel was dry-docked in March
2019, and it was found that it had a heavy slime layer as well as some hard fouling on the sides. The
different methods estimated an added power due to fouling between 19 and 30 % for the vessel right
before the dry dock. For comparison, Schultz has given similar predictions for a US Naval ship where
added resistance due to fouling for a heavy slime layer with some small calcareous fouling was between
16 and 34 % [2].
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However, there were some problems with the different methods as well. For Method 1, it was found
that there were some periods where the available data points per day were low. Since the trend lines
were based on reducing the mean square error, parts with many data points available were favored,
which resulted in false trend lines for some cases for Method 1. The resistance coefficient model also
gave initially an added power of about 8 %, which was found to be too large for a clean and newly
delivered vessel. To interpret the relative prediction error in Method 3 as the added power directly
was not the best assumption as there is some expected prediction error. Also, the regression models
are trained on data for the first year with the assumption that the added power due to fouling is small.
However, Method 1 and 2 gave an added power of about 10 % at the end of the first year. Additionally,
the operation profile of the vessel changed over time, where the vessel was operating at higher speeds
towards the end of the time series. The relative prediction error is then expected to increase with
the new operation profile, as there were not that many data points with this operation profile in the
training data. Thus, it can be concluded that Method 2 based on the Admiralty coefficient is the
recommended method.

10.1 Further Work

A benchmark model that includes the effect of loading conditions such as variations in draft and trim
should be made in order to improve the accuracy of both Method 1 and 2. Method 1 can be improved
by re-sampling the dataset in order to reduce data clusters. One way to do this is to average data in
the clusters over a period, so the amount of data in the clusters is reduced. Then the cluster’s influence
on trend lines is decreased. Another way to improve the accuracy of the model is to include the effects
of temperature changes both in air and water. As stated in ISO 15016, change in the temperature will
change the density and viscosity of the fluid, which both influence the resistance of the vessel. The
method can also be developed further to determine the added power for the propeller and hull fouling
separately.

In order to make the results more commercially attractive, a cost function should be developed based
on the determined added power due to fouling. This cost function would give the potential cost savings
for a hull or propeller cleaning. Other possible expansions are to include the methods proposed in this
thesis, in algorithms to estimate the attainable speed or sea margin, which will make such estimates
more accurate.
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Appendix A

Data Processing

A.1 Save Variable.m

1 %--------------------------------------------------------------------------
2 % Creates a MATLAB data struct with the AIS data and performance monitoring
3 % data are combined combined, the performance monitoring data and AIS data
4 % are given as one .csv file per year
5 %--------------------------------------------------------------------------
6

7 %Path where raw data is located
8 folder = strcat(pwd,'/Data/');
9 %Years for the different datafiles

10 years = 2014:2018;
11

12 for a = 1:length(years)
13 year = num2str(years(a));
14 disp(year)
15 % Reading data - the order and content of the data are given below
16 % Timestamp, Speed (water), Speed (ground), Course, ME Shaft Power,
17 % ME RPM, Wind speed abs, Wind speed rel, wind dir, Draft fwd, draft aft
18 data = csvread(strcat(folder,year,'.csv'),1,0);
19 %Timestamp, Latitude, Longetude, Year
20 ais = csvread(strcat(folder,'AIS ',year,'.csv'));
21

22 % Interpolating AIS data
23 lat = zeros(length(data),1); % pre-allocating
24 lon = zeros(length(data),1); % pre-allocating
25 timestamp = zeros(length(data),1); % pre-allocating
26

27 %Setting a limit of 1 hour time difference
28 limit = 60*60;
29 for j = 1:length(data)-1
30 % Finds the minimum difference between the timestamp in the AIS
31 % Data and Performance Data.
32 [v min,index] = min(abs(ais(:,1)-data(j,1)));
33 if v min < limit && index > 1 && index < length(ais)
34 %Interpolating GPS position based on timestamp
35 if data(j,1) > ais(index,1) && ais(index+1,1) - ais(index,1)...
36 < limit && ais(index,1) 6= ais(index+1,1)
37 lat(j) = interp1([ais(index,1) ais(index+1,1)],...
38 [ais(index,2) ais(index+1,2)], data(j,1));
39 lon(j) = interp1([ais(index,1) ais(index+1,1)],...
40 [ais(index,3) ais(index+1,3)], data(j,1));
41 timestamp(j) = data(j,1);
42 elseif data(j,1) < ais(index,1) && ais(index,1) - ais(index-1,1)...

A1



Appendix A. Data Processing

43 < limit && ais(index,1) 6= ais(index-1,1)
44 lat(j) = interp1([ais(index-1,1) ais(index,1)],...
45 [ais(index-1,2) ais(index,2)], data(j,1));
46 lon(j) = interp1([ais(index-1,1) ais(index,1)],...
47 [ais(index-1,3) ais(index,3)], data(j,1));
48 timestamp(j) = data(j,1);
49 else
50 lat(j) = nan;
51 lon(j) = nan;
52 timestamp(j) = nan;
53 end
54 else
55 lat(j) = nan;
56 lon(j) = nan;
57 timestamp(j) = nan;
58 end
59 end
60 %removing datapoints where GPS position was not obtained
61 lat(end) = nan;
62 lon(end) = nan;
63 index = isnan(lat+lon);
64 data(:,end+1) = lat;
65 data(:,end+1) = lon;
66 data(index,:) = [];
67 % Saving data to file as a MATLAB struct
68 Data.Timestamp = data(:,1);
69 Data.STW = data(:,2);
70 Data.SOG = data(:,3);
71 Data.Course = data(:,4);
72 Data.ShaftPower = data(:,5);
73 Data.RPM = data(:,6);
74 Data.WindSpeed = data(:,7);
75 Data.RelWindSpeed = data(:,8);
76 Data.RelWindDir = data(:,9);
77 Data.DraftMid = (data(:,10)+data(:,11))/2;
78 Data.Trim = data(:,10)-data(:,11);
79 Data.Lat = data(:,12);
80 Data.Lon = data(:,13);
81

82 save(strcat(folder,'NAME ',year,'.mat'),'Data')
83 end

A.2 Combine Data.m

1 %--------------------------------------------------------------------------
2 % Combine performance monitoring data and hindcast weather data from ECMWF
3 % The performance monitoring data are the out put of the script
4 % Save Variable.m and the weather data are monthly .grib files
5 %--------------------------------------------------------------------------
6 clear; clc;
7 %Path where data is located
8 folder = strcat(pwd,'/Data/'); % folder for performance monitoring data
9 matDataFolder =strcat(pwd,'/Data/ECMWF/'); %folder for weather data

10 %Years for the different datafiles
11 years = 2014:2018;
12 for q = 1:length(years)
13 year = num2str(years(q));
14 %Load data
15 load(strcat(folder,'NAME ',year,'.mat'));
16 load(strcat(folder,'Data w Weather empty','.mat'));
17 %Converting from epoch to datetime
18 Data.Time = datetime(Data.Timestamp,'ConvertFrom','posixtime');
19 for g = 1:12
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20 if strcmp(year,'2014')
21 g = g+3;
22 if g > 12
23 break
24 end
25 end
26 disp(g)
27 Data temp = Data;
28 % Retriving weather data from .grib files and create a data struct
29 % with the weter data for the ships location
30 [ECMWF, first, last] = Ship ECMWF(matDataFolder,year,...
31 Data.Timestamp,Data.Lon,Data.Lat,folder,g);
32 %Working with weather data
33 names = fieldnames(Data temp);
34 index = isnan(ECMWF.SignWaveHeight);
35 fprintf('\n Number of missing Hs values: %d \n\n\n',sum(index))
36 for i = 1:length(names)
37 temp = Data temp.(names{i});
38 temp = temp(first:last);
39 %Removing values without information about significant wave height
40 temp(index) = [];
41 Data temp.(names{i}) = temp;
42 end
43 names = fieldnames(ECMWF);
44 for i = 2:length(names)
45 temp = ECMWF.(names{i});
46 %Removing values without information about significant wave height
47 temp(index) = [];
48 ECMWF.(names{i}) = temp;
49 Data temp.(names{i}) = temp;
50 end
51 %combining data
52 names = fieldnames(Data temp);
53 for i = 1:length(names)
54 Data w Weather.(names{i}) = [Data w Weather.(names{i})',...
55 Data temp.(names{i})']';
56 end
57 end
58 % Save data to file
59 save(strcat(folder,'Data w Weather ',year,'.mat'),'Data w Weather')
60 clear Data
61 clear Data w Weather
62 clear ECMWF
63 end
64 %--------------------------------------------------------------------------
65 % Load data by year and combine them to one large data struct with all data
66 %--------------------------------------------------------------------------
67 clear; clc;
68 %Path where raw data is located
69 folder = strcat(pwd,'/Data/');
70 %Years for the different datafiles
71 years = 2014:2018;
72 load(strcat(folder,'Data w Weather empty','.mat'));
73 Data w Weather tot = Data w Weather;
74 for a = 1:length(years)
75 year = num2str(years(a));
76 load(strcat(folder,'Data w Weather ',year,'.mat'));
77 names = fieldnames(Data w Weather);
78 for i = 1:length(names)
79 Data w Weather tot.(names{i}) = [Data w Weather tot.(names{i})',...
80 Data w Weather.(names{i})']';
81 end
82 end
83 Data w Weather = Data w Weather tot;
84 % Save data to file
85 save(strcat(folder,'Data w Weather ','tot','.mat'),'Data w Weather')
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A.3 Ship ECMWF.m

1 function [ECMWF, start, last] = ...
Ship ECMWF(matDataFolder,yearStr,TIMEMS,LON,LAT,SaveToFolder,g)

2 %--------------------------------------------------------------------------
3 % Creates a MATLAB data struct with weather data based on the vessel
4 % position and timestamp. The weater data are given as a .grib file
5 % containing information about both the wind and wave condition for 1 month
6 % Input parameters:
7 % matDataFolder - gives the folder where the weather data are stored
8 % yearStr - the dessired year as a string
9 % TIMEMS - the timestamp in seconds

10 % LON - longitude coordinate in -180 to 180 degrees
11 % LAT - latitiude coordinate in degrees
12 % SaveToFolder - folder where the output struct are saved
13 % g - number of the month
14 % output:
15 % ECMWF - MATLAB data struct with information about the wind and wave
16 % condition at the vessel's location
17 % start - index of the first timestamp for the given month
18 % last - index of the last timestamp for the given month
19 %--------------------------------------------------------------------------
20 % Created by:
21 % Oyvind Oksnes Dalheim
22 % Modified By:
23 % Kristian Ejdfors
24 %--------------------------------------------------------------------------
25 % converting Longetude from -180:180 to 0:360
26 for i = 1:length(LON)
27 if LON(i) <0
28 LON(i) = LON(i) + 360;
29 end
30 end
31 %% GRIB data folder
32 ECMWFdataFolder = matDataFolder;
33 GRIBdataFolder = strcat(ECMWFdataFolder,yearStr,'/');
34

35 %% GRIB file
36 tmp = dir(fullfile(GRIBdataFolder,'*grib')); GRIBfiles = {tmp.name}';...
37 GRIBfiles(ismember(GRIBfiles,{'.','..','DS Store'})) = [];
38

39 GRIBinputFile = strcat(GRIBdataFolder,GRIBfiles{g}); %selected GRIB file
40 tmp = dir(fullfile(SaveToFolder,'ECMWF/','*mat')); ...
41 ECMWF mat = {tmp.name}'; ...
42 ECMWF mat(ismember(ECMWF mat,{'.','..','DS Store'})) = [];
43

44 ECMWF file = strcat('ECMWF ',yearStr,' ',num2str(g),'.mat');
45 %Loading pre existing weather file
46 a = logical(find(contains(ECMWF mat,ECMWF file)));
47 if a
48 load(strcat(SaveToFolder,'ECMWF/',ECMWF file));
49 start = find(ECMWF.Time(1) == TIMEMS);
50 last = find(ECMWF.Time(end) ≥ TIMEMS,1,'last');
51 return
52 end
53 %% Collect GRIB data
54 weatherECMWF = ncdataset(GRIBinputFile);
55 %Checking content
56 weatherECMWF.variables;
57 %Finding dates included in the GRIB file
58 GRIBTimeInMS = days2ms(weatherECMWF.time('time'));
59 %Finding intervall in TIMEMS which correspond to GRIBTimeInMS
60 flag = 0;
61 for i=1:length(GRIBTimeInMS)
62 start = find(GRIBTimeInMS(i) ≥ TIMEMS,1,'last');
63 if start > 0
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64 last = find(GRIBTimeInMS(end) ≥ TIMEMS,1,'last');
65 flag = 1;
66 break
67 end
68 end
69 if flag == 0
70 disp('vessel timestamp not in weather data')
71 return
72 end
73 % Deliting data outside desired intervall
74 TIMEMS(last:end) = [];
75 TIMEMS(1:start) = [];
76 LON(last:end) = [];
77 LON(1:start) = [];
78 LAT(last:end) = [];
79 LAT(1:start) = [];
80

81 %Preallocate
82 ECMWF uW = zeros(length(TIMEMS),1);
83 ECMWF vW = zeros(length(TIMEMS),1);
84 ECMWF Hs = zeros(length(TIMEMS),1);
85 ECMWF Wd = zeros(length(TIMEMS),1);
86 ECMWF Ts = zeros(length(TIMEMS),1);
87 Beaufort = zeros(length(TIMEMS),1);
88 Wave class = zeros(length(TIMEMS),1);
89

90 %Finding positions included in the GRIB file
91 GRIBlon = double(weatherECMWF.data('lon')); %Defining longtitude vector
92 GRIBlat = double(weatherECMWF.data('lat')); %Defining latitude vector
93

94 %Reading data
95 Uwind = double(weatherECMWF.data('10 metre U wind component surface'));
96 Vwind = double(weatherECMWF.data('10 metre V wind component surface'));
97 SWH = double(weatherECMWF.data('Significant wave height msl'));
98 MWD = double(weatherECMWF.data('Mean wave direction msl'));
99 MWP = double(weatherECMWF.data('Mean wave period msl'));

100

101 %Interpolating uWind at time, lat and lon
102 fprintf('%s\n','--> Collecting uWind data');
103 for i = 1:length(TIMEMS)
104 timeIDXtoInstantBefore = find(GRIBTimeInMS ≤ TIMEMS(i),1,'last');
105 timeIDXtoInstantAfter = find(GRIBTimeInMS ≥ TIMEMS(i),1,'first');
106 timeBeforeAfter = [GRIBTimeInMS(timeIDXtoInstantBefore)...
107 GRIBTimeInMS(timeIDXtoInstantAfter)];
108

109 lonIDXWest = find(GRIBlon ≤ LON(i),1,'last');
110 lonIDXEast = find(GRIBlon ≥ LON(i),1,'first');
111

112 latIDXNorth = find(GRIBlat ≥ LAT(i),1,'last');
113 latIDXSouth = find(GRIBlat ≤ LAT(i),1,'first');
114

115 Xlat = repmat(GRIBlat(latIDXNorth:latIDXSouth),[1,2]);
116

117 if LON(i) > GRIBlon(end)
118 lonIDXWest = GRIBlon(1);
119 lonIDXEast = GRIBlon(end);
120 Xlon = [lonIDXWest lonIDXEast; lonIDXWest lonIDXEast];
121

122 %Concatenate
123 %(time,lat,lon) -> (lat,lon,time)
124 Cat = cat(3,squeeze(Uwind(timeIDXtoInstantBefore,sort...
125 (latIDXNorth:latIDXSouth),[1 length(GRIBlon)])),...
126 squeeze(Uwind(timeIDXtoInstantAfter,sort(latIDXNorth:...
127 latIDXSouth),[1 length(GRIBlon)])));
128 else
129 Xlon = repmat(GRIBlon(lonIDXWest:lonIDXEast)',[2,1]);
130 %Concatenate
131 %(time,lat,lon) -> (lat,lon,time)

A5



Appendix A. Data Processing

132 Cat = cat(3,squeeze(Uwind(timeIDXtoInstantBefore,sort...
133 (latIDXNorth:latIDXSouth),sort(lonIDXWest:lonIDXEast))),...
134 squeeze(Uwind(timeIDXtoInstantAfter,sort(latIDXNorth:...
135 latIDXSouth),sort(lonIDXWest:lonIDXEast))));
136 end
137 %Permute to get interpolated dimension first
138 %(lat,lon,time) -> (time,lat,lon)
139 Per = permute(Cat,[3 1 2]);
140

141 %Interpolate over time
142 if timeIDXtoInstantBefore == timeIDXtoInstantAfter
143 TwoDimInterp = squeeze(Per(1,:,:));
144 else
145 try
146 TwoDimInterp = squeeze(interp1(timeBeforeAfter,Per,TIMEMS(i)));
147 catch
148 disp('Some error');
149 end
150 end
151

152 %Interpolate over position
153 ECMWF uW(i) = interp2(Xlon,Xlat,TwoDimInterp,LON(i),LAT(i)); %U wind velocity
154 end
155

156 %Interpolating vWind time, lat and lon
157 fprintf('%s\n','--> Collecting vWind data');
158

159 for i = 1:length(TIMEMS)
160 timeIDXtoInstantBefore = find(GRIBTimeInMS ≤ TIMEMS(i),1,'last');
161 timeIDXtoInstantAfter = find(GRIBTimeInMS ≥ TIMEMS(i),1,'first');
162 timeBeforeAfter = [GRIBTimeInMS(timeIDXtoInstantBefore)...
163 GRIBTimeInMS(timeIDXtoInstantAfter)];
164

165 lonIDXWest = find(GRIBlon ≤ LON(i),1,'last');
166 lonIDXEast = find(GRIBlon ≥ LON(i),1,'first');
167

168 latIDXNorth = find(GRIBlat ≥ LAT(i),1,'last');
169 latIDXSouth = find(GRIBlat ≤ LAT(i),1,'first');
170

171 Xlat = repmat(GRIBlat(latIDXNorth:latIDXSouth),[1,2]);
172

173 if LON(i) > GRIBlon(end)
174 lonIDXWest = GRIBlon(1);
175 lonIDXEast = GRIBlon(end);
176 Xlon = [lonIDXWest lonIDXEast; lonIDXWest lonIDXEast];
177

178 %Concatenate
179 %(time,lat,lon) -> (lat,lon,time)
180 Cat = cat(3,squeeze(Vwind(timeIDXtoInstantBefore,sort(...
181 latIDXNorth:latIDXSouth),[1 length(GRIBlon)])), ...
182 squeeze(Vwind(timeIDXtoInstantAfter,sort(latIDXNorth:...
183 latIDXSouth),[1 length(GRIBlon)])));
184 else
185 Xlon = repmat(GRIBlon(lonIDXWest:lonIDXEast)',[2,1]);
186 %Concatenate
187 %(time,lat,lon) -> (lat,lon,time)
188 Cat = cat(3,squeeze(Vwind(timeIDXtoInstantBefore,sort(...
189 latIDXNorth:latIDXSouth),sort(lonIDXWest:lonIDXEast))), ...
190 squeeze(Vwind(timeIDXtoInstantAfter,sort(latIDXNorth:...
191 latIDXSouth),sort(lonIDXWest:lonIDXEast))));
192 end
193 %Permute to get interpolated dimension first
194 %(lat,lon,time) -> (time,lat,lon)
195 Per = permute(Cat,[3 1 2]);
196

197 %Interpolate over time
198 if timeIDXtoInstantBefore == timeIDXtoInstantAfter
199 TwoDimInterp = squeeze(Per(1,:,:));
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200 else
201 try
202 TwoDimInterp = squeeze(interp1(timeBeforeAfter,Per,TIMEMS(i)));
203 catch
204 disp('Some error');
205 end
206 end
207

208 %Interpolate over position
209 ECMWF vW(i) = interp2(Xlon,Xlat,TwoDimInterp,LON(i),LAT(i)); %V wind velocity
210 end
211

212 %Interpolating Hs at time, lat and lon
213 fprintf('%s\n','--> Collecting Hs data');
214

215 for i = 1:length(TIMEMS)
216 timeIDXtoInstantBefore = find(GRIBTimeInMS ≤ TIMEMS(i),1,'last');
217 timeIDXtoInstantAfter = find(GRIBTimeInMS ≥ TIMEMS(i),1,'first');
218 timeBeforeAfter = [GRIBTimeInMS(timeIDXtoInstantBefore)...
219 GRIBTimeInMS(timeIDXtoInstantAfter)];
220

221 lonIDXWest = find(GRIBlon ≤ LON(i),1,'last');
222 lonIDXEast = find(GRIBlon ≥ LON(i),1,'first');
223

224 latIDXNorth = find(GRIBlat ≥ LAT(i),1,'last');
225 latIDXSouth = find(GRIBlat ≤ LAT(i),1,'first');
226

227 Xlat = repmat(GRIBlat(latIDXNorth:latIDXSouth),[1,2]);
228

229 if LON(i) > GRIBlon(end)
230 lonIDXWest = GRIBlon(1);
231 lonIDXEast = GRIBlon(end);
232 Xlon = [lonIDXWest lonIDXEast; lonIDXWest lonIDXEast];
233

234 %Concatenate
235 %(time,lat,lon) -> (lat,lon,time)
236 Cat = cat(3,squeeze(SWH(timeIDXtoInstantBefore,sort(...
237 latIDXNorth:latIDXSouth),[1 length(GRIBlon)])),...
238 squeeze(SWH(timeIDXtoInstantAfter,sort(...
239 latIDXNorth:latIDXSouth),[1 length(GRIBlon)])));
240 else
241 Xlon = repmat(GRIBlon(lonIDXWest:lonIDXEast)',[2,1]);
242 %Concatenate
243 %(time,lat,lon) -> (lat,lon,time)
244 Cat = cat(3,squeeze(SWH(timeIDXtoInstantBefore,sort(...
245 latIDXNorth:latIDXSouth),sort(lonIDXWest:lonIDXEast))),...
246 squeeze(SWH(timeIDXtoInstantAfter,sort(latIDXNorth:...
247 latIDXSouth),sort(lonIDXWest:lonIDXEast))));
248 end
249 %Permute to get interpolated dimension first
250 %(lat,lon,time) -> (time,lat,lon)
251

252 %Changing NaN values to mean of the other values
253 Cat(isnan(Cat(:,:,1))) = mean(Cat(not(isnan(Cat(:,:,1)))));
254 Cat2 = Cat(:,:,2);
255 Cat2(isnan(Cat2)) = mean(Cat2(not(isnan(Cat2))));
256 Cat(:,:,2) = Cat2;
257

258

259 Per = permute(Cat,[3 1 2]);
260

261 %Interpolate over time
262 if timeIDXtoInstantBefore == timeIDXtoInstantAfter
263 TwoDimInterp = squeeze(Per(1,:,:));
264 else
265 try
266 TwoDimInterp = squeeze(interp1(timeBeforeAfter,Per,TIMEMS(i)));
267 catch
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268 disp('Some error');
269 end
270 end
271

272 %Interpolate over position
273 ECMWF Hs(i) = interp2(Xlon,Xlat,TwoDimInterp,LON(i),LAT(i)); %Wave height
274 end
275

276 %Interpolating WaveDir at time, lat and lon
277 fprintf('%s\n','--> Collecting WaveDir data');
278 for i = 1:length(TIMEMS)
279 timeIDXtoInstantBefore = find(GRIBTimeInMS ≤ TIMEMS(i),1,'last');
280 timeIDXtoInstantAfter = find(GRIBTimeInMS ≥ TIMEMS(i),1,'first');
281 timeBeforeAfter = [GRIBTimeInMS(timeIDXtoInstantBefore) ...
282 GRIBTimeInMS(timeIDXtoInstantAfter)];
283

284 lonIDXWest = find(GRIBlon ≤ LON(i),1,'last');
285 lonIDXEast = find(GRIBlon ≥ LON(i),1,'first');
286

287 latIDXNorth = find(GRIBlat ≥ LAT(i),1,'last');
288 latIDXSouth = find(GRIBlat ≤ LAT(i),1,'first');
289

290 Xlat = repmat(GRIBlat(latIDXNorth:latIDXSouth),[1,2]);
291

292 if LON(i) > GRIBlon(end)
293 lonIDXWest = GRIBlon(1);
294 lonIDXEast = GRIBlon(end);
295 Xlon = [lonIDXWest lonIDXEast; lonIDXWest lonIDXEast];
296

297 %Concatenate
298 %(time,lat,lon) -> (lat,lon,time)
299 Cat = cat(3,squeeze(MWD(timeIDXtoInstantBefore,sort(...
300 latIDXNorth:latIDXSouth),[1 length(GRIBlon)])),...
301 squeeze(MWD(timeIDXtoInstantAfter,sort(latIDXNorth:...
302 latIDXSouth),[1 length(GRIBlon)])));
303 else
304 Xlon = repmat(GRIBlon(lonIDXWest:lonIDXEast)',[2,1]);
305 %Concatenate
306 %(time,lat,lon) -> (lat,lon,time)
307 Cat = cat(3,squeeze(MWD(timeIDXtoInstantBefore,sort(...
308 latIDXNorth:latIDXSouth),sort(lonIDXWest:lonIDXEast))),...
309 squeeze(MWD(timeIDXtoInstantAfter,sort(latIDXNorth:...
310 latIDXSouth),sort(lonIDXWest:lonIDXEast))));
311 end
312 %Permute to get interpolated dimension first
313 %(lat,lon,time) -> (time,lat,lon)
314

315 %Changing NaN values to mean of the other values
316 Cat(isnan(Cat(:,:,1))) = mean(Cat(not(isnan(Cat(:,:,1)))));
317 Cat2 = Cat(:,:,2);
318 Cat2(isnan(Cat2)) = mean(Cat2(not(isnan(Cat2))));
319 Cat(:,:,2) = Cat2;
320

321

322 Per = permute(Cat,[3 1 2]);
323

324 %Interpolate over time
325 if timeIDXtoInstantBefore == timeIDXtoInstantAfter
326 TwoDimInterp = squeeze(Per(1,:,:));
327 else
328 try
329 TwoDimInterp = squeeze(interp1(timeBeforeAfter,Per,TIMEMS(i)));
330 catch
331 disp('Some error');
332 end
333 end
334

335 %Interpolate over position
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336 ECMWF Wd(i) = interp2(Xlon,Xlat,TwoDimInterp,LON(i),LAT(i)); %Wave direction
337 end
338

339 %Interpolating WavePeriod at time, lat and lon
340 fprintf('%s\n','--> Collecting WavePeriod data');
341 for i = 1:length(TIMEMS)
342 timeIDXtoInstantBefore = find(GRIBTimeInMS ≤ TIMEMS(i),1,'last');
343 timeIDXtoInstantAfter = find(GRIBTimeInMS ≥ TIMEMS(i),1,'first');
344 timeBeforeAfter = [GRIBTimeInMS(timeIDXtoInstantBefore) ...
345 GRIBTimeInMS(timeIDXtoInstantAfter)];
346

347 lonIDXWest = find(GRIBlon ≤ LON(i),1,'last');
348 lonIDXEast = find(GRIBlon ≥ LON(i),1,'first');
349

350 latIDXNorth = find(GRIBlat ≥ LAT(i),1,'last');
351 latIDXSouth = find(GRIBlat ≤ LAT(i),1,'first');
352

353 Xlat = repmat(GRIBlat(latIDXNorth:latIDXSouth),[1,2]);
354

355 if LON(i) > GRIBlon(end)
356 lonIDXWest = GRIBlon(1);
357 lonIDXEast = GRIBlon(end);
358 Xlon = [lonIDXWest lonIDXEast; lonIDXWest lonIDXEast];
359

360 %Concatenate
361 %(time,lat,lon) -> (lat,lon,time)
362 Cat = cat(3,squeeze(MWP(timeIDXtoInstantBefore,sort(...
363 latIDXNorth:latIDXSouth),[1 length(GRIBlon)])),...
364 squeeze(MWP(timeIDXtoInstantAfter,sort(latIDXNorth:...
365 latIDXSouth),[1 length(GRIBlon)])));
366 else
367 Xlon = repmat(GRIBlon(lonIDXWest:lonIDXEast)',[2,1]);
368 %Concatenate
369 %(time,lat,lon) -> (lat,lon,time)
370 Cat = cat(3,squeeze(MWP(timeIDXtoInstantBefore,sort(...
371 latIDXNorth:latIDXSouth),sort(lonIDXWest:lonIDXEast))),...
372 squeeze(MWP(timeIDXtoInstantAfter,sort(latIDXNorth:...
373 latIDXSouth),sort(lonIDXWest:lonIDXEast))));
374 end
375 %Permute to get interpolated dimension first
376 %(lat,lon,time) -> (time,lat,lon)
377

378 %Changing NaN values to mean of the other values
379 Cat(isnan(Cat(:,:,1))) = mean(Cat(not(isnan(Cat(:,:,1)))));
380 Cat2 = Cat(:,:,2);
381 Cat2(isnan(Cat2)) = mean(Cat2(not(isnan(Cat2))));
382 Cat(:,:,2) = Cat2;
383

384 Per = permute(Cat,[3 1 2]);
385

386 %Interpolate over time
387 if timeIDXtoInstantBefore == timeIDXtoInstantAfter
388 TwoDimInterp = squeeze(Per(1,:,:));
389 else
390 try
391 TwoDimInterp = squeeze(interp1(timeBeforeAfter,Per,TIMEMS(i)));
392 catch
393 disp('Some error');
394 end
395 end
396

397 %Interpolate over position
398 ECMWF Ts(i) = interp2(Xlon,Xlat,TwoDimInterp,LON(i),LAT(i)); %Wave period
399 end
400

401 ECMWF.Time = TIMEMS;
402 ECMWF.UwindVelocity = ECMWF uW;
403 ECMWF.VwindVelocity = ECMWF vW;
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404 ECMWF.WindVelocity = sqrt(ECMWF uW.ˆ2 + ECMWF vW.ˆ2);
405 ECMWF.WindDirection = VesselECMWF WindDirection(ECMWF uW,ECMWF vW);
406 ECMWF.SignWaveHeight = ECMWF Hs;
407 ECMWF.WaveDirection = ECMWF Wd;
408 ECMWF.WavePeriod = ECMWF Ts;
409

410 %Beaufort number
411 for i =1:length(TIMEMS)
412 if ECMWF.WindVelocity(i) ≤ 0.2
413 Beaufort(i) = 0;
414 elseif ECMWF.WindVelocity(i) ≤ 1.5
415 Beaufort(i) = 1;
416 elseif ECMWF.WindVelocity(i) ≤ 3.3
417 Beaufort(i) = 2;
418 elseif ECMWF.WindVelocity(i) ≤ 5.4
419 Beaufort(i) = 3;
420 elseif ECMWF.WindVelocity(i) ≤ 7.9
421 Beaufort(i) = 4;
422 elseif ECMWF.WindVelocity(i) ≤ 10.7
423 Beaufort(i) = 5;
424 elseif ECMWF.WindVelocity(i) ≤ 13.8
425 Beaufort(i) = 6;
426 elseif ECMWF.WindVelocity(i) ≤ 17.1
427 Beaufort(i) = 7;
428 elseif ECMWF.WindVelocity(i) ≤ 20.7
429 Beaufort(i) = 8;
430 elseif ECMWF.WindVelocity(i) ≤ 24.4
431 Beaufort(i) = 9;
432 elseif ECMWF.WindVelocity(i) ≤ 28.4
433 Beaufort(i) = 10;
434 elseif ECMWF.WindVelocity(i) ≤ 36.6
435 Beaufort(i) = 11;
436 else
437 Beaufort(i) = 12;
438 end
439 end
440

441 ECMWF.Beaufort = Beaufort;
442 filepath = strcat(SaveToFolder,'ECMWF/','ECMWF ',yearStr,' ',...
443 num2str(g),'.mat');
444 %Saving to file
445 save(filepath,'ECMWF');
446 end
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B.1 main.m

1 % ------------------------------------------------------------------------
2 % Main script for calculating added power due to fouling by using
3 % in-service performance monitoring data.
4 %
5 % The main path to the directory where the MATLAB struct are stored needs
6 % to be spesified in line 37 and 38 in order to use the script
7 %
8 % The MATLAB struct should be named Data w Weather and contains the
9 % performance monitoring data combined with the weather data.

10 %
11 % The data struct should contain the following fields:
12 % -Beaufort - Beaufort number
13 % -Course - compass course of the ship 0:360 degrees
14 % -DraftMid - Draft midships in meters
15 % -RPM - Shaft Rotations per minute
16 % -ShaftPower - Shaft power in kilo watts
17 % -SignWaveHeight - Significant wave height in meters
18 % -SOG - speed over ground in knots
19 % -STW - speed through water in knots
20 % -Time - Time as datetimevariable
21 % -Timestamp - Timestamp in epoch (seconds)
22 % -Trim - Trim in meters
23 % -WaveDirection - Mean wave direction using compass direction 0:360 degrees
24 % -WavePeriod - Mean wave period in seconds
25 % -WindDirection - Wind direction using compass direction 0:360 degrees
26 % -WindVelocity - Wind speed in m/s
27 % -------------------------------------------------------------------------
28 % Created by:
29 % Kristian Ejdfors
30 % Created: 19/01/2019
31 % Last updated: 04/06/2019
32 % -------------------------------------------------------------------------
33

34 % Clears the workspace
35 clear; close all; clc;
36

37 folder = strcat(pwd,'/Data/'); % Path to folder where the data are stored
38 filename = 'Data w Weather tot'; % Name of the stored data struct
39

40 % Load data struct with performance monitoring data
41 load(strcat(folder,filename,'.mat'),'Data w Weather');
42 % Load constants for the vessel
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43 constants;
44

45 % Creating a struct containing the original data
46 Data org = Data w Weather;
47

48 %% Data processing
49 % Removing data points where the vessel is accelerating
50 index = false(length(Data org.STW),1);
51 for i = 1:length(Data org.SOG)-1
52 if Data org.Timestamp(i+1) - Data org.Timestamp(i) < 10*60
53 index(i) = true;
54 index(i+1) = true;
55 elseif abs(Data org.SOG(i) - Data org.SOG(i+1)) > 0.5 && ...
56 Data org.Timestamp(i+1) - Data org.Timestamp(i) < 30*60
57 index(i) = true;
58 index(i+1) = true;
59 end
60 end
61 names = fieldnames(Data w Weather);
62 for i = 1:length(names)
63 Data w Weather.(names{i})(index) = [];
64 end
65

66 % Removing vessel speed < 8 knots, draft < 6 meters, |Trim | > 4 meters,
67 % |STW-SOG | > 1.5 knots, Significant wave height > 3 meters and RPM < 50
68 index = logical(remove under threshold(Data w Weather.STW,8) ...
69 + remove under threshold(Data w Weather.SOG,8) + ...
70 remove under threshold(Data w Weather.DraftMid,6) + ...
71 remove under threshold(Data w Weather.RPM,50)+ ...
72 not(remove under threshold(...
73 abs(Data w Weather.STW-Data w Weather.SOG),1.5))+ ...
74 not(remove under threshold(abs(Data w Weather.Trim),4))+ ...
75 not(remove under threshold(Data w Weather.SignWaveHeight,3)));
76 for i = 1:length(names)
77 Data w Weather.(names{i})(index) = [];
78 end
79

80 % Create mean values for draft and trim
81 draft mid = Data w Weather.DraftMid;
82 i = 1;
83 n = 10;
84 draft = 0;
85 trim = 0;
86 a = 0;
87 while i < length(Data w Weather.DraftMid)
88 while Data w Weather.Timestamp(i+1) - Data w Weather.Timestamp(i) < 60*60*2
89 draft = draft + Data w Weather.DraftMid(i);
90 trim = trim + Data w Weather.Trim(i);
91 a = a+1;
92 i = i+1;
93 if i == length(Data w Weather.DraftMid)
94 break
95 end
96 end
97 if a > 0
98 draft = round(draft/a,2);
99 trim = round(trim/a,2);

100 Data w Weather.DraftMid(i-a:i) = draft;
101 Data w Weather.Trim(i-a:i) = trim;
102 end
103 i = i+1;
104 a = 0;
105 draft = 0;
106 trim = 0;
107 end
108 % Removing draft < 6 meters and |Trim | > 4 meters,
109 index = logical(remove under threshold(Data w Weather.DraftMid,6) + ...
110 not(remove under threshold(abs(Data w Weather.Trim),4)));
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111 for i = 1:length(names)
112 Data w Weather.(names{i})(index) = [];
113 end
114

115 %% Calculating volumedisplacement
116 %assuming only changes in draft, all other patameters are constant i.e.
117 %vertical sides, Cb constant
118 Data w Weather.Displacement = B*l pp*C b*Data w Weather.DraftMid;
119 Data org.Displacement = B*l pp*C b*Data org.DraftMid;
120

121 %% Calculating wetted surface
122 Data w Weather.WettedSurface = zeros(length(Data w Weather.DraftMid),1);
123 for i = 1:length(Data w Weather.DraftMid)
124 Data w Weather.WettedSurface(i) = estimate wetted surface(...
125 Data w Weather.DraftMid(i));
126 end
127

128 %% Calculating Admiralty constant
129 Data w Weather.Admiralty = ((Data w Weather.Displacement.*1025).ˆ(2/3)).* ...
130 ((Data w Weather.STW.*0.54444).ˆ3)./(Data w Weather.ShaftPower*1000);
131 Data org.Admiralty = ((Data org.Displacement.*1025).ˆ(2/3)).* ...
132 ((Data org.STW.*0.54444).ˆ3)./(Data org.ShaftPower*1000);
133

134 %% Create data struct with only calmwater data
135 Data CW = Data w Weather; %Creating new data struct
136 % Removing data points with Beafourt wind class above 3 and
137 % significant wave height larger than 1 meters
138 index wind = find(Data CW.Beaufort ≤ 3);
139 names = fieldnames(Data CW);
140 %Removing values with Beafourt number larger than 3
141 for i = 1:length(names)
142 Data CW.(names{i}) = Data w Weather.(names{i})(index wind);
143 end
144 % Removing data points with significant wave height larger than 1 meters
145 index wave = find(Data CW.SignWaveHeight ≤ 1);
146 %Removing values with Beafourt number larger than 3
147 for i = 1:length(names)
148 Data CW.(names{i}) = Data CW.(names{i})(index wave);
149 end
150

151 %% Benchmark model
152 [C,¬,¬] = unique(Data CW.STW); %unique speeds
153 min val = zeros(length(C),1);
154 % finds corresponding minimum shaft power and speed
155 for i = 1:length(C)
156 index = find(Data CW.STW == C(i));
157 min val(i) = min(Data CW.ShaftPower(index));
158 end
159 % Creates the benchmark model
160 q = fit(C,min val,'exp1');
161 q1 = 304.1*exp(0.192*C);
162 % Plotting benchmark PS-curve
163 figure()
164 hold on
165 grid on
166 grid minor
167 scatter(Data CW.STW,Data CW.ShaftPower)
168 plot(C,q1,'LineWidth',3)
169 xlabel('Speed through water [knots]')
170 ylabel('Shaft power [kW]')
171 legend('Data','304.1eˆ{0.192x}')
172 set(gca,'fontsize',20)
173

174 %% Method 1
175 % Calculate added power based on Admiralty Coefficient
176 Data CW.Added power Admiralty = added power admiralty(Data CW,18);
177 % Calculate added power based on resistance coefficient
178 [Data CW.AddedPower res coeff, Data CW.Res coeff] = ...
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179 added power resistance coeff(Data CW);
180 % Plotting added resistance diagram for Method 1
181 figure()
182 added res diagram(Data CW.Time,Data CW.Timestamp,...
183 Data CW.Added power Admiralty,false)
184 ylim([-50 150])
185 ylabel('Increase of shaft power [%]')
186 xlabel('Time')
187 set(gca,'fontsize',20)
188

189 figure()
190 added res diagram(Data CW.Time,Data CW.Timestamp,...
191 Data CW.AddedPower res coeff,false)
192 set(gca,'fontsize',20)
193 ylabel('Increase of shaft power [%]')
194 xlabel('Time')
195

196 %% Method 2
197 % Calculating added power due to wind and waves
198 R aa = zeros(length(Data w Weather.Timestamp),1);
199 R aw = zeros(length(Data w Weather.Timestamp),1);
200 for i = 1:length(Data w Weather.STW)
201 % Calculating wind resistance
202 R aa(i) = Wind resistance(Data w Weather.WindVelocity(i), ...
203 Data w Weather.WindDirection(i), Data w Weather.Course(i));
204 % Calculating wave resistance
205 R aw(i) = Wave resistance(Data w Weather.SignWaveHeight(i), ...
206 Data w Weather.WaveDirection(i), Data w Weather.WavePeriod(i), ...
207 Data w Weather.DraftMid(i),Data w Weather.STW(i), ...
208 Data w Weather.Course(i));
209 end
210 % Converting added resistance due to wind and waves to added power in kW
211 d power = ((R aa + R aw).*(Data w Weather.STW*0.51444))./1000;
212 Data mod = Data w Weather; %creating a new data struct for Method 2
213

214 %Removing effect from enviromental forces
215 Data mod.ShaftPower = Data mod.ShaftPower - d power;
216 Data mod.Admiralty = ((Data mod.Displacement.*1025).ˆ(2/3)).* ...
217 ((Data mod.STW.*0.54444).ˆ3)./(Data mod.ShaftPower*1000);
218

219 % Calculate added power based on Admiralty Coefficient
220 Data mod.AddedPower Admiralty = added power admiralty(Data mod,18);
221 % Calculate added power based on resistance coefficient
222 [Data mod.AddedPower res coeff,Data mod.Res coeff] = ...
223 added power resistance coeff(Data mod);
224

225 % Plotting added resistance diagram for Method 2
226 figure()
227 added res diagram(Data mod.Time,Data mod.Timestamp,...
228 Data mod.AddedPower Admiralty,false)
229 set(gca,'fontsize',20)
230 ylim([-50 150])
231 ylabel('Increase of shaft power [%]')
232 xlabel('Time')
233

234 figure()
235 added res diagram(Data mod.Time,Data mod.Timestamp,...
236 Data mod.AddedPower res coeff,false)
237 set(gca,'fontsize',20)
238 ylim([-20 100])
239 ylabel('Increase of shaft power [%]')
240 xlabel('Time')
241

242 %% Method 3
243 % Creating new data struct to be used in training the model
244 ML data = Data w Weather;
245 % Creating new data struct without the training data to be used in the
246 % Analysis
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247 data without training data = Data w Weather;
248

249 time val = 1429048800; %Timestamp for 1 year after delivery
250 index time1 = find(ML data.Timestamp > time val);
251 index time2 = find(Data w Weather.Timestamp < time val);
252 names = fieldnames(ML data);
253 for i=1:length(names)
254 % Data for the first year of operation
255 ML data.(names{i})(index time1) = [];
256 % Data witout the first year of operation
257 data without training data.(names{i})(index time2) = [];
258 end
259

260 % Calculate relative wind and wave angle
261 ML data.WindDirection(ML data.WindDirection > 180) = ...
262 ML data.WindDirection(ML data.WindDirection > 180) - 360;
263 ML data.WaveDirection(ML data.WaveDirection > 180) = ...
264 ML data.WaveDirection(ML data.WaveDirection > 180) - 360;
265 ML data.Course(ML data.Course > 180) = ...
266 ML data.Course(ML data.Course > 180) - 360;
267 ML data.rel wind dir = zeros(length(ML data.Course),1);
268 ML data.rel wave dir = zeros(length(ML data.Course),1);
269 for i = 1:length(ML data.Course)
270 if ML data.WindDirection(i) > 0 && ML data.Course(i) > 0
271 ML data.rel wind dir(i) = abs(ML data.WindDirection(i) - ML data.Course(i));
272 elseif ML data.WindDirection(i) < 0 && ML data.Course(i) < 0
273 ML data.rel wind dir(i) = abs(ML data.WindDirection(i) - ML data.Course(i));
274 elseif ML data.WindDirection(i) < 0 && ML data.Course(i) > 0
275 ML data.rel wind dir(i) = abs(ML data.WindDirection(i) + ML data.Course(i));
276 elseif ML data.WindDirection(i) > 0 && ML data.Course(i) < 0
277 ML data.rel wind dir(i) = abs(ML data.WindDirection(i) + ML data.Course(i));
278 end
279

280 if ML data.WaveDirection(i) > 0 && ML data.Course(i) > 0
281 ML data.rel wave dir(i) = abs(ML data.WaveDirection(i) - ML data.Course(i));
282 elseif ML data.WaveDirection(i) < 0 && ML data.Course(i) < 0
283 ML data.rel wave dir(i) = abs(ML data.WaveDirection(i) - ML data.Course(i));
284 elseif ML data.WaveDirection(i) < 0 && ML data.Course(i) > 0
285 ML data.rel wave dir(i) = abs(ML data.WaveDirection(i) + ML data.Course(i));
286 elseif ML data.WaveDirection(i) > 0 && ML data.Course(i) < 0
287 ML data.rel wave dir(i) = abs(ML data.WaveDirection(i) + ML data.Course(i));
288 end
289 end
290

291 % Creating index to split the data for the first year into a training and
292 % validation set
293 amount trainingData = round(0.8*length(ML data.ShaftPower));
294 random index = randperm(length(ML data.ShaftPower),amount trainingData);
295

296 %Time from delivery
297 ML data.d time = ML data.Timestamp - ML data.Timestamp(1);
298

299 % Training models and finding relative prediction error for the different
300 % input sets
301 for k = 1:7
302 names = defining input param(k);
303 clear data 2 trainingSet
304 clear data 2 validationSet
305 temp = ML data;
306 for i = 1:length(names)
307 data 2 trainingSet.(names{i}) = ...
308 ML data.(names{i})(random index); %Training data
309 temp.(names{i})(random index) = [];
310 if i == length(names)
311 y val = temp.(names{i}); %True value for validation set
312 break
313 end
314 data 2 validationSet.(names{i}) = temp.(names{i});
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315 end
316

317 %Struct to Table in order to use ML model
318 training set = struct2table(data 2 trainingSet);
319 validation set = struct2table(data 2 validationSet);
320

321 % Gaussian Regression model
322 gprMdl bench = fitrgp(training set,'ShaftPower',...
323 'KernelFunction','squaredexponential');
324 % Predict values from Gaussian Regression model
325 GR shaftpower pred = predict(gprMdl bench,validation set);
326 % mean prediction error for the inputset number k
327 mean pred error GR(k) = mean(abs((y val-GR shaftpower pred)./y val))*100;
328

329 % Linear Regression model
330 mdl = fitlm(training set);
331 %Predict values from Linear Regression model
332 LR shaftpower pred = predict(mdl,validation set);
333 % mean prediction error for the inputset number k
334 mean pred error LR(k) = mean((abs(y val-LR shaftpower pred)./y val))*100;
335

336 % Custom Linear Regression model
337 training set custom = training set;
338 validation set custom = validation set;
339 for i =1:length(names)
340 if strcmp(names{i},'DraftMid')
341 training set custom.(names{i}) = training set custom.(names{i}).ˆ(2/3);
342 validation set custom.(names{i}) = validation set custom.(names{i}).ˆ(2/3);
343 elseif strcmp(names{i},'STW')
344 training set custom.(names{i}) = training set custom.(names{i}).ˆ3;
345 validation set custom.(names{i}) = validation set custom.(names{i}).ˆ3;
346 elseif strcmp(names{i},'RPM')
347 training set custom.(names{i}) = training set custom.(names{i}).ˆ3;
348 validation set custom.(names{i}) = validation set custom.(names{i}).ˆ3;
349 end
350 end
351 mdl custom = fitlm(training set custom);
352 LR custom shaftpower pred = predict(mdl custom,validation set custom);
353 % mean prediction error for the inputset number k
354 mean pred error LR custom(k) = mean(abs((y val-LR custom shaftpower pred)./y val))*100;
355 end
356

357 % Plot the mean prediction error for the input sets
358 figure()
359 hold on
360 bar([1:k],[mean pred error LR;mean pred error LR custom;mean pred error GR]')
361 legend('Linear Regression','Custom Linear Regression','Gaussian Regression')
362 xlabel('Input set')
363 ylabel('Mean prediction error [%]')
364 ylim([0.9*min(mean pred error GR) 1.05*max(mean pred error LR)])
365 set(gca,'FontSize',20)
366

367 % Analysis
368

369 % Load Machine learning model for input set 4
370 filename GR = strcat(folder,'GR input 4.mat');
371 filenime CLR = strcat(folder,'CLR input 4.mat');
372 load(filename GR);
373 load(filenime CLR);
374

375 GR model = gprMdl2;
376 LR model = mdl custom;
377

378 % Create data set that can be used in the analysis, which means that it
379 % contains values only for input set 4 and without the first year of
380 % operation
381 Data method3 = data without training data;
382 input no = 4;
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383 input predictions GR = input to Method3(Data method3,input no);
384

385 % Custom Linear Regression
386 input predictions custom LR = input predictions GR;
387 names = defining input param(4);
388 for i =1:length(names)
389 if strcmp(names{i},'DraftMid')
390 input predictions custom LR.(names{i}) = ...
391 input predictions custom LR.(names{i}).ˆ(2/3);
392 elseif strcmp(names{i},'STW')
393 input predictions custom LR.(names{i}) = ...
394 input predictions custom LR.(names{i}).ˆ3;
395 elseif strcmp(names{i},'RPM')
396 input predictions custom LR.(names{i}) = ...
397 input predictions custom LR.(names{i}).ˆ3;
398 end
399 end
400 % Shaft power predictions
401 GR ShaftPower = predict(GR model,input predictions GR);
402 LR custom ShaftPower = predict(LR model,input predictions custom LR);
403

404 % Relative prediction error
405 pred error GR = ((data without training data.ShaftPower-GR ShaftPower)./...
406 data without training data.ShaftPower)*100;
407 pred error LR = ((data without training data.ShaftPower-...
408 LR custom ShaftPower)./data without training data.ShaftPower)*100;
409

410 % Plotting relative prediction error over time
411 figure()
412 added res diagram(data without training data.Time,...
413 data without training data.Timestamp,pred error LR,false)
414 ylabel('Relative prediction error [%]')
415 xlabel('Time')
416 ylim([-50 100])
417 set(gca,'fontsize',20)
418

419 figure()
420 added res diagram(data without training data.Time,...
421 data without training data.Timestamp,pred error GR,false)
422 ylabel('Relative prediction error [%]')
423 xlabel('Time')
424 set(gca,'fontsize',20)

B.2 constants.m

1 %-------------------------------------------------------------------------
2 % This file contains constant parameters to be used in calculations
3 %-------------------------------------------------------------------------
4

5 % The mass density of air in kg/mˆ3:
6 rho a = 1.225;
7 % The gravitational acceleration in m/ s ˆ2:
8 g = 9.81;
9 % The water densisty in kg/mˆ3

10 rho s = 1025.89;
11 % Kinematic viscosity for 15 degrees celsius
12 nu = 1.18830 * 10ˆ-6;
13

14 % Dates for Propeller polish
15 Propell polish = datetime({'18-11-2015','02-07-2016','10-02-2017'},...
16 'InputFormat','dd-MM-yyyy');
17 Propell polish timestamp = [1447804800; 1467417600; 1486684800];
18 % Dates for Hull cleaning
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19 Hull cleaning = datetime('26-09-2017','InputFormat','dd-MM-yyyy');
20 Hull cleaning timestamp = 1506384000;
21 %Propulsion efficiancy
22 eta d = 0.7;
23

24 %----------Ship parameters ----------%
25 %length overall in meters
26 l oa = 208.9;
27 %length between perpendiculars in meters
28 l pp = 196.90;
29 %Breath in meters
30 B = 29.8;
31 %Design Draught in meters
32 T d = 10.10;
33 %Design displacement [mˆ3]
34 Volume d = 37718.6;
35 %Block coefficient
36 C b = Volume d/(l pp*B*T d);
37 %bow distance to 95% of max breadth
38 l bwl = 25;
39 %Transverse area above waterline
40 A XV = 580;
41 %Design Wetted Surface (estimated)
42 wetted surface design = 6922.044023317390;

B.3 estimate wetted surface.m

1 function S = estimate wetted surface(draft)
2 %--------------------------------------------------------------------------
3 % Returns estimate the wetted surface in square meters
4 % input: draft midship in meter
5 %--------------------------------------------------------------------------
6

7 % Load constants
8 constants;
9 B T ratio = B/draft;

10 volume displacement = B*draft*l pp*C b;
11 % Values for Cm 0.9 based on figure from TMR4105 Marin Teknikk Grunnlag
12 % compendium
13 k vec = [2.75 2.7 2.65 2.62 2.60 2.58 2.56 2.54...
14 2.54 2.56 2.58 2.60 2.62 2.65];
15 B T ratio vec = [1.684 1.868 2.040 2.158 2.250 2.355 2.48 2.55 ...
16 3.42 3.50 3.684 3.868 4.05 4.342];
17 if B T ratio < B T ratio vec(1)
18 k = k vec(1);
19 elseif B T ratio > B T ratio vec(end)
20 k = k vec(end);
21 else
22 k = interp1(B T ratio vec,k vec,B T ratio);
23 end
24 S = k*sqrt(volume displacement*l pp);
25 end

B.4 added power admiralty.m

1 function added power = added power admiralty(data,velocity)
2 %--------------------------------------------------------------------------
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3 % Returns the added power in percent based on the Admiralty coefficient
4 % Input parameters:
5 % data - MATLAB struct containing Admiralty coefficient for the vessel
6 % velocity - desired velocity in knots
7 %--------------------------------------------------------------------------
8

9 %load constants
10 constants;
11 % Estimated power based on the Admiralty coefficient
12 est power = ((((Volume d*1025)ˆ(2/3)*(velocity*0.5144)ˆ3)./...
13 data.Admiralty))./1000;
14 % Design power from benchmark
15 design power = (304.1*exp(0.192*velocity));
16 % Added power
17 added power = -((design power- (est power))./design power)*100;
18 end

B.5 added power resistance coeff.m

1 function [added power, dC f] = added power resistance coeff(data)
2 %--------------------------------------------------------------------------
3 % Returns the added power in percent based on the Resistance coefficient
4 % and the resistance coefficient
5 % Input parameters:
6 % data - MATLAB struct containing the following fields
7 % ShaftPower - Shaft power in kW
8 % STW - Speed through water in knots
9 % WettedSurface - Wetted surface area in square meters

10 %--------------------------------------------------------------------------
11 %load constants
12 constants;
13 %Calculate resistance coefficient
14 R Ts meassured = data.ShaftPower.*eta d./(data.STW*0.5144);
15 R Ts bench = (304.1*exp(0.192*data.STW)).*eta d./(data.STW*0.5144);
16 C Ts meassured = R Ts meassured./(0.5*rho s*((data.STW*0.5144).ˆ2).*...
17 data.WettedSurface);
18 C Ts bench = R Ts bench./(0.5*rho s*((data.STW*0.5144).ˆ2).*...
19 wetted surface design);
20 dC f = C Ts meassured - C Ts bench;
21

22 added power = ((dC f.*0.5.*rho s.*data.WettedSurface.*eta d.*...
23 ((data.STW*0.5144).ˆ3))./(304.1*exp(0.192*data.STW)))*100;
24 end

B.6 Wind resistance.m

1 function R aa = Wind resistance(wind vel,wind dir,heading)
2 %--------------------------------------------------------------------------
3 % Calculating wind resistance based on the method described in ISO 15016
4 % returns the wind resistance in Newtons
5 % Input parameters:
6 % wind vel - Wind speed in m/s
7 % wind dir - Wind direction using compass direction 0:360 degrees
8 % heading - compass course of the ship 0:360 degrees
9 %--------------------------------------------------------------------------

10 constants; %loading constants
11 % Calculating relative wind direction between 0-180 degrees

B9



Appendix B. Data Analysis

12 wind dir(wind dir > 180) = ...
13 wind dir(wind dir > 180) - 360;
14 heading(heading > 180) = ...
15 heading(heading > 180) - 360;
16 rel wind dir = zeros(length(heading),1);
17 for i = 1:length(heading)
18 if wind dir(i) > 0 && heading(i) > 0
19 rel wind dir(i) = abs(wind dir(i) - heading(i));
20 elseif wind dir(i) < 0 && heading(i) < 0
21 rel wind dir(i) = abs(wind dir(i) - heading(i));
22 elseif wind dir(i) < 0 && heading(i) > 0
23 rel wind dir(i) = abs(wind dir(i) + heading(i));
24 elseif wind dir(i) > 0 && heading(i) < 0
25 rel wind dir(i) = abs(wind dir(i) + heading(i));
26 end
27 end
28

29 % C AA values taken from figure C.2 in ISO 15016
30 C AA = [-0.6565 -0.7139 -0.7408 -0.7070 -0.6433 -0.3939 -0.2458 -0.2190 ...
31 -0.2832 -0.0544 0.3361 0.6459 0.8646 0.8109 0.6358];
32 % Angle of attack for C AA values
33 aoa = [0 8.25 15.75 23.56 30.34 45.91 60.83 75.46 90.11 104.66 119.50 ...
34 134.71 149.26 164.59 180];
35 % interpolating to find C aa values
36 C aa = -interp1(aoa,C AA,rel wind dir);
37 % Calculate wind resistance
38 R aa = 0.5*rho a*C aa*A XV*(wind vel*cosd(rel wind dir))ˆ2;
39 end

B.7 Wave resistance.m

1 function R aw = Wave resistance(H s,wave dir,T 01,T m,V s,heading)
2 %--------------------------------------------------------------------------
3 %Calculating wave resistance based on the method described in ISO 15016
4 %returns the wave resistance in Newtons
5 % Input parameters:
6 % H s - Significant wave height in meters
7 % wave dir - Mean wave direction using compass direction 0:360 degrees
8 % T 01 - Mean wave period in seconds
9 % T m - Draft midships in meters

10 % V s - Speed through water in knots
11 % heading - compass course of the ship 0:360 degrees
12 %--------------------------------------------------------------------------
13 %load constants and ship characteristics
14 constants;
15

16 %finding relative wave direction
17 wave dir(wave dir > 180) = ...
18 wave dir(wave dir > 180) - 360;
19 heading(heading > 180) = ...
20 heading(heading > 180) - 360;
21 rel wave dir = zeros(length(heading),1);
22 for i = 1:length(heading)
23 if wave dir(i) > 0 && heading(i) > 0
24 rel wave dir(i) = abs(wave dir(i) - heading(i));
25 elseif wave dir(i) < 0 && heading(i) < 0
26 rel wave dir(i) = abs(wave dir(i) - heading(i));
27 elseif wave dir(i) < 0 && heading(i) > 0
28 rel wave dir(i) = abs(wave dir(i) + heading(i));
29 elseif wave dir(i) > 0 && heading(i) < 0
30 rel wave dir(i) = abs(wave dir(i) + heading(i));
31 end
32 end
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33

34 %Convert from knots to m/s
35 V s = V s * (1852/3600);
36 %Calculate Froude number
37 Fr = V s/sqrt(g*l pp);
38

39 R aw = 0;
40

41 %Defining integration intervall
42 om start = 2*pi/25;
43 om stop = 2*pi/4;
44 d om = 0.1;
45 %Criteria to use STAWAVE 1
46 crit = 2.25*sqrt(l pp/100);
47

48 %Criteria to use STAWAVE 2
49 if (2.2 < B/T m && B/T m < 9) && (0.1 < Fr && Fr < 0.3)
50 crit STAWAVE 2 = true;
51 else
52 crit STAWAVE 2 = false;
53 end
54

55 %STAWAVE-1 calculations
56 if H s ≤ crit && rel wave dir ≤ 45
57 R aw = 1/16 * rho s * g * H sˆ2 * B * sqrt(B/l bwl);
58 elseif H s ≤ crit && rel wave dir > 45
59 R aw = 0;
60

61 %STAWAVE-2 calculations
62 elseif H s > crit && rel wave dir ≤ 45 && crit STAWAVE 2
63

64 for omega = om start:d om:om stop
65 [R wave, S eta] = STAWAVE 2(omega,T 01,H s,V s,T m);
66 a = 2*(R wave)*S eta*d om;
67 R aw = R aw + a;
68 end
69

70 elseif H s > crit && rel wave dir > 45 && crit STAWAVE 2
71 R aw = 0;
72 end
73 end

B.8 STAWAVE 2.m

1 function [R wave, S eta] = STAWAVE 2(omega,T 01,H s,V s,T m)
2 %--------------------------------------------------------------------------
3 % STAWAVE-2 Calculations as defined in ISO 15016
4 % returns:
5 % R wave - mean resistance in regular waves in newtons
6 % S eta - is the frequency spectrum in square meters seconds, for the given
7 % omega
8 % Input parameters:
9 % omega - circular frequency of regular waves in radians per second

10 % T 01 - Mean wave period in seconds
11 % H s - Significant wave height in meters
12 % V s - Speed through water in knots
13 % T m - Draft mid in meters
14 %--------------------------------------------------------------------------
15

16 %load constants and ship characteristics
17 constants;
18 %Convert from knots to m/s
19 V s = V s * (1852/3600);
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20 Fr = V s/sqrt(g*l pp);
21 % The non dimensional radius of gyration in the lateraldirection:
22 k yy = 0.25*l pp;
23 %Wave numer in rad/s
24 k = omegaˆ2/g;
25

26 omega bar = ((sqrt(l pp/g)*k yyˆ(1/3))/(1.17*Frˆ(-0.143)))*omega;
27 if omega bar < 1
28 b 1 = 11;
29 d 1 = 14;
30 else
31 b 1 = -8.50;
32 d 1 = -566*(l pp/B)ˆ-2.66;
33 end
34 a 1 = 60.3*C bˆ1.34;
35 r aw = omega barˆb 1 * exp(b 1/d 1 * (1 - omega barˆd 1)) * a 1*Frˆ1.5 ...
36 * exp(-3.5*Fr);
37 R awml = 4 * rho s * g * (Bˆ2/l pp) * r aw;
38 f 1 = 0.692*((V s/(sqrt(T m * g)))ˆ0.769) * 1.81*C bˆ6.95;
39 % The modified bessel function of the f i r s t kind of order 1:
40 I 1 = besseli(1,1.5*k*T m);
41 % The modified bessel function of the second kind of order 1:
42 K 1 = besselk(1,1.5*k*T m);
43 alpha 1 = ((piˆ2 * I 1ˆ2)/(piˆ2 * I 1ˆ2 + K 1ˆ2))*f 1;
44 R awrl = 0.5* rho s * g * B * alpha 1;
45

46 R wave = R awml + R awrl;
47

48 %Pierson-Moskowitz Wave spectrum
49 A fw = 173 * (H sˆ2/(T 01ˆ4));
50 B fw = 691/(T 01ˆ4);
51 S eta = A fw/(omegaˆ5) * exp(-B fw/(omegaˆ4));
52 end

B.9 defining input param.m

1 function input set = defining input param(input set no)
2 %-------------------------------------------------------------------------
3 % Gives names of input parameters to Method 3 based the input set number
4 %-------------------------------------------------------------------------
5 switch input set no
6 case 1
7 input set = {'STW','DraftMid','Trim','ShaftPower'};
8 case 2
9 input set = {'STW','DraftMid','Trim','WindVelocity',...

10 'rel wind dir','ShaftPower'};
11 case 3
12 input set = {'STW','DraftMid','Trim','SignWaveHeight',...
13 'rel wave dir','WavePeriod','ShaftPower'};
14 case 4
15 input set = {'STW','DraftMid','Trim','WindVelocity',...
16 'rel wind dir','SignWaveHeight','rel wave dir',...
17 'WavePeriod','ShaftPower'};
18 case 5
19 input set = {'d time','STW','DraftMid','Trim','ShaftPower'};
20 case 6
21 input set = {'STW','DraftMid','ShaftPower'};
22 case 7
23 input set = {'d time','STW','DraftMid','Trim','WindVelocity',...
24 'rel wind dir','SignWaveHeight','rel wave dir','WavePeriod',...
25 'ShaftPower'};
26 end
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B.10 input to Method3.m

1 function [input to ML] = input to Method3(Data,input set no)
2 %--------------------------------------------------------------------------
3 % Creates a table containing input variables to be used in Method 3
4 %--------------------------------------------------------------------------
5

6 % Calculating relative wind and wave angle
7 Data.WindDirection(Data.WindDirection > 180) = ...
8 Data.WindDirection(Data.WindDirection > 180) - 360;
9 Data.WaveDirection(Data.WaveDirection > 180) = ...

10 Data.WaveDirection(Data.WaveDirection > 180) - 360;
11 Data.Course(Data.Course > 180) = ...
12 Data.Course(Data.Course > 180) - 360;
13

14 Data.rel wind dir = zeros(length(Data.Course),1);
15 Data.rel wave dir = zeros(length(Data.Course),1);
16

17 for i = 1:length(Data.Course)
18 if Data.WindDirection(i) > 0 && Data.Course(i) > 0
19 Data.rel wind dir(i) = abs(Data.WindDirection(i) - Data.Course(i));
20 elseif Data.WindDirection(i) < 0 && Data.Course(i) < 0
21 Data.rel wind dir(i) = abs(Data.WindDirection(i) - Data.Course(i));
22 elseif Data.WindDirection(i) < 0 && Data.Course(i) > 0
23 Data.rel wind dir(i) = abs(Data.WindDirection(i) + Data.Course(i));
24 elseif Data.WindDirection(i) > 0 && Data.Course(i) < 0
25 Data.rel wind dir(i) = abs(Data.WindDirection(i) + Data.Course(i));
26 end
27

28 if Data.WaveDirection(i) > 0 && Data.Course(i) > 0
29 Data.rel wave dir(i) = abs(Data.WaveDirection(i) - Data.Course(i));
30 elseif Data.WaveDirection(i) < 0 && Data.Course(i) < 0
31 Data.rel wave dir(i) = abs(Data.WaveDirection(i) - Data.Course(i));
32 elseif Data.WaveDirection(i) < 0 && Data.Course(i) > 0
33 Data.rel wave dir(i) = abs(Data.WaveDirection(i) + Data.Course(i));
34 elseif Data.WaveDirection(i) > 0 && Data.Course(i) < 0
35 Data.rel wave dir(i) = abs(Data.WaveDirection(i) + Data.Course(i));
36 end
37

38 end
39

40 %Defining input parameters for model
41 names = defining input param(input set no);
42 for i = 1:length(names)-1
43 data 2 input.(names{i}) = ...
44 Data.(names{i});
45 end
46 %Struct to Table in order to use ML model
47 input to ML = struct2table(data 2 input);
48 end
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