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Abstract

The overall topic of this thesis is situation awareness in autonomous systems. The
thesis is divided into two parts, where the first is related to estimating the sea
state of a dynamically positioned (DP) vessel, and the second is about decision-
making related to collision risk for a DP vessel. These topics are highly relevant for
research on autonomous ships, as the sea state is a crucial input to an autonomous
decision system.

A sea state estimation algorithm independent of the vessel transfer function has
been developed for a vessel in DP. The algorithm uses Quadratic Discriminant
Analysis for estimating the absolute wave direction, and further uses the heave-
roll cross spectrum to estimate whether waves are incoming from port or star-
board. When relevant, the algorithm also distinguishes between head and follow-
ing sea. Further, Partial Least Squares Regression is used to estimate the signifi-
cant wave height and the peak wave period. The algorithm is trained on a simu-
lated dataset for NTNU’s Research Vessel Gunnerus, and validated on a dataset
with sea states not present in the training data. Results have been promising, and
comparable to model-based methods with the same objective.

An online decision model has also been established. The model uses a Bayesian
Belief Network which covers a range of factors which can affect the risk of col-
lision for an autonomous ship. The model makes decisions based on the sce-
nario/events present and the risk of collision at a point in time. Different sce-
narios have been tested in model experiments, where the system has shown to
make the right decisions and take actions based on the scenario in question. The
model is a good representation of an online and autonomous method using risk
as the decision criteria, and can be further developed to include more scenarios
and possible outcomes.






Sammendrag

Hovedtemaet i denne masteroppgaven er situasjonsforstaelse. Oppgaven er
todelt, hvor ferste del handler om sjotilstandsestimering for et dynamisk po-
sisjonert (DP) fartoy, og andre del handler om risikobaserte beslutninger for a
unngd kollisjon for et autonomt DP fartoy. Begge temaene er i hoy grad relatert
til forskning om autonome skip, da sjetilstand er en viktig input til et autonomt
beslutningssystem.

En algoritme for sjotilstandsestimering som er uavhengig av transferfunksjonene
til skipet har blitt utviklet for et fartey i DP. Algoritmen bruker Kvadratisk
Diskriminant Analyse til &4 estimere den absolutte belgeretningen, og estimerer
videre om bolgen kommer fra styrbord eller babord ved bruk av hiv-rull krysspek-
teret. Nar det er relevant, skiller algoritmen mellom motsjo og medsje. Videre
bruker algoritmen Partial Least Squares Regression for 4 estimere signifikant bel-
gehoyde og belgeperiode. Algoritmen trenes pa et simulert datasett for NTNUs
forskningsbat RV Gunnerus, og er validert pd data som ikke var i treningsdataen.
Resultater har veert lovende, og sammenlignbare med modellbaserte metoder
med samme mal.

En online beslutningsmodell har ogsa blitt laget. Modellen bruker et Bayesiansk
nettverk som dekker en rekke faktorer som kan pavirke kollisjonsrisiko for et au-
tonomt skip. Modellen tar beslutninger basert pa situasjonen og kollisjonsrisiko
pa et gitt tidspunkt. Forskjellige situasjoner har blitt testet i modelleksperimenter,
hvor systemet tok riktige beslutninger og handlet basert pé situasjonen. Mod-
ellen er en god representasjon pa en online og autonom metode som bruker risiko
som kriterie for & ta en beslutning, og kan bli utviklet videre til 4 inkludere flere
situasjoner og utfall.
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Preface

This master thesis was written in the spring of 2019, as the final delivery in the
master program of Marine Cybernetics at the Department of Marine Technology.

The thesis is constructed as a collection of two scientific papers with a summary
in the front. The first paper, Sea State Estimation Using Quadratic Discriminant
Analysis and Partial Least Squares Regression has been submitted to the Joint CAMS
and WROCO 2019. The second paper is called Risk-Based Decision Making for Au-
tonomous Ships: Collision Avoidance Case Studies, and is to be submitted to the IEEE
Control Conference. The work for this article has been done in close cooperation
with Emilie Thunes.
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Chapter 1

Introduction

Autonomous ships is a topic of increasing interest. The benefits of autonomous
ships are many. To name a few, cost saving, human safety and efficient use of
the vessel space are clear benefits of autonomy at sea (Brien, 2018). The common
ground for all autonomous systems is the dependency on situation awareness.
The system must be capable of processing information on the exact situation it
is in and use it to make safe and effective decisions. This is also the case for a
dynamically positioned (DP) vessel, which is an autonomous system capable of
maintaining the vessel position and obtain the desired vessel position.

1.1 Motivation

The focus of this master thesis is how to use the data available for a DP vessel to
increase situation awareness, and how to use the information about the situation
to make decisions. Situation awareness does not only entail being aware of the
surroundings in form of other constructions, but also aspects like weather, ves-
sel motions and maintenance status. The weather is a crucial part of the vessel’s
awareness. Knowledge of the sea state has numerous applications, but specifi-
cally related to autonomy the main application is being an input into the decision
system. For example, knowing the sea state can assist an autonomous system in
decision making on whether the operation should continue, or if the risk of power
loss or drift-off is high.
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1.2 Main Contributions

The main contributions of this thesis are two papers. The first paper is on sea
state estimation. The second paper is about risk-based decision making. Both
are related to situation awareness, as the first article is about how to increase ves-
sel situation awareness, and the second is about using the situation awareness to
make decisions.

Paper A Submitted to Joint CAMS and WROCO 2019

A sea state estimation algorithm is developed, which uses the vessel response and
non-model based methods to estimate the wave direction, significant wave height
and peak wave period for a DP vessel. The methods used are Quadratic Discrimi-
nant Analysis (QDA) and Partial Least Squares Regression (PLSR). The algorithm
successfully distinguishes between port and starboard waves, as well as head and
following, and estimates the significant wave height and peak wave period with
promising results. A simulation model developed at NTNU for Research Vessel
Gunnerus is used to generate the dataset needed to train the sea state estimation
algorithm.

Paper B To be submitted to the IEEE Control Conference

A Bayesian Belief Network (BBN) is constructed and used in an online decision
model for an autonomous ship. The BBN covers factors like sensor failure, power
failure and weather levels, and the end event is collision. A decision model is
made, which makes decisions based on the scenario in question and the probabil-
ity of a high risk of collision. Scenarios are simulated and tested in the laboratory,
and the autonomous system successfully makes decisions and takes action. The
vessel used is CyberShip Enterprise I and experiments were completed in NTNU’s
Marine Cybernetics Laboratory (MCLab).

1.3 Thesis Outline

The outline of the thesis is as follows:

o Chapter 2 covers autonomy aspects, which works as the bridge between the
specific topics of this thesis. Status on autonomous ships, levels of auton-
omy, risk aspects and situation awareness are discussed.

o In Chapter 3, the background on sea state estimation is covered. Previous
work is covered, as well as how to model waves and vessel response. The
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chapter is concluded with some additional results from the sea state estima-
tion algorithm presented in Paper A.

o Chapter 4 is related to Paper B. The chapter gives some background informa-
tion on Hardware-in-the-Loop (HIL) simulations, presents HIL results, and
describes the experimental setup for simulations and experiments.

e Chapter 5 concludes the thesis and discusses suggestions for further work.

e Paper A is called Sea State Estimation Using Quadratic Discriminant Analysis
and Partial Least Squares Regression and proposes non-model based methods
for estimating the sea state of a dynamically positioned vessel.

e Paper B is called Risk-Based Decision Making for Autonomous Ships: Collision
Avoidance Case Studies and uses a BBN in a proposed decision system for an
autonomous ship.






Chapter 2

Autonomy Aspects

The shipping industry is pursuing autonomous operations for various reasons.
Shipowners would like to reduce operating cost (mainly related to crew, mainte-
nance and fuel) and improve efficiency, offset skill shortages, as well as to further
enhance safety. This chapter covers the aspects of autonomy — specifically moti-
vation for introducing autonomous ships, how autonomy is defined, risk related
to autonomy, and the importance of situation awareness.

2.1 Autonomy in the Shipping Industry

First revolution

Second revolution

Third revolution

Fourth revolution

-Mechanization
-Steam power
-Water power

—

-Mass production
-Assembly line
-Electricity

-Computer
-Automation

-Cyber physical
system

FIGURE 2.1:

The four revolutions of the shipping industry are shown in Figure 2.1. With
the fourth revolution in shipping, Shipping 4.0, the maritime industry is mov-
ing towards autonomy. This fourth step is enabled by a large share of processes
on-board being computerized and automated, together with significant improve-
ments in vessel connectivity and data availability. Automated and data-driven
operations allow for moving tasks ashore into centralized hubs from where the

The four revolutions of the shipping industry

(Lloyd’s Register Group Ltd, 2017).

vessel is operated either remotely or autonomously.
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The field of autonomous ships is relatively mature. The world’s first autonomous
car ferry was successfully demonstrated in Finland during the fall of 2018 (Rolls-
Royce, 2016). The vessel proved ability to avoid collision (using sensor fusion
and artificial intelligence to detect objects) and perform autodocking (successfully
changing speed and course when approaching the quayside and berth without
human intervention). It also showcased a Shore Control Center (SCC), from where
the vessel could be remotely operated if necessary.

Another example is YARA Birkeland, which will be the world’s first fully elec-
tric and autonomous container ship. It is expected to be in operation by 2020
(Skredderberget, 2018), shipping products from two of YARA’s production plants
(Kongsberg, 2017). The vessel will start out with manned operations, then grad-
ually become remotely operated and eventually fully autonomous. YARA Birke-
land illustrates the potential of autonomous vessels in the short-sea shipping seg-
ment and their ability to compete with the cost of using trucks on voyages that are
too short for traditional container vessels to be competitive. This is illustrated in
Figure 2.2, as defined by Brinchmann (Massterly: Autonomy in shipping; opportuni-
ties and challenges).

Other examples within short-sea shipping is a project by Norwegian ASKO to
transport equivalent of 16 trailers on a fully electric, autonomous ro-ro feeder, as
well as the Seashuttle project by Samskip on a semi-autonomous container vessel
trading between Norway, Sweden and Poland Brinchmann (Massterly: Autonomy
in shipping; opportunities and challenges). Both the YARA and the ASKO project are
aimed at commission operations in 2021.
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FIGURE 2.2: Competition areas between trucks and maritime

shipping, for both a traditional container vessel and autonomous

ships (Massterly: Autonomy in shipping; opportunities and chal-
lenges).

2.2 Levels of Autonomy

Generally, the required number of people for operating a ship in a safe and effi-
cient manner depend on the vessel size, type and task, as well as how technolog-
ically advanced/equipped it is. With time, technology development has allowed
for a gradual reduction in crew size. Today’s diesel-electric propulsion requires a
machinery crew of less than ten people. That is a major change from the coal-fired
steam engines of the early 1900s, that needed a crew of several hundred people
(DNV GL: Remote-controlled and autonomous ships). Increased autonomy implies
reduced manning, thus reducing crew costs. However, autonomy requires large
investments in technology. Especially where crew costs are low, there might not
be a positive business case for investing in autonomy.

As vessels and their operations are getting more advanced, different skill-sets are
required by their crew. Challenges with identifying and recruiting qualified per-
sonnel is another driver for shipowners to move towards autonomy (Lloyd’s Reg-
ister Group Ltd, 2019). A highly autonomous system may outperform a human in
both efficiency and performance.

There are various definitions of the levels of autonomy. The International Mar-
itime Organization (IMO) describe the degrees of autonomy (IMO, 2018) as:
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Degree 1: Ship with automated processes. The ship is navigated and con-
trolled by humans, but some processes are automated.

Degree 2: Humans are on board the ship, but the ship is operated remotely.

Degree 3: No humans are on board, but ship is operated remotely.

Degree 4: Fully autonomous. The system makes decisions and takes action
without human interaction.

A DP vessel will typically be a degree 1 of autonomy ship, as the DP operation
is automated but the vessel itself is humanly operated. Levels of autonomy can
also be characterized by how involved humans are in decisions. As proposed in
Serensen (2013), the levels can be categorized as:

o Automated system (Human in the Loop): Humans supervise all actions, but
certain tasks and functions can be completed automatically.

o Automated system - management by consent: System gives recommendations
to operator so the operator has time to decide on actions.

e Semi-autonomous system - management by exception: System makes own deci-
sions when operator does not have time to make decisions. Operator can
always override decisions made by the system.

e Highly autonomous system (Human out of the Loop): System makes own deci-
sions, can re-plan an operation, handle mistakes and reconfigure itself.

The technical requirements for achieving a fully autonomous ship are extensive.
First of all, the vessel must be capable of doing its design tasks as good or better
than a human would be, requiring a system with a broad understanding of the
relevant operations, possible future events and handling of unexpected events.
Additionally, the operation must be at least as safe as a humanly operated vessel,
requiring the system to have knowledge of the safety on board as well as economic
consequences related to different actions.

2.3 Risk Management

Another motivation for introducing autonomy is improving the safety level off-
shore by eliminating human exposure in operations. Removing personnel from
hazardous situations is a major benefit of autonomy. However, unmanned vessels
introduce other risk factors that need to be mitigated for, and autonomous vessels
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must be at least as safe as traditional vessel. Risk for autonomous systems can be
categorized using three aspects (Serensen, 2013):

e Mission complexity

— Complexity of the system’s tasks, such as precision requirements, deci-
sions and performance requirements.

— Organization of and collaboration between participants in the opera-
tion.

— Necessary performance, like quality of payload sensor data and control
accuracy of vessel.

e Environmental complexity
— Objects nearby.
- Changing weather conditions.
- Mobility constraints.
e Human independence
- Level of autonomy.

— Measure of how well the system perceives, analyzes, makes decisions
and interacts.

Risk for an autonomous system can thus be defined by placing the score of the
three aspects described above on a three-dimensional space as shown in Figure
2.3.
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Mission complexity

Environmental complexity

Human independence

FIGURE 2.3: Axes describing how risk can be modeled for au-
tonomous systems.

Huang (2007) states that insufficient measure in any of the factors listed above
will reduce the safety level, in addition to insufficiency in any other Root Au-
tonomous Capabilities (RAC). RACs are the system’s ability to sense, perceive,
analyze, communicate, plan, decide and execute (Huang, 2004). As the mission
and environment becomes more complex, the safety level is reduced. This is be-
cause it requires a more complex and knowledgeable system. When human de-
pendency is high, it adds the risk of human error, which often is the source of
accidents.

Insurance, legal and approval aspects are among the challenges in the develop-
ment of autonomous ships. Regulatory challenges arise as there are new risks
introduced. This is due to both cyber- and physical security of the vessel, but
also due to the technical dependencies of the system. A single technical failure in
a system of an autonomous or unmanned vessel may have serious consequences.
With the amount of possible events that can occur, the regulatory requirements for
testing and verification need to be extensive(Teknologien endrer samfunnet 2018).

As mentioned above, an important risk aspect related to autonomy, is the pos-
sibility of cyber attacks. Maritime Unmanned Navigation through Intelligence
in Networks (MUNIN) is a collaborative research project, co-funded by the Euro-
pean Commissions. They aim towards a concept of an autonomous ship (MUNIN,
2016). In an assessment by the MUNIN project, Kretschmann (2015), it is stated
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that the risks ranked highest are jamming, spoofing or hacker attacks of the Au-
tomatic Identification System (AIS), Global Positioning System (GPS) signals, or
communication systems. If there is a crew on-board the vessel, it is assumed that
control of the vessel can be regained in case of an attack by the crew turning off ex-
ternal dependencies. However, with an unmanned vessel this will be impossible
and reaching the vessel physically before the damage is done can prove difficult
(Vinnem et al., 2018). Such attacks could lead to grounding or collision, poten-
tially with a ship with passengers or large amounts of oil. However, the vessel
on the collision course of a hacked vessel will in most cases be able to maneuver
away from collision, so the real threat is actually for infrastructure. Bridges, open
sea areas, and offshore oil and gas installations are all examples of infrastructure
which would be unable to move to avoid collision (Vinnem et al., 2018), where
all are likely to have fatal effects. This is just another aspect contributing to the
difficulties of classifying and verifying autonomous ships.

Complex operations with a high risk require a detailed operational procedure.
An operational procedure includes the sequential steps like mobilization, testing,
transiting, launching, mapping recovering and demobilizing (Teknologien endrer
samfunnet 2018). With an operational procedure, the DNV GL recommendations
for managing risk should be followed. A simplified version of the model can be
seen in Figure 2.4.

Step 1 Step 2 Step 3 Step 4 Step 5

. Establish Overall Risk Risk

Establish e .
—  Accept —| Assesment & — ldentification —{ Reducing

Process Plan Criteria Categorization Activites Activites

FIGURE 2.4: Simplified version of DNV GL'’s five step model for
managing risk (DNV GL, 2017).

Step two in Figure 2.4 entails establishing which criteria are acceptable. The com-
mon criteria is As Low As Reasonably Practical (ALARP), defined as "a level of
risk that is not intolerable, and cannot be reduced further without the expenditure
of costs that are grossly disproportionate to the benefit gained" (Rausand, 2011).

In step three and four in Figure 2.4, Hazard Identification should be done
(HAZID). The purpose of HAZID is to identify hazards at an early stage to
assist in choosing advantageous procedures or design. A hazard will lead to a
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hazardous event unless precautions are taken and hazards related to a particular
operation must therefore be identified (DNV GL, 2017).

In step four, one should also complete a Hazard and Operability Analysis (HA-
ZOP) and Safe Job Analysis (SJA). HAZOP uses experts to conduct analyses of a
system to explore hazards. SJA analyzes activities to establish preparedness and
risk management. In step five of the risk management model, risk mitigating
measures are identified.

2.4 Situation Awareness

Situation awareness is the basis for nearly all aspects related to autonomous ships.
The vessel’s awareness of the surrounding objects, objects on its collision course,
the weather, vessel motions and maintenance levels on machinery and hull cover
a range of the factors an autonomous ship should be aware of. The quality of the
control system has little impact if the data on the current situation is unavailable.

This section covers previous work on situation awareness, as well as a subsection
on how situation awareness is obtained and situation awareness for a DP opera-
tion.

2.4.1 Previous Work

Situation awareness is of interest not only for autonomous or unmanned ships,
but for all seafaring. It is important for underwater vehicles, ships navigating in
harbours, ships on crossing courses and DP operations to name a few.

Clemente et al. (2014) propose a collision avoidance system which applies a cogni-
tive situation awareness framework. The framework is comprised of the general
Endsley model for situation awareness, as well as data management activities, se-
mantic technologies and uncertainty methods. The Endsley model for situation
awareness has three levels: perception, comprehension and projection (Endsley,
2000). Perception entails observation of important information, while comprehen-
sion entails understanding and combining this important information. The third
level, projection, is the ability to forecast future events, allowing for decision mak-
ing. A visualization of this model is shown in Figure 2.5, showing how different
factors influence the situation awareness, and thus the decision and performance
of a system.
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FIGURE 2.5: Endsley model for situation awareness. Inspired by
Endsley (1995).

Clemente et al. (2014)’s extension of this model specifically involves the integra-

tion of Semantic Sensor Network Ontology to represent sensor information and

manage uncertainties from the sensor network. Cognitive maps to evaluate the

potential evolution of current events are also proposed.

Porathe et al. (2014) investigate what information is necessary for an onshore con-

trol centre to acquire adequate situation awareness for an unmanned ship. The

paper proposes the necessary information groups to obtain situation awareness,

found using a focus group. The list of information groups include

Voyage, i.e. the voyage plan.
Sailing: position, course and other standard information usually found on

the bridge.

Observations. This includes information from the object identification sys-
tem such as Radio Detection and Ranging (RADAR) and AIS.

Safety and emergencies which includes information on firefighting, water
ingress etc.

Security. Security sensitive log-on to the vessel information, as unmanned
vessels are sensitive to cyber attacks. Also to keep track of things like door
status, personnel on board, and possible intruders.
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o Cargo, stability and strength. This information group contains information
on the stability systems and tank levels.

e Technical, tracking the engine control system.

e SCC, containing things the vessel is unable to handle such as voice commu-
nication.

e Administrative: crew lists and such.

Porathe et al. (2014) also recognize that one of the main challenges in autonomous
navigation is extreme weather. In extreme seas, the autopilot is often turned off
and it is the captain’s experience and situation awareness that are able to slow
down at the correct point in time, or alter the course. Obtaining these same feel-
ings for an operator on shore is challenging, but hopefully possible with gyro
stabilizing cameras. Another challenge is for the autonomous system to alert the
SCC when its performance is not satisfactory.

Andrade et al. (2017) suggest and present results of using an Unmanned Aerial
Vehicle (UAV) to map the area near the vessel to give the captain an overview
of the surroundings and warn about upcoming obstacles on the vessel path. Re-
sults showed that the UAV successfully followed the planned path of the ship.
Although this study is not for an autonomous ship, the concept may be valuable
in achieving high situation awareness for an autonomous ship and for the land-
based operator.

2.4.2 Obtaining Situation Awareness

A manned and an autonomous vessel gain situation awareness in many of the
same ways. They both rely on sensor data, although an autonomous vessel to a
much higher extent. With a manned vessel, sensor errors can often be managed
by the personnel on board, which may not be the case for an autonomous vessel.
This chapter therefore covers some background info on the sensors and data that
must be available for an autonomous vessel.

Liu et al. (2016) propose the elements comprising an Unmanned Surface Vessel
(Usv):

e The hull.

e Propulsion and power system, usually a rudder and propeller providing
steering and thrust.
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e Guidance, Navigation and Control (GNC) system. GNC is a crucial compo-
nent, usually composed of computers and software.

e Communication systems, which do not only include wireless communica-
tion with onshore and other vessels, but also communication between the
different systems and sensors on-board.

e Data collection equipment. This is crucial to be able to gain situation aware-
ness. Sensors include Inertial Measurement Unit (IMU), Global Navigation
Satellite System (GNSS), cameras, RADAR, AIS and LIDAR.

e Ground station. This is where missions are received from.

Situation awareness cannot be obtained without sensor data. A short description
of each sensor’s role follows:

IMU: The IMU typically has measurements from three-axes rate gyros, accelerom-
eters and magnetomoeters. A gyroscope detects rotation using the concept of mo-
mentum conservation. Accelerometers measure acceleration, and are either me-
chanical or based on frequency shifts due to increased tension in a string. Mag-
netometers are used to find the compass heading and roll-pitch angles (Fossen,
2011). Measurements from the IMU, are for example crucial for a sea state es-
timation algorithm based on the vessel response, providing increased situation
awareness of the surroundings.

GNSS: The purpose of the GNSS is to provide a position reference. GNSS sys-
tems include the GPS from the United States, and the GLObal'naya NAvitsionnay
Sputnikovaya Sistema (GLONASS) from Russia. These systems can be assisted by
the more recent and accurate GALILEO positioning system, a system by the Euro-
pean Union . The position of a marine vessel is usually measured with differential
GNSS, which involves a fixed receiver, for example on shore with known position,
used to calculate the GNSS position errors. The errors are then transmitted to the
ship and used as corrections for the actual position (Fossen, 2011).

Camera: Both thermal imaging and high definition visual cameras can be used to
detect objects (Advanced Autonomous Waterborne Applications (AAWA), 2016).
Prasad et al. (2016) discuss the challenges involved in video based object detection
at sea, and state that challenges include the dynamic nature of the background,
small distant objects and illuminating effects.

RADAR: The purpose of the RADAR is to detect the location of an object, and
the distance from the vessel that this object is located. The object is detected by
transmitting a radio energy pulse, which is reflected by the potential object. The
time spent from the pulse being sent to being received back, as well as the speed
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of the signal, is used to calculate the range of the target. To be able to detect the
direction from the vessel in which the object is located, a single antenna is used for
both transmission and reception, assuring that energy is transmitted in a narrow
beam in the horizontal plane (Bole, 2005).

AIS: The AIS contains three types of information: dynamic data such as position,
course and speed, static data like identity, vessel type, dimensions, and lastly the
details on the sailing such as destination, estimated time of arrival, cargo and
draught (Norwegian Coastal Administration, 2016).

LIDAR: LIDAR has similar applications as RADAR, where the difference is that
LIDAR uses light instead of radio pulses. LIDAR is said to be more accurate
than RADAR, but unlike RADAR, LIDAR will be negatively affected by weather
like rain and fog. LIDAR technology is also more expensive than RADAR, but
can work over longer distances. LIDAR is more angularly accurate than RADAR
(Rothman, 2018).

All of the sensors described above will in their own way provide information
contributing to an autonomous vessel’s situation awareness. Although sensor
technology is developing fast, the sensors all have limitations. The AIS will for
example not be able to detect all the smaller vessels, and the LIDAR is limited by
weather. With a fusion of the data from high-technology sensors, the goal is to
be able to have redundancy on information and reduce the probability of a sys-
tem receiving false or lacking information. Additionally, interpreting the data is
another challenge in achieving situation awareness. The system must be capable
of using the information to determine if a situation is hazardous or not. The mar-
gins may be small, and differentiating between a safe and unsafe situation may be
challenging for a computer system.

2.4.3 Situation Awareness in Dynamic Positioning

@vergard et al. (2015) discuss the situation awareness of DP operators, and
demonstrate results from interviews with operators after incidents occurred.
This section is based on information and results from @vergard et al. (2015), and
the purpose is to demonstrate some of the DP operators responsibilities, which
one day will be an autonomous system’s responsibility.

The research is based on the three level Endsley model for situation awareness,
described in Section 2.4.1. 24 different work situations were studied, where the
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situation awareness level of each situation was established. The interviewed op-
erators differed in age and experience, but all had been involved in a critical inci-
dent as a DP operator. Critical incidents were defined as non-routine happenings
with a high damage potential. Base events, or initiating events were:

e Environmental impacts.

e Power Management System (PMS) error.
e Human error.

e DP reference system problem.

e Component failure.

e DP software problem.

The operators informed that the most important mitigating measures were to se-
cure the gangway, to protect people, and stop the vessel from colliding in the
offshore installation. In 14 out of the 24 events, level 1 situation awareness was
not obtained, meaning the operators only became aware of the base event after
the event. In 19 of the 24 incidents, level 2 situation awareness was obtained as
the operator was able to understand the relevance of some information. Level 3
situation awareness was only obtained five times, and operators were hence sur-
prised when the incident occurred in the remaining 19 cases. The consequences
of these events were drive off, drift off, force off, being on a collision course or
keeping position.

The study presented above demonstrates the extent of situation awareness that
an autonomous DP vessel must have. The operator’s situation awareness and
risk assessment was based on perception of cues, what they expected to happen,
problem and goal identification, limitations related to time, and uncertainty in
recognizing the based events, which are all tasks that an autonomous system need
to perform equally well, preferably better.
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Chapter 3

Background on Sea State
Estimation

This chapter covers previous work within the field of sea state estimation. This is
followed by a section on how waves are modeled, and how these result in vessel
motions. Further, brief information on how the dataset used to train the sea state
estimation algorithm is described. Lastly, some additional results from the sea
state estimation algorithm formally presented in Arneson et al. (2019) (Paper A
appended to this thesis) are shown and discussed.

3.1 Previous Work

Previous work on sea state estimation go back to the 1970s. On-site monitoring
systems and decision support systems needed estimates of the sea state at the ac-
tual position of the vessel, recognizing the need for sea state estimation (Nielsen,
2017). Studies on sea state estimation have been conducted for vessels with and
without forward speed, in both the frequency and time domain, and have been
both parametric and non-parametric. Parametric methods assume the wave spec-
trum to be a parametrized wave spectrum, and non-parametric methods find the
wave spectrum without prior knowledge of its shape (Nielsen, 2006).

Early studies for a dynamically positioned vessel were done by Pinkster (1978).
The study investigates the use of wave feed-forward to improve dynamic po-
sitioning, and the wave height is estimated by measuring the wave height at a
discrete, finite number of points using wave probes. The method assumes that
the relative wave height does not vary rapidly with position around the vessel’s
waterline.
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Later, several attempts were made for sea state estimation for vessels with for-
ward speed. The first to strictly consider the Doppler shift was Iseki et al. (2000)
(Nielsen, 2017). The Doppler shift occurs when the vessel has forward speed,
as the encounter frequency between the waves and the vessel needs to be con-
sidered. In following sea, there are three true wave frequencies contributing to
the power spectrum at certain encounter frequencies. In practice this means that
the measured cross spectra consist of a sum of three terms where the directional
wave spectra are different in the different terms (Iseki et al., 2000). The method in
Iseki et al. (2000) further proposes a Bayesian model for estimating the directional
wave spectra, based on a modelling procedure proposed in Akaike (1980). This
procedure consists of finding unknown coefficients by maximizing the product
of the likelihood function and the prior distributions. A prior distribution can be
thought of as a stochastic constraint and a character of the model which is known.

A parametric sea state estimation method is proposed in Nielsen et al. (2012).
The chosen spectrum is a 15-parameter tri-modal spectrum, which accounts for
mixed sea such as wind and swell. The method is based on the so-called wave
buoy analogy, and uses the equation relating the measured cross spectrum and
the estimated cross spectrum. The estimated cross spectrum is calculated using
the transfer function, the Response Amplitude Operator (RAO) and the calculated
cross spectrum. This is then considered an optimization problem, minimizing the
difference between the estimated and calculated spectrum, yielding an estimated
wave spectrum and thus the sea state.

Studies have also been extensive on sea state estimation for DP vessels. Waals
et al. (2002) propose a method which estimates the directional wave spectrum
based on measurements from six relative wave height sensors. These measure-
ments were used to to find the Cross Power Spectral Densities (CPSD), and the Ex-
tended Maximum Likelihood Method (EMLM) minimizes the difference between
the measured and theoretical CPSD. The theoretical CPSD is a geometrical phase
difference and normalized transfer functions of the relative wave height. Non-
parametric methods for sea state estimation for a DP vessel are also presented in
Tannuri et al. (2003) and Pascoal et al. (2008).

3.2 Modelling Waves

This section is based on information from Faltinsen (1990). The wave surface ele-
vation, as a function of space and time, for long-crested irregular sea propagating
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in the positive x-direction can be presented as a sum of many regular wave com-
ponents :

{(x,t) = i Ca,co8(wnt —kux + €y) 3.1
n=0

C An is the wave amplitude, wy, is the wave frequency and k, is the wave num-
ber, defined as w; = gk, for deep water. €, is the random phase angle which is
rectangularly distributed between 0 and 27t.

FREQUENCY DOMAIN
WAVE SPECTRUM

TIME DOMAIN

REGULAR WAVE
COMPONENTS WITH
RANDOM PHASE
ANGLES

FIGURE 3.1: Connection between time and frequency domain for
long-crested short-term sea (Faltinsen, 1990).

The instantaneous surface elevation, ¢ in (3.1) at t = 0, is normally distributed
around zero. Figure 3.1 shows a graphical illustration of the relationship between
the time and frequency domain, as it shows many regular wave components and
how they sum up to the wave elevation. It can also be seen in Figure 3.1 that {(x, t)
has an associated spectrum as a function of frequency, denoted S(w). The area
under the curve in a frequency interval represents the total energy in the wave
components in this frequency range. The surface elevation and wave spectrum
are related through the equation below.

%gin = S(wy)Aw (3.2)

When estimating the sea state, the interesting outputs are the significant wave
height, peak wave period and wave direction. Significant wave height, H;, is the
average of the 1/3 largest wave heights, usually in a three-hour time interval.
Both the significant wave height and peak wave period can be obtained from a
wave spectrum.
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The standardized wave spectrum called the Joint North Sea Wave Project (JON-
SWAP) spectrum is used to model waves in the simulation model used for the sea
state estimation algorithm in the appended Paper A. The JONSWAP spectrum can
be obtained from a Rayleigh distribution, which assumes a narrow-banded spec-
trum and a Gaussian distributed instantaneous surface elevation. The JONSWAP
spectrum is most applicable in the sea state range where 3.6 < T,,/+/H; < 5 (DNV
GL, 2007).

Figure 3.2 shows the JONSWAP wave spectrum for H; = 4 m and T, = 8 s. One
of the parameters determining the shape of the JONSWAP spectrum, and what in
fact separates it from a Pierson-Moskowitz spectrum, is the non-dimensional peak
shape factor, . Figure 3.2 shows the spectrum for two different y-values, showing
that higher -y values increase the peak spectral value, and thus the energy in the
sea state around the peak frequency.

JONSWAP spectrum
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FIGURE 3.2: JONSWAP spectrum for Hs = 4 m. and T, = 8

s., showing the spectrum for two different non-dimensional peak
shape parameters.

3.3 Response Spectrum

Linear wave theory can to a large extent describe wave-induced motions for struc-
tures at sea. However, at high sea states the nonlinear effects’ contribution is



3.4. Generating Data for Sea State Estimation 23

large, and should be considered. Linear theory in practice means that in non-steep
waves, the wave-induced motions are linearly proportional to .

Rij,
and is given by

i,j = {z,¢,0} is the complex valued cross-spectra for heave, roll and pitch

Rij(w) = Xi(w, B)Xj(w, p)S(w) (33)
where B is the relative direction of the wave. X;(w,B) is the complex-valued
motion transfer function, which provides the motion amplitude per unit inci-
dent wave amplitude, as well as the phase of the motions relative to the waves.
Xj(w, B) is the complex conjugate of the transfer function, the so called RAO, giv-
ing the response amplitude per unit incident wave amplitude (Greco, 2012).

In addition to the significant wave height and peak wave period, the direction
of the incoming wave also largely affects the response of the vessel. This is clear
from (3.3) as the transfer function, X;(w, B), depends on the wave direction, B. The
wave direction is defined as 180° when incoming straight on the bow (head sea),
and 0° when incoming from stern (following sea), as shown in Figure 3.3. The
wave direction is negative when incoming waves are from the vessel starboard
side.

Beam sea

p=60° "
Stern quartering sea,”~ “ .
g g \. Bow quartering sea

/
/ \
/ N S

/ A e 3

p=30° A B=150°
Following sea/; '\ Head sea
B=0° : - =180
y

FIGURE 3.3: Relative wave directions.

3.4 Generating Data for Sea State Estimation

The dataset used to train the sea state estimation algorithm was generated using
an existing MATLAB/Simulink model, developed at NTNU.
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The model consists of an environmental module, marine vessel module and a
control system, connected as presented in Figure 3.4.

Environment

Marine Vessel Module Control System Module
Module
Motion
Waves Transfer
Function
H~ Controller —f Thruster
Dynamics
H T,

— Wave Drift —— DP Model —

FIGURE 3.4: Block diagram of the simulation model used for data
generation to train the sea state estimation algorithm.

The environmental module models waves based on H; and T, in correspondence
with the wave modeling theory described in Section 3.2. The motion transfer func-
tion is used to obtain the wave-frequency motions. These consist of frequency-
dependent added mass forces, vessel’s mass and moment of inertia, wave radia-
tion damping and restoring due to gravity and buoyancy. The wave drift block
calculates the 6 Degree of Freedom (DOF) wave-frequency excitation forces on
the vessel using its force transfer functions. The DP model block contains the
equations of motion, and finds the low-frequency motions. The low-frequency
forces consist of inertial forces, Coriolis and centripetal forces, damping and cur-
rent forces, restoring forces, environmental forces and thruster forces (Serensen,
2013). The total motion of the vessel is a sum of the low-frequency and wave-
frequency motions. The commanded thruster forces in the simulation model are
computed using a Proportional Integral Derivative (PID) controller for DP, and
are allocated to the thrusters in the thruster dynamics block.

To generate the dataset each sea state was simulated for 12 minutes. This is to
assure that steady state has been reached. The time series of the vessel response in
all DOFs for each sea state were transformed to the frequency domain using the
Fourier transformation. To obtain a single value for each DOF for the particular
sea state, the frequency domain response was integrated over the frequency range.
The results are then one response value for surge, sway, heave, roll, pitch and yaw
for every sea state. These values, as well as the significant wave height, peak
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period and wave direction were recorded and used as training data to develop
the sea state estimation algorithm.

3.5 Additional Results

This section shows some results from the sea state estimation algorithm in Ar-
neson et al. (2019) (Paper A in the appended papers) that are not shown in the
article. Specifically, the resulting regression coefficients from PLSR will be shown
and discussed.

As the vessel response largely depends on the direction of the incoming waves,
the algorithm needs to consider the wave direction when estimating the sea state
based on the vessel response. That is why the algorithm firstly estimates the wave
direction, and further chooses the regression coefficients for that particular wave
direction. The coefficients for Hs and T} are shown in Tables 3.1 and 3.2 respec-
tively. The color scale is darker for higher absolute values, i.e. darker for the DOFs
with high contributions in the calculation of Hs or T). For a time series of motions,
each DOF has a preprocessed value and the regression coefficients represent the
weight of these values in the calculation of H; and T),.

TABLE 3.1: Regression coefficients for H;.

Wave Surge | Sway | Heave | Roll | Pitch | Yaw
direction | -10* | -10* | -10* | -10* | -10* | -10*
0° 4.9 0.0 20| 00 0.0
30° 3.0 5.0 0.5 -32 | -0.4
60° 0.8 4.8 07| 80| -07| -04
90° 0.0 3.7 21| -15| -01| 00
120° 1.7 4.3 09| 36| -26| -10
150° 2.1 3.3 28 | 31| -52| -16
180° 3.9 0.2 1.9 | 0.0 0.0
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TABLE 3.2: Regression coefficients for T).

Wave Surge | Sway | Heave | Roll | Pitch | Yaw
direction | -10* | -10* 0% | -10% | -10* | -10*
0° s oo 04 | o0 [T124] o0
30° 0.2 0.1 00| 11| -03,| 00
60° 01| -01 00| 03] 00| 00
90° 00| -01 00| 04| 00| 00
120° 01| -01 00| 03| -03| -0.1
150° 01| -04 00| 07| 11| 03
180° 0.1 0.0 01| 00| 31| 00

As can be seen in both tables, the roll and sway motions contribute close to noth-
ing in head and following sea. Similarly, surge and pitch are not important mo-
tions in beam sea. Surge, heave and pitch are the important motions in head and
following sea, and the effect of these gradually decrease when moving to quarter-
ing and beam sea. The roll and sway motions have their maximum contributions
in stern quartering sea in the H;-regression, and in bow quartering sea for the
Tp-regression.
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Chapter 4

Simulations and Experiments

The chapter covers some background on HIL testing and its applications, and
further shows the HIL simulation results produced in relation to the testing of the
risk-based decision model proposed in Paper B. The experimental setup for HIL
simulations and model experiments is also covered at the end of this chapter.

4.1 Background on Hardware-in-the-Loop

In the movement towards autonomous ships, the need for reliable approaches
for verification of control systems increases. This is to ensure that performance
and safety requirements are met. Verification and testing early in the process is
efficient and cost saving (Kapinski et al., 2016).

One such approach is HIL testing. Before conducting model experiments to test
the decision model performance, HIL-tests were performed to verify the system.
In HIL-testing, the system consists of a real-time platform and a virtual plant. The
virtual plant can either run in real time on specialized hardware, or a combination
of a computer model and physical components (Kapinski et al., 2016).

In the case of a marine system, the hardware should be capable of simulating the
dynamic response of the vessel and should contain sophisticated models of the
vessel and its equipment (DNV GL, n.d.). The HIL simulator realistically imitates
the vessel systems and the environment and responds to the control demands.
This process is illustrated in Figure 4.1. From the control system point of view, its
inputs are the same as in the real world, and HIL testing therefore facilitates sys-
tematic testing of performance, functionality, control system and error handling.
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FIGURE 4.1: Concept of HIL-testing. Figure inspired by DNV GL
(n.d.).

4.2 Hardware-in-the-Loop Results

In the second appended paper, experimental results are shown for three chosen
scenarios, to demonstrate the decision model performance. Before these experi-
ments were conducted, the decision model performance was checked in HIL-tests.
This section shows these results for the three scenarios. These scenarios and the
decisions the vessel makes are further described in Paper B, but the figure captions
briefly explain the events.
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FIGURE 4.2: HIL simulation results for scenario 1. Position in surge (upper), sway (middle)
and yaw (lower) are shown, as well as vessel path (right). Vessel is manually maneuvered
from t= 50 s. and onward, as the vessel situation awareness has been lost.
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FIGURE 4.3: HIL simulation results for scenario 2. Position in surge (upper), sway (middle)
and yaw (lower) are shown, as well as vessel path (right). Setpoint is changed att =50s.,
as the weather is extreme and maintenance has been unsatisfactory.
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As is seen from the results, the vessel follows its setpoint (except when manually
maneuvered). Results showed satisfactory performance, such that the model was
tested further in model experiments.

4.3 Experimental Setup

This section is written in cooperation with Emilie Thunes, co-author on Paper B.
The section covers background information on the vessel used in experiments,
CS Enterprise I, as well as information on the hardware and software necessary
to perform the HIL-simulations and model experiments. The chapter is mainly
based on information from CyberShip Enterpise I User Manual. All experiments
were performed in the MCLab basin at NTNU.

4.3.1 CS Enterprise I

The CS Enterprise I vessel is 1:50 scale tug boat, equipped with one bow thruster
(BT) and two Voith Schneider propellers (VSP). The vessel is illustrated in Figure
4.5, with corresponding dimensions shown on the figure and in Table 4.1 The
model ship is used during full scale testing of the maneuvering control design,
PID controller and decision model.

L = lyp = -0.4574m

I3 = 0.3875m

Y
FIGURE 4.5: Thruster placement on CS Enterprise I

TABLE 4.1: Dimensions of CS Enterprise I

LOA | 1.105 [m]
B 0.248 [m]
A 14.11 [Kg]
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The low-speed control design model of CS Enterprise I is given by

=Ry (4.1)
Mv=—-Cv)v—Dw)v+t 4.2)

where 7 is the surge, sway and yaw position vector and v is the surge, sway and
yaw velocity vector. R(¢) is the rotation matrix, M is the vessel inertia matrix,
C(v) is the coriolois and centripetal matrix and D(i) is the damping matrix. M
and C(v) are dependent on the rigid body and hydrodynamic added mass pa-
rameters, as well as hydrodynamic damping parameters. D(v) is a function of
the hydrodynamic damping parameters. The necessary coefficients are given in
Tables 4.2 an 4.3.

TABLE 4.2: CS Enterprise I rigid body and added mass parameters

Rigid body Added mass
Parameter | Value | Parameter | Value
m 1411 | Xy -2.00
I, 1.76 Yy 10.00
Xg 0.04 Y; -0.00
Yg 0.00 N; -1.00

TABLE 4.3: CS Enterprise I damping parameters

Surge Sway Yaw

Parameter | Value | Parameter | Value | Parameter | Value
Xu -0.66 | Yy -1.33 | Ny 0.00
Xuu 0.35 Yoo 278 | Ny -0.21
Xuuu -3.79 | Youo -64.91 | Nywo 0.00
Xy 0.00 Y, -725 | N; -1.90
Xoo 244 | Yy -3.45 | Ny -0.75
Xovo 0.00 Yorr 0.00 Nyrr 0.00
— — Yo -0.81 | Ny 0.13
— — Yor -0.84 | Ny 0.08
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4.3.2 Hardware Architecture

The model ship is powered with a 12V12Ah battery on-board. The battery is
mounted by connection of the positive and negative terminal to the vessel using
wires. In addition, CS Enterprise I is equipped with an IMU from Analog De-
vices. The sensor type is ADIS16364, which includes a triaxis accelerometer and
gyroscope. The coordinate frame of the IMU is left-hand orientation for linear ac-
celerations and right-hand orientation for the angular rates. This is accounted for
by multiplying the accelerations with -1. The control system on-board the scale
model consists of four parts:

Compact re-configurable input/output (cRIO): cRio is an embedded controller
provided by National Instruments. The ship model is equipped with the cRIO-
9024 version, which is an embedded real-time controller, commonly used for ad-
vanced control and monitoring. The cRIO-90234 reads positioning data and is
connected to four Field Programmable Gate Array (FGPA) modules for I/0O.

e NI-9215: Used for measuring voltage.

o NI-9263: Used for reading IMU measurements.

e NI-9401: Not used.

o NI-9474: Used for sending Pulse-Width-Modulated (PWM) signals.

Raspberry Pi (RPi): The RPi provides the communication with the Sixaxis con-
troller. The Sixaxis controller transmits information from the joystick to the RPi.
This is accomplished by Bluetooth communication. When the RPi is powered, it
starts searching for a wireless controller. As soon as the RPi is successfully con-
nected to a controller, the controller will output commands through the Ethernet
to the cRIO.

Electronic Speed Control (ESC): The ESC controls the thruster motor speeds.
These are controlled with PWM signals from the cRIO.

Four servos: The servos control the position of the VSP steering rods.

In addjition to the on-board control system, a laptop is used in the communication
system. The laptop reads simulated data and sends inputs to the cRIO based on
outputs from the VeriStand Engine. The inputs are sent over the MCLab Wi-Fi. An
illustration is displayed in Figure 4.6. Additional information is found in Marine
Cybernetics laboratory handbook (Marine Cybernetics Laboratory Handbook 2017).
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FIGURE 4.6: CS Enterprise hardware setup

4.3.3 Software Architecture

Several software parts are needed in order to utilize the hardware architecture
from section 4.3.2. This includes the MATLAB/Simulink system, the VeriStand
software and the Qualisys Track Manager (QTM) software.

The MATLAB/Simulink system is developed at NTNU, and can be downloaded
from GitHub. The different models include ctrl_custom, ctrl_DP, ctrl_sixaxis2thurster
and u2.pwm, where ctrl_custom is the model modified and used for this thesis.
Figure 4.7 shows a block diagram of the elements in ctrl_custom, along with the
elements added to facilitate for risk-based decision making. A PID controller has
been developed, which takes inputs from the observer and a reference model.
The reference model smoothens the vessel setpoint to a realistic vessel path. The
actuator system gets the commanded thrust from the PID, and communicates
the allocated thrust to the plant. The plant models the vessel position, which
is estimated by a sensor system. These noisy sensor measurements, along with
the commanded thrust, are used in a Nonlinear Passive Observer (NPO) which
produces estimated vessel positions.
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FIGURE 4.7: Representation of the ctrl_custom Simulink block di-
agram, along with elements added for the purpose of the thesis.
ORM is short for Online Risk Model.

VeriStand is a software which can import control algorithms, simulation mod-
els and other tasks from a third-party environment. CyberShip Enterprise I is
equipped with Veristand 2017 which is compatible with MATLAB 2016b. All
MATLAB files and Simulink models are connected together in VeriStand.

The QTM software provides vessel data such as position and orientation of the
model ship in the laboratory over Wi-Fi. Additional information is found in Cy-
berShip I user manual (CyberShip Enterpise I User Manual).

4.3.4 GeNIE and jSMILE

GeNle is used in order to create the BBN, which is a graphical user interface based
on SMILE, Structural Modelling Inference and Learning Engine, which is devel-
oped in C++ and performs all calculations in GeNle. The online risk model and
control system developed in this thesis are programmed in Simulink and MAT-
LAB. BayesFusion provides several fusions between SMILE and different pro-
gramming languages. Consequently, a fusion written in Java called jSMILE is
implemented, functioning as a bridge between MATLAB and SMILE. A tutorial
on the implementation process is given on BayesFusion’s website (Burkett, 2018).
The connection between the hardware described above and SMILE was however
unsuccessful, so experiments were done with pre-calculated values from the BBN.
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Chapter 5

Conclusions and Further Work

This thesis has investigated the research area of autonomous ships, specifically
on the topics of sea state estimation as a tool of gaining situation awareness, and
risk-based decision making for an autonomous ship. This chapter makes some
concluding remarks, and discusses further work on the topic.

5.1 Concluding Remarks

Situation awareness is a crucial aspect of an autonomous system. Without knowl-
edge of the surroundings, the decision system will be unable to take the right
actions. This thesis has investigated situation awareness in two quite differing
ways, where the first was the development of a non-model based sea state estima-
tion algorithm for a DP vessel, and the second was the construction of a decision
model taking actions based on the collision risk level on an autonomous DP ship.

In Paper A, the first appended paper to this thesis, a sea state estimation algorithm
capable of estimating the wave direction, significant wave height and peak wave
period for a DP vessel was developed. The input to the estimation algorithm
was preprocessed data for the vessel motion in all its DOFs, and what separates
the method from previous methods is that it operates independently of the vessel
transfer function which may be difficult to obtain. The wave direction was esti-
mated using QDA, and was estimated with accuracy. The significant wave height
and peak wave period were also estimated with promising results, comparable to
model-based methods, using multivariate regression methods.

The second contribution of this thesis was a risk-based decision model for a DP
autonomous vessel. The decision model made decisions based on the probability
of collision, and the collision risk level was calculated using a BBN. The BBN was
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constructed to account for a range of factors which can affect an autonomous ves-
sel at a particular point in time, such as sensor failures, weather levels and power
failure. Scenarios were constructed according to these factors, and the decision
model was tested in model experiments in the MCLab. Results showed that the
system was capable of making decisions based on the collision risk for the scenario
in question.

In conclusion, although the two contributions differ in topics, they are both related
to situation awareness and are highly relevant for autonomous ships research. A
decision model for an autonomous ship is dependent on an accurate sea state
estimation algorithm, as weather is a limiting factor in all marine operations.

5.2 Further Work

There are a number of ways in which further studies can be conducted on the
topic of this thesis.

Firstly, a connection of the two specific contributions of this thesis could be done.
An online on-board sea state estimation algorithm as input into a BBN, and further
into a decision model could be of great interest. Testing this in full-scale experi-
ments would constitute a wholistic system regarding weather situation aware-
ness, as well as test the robustness of both of the contributions.

Additionally, an extension of both the sea state estimation algorithm and the deci-
sion model to apply for a vessel with forward speed is an interesting topic. Going
towards autonomous shipping, situation awareness in transit is of utmost impor-
tance, related to weather, ships on collision course, and other objects nearby.

This leads to next topic of further work: object detection. In Paper B of the ap-
pended papers, perfect observation of the surroundings was assumed given that
the relevant sensor was operative. Extending this to the use of proper sensors and
an object detection system would make the work more realistic and would allow
for highly advanced testing.

Lastly, further studies could extend the decision model to include projection of
events, as done in Endsley’s situation awareness model. The model as it is does
project events as it anticipates a future collision, but this could be extended to
other future events and account for the economic, environmental and human con-
sequences related to future events and decisions being made.
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Abstract: This paper proposes non-model based sea state estimation methods for a dynamically
positioned vessel. Sea state estimation entails finding the wave direction, significant wave height
and peak wave period and is done based on sensor data of the vessel response. Sea state
estimation is of importance because it assists the on board decision system and provides weather
information for the relevant geographical position. In this paper, the methods for sea state
estimation are based on machine learning algorithms, rather than the vessel transfer function.
The models are trained and tested using simulated time series of response data, and yield

promising results.

Keywords: Sea state estimation.

1. INTRODUCTION

Information about the sea state is necessary for decision
making, securing safe marine operations. When using
weather information from wave buoys, the weather for
a specific position is found by interpolation between the
positions of the wave buoys. On board sea state estimation
may provide a more accurate sea state than information
from wave buoys as it provides information in real time and
for the specific position the vessel is in (Nielsen, 2017).

Nearly all marine operations have weather requirements.
For example drilling operations, lifting operations and
tandem operations all have strict limitations on significant
wave heights. Input on real time sea state information
for the exact geographical position allows for a better
knowledge base for decision-making and potentially cost-
savings related to waiting on weather or aborting an
ongoing operation. As stated in Nielsen (2017), sea state
estimation covers a wide range of purposes. Sea state
estimation can be used for operational profiles, i.e. whether
the ship operates in the conditions it was designed for, fuel
performance evaluations, research on added resistance and
accident investigations. The sea state is also of interest for
autonomous ships, where the control system needs as much
information as possible about the vessel surroundings and
operational environment. Additionally, the sea state is
an important input to the on board decision support
system, as it for example can be used when detecting
the occurrence of parametric roll (Galeazzi et al., 2015).
Parametric roll is a phenomena which can cause serious
damage, and the sea state may be a crucial input when
deciding on measures to avoid parametric roll.

Previous work within the field involve model based calcu-
lation both in the time and frequency domain, for ships
with forward speed and in Dynamic Positioning (DP).
Most of the present day methods can be characterized as
the so-called wave buoy analogy. The wave buoy analogy
involves using a mathematical model to relate vessel re-
sponse measurement data to the sea state. The common
ground for many present model based methods is that they
rely on some knowledge of the vessel’s transfer function.
The transfer function represents how waves are transferred
into the vessel responses. Transfer functions are calculated
using potential wave theory and sometimes Computational
Fluid Dynamics (CFD) based on Navier-Stoke’s equations
and other nonlinear effects. Transfer functions can be
difficult to estimate exactly, and if nonlinear effects are
not accounted for, they will be inaccurate in severe waves.

Studies on sea state estimation for DP are extensive, and
early studies include the use of the Maximum Likelihood
Method by Waals et al. (2002). The method consists of cal-
culating the Cross Power Spectral Densities (CPSD) using
response data and minimizing the difference between this
calculated spectrum and a theoretically found spectrum
based on the phase difference and transfer functions. Fur-
ther studies were done by Tannuri et al. (2003), who used a
parametric estimation method. The directional spectrum
was here represented by a 10-parameter function, capable
of representing various sea states including doubly-peaked
spectra. Similarly to Waals et al. (2002), the method
further minimizes the difference between the measured and
estimated response to yield the estimated sea state. Pas-
coal and Guedes Soares (2008) propose a non-parametric
method which consists of an error minimization between
CPSD based on sensor data and CPSD estimated using



the transfer function, where a smoothing term yielding a
smooth spectrum is also included.

The main scientific contribution in this paper is the devel-
opment of non-model based methods for sea state estima-
tion using machine learning methods. A computationally
efficient and accurate method for distinguishing between
port and starboard waves, as well as head and following
waves when relevant, is applied. The machine learning
methods do not rely on transfer functions, and simply
rely on estimating the sea state based on a combination of
parameters calculated using the vessel response in all its
Degrees of Freedom (DOFs).

The vessel used in the case study in this paper is NTNU’s
research vessel, R/V Gunnerus. A simulation model in
Simulink was used to generate the data needed for the
sea state estimation research.

This paper is organized as follows: Firstly in Section 2 the
theory on wave modeling and vessel response is covered.
Further, in Section 3 the theory behind the methods
used for sea state estimation is described, followed by
Section 4 including a description of how the sea state
estimation algorithm combines these methods to produce
results. Simulation results for estimation of wave direction,
significant wave height and peak wave period are presented
in Section 5. Lastly, the paper is concluded in Section 6.

2. THEORY

A description of the way waves are modeled in the sim-
ulations as well as the basis for the algorithm’s ability
to distinguish between port/starboard and head/following
waves are covered in this section.

2.1 Modelling Waves

The standardized wave spectrum called the JONSWAP
spectrum is used to model waves in the simulation model.
The JONSWAP spectrum, or the Joint North Sea Wave
Project spectrum, can be parametrized by the equation
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where ¢ is the gravitational constant, w is the wave
frequency, w, is the peak wave frequency, v is a non-
dimensional peak shape parameter, o is the spectral width
parameter and « is a parameter determining the shape
of the spectrum in the high frequency range (Myrhaug,
2014). The JONSWAP spectrum can be directly related
to significant wave height by

H, =4y/m, mo = / S(w)dw (2)
0

where my is the first spectral moment of the spectrum. The
JONSWAP spectrum is a singly-peaked spectrum for fully
developed sea, and simulations are done with long-crested
waves.

Table 1 (Price and Bishop, 1974) shows realistic combina-
tions of significant wave heights and peak wave periods.
These sea states are used to generate a dataset with
response data and the associated sea state.

Sea State | Description Hs [m)] Tp [s]

0 Calm (glassy) 0 -

1 Calm (rippled) 0-0.1 4.87 - 5.66

2 Smooth (wavelets) | 0.1- 0.5 5.66 - 6.76

3 Slight 0.5-1.25 | 6.76 - 7.95

4 Moderate 1.25-2.5 | 7.95-9.24

5 Rough 2.5-4.0 9.24 - 10.47
6 Very rough 4.0 - 6.0 10.47 - 11.86
7 High 6.0 - 9.0 11.86 - 13.66
8 Very high 9.0 - 14.0 | 13.66 - 16.11
>8 Phenomenal >14.0 >16.11

Table 1. Table of realistic combinations of sig-
nificant wave heights and peak periods (Price
and Bishop, 1974).

q(pitch)

v(sway)

u(surge)

w(heave)

Fig. 1. R/V Gunnerus and its DOF's.
2.2 Differentiating Between Port and Starboard Waves

This section is based on information from Brodtkorb
et al. (2018). Most vessels, including R/V Gunnerus, are
port/starboard symmetric. This means that the response
of the vessel is in practice the same for equal angles port
and starboard of the center line. It therefore makes little
sense to compare the energy in the sea state to distinguish
between port and starboard waves.

In Figure 1 the DOFs in which the vessel can move, as
well as the axes, are shown. The roll motions are anti-
symmetric about the x-axis, meaning that when roll is
negative on starboard side, it is positive on the port side
and vice versa. On the contrary, the heave motions are
symmetric about the x-axis. The cross-spectrum of roll and
heave motions can therefore be used to estimate whether
waves are incoming from port or starboard. In complex
analysis, the imaginary part is an indication of the phase of
the cross-spectra. It is therefore the imaginary part of the
cross-spectra of heave and roll that can indicate if waves
are incoming from port or starboard.

The following rule can be used to distinguish between port
and starboard waves:

. [[0°,1807),
pe {(71800,0"),

if T,y > 0 (port)
; starbos (3)
if I,y < 0 (starboard)

where

T4 = /WN Im(R.4(w))dw (4)



and {3 is the wave direction estimate. Im(R.4(w)) is the
imaginary part of the cross-spectra between the heave and
roll motion and wy is the highest frequency.

2.3 Differentiating Between Head and Following Waves

This section is also based on information from Brodtkorb
et al. (2018). Although R/V Gunnerus is not fore/aft
symmetric, the response from head and following direc-
tions can be similar and difficult for the algorithm to
distinguish. Correction of the initially estimated wave di-
rection is therefore included. In a similar manner as for
port/starboard waves, the imaginary part of cross-spectra
can be used to distinguish between head and following sea.
In this case, it is the heave and pitch cross spectrum that is
relevant, as the pitch motion is anti-symmetric about the
y-axis. Corrections for head and following wave directions
are then made according to

5 (0°,90°), if ',y <O (following)
BE€Stone 12001 s (®)
[90°,180°], if ', > 0 (head)
where on
| :/ Im(R.g(w))dw (6)
w=0

Im(R.p(w)) is the imaginary part of the heave and pitch
cross spectrum and wy is the highest frequency.

3. METHODOLOGY

This section includes a description of how the raw data
is processed as well as theory on the methods used for
sea state estimation. The methods include Quadratic Dis-
criminant Analysis (QDA) used for estimating the wave
direction, and Partial Least Squares Regression (PLSR)
used for estimating the significant wave height and peak
wave period.

3.1 Preprocessing of Raw Data

To obtain comparable values for the different sea states,
the fast Fourier transform was used. The time series of
the vessel response in all DOFs for each sea state were
transformed to the frequency domain using the Fourier
transformation. To obtain a single value for each DOF for
the particular sea state, the frequency domain response
was integrated over the frequency range. The results are
then one response value for surge, sway, heave, roll, pitch
and yaw for every sea state. These values, as well as the
wave direction, significant wave height and peak wave
period were then recorded and used as training data to
make models to estimate the sea state.

3.2 Quadratic Discriminant Analysis

QDA is the method used for estimating the wave direction.
Estimation of the wave direction is here considered a clas-
sification problem. Classification is a commonly used ma-
chine learning method, and involves classifying elements
based on input data. The model is trained based on a
training dataset with classes, which are the chosen wave
directions. The output can therefore only be as precise as
the training data. In practice this means that since the
training data covers 18 different directions, the trained

Fig. 2. Quadratic Discriminant Analysis (Hastie et al.,
2001).

model can only output these 18 wave directions since these
are the possible classes, i.e. the wave direction is discrete.

The remaining parts of this section are based on theory
from Hastie et al. (2001). QDA models each class as a
multivariate Gaussian function as follows:

fr(z) = WGW*%(I — k) B (@ — )
(7)

3 is the covariance matrix for class k, ux is the mean
for class k, and p is the number of dimensions. Unlike
for Linear Discriminant Analysis (LDA), the covariance
matrix, 3, is not the same for all classes. By working out
the log ratio:

P(G=klX =x)

log —=———— 8
% PCE=1x=0) ®
where [ and k are classes, and using
Tr(@) T,
P(G=kX =2)= ——7—— 9
( | ) SE L fi@)m 9)

one obtains a function where it can be seen that the
decision boundary where P(G = k|X = z) = P(G =
I|X = z) is quadratic in z. K is the number of classes,
and 7; is the prior probability of class [. The discriminant
function for class k, oy, is shown in (10).

1 1 _
d(z) = = log |B| — 5 (& — p) " (@ = ) + log T
(10)
The boundaries between the classes are then defined by the
function {z : dx(x) = &;(z)}. An example of boundaries on

a plot of normally distributed mixtures is shown in Figure
2.

3.8 Partial Least Squares Regression

PLSR is a multivariate regression method which performs
regression in one step by using the output data directly
when decomposing the input data. PLSR aims to find new
variables (latent variables) in the directions of both high
variance and high correlation to the output (Hastie et al.,
2001).

PLSR is based on the two equations below (Esbensen,
2001)
X=T-P'+E (11)
Y=U-Q"+F (12)
where X is the predictor variables, Y is the response
variables and E and F' are error terms. P and @ are latent



variables, meaning they are not the observed X and Y,
but the new variables obtained through a mathematical
model (Salkind, 2010).

Results shown in this paper are obtained using MATLAB
which takes use of the SIMPLS algorithm. The first
step in this algorithm is to centralize the data, i.e. give
each column a mean of zero by subtracting the mean
from every value. The SIMPLS algorithm uses Singular
Value Decomposition (SVD), which finds the U, D and V
satisfying the equation

X=U-D-VT (13)
U and V are the left and right unitary matrices respec-
tively, and D is a diagonal matrix of singular values. U
and V are orthogonal matrices, where U contains the
eigenvectors of the covariance matrix, XX . V contains
the eigenvectors of X " X and D contains the non-negative
square roots of the eigenvalues of XX T (Golub, G. and
Reinsch, C., 1970).

SVD is done on the matrix S, which is the product X TY".
The left singular vector from the SVD, U, is multiplied by
X to obtain t,.

te = XU, (14)
This is an iterative process, so a = 1,2, ..., A where A is the
number of latent variables, and hence also the number of

iterations. t, is then normalized by tq norm = :;f , and
tT ta

used in the following calculations (Alin and Ali, 2012).

Pa = XTta,norm (15)
D-V
qa = n (16)

Here p, are the X-loadings, i.e. the coefficients transform-
ing the X-variables to the new latent variables, and ¢,
are the Y-loadings, i.e. the coefficients needed to map the
latent variables to the output, for iteration a. Both the X-
loadings and Y-loadings are then orthonormalized through
the modified Gram-Schmidt process. The iteration is then
accounted for by deflating the S matrix as shown in (17).

Sat1 = Sa = va(v, Sa) (17)
In the above equation the X-loadings have been orthonor-
malized and are denoted v,.

‘When having obtained both X and Y-loadings, regression
coefficients can be obtained which give a linear combina-
tion of the input variables mapping them to the output
variables.

4. SEA STATE ESTIMATION ALGORITHM

The approach for estimating the sea state is based on a few
steps. Firstly, the QDA model is trained to find the wave
direction. The response of the vessel varies with varying
wave directions, so PLSR is done for each of the wave
directions. In practice, this means that each wave direction
has an associated set of regression coefficients that can be
used to estimate the significant wave height and peak wave
period.

The wave direction is first found using the trained model.
Based on the output from this model, the regression
coefficients for the estimated wave direction are chosen
and used to estimate the significant wave height and peak
wave period. Figure 3 outlines the process.

4 1 Regression

Measured | ! Pre- Wave : Ceelficint ik e
] o i| based on using

response | processed [+ direction [ ! E

time series | 1| time series using QDA |} wave regression |}
H 1| direction coefficients ||
i i| from QDA

Input : Output

1 (B H, T,)

Fig. 3. Flow chart of sea state estimation algorithm.

Sea State | 3 [deg] | Hs [m] | Tp [s]
1 -163 2.0 8.3
2 161 2.7 9.4
3 -4 3.4 9.4
4 144 4.0 11.7
5 140 47 11.3
6 -40 5.4 11.2
7 -35 6.1 12.1
8 -133 6.8 134
9 165 7.4 13.0
10 -159 8.1 12,5
11 -53 8.8 12.8
12 -175 9.5 14.6
13 -119 10.2 13.8
14 84 10.8 14.2
15 18 11.5 14.0
16 -74 12.2 14.1
17 -112 12.9 14.2
Table 2. Sea states used to demonstrate sea

state estimation results.

5. RESULTS AND DISCUSSION

This section presents sea state estimates using the methods
described. The sea states in the results shown are made by
deciding on a set of significant wave heights and randomly
generating a peak wave period based on the ranges in Table
1, as well as a random wave direction. This means that the
sea states will not be exactly the same as in the training
data, which demonstrates the algorithm’s performance on
sea states other than the specific ones in the training data.

5.1 Simulation Results

The sea states used to demonstrate the algorithm’s per-
formance are shown in Table 2. Results for estimation of
the wave direction are shown in Figures 4 and 5.

Results show that estimation of wave direction is done
quite accurately. It is clear that for two of the sea states
the algorithm unsuccessfully distinguishes between port
and starboard waves. These sea states have incoming
wave direction of —163° and —4°, thus close to head
and following sea respectively. The likely reason for the
wrong estimation of the wave direction is that for these
two sea states the roll motions are low and the heave-roll
cross-spectra therefore carries limited information. Figure
5 shows the absolute value of the deviation in the wave
direction.

As expected, nearly all sea states have an error of less than
10° as the classification algorithm is trained on data for
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Fig. 4. Estimation of wave direction for sea states in Table
2.

Deviation in Wave Direction
15 T T T T T T T T
I Deviation

s Average deviation

o 2 4 6 8 10 12 14 16 18
Sea state

Fig. 5. Absolute deviation in wave direction for sea states
in Table 2.

every 10th degree. The exception is sea state 12, which has
a deviation of 15°.

Results showing the algorithm’s performance on estima-
tion of significant wave height are shown in Figures 6
and 7. Results show that the average deviation between
simulated and estimated significant wave height is 0.7 m.
Sea states 7-11 and 17 largely contribute to increasing this
average with deviations up to 1.3 m. That deviations are
large for higher sea states is expected as the method used
is a linear method and in severe waves there are nonlinear
phenomena present.

Figures 8 and 9 show results for peak wave period. The
average deviation is 1.5 s, and many of the sea states are
well below this average. However, especially sea state 16
largely increases the average deviation with a deviation of
almost 4 seconds.

5.2 Discussion

Results demonstrated above are promising, and compa-
rable to model-based methods. Comparing for example
with results from Brodtkorb et al. (2018), the average
deviation is approximately 0.25 m, which is significantly
lower than average deviation presented above. However,

Estimated vs. Simulated Significant Wave Height
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Fig. 6. Estimation of significant wave height for sea states
in Table 2.
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Fig. 7. Deviation in significant wave height for sea states
in Table 2.
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Fig. 8. Estimation of peak wave period for sea states in
Table 2.
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Fig. 9. Deviation in peak wave period for sea states in
Table 2.

the results in Brodtkorb et al. (2018) are for a low sea
state with Hy = 2m, where the algorithm in this paper
also yields results of similar size. For the same sea state,
the model-based algorithm gives a deviation in peak wave
period of 0.1 rad/s, which is just above the average devi-
ation presented in this paper of 0.06 rad/s. Nielsen (2007)
demonstrates results for a vessel with forward speed, where
the average deviation in significant wave height was 0.45
m using a parametric method. Average deviation in peak
wave period was shown to be 0.96 s. This again was for
low sea states with Hy < 3m. Although the algorithm
presented in this paper performs at level with the model-
based methods for many of the sea states, many of the
estimated sea states yield much higher deviations, meaning
that the robustness of the method can be questioned.

The strengths of the algorithm presented in this paper is
that it requires little knowledge of the vessel, but rather
relies on a large amount of collected data which can be
obtained from sensors on the vessel. However, a weakness
of the method is that it can be computationally inefficient
to generate datasets carrying enough information to build
a model. Additionally, the results presented are for per-
fectly long-crested waves. In practice this is seldom the
case, so simulations for different types of sea states might
be necessary for the method to be applicable at sea, as
the response data generated for training would likely be
different in short-crested, more realistic waves. Lastly, it
may not be sufficient to use simulated data to develop
models, as simulation models are unable to capture all
phenomena and external effects present at sea.

6. CONCLUSIONS

The sea state estimation algorithm in this paper estimated
wave direction, significant wave height and peak wave
period with promising results. As expected, significant
wave height and peak wave period have been estimated
with more accuracy for lower sea states, due to nonlinear
effects in more severe waves. The estimation algorithm for
wave direction showed very accurate results, and a method
for efficiently distinguishing between port and starboard
waves has been presented.

Interesting continuance of the work presented includes
testing the algorithms on full-scale experiments. This
could yield a conclusion on whether simplified simulated
data for training is in fact sufficient to develop algorithms
applicable at sea.

Further, changing the spectrum used in simulations and
thus allowing for higher variations in sea states would be
interesting. Good results with a large variety of sea states
would likely yield a model which is more applicable.
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Abstract: This paper proposes an online decision model based on the risk of collision for an
autonomous ship. A Bayesian Belief Network (BBN) has been constructed based on selected
factors influencing the situation awareness and collision risk of the ship. Three scenarios have
been defined, consisting of a sequence of events that increase the risk of collision. These are
related to sensor failures, extreme weather and power shortage. A decision model has been made
which makes decisions based on the collision risk and the events of the scenario in question.
The method for risk assessment and decision making has been tested both in simulation and in

model experiments.
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making, Bayesian Belief Networks, situation awareness

1. INTRODUCTION

Autonomous surface ships for transport of goods are
expected to be in operation within the next years. For
fully autonomous vessels to have maximum impact, they
must be safer than humanly operated ships. For this to be
possible, the vessel is dependent on extensive and accurate
sensor data, and a decision system capable of processing
this data and making intelligent decisions based on it. To
name a few, location, surroundings and weather are factors
necessary for the right decision to be made. The system
must be able to identify and isolate failures, and handle
deviations from normal operation (Utne et al., 2017). Risk
should be part of the design process and operational phases
of autonomous ships from the beginning to end, such that
potential scenarios are identified and can be tested in
simulation as early as possible.

Although highly autonomous ships are not operative in the
nearest future, research on the risk related to autonomous
ships is ongoing. Previous work within the field involve
the MUNIN project, which presents the Maritime Intel-
ligent Transport System (MITS) architecture (Rgdseth
and Tjora, 2014) which consists of scenario building, sys-
tem modularization, hazard identification, risk control,
hypothesis testing and design verification. The method
firstly defines initial scenarios that could be relevant for
an unmanned ship, and further divides the responsibilities
related to the scenarios into different modules. Hazards are
then identified and categorized, and then risk is assessed

* This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project number

223254 NTNU AMOS.

based on risk control options and cost benefits. Rokseth
et al. (2019) propose a method for deriving a safety ver-
ification program for autonomous ships using Systems-
Theoretic Process Analysis (STPA). The paper proposes
a case study for a ship with autonomous navigation. The
method is based on conducting STPA and developing a
safety verification program which is a program consisting
of simulations and tests to verify that certain hazardous
events do not take place. The purpose of STPA is to
identify hazards, Unsafe Control Actions (UCA) and their
causes. Ramos et al. (2019) discuss the role of human
operators in collision avoidance for autonomous ships.
Hierarchial Task Analysis (HTA) is used to evaluate the
performance of operators performing various tasks in a
realistic environment.

For a traditional vessel, collision avoidance is usually based
on human vision as well as Automatic Identification Sys-
tem (AIS) and Radio Detection and Ranging (RADAR)
data to make decisions to avoid collisions. The Convention
on the International Regulations for Preventing Collisions
at Sea (COLREGS) are a set of rules for collision avoid-
ance at sea, by the International Maritime Organization
(IMO). COLREGS are also applicable for autonomous
ships, imposing requirements on the sensor systems and
the actions being taken in hazardous situations (Johansen
et al., 2016). Johansen et al. (2016) propose a Collision
Avoidance System (CAS) which searches for collision-free
trajectories complying with COLREGS and which are
close to the vessel’s original trajectory.

According to Zhengjiang and Zhaolin (2003), common
causes for collisions are



Fig. 1. CyberShip Enterprise I. (Photo taken by authors
of this paper.)
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Many of the listed causes are a result of inexperience or
poor training/skills. The factors listed above are all human
effects and collision avoidance for a traditional vessels is
done by avoiding these listed reasons. It is reasonable
to assume that an autonomous system potentially may
outperform humans in terms of some of these factors.
For example, to avoid poor lookout and improper use of
sensor data, sensor fusion is a possible method to give the
vessel a realistic perception of the surroundings. Sensor
fusion entails combining data from various sensors, such as
RADAR, high definition visual cameras, thermal imaging
and LIDAR into a realistic image of the surroundings (Ad-
vanced Autonomous Waterborne Applications (AAWA),
2016). Additionally, a control system that is able to make
decisions based on the scenario in question may reduce
the possibility of error in judgment, failure to take early
actions and improper ship maneuvering.

Dynamic Positioning (DP) is an example of an au-
tonomous operation where situation awareness (SA) is cru-
cial. Developing complex and autonomous DP systems is
an important stepping stone towards autonomous shipping
(ABB, 2018). The applications for DP are typically to
keep fixed position and heading of a vessel or rig, or to
move from one place to another at low speed. Relevant
operations include subsea installation and intervention,
drilling and pipelaying (Sgrensen, 2011). However, to de-
velop a system which is autonomous from port to port,
station-keeping and low-speed maneuvering capabilities
are important for both docking and berthing. The scope
of this paper is limited to a DP offshore vessel.

The vessel used in the case study and model experiments is
CyberShip Enterprise I, pictured in Figure 1. CyberShip
Enterprise 1 is equipped with one bow thruster and two
Voith Schneider Propellers (VSP). As a DP case study is

considered, diesel-electric propulsion is assumed, including
redundancy in power generation in form of an extra
generator capable of supplying full power.

The development and scientific contribution of this paper
is a risk-based decision model for an autonomous DP
vessel, including experimental results. Potential scenarios
leading up to a collision may be complex and there may
be a large number of potential scenarios. Furthermore, an
infinite number of variations in how each scenario may
play out, may be possible. Therefore, it is not feasible
to predetermine and program the ship’s response to any
potential variation of each scenario. Furthermore, there
may be uncertainty both in terms of observations (there
may for example be uncertainty in terms of whether
there is a ship nearby), and in terms of how observations
ultimately will affect the collision risk. In the proposed
method, it is assumed that the collision risk can be either
"High” or ”Low”. Bayesian Belief Networks (BBNs) are
used to calculate a "degree of belief” in the collision risk,
which is represented by a probability distribution between
the two states. Based on this probability distribution,
as well as a belief regarding the events that are taking
place, decisions regarding potential mitigating measures
are made.

This paper is organized as follows: Firstly in Section 2,
theory on BBNs and the specific BBN used to demonstrate
results in this paper are covered. Further, in Section 3, the
decision model is explained through a description of the
algorithm and the case studies used in the experiments.
Section 4 shows both simulation and experimental results.
Finally, the paper is concluded in Section 5.

2. BAYESIAN BELIEF NETWORKS

This section starts by covering background theory on
BBNs. This is followed by a description and explanation
of the BBN used for simulations and experiments, which is
used to calculate whether the risk of collision is sufficiently
high to justify risk mitigating measures.

2.1 Preliminaries on Bayesian Belief Networks

A BBN is a graphical model that can be used to represent
causality and uncertainty. In particular, BBNs are suitable
for representing causal relationships between a set of
variables and to assign a degree of belief that a variable
is in a certain state based on incomplete knowledge about
the state of other variables. In BBNs, degrees of belief
are represented as probabilities (Darwiche, 2009). When
BBNs are used for risk analysis, the objective is to estimate
the degree of belief regarding whether or not accidents
may occur and what consequences may follow. This can
be done by identifying relevant factors that influence a
critical event and illustrating the relationship between
Risk Influencing Factors (RIFs). The probability of critical
events can then be found, and the causes affecting the
critical event the most can be identified.

The remaining part of this section is based on information
from Rausand (2011). A BBN consists of nodes and
directed arcs, where each node is a state or condition and
arcs are directed towards the nodes that are influenced by
this node. Figure 2 shows a simple BBN where the nodes
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Fig. 2. Simple Bayesian Belief Network.

A, B, C; D and FE represent RIFs that influence a critical
event or hazard F.

In a BBN each node represents a variable that can have
two or more possible states, or a continuous state. While
the directed arcs indicate the structure of the causal de-
pendencies between these variables, conditional probabil-
ity tables quantify the relationships. The nodes on a direct
path from A, are called the descendants of A, whereas a
node that can be reached from A with one directed arc is
its child. Similarly, the nodes that can reach A on a direct
path are its ancestors, and the node that can reach node
A with one arc is its parent.

Using Figure 2 as an example, some of the assumptions
involved when using BBNs are demonstrated. If the state
of node D is known, knowledge about the state in node
A will not give additional information about state F.
This means that when the state of a node is known, the
node is independent of its ancestors. Looking at Figure 2,
this can be described mathematically with the probability
relationship

P(FIAND) = P(F|D) (1)
Additionally, a node is assumed to be conditionally inde-
pendent in the network when states of all its parents are
known. Using Figure 2, this can be described by

P(DNE[ANBNC)=P(D|ANB)-P(E|BNC) (2)
showing that nodes D and F are conditionally independent
when the states of their parents are known. Lastly, it is
assumed that two nodes are conditionally independent if
there is no arc between them.

The software used for the construction of the BBN is
called Genie, which is a graphical user interface for the
SMILE engine. The SMILE engine is a learning/causal
discovery engine, which specifically can be used for BBNs
(BayesFusion, 2019).

2.2 The Bayesian Belief Network used in Simulations and
Ezperiments

In this paper we assume that the collision risk-level can be
either high or low, where a high collision risk level refers
to a state in which the collision risk is unacceptably high.
The BBN in Figure 3 can be used to calculate the degree
of belief in the true state of the collision risk level (i.e.
whether it is high or low).

The system SA depends on the communication between
ship and the operator, the SA of the operator and the
SA of the ship. As long as the vessel SA is maintained,
the system SA is maintained, so the operator SA and
communication with operator is only of relevance when
the vessel SA is lost. If the vessel SA is lost and the
operator SA is lost, the system SA is lost regardless of
the communication. If the operator SA is not lost, but
the communication fails, there is a high likelihood that
the system SA is lost. In addition to communication from
the ship, the operator can utilize drones to gain awareness
of the surroundings. Wilhelmsen has already launched an
autonomous drone to deliver parcels to ships (Wilhelmsen,
2019), so this technology could also be used to assist the
operator to regain situation awareness for an autonomous
vessel with sensor failures.

Under normal circumstances, the SA of both the ship and
the operator depends on the navigation equipment (NE)
aboard the ship. The purpose of the NE is to provide
situation awareness of the surroundings. This equipment
consists of a camera system, AIS, RADAR and a position
reference system. Camera, AIS and RADAR all have the
purpose of supplying information on what exists in the
area around the vessel and on its collision course, and the
position reference gives the vessel a position estimate. It
is assumed that each of these systems can be either in
a functioning state or in a failed state. The navigation
system is assumed to have a high probability of function-
ing with only the RADAR working. However, with solely
camera, AIS or position reference working, the probability
of functioning NE is lowered, in the listed order. With
only position reference functioning, the NE has a zero
probability of functioning, as no data on the surrounding
objects is available. Any combination of factors will obvi-
ously increase the probability of functioning NE compared
to only one functioning sensor/equipment.

The weather and power aspects of the BBN are shown
on the right side of Figure 3. The weather is represented
by current, wind and waves, where the wave height is
defined as the factor with most influence on the weather
level. Loss of position refers to an event in which the
vessel’s DP system is not capable of keeping the ship
at the desired position and/or heading. Extreme weather
contributes to both loss of position and power loss. Loss
of position can occur in the event of extreme weather, for
example, if large waves or wind gusts temporarily force
the vessel out of position, or if the maneuverability of the
vessel is lost or reduced to an inadequate level. This may
be caused by the loss of the vessel’s thrusters, which in
turn may occur due to inadequate power supply. Power
loss can also be a result of unsatisfactory maintenance.
Operating with only the bow thruster is considered a
loss of maneuverability, and operating with one VSP
yields some but poor maneuverability. It is also accounted
for in this model that more severe weather conditions,
increases the probability that the power supply and vessel
maneuverability will be inadequate.

Lastly, the factor of having an object nearby is added as a
node directly influencing the end event. Obviously, if there
is nothing to collide with, there is no risk of collision.
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Fig. 3. BBN used in the risk-based decision model, with baseline evidence.

3. THE DECISION MODEL ALGORITHM

This section starts by explaining the flow diagram repre-
senting the algorithm used in the decision model. Further,
the case studies are presented.

3.1 The Flow of the Decision Model Algorithm

Figure 4 shows a flow chart describing the process behind
the decision model. The scenario can consist of defining
the state of any of the nodes in Figure 3, i.e. the scenarios
consist of a combination of states of the factors shown
in Figure 3. The algorithm starts each time step by
checking whether there has been a change in the scenario
since the last time step. If the scenario has changed
(i.e. some of the states or probability distributions in
the BBN model have been altered), the collision risk-
level probability distribution is updated using the relevant
scenario and the SMILE engine. A decision to intervene
with a mitigating measure, is taken in the event that
the belief in a high risk level exceeds a threshold value.
For demonstration purposes, this threshold is set to 6%
for the collision risk level in the following case studies.
Mitigating measures are chosen by checking if criteria for
each mitigating measure are fulfilled, for example that the
power needs to be inadequate in order to turn the extra
generator on.

3.2 Case Studies

Although the BBN in Figure 3 does not address every
factor that influences the collision risk, it is sufficient
for demonstrating the method and functionality of the
decision model. Possible scenarios include every possible
combination of the factors in Figure 3. However, a few
scenarios have been chosen and results will be shown for
these scenarios:

Continue
simulation
No
Has scenario Calculate
s changed from | Yes | collision risk Make
Scenario  [— S PN e . .
previous time level using decision
step? BBN

[ f

Update scenario based on decision made

Fig. 4. Flow diagram of algorithm used for the risk model.

e Scenario 1: This scenario focuses on the effect of losing
sensors. First of all, there is an object nearby. Further,
camera, AIS and RADAR all fail consecutively. See
the sequence of events in Table 1. The solution is that
the vessel contacts the Shore Control Center (SCC),
and the vessel is manually maneuvered away from the
object it can collide with. The proposed mitigating
measure for this scenario requires an operating drone
with functioning communication to shore.

e Scenario 2: This scenario looks at the effect of weather
and unsatisfactory maintenance. Again, there is an
object nearby. The wave height is high, and the
weather extreme. Later, evidence is received that
maintenance has been unsatisfactory, all leading to
higher risk of collision. The sequence is shown in
Table 1. The mitigating measure here is to move the
setpoint away from the object nearby.

e Scenario 3: In scenario 3 the vessel loses all its power.
This causes the extra generator to be activated.

The scenarios are summarized in Table 1. The possible
mitigating measures are thus defined as



e Change DP setpoint of vessel.

e Contact remote operator.

e Turn on an extra generator when no power is supplied
to the thrusters.

e Turn on an alarm when evidence is received that
maintenance has been unsatisfactory, operator is con-
tacted, setpoint is changed, or extra generator is
turned on.

The ship used in experiments is not equipped with sensors
capable of object detection. As object detection is outside
the scope of this article, it is simply assumed that the
vessel is aware of its surroundings given that the relevant
sensors are functioning. It is also assumed that the vessel is
aware of the sea state, implying that an accurate on-board
sea state estimation algorithm is available.

4. RESULTS AND DISCUSSION

This section presents the performance results of the deci-
sion model on the presented case studies, both in simu-
lations and in the model experiments. Only scenario 2 is
shown for simulations.

Simulations are done using a simulation model in Simulink,
developed at NTNU. The model consists of a controller,
observer, actuator system, vessel plant and sensor module.
The controller takes the desired position as input, and this
input changes according to the decisions being made by the
risk-based decision system developed for this paper.

Model experiments are conducted in the Marine Cyber-
netic laboratory (MCLab) located at NTNU. The Qual-
isys Motion Capture System is used to track the vessel,
using Oqus high speed infrared cameras. The VeriStand
software is used to import the simulation model, making
it compatible with various hardware necessary to control
the vessel.

4.1 Simulation Results

Figures 5 and 6 show the simulation results for scenario
2. The sequence of events is as shown in Table 1, and the
limit for the probability of high risk of collision is reached
at the time when the state of ”Insufficient maintenance”
transitions from False to True. Due to these factors the
setpoint is changed, such that the nearby object no longer
is nearby and thus removing the risk of collision. Results
show that CS Enterprise firstly makes its way towards the
DP setpoint of [2 m, 0 m, 0°], and successfully makes the
decision of changing setpoint to [6 m, 0 m, 0°] at 60 s.
when the probability of a high collision risk-level exceeds
the predefined threshold.

4.2 Ezxperimental Results

Figure 7 shows the collision risk level for scenario 1, along
with the predefined threshold of 6% and Figures 8 and 9
show the vessel position and path in model experiments.
Scenario 1 entails alerting the SCC to manually maneuver
the vessel away from the object nearby, given that the
situation awareness of the vessel is lost and that evidence
has not been received about the drone or communication
with SCC failing. The system successfully alerts the SCC
and the operator maneuvers the vessel away from its
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Fig. 5. Simulation results for scenario 2. Setpoint is
changed at t = 50 s. Upper: surge position. Middle:
sway position. Lower: yaw position.
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Fig. 6. Vessel path during scenario 2 in simulation. Set-
point is changed at t = 50 s.

position where the risk level for collision is above the
selected threshold value. The risk level is reduced when
the operator remotely takes control of the vessel. Figure 9
shows that when t= 50 s., the vessel moves in the direction
of positive sway (manually), corresponding to Table 1 and
Figure 7 where the threshold risk level is reached when the
RADAR fails.

Scenario 2 was also tested in the model experiments,
where the system received evidence of extreme weather



Table 1. Description of scenarios.

R L. Time of Resulting probability of
D E
Scenario escription vent event [s] | ”high risk of collision” [%)]
gb%ecz nearby 5. 1.9
Focuses on the effect of L -
1 . Camera fails
losing sensors. 20 s. 2.1
= True
AIS fails 30 s. 2.2
= True
RADAR fails 50 s. 6.5
= True
Object nearby 5 19
= True
2 Focuses on extreme weather Wave heiaht
and unsatisfactory maintenance. & 20 s. 2.4
= Severe
Weather level 25 s. o7
= Extreme
Insufficient maintenance 60 s. 6.8
= True
Object nearby 5. 19
3 Focuses on power loss. = True
Inadequate power 30 s. 185
= True

Risk Levels for Scenario 1
T T T

|—— Risk level

—— Threshold risk level
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Time |[s]

Fig. 7. Threshold risk value and collision risk level as a
function of time for scenario 1.

and unsatisfactory maintenance, corresponding to the risk
levels displayed in Figure 10. The reason for the small
change in setpoint is to assure that the vessel stays
within range of the cameras used for position reference
in the laboratory. Figure 11 shows that the vessel changes
setpoint at t = 60 s., although with an offset. The vessel
did not have time to stabilize at its first setpoint before
receiving a new setpoint at x = 3.5 m. Figure 12 shows that
the vessel moves towards its first setpoint, overshoots and
starts moving back towards the setpoint but is interrupted
by the new setpoint and moves towards it. By the end of
the experiment, the offset is still about 0.5 m., likely due
to lack of time to stabilize.
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Fig. 8. Vessel position during scenario 1 in the model
experiments. Vessel is manually maneuvered from t

=50 s.

In scenario 3 the power is turned off at 30 s., as can be seen
by Figure 14 showing the control provided by thrusters.
Figure 13 shows a largely increased risk level when power
is lost. The power is out for 10 s. and the vessel struggles
to keep its position during and after this time period, see
Figure 15. Figure 16 shows that as expected, the vessel
drifts when the power is lost, in the direction it was already
moving. When power is regained, the vessel moves back
towards the setpoint.

5. CONCLUSIONS

The decision model proposed in this paper demonstrated
a method for assessing the risk of collision for an au-
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Fig. 9. Vessel path during scenario 1 for model experi-
ments. Vessel is manually maneuvered from t = 50
s.
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Fig. 10. Threshold risk value and risk level as a function
of time for scenario 2.

tonomous ship, and making decisions to remove this risk.
The method has been experimentally tested and results
showed that the vessel successfully made decisions and
took action based on the events happening. Three scenar-
ios have been tested, with three different outcomes.

Further work includes extending the BBN to contain more
factors relevant for the risk of collision of an autonomous
ship. Additionally, the possible mitigating measures have
been limited to four different outcomes in this paper, so
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11. Model experiment results for scenario 2. Setpoint
is changed at t = 50 s. Upper: surge position. Middle:
sway position. Lower: yaw position.
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Fig. 12. Vessel path during scenario 2 in model experi-
ments. Setpoint is changed at t = 50 s.

an extension of the possible actions should also be done.
Extending the model to involve the projection of events
would also greatly increase the applicability, as events can
be foreseen and decisions can be made based on this. A
threshold value for starting the extra generator should be
included, as a high probability of inadequate power should
trigger activation of the extra generator. This allows for
indirect observations of the factor, and activation of the
extra generator without direct evidence of ”Inadequate
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13. Threshold risk value and risk level as a function
of time for scenario 3.
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Fig. 14. Thrust in scenario 3. Upper is thrust for the
bow thruster, lower is for one of the Voith Schneider
propellers.

power”. The BBN model should also be refined by con-
sidering more possible states for each variable. In general,
variables with states that in reality are continuous, could
be modeled with continuous probability distribution or a
less coarse discretization. For example, the wind velocity,
which in the model can take the values "High” or ”Low”,
could be refined according to for example the Beaufort
scale, or a continuous distribution. It is also assumed in
the model that a sensor may either be working or failed.
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Fig. 15. Simulation results for scenario 2. Power is lost at t
= 30 s. and regained at t = 40s. Upper: surge position.
Middle: Sway position. Lower: yaw position.
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Fig. 16. Vessel path during scenario 3 in model experi-
ments. Power is lost at t = 30 s. and regained at t =
40 s.

In addition to these states, other states, such as biased
measurements, could be considered.

Combining the work presented with work related to ob-
ject detection is also of great interest. The experiments
here have been limited to assuming that the objects and
events happening have been perfectly observed by the au-
tonomous system. Testing on a vessel with sensors capable
of object detection and sea-state estimation capabilities



would yield more realistic and applicable results, as there
is uncertainty involved in trying to obtain SA. This also
includes estimation of the sea state, as on-board sea state
estimation algorithms also involve uncertainty.
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