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Background 
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specifically consider appropriate action space definitions, reward functions, and analyze how the 
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and gain insight on the reinforcement learning theory, how this can be applied to a marine application, 
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autonomous ships. 
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 The maneuvering control theory applied for DP and path following. 
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literature study and project assignment. 

 

2) Formulate a case study of the final docking operation:  

a) Choose and present a vessel simulation model as a case study.  

b) Design the underlying (low-level) maneuvering control algorithm based on assumed reference 

inputs to be provided by the RL function. 

c) Formulate the machine learning problem by definition of inputs, monitoring variables, action 

space definition, and relevant terms of the reward function.  

 

3) Investigate different setups of RL by: 

a) pre-specifying the desired docking path and heading, while letting RL trim the speed along the 

path (including a mechanism for coming to full stop at target quay location);  

b) letting the RL stepwise command path segments to learn good docking paths, while letting 

speed and heading along the path be given; 

c) tentatively combine some of these setups, by expanding the action space (if time permits). 

Provide assumptions, design the action space(s), the reward function(s), implement the RL methods, 

perform simulations and illustrate the responses, and discuss the results. The studies should include 

sensitivity-like analysis of variations in relevant parameters of the reward function and action space. 
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Abstract

Abstract

This thesis presents a study of machine learning (ML) applied to the marine field. In specific re-

inforcement learning (RL) applied as an action-planning guidance layer in a docking scenario has

been inspected. This was done through an analysis of the control systems ability to learn optimal

docking maneuvers by trial and error simulations close to the quay. The underlying intention is to

build understanding of RL for marine applications.

A model based on CyberShip Arctic Drillship operating in the Marine Cybernetics Laboratory at

NTNU, has served as the platform for testing RL in the docking scheme. The buildup of this model

is presented as background for the thesis, along with relevant theory of autonomous systems, path

planning, maneuvering, and machine learning. For simplicity, training of the RL agent was simu-

lated for proposing speeds and entrance paths for the vessel individually.

Training in regards of speed, we were able to show how the agent could learn improved strategies

based on various measures and concurrently comply with specified restrictions. As a model-free ap-

proach, needless of knowledge connected to underlying dynamics, these strategies could be learnt

in accordance with different environmental settings. Simultaneously it showed how unconsidered

strategies could arise, due to a known potential of RL agents to discover unexpected ways to ob-

tain rewards. This could have positive effects, but also highlights the importance of careful reward

design, as fields unaccounted for can be violated.

When evaluating entrance paths, backpropagation of rewards proved crucial in order to converge

to satisfactory results, where available states showed dependency far back. Still, this successfully

guided the agent towards long term rewards, enabling improved strategies accounting for the com-

plete process rather than just the immediate optima. However, the agent showed susceptible to con-

flicting rewards, seemingly shrouding global optima and reducing stability of the learning progress.

N-step backpropagation has been recommended as a possible improvement to this, along with ac-

celerated learning.

The simulations all reflected the dependency of the agents behavior on action space definition

and applied reward function. Additionally the extensiveness of the action space was found to re-

strict possible solutions of the agent, but extensiveness comes with greater computational demands.

Based on the provided results, the model-free RL shows promising capabilities for vessel guidance

in docking situations, allowing optimization according to desired monitoring variables.
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Sammendrag

Sammendrag

Denne avhandlingen presenterer et studie av maskinlæring (ML) anvendt i maritim sammenheng.

Mer spesifikt har forsterkende læring (FL), som et handlings-planleggende lag for veiledning i et

dokningsscenario blitt inspisert. Dette ble gjort gjennom en analyse av kontrollsystemets evne til å

lære optimale kaileggings manøvre ved å prøve- og feile gjennom simuleringer nær kaien. Avhan-

dlingen tjener til å bygge opp forståelse av RL for marine applikasjoner.

En modell basert på CyberShip Arctic Drillship som opererer i Marine Cybernetics Laboratory ved

NTNU, har tjent som plattform for testing av FL i kaileggingsscenarioet. Oppbyggingen av denne

modellen presenteres som bakgrunn for avhandlingen, sammen med relevant teori om autonome

systemer, baneplanlegging, manøvrering og maskinlæring. For enkelhets skyld ble treningen av

FL-agenten gjennomført ved å forslå hastigheter og inngangsbaner for fartøyet individuelt.

Gjennom trening med hensyn på fart kunne vi vise hvordan agenten kunne lære forbedrede strate-

gier basert på ulike tiltak og samtidig overholde spesifiserte begrensninger. Som en modellfri

tilnærming, uten behov for kunnskap knyttet til underliggende dynamikk, kunne disse strategiene

læres i samsvar med ulike oppsett av terreng. Samtidig viser uforutsette strategier seg å oppstå

som følge av et kjent potensial hos FL-agenter til å oppdage uventede måter å anskaffe belønning.

Dette kan ha positive effekter, men understreker også betydningen av presis design av belønning,

ettersom oversette farer kan oppstå.

Ved evaluering av inngangsbaner viste tilbake-forplantning av belønning seg avgjørdende for kon-

vergering, ettersom tilgjengelige tilstander viste avhengighet langt tilbake. Likevel veiledet dette

agenten velykket mot langsiktige belønninger, slik at forbedrede strategier omfattet hele prosessen

i stedet for bare den umiddelbare optima. Agenten viste imidlertid utsatt for motstridende beløn-

ninger, som tilsynelatende maskerte globale optima og reduserte stabiliteten i læringsprosessen.

N-step tilbake-forplantning har blitt anbefalt en mulig forbedring til dette, sammen med akselerert

læring.

Simuleringene gjenspeiler avhengigheten av agentens oppførsel på definisjon av handlingsrom, og

anvendt belønningsfunksjon. I tillegg ble omfanget av handlingsrom funnet å begrense mulige løs-

ninger, men med utvidelsesevne kommer med større beregningsbehov. Basert på resultatene, viser

modellfri FL lovende evner for fartøyets veiledning i kaileggingssituasjoner, i forhold til optimalis-

ering i henhold til ønskede overvåkingsvariabler.
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Nomenclature

Nomenclature

Abbreviations
CLF Control Lyapunov Function

CO Coordinate Origin

CSAD CyberShip Arctic Drillship

DOF Degree Of Freedom

DP Dynamic Programming

DP Dynamic positioning

I/O Input/Output

LF Low-frequency

MC Monte Carlo

MC-lab Marine cybernetics laboratory

MCQ-L Modified Connectionist Q-Learning

MDP Markov Decision Process

ML Machine Learning

NED North East Down

PC Parametric Continuity

RL Reinforcement Learning

SARSA State-Action-Reward-State-Action

TD Temporal Difference

USV Unmanned surfave vessel

WF Wave-frequency

Roman letters
A Action space

a Action

Ak Coefficient vector

Adock Docking area

Apath Action space for path evaluation

Aspeed Action space for speed evaluation

b Bias

CA Coriolis force matrix

CT Terminal reward constant

Ct Immediate reward constant

CRB Centripetal force matrix

d Distance to docking position
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Nomenclature

et Approximation of gradient

epi Current episode

eptot Total amount of episodes

errp Error tolerance in position

f Transition model

K1,2 Maneuvering tuning constants

l Extension length path

LF Length full scale vessel

LM Length model scale vessel

P Power

p Vessel position

p0 Departure waypoint

pd Parametrized path

pt Target waypoint

pdock Docking position

Pa
ss′ Transition probability

pt,RL Upcoming target waypoint, returned by the RL agent

Q Q-value

R Radius

R Reward

rT Terminal reward component

rt Immediate reward component

S State space

s Global path parameter

s State

sT Terminal state

T Terminal step

t Time

tdelay Delay time

tmax Time limit

tp0→pt Time elapsed along a path segment

uconst Constant desired speed

ure f Discrete reference speed

V Value function

Vθ Approximated value function

Vc Current velocity in NED frame

vs Speed profile

x Longitudinal position
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Nomenclature

y Latitudinal position

z1,2 Backstepping parameters

p̃ Offset in position

{s, a} State action pair

D Damping matrix

Iij Product of inertia relative to the ij axis

MA Added mass matrix

MRB Rigid body mass matrix

R(ψ) Rotation matrix

u Speed

ud Desired speed

Greek letters
α Learning rate

α1 Virtual control variable

αψo f f set,∆dist Tuning constant for reward prioritization

δt Temporal difference

δu Step size of speed augmentation

∆dist Change in distance

δθT Step size of path angle augmentation

ε Agents tendency to value exploration

η Vessel position

ηd Desired vessel position

γ Discount factor

κ Maneuvering tuning constant

λ Design constant for path slope

λ Eligibility trace

λ Scaling ratio

µ Maneuvering tuning constant

∇ Gradient operator

ν Linear velocities in body frame

νc Current velocity in body frame

νr Linear velocities relative to local current in body frame

ω Backstepping parameter

φ Feature vector

π Policy

π∗ Optimal policy

ψ Heading
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Nomenclature

ψd Desired heading

ψdock Docking heading

ψo f f set Offset angle in heading

ρ Tuning function

τ Force

τthr Thruster force

θ Local path variable

θ Parameter vector

θT Average path tangential angle

p̃ Offset in position
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Chapter 1

Introduction

1.1 Background and motivation

Today’s maritime society inhabits a growing interest for the implementation of autonomous sys-

tems and the development of unmanned surface vessels (USVs). These vessels are defined by their

capability to perform tasks and missions without the need of a human operator. Such characteristics

makes USVs suitable for operations where human presence is undesirable, but can also be used for

increased precision or decreased cost (Tanakitkorn 2018). In terms of development and installation

the relevant systems can be quite expensive and the realistic value has to be individually evaluated.

However it is obvious that returned value for these systems rise with frequency of the application

area. Such an event of frequent occurrence is a docking process.

The culmination of almost any voyage executed by a surface vessel, includes bringing the vessel to

a stationary position adjacent a berth. In harbors this process often requires the on-bringing and

collaboration with a harbor pilot possessing knowledge regarding the particular waterway such as

depth, currents, and further local effects and hazards (Gard AS 2014). Due to safety concerns this

collaboration tends to be mandated by law. Still many ship operators are critical to this requirement

on the basis of cost efficiency and need due to late advancements in technology. However, even

though availability and complexity of technology has shown exponential increase the last years, it

is difficult to argue there exists a substitution for the local experience a harbor pilot can provide.

In another perspective however, nothing can replace experience in terms of maneuvering a specific

vessel. The requirements related to harbors usually revolves around environmental factors that are

hard to map, such as rotational and cross flowing currents. However, such effects, given specific

factors as time of the day to account for tide, tends to hold certain patterns. Thus rises the ques-

tion if necessary experience to properly maneuver the vessel in harbours also can be extended to

autonomous systems. This places the focus on artificial learning systems such as machine learning,

letting the vessel gather and integrate own experience for maneuvering in docking situations.
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1.2 Objective and scope

The superior objective of this project is to study how reinforcement learning can be used to make

the control system of an autonomous vessel learn optimal docking maneuvers. This is to be done

through repeated trial and error simulations to build experience for the vessel maneuvering close

to a quay, using selected action variables and fitting rewards. The project considers fully actuated

vessels with a dynamic positioning basis for the maneuvering controller.

The intention is not to construct a practical autodocking function, but rather to generate under-

standing and insight in the field of machine learning applied in a marine setting. Specifically the

use of reinforcement learning as an action-planning guidance layer is to be evaluated. On the basis

of this, final numerical results from training is of less importance, but rather the observed possibil-

ities of improvement and behaviour according to action spaces and reward functions. The systems

is created to coincide with CyberShip Arctic Drillship (CSAD) carrying out docking maneuvers in

the Marine cybernetics laboratory. All simulations are based upon this vessel and environment.
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Chapter 2

Problem formulation

2.1 Autonomous systems for marine application

Autonomous systems can be defined as a class of intelligent systems with the ability to realize

autonomous sensing, modeling, decision-making, and control in unfamiliar and dynamic environ-

ments (Xu et al. 2015). These consists of agents and objects sharing some common environment

(Sifakis 2018). Agents inhabit the ability to observe and alter their state, while objects such as phys-

ical dynamic systems can not due to a lack of computational ability. However, objects can also

undergo internal changes in state, for which agents can monitor and act on. Based on this, Sifakis

(2018) proposes a computational model based off a combination of an agent architecture model

and a system architecture model. The agent architecture specifies the coordination between five

aspects of autonomy; Perception, Reflection, Goal Management, Planning and Self-adaption. This

is depicted in Figure 2.1.1. On the other side the system architecture specifies the link between the

agents and the objects involved, defining how the agents perceive the environment and elaborate

the control strategy.

Based on the current state and changes in the environment, agents receive inputs and produce

outputs according to their I/O (Input/Output) policy. In other words agents behave as controllers

responding to the environment in order to achieve their specific goals. The actions produced in

the agent environment are generally of two types: controllable actions imposed by the agent or

uncontrollable actions due to internal state changes in the environment. In general, environment

models are complex systems where generated plans for the specified goal can consist of infinite

trees with alternating controllable and uncontrollable actions. In such situations a definite plan

cannot be guaranteed. Instead it is common to rely on finite horizon plans computed on-line from

the current state (Sifakis 2018). Naturally, increased dynamicity of the environment lay grounds for

more unpredictable outcomes.
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2.1. AUTONOMOUS SYSTEMS FOR MARINE APPLICATION

• Perception: Removing am-

biguity and determining

relevance of input.

• Reflection: Improving trust-

worthiness of agents envi-

ronment model.

• Goal Management: Choosing

suitable goals.

• Planning: Plan to achieve

goals.

• Self-adaption: Adjusting be-

havior through learning.

Figure 2.1.1: General architectural model for agents. Showing the five main aspects of autonomy
according to model and definitions simplified from Sifakis (2018).

The concept of system architecture can be seen as a set of rules defining the structure of a system and

the interrelationships between it parts (Rødseth & Tjora 2014). With the general architectural model

for agents in mind, it is clear that a specific system architecture depends on the system definition

and it’s level of autonomy. These levels are characterized subject to the degree of human-agent

interaction, goal/mission complexity and environmental complexity. Ludvigsen & Sørensen (2016)

present four system levels, ranging from remote control to highly autonomous:

1. Automatic operation - System operates automatically, with a human operator handling high-

level mission planning functions.

2. Management by consent - System makes action recommendations, but awaits human con-

sent under important parts of the mission. The system can also be delegated act on its own

recommendations (human delegated).

3. Semi-autonomous/management by exception - System automatically executes functions on

mission, under the circumstance of no human intervention due to response times. Human

operator may alter parameters as well as cancel actions. Operator is prompted under critical

or important exceptions previously defined for the mission.

4. Highly autonomous - System automatically executes mission-related functions in undefined

environment. The system can on its own plan and replan missions, and work as an indepen-

dent and "intelligent" unit.
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With a focus on maritime operations, Ludvigsen & Sørensen (2016) propose a "bottom-up" approach

to the system architecture, consisting of three layers shown in Figure 2.1.2. At the mission planner

level, the objective is defined and the mission is planned accordingly. Missions may also be re-

planned due to contingency along with new inputs from payload sensor data as well as new inputs

from the autonomy layer. At the guidance and optimization level, waypoints and reference com-

mands for the controller are handled. Finally the control execution level handles plant- and actuator

control.

On the right hand side of the figure it can be seen how various autonomy strategies can be imple-

mented to interact with the system architecture. One example here, relevant for this thesis, is to

implement learning systems to operate in a more undefined, unstructured environment, gradually

improving the systems perception and decision making.

Figure 2.1.2: Control architecture of unmanned underwater vehicles as presented by Ludvigsen &
Sørensen (2016).
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2.2 Aspects of docking

A climax of most voyages is the finalizing steps of a controlled approach to a stationary berth, jetty

or another vessel, better known as docking (Murdoch et al. 2014). In these situations of close quarter

operations, understanding both the science and practice of ship maneuvering is essential. Although

this is successfully handled on a daily basis, mistakes and accidents are frequent phenomenons

resulting in injuries of both personnel and equipment.

In a practical context, Murdoch et al. (2014) presents a set of global rules for any such situation.

These rules emphasize the importance of low speeds, controlled approach, and a well defined plan

made ahead. Such a plan should include all expected maneuvers to be made by the vessel, along

with possible effects from the environment. These plans must be made clear for the entire crew

and other involved personnel, ensuring awareness of any risk likely to arise at different stages of

the docking process. For vessel control, two elements of heightened importance is the momentary

and upcoming headings and velocities of the vessel. Misunderstanding and carelessness towards

these have lead to many accidents, especially due to their high connection to environmental effects

in terms of both the point of influence and magnitude of the forces. As a general rule defined

in Murdoch et al. (2014), speeds should be at the limited to a range necessary to maintain control.

Changes in speed however can cause altered water flow over the vessel’s control surfaces, especially

affecting responsiveness of rudders and transverse thrusters. As a result, difficulties of maintaining

control of the vessel may arise. Thus it is important to plan speed reductions in good time when

bringing the vessel to a stop close to a berth.

Naturally, maneuvering characteristics varies from vessel to vessel, implying the importance of

understanding the specific design. Two characteristics of high importance in the docking situation is

the location of the vessel’s pivot point and the vessel’s underwater hull geometry, for understanding

of how the vessel’s course stability and rotational behaviour react due to applied forces.

Lateral docking

Perpendicular docking in a ferry-like manner is straightforward, as the vessel’s heading of approach

and final desired orientation is generally equal. Docking the vessel parallel to the quay however

causes more difficulties, especially for underactuated vessels. In these situations Murdoch et al.

(2014) proposes a sequence of steps to bring the vessel safely to rest. Approach the quay at an angle,

applying astern thrust in order to turn the ship and bring it to rest parallel to the quay. Once stopped

the vessel can be maneuvered into the right position using transverse thrust (if available) or by

applying small kicks with an appropriate angle using a rudder. Again it’s important to alter speed
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carefully ensuring a smooth landing at the berth side. For fully actuated vessels the problem is more

simple, but for underactuated vessels using only rudder, achieving the right approach velocity and

distance to the quay is a matter of precision and experience.

2.2.1 Effects of current

It is common for docking environments to include currents. These induce external forces on the ves-

sel and are usually complex with directions and rates that can change with time and date (Murdoch

et al. 2014). This increases the complexity of a docking situation, but can also be an advantage if

used correctly. For example with current velocities parallel to a berth, the vessel can be directed bow

to the current in order to create an advantage of higher relative speed between current and vessel

while maintaining low ground speed. For vessels equipped with rudders this enhances steering by

higher water flows over the control surface. In addition retardation is easier due to increased frontal

resistance.

Another advantage is the possibility of using the current to alter the transverse distance between

vessel and berth, by putting the vessel at an angle to the current, using it push the vessel sideways.

This is shown in Figure 2.2.1. However, when the distance between the vessel and the berth becomes

small, head currents can cause restricted inshore flow putting the vessel under interactive forces.

These can lead to a pushing or pulling force respective to the quayside. Additionally, care should

be taken when coming to low speeds so the increased relative velocity across the hull does not carry

the vessel close to obstructions as seen in Figure 2.2.1. Lastly, counter currents can develop close

to the bank, flowing in the opposite direction of the main current and causing sudden changes in

forces (Murdoch et al. 2014). This as well as many of the other phenomenon can only be anticipated

from local knowledge.
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Figure 2.2.1: Representation of current effects in the docking process, as presented by Murdoch
et al. (2014).

Usually, resulting magnitude and and direction of currents is dependent on vessel speeds. Pre-

dictions of these should be used with great caution, making generous allowance in distance and

speeds, as mistakes are often impossible to correct (Murdoch et al. 2014).

2.3 Vessel model

In order to gauge realistic responses of a docking situation, simulations applying a high fidelity

vessel model is needed. For this purpose a simulation model based on CyberShip Arctic Drillship
(CSAD), a 1:90 scale model of the vessel Statoil Cat I Arctic Drillship is proposed. This vessel is

equipped with a total of 6 azimuth trusters, making it fully actuated, chosen due to the advantage

in maneuvering this holds over underactuated vessels and it’s availability of key personnel. The 6

degree of freedom (DOF) dynamic positioning (DP) model is a zero speed model with fluid memory,

and has been developed using software as ShipX and MSS toolbox to create a total Simulink block

as described in Bjørnø (2016). Additionally the thrust allocation for CSAD is developed for a 3 DOF

control design model, as described in Frederich (2016). The mathematical model of CSADs process

plant is found to account for the following effects:

• Inertial forces

• Hydrodynamic added mass and restoring forces

8



2.3. VESSEL MODEL

• Linear viscous damping

• Nonlinear cross-flow drag and surge resistance

• Fluid memory effects

The motion of marine vessels is defined by two distinct dynamics combinable through superpo-

sition, namely the low-frequency (LF) model and the wave-frequency (WF) model (Fossen 2016).

Assuming an absence of both waves and wind, dynamics can be expressed as the through the LF

model as:

MRBν̇ + MAν̇r + CRB(ν)ν + CA (νr) νr + D (νr) νr = τthr (2.1)

where ν = [u, v, w, p, q, r]> current effects are embedded through the relative velocity νr. Further

terms are described in the next section. In the model the fluid memory effects is accounted for

through a convolution integral including the vessel’s retardation function. The cross-flow drag is

calculated by representing the cross flow as a 2D problem through strip theory. Due to the connec-

tion of yaw rate and and cross-flow velocity the coupled sway-yaw motion is analyzed based on an

assumption of small motions. Summarized the process plant of the Simulink model can be found

to apply the following equations for calculating hydrodynamic effects:

Ru =
1
2

CDρ |ur| ur A f , Surge resistance

vr,tot =vr − xi ṙ, Relative velocity between strip and water

dFStrip
2,CF =

1
2

CDρ |vr,tot| vr,totDdx, Cross-flow drag on single strip

F2,CF =
∫ Lpp

2

− Lpp
2

dFStrip
2,CF , Force in sway

F6,CF =
∫ Lpp

2

− Lpp
2

xdFStrip
2,CF , Moment in yaw

(2.2)

2.3.1 Simplified control design model

For regular docking processes in a harbour area it is natural to assume calm waters and low-speeds.

A surface vessel operating in these conditions can thus be approximated as a 3 DOF process. Ne-

glecting motions in roll, pitch and heave, that is w = p = q = 0, the state vectors are denoted as

ν = [u, v, r]T and η = [x, y, ψ]> for linear velocity in the body frame, and position in the North East

Down (NED) frame respectively. Such a 3 DOF model operating in the horizontal plane is presented

in (Fossen 2016). For a surface vessel we have the general rigid-body kinetics:

η̇ = R(ψ)ν (2.3)
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MRBν̇ + MAν̇r + CRB(ν)ν + CA(νr)νr + D(νr)νr = τthr (2.4)

Where νr := ν − νc is the relative velocity of the vessel with respect to the ocean current velocity

νc, given in body coordinates. Here νc = R>(ψ)Vc := [uc, vc, rc]>, where Vc = [Vx, Vy, Vr]> is the

ocean current velocity in inertial coordinates. Further MA and MRB denotes rigid body mass and

added mass matrices respectively, while CRB and CA denotes the Coriolis force and centripetal force

matrices. Describing a single principle rotation about the z axis, the systems rotation matrix is

defined as:

R(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.5)

Under an assumption of homogeneous mass distribution and xz-plane symmetry we have Ixy =

Iyx = 0. Letting the body coordinate origin (CO) be set at the point in the vessel’s center line, i.e

located at a point (x∗g, 0) in the horizontal plane. Through these two assumptions along with an

assumption that the added mass matrix is computed in CO, matrices and matrices of the defined

kinetics reduce to:

MRB =


m 0 0

0 m mxg

0 mxg Iz

 > 0 MA =


−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Yṙ −Nṙ

 > 0 (2.6)

CRB(ν) =


0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (2.7)

CA(νr) =


0 0 Yv̇vr + Yṙrr

0 0 −Xu̇ur

−Yv̇vr −Yṙrr Xu̇ur 0

 (2.8)

Additionally, the damping matrix D can be defined as:

D(νr) = −


Xu + X|u|u|ur|+ Xuuuu2

r 0 0

0 Yv + Y|v|v|vr|+ Yvvvv2
r Yr + Y|r|r|rr|+ Yrrrr2

r

0 Nv + N|v|v|vr|+ Nvvvv2
r Nr + N|r|r|rr|+ Nrrrr2

r

 (2.9)

Assuming slowly varying current velocities, meaning ν̇c ≈ 0 ⇒ ν̇r ≈ ν̇ we combine the two mass
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matrices into a general one M := MRB + MA. Hence,

M =


m− Xu̇ 0 0

0 m−Yv̇ mxg −Yṙ

0 mxg −Yṙ Iz − Nṙ

 (2.10)

This simplifies our equation in 2.11 to:

Mν̇r = −CRB(ν)ν− (CA(νr)νr + D(νr)νr) + τthr (2.11)

Which can be restructured for the use of controlled change in vessel speed as:

ν̇r = M−1(−CRB(ν)ν− (CA(νr)νr + D(νr)νr) + τthr) (2.12)

Further simplifications due to an assumption of low speed maneuvering lets us ignore the influ-

ences of the Coriolis-centripetal matrices. Additionally we introduce a bias b ∈ R3 which for sim-

plicity is assumed known (generally through use of an observer), leaving us with the model:

ν̇r = M−1(−D(νr)νr + τthr + R(ψ)>b) (2.13)

Relevant parameters are presented in Appendix A.1.

2.3.2 Fully actuated surface vessels

When dealing with control objectives it’s important to be aware of the different control forces avail-

able and the number of coordinates needed to specify the state of the system. In specific it is impor-

tant to distinguish between fully actuated vessels and underactuated vessels. Full actuation means

that independent control forces and moments are simultaneously available in all directions, and is

the case considered in this thesis. Moreover the following definition given in Fossen (2016) holds:

Definition 1 (Fully Actuated Marine Craft)

A marine craft is fully actuated if it has equal or more control inputs than generalized coordinates.

DOF is the set of displacements and rotations that together describes the change of a vessel’s po-

sition and orientation (Fossen 2016). In other words, making a vessel operating in 3 DOF fully

actuated involves equipment of actuators able to produce forces and moments in all directions of

the state space. For such a vessel inhabiting the simplified rigid-body kinetics specified in equation
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2.13 the thruster dynamics will consist of three independent forces specified as:

τthr =


τu

τv

τr

 (2.14)

Relevant thrust parameters before and after scaling can be found in Appendix A.2. From here on

τthr will be presented through the general term τ.

2.4 The path planning problem

Path planning refers to the construction of pre-defined paths to be assigned to a system in order to

fulfill a specific mission (Lekkas 2014). Paths are usually designed based on a series of properties

depending on the constraints of the system originating from both the vessel and the environment in

which it navigates. Examplewise this involves keeping the vehicle away from hazardous situations

through collision avoidance by taking constraints as the vessel’s maneuverability and velocity into

account. In general the path planning process consists of two main steps:

1. Determining waypoints to be reached.

2. Generating a feasible path to reach the waypoints.

Various techniques exist to fulfill these goals, ranging from simple straight line paths to more ad-

vanced paths of higher polynomial order with greater continuity. A useful criteria for evaluating

paths is the level of smoothness. This property is directly linked to the vessel’s dynamic constraints,

and is therefore of high importance. A useful way to quantify this is by through the paths parametric

continuity (PC), i.e the speed and orientation by which the path parameters propagate. The degree

of PC is defined in different levels, with C0 implying geometric continuity of the path segments, C1

implying continuity of the velocity vector, C2 implying acceleration is continuous and so on.

The complexity of the path planning problem increases with degrees of freedom, and is known to

be non deterministic polynomial time-hard (Marin-Plaza et al. 2018). The overall aim is generally

not only to find a single connection from the first to the last waypoint, but finding an optimal path

yielding smooth maneuvers and fulfilling goals such as short distances. Thus again implying the

importance of PC. Often the problem is divided into global and a local setting. Global planning fo-

cuses on finding a total solution, taking the entire static operation space into account. The drawback

however is the need of high computational power. Moreover many algorithms in this field, such as

shortest path, are not necessary compliant with vehicle constraints. Local planning is therefore usu-

ally implemented, continuously adjusting the path to more suitable segments according to vehicle

12



2.4. THE PATH PLANNING PROBLEM

constraints.

Impressive advances has been made within the field of path planning the last decades, however

Lekkas (2014) specifies that there is still a large number of unsolved problems within the field.

One of these is the uncertainty of the real world, including dynamic constraints of the vehicle and

environmental forces such as wind and current.

2.4.1 Path generation

Following evaluation of a set of successive k+ 1 target-waypoints, a feasible trajectory has to be gen-

erated for tracking. Such waypoints are in general described by the desired vessel states in Cartesian

coordinates for position (x, y), along with the vessel’s heading angle ψ and speed u (Fossen 2016).

To guide the vessel’s between these states we take use of a time-parametrized trajectory.

Definition 2 (Parametrized path)

A parametrized path is defined as a geometric curve pd(s) ∈ Rn with n ≥ 1 parametrized by a continuous
path variable s (Fossen 2016)

A sufficiently differentiable path pd(s) = [xd(s), yd(s)]> ∈ R2 with Cr parametric continuity can

be created through first dividing the total path from the first to the last waypoint into a series of n
desired subpaths between succeeding waypoints pd,i(s)|i = 0, 1, ..., n. For the PC requirements to be

fulfilled, the connection between two succeeding subpaths must inherit the following property for

k = 0, 1, ..., r as presented by Skjetne (2005):

lim
s↗i−1

psk

d,i−1 = lim
s↘i−1

psk

d,i (2.15)

To achieve this, one option proposed by Fossen (2016) is interpolating a spline between the way-

points according to polynomials of order k:

pd,i(s) =
r

∑
k=0

Ak,isk = Ar,isr + ... + A1,is + A0,i (2.16)

where the coefficient vectors Ak,i = [ak,i, bk,i]
> have to be determined. This can be accomplished

through several methods. To ensure continuity at the connection points of the subpaths however,

the best approach is to calculate these for each subpath individually and assign common numerical

values at the connections. According to Skjetne (2019a) most numerically powerful way to do so

is to continuously parametrize each subpath within a fixed interval. We do this by introducing a

local path variable θ ∈ [0, 1) for each individual path segment i ∈ I. We then can employ the

following equations to calculate the coefficients, ensuring continuity at the connections between the
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2.4. THE PATH PLANNING PROBLEM

path segments and resulting in the final hybrid parametrization of the path p̂d(i, θ):

C0 : pd,i(0) = pi, pd,i(1) = pi+1

C1 : ps
d,i(0) = λ(pi+1 − pi−1), ps

d,i(1) = λ(pi+2 − pi)

Cj : psj

d,i(0) = 0, psj

d,i(1) = 0

(2.17)

p̂d(i, θ) =

[
xd,i(θ)

yd,i(θ)

]
(2.18)

Where the constant λ > 0 is a design constant for the slope. The slopes at the first and last waypoint

are sat to the tangent between waypoints 0 and 1, and waypoints n− 1 and n, respectively. Lastly

to conform with requirements of a continuous parametrization, we let i = bsc+ 1 and θ = s− bsc,
giving us the continuous Cr map:

s 7→ pd(s) := p̂d(i(s), θ(s)) (2.19)

Figure 2.4.1 shows the output of a parametrized path with C2 continuity as presented by Fossen

(2016):

Figure 2.4.1: Representation of a parametrized path with C2 continuity, over four waypoints.
Courtesy of Fossen (2016).
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2.4.2 Maneuvering

The practice of enabling vessels to converge to and follow one or more desired parametrized paths

is termed the maneuvering problem (Skjetne 2005). In general this problem can be split into two

subtasks of geometric and dynamic concern. The first task involves making the vessel converge

geometrically to the path parametrized in terms of a continuous scalar variable. The second task

is concerned with fulfilling desired dynamic behaviour along this path, defined by assignments of

time, speed or acceleration. This paper is mostly concerned with the speed assignment, in order

to improve speed selection for a docking situation. To solve this problem Skjetne (2005) proposes

a controller based on robust recursive design techniques. As the geometric task is viewed as the

most important under the maneuvering problem, this is prioritized first and solved under several

recursive steps before advancing to solve the dynamic task. The two tasks are then bound together

by an update law.

1. Geometric task:

lim
t→∞
|pn(t)− pn

d(s(t))| = 0 (2.20)

pd(s) =

[
pd,x(s)
pd,y(s)

]
:=

[
a1s + b1

a2s + b2

]
∈ R2

2. Dynamic task:

lim
t→∞
|ṡ(t)− υs(s(t), t))| = 0 (2.21)

vs(t, s) =
ud(t)
|ps

d(s)|

For path variable 0 ≤ s ≤ 1 where pn is the first to nth derivative of the vessel position p. Here

ud(t) deotes the desired speed of the vessel at time t. For the desired heading ψd an angle tangent

to the generated path is used, i.e ψd(s) = ∠ps
d(s). The complete objective of the maneuvering

problem can then be formulated as generating a control force τ such that η −→ ηd, where ηd(s) :=[
pd(s) ψd(s)

]>
and ηd : R 7→ R2 × S1. Basing the design of this control force on the methods of

Skjetne (2019b), we define the following parameters for our backstepping design:

z1 := R(ψ)> [η − ηd(s)] , z2 = ν− α1, ω = ṡ− vs(s, t) (2.22)

Where α1 is a virtual control variable to be defined later on. We start by deriving the update law

by differentiating z1 with respect to time and defining the first control Lyapunov function (CLF),

resulting in step 1 as:
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Step 1
ż1 = Ṙ> [η − ηd] + R(ψ)> [η̇ − ηs

d ṡ] = −rSz1 + z2 + α1 − R(ψ)>ηs
d (ω + vs)

V1 =
1
2

z>1 z1

V̇1 = −rz>1 Sz1 + z>1 z2 + z>1
[
α1 − R(ψ)>ηs

d (ω + vs)
] (2.23)

Additionally we define the virtual control variable α1 and the first tuning function ρ1

α1 = −K1z1 + R(ψ)>ηs
dvs − κ1z1, K1 = K>1 > 0, κ1 > 0

ρ1 = Vs
1 (η, s) = −z>1 R(ψ)>ηs

d

(2.24)

As we want for the maneuvering update law to only act in the output space of η it’s useful to

define this before dealing with the second step and z2. To ensure a gain independent of the path

parametrization at all ηd, we define an update law holding a constant tangent vector length, namely

a Unit-tangent gradient update law. The update law is defined as follows

ω = µ
ηs

d(s)
>∣∣ηs

d(s)
∣∣R(ψ)z1, µ ≥ 0

⇒ ṡ = vs(t, s) + µ
ηs

d(s)
>∣∣ηs

d(s)
∣∣R(ψ)z1

(2.25)

We can the move on to step 2

Step 2

Mż2 = Mν̇−Mα̇1 = −Dν + τ + R(ψ)>b−M [σ1 + αs
1ṡ]

V2 = V1 +
1
2

z>2 Mz2

V̇2 = V̇1 + z2Mż2

≤ −z>1 K1z1 +
1

4κ1
z>2 z2 + z>2

[
−D (z2 + α1) + τ + R(ψ)>b−M (σ1 + αs

1ṡ)
]

(2.26)

Where
σ1(t, s, η, ν) = rK̃1Sz1 − K̃1ν− rSR>ηs

d(s)vs(t, s) + R(ψ)>ηs
d(s)v

t
s(t, s)

K̃1 := K1 + κ1 I
(2.27)

Here b is the measured bias estimated by an observer. From this we can develop the equation for

thrust in order to render the system stable as

τ = −K2z2 + Dα1 − R(ψ)>b + M (σ1 + αs
1ṡ) (2.28)

This concludes the update law for the closed loop system, with input variables [pd(s), ud(t), η, ν]>

and tuning gains K1, K2, κ and µ.
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2.5 Problem Statement

This thesis aims to apply the above defined techniques in a combination with machine learning,

more precisely reinforcement learning. This serves to gather experience and teach the vessel to

evaluate good docking procedures through a trial and error process. Through this experience the

agent will serve as an action planning guidance layer with the freedom to improve inputs of path

variables in order to reach a target pose by the quay subject to optimization goals and criteria. For

simplicity the problem is split into two separate cases of path evaluation and speed evaluation.

Assume a vessel coming in at an initial conditions of pose and velocity close to the quay, sat to

track an initial path segment. The first task is to let the agent learn a good entrance path to take

the ship into a user defined target pose found at the quay side. For the task ud(t) of constant value

is assumed, and the agent is instructed to generate target waypoints ensuring safe guidance of the

vessel to the target pose.

The second task assumes similar initial conditions, but is given a pre-specified path to follow by

the operator leading to the target pose. The assumption of a constant ud(t) is relaxed. The machine

learning agent should determine good assignments of desired speeds along the path. Included in

this is being able to bring the vessel to a full stop at the paths end i.e at docking pose, and uphold

sufficient precision ensuring safe path tracking.

In this thesis we defined the simulation model in Section 2.3. The studies will be carried out using

this model, through a series of simulations.
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Chapter 3

Artificial intelligence and machine learn-
ing

3.1 Machine learning

The path planning methods, for for docking of autonomous vessel, later presented in this thesis is

based on Machine learning (ML). ML can be described as the discipline within artificial intelligence

that deals with a computers ability to improve over time, and learn without being explicitly pro-

grammed. ML can further be categorized into three majorly recognized sub fields of supervised

learning, unsupervised learning and reinforcement learning. This thesis is mostly concerned with

that of reinforcement learning as the technique used for the path planning experiment, seeing the

environment as a Markov decision process.

3.2 Markov decision process

A Markov decision process (MDP) can be conceptualized a non deterministic graph representation

of the environment (Bellman 1957b). It provides a mathematical framework for decision making by

taking into account that, although there may be a distribution of possible consequences to an action,

the outcome of that action will be partially random.

A state s is said to have the Markov property, if and only if the s gives access to all relevant informa-

tion from history. In an MDP, given action a, the transition between a state at time t,st, containing the

Markov property and its successor st+1 at time t+1 can be defined through a probability distribution

over next possible successor states:

Pa
ss′ = P[st+1 = s′|st = s, at = a] (3.1)
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An MDP can be represented as a directed graph, where the vertices are made up of the states space

S and the set of actions available at each particular state and time. Choosing to execute an action at

time t causes a transition of the system to a particular state s’. Along with this, the system receives

an immediate reward R based on its transition to state s’ from state s, due to the action a, calculated

by the reward function R:

Ra
s = E[Rt+1 = s′|st = s, at = a] (3.2)

Due to the non-deterministic characteristics of the graph, choosing to execute a specific action a

in state s at separate occasions may produce different results (e.g. a different reward is given or a

different state transition occurs). This can also happen as a result of the set of actions available at

that state being dynamic. An example of a simple MDP represented as a graph structure is shown

in figure 3.2.1.

Figure 3.2.1: Example of an MDP with state space S = {s0, s1, s2} and action space A = {a0, a1}.
Yellow arrows show examples of returned reward for that specific action.

In order to choose actions we define a policy as a distribution over actions given states. This policy

fully defines the behavior of an agent,

π(a|s) = P[at = a|st = s] (3.3)

Once an MDP is combined with a policy in this way, this fixes the action for the states making

the resulting combination behave like a Markov Chain. As the action chosen at that state will be
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completely determined by π(s) 3.4 will reduce to:

Pa
ss′ = P[st+1 = s′|st = s] (3.4)

The goal is to develop a policy that will maximize some cumulative function of the random rewards

returned by the reward function 3.2. Typically:

∞

∑
t=0

γRa
s (3.5)

Where actions are chosen as at = π(st) and 0 ≤ γ ≤ 1 is a set discount factor based on the value of

immediate and future rewards.

3.3 Bellman equation

The Bellman equation presented in Bellman (1957a), is a necessary condition for optimal solutions

using mathematical techniques such as dynamic programming (DP). Shortly described, the equa-

tion returns a value of a decision problem associated with a specific time instant based on the initial

choices leading up to that point, and the following value of the remaining decision problem. Bell-

man (1957a) presents the Principle of optimality which mathematical transliteration yields all func-

tional equations associated with the Bellman equation, and reads:

Bellman’s Principle of Optimality

An optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision
(Bellman 1957a, Chapter III)

Close to all problems solvable by optimal control theory can be solved by analyzing the appropriate

bellman equation. In order to derive these equations it’s necessary to understand the general build

up of optimization problems. All optimization problems directly depend on the defined objective

function i.e what is to be minimized or maximized. To optimize this the DP approach relies on

breaking down the complex planning problem into smaller steps of time. Through the use of a value
function measuring the quality of certain control variables at a specific state, it evaluates a policy
function holding the ability to return the optimal control variables as a function of this state.

To derive the necessary equations we start by introducing the reward function R(st, at) as the re-

turned reward for executing an action at in state st at time instant t for a discrete deterministic

process. This lets us define the value function V(s) as the sum of all rewards taken throughout an
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infinite-horizon process

V(s0) =
∞

∑
t=0

R(st, at) (3.6)

subject to: at ∈ A(st), st+1 = f (st, at), ∀t = 1, 2, 3...

Where A(st) is the action space at st, f (st, at) is the transition model, and s0 is used due to the value

functions dependency on the initial state.

Now we aim to find the optimal value of this value function, by maximizing the returned rewards

over time. Additionally by assuming impatience we introduce the discount factor γ resulting in

the complete value function V(s0) as the maximum of the sum of all discounted rewards calculated

throughout the process:

V(s0) = max
{at}∞

t=0

∞

∑
t=0

γR(st, at)

subject to: at ∈ A(at), at+1 = f (at, at), ∀t = 1, 2, 3...

As mentioned works DP by breaking the larger problem into smaller individual problems causing

a simpler calculation. Based on this, and what is inferred by the principle of optimality we can

consider the decisions separately, starting with the first decision as following

V(s0) = max
a0

{
R(s0, a0) + γ

[
max
{at}∞

t=1

∞

∑
t=1

γt−1R(st, at) : at ∈ A(st), st+1 = f (st, at), ∀t ≥ 1

]}
(3.7)

subject to: a0 ∈ A(s0), s0 = f (s0, a0)

Where the first action is represented to the left of the brackets and the remaining decisions made

in the future are collected inside the brackets. Subsequently we can simplify this, by noticing that

the collected future rewards inside the brackets is the value of the decision problem at time instant

t = 1. Rewriting the equation as a recursive definition of the value function we get the Bellman

equation as

V(s) = max
a0

{
R(s0, a0) + γV(s1)

}
subject to: a0 ∈ A(s0), s1 = f (s0, a0)

Which can be generalized into an even simpler form for any decision and transition in the process

V(s) = max
a∈A(s)

{
R(s, a) + γV( f (s, a))

}
(3.8)

Solving the Bellman equation gives the value function and also leaves us with an equation π(s),
i.e the policy function describing the optimal action of any state s. Solving the equation guarantees
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an optimal solution and is one of the most convenient approaches to optimize control problems.

Although the presented equation is derived assuming a deterministic process, it can also be applied

to stochastic processes such as MDPs described in section 3.2. The equation then computes the the

policy function using the transition probability Pa
ss′ describing how to act optimally under uncertainty.

Unlike the deterministic property however, an global optimal solution is not guaranteed due to the

uncertainty from the Markov property

3.4 Curse of dimensionality

The curse of dimensionality (Bellman 1957a) is a phenomenon that arises when organizing or ana-

lyzing data in large spaces with many dimensions, and is highly relevant within ML. Simply put,

the problem originates due to the fact that when the number of dimensions increase, the volume of

the space increases so fast that available data becomes sparse. RL problems that involve learning

in a high dimensional feature space, with each feature having a range of values usually requires

an enormous amount computational power and training to ensure proper exploration of the space

and/or actions. This problem is likely to quickly arise with vessls in maneuvering and seakeeping

problems due to many features in position, velocity and thrust. As discussed in Section 2.3.2, the

generalized position, velocity, and force vectors for a 3DOF surface vessel can be defined as:

η =


x
y
ψ

 ν =


u
v
r

 τ =


τu

τv

τr

 (3.9)

implying that the agent potentially has to take a total of 9 states into account. Additionally external

conditions as currents and wind may also want to be considered. A typical rule of thumb is that

there should be at least five training examples for each dimension in the representation (Theodor-

idis & Koutroumbas 2008). This implication may result in the necessity of a tremendous amount of

training episodes to show improved results. A possible approach to reduce this problem of dimen-

sionality however is by using function approximation, later presented in Section 3.7.2.

3.5 Reinforcement learning

Reinforcement Learning (RL) is one of the most active and rapidly developing areas within ML

(Wang 2019). Formally the technique presents a way to solve MDP problems built on the core

idea of taking advantage of newly gathered information from a previously unknown environment

(Kunz 2013, Huys et al. 2014). The approach deals with teaching an agent the connection in between
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states and actions, known as state-action pairs {s, a}, with the aim of maximizing a user defined

numerical reward. Subsequently, with environments of strong interconnections of such pairs and

future rewards possible RL is rendered a complex problem.

Unlike other approaches to ML such as supervised learning, where a batch of data for training

is made available for the agent, RL methods depend on gathering this data in the process. This

renders the trade-off between exploration and exploitation. The ultimate aim is to maximize the

total reward returned through out the process, implying that the action holding the highest reward

in any state should be applied. However exploring new and unknown actions could result in new

findings resulting in even more reward. Another important aspect in this trade-off is the handling

of delayed rewards. In a given state, an action may return a certain instantaneous reward but will

also lay grounds for all succeeding rewards.

Figure 3.5.1 shows a representation of the standard model for reinforcement-learning. On each

step, information about the current state s is fed to the agent as input i. The agent then, based on

it’s current behavior, or so called policy π, decides on an action a to return as output. The change

that specific action makes to the state of the environment is returned to the agent as a scalar rein-

forcement signal, i.e reward R. The goal of the process is for the agents behaviour to choose actions

that return a long-range sum of values of R. For real world systems this learning process is usually

carried out through simulation of the system, to reduce risk of accidents occurring through learning.

Figure 3.5.1: The standard reinforcement-learning model-based on Kaelbling et al. (1996).

For a given problem the agent must must learn its policy through trial-and-error interactions with a

dynamic environment to find more optimal solutions. How the task is to be achieved is usually not
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specified, but computational obstacles create a challenge to fulfill the purpose. In order to enable

a system to have these algorithms applied, it’s necessary to model the system in terms of states,

actions and rewards. This is most commonly done using an MDP, which therefore also is the world

most RL techniques assume to be in.

3.5.1 Model-based vs. Model-free

RL techniques can be categorized into classes of either model-free or model-based (Huys et al. 2014).

Model-based approaches assume knowledge of the environment in terms of how executed actions

affect the current state and how this affects performance. Through this the agent attempts to learn a

transition probability P(st+1|st, at) based on the current state-action pair {st, at} onto the succeeding

state st+1. The agent can then take use of this learned model to make predictions about upcoming

states as well as associated rewards resulting from carrying out an action, ahead of executing it.

Model-free approaches however, rely solely on trial and error to update its knowledge. These do not

require any previous information of the underlying model or how performance is measured. Thus

it is not necessary for the agent to learn the model as for model-based techniques, and the agent can

instead estimate a policy. This is the approach we are most concerned with in this thesis. Such a

method can for example be applied with Temporal difference though iterative updates, discussed in

section 3.6.

3.5.2 Reward function

All traditional RL methods require a way of measuring performance of the agents actions, known

as a reward function. This function is used to indicate how well the agent is performing overall

and is used as a tool to guide the agent toward desired behaviour (Daniel et al. 2014). The agents

sole goal is to maximize the output of this function, and thus this function of normative content has

to be carefully defined by the user, and has a lot to say for convergence speed and functionality of

the training. The reward function is most often not considered as a part of the RL agent itself, but

rather as a part of the environment. This is on the basis of the reward function usually being defined

as a measurable quantity in terms of the environment, and for model-free approaches in specific,

the underlying mapping to state-action pairs is unknown (Marsland 2015). Agents of RL can often

come upon new, unconsidered, strategies to harvest rewards from the environment. This can be a

clear strength, but can also lead to undesirable and dangerous solutions, implying the importance

of careful reward function design (Sutton, Richard S. and Barto 2010). The optimal formulation

highly depends on the type of learning algorithms applied, as well as action space formulation and

environmental properties as the determinism of the process. The intimate connections to the action

25



3.5. REINFORCEMENT LEARNING

and state space formulations makes the definition a complex problem and is generally viewed as

the most challenging part of a RL, highly defining the hardness.

For simple problems of few steps it might be enough to return a single reward when the agent

reaches a terminal state sT i.e the end of the episode. Performance can then be improved through

backpropagation of this delayed reward. However, for learning problems of many steps this might

result in a very lengthy process and problems of optimal convergence. In such cases a continuously

harvested reward can be applied in addition or instead, in order to facilitate steeper learning, but

potentially requiring additional exploration. However, an important aspect is that the function

stands to inform the learner of what the goal is, and not how it should be achieved (as for supervised

learning methods). Marsland (2015) therefore specifies that the implementation of sub goals is often

a bad idea, due to the introduction of local optimums where the agent finds ways to optimize these

sub goals while missing the real intention. Such problems can also occur due to conflicting goals,

possibly shrouding clear optimal solutions (Nowe et al. 2012).

As mentioned can rewards backpropagate and lead to convergence of the process. However there is

a lot of uncertainty present in a learning process, especially in terms of future rewards. To account

for this outputs of the reward function is discounted by a factor 0 ≤ γt ≤ 1, where t is the number

of time steps into the future. This makes the total returned reward returned at time t defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . + γk−1rt+k + . . . =
∞

∑
k=0

γkrt+k+1 (3.10)

This parameter can also be seen used in the Bellman equation in 3.8. This facilitates of better reward

predictions when choosing actions based on rewards through out the learning process in an attempt

to maximize it, or alternatively carry out further exploration.

With so many factors to be considered as well as various goals of RL problems, many approaches

have been experimented with. Energy and time minimization problems often includes components

of energetic costs, penalizing the agent by a negative reward for each epoch or applying inverse

components rewarding reductions (Zhang et al. 2018, Rioual et al. 2018). Difficulties in shaping

these functions has also lead to development of newer methods such as Inverse Reinforcement learn-
ing. This approach does not require an explicitly defined reward function, but instead tries to learn

the reward function on its own through mimicking human behavior, or in specific a master. This

approach however assumes the human operator performs perfectly, which in most cases is an un-

realistic assumption (Nguyen et al. 2015).
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3.5.3 Exploitation vs exploration

model-free RL involve a trade off between exploration and exploitation. Treating the environment

as a black box, agents apply a trial and error strategy to gradually approach more optimal solutions.

This tactic involves utilizing the agents actions both to learn (explore) and to optimize (exploit) dif-

ferent strategies (Wang 2019). Specifically this trade off involves a balance between exploring the

unfamiliar environment in search for new information to achieve long-term benefits, and applying

previously acquired knowledge to yield higher rewards. Since selecting possibly sub optimal un-

known actions can be a costly process, an important aspect of RL is to address the contrast between

these two.

Exploration of the state space can be handled several ways by different action selection methods

Marsland (2015). Most obvious is selecting the highest rated actions through a greedy policy. But

this approach will potentially lead to very little exploration, and result in overfitting. Thus to handle

the trade-off preventing the two opposing problems of consistent action selection, and completely

random movements, a parameter 0 ≤ ε ≤ 1 is used (Watkins & Dayan 1992). ε denotes the agents

tendency to favor exploitation of previous knowledge over exploration to attain more. The lower the

ε value, the more likely the agent is to follow a "safer path" based on its past experiences. Likewise,

high ε will on average return more penalties due to curious behaviour of the agent, and random

choices. This is known as ε− greedy action selection. A widely used approach for the exploration-

exploitation trade-off, is to start off with higher values, and decreasing it more and more as training

proceeds. This enables the agent to do loads of early exploration, followed by exploitation of the

most promising sections. Further refinement of the ε greedy approach can be to give the agent

an idea of what actions to explore first eliminating uniform selection probability and completely

random movements. Another more intelligent action selection strategy frequently seen in RL is

Soft-max action selection, but is not focused on in this thesis.

3.6 Temporal difference learning

With the Bellman equation derived in the previous section we have seen how DP can be applied

to solve optimization problems, breaking it into smaller steps of discrete transitions. This approach

however is model-based, i.e requires the environment to be modelled perfectly, which in most situ-

ations is not the case. Two other classes to solve RL problems are the Monte Carlo methods and the

Temporal Difference methods, which are both model-free (Kunz 2013). The calculated return for Monte
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Carlo (MC) with a can be defined as:

Rt =
T

∑
i=t

γi−tRi+1 = rt+1 + γrt+2 + γ2rt+3 + ... + γT−t−1rT (3.11)

Where T is the terminal time process. MC calculates the total reward of an entire run from the begin-

ning state to the end state, before updating anything. Temporal difference (TD) however combines

the two techniques applied by DP and MC. While being model-free, updates are made after each

state transition by recording data along the way and learning from raw experience. These methods

are also referred to as "bootstrapping" methods, due to the property of not learning by the differ-

ence of the final outcomes of the process, but by evaluating the differences between each update

step. Thus instead of a single update like in MC, a total number of T − 1 updates are made each

episode of T steps. Through this TD aims to find an approximation of the value function V, denoted

Vθ with an error defined as

MSE(θ) =
1
n

n

∑
i=1

(Vθ(si)−V(si))
2 (3.12)

Which is optimized by minimizing the equation. Now by applying the Bellman equation from

Equation 3.8, for a using expected returns due to the stochastic process we can estimate the un-

known value function V(s)
V(st) ≈ E{Rt + γVθ(st+1)} (3.13)

Or similarly when when transitioning between state-action pairs

V(s) = E(R(st+1, s, a) + γVθ(st+1)) (3.14)

A key difficulty however in RL problems is the curse of dimensionality, coined by Richard Bellman

himself in Bellman (1957a) to explain how state spaces quickly grow large and cause computational

difficulties. This is further described in Section 3.4. Due to this calculating the minimum error by

can become impossible. To overcome this a local minimum can instead be used through following

the error functions gradient as:

θ′ = −α∇MSE(θ) (3.15)

Where the learning rate α is applied to adjust the step size and prevent overshooting. By letting et

denote the approximation of the gradient ∇θt Vθt , and δt denote the TD, the TD update function can

then be formulated as:

θt+1 = θt + αδtet

δt = rt+1 + γVθt(st+1)−Vθt(st)
(3.16)

For faster learning eligibility traces is introduced, using 0 ≤ λ ≤ 1 to describe how far back over the

trajectory updates should be made. High values lead to longer lasting traces, reaching more distant
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3.6. TEMPORAL DIFFERENCE LEARNING

states with reward updates from λ = 0 implying backwards propagation of one step while λ = 1

traverses back the entire trajectory from start to end resulting in MC behaviour. This is achieved by

redefining et as:

et =
t

∑
k=t0

λt−kVθθt
(sk) (3.17)

This gives rise to the general TD(λ) function represented in Algorithm 3. Sampling back over a set

number of steps is also referred to as n-step backpropagation, as depicted in Figure 3.6.1. Neither of

the two extremes of one step TD or MC is always best, and in practice the optimal update law is

found by an intermediate value of the two (Sutton, Richard S. and Barto 2010).

Figure 3.6.1: n-step backpropagation methods as depicted in Sutton, Richard S. and Barto (2010).

These returns can be viewed as approximated to the full return following an action, truncated after

n-steps. In the event of t + n ≥ T i.e the n-step backpropagation extending beyond the systems goal

state, all missing terms are accounted for by 0 values. Similarly this is the case during the agents

first exploratory episodes. The TD method is an approach to solving RL problems based on policy

evaluation and improvement. It approximates a state-value function, but can with modifications

be used to approximate action-value functions giving rise to learning methods as Q-learning and

SARSA. Furthermore the n-step approach can be combined with SARSA for an on-policy TD control

method.
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Algorithm 1 TD(λ) based on an example from Boyan (2002)

1: begin

2: set θ to an arbitrary initial estimate, t := 0

3: for n := 1, 2, 3, ... do

4: set δ := 0

5: select a starting state st

6: while st 6= T do

7: Propagate one step, producing Rt and st+1

8: set δ = δ + et(rt + (et+1 − et)Tθ)

9: set et+1 = λet + et

10: t = t + 1

11: end while

12: set θ = θ + αδ

13: end for

14: end

3.7 Q-learning

Q-learning (Watkins & Dayan 1992) is a model-free algorithm commonly used in RL problems. The

algorithm is a bootstrapping method teaching an agent to act optimally in Markovian domains by

recording the consequences of actions in accordance to certain instants of the process, similar to that

of TD learning. By letting the agent select an action at a particular state the immediate consequences

is evaluated through basic reward/penalty feedback based on a reward function and memorized.

Using this reward, combined with an initial or previously recorded value-estimate of the state to

which it is taken, the agent instantly updates the value of the executed action in the previous state as

an on-line learning process. More delayed learning is also possible as an n-step process, but could

cause issues depending on the amount of possible actions between st and st+n (Marsland 2015).

Including the value of the upcoming state creates a connection of the adjacent states and allows the

system to consider global consequences instead of only evaluating a local optima. This step-by-

step manner in which Q-learning evaluates its optimal policy, Watkins & Dayan (1992) classes the

algorithm a form of incremental DP.

Let the term Q(s,a) denote the discounted future reward when performing an action a in state s.

This term is also known as Q-value of state-action pair {s, a} (Matiisen 2015). Choosing actions that

maximizes discounted future reward we have:

Q(st, at) = maxπRt+1 (3.18)

30



3.7. Q-LEARNING

Where π represents the policy, the definition of how an action is selected for the particular state:

π(s) = argmaxaQ(s, a) (3.19)

This originates from the theory that if a∗ is an action for which the greatest value is attained, then the

optimal policy π∗(s) can be evaluated from this. Thus if the agent can learn the Q-values, these can

be utilized for optimal decision making. Considering a single transition < st, at, rt+1, st+1 >, with

rt+1 being the immediate reward when reaching the next state st+1, the Q-value of the transition is

expressed as:

Q(st, at) = Rt + γmaxat+1 Q(st+1, at+1) (3.20)

With the expected value multiplied by a discount factor 0 ≤ γ ≤ 1 due to the uncertainty of future

rewards. The Q-value can be depicted as the expected discounted reward from executing action at

in state st proceeded by following the policy π. Here the update is done through an greedy selection

of Q-values in the next state, as the highest potential outcome of that action i.e the outcome of π∗(s).
Using this optimistic selection allows for the agent to learn optimal action decisions independent

of π, enabling the algorithm to learn the optimal policy without having to perform the optimal

policy, i.e. an off policy algorithm. Multiplying this with a chosen rate of learning 0 ≤ α ≤ 1,

the complete update rule for for Q-Learning including both immediate reward and expected future

reward becomes:

Q(st, at)︸ ︷︷ ︸
new value

← (1− α) ·Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·
learned value︷ ︸︸ ︷

( Rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· maxat+1 Q(st+1, at+1)︸ ︷︷ ︸
estimate of optimal future value

) (3.21)

Here the term (1− α) is multiplied with the old value to make sure incrementations are made by the

difference in the estimate. The general Q-learning has been shown to converge to the optimal action-

value function by probability 1 given two conditions; all action values are represented discretely,

and these actions are repeatedly sampled in all states (Watkins & Dayan 1992). Further, in order

to resemble memory through a finite size Q-table, the algorithm assumes the environment to be

represented as discrete state space.

3.7.1 Q-table

To simulate the agents memory of past experiences a Q-table can be used. The Q-table is to contain

the calculated value of the state-action pairs present, based on the update rule defined in Equation

(3.21). Before training starts, the Q-table is initialized to contain a space for each state-action pair

available for the agent. This means, the Q-table will be of dimension n states x m actions. As the

agent learns through repetitive episodes, the quality of a state-action pair is noted by logging the
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calculated value in the respective position. As the training process goes on, the agent builds more

and more data to base choices of actions on, spanning over the total state space.

Before initializing the training the Q-table is usually initialized to some arbitrarily value. The choice

of this value depends on the range the logged values are going to span over, and is thus connected

to the range of the reward function as well as γ and α. For most problems this is sat to zero, how-

ever the initial values can also be applied as a means to encourage exploration through applying

optimistic values (Sutton, Richard S. and Barto 2010). This would lead to the agent to be "disap-

pointed" when making early selections, and select unexplored actions over the previously learned

lower ones. Figure 3.7.1 represents an example of a Q-table with initial values of 0 before and after

training.

Figure 3.7.1: Example of Q-table before and after training.

3.7.2 Function approximation

In the previous section memory storage has been defined as a lookup table. However with growing

dimensionality this can be inefficient due to necessary exploration and memory. An alternative way

to store information of state-action pairs is thus to generalize across states using function approx-

imation (van Otterlo & Wiering 2013). In general function approximation deals with evaluating a

function that closely matches a target function, which in our case refers to the value function V(s).
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Numerous methods exists for this, but the most basic approach is through linear approximation:

V(s) ≈ Vθ(s) = θTφ(s) (3.22)

Here Vθ denotes the approximated value function as seen in Section 3.6. φ(s) is a feature vector

holding a number of linear basis functions K, and θ ∈ RK is an adaptable parameter vector for

alignment. This enables reduction in dimensionality from dim(S) to dim(K) (Kunz 2013). This

enables efficient storage about huge state spaces, and even continuous ones. Yet this reduction

comes at a cost as φ(s) is only able to capture a finite number of functions, thus inducing limited

precision and error in state representation. However this approach is not applied in this thesis and

therefore just briefly introduced as a possibility.

3.7.3 Implementation

For simplicity, the use of Q-learning can be broken down to seven consecutive steps as explained

by Kansal & Martin (2015):

1. Define action space: set up a system for the agent to choose actions from.

2. Initialize Q-table: define storage space for agent to memorize the value of each action (a) given

the space (S) it came from. i.e the Q-table should be of dimension number of states X possible
actions.

3. Start exploring actions: For each state (st), select an action (at) best noted action or a random

one.

4. Travel to the next state (st) as a result of that action (at).

5. Update Q-table values using the reward equation, together with previously saved value of

action (at) and estimated future reward based next state (st+1).

6. Set the next state (st+1) as the current state (st+1) and repeat from 3).

7. If terminal state is reached, end process, reset environment and run again.
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Algorithm 2 Q-Learning

1: begin

2: Initialize Q-matrix Q : SxA→ R to 0(or any arbitrary value)

3: for n := 1, 2, 3, ... do

4: select a starting state st

5: while st 6= T do

6: Evaluate policy π based on Q(st, at) (e.g ε greedy: π ← arg maxaQ(st, at) )

7: set at = π(st)

8: Propagate one step, producing rt+1 and st+1

9: set δ = Rt + γ ·maxa Q(st+1, at+1)

10: set Q(st, at) = (1− α) ·Q(st, at) + α · δ
11: t = t + 1

12: end while

13: return Q

14: end for

15: end

3.8 Modified Connectionist Q-Learning

Modified Connectionist Q-Learning (MCQ-L) (Rummery & Niranjan 1994) is another RL algo-

rithm used in MDPs. The algorithm more commonly known as State-Action-Reward-State-Action

(SARSA), is as the name implies a modification of the previously explained Q-learning algorithm in

section 3.7. Just like Q-learning, MCQ-L makes updates through information of s, a, st+1. But rather

than using a greedy selection of Q-values as st+1 (γ ·maxat+1 Q(st+1, at+1)) the algorithm updates its

Q-value using an error (γ ·Q(st+1, st+1)−Q(st, at)) making the update rule defined as:

Q(st, at)︸ ︷︷ ︸
new value

← (1− α) ·Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·
learned value︷ ︸︸ ︷

( Rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·Q(st+1, at+1)−Q(st, at)︸ ︷︷ ︸
error

) (3.23)

This approach is considered to be more robust than the standard Q-learning updates. An agent uti-

lizing MCQ-L interacts with the environment and updates its policy, making it a On-policy. In other

words it estimates the return for state-action pairs assuming the policy continuous to be followed

rather than choosing actions based on a greedy policy.
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Algorithm 3 MCQ-L(λ)

1: begin

2: Initialize Q-matrix Q : SxA→ R to 0(or any arbitrary value)

3: Initialize eligibility trace e : SxA→ R to 0

4: for n := 1, 2, 3, ... do

5: select a starting state st

6: while st 6= sT do

7: Propagate one step, producing rt+1 and st+1

8: Evaluate policy π based on Q(st, at) (e.g ε greedy)

9: set at+1 = π(st+1)

10: set δ = Rt+1 + γ ·Q(st+1, at+1)−Q(st, at)

11: set e(st, at) = e(st, at) + 1

12: for (s̃t, ãt) ∈ SxA do

13: set Q(s̃t, ãt) = Q(s̃t, ãt) + α · δ · e(s̃t, ãt)

14: set e(s̃t, ãt) = γ · e(s̃t, ãt)

15: end for

16: t = t + 1

17: end while

18: return Q

19: end for

20: end

3.9 Expected SARSA

In many situations, state transitions are fully deterministic making any possible randomness origi-

nate from the chosen policy, such as epsilon greedy choices (Sutton, Richard S. and Barto 2010). In

such cases SARSA can only perform well over longer periods of time at sufficiently small learning

rates, making short term performances poor. Here algorithms as Expected SARSA holds consis-

tent empirical advantage permitting any learning rate 0 ≤ α ≤ 1 without suffering degradation

of asymptotic performance. The algorithm originates from altering the structure of Q-learning to

instead of making greedy choices over the next state-action pairs maxat+1 Q(st+1, at+1) it uses the

expected value of each action under the given policy ∑a π (at|st+1) Q (st+1, at)− Q (st, at) ,. That is

making the update rule

Q (st, st)← Q (st, at) + α [Rt + γE [Q (st+1, at+1) |st+1]−Q (st, at)]

← Q (st, at) + α

[
Rt + γ ∑

a
π (a|st+1) Q (st+1, a)−Q (st, at)

]
(3.24)
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The application of this update rule makes Expected SARSA move deterministically in the same

direction as SARSA moves in expectation. The computational requirements are more complex than

that of SARSA, but eliminates the variance from random selections of upcoming actions at+1. This

algorithm is usually found to be on-policy, but can also in some cases be off-policy depending

on π. For example if π is sat to make greedy choices, then the algorithm will be identical to Q-

learning and an off-policy method (Sutton, Richard S. and Barto 2010). In such a manner Expected

SARSA becomes a generalized form and follows the traits of Q-learning while reliably improving

over SARSA.
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Chapter 4

Autodocking path planning by machine learn-
ing

4.1 Vessel and environment

As discussed in Section 2.5, simulations are performed with a model built upon the characteristics

of CSAD. This vessel holds a high block coefficient and is thus not necessarily optimal for maneu-

vering problems due to subsequent limitations dynamic stability (Kobylinski 2003). However the

abilities will suffice for the purpose of testing some RL applications under simple maneuvering

tasks. As CSAD usually is ran in the Marine cybernetics laboratory (MC-lab) operated by the De-

partment of Marine Technology at NTNU, this is chosen as the environment to yield realistic tests

and facilitate for extensions to real world testing. The laboratory is a small basin with dimensions L

x B x D = 40m x 6.45m x 1.5 and is equipped with a coordinate system for precise real-time measure-

ments of vessel position. This measuring system is mounted on a towing carriage with adjustable

speed along the tank length. With the idea that a moving coordinate frame can be used to simulate

the influence of irrotational currents, the boundaries of the environment is restricted to a portion of

the tanks length equal to the width. These boundaries are the limited further due to measurement

scope of the coordinate system and to facilitate for tests with currents working at various angles.

The idea is depicted in Figure 4.1.1. Consequently the final L X B surface area available for the

docking simulations is sat to 6m X 6m. All physical influences such as current are reduced using

Froude scaling laws for more realistic values to the models scale. This implies multiplying all cur-

rent velocities with a factor of 1√
λ

where λ = LF
LM

is the scaling ratio between the CSAD model and

the full scale model.
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Figure 4.1.1: Idea of environment setup based on MC-lab. First image shows a coordinate system
parallel to the tank while the second shows angled coordinate system for angled currents.

4.2 Simulation setup

In order to gauge the performance of RL in a specific docking situation, the vessel model is com-

bined with appropriate guidance and control systems in accordance with Skjetne (2005). The closed

loop system is constructed around the CSAD vessel model and a nonlinear passive observer to for

noise filtering and bias estimation, to accurately represent responses and state. These variables are

further fed to the guidance system applying an RL to generate path variables and further create

detailed signals regarding the trajectory with necessary derivatives for the control law. The closed

loop system is then completed by the control system generating actions and responses of the vessels

actuators. The signal flow is represented in Figure 4.2.1.

Figure 4.2.1: Signal flow in the closed-loop system. Adapted from Skjetne (2005)
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4.2.1 Stepwise path generation

To generate a feasible paths for the vessel to follow we employ the techniques and algorithms dis-

cussed in Section 2.4.1. However, as we aim to extend the path generation procedure to be controlled

by RL on-line the assumption of a previously known list of target waypoints and target speeds be-

comes infeasible. Continuously selecting and evaluating actions in different states we will only able

to determine characteristics of upcoming path segments one step ahead i.e only deciding on a single

waypoint ahead of time. This motivates a strategy stepwise path generation. From here on we let

p0 denote the departure waypoint previously visited, and pt denote the current targeted waypoint.

Starting with the geometric task knowing only a general previous waypoint p0,i and the current

destination waypoint pt,i, we ensure continuity at the connection points by requiring p0,i+1 = pt,i

and tangent vectors of adjacent path segments lining up through the following laws:

pθ
d,i(1) = λ

pt,i − p0,i

|pt,i − p0,i|
, pθ

d,i+1(0) = λ
pt,i − p0,i

|pt,i − p0,i|
(4.1)

Where pθ
d,i is the first derivative of current path segment, pθ

d,i+1 is the first derivative of the upcoming

path segment and λ > 0 is the tuning constant discussed in 2.4.1. We present a parametrized path

segment through the following equations, letting θ ∈ [0, 1):

pd(θ) =

[
xd,i(θ)

yd,i(θ)

]
, pθ1

d (θ) =

[
xθ1

d,i(θ)

yθ1

d,i(θ)

]
, pθ2

d (θ) =

[
xθ2

d,i(θ)

yθ2

d,i(θ)

]
(4.2)

In order to fulfill the criteria for the connection points between the path segments as presented in

Equation 4.1 we employ the following equations for generating the coefficients of a path segment

by continuously evaluating the coefficient vector Ak = [ak, bk]
> of polynomials of order k according

to:

pd(θ) = Akθk + . . . + A3θ3 + A2θ2 + A1θ + A0 (4.3)

pθ
d(θ) = kAkθk−1 + . . . + 3A3θ2 + 2A2θ + A1 (4.4)

pθ2

d (θ) = k(k− 1)Akθk−2 + . . . + 6A3θ + 2A2 (4.5)

pθ3

d (θ) = k(k− 1)(k− 2)Akθk−3 + . . . + 6A3

etc...
(4.6)

These are solved he based on our PC criteria as follows: C0 continuity by ensuring connectivity to

the next path segment as:

pd,i(0) = p0,i pd,i(1) = pt,i

pd,i(0) = A0,i = p0,i pd,i(1) = Ak,i + . . . + A1,i + A0,i = pt,i
(4.7)
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C1 continuity by ensuring equal slopes at the connection points according to Equation 4.1 as:

pθ
d,i(0) = T0,i pθ

d,i(1) = λ
pt,i−p0,i
|pt,i−p0,i |

pθ
d,i(0) = A1,i = T0,i pθ

d,n(1) = kAk,i + . . . + 2A2,i + A1,i = λ
pt,i−p0,i
|pt,i−p0,i |

(4.8)

C2 by further setting the following path derivatives equal to 0 at the connection points i.e pθ j

d,i(0) =

0 and pθ j

d,i(1) = 0, for j ≥ 2. For a 3 DOF maneuvering design model with states defined by

η = [x, y, ψ]> a reference heading ψd is also required. Under an assumption of greatest νr along the

tangent of the vessels velocity, this is generated as a heading tangent to the path as follows:

ψd(i, θ) = atan

(
yθ

d(i, θ)

xθ
d(i, θ)

)
(4.9)

for a general path segment i. Further ψ
θ j

d (i, θ) is found by evaluating derivatives in regards of θ .

For this purpose of this thesis, derivatives up to j = 2 is found to be sufficient giving a PC of C2.

For the dynamic task we output a speed profile vs,i(t, θ) for a general path segment according to an

input target speed ud(t) and its derivatives:

vs,i(t, θ) =
ud(t)∣∣∣pθ
d(i, θ)

∣∣∣ (4.10)

Similarly to ψd information about the necessary derivatives is found by taking the derivative of the

speed profile in regards of θ and t.

4.2.2 System functions

For the guidance scheme a continuous output of reference signals is made through evaluating the

above equations according to θ. Using information of the vessels current state η we now let s denote

a global path parameter for the total path composed of n path segments i.e s ∈ [0, n), while θ is the

local path parameter for a single segment θ ∈ [0, 1) evaluated as θ = s− bsc. The dynamics is given

according to the unit-tangent update law as discussed in Section 2.4.2 and shown in Equation 2.25,

that is:

ω = µ
ηs

d(s)
>∣∣ηs

d(s)
∣∣ (η − ηd), µ ≥ 0

⇒ ṡ =
ud(t)
|ps

d(s)|
+ µ

ηs
d(s)

>∣∣ηs
d(s)

∣∣ (η − ηd)

(4.11)

µ is sat to 0.025 through a tuning process.

With processes of unknown extent and required number of path segments, we choose to carry out
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4.3. PLANNING BY REINFORCEMENT LEARNING

generation and parametrization of the immediate path segment only. The RL agent, later defined,

evaluates system feedback through rewards and returns upcoming path variables to be stored for

future path generation, as the vessel enters a set radius R of the current pt. To guarantee smooth

transitions between discretely selected waypoints and continuous path parametrization, an update

logic between the succeeding target waypoints is implemented as bsc 6= bscprev →
p0 = pt

pt = pt,RL
.

Where pt,RL denotes the upcoming target waypoint returned by the agent. This is depicted in Figure

4.2.2 below leading to continuous path parametrization and evaluation of pθ j

d .

Figure 4.2.2: Update logic for transitioning between waypoints.

Further the control law discussed in Section 2.4.2 and defined in Equation 2.28 is applied to calculate

necessary thrust outputs for the vessel to track the path, applying inputs The following gains were

found to give well functioning path following for CSAD and associated thrust allocation:

K1 =


0.36 0 0

0 0.36 0

0 0 0.135

 , K2 = K1 · 10 (4.12)

4.3 Planning by Reinforcement Learning

A challenge that can arise in ports and other docking areas is the presence of a large variety currents

and other environmental effects difficult to map. This makes local experience tied up to the present

magnitudes and locations of forces essential for proposing entrance paths and speed augmentations.

At the same time however it’s important to know be familiar with the constraints of the vessel

to understand what maneuvering missions are possible and optimal. In order to test how direct

experience can be applied to generate new paths and possible docking approaches we experiment

with letting RL handle the planning through gathering and applying its own experiences. Through
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4.3. PLANNING BY REINFORCEMENT LEARNING

a trial and error process RL allows for optimizing measures in the situation such as applied thrust

and time efficiency, accounting for more of the system dynamics than traditional planning methods

would.

We propose applying RL to the problem by letting the agent control the relevant control outputs of

the path planner. For a general docking situation this includes the evaluation of both a good entry

path through pt and associated speed assignments through ud. Although for a there exists a definite

connection between the selected path and the appropriate speeds, a combined evaluation of the

two leads to high computational demands due to a curse of dimensionality as described in Section

3.4. We therefore choose to separate the two cases, investigating the evaluation of a good entry

path to the area of docking and appropriate speed assignments separately. The proposed state- and

action spaces of the two tasks are all made under the consideration of the same trade-off between

computational complexity and precision.

4.3.1 State formulation and RL set-up

The main purpose behind this thesis is to gain insight in RL theory and how this can be applied

to marine application. To implement such a method a vital part is the build up of the underlying

learning algorithms for exploration, learning and further to act as an action-planning guidance layer

for the vessel. The RL algorithms are incorporated in the path planner block seen to the very left

in figure 4.2.1. For the following formulations we let p denote the position of the vessels CO in the

fixed coordinate system of the environment i.e p = [η1, η2]> = [x, y]>.

The proposed algorithms, later described, operate by discrete state inputs and action outputs. In

order to capture as much as possible of the vessels situation in the environment in a simple way, the

state space is formulated to consist of 3 elements; p0, pt and ure f . Where ure f is a discrete reference

speed further described in Section 4.4. This formulation simplifies the RL process as the agent can be

built with an action space directly altering states and reduce stochastic behavior for more intuitive

processes. The state space thus stands to represent path segment characteristics returned by the

agent. For updates of the agent to take place, a discrete update rule has to be implemented. This is

done by triggering the agent to evaluate the rewards and output upcoming path parameters as the

vessel closes in on pt, i.e p ≈ pt, defined as the vessels position p being within a circle of acceptance

with radius R of pt as seen in Fossen (2016):

[pt,1 − p1]
2 + [pt,2 − p2]

2 ≤ R2 (4.13)

When this condition is confirmed, a signal for the discrete update is sent to the RL algorithm. Such

a tactic updating the RL close to but ahead of the target waypoint is beneficial as it allows mea-
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surements for learning include vessel behavior during transitions between succeeding segments.

Additionally this is where the vessel dynamics is most likely to be steady while ensuring character-

istics of the upcoming segment are available ahead of time in the on-line update. For simulations

we apply R = 0.15 m.

There are many different aspects that can be studied for optimization of a docking process. Rele-

vant fields may be cost efficiency, safety, promptitude and precision. The most important of these

is without doubt safety, and failures to comply with this will affect the process in its totality. We

therefore put this focus above all others in simulations. Further we aim to shape the reward func-

tions to account for the additional optimization goals of efficiency, such as energy and promptitude.

Each episode of training is concluded as the vessel reaches the assigned docking position or fails to

comply with safety. Due to difficulty of mapping the complex currents and environmental effects

present in a docking process, we propose the use of model-free algorithms in order to learn from

vessel responses. This approach also facilitates for easy transitioning to more advanced simulations

and extending to real world training for more complex models.

4.4 Speed evaluation along given entrance path

The first sub problem deals with evaluating optimal speed assignments along a given path. This

involves applying speed assignments over the various path segments that are low enough to ensure

path tracking with acceptable precision under vessel constraints, as well as ensuring safe retardation

to zero velocity at the quayside. To train for these criteria the RL agent is given a pre-specified path

defined by a series of target waypoints leading to a docking position pdock, with the mission of

evaluating speed assignments fulfilling specific goals. The path is made to resemble a reasonable

entrance path for a lateral docking process.

Under an assumption of the path being constructed with reasonable safety compliance, the defined

terminal states of the process are defined as reaching pdock or loosing track of this path. As a means

of detecting if the vessel fails the tracking objective, a time limit tmax is imposed for reaching pt from

the associated p0. This is sat to a generous number in order to only be triggered under actual failure

of path tracking. Accordingly the terminal conditions are defined as;

sT =

{
p ≈ pdock

tp0→pt > tmax
(4.14)

Where tp0→pt is the time spent tracking a path segment between two waypoints, and docking is

approved if p is within the circle of acceptance of pdock. Each individual episode is ran until either

of these conditions is fulfilled before restarting.
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4.4.1 Algorithm

Docking situations involve many hazards, hence our big focus on safety. A training process involv-

ing high amounts of exploratory moves onto unknown states can potentially violate these safety

concerns, and may be an unfeasible process for physical marine vessels. Because of this we propose

an off-policy training algorithm to evaluate speeds through simulations. This facilitates agents to

be used in potential real world problems to learn the task by following off-policy samples with-

out having to follow the policy itself. It’s worth mentioning however that carrying out training

int this manner is less efficient than applying individual training due to model and environmental

differences.

As we assume speed assignments are outputted with absolute certainty i.e selected values are exact

and reaches the maneuvering layer with probability 1, and low correlation to values of the past we

propose the use of Algorithm 2: Q-learning, with epsilon greedy action selection for exploration. To

handle this exploration we propose focus on exploration to be done early in the training, followed

by optimizing more and more over the current highest valued areas towards the end. We handle

this trade-off through a decaying epsilon.

As the speed evaluating process is more of a finer optimization process we propose epsilon decay

according to a logistic decay function, starting with an initial epsilon value of ε0 ≈ 0.3 of the training

before decaying to an optimal policy with terminal value of εT ≈ 0, i.e greedy selections.

ε(epi, eptot) = 0.3− 0.3

1 + e
(
− 8

eptot
(epi−eptot×0.4)

) (4.15)

Here eptot and epi denotes the total and ongoing episode respectively. The behaviour is depicted in

Figure 4.4.1. The discount factor is sat to γ = 0.8, making the agent strive to achieve greater rewards

over the long term. Learning rate is sat to α = 0.45 as a trade-off between quick learning and finer

optimization of logged values.
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Figure 4.4.1: Epsilon decay for speed evaluation, defined by Equation 4.15.

4.4.2 Action space

due to Q-learning’s assumption of a discrete action space we propose the use of a reference speed

ure f to make changes to the desired speed ud(t) along the path. For each individual path segment in

the predefined path, the agent is instructed to output a value ure f ,i by increasing or decreasing the

parameter from the previous path segment ure f ,i+1. This value is further passed through a reference

filter before being fed to the maneuvering law ensuring smooth transitions as ud =
ure f

3·s+1 .We propose

an action space consisting of a set of augmentation variables i · δu, with i = ±(1, 2, ..., n) being an

integer and δu being a constant step size generating a space consisting of 2n + 1 possibilities.

Aspeed =



a0 : 0

a1 : +1 · δu

a2 : −1 · δu
...

...

an : +n · δu

an+1 :−n · δu

(4.16)

ure f ,i+i(a) = ure f ,i + i(a) ∗ δu (4.17)

For simulations the values δu = 0.01 and n = 2 have been applied. To further avoid unnecessary

training examples involving speed assignments of zero and negative values, the output is given a

lower boundary ure f ≥ 0.01 m/s through dynamicity in the action space excluding actions bringing
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ure f under this. When the vessel reaches the final waypoint i.e p ≈ pdock as defined by the circle

of acceptance, a signal is fed to the agent initiating a deceleration procedure bringing the vessel to

rest. This is done by setting µ = 0 and linearly decreasing ud to 0 along the remainder of the path

ensuring steady retardation to 0. Subsequently the training episode is counted as completed.

Figure 4.4.2: Visualization of action space for speed evaluation, defined with n = 2, exemplified by
augmentation of ure f (i) and attainable values after a selection of a3.

4.4.3 Reward function

The ultimate goal of RL is to maximize returned reward, as this serves as a measure of performance

through training. Consequently the reward shapes the behaviour of the system and sets terms

for convergence. For the task of speed evaluation there are many differences in how this function

should be defined according to where emphasis is placed. We choose to inspect various aspects

through multiple reward functions with components addressing associated factors. However some

terminal reward components are global for all aspects and are addressed first. In the following

definitions rT and rt denote terminal and immediate reward components, respectively.

With the path specified assumed to be safe and clear of collisions, the only immediate concerns in-

volve failing to track the path and the final retardation at the quayside. To eliminate unfeasible path

tracking, large penalties should be associated with state action pairs provoking this. As an unde-

sired terminal condition measured as true or false, it’s natural to impose this as a negative reward

of constant value rT,tmax = −CT,tmax if tp0→pt > tmax. Where CT,tmax > 0 is a tunable constant. All ap-

plied constants with their respective values can be found at the end of the section where introduced.

Similarly we need a terminal reward associated with the desired terminal condition of reaching the

quayside. We want this to be done in a manner ensuring calm and precise retardation to pdock and

could also be done through a constant feedback returned under certain criteria. However in the

aim of a more intelligent system, we apply a reward based on the precision of the docking through
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a measure of resulting overshoot of pdock. Assuming sufficient path tracking with ν approximately

tangent to the path, the reward is calculated as p exceeding pdock along the paths tangential angle

rT, pdock(p) = max
(∣∣∣∣ [cos(ψd) sin(ψd)

] (
p− pdock

)∣∣∣∣, 0
)
· CT,pdock if p ≈ pdock (4.18)

Where CT,pdock > 0 is a tuning constant. For this to be measured the final update of the agents

memory is delayed a time tdelay = 30 s. Other reward parameters for the final update are recorded

as the vessel reaches pdock. With these components global for all cases, three different cases of speed

evaluation have been studied and tested.

Table 4.1: Applied values of tuning constants for global components.

Description Symbol Value

Constant for unfeasible maneuvering CT,tmax 2000
Constant for overshoot of pdock CT,pdock 500

a) Promptitude with precision focus

For ferry operations and harbours running busy schedules, the promptitude of docking is of big

concern. For this reason we aim to train the agent at taking the vessel from the initial conditions to

the quayside as quick as possible. This translates to reducing the time spent maneuvering along the

path. However we choose to keep negative rewards to denote unfeasible options, such that if the

agent discovers a feasible although possibly sub optimal strategy it can improve over this. This is

based on the idea of memory being initialized at 0. We therefore propose shaping the optimization

goal of time to revolve in the positive range, through the use of inverse reward design.

A possible approach is to rate the agents actions though direct evaluation of total elapsed time,

by a component returning a time dependent value when p ≈ pdock and zero otherwise.This form of

conditional delayed reward could through back propagation improve speed assignments in regards

of thrust but would be a timely process, with possible flickering between actions. We therefore

propose directing the agent towards optimal decisions earlier, through additional smaller rewards

across individual path segments. The delayed time reward rT,t(t) and immediate time reward rt,t(t)
are tuned through constants CT,t > 0 and Ct,t > 0.

rT,t(t) =
CT,t

1 + t(pdock)
if p ≈ pdock (4.19)

rt,t(t) =
Ct,t

1 + t(p0)− t(pt)
(4.20)
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Here t(p0) and t(pt) denotes the time for which the vessel is at waypoint p0 and pt. This should be

sufficient for the agent to favour actions leading to reduced time. Further to ensure path following is

done in an accurate manner we propose component based on precision, formulated as a boundary

function dependent on the vessels offset in position p̃ = p− pd and an error tolerance errp > 0

rt,p( p̃) =


−Ct,p̃ · || p̃||2max if || p̃|| < errp

−Ct,p̃(err2
p +

1
2 · 300(|| p̃||max−errp) − 1

2 ) if || p̃|| ≥ errp

(4.21)

Here || p̃||max = max(|| p̃p0→pt ||) is the maximum logged value of the first norm of p̃ along a path

segment, and Ct,p̃ > 0 is a tuning constant. The component makes small adjustments trough minor

penalties for small p̃ and heavily penalizes actions violating the precision requirements sat by errp.

The behaviour of the reward component can be seen visualized in Figure 4.4.3 for Ct,p̃ = 500 and

errp = 0.1 m.
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Figure 4.4.3: Offset dependent reward component rt( p̃) with Ct,p̃ = 500 and errp = 0.1 m.

This makes the total reward function defined as

R =


rT,t(t) + rT,pdock(p) i f p ≈ pdock

rT,tmax if tp0→pt > tmax

rt,t(t) + rt,p( p̃) otherwise

(4.22)
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In the simulations the following parameters have been applied for tuning of the reward function

Table 4.2: Applied values of tuning constants for time optimization.

Description Symbol Value

Constant for terminal time reward CT,t 8000
Constant for continuous harvested time reward Ct,t 4000
Constant for offset dependent reward Ct,p̃ 400

b) Energy efficiency

Another interesting aspect is possibilities of optimizing energy efficiency. For this mission there are

many options, such as inspecting resistance through damping. Yet, a strength of model-free RL is

the ability to directly optimize complex parameters independent of insight in underlying features.

A more beneficial approach would therefore be to minimize power output P =
∥∥ν>r τ

∥∥ along the

path directly. However, measuring νr can be quite difficult, especially in docking environments

with advanced current fields. We therefore choose to focus on minimization of τ, as it is simple to

measure and holds direct relation to P. The components are constructed in a similar manner to the

time based rewards used in the previous case as defined in Equations 4.19 and 4.20, by integrating

the first norm of applied thrust across a path segment:

rT,τ(τ) =
CT,τ

1 +
∫ t(pdock)

0 ||τ||
if p ≈ pdock (4.23)

rt,τ(τ) =
Ct,τ

1 +
∫ t(pt)

t(p0)
||τ||

(4.24)

Where CT,τ > 0 and Ct,τ > 0 are tuning constants of the terminal and immediate thrust rewards

respectively.

R =


rT,τ(τ) + rT,pdock(p) i f p ≈ pdock

rT,tmax if tp0→pt > tmax

rt,τ(τ) otherwise

(4.25)
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Table 4.3: Applied values of tuning constants for thrust optimization.

Description Symbol Value

Constant for terminal thrust reward CT,τ 2000
Constant for immediate thrust reward Ct,τ 1000

c) Combined energy and time

As we in reality want docking processes fulfilling both of the above defined goals, we study a

combination of the time and energy optimization. This is done through merging components of the

above defined reward functions into a single function

R =


rT,t(t) + rT,τ(τ) + rT,pdock(p) ifp ≈ pdock

rT,tmax if tp0→pt > tmax

rt,t(t) + rt,τ(τ) otherwise

(4.26)

4.5 Path evaluation for docking

The goal of the second sub problem is to evaluate a good entrance path, guiding the vessel to its de-

sired pose at the quayside. As the desired heading is kept at a tangent to the path this includes focus

on correct angles of approach. For this we relax the assumption of a pre-specified path, and instead

introduce a constant reference speed ud = uconst based on results of speed evaluation. Additionally

we assume generated paths to be in compliance with the vessels maneuvering constraints.

As a foundation for the learning process we need to define the specific target to be reached, along

with any additional terminal conditions. For speed evaluation this was simply as a waypoint pdock,

or termination due to loosing track of the path, knowing one of the two would occur. Adopting

these definitions, along with a desired angle ψdock for path evaluation is possible, but could be

rather difficult as the probability of hitting this state exactly and hence building experience is low.

To ensure higher probabilities of reaching the target we therefore extend the target conditions to a

larger area Adock covering a radius Rdock from the chosen docking position pdock:

Adock =
{
(x, y) ∈ R2 : (x− pdock,1)

2 + (y− pdock,2)
2 ≤ R2

dock

}
(4.27)

Where s ∈ Adock is defined as terminal states for an episode. Further we choose to not impose

ψdock as a terminal condition, but rather a desired state handled by rewards. As we aim to let the

vessel navigate freely under a assumption of a consistently feasible path to track, there arises a
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exploratory possibility of the vessel sailing off forever. To prevent this along with limiting com-

putational complexity we set some limits for the state space to be explored. We do this according

to defined environment presented in Section 4.1, and set state space of the training process based

on the boundaries to S =

{[
x
y

]
∈ R2 :

0 ≤ x ≤ 6

0 ≤ y ≤ 6

}
. Consequently each episode of training is ter-

minated if the vessel state comes outside this space. This makes the total terminal conditions of a

training episode be defined as:

sT =

{
p ∈ Adock

p /∈ S
(4.28)

4.5.1 Algorithm

For the process of training to evaluate entrance paths it’s natural to assume there will be a high

amount of collisions early on from exploratory actions. Therefore real-world training from scratch

might not be a good idea and we again propose the use of an off policy algorithm. However, we

want to ensure sufficient risk avoidance by staying clear of states potentially leading to this. This

risk avoiding ability can be found in SARSA, which is an on-policy algorithm. This leads us to

Expected SARSA as discussed in Section 3.9.

The specific setup of the agent is thus done though the update algorithm of Expected SARSA

Q (st, at)← Q (st, at) + α

[
rt+1 + γ ∑

a
π (a|st+1) Q (rt+1, a)−Q (rt, at)

]
(4.29)

To make for off-policy learning we let updates be done through a product of each Q-value and

their associated probability calculating an expected return. Selecting a greedy policy as seen in

Q-learning and SARSA, the algorithm can make off-policy updates accounting for all possibilities

and will converge to stay clear of states potentially leading to large negative rewards. Just as for

speed evaluation we handle exploration through ε-greedy action selection. Yet, where we slowly

trim the 1D speed assigned for each segment as an optimization focused problem, a 2D path eval-

uation includes a much broader state space and thus requires more exploration. We therefore pro-

pose an ε function of exponential decay. This results in maximal early exploration building general

knowledge of various docking entries followed by optimization of the best. The tactic also highly

improves results shown from a complicated reward function later defined, where backpropagation

of delayed rewards is crucial. The decay function is depicted in Figure 4.5.1.

ε(epi, eptot) = e(−4· epi
eptot

)1.1
(4.30)
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Figure 4.5.1: Exponential function for ε decay for path evaluation, as defined in Equation 4.30.

Other important factors applied for the algorithm is γ = 0.9 and α = 0.3.

4.5.2 Action space

Before the update law is explicitly defined, a creation of an appropriate mesh over the 6m X 6m

environment is required due to the algorithms assumption of discrete states. Selecting sparseness

of this mesh can be seen as a trade-off between providing the vessel with an abundance of states to

maneuver over and limiting the state space to a number ensuring convergence under a reasonable

amount of episodes. For this we suggest a grid of 0.25 m X 0.25 m squares to be sufficient. Now in

order to facilitate for various guidance strategies through the environment in, we let the RL agent to

take control of pt. As the agent is triggered for a discrete update the agent is to evaluate upcoming

target waypoint pt,RL = pt,i+1(pt,i). Setting course towards a new target waypoint, p0 is sat to pt

and the new pt is sat to pt,RL according to the update law discussed in Section 4.2.2, extending the

complete path by a new path segment. With ψd defined tangent to the path, this renders action

space formulation highly dependent on vessel maneuvering abilities.

As we aim to let the agent provide guidance in a free manner we need options of keeping a steady

path as well as curving left and right at various angles. We propose the formulation of an action

space sat up to alter the average path tangential angle θT = tan−1(pt,2− p0,2, pt,1− p0,1) by a variable

δθT ,i and extend the path segment by a positive length li from pt for i = 2, 4, ..., n. This results in an

action space consisting of n + 1 actions, where an action a0 refers to keeping a steady course by
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applying the characteristics of the current θT. Through this process the upcoming waypoint pt,RL is

generated based on the current pt.

Apath =



a0 : δθT ,0 = 0 li = l0
ai−1 : δθT ,i−1 = +δθT ,i li−1 = li
ai : δθT ,i = −δθT ,i li = li

...
...

...

an−1 : δθT ,n−1 = +δθT ,n ln−1 = ln

an : δθT ,n = −δθT ,n ln = ln

(4.31)

pt,RL(a, θT, pt) = pt +

[
l(a, θT) · cos(θT + δθT (a, θT))

l(a, θT) · sin(θT + δθT (a, θT))

]
(4.32)

The proposed action space formulation however works best under continuous state spaces. As

we take use of discrete states the variables in the action space have to be defined according to the

meshed environment to keep discretized characteristics for upcoming states. This can impose a

lengthy and finicky tuning process. For simplicity we thus apply the above formulated idea of

extending the next path segment by applying an angle difference and a path length to coincide

according to the meshed grid. As depicted in Figure 4.5.2 the possible path extensions of Apath

is defined to span over a defined area where a series of discrete states are available for selection.

For the simulations made in this thesis we use n = 2 as the applied mesh of the environment is

relatively small in comparison to CSAD’s length over all of 2.578 m. This facilitates small enough

step sizes in waypoint evaluation for the vessel to perform maneuvering tasks. Additionally we let

each segment extend a minimum of two blocks, in order to simplify maneuvering. This leaves the

vessel with three options, one for steady course and two making turns in their respective direction.

More options of steeper and more extensive turning of the vessel was also tested with, but proved

quickly became complicated for vessels maneuvering abilities and for the intended research was

concluded an unnecessary extension of Apath.
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Figure 4.5.2: Visualization action space for path evaluation, defined with n = 2.

4.5.3 Reward function

In order to achieve intended goals of path evaluation, we need to design the fitting reward compo-

nents. As this objective is more complicated than the speed evaluation it’s natural that the resulting

design will be more complex as well. With ψd defined tangent to the path and an action space

formulation providing limited turning possibilities, a strong interconnection exists between chosen

actions and future available configurations. Hence, early mistakes can prove very difficult to re-

cover from and pose big impact on the future of the path. The agent is therefore dependent on a

highly descriptive reward function, indicating desirable behavior with variations from early in the

docking process to the final stages of reaching the quay.

An obvious indicator needed for the agent, is for what direction it should point the vessel. This is

perhaps the most important part of the reward with underlying goal for the vessel to at all reach

the quayside. The most straightforward and intuitive way to do so is to let the agent know if the

chosen action brought it closer to the goal or not. We propose this feedback by applying a two

dimensional euclidean distance as a measure of the distance between p and pdock , denoted as d.

More specifically the reward associated for a chosen path segment is defined as the reduction in d
from p0 to pt multiplied by a tuning constant Ct,dist > 0

d = ‖pdock − p‖2 =
√
(pdock,1 − p1)2 + (pdock,2 − p2)2 (4.33)

∆dist = dp0 − dpt (4.34)

rt(∆dist) = Ct,dist ∗ ∆dist (4.35)

All tuning constants used in the path evaluation problem is shown in Table 4.4 with there respective
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value applied for simulations. This component should help training converge to guiding the vessel

towards the quayside and pdock.

Under the circumstances where the vessel is able to reach the designated docking position by the

quay, we need a measure of the quality of arrival. Putting safety ahead, the most important measure

of this approach will be whether or not the vessel is able to arrive with the correct heading. For our

proposed vessel the natural heading would be the coming alongside at a parallel angle (perpendic-

ular if a ferry situation is inspected). Hazardous situations and problems could arise if the vessel

arrive at other headings, and thus a good tactic would be applying a terminal reward component

based on the offset angle from the desired heading upon reaching the quay ψo f f set = |ψdock− θT|. As

the most dangerous angle to come in at would be at 90◦ we develop a reward function based on this

angle being least desired. With ψo f f set ∈ [0, 90] we define the reward function as a linear increase

from r(ψo f f set) = 0 : ψo f f set = 90 to a max output of reward given ψo f f set = 0:

r(ψo f f set) =
(90− ψo f f set)

Cψo f f set

, if p ∈ Adock (4.36)

Where CT,ψo f f set > 0 is a tuning constant of the reward function. In addition to the main goal of reach-

ing the quay at the correct heading, we also introduce a sub goal of reducing total thrust. However

we want to impose a much greater value on the safety of entering at correct angles compared to

thrust usage. To shape this trade-off between the two we propose a terminal reward triggered by

the vessel entering the targeted docking area formulate as the reward of the total thrust raised to

the reward of the entrance heading. We apply the delayed thrust reward as defined Equation 4.23

to get the complete terminal reward for reaching the docking state:

rT,dock = rT(τ, t)rT(ψo f f set) if p ∈ Adock

where rT(τ, t) =
CT,τ

1 +
∫ t(pdock)

0 ||τ||
(4.37)

Additionally we supplement an immediate thrust reward as defined in Equation 4.24, to elevate the

agents focus on thrust reductions throughout the process:

rt(τ, t) =
Ct,τ

1 +
∫ t(pt)

t(p0)
||τ||

(4.38)

It’s worth mentioning that as a sub goal independent of distance and heading, this has to be tuned

significantly lower to decrease chances of alone attracting the focus and introducing local optima.

The reward function so far should help the agent navigate the vessel in order to reach the quay

with desired angles and reduce thrust in the process. Through initial testing of these components

this was confirmed true. However, due to previously discussed limits on turning rendering avail-
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able configurations having high correlation far into the past, the vessel was only able converge to

smaller reductions in offset angle due to back propagation of rT,dock, upon reaching the quay at early

trials. Thus it’s clear that an earlier indicator of the desired heading is required. We could impose a

constant weighted reward similar to that of rt(∆dist), but this would most likely confuse the agent

as of what to value between reducing d and reducing ψo f f set, and cause problems in the early stages

of the docking process. As a better solution to this we propose a new distance dependent reward

through the use of potential field characteristics, returning desired heading indications throughout

the entire process

rt(ψo f f set, d) = Ct,dist · e−d · r(ψo f f set) (4.39)

The reward denotes the offset angle to be of little importance at distances far from the quay, and and

exponentially increases as d decreases. As a second reward component dependent on the distance

to the quay, the agent can thus learn to early in the process prioritize actions for closing in on the

target while prioritizing optimal headings more and more towards the end. This prioritization is

further tuned by two constants αψo f f set and α∆dist . The increase in importance of vessel heading can

be seen depicted in Figure 4.5.3.

Figure 4.5.3: Importance of vessel heading approaching the docking position.

Lastly as we aim to develop paths of sufficient safety, staying clear of collisions is an important

aspect of the process. We have already defined a fitting reward component if the agent is able

to guide the vessel to the terminal state of Adock, but also need to account for potential terminal

state due to collisions i.e moving outside of the defined boundaries. As previously mentioned we
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chose Expected SARSA in order to reduce risk of these events, and therefore need to apply big

penalties. In our environment this is equal to the vessel moving outside the defined boundaries. We

propose a penalty of constant value under the event of a collision, defined as negative reward rTcol =

−CT,col if p /∈ S. Where CT,col > 0 is a tuning constant. The back propagation of penalties resulting

from such events will not only help Expected SARSA converge to paths keeping distance away

from collisions, but also help direct it towards the only terminal part of the process not including

penalties, i.e the quayside. The complete reward function for the path evaluation thus becomes

R =


rTdock if pt ∈ Adock

rTcol if η /∈ S
(α∆dist · rt(∆dist) + αψo f f set · rt(ψo f f set, d)) + rt(τ, t) otherwise

(4.40)

Table 4.4: Applied values of tuning constants for path evaluation.

Description Symbol Value

Constant for change in distance Ct,dist 10
Constant for offset in docking angle Cψo f f set 5
Constant for total thrust applied CT,τ 5000
Constant for thrust applied Ct,τ 15
Constant for collision penalty CTcol 1000
Constant for prioritizing rt(∆dist) α∆dist 0.9
Constant for prioritizing rt(ψo f f set, d) αψo f f set 0.2

57



4.5. PATH EVALUATION FOR DOCKING

58



Chapter 5

Simulations and results

The following sections present the results of training in a docking scenario. Here the most signif-

icant measures been presented and discussed, while additional supporting results can be found

in Appendix B. Training is carried out from an initial memory of zero values, to improved val-

ues representing optimized path parameters according to the previously discussed foci and reward

functions. Additionally, an approach for improved results for path evaluation is tested by sug-

gesting an initial path for the vessel, letting the agent optimize with this as a starting point. The

proposed method is a discrete approach to RL. As the vessel operate with continuous states, an up-

date logic for discrete changes is implemented along with a discrete state space representation. The

level of these discretizations along with frequency of updates influences precision of optimization

due to narrowing down the options of the agent and may be a limiting factor. Yet, increasing to

finer discretizations would result in higher computational complexity.

The applied vessel model (CSAD) proved a sufficient high fidelity model for the intended tests.

However, during early trials it became clear that the vessels high block coefficient and strict thrust

allocation caused high constraints in maneuvering. This restricted the vessel to gentle turns and low

speeds. Hence the definition of the corresponding action spaces are limited to work over a more

narrow range. Additionally this posed the vessel to be susceptible to environmental influences.

In general current velocities above 0.3[m] seemed to give rise to maneuvering problems. Still the

presented results gives an idea of possibilities around maneuvering of drill ships and vessels with

similar maneuvering ability as CSAD. Vessels with with better dynamic stability however are likely

to be open to improvements in term of extended action space and thus possibly better solutions.

The results also reflect the slowness of convergence bound to RL, being one of the main limitations of

the technique. Hence the amount of episodes needed for training is substantially higher than what

would be expected of a human operator. It’s worth noting that progressive behavior is somewhat

related to the degree of randomness present, defined by ε. It’s also worth noting that due this

randomness in exploration, results may differ between runs. Magnitudes of results presented reflect

the application of a vessel in model scale and are thus given in cm.
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5.1 Results for speed evaluation

The training progress for speed evaluation consisted of episodes initialized with path variables

p0,0 = [0, 0]>, pt,0 = [0.5, 1], ure f ,0 = 5 cm/s, and the vessel positioned at p0,0 with heading tangent

to the resulting segment and zero velocity i.e η0 = [0, 0,
π

3
]>, ν0 = [0, 0, 0]>. As the longest segments

of the path hold lengths of ≈ 50 cm, the lower speed boundary ure f ≥ 1 cm/s indicates target

waypoints should be reached within 50 seconds. Reasonable time was therefore provided for the

agent to reach the designated pt through a contingency factor of 2⇒ tmax = 100 s. The vessel then

trained for 1000-1500 episodes depending on the case, evaluating speed assignments along the pre-

specified path leading up to the quayside as defined by the waypoints in Table 5.1 and depicted

in Figure 5.1.1. The training was executed with recordings of performance in terms of reward and

associated parameters targeted for optimization. The earlier formulated cases are inspected for both

calm waters and with an applied current of constant velocity in model scale Vc = [1.58, 1.58, 0]>

cm/s. Results of progression have been smoothed over a window of 10 episodes.

Table 5.1: Associated list of waypoints for speed evaluation.

Waypoint 0 1 2 3 4 5 6 7 8 9 10 11 12
Position x [cm] 50 100 150 200 250 300 350 400 450 475 500 500 500
Position y [cm] 100 150 175 175 175 175 200 225 275 325 375 450 550
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Figure 5.1.1: Pre-specified path for speed evaluation.
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5.1.1 Promptitude with precision focus

Training for quick docking procedures under given precision requirements gave the progress seen

in Figure 5.1.2. For the first 2
3 ’s of training, the episode rewards inhabits tremendous dips due to

inadequate maneuvering. This can be concluded as only violating the offset boundary condition as

|| p̃|| > err and potentially loosing track of the path as tp0→pt > tmax can return penalties of this mag-

nitude. After 1000 episodes however, the agent seems to have evaluated upper bounds of speeds

along the path and is able to comply with precision requirements, showing increasing positive re-

wards. Inspecting the progress of elapsed time in Figure 5.1.3 it is clear that the intended purpose

of decreasing time is fulfilled. Here training under the influence of a current concludes with greater

time requirements than for without currents, which also is reflected by lower rewards. This is to

be expected as influence from external forces complicates maneuvering, leading to requirements of

lower speeds to uphold precision. Further it’s worth noticing that the agent has visited strategies

yielding time lower than for the final results. However, by comparison to rewards it can be seen that

this is at the expense at inadequate maneuvering or overshoot of pdock, which progress is depicted

in Appendix B.1.1, Figure B.1.1. Lowering restrictions on precision and/or overshoot is therefore

likely to yield quicker, although more inaccurate, docking processes.
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Figure 5.1.2: Progression of returned rewards.
Focusing on time and precision.
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Figure 5.1.3: Progression of elapsed time.
Focusing on time and precision.

Convergence to comply with precision criteria sat by the boundary function of errp = 10 cm is

confirmed by inspecting speed assignments and offsets post training, shown in Figure 5.1.4. The

figure shows how ud is increased to due to inverse rewards of time and reduced in events of peaking

|| p̃||, pushing speeds as much as possible without violating the boundaries for precision. An initial

overshoot can be seen for in the case of no current, due to the vessel being initialized at rest while
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initial reference speed is sat to ure f ,0 = 5 cm/s, creating an offset || p̃|| ≈ 15 cm as a result of heavy

acceleration. For the case of applied current this problem seems to cease as acceleration is aided by

the current, however similar increases can be seen at the final stages due to retardation against the

current. Aside from this the vessel seems most susceptible to offsets at a length of the path ranging

from 200 cm to 400 cm where there exists higher curvatures in the path. It can be noted as previously

mentioned that the case of applied current result in lower speeds than for without. Aside from this

the resulting speeds seem to follow the same trends, indicating speed augmentations are mostly

bound to vessel constraints in regards to the path structure.

The effect of penalizing overshoot at pdock also seems to work well, causing the agent to favour low

speeds at the paths end for precise docking. This causes the vessel to reach the quayside at the

lowest speed possible, carrying out precise placements at the quay with approximately zero over-

shoot confirmed by Figure B.1.1 in Appendix B.1.1. The results highly reflects the dependency on

the action space, as the maximum speed alterations available (±2 cm/s) causes the agent to begin

retardation early ahead of the crucial parts. This dependency also results in lower assigned speeds

than necessary by inspection of offsets, implying that an extension of Aspeed to include greater alter-

ations of ure f might allow greater time reductions while still complying with precision. However,

this comes as a trade of for computational demands.

Further visualisation of the results are given by mapping ure f along the entry path in Figures 5.1.5

and 5.1.6, showing how speeds are reduced to lower values around the first bend. Following this

increases are made over the longer and slighter bend to a maximum value of ure f = 8 cm/s before

retardation is initiated to reach ure f = 1 cm/s by the quay.
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Figure 5.1.4: First norm of position offset and desired speeds along path length post training.
Focusing on time and precision.
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Figure 5.1.5: Assigned speeds along the
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current, focusing on time and precision.
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Figure 5.1.6: Assigned speeds along the
entrance path post training [cm/s]. With
current, focusing on time and precision.
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5.1.2 Thrust reductions in current

Based on the previous case of optimizing time with focus on precision, an upper speed boundary of

5 cm/s is implemented as the median of the resulting speeds. Hence, reference speeds are bound in

the interval 1 ≤ ure f ≤ 5. This is done to guarantee some precision for the current case and causes a

reduction in dimensionality of the space to be explored. Thus the required amount of episodes was

reduced to 1000. In addition the initial speed for the vessel ure f ,0 is changed to 3 cm/s as the median

of the range of speeds.

As can be seen by the training progress in Figure 5.1.7, a much smoother curve is obtained due to

absence of large penalties from unfeasible maneuvering. Also taking applied thrust into account,

shown in Figure 5.1.8, this represents how the agent is able to increase rewards and correspondingly

reduce outputs of thrust. As for the previous case, the influence of currents impose greater require-

ments than without. The goal of reduced overshoots at pdock can also be seen fulfilled as represented

by Figure B.1.2 in Appendix B.1.2. It is clear to see how the imposed upper boundary of ure f also

affects magnitude.

Figure 5.1.9 represents the final assigned speeds along the path length. Training without currents

the agent seems to favour speeds as low as possible. This is as expected taking the control design

model presented in Equation 2.13 into account, pointing to that lower τ should be required for low

νr. For training under current however, the vessels seems to obtain a more unexpected result. For

the initial and final stages of the path, the resulting speeds hold values in the range close to current

velocity at 2.24 cm/s. But for the middle section of the path the agent selects maximum speeds of

ure f = 5 cm/s. At first this was presumed to be the result of some local optimum. However, run-

ning the training process multiple times with various training parameters this behavior consisted.

Additionally, manually selecting the speeds closer to the expected results at ure f = 3 cm/s along the

entire path, showed 5.9% higher outputs in thrust and 24.5% higher outputs in power, confirming

the agents results. This might be due to stronger transverse currents from reduced inclination in the

path as seen in Figure 5.1.10, or the susceptibility to offset shown in the previous case, causing a de-

sire to rush past this section. Another and more likely result however is that the superiority of high

speeds over these segments have roots in the underlying thrust allocation and/or path parametriza-

tion. Nevertheless, the model-free approach fulfills the intended purpose of optimizing thrust for

the underlying models through a new solution, which is an ability of RL discussed in Section 3.2.

The comparison of the expected result and the agents result can be seen visualized in Figure B.1.3

in Appendix B.1.2.
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Figure 5.1.7: Progression of returned rewards.
Focusing on thrust.
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Figure 5.1.8: Progression of applied thrust.
Focusing on thrust.
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Figure 5.1.9: Assigned speeds along path length
post training. Focusing on thrust.
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5.1.3 Reduction of time and thrust

Training the vessel in regards of both promptitude and energy efficiency we got the progress shown

in Figure 5.1.11. Here the agent has managed improvement, but shows a tendency of oscillatory

behavior in returned rewards. By further inspection this seems to result from inverse relations of

thrust and time as reflected by Figure 5.1.12. In the reward design, heuristic understanding of code-

pendency of the objectives has been ignored. Thus any action taken to increase rewards in terms of

thrust is penalized by a decrease in time based rewards and vice versa, lowering stability. Training

does conclude with reduced values of both components, but by running it multiple times the out-

come seems little consistent in terms of a clear optima. Still, it’s clear from the behavior how thrust

is the dominating component. Issues of stability seemed mostly due to introduction of local optima

where the agent got stuck at solely focusing on one of the objectives while ignoring the other. Conse-

quently the approach also showed great sensitivity in weighting of reward components. However,

this mostly occurred for minimizing thrust, likely due to co action from overshoot rewards pulling

to lower speeds at the end. Such an outcome is presented in Appendix B.1.3 Figure B.1.7.

With tuning giving somewhat equal focus on the two objectives, the agent results in selecting out-

puts in a fluttering manner attempting to please both. This is shown in in Figure B.1.4 in Appendix

B.1.3. The strategy shows similar traits to that of thrust reduction in current of the previous case,

strengthening the possibility of this being a strategy utilizing the underlying thrust dynamics and

path parametrization. Further refinement of path and thrust variables might weaken this high speed

strategy and give the agent more trouble in terms of pleasing both objectives. Still, even if the agent

got stuck at a local optima, the goal of minimal overshoot consistently succeeded, which is inter-

esting as it suggest how parts of the reward function can have stable convergence independent of

others. Figure B.1.6 in Appendix B.1.3 shows the current examples progress in overshoot. Many

studies have been conducted within the field of RL on handling conflicting goals.
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Figure 5.1.11: Progression of returned rewards.
Focusing on time and thrust.
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Figure 5.1.12: Progression of time and thrust.
Focusing on time and thrust.

5.2 Results for path evaluation

Episodes of path evaluation are initialized under mostly the same conditions as speed evaluation, i.e

p0,0 = [0, 0]>, pt,0 = [0.5, 1], η0 = [0, 0,
π

3
]>, ν0 = [0, 0, 0]>. The only difference is discarding the pre-

specified entrance path and introducing a constant reference speed uconst = 3 cm/s. This is selected

on the basis of accuracy for all possible path segments in accordance with results from precision

based speed evaluation, and at the same time lower episode time requirements. Current is turned

off. As a problem of greater dimensionality, training required a higher amount of episodes and

exploration than for speed evaluations. The number of episodes found sufficient was eptot = 2000.

Training for optimal entrance paths resulted in the progress shown in Figure 5.2.1. The behavior of

the rewards is somewhat expected as it carries the same traits as the exponential ε-decay function,

causing higher exploitation of rewards as the process goes on. Yet, the agent is able to conclude at

peaking rewards. It can be noted due to magnitude that the behavior is mostly represented by the

terminal docking component rTdock . Still this is the most significant term representing the entrance

path as a whole in terms of final heading, total applied τ, and that the vessel has reached Adock.

We can interpret due to the introduction of large values after 700 episodes that the agent is able to

follow paths leading to Adock with low ψo f f set from this stage. The early parts of training is thus sac-

rificed in terms of rewards to map general strategies and rewards scattered across the environment

for later backpropagation and connections. Additionally the sub goal of thrust reduction can be

seen depicted in Figure 5.2.2. Although being a secondly prioritized goal defined by lower reward

magnitude, applied thrust shows clear reductions from refinement of discovered strategies.

Evolution of optimal strategies throughout training can be seen mapped in Figure 5.2.3. Here the
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path resulting from the final optimal policy is shown as a solid line, while dotted lines represents

results of current optimal policies found throughout training, logged every 150th run as indicated

by color. This shows how the agent early discovers a sub optimal path with less favourable ψo f f set.

At around 700 runs however it discovers a strategy leading to ψo f f set = 0, succeeded by further

refinements up until around episode 1300 concluding the optimal entrance path. This structure

of this final path can easily be understood through the build up of the reward function. Early on

it’s clear how the distance reward rt(∆dist) is most profitable causing the vessel to head directly

towards the quay. However, 1/3 of the way there, in a strive for long term rewards, the vessel

shifts right sacrificing immediate rt(∆dist) to facilitate for later harvesting of heading and docking

rewards, rt(ψo f f set, d)) and rTdock, having greater magnitude closer to the quay. This shows that the

exponential docking reward and weighting of rt(ψo f f set, d)) in terms of a potential field serves the

intended purpose of ruling close to the quay. The greater magnitude of these reaches the agent early

in the process through backpropagation. Additionally rewards for low thrust values influence the

results by smoothing the path and further promoting shorter and smoother paths, while collision

penalties helped guiding the vessel away from incidents and thus also towards the quay.

One of the main complications of the training for path evaluation seemed to result from the interde-

pendence of heading and augmentation in position. With ψd defined tangent to the path, this caused

the guidance of the vessel to behave in an underactuated manner, making future configurations de-

pendent far back over previous states. Thus the influence of delayed rewards and backpropagation

became of high importance. In other words future available states were dependent many steps back

into the past. This meant that the agent could select an action deviating from the current optimal

policy, leading to higher long term rewards, without immediately understanding it as a connection

of the newly chosen action. Noting this as an optimal action would require backpropagation only

attained through selecting that same action multiple times, hence another reason for the large initial

exploration. However, implementation of n-step backpropagation as discussed in Section 3.6 could

yield high improvements and faster learning. On the positive side the applied ψd strategy makes

proposed paths more applicable for potential underactuated vessels.

As many correlated tasks had to be fulfilled by the agent, e.g alter position, heading, reduce thrust

etc., a complex reward function design was needed. As discussed in Section 3.5.2 great careful-

ness should be taken in regards of multiple goals due to possible introductions of local optima and

shrouding a clear global solution. This also seemed the case for conflicting goals, as previously seen,

and arises for immediate rewards like rt(∆dist) and rt(ψo f f set, d) due to correlation between θdist and

∆dist. Although components of greater magnitude are more likely catch the agents focus, it required

careful weighing of components and lowered stability of training. Such behavior of catching onto

local optima might be what is reflected in the dips in reward throughout training. This could even

hold up until completion in some cases such as can be seen by the figures presented in Appendix

B.2. Here the agent is able to discover strategies resulting in better approach angles at about 600
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runs, but gets stuck at a local optimum of distance and thrust reductions. This can also be seen by

the associated rewards from the progress, holding occasional higher values than for the end result.

Another downside of the imposed strategy is the high amount of collisions due to the extensive

exploration. In total 29.75% of the docking attempts resulted in a collision (595 collisions), making

potential real world training from scratch a dangerous and likely to be costly affair.
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Figure 5.2.1: Progression of returned rewards
for path evaluation.
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Figure 5.2.2: Progression of applied thrust for
path evaluation.
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Figure 5.2.3: Evolution of optimal strategy for path evaluation with color indication. Solid line
showing final result.
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5.2.1 Path improvement

In an attempt to reduce required exploration and the amount of collisions present for path eval-

uation, the path defined by the waypoints in Table 5.1 was proposed for the vessel as a starting

point. The agent was guided along this path recording the feedbacks prior to training. Training

was then carried out to optimize over the proposed path applying ε-decay consistent with that of

the speed evaluation, seen in Equation 4.15. One disadvantage of the intended approach quickly

became clear, due to independence of Q-values. Although some initial existed, the agent was obliv-

ious to the initially proposed path as soon as new actions guided the vessel into unfamiliar states.

To handle this the agent was instructed to proceed in a manner equivalent to the initial path upon

exploration of unknown states. This is a further refinement of the ε strategy as discussed in Section

3.5.3. Revisiting previously seen states exploration carried on as regularly with potentially random

choices based on ε. This approach of reduced exploration required only half the episodes as the

previous tactic i.e 1000 episodes.

As can be interpreted from the progress shown in Figure 5.2.4 the agent was able to start converging

to better paths earlier than training from scratch, after about 300 runs. However, collision percent-

age turned out as 27.4%, which is considered an insignificant improvement. This is most likely

the case as even though the agent received some initial data and input on how to proceed, actions

branching out into new paths can be counted as more valuable in terms of immediate rewards even

if a collision is imminent. These actions will not be noted as bad until penalty backpropagates far

enough as discussed in the previous case. Still the total number of collisions (274) is substantially

lower, due to less episodes than for training from scratch. simultaneously, less episodes implies less

computational demands. Just as for the previous case, n-step backpropagation of rewards could

give great improvements.

Observing Figure 5.2.5 the process the agent was yet again able to reduce required thrust as seen in

while fulfilling the docking goals. Concluding with the final path represented by the solid line in

Figure 5.2.6, equal to that of the previous case. Here current optimal paths have been logged every

10th episode. Thus the agent is able to obtain the dame results for half the amount of episodes

which is a substantial improvement. However, inspecting the figure it’s clear how the traits of the

initial paths are reflected in the agents proposed paths throughout training. Advantages of remov-

ing early randomness by guiding initial exploration presupposes that the global optimal path is of

similar structure to the proposed one. Other scenarios or different initial paths might confuse the

agent. Thus this altered approach might be too restrictive and be less robust. Still for the present

case the reduced amount of episodes required is a valuable asset for computational purposes. An-

other proposition to overcome the independence of Q-values is to generalize over states by function

approximation as discussed in Section 3.7.2. This would not only tie acquired knowledge of vari-
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ous states together, but reduce dimensionality of the state space to a set number of basis functions.

Also by finer discretizations this could be increasingly valuable. In this event an initial proposed

path could give the agent an idea of how to move in unseen states rather having to follow a forced

exploration strategy. This could not only prove valuable for path evaluation, but the earlier cases

as well. However, the limited precision and reduced state representation resulting from error in

approximations would have to be gauged against the current approach.

Another important aspect to note is that no changes are made to the optimal strategy in the later

stages, which also is the case for the previous approach. This indicates that the interdependence of

available states and following importance of backpropagation might limit the effect of exploration

for ε < 0.1. This is on the basis as previously discussed, new actions would have to be explored

multiple times before propagation would indicate them optimal. Consequently steeper decays or

earlier termination can be imposed to limit computational demands.
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Figure 5.2.4: Progression of returned rewards
for path improvement.
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Figure 5.2.5: Progression of applied thrust for
path improvement.
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Figure 5.2.6: Evolution of optimal strategy for path improvement with color indication. Solid line
showing the final result and red dashed line showing proposed path.
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Chapter 6

Concluding remarks

6.1 Conclusion

This thesis has studied applications of machine learning in a marine setting, specifically reinforce-

ment learning applied as an action-planning guidance layer for the vessel. A series of tasks have

been tested and presented subject to performance and behavior. From the observed results, it is

clear how the methods are able to propose improved strategies in various environmental settings,

due to a model free design. These improvements are made through collected experience based on

rewards of desired monitoring variables. The results reflect how the agents behavior, during and af-

ter training, is highly dependent on reward function design and action space definition. Further, it’s

clear how there exists a trade off regarding the extensiveness of the action space, between limiting

computational demands and available solutions for the agent.

Training to assign speeds, the proposed methods were able to evaluate the vessels limits in regard

to precision requirements, while maneuvering quickly to the quay and accurately come to rest.

This showed how the reward function can be shaped to incorporate multiple areas of focus. Large

penalty based rewards for precision and overshoot provided easy indication to avoid associated

actions, while positive rewards of promptitude led to further optimization in the feasible range of

state action pairs. Direct use of monitoring variables in rewards yielded strategies that were not

always as anticipated, showing a known ability of reinforcement learning to discover new creative

solutions. In specific, while training in regards to energy, the agent resolved a new strategy employ-

ing an unforeseen behavior of the thruster dynamics. However this also points out the importance

of careful reward design as unforeseen behavior can lead to violations outside of considerations.

Conflicting rewards proved to complicate learning by seemingly lowering stability due to the intro-

duction of local optima. Still other reward components gave consistent improvement, suggesting

how parts of the reward function can converge to optimal results despite others varying results.

Local optima also showed in training for good entrance paths as the many subtasks gave needs for
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6.2. FURTHER WORK

a highly descriptive reward function. Here, as in the speed evaluation case, careful weighting of the

various components had to be made to balance conflicting rewards. Still, good improvements were

achieved, showing desired behavior of reaching the quay with correct headings under reduced re-

quirements of thrust. Inspecting the final results it was clear how the path got shaped from the

structure and magnitude of the reward components. Starting off the vessel headed directly towards

the quay focusing on harvesting rewards of distance. Soon after however a rightward change in

heading was made to facilitate for heading and docking rewards. This showed the effect of back-

propagation in the agents strive for long term rewards, as the exponential structure of the dock-

ing reward and potential field weighting of the heading rewards gave the components dominance

closer to the quay.

As path tracking was carried out in an underactuated manner with desired heading tangent to the

path, future vessel configurations held dependency far back. This rendered backpropagation of re-

wards not only important but crucial for convergence to good strategies. This caused a need for

increased exploration and thus increased risk. Here, implementing n-step updates is deemed likely

to resolve much of this issue as well as give faster learning, and is thus proposed for future stud-

ies. Extending the approach to improve over a proposed path was found to reduce computational

and exploratory demands, while converging to identical results. However, it’s questionable if the

new exploratory approach bound to the proposed path is less robust, and might weaken training

progress in other circumstances.

While the methods returned promising results for all cases, some drawbacks should be taken into

consideration. One is the lack of generalization across states, meaning all state-action pairs have to

be tested individually leading to slow learning and need for extensive exploration. This could be

improved through function approximation giving a reduction in dimensionality from N states to

a fixed number of basis functions. However this would also introduce an approximation error re-

sulting in limited precision. Another concern is bound to the inhabited randomness in exploration,

creating uncertainty in convergence to global optimality. Improved results however are guaranteed.

Despite these drawbacks, reinforcement learning has proved extensive problem-solving capabilities

for marine applications, easily shaped to fit desired goals. All cases have returned improvements to

more optimal strategies throughout training, leaving no doubt of great potential.

6.2 Further work

Based on the conclusion there are still some potential improvements present. Initially an n-step

update rule should be implemented to gauge acceleration of training and improved stability of

convergence. Additionally applying function approximation is likely to speed up training, and will
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be increasingly valuable if finer mesh was desired due to increased dimensionality. However as

mentioned this update should be evaluated in terms of the introduced approximation error, and

must therefore be compared against the current approach. Further, improvements of the proposed

methods may be found through finer discretizations of state and action space. New formulations

of these as well as new reward functions may also prove better suited. Lastly, different weighting

of reward components, training parameters, and more intelligent exploration strategies might yield

better convergence and results.

Extending to real world situations, running CSAD in a laboratory setting would be interesting. As

the applied model is a high fidelity model quite similar to that of the actual vessel, the methods

are expected to work here as well. Still, the introduction of noise as well as more complicated

environmental effects could affect performance and give rise to new behavior. For actual training,

starting from scratch in a real world situation may be unfeasible due to safety concerns, especially in

regards of the time based speed training and path evaluation holding high risk of loosing path and

collision respectively. A possible approach to overcome this is to provide optimal policies evaluated

through simulations as a starting point, and let further training personalize these in a real world

setting under low ε.

The area of focus for implementation of RL has been the guidance layer of the vessel. Deeper imple-

mentation into the vessels control systems would be an interesting task. Making the RL independent

of the path generator through control of the vessels desired positions and speeds directly could give

more freedom to the vessel. However this would likely increase the complexity and require more

extensive training along with more well formulated states and actions.
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Appendix A

CSAD Model specifications

A.1 3 DOF Maneuvering Model

Table A.1: CSAD: Rigid body and added mass parameters.

Rigid body
Parameter Value

m 127.92
Iz 61.967
xg 0

Added mass
Parameter Value

Xu̇ 3.262
Yv̇ 28.89
Yṙ 0.525
Nv̇ 0.157
Nṙ 13.98

Table A.2: CSAD: Drag coefficients in surge, sway and yaw.

Surge
Parameter Value

Xu -2.332
X|u|u 0
Xuuu -8.557

Sway
Parameter Value

Yv -4.673
Y|v|v 0.3976
Yvvv 313.3

Yaw
Parameter Value

Nr -0.01675
N|r|r -0.01148
Nrrr 0.000357
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A.2. THRUSTER PARAMETERS

A.2 Thruster parameters

The following presents the thruster parameters of CSAD as described in Frederich (2016). This

should be considered with care as some parameters might be flawed. This is especially directed at

the full model parameters seemingly being of wrong dimension.

Table A.3: CSAD: Thruster parameters after scaling.

Scaled Model Full Model Unit

Max shaft speed 94.87 152 [RPS]
Power 0.8676 - [W]
Propeller Diameter 0.0467 0.030 [m]
Steering speed 113.84 270 [Deg/s]
Max Torque 0.0015 - [Nm]
Max Thrust 1.5034 2.6002 [N]
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Appendix B

Additional results

B.1 Speed evaluation results

This appendix presents additional and supporting results. It should be noted that negative values

of the overshoot reward is not due to insufficient precision, but rather due to simulations being

terminated before the agent is able to reach the quayside. Yet the values result due to the linear

decrease in speed at the end, and are small enough to be counted as sufficient precision.

B.1.1 Time reduction with precision focus
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Figure B.1.1: Progression of overshoot of pdock. Focusing on time and precision.
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B.1. SPEED EVALUATION RESULTS

B.1.2 Energy efficiency
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Figure B.1.2: Progression of overshoot of pdock. Focusing on thrust.
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Figure B.1.3: Applied thrust along path length for the expected and final result in terms of desired
speed, post training. Focusing on thrust.
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B.1. SPEED EVALUATION RESULTS

B.1.3 Reduction of time and thrust
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Figure B.1.4: Reference speeds along path
length post training. Focusing on time and

thrust.

0  100 200 300 400 500 600

X [cm]

0  

100

200

300

400

500

600

700

800

Y
 [

c
m

]

u
ref

=3

u
ref

=5

u
ref

=5
u

ref
=4 u

ref
=5 u

ref
=5

u
ref

=4

u
ref

=5

u
ref

=3

u
ref

=1

u
ref

=2

u
ref

=1

Figure B.1.5: Reference speeds along path post
training. Focusing on time and thrust.

0 200 400 600 800 1000

Episode

-5

0

5

10

15

20

25

O
v
e

rs
h

o
o

t 
o

f 
p

d
o
c
k
 [

c
m

]

Figure B.1.6: Progression of overshoot of pdock. Focusing on time and thrust.
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B.2. PATH EVALUATION RESULTS

Agent converging to focusing solely on thrust
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Figure B.1.7: Progression of returned rewards,
converging to thrust only. Focusing on time and

thrust.
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Figure B.1.8: Progression of time and thrust,
converging to thrust only. Focusing on time and

thrust.

B.2 Path evaluation results

Agent stuck at local optima of thrust
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Figure B.2.1: Progression of reward for path
evaluation. Agent stuck at local optimum.
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Figure B.2.2: Progression of thrust for path
evaluation. Agent stuck at local optimum.
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B.2. PATH EVALUATION RESULTS
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Figure B.2.3: Evolution of optimal strategy for path evaluation with color indication. Solid line
showing the final result. Agent stuck at local optimum.
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