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Summary

The objective of present work is to be able to predict the effects of combined sinusoidal sur-

face waves and tidal current flow over a full tidal cycle. A one dimensional two-equation

numerical turbulence closure model has been used over intermediate water depth. The

implementation of waves and current in present work is a one-way implementation, where

the current initiates the combined boundary layer.

The model was, in a project thesis written during the fall of 2018, successfully validated for

pure tidal flow with field data measurements presented by King and G. Davies A. (1985),

and for the wave boundary layer with laboratory experiments by Jensen et al. (1989). The

model was afterwards developed to be able to model the combined effects of waves and

tidal current over a full tidal cycle. The most interesting, and most critical area in the

water column is close to the sea-bed. Therefore, a finer mesh with more grid points has

been added to the areas close to the boundary layer at the bottom. As the project thesis is

not published, the most important results are given in Appendix A.

There exist various published material and work containing the combined waves and cur-

rent boundary layer effects. However, the investigation of combined waves and tidal cur-

rent over a full tidal cycle is a physical ”multiscale” problem that has, to the author’s

knowledge, never been solved before. Field measurements for combined waves and tidal

current over a full tidal cycle with sufficient quality have not been found prior to present

work.

Particle trajectory investigation over a full tidal cycle shows that the combined waves and

tidal current exhibit reduced velocities and thus reduced traveling distance compared to

pure tidal current alone. The difference between the combined waves and tidal current

ellipse and the ellipse for pure tidal current is much larger at 10 cm above the sea-bed in

comparison with 23 cm above the sea-bed. The cause for this is assumed to be that the flow
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at 10 cm above the sea-bed is closer to the wave-induced boundary layer on the sea-bed,

which means that the apparent roughness have a greater influence on the flow closer to the

sea-bed.

Close-up views of the combined waves and tidal current particle trajectories show that

the ellipse exhibit a horizontal oscillatory pattern from side to side when the waves and

tidal current interact with an angle between each other. This is assumed to be caused by a

change in the generation of turbulent energy over a wave cycle.

The effect of increased bottom roughness z0 showed to give a significant reduction in the

traveling distance of the particles in the trajectory ellipses. This result shows that it is

utterly important to know the sea-bed conditions in the area of evaluation.

Further work should include shear stress analysis of the sea-bed, mass transport by non-

linear waves, introduce flux for the turbulent quantities and add a nonlinear interaction

between the boundary layers for the waves and current.
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Sammendrag

Målet for dette arbeidet er å kunne forutsi effektene fra kombinert sinusformede over-

flatebølger og tidevannstrøm over en full tidevannssyklus. En en-dimensjonal turbulens-

modell med to likninger har blitt brukt over middels vanndyp. Implementering av bølger

og strøm er en enveis implementering, hvor tidevannet driver det kombinerte bunngrens-

esjiktet.

Modellen ble i en prosjektoppgave skrevet i løpet av høsten 2018 vellykket validert for

ren tidevannsstrøm med feltdata presentert av King and G. Davies A. (1985), og for bølge

grensesjiktet med laboratorie eksperimenter av Jensen et al. (1989). Modellen ble senere

utviklet for å kunne modellere de kombinerte effektene fra bølger og tidevannsstrøm over

en full tidevannssyklus. Det mest interessante og mest kritiske området i vannsøylen

er nært havbunnen. Derfor har et finere ”mesh” med flere gitterpunkter blitt lagt til i

områdene nært grensejiktet på havbunnen. Fordi prosjektoppgaven ikke er publisert, er de

viktigste resultatene lagt ved i Vedlegg A.

Det finnes ulike publiserte arbeider som omhandler det kombinerte grensesjiktet for bølger

og tidevannsstrøm. Undersøkelse av kombinert bølge og tidevannstrøm over en full tide-

vannssyklus er imidlertid et fysisk ”multiscale” problem som, etter forfatterens viten, aldri

før har blitt løst. Feltmålinger for kombinert bølger og tidevannsstrøm over en full tide-

vannssyklus med tilstrekkelig kvalitet har ikke blitt funnet for denne oppgaven.

Partikkelbaneundersøkelse over en full tidvannssyklus viser at den kombinerte bølge og

tidevannsstrømmen viser reduserte hastigheter og dermed reduserte avstander sammen-

lignet med ren tidevannsstrøm alene. Forskjellen mellom ellipsen for kombinert bølge og

tidevannsstrømm og ellipsen for ren tidevannsstrøm er mye større på 10 cm over havbun-

nen sammenlignet med for 23 cm over havbunnen. Årsaken til dette antas å være at

strømningen ved 10 cm over havbunnen er nærmere det bølgeinduserte grensesjiktet på

havbunnen, noe som betyr at den bølgeinduserte ruheten (apparent roughness) har større
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innflytelse på strømmen nærmere havbunnen.

Nærbilder av ellipsen for kombinerte bølger og tidevannsstrøm viser at ellipsen viser ho-

risontale svinginger fra side til side når bølgene og tidevannsstrømmen virker med en

vinkel mellom hverandre. Dette antas å være forårsaket av en endring i genereringen av

turbulent energi over en bølgesyklus.

Effekten av økt bunnruhet z0 viste seg å gi en betydelig reduksjon i avstanden partiklene

beveget seg over. Dette resultatet viser at det er veldig viktig å kjenne forholdene til

havbunnen ved det aktuelle området.

Videre arbeid bør omfatte skjærspennings-analyse av havbunnen, massetransport i ikke-

lineære bølger, introdusere flux for turbulens og en ikke-lineær interaksjon mellom grens-

esjiktene for kombinert bølger og strøm.
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Chapter 1
Introduction

The gravitational forces from the moon and the sun create tides in the oceans. As the

ocean surface rise and falls, enormous amounts of water will migrate over large distances,

which gives rise to tidal currents. These currents can be quite powerful, especially over

shallow grounds and canals. Tidal currents are important regarding transport of masses in

the oceans, such as nutrition’s, bottom materials, pollution and waste. They may also be

of interest in the design of offshore structures.

Water particles in a current can be influenced by the presence of surface waves. The

surface wave boundary layer will impact the current behavior, especially in coastal areas

where particles induced by the boundary layer created by surface waves will impact the

entire water column from the surface to the sea-bed. In Shallow water conditions, the flow

can also be influenced by the bottom friction all the way to the surface. Bottom topography

may also impose irregularities to the flow.

There exist many different simulation models to study the tidal flows and the wave bound-

ary layer. Direct numerical simulations (DNS) and Large eddy simulations (LES) are two

simulation methods that have been widely used to model the Navier Stokes (NS) equations

in turbulent flows. However, these simulations require enormous amounts of computa-

tional power, and it is also challenging to include the effects from high Reynolds numbers

and a rough bottom when using DNS or LES (Holmedal and Myrhaug, 2013). It is often

therefore advantageous to use simplified models in the prediction of tidal flows. Sev-

eral models have been used on the combined surface wave and tidal flow boundary layer.
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Chapter 1. Introduction

Holmedal, Myrhaug, and Rue (2003) investigated the sea-bed boundary layer under ran-

dom waves and current, using a one-dimensional turbulence model where the gridpoints

are located in a line from the sea-bed to the surface. The model used by Holmedal and

Myrhaug (2013) and Holmedal, Myrhaug, and Rue (2003) is the same model in use in

present work.

The thesis is structured as follows. Chapter 2 - 5 include relevant background theory where

some of the theory was written during a project thesis in the fall of 2018, with modifica-

tions in present work. Chapter 2 gives an introduction to the tide generating forces, and

how tidal currents develop in the oceans. Chapter 3 gives an understanding of the sea

environment, and how effects of waves and wind will influence the tidal currents. Chap-

ter 4 gives an introduction to boundary layer theory and how scaling laws can be used to

simplify the Navier Stokes equations. Turbulence theory and modeling are presented in

Chapter 5. Tidal flows are typical turbulent, and knowledge about turbulence is therefore

essential when it comes to the modeling of tidal flows. The turbulent model is presented in

Chapter 6, with corresponding information about boundary conditions and forcing func-

tions. In Chapter 7, the results from the sinusoidal wave boundary layer is presented.

These results have been reproduced to verify the model for sinusoidal waves alone. Re-

sults from the combined sinusoidal waves and tidal flow model are presented and discussed

in Chapter 8. The conclusion is presented in Chapter 9 and recommendations for further

work is given in Chapter 10. The verification results of the model used in pure tidal flow

are presented in Appendix A.
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Chapter 2
Tides

It is well known that all objects with a mass are drawn together by a gravitational pull.

The earth, moon and sun pull on each other as a function of mass and distance between

each other. Even thou the sun is 107 times more massive than the moon, it has a much

lower gravitational pull on the earth because of the long distance between them. The

gravitational pull from the moon (lunar gravitational force) is the main force working on

the tides together with the much smaller gravitational pull from the sun (solar gravitational

force) (J. Brown, 1989). Because the moon is most important with regard to the tide

varying forces, the focus will be on the lunar gravitational force regarding to the basic

forces creating the tides. The moon rotates around the earth-moon combined center of

mass with a period of 27.3 days in the same direction as the earth’s rotation around its

own axis. Combined with the earth rotation of 24 hours, a lunar day will have a period of

24 hours and 50 minutes and is the reason why the high and low tides appear at different

times from day to day (Garrison, 2007).

2.1 The Equilibrium Model of Tides

The equilibrium model of tides is a simplified but useful model to describe the tidal varia-

tions on an ideal earth. The equilibrium model of tides is based on three main assumptions:

1. The earth is completely covered with seawater to an infinite depth, such that the

3



Chapter 2. Tides

effects of coastlines and the effect from the seafloor is neglected.

2. The waves associated with the tides are assumed to be progressive waves.

3. The water is assumed to be in equilibrium with the tide generating forces (gravita-

tional attractions and centrifugal effects) at all times.

It is also common to neglect the gravitational pull from the sun in the equilibrium model

in order to simplify the calculations.

The lunar gravitational force is pulling the water on earth to the side where the moon is

positioned at the present moment. This causes a tidal bulge of water resulting in a high tide

at that side of the earth. At the same time, there exists a second tidal bulge on the opposite

side of the earth. This tidal bulge is caused by a centrifugal effect created because the earth

and moon rotates around the system’s combined center of mass, which is positioned inside

the earth (see Figure 2.2). The tidal bulges can be seen in Figure 2.1 and an explanation

about the centrifugal forces will follow.

Figure 2.1: The tidal bulges created by the moon. The figure is reproduced from J. Brown (1989)

In the equilibrium model, it is common to examine the absolute acceleration at a fixed

point P on the earth’s surface, which can be described by Equation 2.1 taken from Myrhaug

(2014)

~aP,abs = ~aP,rel + 2~ω × ~vP,rel + ~aE + ~̇ω × ~r + ~ω × ~ω × ~r (2.1)

4



2.1 The Equilibrium Model of Tides

where ~ω and ~̇ω is the earth’s angular velocity and acceleration. ~vP,rel and ~aP,rel is the

velocity and acceleration of point P seen from the relative frame. ~aE is the acceleration of

the earth’s center of mass and ~r is the position vector of point P. Since the point P is fixed

to the earth’s surface, the two first contributions in Equation 2.1 are equal to zero. The

angular acceleration of the earth ~̇ω, is very small, so the term ~̇ω × ~r can be neglected. The

term ~ω × ~ω × ~r will always be normal to the earth’s axis and will (as long as the earth is

considered to be a perfectly round sphere) have the same magnitude on all points on earth.

This term will therefore not contribute to the tidal forces, and thus not taken into account.

Figure 2.2 shows the earth-moon system with the combined center of mass and point P on

the surface of the earth.

Figure 2.2: Earth-moon system. a) The system with a fixed point P. b) The system seen from above.
Figure from Grønningsæter (2015).
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Chapter 2. Tides

The resulting term is then

~aP,abs = ~aE = ~aT + ~Ω× ~Ω× ~rE (2.2)

where ~Ω is the angular velocity of the earth-moon system (around the axis T), ~aT is the

acceleration of the axis T around the sun and ~rE is a vector from the earth’s center of mass

to the earth-moon center of mass. ~aT is very small because its period is one year, and

therefore neglected. The final term can then be written as

~aP,abs = ~Ω× ~Ω× ~rE (2.3)

The term ~Ω× ~Ω× ~rE is the centripetal acceleration due to the rotation of the earth-moon

system and is the same for all points on earth as long as the earth is treated as a round

sphere.

Inserted in Newtons second law gives

∑
F

m
= ~aP,abs = ~Ω× ~Ω× ~rE (2.4)

∑
F

m
− ~Ω× ~Ω× ~rE = 0 (2.5)

where m is the mass of a bulge of water. The centripetal acceleration is now considered

to be a force which is called the centrifugal force. This force is always pointed away from

the moon, and can be written as

~S0 = −m(~Ω× ~Ω× ~rE) (2.6)

The sum of these centrifugal forces is always in balance with the forces caused by the

gravitational pull between the earth and the moon, which means that the earth-moon sys-

tem is in equilibrium. The gravitational force from the moon working on a bulge of water
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2.1 The Equilibrium Model of Tides

on earth can be written as

~G = −GmM
r2

(2.7)

where G is the gravitational constant, M is the mass of the moon and r is the vector from

the moon to the point P. This force is dependent on the distance between the water bulge

and the moon, and will consequently depend on the location of point P. When the distance

between m and M is large (when the bulge of water is on the far side of the earth) cen-

trifugal forces will dominate, while the side closest to the moon will be dominated by the

gravitational pull from the moon as seen in Figure 2.3. These centrifugal forces are the

reason why there exists two low and high tides during a period of 24 hours and 50 minutes.

Figure 2.3: Tide producing forces: gravitational forces and centrifugal forces on the earth because
of the moon. Figure from J. Brown (1989).

2.1.1 Combined Lunar and Solar Tides

Even though the gravitational pull from the sun working on the earth is only 0.46 times

the pull from the moon, it will still have an impact on the tides on earth. The sun also

creates two tidal bulges on earth by the same principle as the earth-moon system. The
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Chapter 2. Tides

period of the earth-moon system’s rotation around the sun is different from the rotation

of the earth-moon system itself. Therefore, the tidal bulges created by the moon and the

sun will appear in an oscillatory way. For simplicity however, both the declination of the

earth-sun system and the earth-moon system is neglected in the equilibrium model.

Figure 2.4 shows a representation of the earth-moon-sun system in different alignments.

When the moon is full or new (the earth, moon and sun is in line) the tidal bulges from the

sun and moon is working in the same direction. The high tide will therefore be larger than

average, and the low tide will be lower than average. When the moon is in its first or last

quarter, the tidal bulge from the sun and moon works normal on each other, resulting in a

smaller difference between high and low tide.

Figure 2.4: The earth-moon-sun system. Figure from J. Brown (1989).
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2.2 The Coriolis Effect

2.2 The Coriolis Effect

In Chapter 2.1, the equilibrium model of tides was explained by use of a fixed point P on

the surface of the earth. This resulted in a simplification of Equation 2.1 to Equation 2.3,

where only the terms that were influenced by that fixed point remained. Now, consider

that the point P is a fluid particle in a current that starts accelerating with an acceleration

~ap,rel. The point will now be affected by the earth’s rotation, resulting in an effect called

the Coriolis effect. Equation 2.1 from Chapter 2.1 can now be written as

~ap,abs ≈ ~ap,rel + 2~ω × ~vp,rel (2.8)

where 2~ω × ~vp,rel is the Coriolis acceleration of a particle P moving with velocity ~vp,rel

in a relative reference system with an angular velocity ~ω (Myrhaug, 2001). Implemented

in Newton’s second law gives the equation

~F

m
= ~aabs = ~arel + ~vp,rel (2.9)

which also can be written as

~F

m
− 2~ω × ~vp,rel = ~ap,rel (2.10)

From the earth, the term −2~ω × ~vp,rel is experienced as a force, and is the Coriolis force.

Because of the Coriolis force, objects will deflect to the right in the northern hemisphere

and to the left in the southern hemisphere as seen in Figure 6.1. The magnitude of the

force will be at its maximum at the poles, and can be neglected at the equator (Myrhaug,

2001). The Coriolis effect is an important phenomenon in the field of oceanography and

meteorology and has a large impact on how the tides and currents behave in the oceans.
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Chapter 2. Tides

Figure 2.5: Coriolis effect

2.3 The Dynamic model of Tides

The Equilibrium model of tides in Chapter 2.1 is a very simplified, but still a very useful

model to describe the tides produced by the moon and sun. However, the effects from

continents on earth have been neglected, and these needs to be added to a more detailed

model in order to get an accurate description of the tides on earth. The Coriolis effect will

also have an impact on the tides. This leads to the more advanced model known as the

dynamic model of tides (Pinet, 2015).

The general idea behind the dynamic model is that the tides react actively to the tide

generating forces. We start with one hypothetical ocean basin in the northern hemisphere

as seen in Figure 2.6. In the first case, the moon is stationed at the west side of the basin,

which will cause a tidal wave towards the western shore. This will result in a pressure

gradient, which will force the water back to the east. Because of the Coriolis effect, the

water will deflect to the right on the way back and force the water to the southern side

of the basin, as seen in case 2. Again, the pressure gradient from the southern shore will

force the water from the shore. The flow will again deflect to the right because of the

Coriolis effect. This rotating flow continues around the basin and will result in a rotary

10



2.3 The Dynamic model of Tides

wave. This rotary wave will rotate around an amphidromic point in a amphidromic system.

The amphidromic point will be stationary, which means that it will not have any change

in elevation due to high or low tides. This cycle repeats itself every tidal period, which is

every 12.42 hours (Garrison, 2007).

Figure 2.6: The principle behind the dynamic model of tides. Figure from Pinet (2015).

Figure 2.7 shows three amphidromic systems in the North sea. The red lines are called

co-tidal lines. The tidal wave crest occurs at the same time for all points on these lines.

The blue lines are called co-range lines, where all points on these lines have the same tidal

range (elevation) (J. Brown, 1989). As seen, the variation in tides at the eastern coast of

Great Britain and in the English Channel, are much larger than at the western coast of

Norway near Stavanger.
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Figure 2.7: Amphidromic systems in the North Sea. Figure from J. Brown (1989).

2.4 Tidal Currents

As mentioned in Chapter 2.3, the tidal motion around an amphidromic point forms a rotary

wave. From wave theory, it is known that fluid particles underneath waves move in an

orbit. In deep waters, these fluid particles rotate as perfectly round circles, while in finite

waters, the fluid particles rotate in an ellipse as seen in Figure 2.8. These orbital motions

will decrease further down in the water column and goes to zero at approximately half a

wavelength. In shallow waters, the water particles will influence the flow throughout the

full water column.

12



2.4 Tidal Currents

Figure 2.8: Fluid particles underneath a wave in deep (left) and finite water depth (right). Figure
from Pettersen (2004).

Because of the large wavelength of a tidal wave compared to the water depth, the water

particles will mainly have horizontal motions (u, v). In open oceans where there are no

effects from landmasses, the currents will rotate because of the Coriolis effect. If we plot

the velocity vectors of a fluid particle in a tidal current, we will get a pattern where the

velocity vectors form an ellipse as seen in Figure 2.9. This is called a current rose (J.

Brown, 1989).

Figure 2.9: Sketch of a current rose. The velocity vectors of a full tidal cycle will form a tidal
ellipse. The vectors is plotted 20 times over a tidal cycle.
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Chapter 3
Sea Environment

Tidal currents are predictable in the sense that they are a direct result of the tidal forces

from the moon and sun. Something that is not as easy to predict, is ocean-atmospheric

interactions, where wind and waves are of great importance. Both a mean wind and wind

gusts will impose a shear stress on the surface and create waves and currents. These

waves and currents will together with the tidal currents as well as other factors, create a

complex environment that is hard to describe. This chapter will give an introduction to

these mechanisms and how they behave in presence of each other.

3.1 Wave Theory

The main source of information in this Section is the Sealoads book by Faltinsen (1990).

At first, we assume that the water is incompressible, inviscid and that the fluid motion is

irrotational. Under these assumptions, the velocity potential φ is useful to describe the

velocity vector ~u(x, y, z, t) = (u, v, w) at time t at the point (x,y,z) in a cartesian coordi-

nate system fixed in space. The velocity potential should satisfy the continuity equation

∇ · ~u = ∇ · (∇φ) = 0 since the fluid is incompressible. The velocity vector can then be

written as

~u = ∇φ ≡ î ∂φ
∂x

+ ĵ
∂φ

∂y
+ k̂

∂φ

∂z
(3.1)
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where (̂i, ĵ, k̂) is unit vectors along (x,y,z) axes respectively. Since the fluid motion is

assumed to be irrotational, the vorticity vector ~ω = ∇× ~u is zero everywhere in the fluid.

From the continuity equation, the divergence of a gradient leads to the Laplace equation,

thus the velocity potential φ needs to fullfill the Laplace equation

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (3.2)

everywhere in the fluid. The pressure p follows the Bernoulli equation and can be written

as

p+ ρgz + ρ
∂φ

∂t
+
ρ

2
~u · ~u = C (3.3)

where C is a function of time.

3.1.1 Boundary conditions

To be able to find the velocity potential with given assumptions, the Laplace equation needs

to be solved with relevant boundary conditions (BC) on the fluid. These can be divided into

kinematic and dynamic boundary conditions for the free surface and kinematic boundary

conditions for the sea bottom, as seen in Figure 3.1.
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3.1 Wave Theory

Figure 3.1: a) General structure of a 2D boundary value problem b) 2D water waves specified as a
boundary value problem. Figure from Dean and Dalrymple (1991)

Kinematic boundary conditions

Any fixed or moving surface can be expressed mathematically by a functionF (x, y, z, t) =

0 (Dean and Dalrymple, 1991). The substantial derivative of this function F describes the

rate of change with time if we follow a fluid particle in space and can be written as

DF

Dt
=
∂F

∂t
+ ~u · ∇F (3.4)

The free surface can be described by the equation

z = ζ(x, y, t) (3.5)

where ζ is the wave elevation. The function F can then be defined as

F (x, y, z, t) = z − ζ(x, y, t) = 0 (3.6)

A fluid particle on the free-surface is assumed to always stay on the free-surface. This
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means that Equation 3.6 is always satisfied and that Equation 3.4 is equal to zero. The

kinematic boundary condition for the free surface thus becomes

∂

∂t
(z − ζ(x, y, t)) +∇φ · ∇(z − ζ(x, y, t)) = 0

i.e. (3.7)

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0

For a fixed body, such as the sea-bed, the most important boundary conditions that should

be defined is the impermeability BC for a fixed body

∂φ

∂n
= u · n = 0 on the body surface (3.8)

which states that no fluid is entering or leaving the body surface itself. Here, n is the

normal vector pointing out of the boundary into the fluid.

Dynamic free surface boundary conditions

Free surfaces like the air-water interface does not support variations in pressure across

the interface and must therefore respond in order to maintain uniform pressure (Dean and

Dalrymple, 1991). This means that the water pressure is equal to the constant atmospheric

pressure. If we choose a constant C, Equation 3.3 can be written as

gζ +
∂φ

∂t
+

1

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
)

= 0 (3.9)

on z = ζ(x, y, t).

Both the free surface conditions from Equation 3.7 and 3.9 are non-linear with a unknown

position of the free surface before the equation is solved. However, the conditions can

be linearized in order to simplify the problem. Linear wave theory states that velocity

potential φ is proportional to the wave amplitude if the wave amplitude is small relative
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3.2 Nonlinear Wave Effects

to a characteristic wavelength and body dimensions. The free surface conditions can be

transfered from the free surface position z = ζ(x, y, t) to the mean free surface z = 0, and

thus the linear form of Equation 3.7 and 3.9 becomes

∂ζ

∂t
=
∂φ

∂z
on z = 0 (Kinematic condition) (3.10)

gζ +
∂φ

∂t
= 0 on z = 0 (Dynamic condition) (3.11)

3.2 Nonlinear Wave Effects

A progressive surface wave moving forward will cause water particles underneath the sea

surface to start moving in an orbital way as mentioned in Chapter 2.4. If we consider

small waves which follows the linear wave theory, the orbital path of the water particles

will be closed. However, there often exists waves with different phase velocities and wave

lengths in a wave field. When these waves interact, the waves will change from sinusoidal

to a nonlinear form with second order effects in terms of ζ2
A where ζA is the wave ampli-

tude. The fluid particles will now change from a closed path to form a slowly drift in the

propagation direction of the wave. As seen in Figure 3.2, these net velocities of the water

particles will create a mass transport in the direction of the waves.

Figure 3.2: Orbital motion of fluid particles inducing mass transport. Figure from Myrhaug (2014).

The oldest and most studied theory for nonlinear waves is the Stokes wave theory, first

introduced by Stokes (1846). The theory only works for deep and intermediate water

depths, as the solution will break down in shallow water (the solution will not converge).
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The characteristics of a Stokes wave is that it has a higher wave crest and a lower (in

absolute values) wave trough as seen in Figure 3.3. A Stokes wave also has a wider wave

trough and steeper wave crest compared to linear wave theory. The consequence of the

nonlinearity in a Stokes wave is that the boundary conditions need to be defined on the

actual wave surface, and not on the mean free surface, as for linear wave theory.

Figure 3.3: Comparison of a stokian and linear wave profile. Figure from Myrhaug (2001)

3.3 Wind Induced Currents

When wind is blowing over the ocean surface it will create an ocean surface boundary layer

because of friction. A current will then be generated and will decrease further down in the

water column. In the Fram expedition towards the North pole from 1893-1896, Fridtjof

Nansen experienced that the icebergs did not move in the same direction as the wind, but

deflected to the right. Nansen understood that this phenomenon resulted from the rotation

of the earth, and asked Vilhelm Bjerknes, who was a professor at Stockholms Høgskola

for help to solve the problem. Bjerknes forwarded the task to Vagn Walfrid Ekman who

was one of his students at the time. Ekman solved the problem in 1902 and the solution is

known as the Ekman layer theory.
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3.3 Wind Induced Currents

3.3.1 Ekman Layers

Ekman assumed that the Coriolis effect was central in the problem. Ekman also assumed

that the friction forces on the surface because of the wind was directed in the same di-

rection as the wind itself. By use of the Coriolis theory, Ekman found that the water

particles deviated to the right of the original direction, something that was in conformity

with Nansen’s observations. Ekman also found that the different water layers down in the

water column each caused a new deviation to the water particles, as well as slowing down

the velocity of the water particles because of frictional losses. This is known as the Ekman

spiral shown in Figure 3.4.

Figure 3.4: The Ekman spiral. Figure from Pinet (2015).

Ekman found that the wind generated currents deviated with an angle of 45◦ from the

original wind direction. This also explained Nansen’s iceberg question, because most of

the icebergs are located underneath the sea surface and is therefore more affected by the

wind generated currents, than by the wind itself (Myrhaug, 2014). Ekman also found that

the net mass-transport over the spiral is directed 90◦ to the right in the northern hemisphere

and 90◦ to the left in the southern hemisphere, known as Ekman transport. This introduces

the terms upwelling and downwelling which is two important terms regarding nutrition

transport in the oceans (Pinet, 2015).

Ekman spirals does not only exist at the sea surface. In the atmosphere and at the sea floor,

there can also exist Ekman spirals. The direction of the deviation will then be directed

21



Chapter 3. Sea Environment

opposite ways of the Ekman layers at the seafloor, to the left in the northern hemisphere

and to the right in the southern hemisphere (Myrhaug, 2014).

Observations and experiments of the Ekman spiral showed that the real deviation of the

water particles was not 45◦, but between 5◦ and 20◦. This is because of turbulence in the

flow, something that the Ekman model excludes (Cushman-Roisin, 2011).

3.4 Interaction Between Waves and Currents

Waves and currents will interact with each other hydrodynamically. This means that the

waves will be influenced in a nonlinear way by the current, and vice versa. Thus, the

current and waves creates a intermutual boundary layer that complicates the calculations.

In addition, there will be a modification of the phase speed and the wavelength of the

waves, leading to refraction of the waves (Soulsby, 1997). Waves propagating in the

same direction as a current, will experience increased wavelength and decreased wave

height, while waves propagating in the opposing direction as the current, will experience

decreased wavelengths and an increased wave height.

Waves, in the presence of a current will impose an extra roughness on the current. This

roughness will be in addition to the surface roughness height z0 that will be described

in Chapter 5.3. The extra roughness induced by the waves will lead to increased mixing

near the bed, thus the turbulence will increase (Nielsen, 1992). This additional roughness

can be included by introducing the apparent roughness coefficient za in the logarithmic

velocity profile that will be introduced in Chapter 5.3.1. The more wave dominated flow,

the larger apparent roughness (Holmedal, Myrhaug, and Rue, 2003).

Apparent roughness is a function of the relative roughness on the sea-bed, wave character-

istics, velocity of the current compared to the wave orbital velocity and the angle between

the waves and current (Grant and Madsen, 1979). It is therefore multiple factors that have

the ability to influence the apparent roughness, and thus the friction in the combined waves

and tidal current boundary layer.
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Waves in shallow and intermediate waters produce an oscillatory velocity within the wave

boundary layer at the sea-bed, where the velocity amplitude increase rapidly with height

from zero at the sea-bed. These oscillatory velocities will, in the absence of a current,

be within the wave boundary layer on the sea-bed, which can be a few millimeters or

centimeters thick. Because of these small scales, where the turbulence is concentrated

within the thin wave boundary layer, the waves will have the ability to impose a much

larger sea-bed shear stress compared to a pure tidal current. This large sea-bed shear

stress have the strength to detach sediments on the sea-bed (Soulsby, 1997). However, as

the velocities within the wave boundary layer oscillates, they are an ineffective transport

mechanism. The current boundary layer on the other hand, is typically multiple meters in

height and is therefore a much better transport mechanism. The current have the ability

to transport sediments already detached by the waves. Thus the combined waves and tidal

flow will initiate sediment detachment and transport (Grant and Madsen, 1979). Sediment

transport is of great importance with regard to forming of river deltas and beaches in

coastal areas.

Figure 3.5 shows a representation of the nonlinear interaction between waves and current

shear stress with an angle between them. As seen, the maximum shear stress in the com-

bined waves and tidal current have mean direction based on the direction of the pure waves

and pure current flow. This change in direction have the ability to change the direction of

the flow and thus the direction of the sediment transport.

Figure 3.5: Shear stress near the sea-bed for a combined waves and tidal current flow. Figure
reproduced from (Soulsby, 1997)
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Chapter 4
Boundary Layers

A boundary layer is defined as the flow region where the viscous effects are significant

(Cengel and Cimbala, 2014). This will result in a change of velocity gradients near the

surface and the no-slip condition applies. The no-slip condition states that the velocity of

a fluid in motion will decrease as it approaches a surface and will eventually come to a

complete stop as long as the surface itself is not moving. There exists both laminar and

turbulent boundary layers, depending on the Reynolds number. However, current and wave

behavior is generally turbulent, thus the focus will be on turbulent boundary layers in this

thesis. Both the boundary layer and the no-slip condition exist because of friction between

the fluid and the boundary, which leads to turbulent shear stresses in the fluid which can

be written as

τturb = −ρui′uj ′ (4.1)

This turbulent shear stress is commonly known as Reynolds stresses, and is in much use

in many turbulence models such as the Reynolds Averaged Navier stokes (RANS) solvers.

The French mathematician Joseph Boussinesq came up with a formulation of the turbulent

shear stress which can be written as

τturb = µ
∂u

∂y
(4.2)

where µ is the dynamic viscosity of the fluid and ∂u
∂y is the velocity gradient (Cengel and

Cimbala, 2014).
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Figure 4.1: Sketch of a laminar boundary layer. Figure from Schlichting and Gersten (2017).

Boundary layers exists in many forms and sizes, as atmospheric boundary layers, ocean

surface boundary layers and boundary layers at the sea bottom. What these boundary

layers have in common, is that they are developing over an approximately flat terrain. For

example, if wind is blowing over a hill or a very rough terrain such as steep waves in the

ocean, it is likely that the flow will separate, and vortices will be shed. This will lead to

a decomposition of the boundary layer, and the boundary layer equations which will be

presented in Chapter 4.1 will not apply. However, for large scale motions where the length

scale L is much larger than the height scale H, the boundary layer theory is applicable,

which makes it suitable in the prediction of tidal flows, which is typically a large scale

motion (Myrhaug, 2014).

4.1 The boundary layer approximation

The boundary layer equations is a simplification of the full Navier Stokes equations. They

narrow the step between the Euler equations, which does not follow the no slip condition,

and the Navier Stokes equations (Cengel and Cimbala, 2014). The Navier Stokes equa-

tions originates from Newtons second law and can (including the Coriolis acceleration) be

written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(4.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(4.4)
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− g = −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(4.5)

where {u, v, w} is the velocities in {x, y, z} direction respectively, p is the pressure,

{fu, fv} is the effect from the Coriolis acceleration, ν is the fluid kinematic viscosity,

ρ is the fluid density and g is the gravitational acceleration. Now, consider a boundary

layer with height δ and length L. For boundary layers, the height δ is much smaller than

the length L (δ << L) and can therefore be modeled as a thin layer compared to the flow

region. Because of the mentioned no slip condition, the velocity at the wall is zero, and

approaching the free stream velocity U0 away from the wall. Because the boundary layer

is a thin layer, the velocity goes from 0 to U0 within a short period of time. Consequently,

the vertical velocity gradient ∂U∂Z is large. For the boundary layer to remain thin and thus

comply with the continuity equation, the vertical velocity W must be much smaller than

the horizontal velocity component, such that W << U is valid. By use of this dominating

balance and scaling laws, the Navier Stokes equations can be written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+ ν

∂2u

∂z2
(4.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+ ν

∂2v

∂z2
(4.7)

∂p

∂z
= −ρg (4.8)

These three equations are known as the boundary layer equations. Equation 4.8 states that

there is no change in the pressure in the z-direction throughout the boundary layer, which

is an important assumption then solving the boundary layer equations.
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4.2 The low Rossby number approximation

The Rossby number is an important parameter when we want to determine whether the

motion in the oceans are dominated by inertia or Coriolis forces. Surface waves made

from wind are typically inertia dominated, because of the large mass they contain, but

ocean tides are large scale motions which are typically Coriolis dominated, because of

extremely long wave-lengths. The Rossby number is defined by

R0 =
U0

Lf0
(4.9)

where U0 is the free stream velocity, L is the characteristic length of the motion and f0

the Coriolis paramter at the given latitude. U0 is known as the acceleration (Inertia) term,

and Lf0 is known as the Coriolis term. It can be seen that for large Rossby numbers, the

acceleration term is dominant, and for small Rossby numbers, the Coriolis term is domi-

nant. As mentioned, large scale motions such as ocean tides is typically Coriolis dominant

because of the very large length scale L, which again leads to low Rossby numbers. We

can then use the so called low Rossby number approximation to neglect all the advective

terms. Thus, the boundary layer Equations 4.6, 4.7 and 4.8 can be simplified and written

as
∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂z2
+ fv (4.10)

∂v

∂t
= −1

ρ

∂p

∂y
+ ν

∂2v

∂z2
− fu (4.11)

∂p

∂z
= −ρg (unaffected) (4.12)
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Chapter 5
Turbulence and Turbulence

Modeling

5.1 The Reynolds Model

The Navier Stokes equations describes a viscous incompressible fluid flow, and can (with

Einstein’s summation convention) be written as

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(5.1)

∂ui
∂xi

= 0 (5.2)

where ui is the fluid velocity where i = {1, 2, 3} = {x, y, z} respectively (Alfonso, 1993).

The Navier Stokes (NS) equation is very time consuming and computational demanding to

solve by direct numerical simulations (DNS). Osbourne Reynolds came therefore up with

a decomposing of the NS equations. The dependent variables (u and p) in Equation 5.1

and 5.2 are decomposed into mean and fluctuating parts

u(xi, t) = u(xi, t) + u′(xi, t) (5.3)
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p(xi, t) = p(xi, t) + p′(xi, t) (5.4)

where u(xi, t) represents the mean turbulent velocity field and u′(xi, t) represents the fluc-

tuating velocity field. Substituting Equation 5.3 and 5.4 into the Navier Stokes equation,

leads to the Reynolds Averaged Navier Stokes (RANS) equation

∂ui
∂t

+
∂ ui uj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂ui′uj ′

∂xj
(5.5)

∂ui
∂xi

= 0 (5.6)

The term ui′uj ′ in Equation 5.5 is the Reynolds stresses, as presented in Equation 4.1.

These stresses must be modeled by use of various turbulence models (Holmedal, 2002).

5.2 The Generalized Eddy Viscosity Concept

To be able to solve the RANS equation (Equation 5.5) we need to be able to model the

Reynolds stresses. The main idea on how to do this is to define a relationship between

the velocity field and the shear stresses in the fluid (Nielsen, 1992). This can be done in

various ways, but a common approach is the eddy viscosity concept, also known as the

generalized eddy viscosity hypothesis. The main principle behind the generalized eddy

viscosity concept is to configure the RANS equation such that it becomes identical to the

laminar Navier Stokes equations (Holmedal, 2002). Generalized eddy viscosity can be

written on the form

− ui′u′j = νT (
∂ui
∂xj

+
∂uj
∂xi

)− 2

3
kδij (5.7)

where δij is the Kronecker delta function and νT is the eddy viscosity. The turbulent

kinetic energy, k can be written as
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k =
1

2
ui′u′j (5.8)

The eddy viscosity νT is unknown and needs to be determined to be able to use the model

in a practical way. The eddy viscosity must be modeled as a function of the average flow

variables (Cengel and Cimbala, 2014). Depending on how this is done, our model will be

either a zero, one or two-equation model with different accuracy.

Ludwig Prandtl developed in the early 20th century a model which is called the Prandtl

lifting length model. Prandtl assumed that the eddy viscosity could be written as

νT = lmVm (5.9)

where lm is the mixing length and Vm is the velocity scale of the largest turbulent eddies.

Prandtl found that Vm is proportional to the velocity gradient (∂ū∂z ) times the mixing length

(lm) and the eddy viscosity can then be written as

νT = lm
2

∣∣∣∣∂ū∂z
∣∣∣∣ (5.10)

Prandtl described the mixing length model (which is a zero equation model) to be ”only

a rough approximation” of the turbulent shear stresses. The model have however been

regarded as a successful model to describe the eddy viscosity in a fluid. Today, the mixing

length model is however regarded to not be sufficient in terms of describing the eddy

viscosity because the model is based on the assumption that the turbulent eddies interacts

in the same way as molecules in a gas. This have been concluded not to be the case, and

the mixing length model is therefore not in much use today (Holmedal, 2002).

To be able to model the eddy viscosity in an accurate way, a model which describes the

transport of the turbulent length and velocity scale in Equation 5.9 is needed. Prandtl and

Kolmogorov suggested to replace the velocity scale of the largest turbulent eddies (Vm)

with the square root of the turbulent kinetic energy and define these to be proportional with
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Chapter 5. Turbulence and Turbulence Modeling

each other. This is known as the Kolmogorov-Prandtl relation and can be written as

νT = Cµ
√
klm (5.11)

where Cµ is an empirical constant.

The Kolmogorov-Richardson cascade (see Richardson, 1965) states that for turbulent flows,

the viscous forces in the flow extracts the kinetic energy from the turbulence and trans-

forms it into heat. The energy is first transferred from the high-energy eddies (large ed-

dies) to the low-energy eddies (small eddies) before it eventually dissipates. The viscous

effects are therefore negligible for large eddies. The dissipation rate of turbulent kinetic

energy can therefore be determined from the turbulent length lm and the velocity scales of

the largest eddies Vm. From dimensional analysis, the dissipiation term can be modeled

as ε = Vm
3/lm where Vm ∼

√
k (Holmedal, 2002). This leads to the viscous dissipation

rate of turbulent kinetic energy ε and can be written as

ε = CD
k3/2

lm
(5.12)

where CD is an empirical constant (Holmedal, 2002).

In order to describe the turbulence as realistic as possible, we need transport equations

for both the turbulent length L and the velocity scale Vm. This leads to two-equation tur-

bulence models which exists in various versions. One of the most common two-equation

turbulence models in use today is the k − ε turbulence model which can be written as

νT = CDCµ
k2

ε
≡ c1

k2

ε
(5.13)

where the empirical constants CD, Cµ can be described by the empirical constant c1. The

transport equation for ε can now be found from the Navier Stokes equations. The k − ε

model can now be written as

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

(
νT
σk

∂k

∂xj

)
+ νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ūi
∂xj
− ε (5.14)
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5.3 The Impact of Bottom Roughness

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ c1ε

ε

k
νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ūi
∂xj
− c2ε

ε2

k
(5.15)

where c1, σk, σε, c1ε and c2ε is constants that needs to be determined experimentally.

The k − ε model must be solved at the same time as the RANS equations (Equation 5.5)

(Holmedal, 2002).

5.3 The Impact of Bottom Roughness

Basic fluid turbulent models tend to start with flow over a flat plate for simplicity. However,

most of the seafloor is covered by sedimentary structures such as dunes and ripples, which

will add a roughness to the surface. These small structures do not influence the main

flow over a surface, but they have a large impact on the boundary layer and turbulence

close to the seabed, because of added friction (Nielsen, 1992). The friction coefficient

is a common parameter to estimate the frictional resistance on the seabed. For laminar

flow, the friction coefficient only depends on the Reynolds number. For turbulent flow, the

surface roughness has an impact on the friction coefficient and in fully rough and turbulent

flows, the friction coefficient is independent of the Reynolds number and is only a function

of surface roughness (Cengel and Cimbala, 2014).

To be able to make models of the seabed roughness with acceptable accuracy, we need to

be able to describe the seabed shear stress. This can be done either by describing the seabed

geometry by use of the Nikuradse grain roughness ks (also called the hydraulic roughness),

or by the roughness height z0 which can be derived from Equation 5.19. Nikuradse found

that for fully turbulent/hydrodynamically rough flows, the logarithmic velocity profile (see

Chapter 5.3.1) over packed sand grains with diameter d went to zero at roughness length

equal to

z0 =
1

30
d (5.16)

where d is the diameter of a sand grain. The relationship between the roughness length
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Chapter 5. Turbulence and Turbulence Modeling

and the Nikuradse roughness thus becomes

ks = 30z0 (5.17)

Implemented in the Reynolds number leads to the Reynolds roughness number

Rr =
U∗z0

ν
(5.18)

where U∗ is the turbulent velocity at the sea-bed (see Equation 5.20) and ν is the kinematic

viscosity. It is clear that lower sea-bed shear stress leads to lower Reynolds numbers and

thus more laminar flow (Soulsby, 1997).

5.3.1 Universal Law of The Wall

From experiments, the velocity profile of a steady, uniform and turbulent boundary layer

tends to approach a logarithmic profile. The velocity can therefore be described by the

logarithmic velocity law called the law of the wall which can be described by

ū(z)

ū∗
=

1

κ
ln
z

z0
(5.19)

ū∗ =

√
τ(0)

ρ
(5.20)

where τ(0) is the sea bed shear stress, z is a finite elevation above the sea bed and κ

is the Von Karmans constant (usually 0.4). Note that this velocity profile is not a good

approximation for bottom flow which is influenced by the boundary layer from the water

surface and is therefore, according to Nielsen (1992), only applicable for the bottom 20-30

% of the water column.
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Chapter 6
Model Formulation

6.1 Governing Equations

We consider a flow over a flat bottom with no interfering land masses. The cartesian

coordinate system is placed at the bottom with positive x direction to the east, y to the north

and z describes the vertical distance from the bottom to the sea surface. As mentioned in

Chapter 4.1, the vertical velocity w is much smaller than the horizontal velocity component

u within a boundary layer, as long as the bottom is flat. By combining the boundary layer

approximation from Chapter 4.1 and the low Rossby number approximation from Chapter

4.2 where all the advective terms can be neglected because of the assumption of horizontal

uniform flow, we can simplify the RANS equations mentioned in Chapter 5.1 to

∂u

∂t
= −1

ρ

∂p

∂x
+

∂

∂z
(νT

∂u

∂z
) + fv (6.1)

∂v

∂t
= −1

ρ

∂p

∂y
+

∂

∂z
(νT

∂v

∂z
)− fu (6.2)

where u and v are the horizontal velocities and f is the Coriolis parameter. Note that the

Coriolis effect does not come into account in the modeling of only waves, i.e. the terms

fv and fu is then excluded from the equations.

Again, By use of the boundary layer approximation, and with the advective terms ne-

glected, the transport equations for k and ε in the k-ε turbulence closure model can be
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written as (See Rodi, 1993)

∂k

∂t
=

∂

∂z

(
νT
σk

∂k

∂z

)
+ νT

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)
− ε (6.3)

∂ε

∂t
=

∂

∂z

(
νT
σε

∂ε

∂z

)
+ Cε1

ε

k
νT

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)
− Cε2

ε2

k
(6.4)

where the standard values for the empirical constants is {c1, cε1, cε2, σk, σε} = {0.09, 1.44,

1.92, 1.0, 1.3}.

The direction of the waves is constant and in the x direction. The direction of the current

varies with the tidal cycle and consists of u and v components. See also Figure 2.9 in

Chapter 2.4.

Figure 6.1: Sketch showing the direction of the current and the waves
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6.2 Boundary Conditions

6.2 Boundary Conditions

6.2.1 At the bottom

The velocity at the sea-bed is defined by the no slip condition mentioned in Chapter 4

(u, v) = (0, 0) at z = z0 (6.5)

The sea-bed is assumed to be hydraulically rough (see Chapter 5.3), hence, the roughness

at the sea-bed is defined by the Nikuradse roughness ks, given by Equation 5.17. Rodi

(1993) assumed equilibrium between the production and dissipation of turbulence, hence

the boundary conditions for the turbulent kinetic energy, k and dissipation, ε at the sea bed

can be written as

k = νT

√(
∂u
∂z

)2
+
(
∂v
∂z

)2
c1

(6.6)

ε = c1
3/4 k

3/4

κz0
(6.7)

where κ = 0.4. Both these boundary conditions is evaluated at the first node from the

bottom.

6.2.2 At the outer boundary

Pure tidally driven flow

As previously mentioned, a tidal wave has a wavelength far greater than amplitude (λ >>

ζA). This defines waves with very low steepness which means that linear wave theory

can be used (Pettersen, 2004). It is therefore sufficient to use the mean free surface rather

than the free surface itself as outer boundary for the pure tidally driven flow (Holmedal

and Myrhaug, 2013). Holmedal and Myrhaug (2013) assumed no shear stress at the sea
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surface. The boundary conditions becomes

∂u

∂z
= 0 (6.8)

∂v

∂z
= 0 (6.9)

There is no flux for the turbulent quantities, the boundary conditions thus becomes

∂k

∂z
= 0 (6.10)

∂ε

∂z
= 0 (6.11)

Regular waves alone

For regular waves alone, the upper edge of the flow domain, z = zmax, is chosen, such

that the boundary layer effects have disappeared (Holmedal, Myrhaug, and Rue, 2003).

The Neumann condition is applied for the velocity, such that Equation 6.8 holds. There is

still no flux for the turbulent quantities, such that Equation 6.10 and 6.11 holds.

Because of no turbulent quantities, the velocity will approach the free stream velocity

amplitude W . The solution must be periodic with the period of oscillation, thus, the free

stream velocity variation is sinusoidal and given by

W0 = Wsin(ωt) (6.12)

where ω is the angular frequency of oscillation.

Combined waves and tidal flow

The velocity components for waves plus current at z = zmax is given as

u = W0 + Uc(t) (6.13)

v = Vc(t) (6.14)

where Uc and Vc is the mean current velocity in x and y direction respectively. Zero
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6.3 Forcing Function

flux conditions for the turbulent quantities still applies, thus Equation 6.10 and 6.11 is

valid. The application of zero flux for the turbulent quantities is discussed by Holmedal,

Myrhaug, and Rue (2003), and will give a unrealistic representation for k and ε close to the

outer boundary. This is because the eddy viscosity will have a zero vertical gradient at the

outer boundary zmax. However, because of the small vertical velocity gradients close to

the outer boundary, the velocities are not much affected by the inaccurate velocity. Because

of the correct velocities over the entire flow domain, the turbulent quantities will be correct

modeled further away from the outer boundary, and will give a correct representation of

the boundary layer close to the sea-bed as is the main interest in present work (Holmedal,

Myrhaug, and Rue, 2003).

6.3 Forcing Function

Pure tidally driven flow

Since the boundary layer approximation is valid, the horizontal pressure gradients are

considered to be constant throughout the boundary layer. The horizontal pressure gradients

are therefore assumed to be in equilibrium with the local accelerations and the Coriolis

terms in the free stream velocities U0 and V0. Equation 6.1 and 6.2 thus becomes

− 1

ρ

∂p

∂x
=
∂U0

∂t
− fV0 (6.15)

− 1

ρ

∂p

∂y
=
∂V0

∂t
+ fU0 (6.16)

Combined waves and tidal flow

The boundary layer approximation still yields, such that the horizontal pressure gradients

are constant throughout the boundary layer. The horizontal pressure gradient can therefore

be taken from the free stream velocity variation W0 close to sea-bed. The forcing function

thus becomes

− 1

ρ

∂p

∂x
=
∂W0

∂t
− 1

ρ

∂pc
∂x

(6.17)
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− 1

ρ

∂p

∂y
= −1

ρ

∂pc
∂y

(6.18)

Here ∂pc
∂x and ∂pc

∂y represents the constant horizontal pressure gradients due to the current.

For conditions where the components from the wave is dominating, this pressure gradient

becomes at least two orders of magnitude smaller than the pressure gradient from the

waves itself, and can therefore be neglected for wave dominated situations (A. Davies et

al., 1988). Note that W0 is only represented in the horizontal pressure gradient in the x

direction, because the direction of the waves is always in the x direction.

6.4 Numerical method

The four governing equations presented in Chapter 6.1, respectively for u, v, k and ε is

solved using a finite difference method as described by Holmedal and Myrhaug (2013).

The most interesting areas in the flow domain are close to the sea bed. Geometric stretch-

ing of the mesh was therefore conducted to get a finer resolution close to the sea-bed. In

order to solve the four equations, time integration is needed. This is done simultaneously

for all the equations by the integrator VODE (P. N. Brown et al., 1989).
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Chapter 7
Verification of the Model for

Regular Waves Alone

The model for regular waves alone, was applied by Justesen (1991) to find turbulent quan-

tities in the wave boundary layer under sinusoidal waves alone. The model is a standard

one dimensional two-equation k− ε model with governing equations and boundary condi-

tions as described in Chapter 6. The results have been modeled with aA/kN value of 3700

where A is the particle amplitude in the free-stream oscillation. The results in this chapter

is compared to experimental laboratory measurements from test number 13 performed by

Jensen et al. (1989). Test number 13 showed to give the most detailed measurements of

the rough turbulent boundary layer.

Figure 7.1 shows the modeled velocity profiles compared to the measurements from test

number 13 for both the acceleration phase (Figure 7.1a) and the deceleration phase (Figure

7.1b) in the logarithmic scale. As seen, the velocity profiles exhibit the characteristic

overshoot and that the velocity follows the logarithmic law close to the sea-bed. It can also

be seen that there is a clear difference between the acceleration phase and the deceleration

phase.
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Figure 7.1: Comparison between modeled (lines) and measured (dotted lines) velocity profiles

Figure 7.2 shows a representation of the turbulent kinetic energy at four phases during

a half circle. As seen, the modeled results are slightly under-predicted compared to the

measurements.
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Figure 7.2: Comparison between modeled (lines) and measured (dotted lines) profiles of turbulent
kinetic energy

Figure 7.3 represents the Reynolds shear stress. As seen, there is a good agreement be-

tween the modeled and measured values.
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Figure 7.3: Comparison between modeled (lines) and measured (dotted lines) Reynolds shear stress
profiles

Figure 7.4 shows a comparison between modeled and measured friction velocity plotted

against the phase variable ωt in one wave cycle. The measured friction velocity has been

obtained from a ’log-fit’ to the near-bed measured velocity component. Close to the flow

reversal (zero-crossing), the friction velocity becomes inaccurate. This is because of the

assumption that there exists an equilibrium between the production and dissipation of tur-

bulent kinetic energy. The logarithmic law will therefore break down and no measured

results can be shown for this area (Holmedal, Myrhaug, and Rue, 2003).
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Figure 7.4: Comparison between predicted (lines) and measured (dotted lines) friction velocity
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Chapter 8
Results and Discussion

In this chapter, results from the combined waves and tidal current model will be presented

and discussed. The sinusoidal waves have an amplitude of 0.92 meters on the sea-surface

and a period of 6 seconds. The outer boundary for the combined model is 25 cm above the

sea-bed. Pure tidal flow has been modeled with a Coriolis parameter of f = 1.112 ∗ 10−4

and the total tidal period is 12.25 hours. The total water depth of the pure tidal flow is

120 meters with a free stream velocity taken at 70m, as these velocities showed to be least

affected by the sea-bed and sea-surface. Particle trajectory ellipses have been modeled for

different heights above the sea-bed and plotted against the ellipses for pure tidal current for

comparison. The ellipses follow a clockwise rotation. Simulations have been performed

with two different values of roughness height to be able to determine the importance of

bottom roughness. These values is z0 = 0.1 cm and 0.01 cm respectively. According to

table 4 in Soulsby (1997), a roughness height of 0.1 cm corresponds to coarse sand and

0.01 cm corresponds to very fine sand.

To be able to store the amounts of data generated from the combined waves and tidal

current model over a full tidal cycle, the model was designed to run in intervals of 50 wave

periods each. With a wave period of 6 seconds, the model was split into 147 different

intervals that results in 44100 seconds, which is equivalent to one tidal period of 12.25

hours.

45



Chapter 8. Results and Discussion

8.1 Splined data from the model for pure tidal effects

The model for pure tidal flow and the model for only waves was merged together to be

able to get combined results for waves and tidal current over a full tidal cycle. The pure

tidal results over a full tidal cycle were therefore implemented into the wave model as a

one-way implementation.

The horizontal velocity u and vertical velocity v, together with the turbulent kinetic energy

k and the dissipation of turbulent kinetic energy ε from the model for pure tidal effects

was first splined to be able to extract results from all values of time t. The results were

splined with a univariate (one variable) interpolation method by Akima (1991) that has the

accuracy of a third degree polynomial. Figure 8.1 presents the splined data (dotted lines)

plotted against the input data (lines) from the pure tidally driven flow model at 25 cm

above the sea-bed. As seen, the splined data follows the input data perfectly throughout

the tidal cycle.
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Figure 8.1: Splined results (dotted lines) plotted against the input data (lines) of the horizontal and
vertical velocities u and v, the turbulent kinetic energy k and the dissipation of turbulent kinetic
energy ε
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8.2 Particle Trajectories

8.2 Particle Trajectories

To see how the combined waves and tidal current develop over large distances, we need

to be able to track the particles as they move. Figure 8.2 shows the particle trajectories

for combined waves and current flow at 10 and 23 cm above the sea-bed, compared to

pure tidal current trajectories (dotted lines). The roughness height z0 is 0.01 cm. All the

ellipses start at the same place at coordinates (x, y) = (0, 0), which means that they are

the same around these coordinates. As seen, both the two ellipses for combined waves and

tidal current are smaller than their corresponding ellipses for pure tidal current. This is

assumed to be caused by increased friction in the flow because of the presence of waves.

This introduce the apparent roughness mentioned in chapter 3.4. The consequence of

the apparent roughness is that the current above the wave boundary layer on the sea-bed

”feels” a larger resistance because of the waves (Grant and Madsen, 1979). This results

in reduced velocities and the particles in the combined waves and tidal current flow will

hence propagate over reduced distances.

The difference between the combined waves and tidal current ellipse and the pure tidal

current ellipse is much larger for 10 cm above the sea-bed, in comparison with 23 cm

above the sea-bed. The cause for this is assumed to be that the flow at 10 cm above the

sea-bed is closer to the wave-induced boundary layer on the sea-bed, which means that the

apparent roughness has a greater influence on the flow closer to the sea-bed.
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Figure 8.2: Trajectories for 10 and 23 cm above the sea-bed with z0 = 0.01 cm and comparison with
pure tidal current ellipses (dotted lines)

Figure 8.3 shows a close-up of the combined waves and tidal current ellipse presented

in Figure 8.2a. The close-up has been performed at 6 different locations on the ellipse,

starting at the upper left side with a clockwise continuation. As seen, the combined waves

and current flow exhibit horizontal oscillations from side to side when the waves and tidal

current interact with an angle between each other. As seen from Figure 8.3a, the horizontal

velocities imposed by the waves will force the current into a horizontal oscillatory motion.

Note that the oscillations does not follow the sinusoidal form, but is rather influenced by

the direction of the wave imposed velocities directed in the positive x - direction. From

Figure 8.3b, it can be seen that when the angle between the waves and tidal current is zero,

in following waves and tidal current, the horizontal oscillations fail to appear. When the

waves are normal to the direction of the tidal current, as seen in Figure 8.3c, the oscillations

are closer to the sinusoidal form. Figure 8.3d shows a similar pattern as the oscillations

in 8.3a, even thou the direction of the tidal current is now towards the wave direction. In

Figure 8.3e, where the tidal current direction is directed towards the wave direction, it can

be seen a more stretched pattern of the oscillations. At the bottom of the ellipse, where

the waves and tidal current is opposing, the oscillations will once again fail to appear,

like the case in Figure 8.3b where the waves were following the tidal current direction.
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The oscillations in the combined waves and tidal current flow are in conformity with the

research performed by A. Davies et al. (1988). Their results showed that the current started

veering to form an increased angle between the waves and tidal current after the waves

were superimposed on the tidal current. A. Davies et al. (1988) discussed that the reason

for this was that different amount of turbulent energy was generated throughout a wave

cycle, such that the difference in this turbulent energy causes the combined waves and

current direction to change.
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Figure 8.3: Close up of the combined waves and tidal current ellipse at 6 different positions. 10 cm
above the sea-bed and with z0 = 0.01 cm
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8.3 Effect of Bottom Roughness

Waves impose an extra roughness on the tidal current in a combined waves and tidal current

flow. The roughness height z0 on the sea-bed also plays an important role, as it will

increase the friction in the flow. Figure 8.4 shows a representation of the combined waves

and tidal current trajectories for the two different values for roughness height, z0 = 0.1 cm

and 0.01 cm respectively. Different intervals have been chosen to extract mean velocity

profiles, and are marked with numbers in the figure. All simulations in this section have

been performed at 10 cm above the seabed.
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Figure 8.4: The particle trajectory ellipses for combined waves and tidal current 10 cm above the
sea-bed with two different values of roughness height. The numbers mark different intervals where
mean velocity profiles have been extracted from

Figure 8.5 shows a comparison between the mean velocity profiles in x - direction in

different intervals as a function of water column height z for the two different values of

roughness height. As seen in Figure 8.5b, the extra roughness on the sea-bed decreases the

velocities over the full z domain, but especially close to the sea-bed, where the difference is

greater. As seen, the velocity on the top of the ellipse (interval 59) has a smaller magnitude

than the velocity on the bottom of the ellipse (Interval 130). This result is unexpected, as

it is expected that the velocity at the top of the ellipse, where the waves and tidal current
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is following each other, would be of larger magnitude than on the bottom of the ellipse,

where the waves oppose the tidal current direction. A potential cause for this, could be

that the ellipse is not symmetric.
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Figure 8.5: Mean velocity profiles for the intervals showed in Figure 8.4

Figure 8.6 shows a comparison between the particle trajectory ellipses that corresponds to

the two velocity profiles given in Figure 8.5. Their corresponding ellipses for pure tidal

flow have also been included for comparison (dotted lines). As seen, the effect of increased

roughness is significant, both for combined waves and tidal current and pure tidal current

alone. This states that the extra roughness on the sea-bed has an enormous impact on the

particle trajectories because of increased mixing on the sea-bed. The apparent roughness is

a function of the relative roughness on the sea-bed, as stated in chapter 3.4. It is therefore

reasonable to assume that the reduction in the trajectory ellipses is caused by increased

apparent roughness because of increased roughness height z0. It is important to note that

all simulations have been performed with constant values of roughness height throughout

the tidal cycle. Measurements performed by Soulsby et al. (1993), shows that this is a

poor estimation. The measurements showed that z0 varied between 0.1 cm to 1 cm for

the maximum and minimum near-bed current respectively. This states that it is utterly

important to know the sea-bed environment during field data measurements and numerical

simulations, as the roughness height variation can lead to erroneous results.
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Chapter 9
Conclusion

The combined effects of waves and pure tidal flow are widely studied and presented in

multiple papers and books. However, most of these studies focus on effects through the

water column at a given time t. Hence, they do not take into account the horizontal varia-

tions in the water column as they develop over time in a tidal cycle. The purpose of present

work is to examine the effects from combined sinusoidal waves and tidal current flow over

a full tidal cycle, using a one dimensional two-equation turbulence closure model.

The model was first successfully validated for pure tidal flow with field data measure-

ments, and for the wave boundary layer with laboratory experiments. The model was then

developed to be able to model the combined effects of waves and tidal current over a full

tidal cycle. This is a physical ”multiscale” problem that has, to the author’s knowledge,

never been solved before.

Particle trajectory investigation over a full tidal cycle shows that the combined waves and

tidal current exhibit reduced velocities and thus reduced traveling distance compared to

pure tidal current alone. The difference between the combined waves and tidal current

ellipse and the ellipse for pure tidal current is much larger at 10 cm above the sea-bed in

comparison with 23 cm above the sea-bed. The cause for this is assumed to be that the flow

at 10 cm above the sea-bed is closer to the wave-induced boundary layer on the sea-bed,

which means that the apparent roughness has a greater influence on the flow closer to the

sea-bed.
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Close-up views of the combined waves and current flow exhibit horizontal oscillations

from side to side when the waves and tidal current interact with an angle between each

other. This oscillatory pattern changes with the direction of the current, and fail to appear

than the angle between waves and tidal current is zero. This is assumed to be caused by

change in the generation of turbulent energy over a wave cycle.

The mean velocity profiles for combined waves and tidal current extracted from different

intervals in the tidal cycle show that the velocity on the top of the ellipse (following waves

and tidal current) has a smaller magnitude than the velocity on the bottom of the ellipse

(opposing waves and tidal current). This result is unexpected, as it is expected that the

velocity in following waves and tidal current has a larger magnitude than opposing waves

and current. A potential cause for this, could be that the ellipse is not symmetric.

The effect of increased bottom roughness z0 showed to give a significant reduction in the

traveling distance of the particles in the trajectory ellipses. It is therefore reasonable to

assume that the reduction in the trajectory ellipses is caused by increased apparent rough-

ness because of increased roughness height z0, because of the relation between apparent

and bottom roughness. This result shows that it is utterly important to know the sea-bed

conditions in the area of evaluation.
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Chapter 10
Recommendations for further work

The focus in present work has been to develop a functioning numerical model including

the combined effects from waves and current. As mentioned, the implementation of waves

and current in this thesis has been a one-way implementation. As the waves and current

influence each other in a nonlinear way, this will not give an exact representation of the

joint current and wave boundary layer. Further work should therefore be focused on getting

a more realistic representation of the inter-mutual boundary layer and thus the apparent

roughness.

Because of the large time scale of a tidal cycle, where both the waves and current will

propagate over large distances, both the vertical and horizontal scale is of importance.

Further work should therefore include simulations with nonlinear waves to examine the

effects from the mean drift (mass transport) to see what impact these effects have on the

tidal current itself.

In present work, zero flux for the turbulent quantities k and ε is assumed. This will how-

ever give an unrealistic representation as mentioned in Chapter 6.2.2 and will result in

inaccurate results further up in the water column. Thus the assumption of zero flux is only

valid close to the sea-bed. Further work should therefore include the flux of the turbulent

quantities, such that the model would be applicable further up in the water column.

Prediction of sediment transport is of great interest in the prediction of tidal flows, as

it is important with regard to forming of river deltas and beaches in coastal areas. As
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mentioned in Chapter 3.4, waves will increase the shear stress on the sea-bed. This shear

stress will contribute to increased sediment transport. Thus, shear stress analysis of the

sea-bed should therefore be included in further work.

No field measurements over a full tidal cycle were found with sufficient quality for present

work. Further work should therefore include measurements of tidal flows, as it will add

valuable validation data to the combined model.
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Appendix A

Validation of the pure tidally driven flow model

In the following, the results from the pure tidally driven flow model will be presented.

This model was used in the mandatory project thesis in the fall of 2018, leading up to

the master thesis. As the project thesis is not published, the most important results are

included here. The numerical results for pure tidally driven flow are compared with field

data from west of the Isles of Scilly in the Celtic sea measured in 1983 at a water depth

of 120 meters presented by King and G. Davies A. (1985). The results are obtained from

seven different height levels above the seabed, respectively 1, 2.5, 15, 30, 50, 70, and 90

meters where the free stream velocity is taken from 70 meters above seafloor. Holmedal

and Myrhaug (2013) found, after multiple simulations, that an average bottom roughness

z0 of 0.1 cm gave the best fit between the numerical results and field data. According to

table 4 in Soulsby (1997), this roughness length corresponds to coarse sand. Since the

model is the same as the one used by Holmedal and Myrhaug (2013), the same average

roughness of z0 = 0.1 cm was chosen. The Coriolis parameter is f = 1.112 ∗ 10−4 and

the tidal period is 12.25 hours.

Figure A.1 presents the modeled horizontal and vertical velocity timeseries (lines) com-

pared with field data (points) from King and G. Davies A. (1985) over one tidal period. As
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seen, the modeled results fit the field data well, with some deviations. King and G. Davies

A. (1985) found from the field measurements used in this work, that there was a nonzero

mean between -1.32 cm/s to -2.62 cm/s for the u component and between 0.32 cm/s to

2.71 cm/s for the v component on each elevation. King and G. Davies A. (1985) assumed

that this was caused by the wind, and since they only wanted to measure the pure oscil-

latory tidal flow, these contributions were subtracted from the time series. As mentioned

in Chapter 2.1.1, both the moon and sun contribute to the tidal variations. Since the pe-

riod of rotation of the earth-moon system itself is different from the earth-moon system’s

rotation around the sun, the elevation in Figure A.1 will not be purely harmonic, and the

phase difference between the horizontal velocity components will not be 90◦ (Holmedal

and Myrhaug, 2013).

From Figure A.1, it can be seen that the time series close to the sea surface deviates more

from the field measurements than for the time series close to the seabed. King and G.

Davies A. (1985) argued that the horizontal velocities at 90 meters could possibly be in-

fluenced by the surface waves, and therefore chose to use the velocities at 70 m as the

free stream velocities U0 and V0. The presence of these surface waves could be a possible

explanation of these deviations close to the sea surface.
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Figure A.1: Velocity time series. Filled lines is u from model, dotted line is v from model, stars are
u from field data and circles are v from field data
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Figure A.2 shows the tidal ellipses for horizontal velocities presented in Figure A.1. As

seen from Figure A.2d and A.2e, the ellipses in the middle of the water column (30 and

50 meters) fits well with the compared field data from King and G. Davies A. (1985). For

the ellipses close to the seabed in Figure A.2a and A.2b (1 and 2.5 meters) there is a sig-

nificant deviation between the model results and the field data. This might be caused by

the uncertainty in bottom roughness z0. As mentioned, the chosen bottom roughness is

constant throughout the tidal cycle and equal to z0 = 0.1cm. Measurements performed

by Soulsby et al. (1993), shows however that choosing a constant roughness length z0 is

a poor estimation. The measurements showed that z0 varied between 0.1 cm to 1 cm for

the maximum and minimum near-bed current respectively. Other experiments performed

by Heathershaw and Langhorne (1988) showed an unexpected change in bottom rough-

ness during large movements of marine sediments, and this could also cause deviations in

present studies.

A seen from Figure A.2f and A.2g, the velocity ellipses close to the sea-surface (70 and

90 meters) shows larger deviations from the field measurements compared to the middle

of the water column. King and G. Davies A. (1985) expected this to be caused by the

presence of surface waves. These surface waves are able to affect the boundary layer at

the sea-surface and could therefore affect the tidal velocities close to the sea-surface.

As seen from Figure A.1c, the velocity ellipse for 15 meters above the sea-bed deviates

more from the field data than both the ellipses closer to the sea-bed and the ellipses close

to the sea-surface. It is hard to point out specific explanation to why this deviation occurs.

Overall, it can be seen from both Figure A.2 that the numerical model provides results

which generally coincide with the field data, and that this rather simple boundary layer

model gives a sufficient estimate of the tidal velocities.
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Figure A.2: Tidal velocity ellipses
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