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Abstract

This thesis is a continuation of the work carried out in Gyberg (2017) regarding the modeling
of offshore cranes and seeks to further improve the crane simulation model that was developed.
Hence, it presents a comprehensive description of the theory that facilitates the extension and
development of the simulation model. The additional features include an improved payload model,
an inverse dynamics control system, a tugger winch system, and an interconnected crane and vessel
dynamics model.

Rigid body assumptions and Lagrangian mechanics lay the foundation for the modeling of the
crane, the payload, and the floating vessel, while the wire dynamics are approximated by a series of
mass-spring-damper systems. To control the motion of the crane tip, an inverse dynamics controller
is designed to calculate the required actuator forces. Tugger winches with active tension control
are attached to the payload to prevent snap loads and limit pendulum motion. The coefficients
related to the hydrodynamic loads are obtained through available experimental data and methods
of approximation. All the models are developed with respect to implementation in a bond graph
environment.

A case study is carried out to validate the implemented tugger winch system and to evaluate the
performance of the control algorithm. To begin with, the implemented wire dynamics are proven
to behave similarly to the acknowledged simulation tool SIMA. It is proven through a comparison
of the loads that are induced in two tugger wires during a sea state with Hs = 2.5m and Tp = 10s.
Then, tension controllers are employed to prevent snap loads, and they show promising results.
However, the control algorithm is suboptimal in regard to limiting the pendulum motion of the
payload. Hence, more sophisticated controllers are required to both prevent snap loads and limit
pendulum motions. Note that due to delays in the progress of the simulation model and in the
MCMR Lab, the tugger winch system was not implemented on the model crane in the lab.

A second case study is performed to further extend the simulation model to include the degrees of
freedom that are introduced when the crane is mounted onto a floating vessel. The dynamic model
of the crane and vessel is developed with the framework of Lagrangian mechanics and is suited to
a bond graph environment by applying quasi-coordinates. Relevant hydrodynamic loads such as
restoring forces and torques, added mass, damping and wave excitation loads are included in the
model. The crane and vessel behavior is compared with data from a ship model in SIMA. With
the approximation of hydrodynamic coefficients and ship parameters in mind, the results regarding
the model response are deemed satisfactory.



Sammendrag

Denne avhandlingen er en fortsettelse av arbeidet utført i Gyberg (2017) relatert til modellering
av offshore-kraner, og har som formål å videreutvikle kransimuleringsmodellen. Derfor presenteres
en omfattende beskrivelse av teorien som tilrettelegger for utvidelsen og utviklingen av simuler-
ingsmodellen. Tilleggsfunksjonene inkluderer en forbedret lastmodell, et kranstyringssystem basert
på invers dynamikk, et tuggervinsjsystem og en dynamisk modell av et koblet kran- og fartøyssys-
tem.

Stivt legeme-antagelser og Lagrange-mekanikk legger grunnlaget for modelleringen av kranen, last-
modellen, og det flytende fartøyet, mens wiredynamikken er tilnærmet med serier av masse-fjær-
demper-systemer. For å kontrollere bevegelsen til krantuppen er en invers dynamikkregulator de-
signet for å kalkulere de nødvendige aktuatorkreftene. Tuggervinsjer med aktiv kraftkontroll er fes-
tet til lasten for å forhindre rykklaster og begrense pendelbevegelser. Koeffisientene som er relatert
til de hydrodynamiske lastene er gitt av tilgjengelig data fra eksperimenter og approksimeringsme-
toder. Alle modellene er utviklet med hensyn til implementering i et miljø tilpasset bond graph
modellering.

Et case-studie ble utført for å validere det implementerte tuggervinsjsystemet og for å evaluere
ytelsen til kontrollalgoritmen. Den implementerte wiredynamikken viser å samsvare med det velk-
jente simuleringsverktøyet SIMA. Dette framkommer gjennom en sammenligning av lastene som
oppstår i tuggerwirene når de er utsatt for en sjøtilstand med Hs = 2.5m og Tp = 10s. Deretter
brukes kraftkontrollere til å forhindre rykklaster, og de indikerer lovende resultater. Imidlertid er
kontrollalgoritmen ikke gunstig med tanke på å begrense pendelbevegelsen til lasten. Derfor er mer
sofistikerte kontrollere nødvendige for å både forhindre rykklaster og begrense pendelbevegelser.
Legg merke til at grunnet forsinkelser både i utviklingen av simuleringsmodellen og på MCMR
Laben, ble tuggervinsjsystemet ikke implementert på kranmodellen i laben.

Et annet case-studie ble gjennomført for å utvide simuleringsmodellen til å inkludere frihetsgradene
som introduseres når kranen monteres på et flytende fartøy. Den dynamiske kran- og fartøysmod-
ellen er utviklet med Lagrange-mekanikk og er tilpasset et bond graph miljø ved bruk av kvasiko-
ordinater. Relevante hydrodynamiske laster som gjenopprettende krefter og momenter, tilleggs-
masse, dempning og bølgeeksitasjonskrefter er inkludert i modellen. Kran- og fartøysoppførselen
er sammenlignet med data fra en skipsmodell i SIMA. Med tanke på et sett av tilnærmede hydro-
dynamiske koeffisienter og skipsparametere, er resultatene relatert til modellresponsen ansett som
tilfredsstillende.
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1 | Introduction

Cranes play a central role in the execution and safety of offshore operations. They are suitable
for a wide range of operations such as deck handling, subsea installations, construction work,
and ship-to-ship transfer. Due to the vast diversity of offshore operations, there exists a variety
of requirements that the cranes must fulfill with respect to a specific task. Therefore, multiple
crane types and control schemes are developed by crane suppliers. They are tailored to acquire the
required performance for different operations and scenarios. By examining companies that deliver
offshore cranes, such as National Oilwell Varco, Palfinger, and Liebherr, it becomes evident that
offshore operations are dependent on different crane types. Table 1.1 gives an overview of the
offshore cranes that are available from the companies that provide offshore cranes.

Table 1.1: Common crane types

Company Available crane types

National Oilwell Varco

• Stiff boom crane
• Knuckle boom crane
• Telescopic boom crane
• Lattice boom crane
• Heavy lift crane

Liebherr

• Stiff boom crane
• Knuckle boom crane
• Heavy lift crane
• Lattice boom crane

Palfinger

• Stiff boom crane
• Knuckle boom crane
• Telescopic boom crane
• Lattice boom crane
• Travelling cranes

With respect to the model crane available at the Marine Computational Mechanics Research Lab
(MCMR Lab) at the Department of Marine Technology, stiff boom cranes, telescopic boom cranes,
and knuckle boom cranes are of relevance. These crane types are mounted to ships on rotating
platforms, and the crane arms and platform are positioned with the use of hydraulic actuators.
The telescopic boom cranes and knuckle boom cranes differ from the stiff boom cranes with their
additional degree of freedom. In addition to rotation and adjustable inclination, a telescopic boom
crane can increase its operational radius by extending the length of its crane boom. This allows it to
obtain an increased operational radius without occupying extra space on the vessel. When it comes
to the knuckle boom crane, instead of an extendable crane boom, it consists of two connected crane
booms that both can adjust their inclination independent of each other. Therefore, in addition to
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an increased operational radius similar to the telescopic boom crane, the knuckle boom crane is
foldable and occupies less space on deck. All crane types utilize a winch in combination with the
movement of the crane booms to move and position the payload towards the desired location.

(a) Stiff boom crane (b) Telescopic boom crane (c) Knuckle boom crane

Figure 1.1: Common crane types

Due to environmental loads acting on the vessel, such as wind, waves and current, six degrees of
freedom motion is induced on the floating vessel. Evidently, the motion affects the crane movement
and payload behavior. Traditionally, the offshore crane lift operations are performed manually
through input from the crane operator and crew. Hence, the seas states that are permitted when
carrying out an offshore operation are influenced by the skill of the crane operator. Therefore, crane
suppliers provide different control techniques to autonomously compensate for the vessel motion
and limit the pendulum motion of the payload. Conventional control techniques consist of active
and passive heave compensation, active and passive constant tension, and auxiliary tugger winch
systems. Note that the control method that is employed in this thesis to limit the pendulum motion
is the inclusion of tugger winch systems. However, a combination of different control techniques
could provide an optimal performance regarding the restriction of the payload motion. Hence, the
concepts revolving heave compensation and constant tension are presented in Section 2.5. The
inclusion of control systems provides additional safety, efficiency, and accuracy during offshore
operations. Furthermore, it limits the likelihood of human errors.

In relation to the tugger winch systems, it is important to monitor the loads that are induced in
the tugger wires. With varying loads due to the six degrees of freedom pendulum motion of the
payload, the tugger wires fluctuate in between slack and engaged configurations. Note that the
slack configuration appears due to the wires inability to take on pressure loads. Consequently, the
occurrence of snap loads is a common issue when the payload motion is restricted by tugger wires.
The snap loads are characterized by a spike in tension over a short period of time when a slack
wire reengages tension. These spikes in tension can cause the wires to break and lead to dangerous
situations during offshore operations. Thus, the tugger winch systems must be designed with the
ability to pay in and out wire in accordance with the tension levels that are present in the tugger
wires. By controlling the tension in the wires, snap loads are prevented by avoiding slack wire
configurations. Hence, by attaching controlled tugger wires to the payload to limit the pendulum
motion, offshore operations can be performed in even rougher sea states.

In Gyberg (2017), a model crane was designed and built in the Marine Computational Mechanics
Research Lab (MCMR Lab) at the Department of Marine Technology (IMT). The design was de-
veloped such that the model crane could be modified to behave similarly to either of the previously
stated crane types. Considering that the current configuration is as a knuckle boom crane, the
previously developed crane simulation models are designed accordingly. The first step in this thesis
is to implement tugger wires and develop a control system that prevents snap loads and limits the
pendulum motions of the payload. Consequently, it is important to implement a wire model that
reflects the dynamics of a real wire. Therefore, the wire models are based on proven mathematical
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CHAPTER 1. INTRODUCTION

models and are verified through a comparison with data from the acknowledged simulation tool
SIMA. Note that the inclusion of tugger winch systems and their impact on the crane system is the
focus in the development of the crane simulation model that is evaluated in this master’s thesis.
Furthermore, the crane simulation model is extended to include the six degrees of freedom that are
introduced when the crane is mounted onto a floating vessel. That implies that the interconnected
dynamics of the crane and vessel system are derived in addition to the effect of hydrodynamic
loads.

1.1 Exposition of the problem

The research conducted in this thesis is intended to further develop the simulation models that have
been made in accordance with the model crane in the MCMR Lab. Hence, the previously applied
dynamics related to the crane, wires, and payloads will be examined and necessary improvements
are carried out. In that regard, Lagrangian mechanics and wire modeling are essential topics of the
thesis. Note that all the different models will be developed in a bond graph environment.

After evaluating the available simulation model, tugger winch systems will be implemented to limit
the motion of the payload while preventing snap loads from appearing in the tugger wires. The
payload will be modeled as a rigid body attached to the main wire of the crane. To validate the
results, a simulation model of an offshore operation is provided by Subsea 7 in the SIMA software.
The parameters in the crane simulation model will be adjusted to comply with the SIMA model.
Note that the ship modeled in SIMA is given in full-scale. Hence, scaling laws are proposed and
implemented to ensure that the dynamic response is correct in the model scale that is related to
the model crane in the MCMR Lab. Furthermore, considering that the model crane in the MCMR
Lab is fixed to the floor, the motion in six degrees of freedom must be imitated by moving the
crane tip similarly to the data retrieved from the SIMA model. All the steps in the derivation of
the simulation model and the simplifications that are applied during the testing are presented in
this thesis.

A combined vessel and crane simulation tool is proposed in relation to the limitations of the model
crane regarding motion in six degrees of freedom. Hence, the crane simulation model is extended
to account for the motion in six degrees of freedom that is induced by hydrodynamic loads. The
results are verified through a comparison of the developed simulation model and the SIMA model
provided by Subsea 7. Note that deviations are expected since not all parameters are available and
because that the implementation of the hydrodynamic loads is simplified.

1.2 Related work

In the development of the simulation models, a variety of important references are utilized. The
theory regarding rigid body modeling and the framework of the Lagrangian mechanics is based
on the work done in Ginsberg (1995) and Siciliano et al. (2009). Furthermore, the application
of Lagrangian mechanics in the development of the crane simulation model is inspired by the
previous master’s theses Gyberg (2017) and Rokseth (2014). The theory regarding bond graph
modeling is taken from Pedersen and Engja (2014) and Borutzky (2010). They provided insight into
the fundamental concepts of bond graph modeling and the design of models in different physical
disciplines. When developing wire models for the system, the work carried out in Skjong and
Pedersen (2014) and Pedersen and Pedersen (2005) are the main sources of information. Regarding
scaling laws, Groesen and Molenaar (2007) and Ghosh (2011) provide the basic concepts related
to the scaling of dynamic systems. All the previously mentioned sources of information are central
to the development of the crane simulation model.

3



1.3. STRUCTURE OF THE THESIS

When deploying the crane onto a floating vessel, the interaction between the fluid and rigid body
system is based on the theory presented in Faltinsen (1990) and Fossen (2011). They provide the
theory regarding hydrodynamic loads and methods for approximating their magnitudes. Further-
more, Rokseth et al. (2017) provide the procedure related to the extension of a crane model to
include the combined vessel and crane dynamics. It presents the application of quasi-coordinates to
simplify the process of implementing the system dynamics in a bond graph environment. The previ-
ously mentioned references are crucial in regard to understanding and implementing the combined
crane and vessel system dynamics.

1.3 Structure of the thesis

This section provides a brief description of the main topics contained in the chapters that are
presented in this thesis. Hence, an overview of the structure and progression of the thesis is given
below.

Chapter 2 provides an introduction to rigid body modeling, Lagrangian mechanics, bond graph
modeling, hydrodynamic loads, wire modeling and motion compensation methods. It presents the
theory that is applied in the development of the simulation models.

Chapter 3 shows the implementation of the crane simulation model and is based on the method
presented in Gyberg (2017). It provides insight into the inner working of the previously developed
crane simulation model.

Chapter 4 presents a case study where the crane simulation model is compared to an offshore
operation in an attempt to verify the implemented tugger winch system. A rigid body payload
model, reference model, inverse dynamics controller, and tension controllers are implemented to
imitate the offshore operation with the limitations of the model crane in mind.

Chapter 5 extends the crane simulation model to include the six degrees of freedom that are
introduced when the crane is mounted on a floating vessel. Combined vessel and crane dynamics
are developed and hydrodynamics loads are included in the model.

Chapter 6 concludes the work carried out in the thesis and suggests further work regarding
improvements of the simulation models and model crane.
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2 | Background material

The purpose of this chapter is to give an overview of the theory that is utilized when developing
a mathematical model of a crane and its auxiliary equipment. Since the model crane available at
the MCMR Lab currently is configured as a knuckle boom crane, this is the crane type that will
be of interest. Considering that the model crane has been the main focus of the previous master’s
theses Gyberg (2017) and Evang (2017), a crane simulation model has already been developed.
However, the modeling approach and theory will be presented and explained to give insight to the
inner workings of the modeling procedure. Furthermore, another evaluation of the relevant theory
could lead to improvements in the development of the simulation model.

2.1 Rigid body modeling

To fully develop the dynamics of the crane model, both the kinematics and kinetics of the crane
must be derived. Kinematics is the description of the path, position, velocity, and acceleration of
a point or a body when disregarding the forces that caused the motion. Kinetics is the description
of bodies and the forces that act on them. It is most often described by classical mechanics with
Newton’s second law or through the use of Lagrangian mechanics. Since Lagrangian mechanics
are applied to describe the crane dynamics in this thesis, it is important to note that positions
and velocities of particular interest are those at the joints and centers of gravity of the crane
components. These positions and velocities will be expressed as functions of a set of generalized
coordinates. In addition, the positions where loads are applied to the system are of interest when
expressing the generalized forces that act on the system.

2.1.1 Rigid body kinematics

The different parts of a crane are most often characterized by a set of rigid bodies. This assumption
is a simplification since all materials deform when forces are applied to them. However, the rigid
body assumption is useful when the motion of the object due to deformations is negligible compared
to its total movement (Ginsberg, 1995). To show the usefulness of this assumption, the equations
describing the position, velocity, and acceleration of a point in a moving frame relative to an inertial
reference frame are shown below

r0
p/0 = r0

1/0 + r0
p/1

v0
p/0 = v0

1/0 + v0
p/1 + ω0

1/0 × r0
p/1

a0
p/0 = a0

1/0 + a0
p/1 +α0

1/0 × r0
p/1 + ω0

1/0 × (ω0
1/0 × r0

p/1) + 2ω0
1/0 × v0

p/1

(2.1)

Here r is a position vector, v a velocity vector, a an acceleration vector, ω a rotational velocity
vector, and α a rotational acceleration vector. The notation xij/k indicates that the vector x is
given in reference frame i where j is a point relative to the origin of reference frame k. In this
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2.1. RIGID BODY MODELING

case, the 0-frame is the inertial frame while the 1-frame is some arbitrary moving frame. The point
moving in the 1-frame is denoted p.

If the point p is located at a rigid body, the velocity of the point relative to the moving frame that
is attached to the rigid body will be zero with the assumption of no deformation. This implies that
v1
p/1 = 0 and a1

p/1 = 0, and consequently v0
p/1 = 0 and a0

p/1 = 0 since they are related through a
coordinate transformation, which will be discussed in the next section. The previous equations are
therefore simplified to the general expressions of a point on a rigid body expressed in an inertial
reference frame.

r0
p/0 = r0

1/0 + r0
p/1

v0
p/0 = v0

1/0 + ω0
1/0 × r0

p/1

a0
p/0 = a0

1/0 +α0
1/0 × r0

p/1 + ω0
1/0 × (ω0

1/0 × r0
p/1)

(2.2)

2.1.2 Rotational matrices

As previously mentioned, there is a relationship between the inertial reference frame and the
moving body-fixed frame that can be expressed through a coordinate transformation. In Equation
2.2, the position vector that describes the position of point p relative to the origin of the body-
fixed frame is most often found in the body-fixed frame due to its simplicity. It is then transformed
into the inertial frame by coordinate transformations. When operating in the three-dimensional
space, there are three axes of rotation, indicating that a body-fixed frame needs a set of rotational
transformations into the inertial frame. In this thesis, the Euler angles φ, θ, and ψ are used in the
transformation, but other approaches such as the use of unit quaternions are viable. Note that the
Euler angles are intuitive to work with as opposed to the quaternions. The simplicity of applying
the Euler angles comes with a cost as there exists a singularity when the pitch angle is at ±90°,
in which case the yaw angle is not defined. This singularity is often referred to as the gimbal lock
(Beard, 2012). The singularity is avoided by applying quaternions (Fossen, 2011), but the Euler
angles suffice by assuming that the pitch angles are within a range that does not include the value
that causes the singularity.

With Euler angles, the coordinate transformation is done through three basic rotations around
the three coordinate axes z, y and x independently of each other. To follow the zyx convention,
the rotation transformation starts with the z-axis, continues with the y-axis and ends with the
x-axis. These rotations are shown in Figure 2.1, where the three Euler angles are used to move
from reference frame 0 to reference frame 1. The matrices of the principal rotations in the counter
clockwise direction are shown in Equation 2.3.

(a) Rotation about the z1 axis (b) Rotation about the y’ axis (c) Rotation about the x” axis

Figure 2.1: Visualization of the rotational transformation
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CHAPTER 2. BACKGROUND MATERIAL

Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 , Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 ,
Rx(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 (2.3)

Here c(·) = cos(·) and s(·) = sin(·). Looking back at the position vector r0
p/1 in Equation 2.2, it

can be expressed through r1
p/1 by rotating it from the body-fixed frame into the inertial frame as

follows

r0
p/1 = Rz(ψ)Ry(θ)Rx(φ)r1

p/1 = R(Θ)0
1 · r1

p/1 (2.4)

Another interesting aspect of the rotation matrices is their orthonormality. It implies that they
satisfy the equation RTR = RRT = I3x3, which furthermore implies that RT = R−1 (Ginsberg,
1995). With this, Equation 2.4 can be inverted to perform the transformation from the inertial
frame to the body-fixed frame, as shown in Equation 2.5.

r1
p/1 = RT (Θ)0

1 · r0
p/1 = R(Θ)1

0 · r0
p/1 (2.5)

Hence, any two reference frames can be related to each other. A rotation transformation is thus a
powerful tool when analyzing the kinematics of a system with the use of Lagrangian mechanics.

The derivative of a rotation matrix

Since a rotation matrix most often depends on time-varying angles, it is of interest to derive its
time derivative. By utilizing the orthonormal property of the rotation matrix, the time derivative
can be written as

Ṙ(Θ)0
1R

T (Θ)0
1 + R(Θ)0

1Ṙ
T (Θ)0

1 = 0 (2.6)

Since the sum of the two terms generated by the time derivative of the rotation matrix is equal to
zero while being the transpose of one another, they are by definition skew-symmetric matrices

S(ω0
1/0) + ST (ω0

1/0) = 0⇒ S(ω0
1/0) = Ṙ(Θ)0

1R
T (Θ)0

1 (2.7)

where the skew-symmetric matrix is defined as below

S(ω0
1/0) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω0
1/0 = [ω1, ω2, ω3]T (2.8)

By post-multiplying the rotation matrix to the expression in Equation 2.7, it is shown that the time
derivative of the rotation matrix is related to the rotation matrix itself through the skew-symmetric
operator S(ω)

Ṙ(Θ)1
0 = S(ω0

1/0)R(Θ)1
0 (2.9)
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2.1. RIGID BODY MODELING

Furthermore, it is stated in Siciliano et al. (2009) that the following relation holds for a rotation
matrix

R(Θ)1
0S(ω0

1/0)RT (Θ)1
0 = S(R(Θ)1

0 · ω0
1/0) (2.10)

which is a useful definition later on.

2.1.3 Lagrangian mechanics

The equations of motion of a system of rigid bodies can be derived by Lagrange’s equations. It
is an energy-based formulation that looks at the kinetic and potential energy of a system. Since
Lagrange derived the equations directly from Newton’s laws (Ginsberg, 1995), the importance
of the coordinate transformations comes to light. Newton’s laws only hold in inertial reference
frames, meaning that the motion of a body must be referenced to a fixed reference frame (Beard,
2012). In the same manner, Lagrangian mechanics requires that all the positions and velocities are
given in an inertial reference frame when calculating the kinetic and potential energy of a system.
Furthermore, the velocities and positions must be expressed in terms of the selected generalized
coordinates qi, i = 1, 2, ..., k, where k is the number of generalized coordinates. Moreover, the
forces acting on the system must be defined as generalized forces. Hence, the following sections
explain the basic concepts related to the derivation of the equations of motion of a general system
through the use of Lagrangian mechanics.

Generalized coordinates

Firstly, a set of parameters are defined such that the position and orientation of the system are
uniquely described. This requires that the number of generalized coordinates as a minimum is
equal to the number of degrees of freedom in the system. In the case where number of generalized
coordinates exceeds the number of degrees of freedom, the generalized coordinates are constrained.
This implies that the generalized coordinates must satisfy additional conditions to those that arise
from the kinetics principles (Ginsberg, 1995). These constraints could be configuration constraints
that limit the overall position the system can obtain and velocity constraints that limit the velocity
the system can have in a given configuration. In general, the number of constraint equations can
be found by the definition

ηdof = ηce − ηgc (2.11)

where ηgc, ηdof and ηce are the number of generalized coordinates, degrees of freedom and constraint
equations, respectively (Rokseth, 2014). It should be noted that the chosen generalized coordinates
are not a unique set, implying that other parameters could describe the system equally well.
Therefore, the choice of generalized coordinates should be taken into careful consideration when
describing the system to make the process as simple as possible.

Potential and kinetic energy of rigid bodies

As previously mentioned, Lagrangian mechanics are based on the potential and kinetic energy of
a system. Furthermore, a set of generalized coordinates given in the same reference frame must
define the system. A rigid body can have both linear and rotational velocity, meaning that each
component will have two terms representing its kinetic energy. In Ginsberg (1995) it is shown that
the position vector r = r(q1, ...qk, t) is a function of the generalized coordinates and time. The
velocity vector v = v(q1, ..., qk, q̇1, ..., q̇k, t) is given by the generalized coordinates, the generalized
velocities and time. In that regard, the potential and kinetic energy of a system of j = 1, .., n rigid
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bodies are explicit functions of the generalized coordinates qi, the generalized velocities q̇i and the
time t. The kinetic and potential energy is expressed as follows

Tj(q, q̇, t) =
1

2
mjv

T (q, q̇)0
cgj/0

v(q, q̇)0
cgj/0

+
1

2
ωT (q, q̇)0

j/0I
0
jω(q, q̇)0

j/0

T (q, q̇, t) =

n∑
j=1

Tj(q, q̇, t)
(2.12)

V (q, t) =

n∑
j=1

(mjg
T r(q)0

cgj/0
) + f(q) (2.13)

Here cgj , mj , and I0
j are referring to the center of gravity, the mass and the inertia tensor, given in

the inertial frame, of the j th rigid body, respectively. f(q) is a function that takes into account the
energy that the system can store as potential energy, e.g. in springs, and gT = [0 0 − g] contains
the gravitational acceleration.

Inertia tensor

The inertia tensor of a rigid body is constant when it is given in a body-fixed frame, but is
dependent on the body configuration in an inertial frame (Sciavicco and Siciliano, 2000). It can be
shown that the inertia tensor given in a body-fixed frame can be related to an inertial reference
frame through the following rotation transformation

I0
j = R(Θ)0

jI
j
jR

T (Θ)0
j = R(Θ)0

jI
j
jR(Θ)j0 (2.14)

where Ijj and I0
j are the inertia tensors defined in the center of gravity of the j th rigid body in the

body-fixed frame and the inertial frame, respectively. R(Θ)0
j is the rotation matrix between the

body-fixed frame and inertial frame.

Generalized forces

To develop the equations of motion of the system, in addition to the potential and kinetic energy,
the generalized forces acting on the system must be defined. In Ginsberg (1995), a generalized
force Qi is derived by giving an arbitrary particle a virtual displacement δr and then evaluating
the virtual work δW done by the forces Fj acting on the particle. These forces are represented by
dissipative forces, which in classical dynamics are defined as "all types of interactions where the
energy is lost when motion takes place" (Razavy, 2006), e.g. friction. The virtual work is found by
taking the dot product of the virtual displacement with the sum of the dissipative forces acting on
the particle (Ginsberg, 1995)

δW =
(∑

F
)
· δr (2.15)

The virtual displacement due to the dissipative forces is related to the virtual displacement in the
generalized coordinates and is given as follows (Ginsberg, 1995)

δr =

n∑
i=1

∂r

∂qi
δqi (2.16)
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2.1. RIGID BODY MODELING

The virtual work done by the dissipative forces can additionally be described in terms of the
generalized forces since they are defined as the coefficients of the corresponding increments δqi
(Ginsberg, 1995)

δW =

n∑
i=1

Qiδqi (2.17)

Hence, the expression of the generalized force due to dissipative forces is given as follows

Qi =
(∑

F
)
· ∂r
∂qi

(2.18)

2.1.4 Lagrange’s equation of motion

When the potential energy, kinetic energy, and the generalized forces have been defined, the equa-
tions of motion of the system are found through Lagrange’s equation of motion, as derived from
Hamilton’s principle in Ginsberg (1995).

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= Qi, i = 1, 2, ..., k (2.19)

From Equation 2.19 it becomes obvious that the number of second order differential equations
correspond to the number of generalized coordinates. If the number of generalized coordinates
is equal to the number of degrees of freedom in the system, the number of equations of motion
corresponds to the minimum number of equations required to solve the problem.

2.1.5 Jacobian matrix

It was stated that the position vector r is a function of the generalized coordinates, meaning that
it can be expressed as shown in Equation 2.20.

r0
pj/0

= fj(q) (2.20)

Here the point of interest is referred to an inertial reference frame by applying the previously
defined notations. By employing the chain rule when taking the derivative of the position vector
with respect to time, the relationship between the linear velocities of a point on the rigid body j
and the generalized coordinates are obtained as follows

v0
pj/0

= ṙ0
pj/0

=
∂fj(q)

∂q
q̇ = Jvpj (q)q̇ (2.21)

Here J is the Jacobian matrix that defines the transformation between the generalized coordinates
and the linear velocities. Similarly to the linear velocities, the rotational velocities are related to
the generalized coordinates through a Jacobian matrix as follows

ω0
j/0 = Jωj

(q)q̇ (2.22)
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Open chain of linked rigid bodies

Cranes are frequently compared to a robot manipulator that consists of rigid bodies connected
through joints. Therefore, inspired by robot arm theory, a general expression of the Jacobian
matrix is developed. Since the velocities at the centers of gravity are required in the equations
of motion, the expression in Equation 2.1 is used as a basis for finding the Jacobian matrix. By
defining the arbitrary point p as the center of gravity of the j th rigid body, the expression becomes

r0
cgj/0

= r0
j/0 + r0

cgj/j

v0
cgj/0

= v0
j/0 + v0

cgj/j
+ ω0

j/0 × r0
cgj/j

(2.23)

The first term is the linear velocity of the system at joint i. Consequently, the first term can be
expanded and related to each rigid body prior to the j th rigid body until the last body is reached.
This is shown in the general expression given in Equation 2.24, which is derived from a generic rigid
body in the open chain of links. An arbitrary rigid body in the open chain of links is illustrated in
Figure 2.2.

Figure 2.2: Generic rigid body in an open chain of links.
Taken from Siciliano et al. (2009)

r0
j/0 = r0

j−1/0 + r0
j/j−1

v0
j/0 = v0

j−1/0 + v0
j/j−1 + ω0

j−1/0 × r0
j/j−1

(2.24)

The angular velocity is derived by examining the rotation composition (Siciliano et al., 2009)

R0
j = R0

j−1R
j−1
j (2.25)

By taking the time derivative, the following is shown by applying Equation 2.9

S(ω0
j/0)R0

j = S(ω0
j−1/0)R0

j−1R
j−1
j + R0

j−1S(ωj−1
j/j−1)Rj−1

j (2.26)

Since the rotation matrices are orthonormal, the last term in the previous equation is written as

R0
j−1S(ωj−1

j/j−1)Rj−1
j = R0

j−1S(ωj−1
j/j−1)Rj−1

0 R0
j−1R

j−1
j (2.27)
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2.1. RIGID BODY MODELING

and by the relation stated in Equation 2.10, the full expression is rewritten to

S(ω0
j/0)R0

j = S(ω0
j−1/0)R0

j + S(R0
j−1ω

j−1
j/j−1)R0

j (2.28)

The angular velocity of rigid body j is then written as

ω0
j/0 = ω0

j−1/0 + R0
j−1ω

j−1
j/j−1 = ω0

j−1/0 + ω0
j/j−1 (2.29)

which implies that the angular velocity of rigid body j is the sum of the angular velocity of rigid
body j -1 with respect to the inertial frame and the angular velocity of rigid body j with respect
to rigid body j -1.

With the definitions of both the linear and angular velocities, two separate cases must be considered.
These cases are related to the last two terms in the expression of the linear velocity given in
Equation 2.23. The two terms are associated with the elongation and rotation of joint i and are
relevant depending on whether it is a prismatic or revolute joint. Note that both the elongation and
angles of the joints commonly are selected as the generalized coordinates for robot manipulators
when considering prismatic and revolute joints, respectively.

Prismatic joint

In this case, the angular velocity of body j with respect to rigid body j -1 is zero since the joint
connecting them does not rotate

ω0
j/j−1 = 0 (2.30)

The contribution from the elongation of rigid body j by joint i gives

v0
j/j−1 = q̇ie

0
i (2.31)

where e0
i is the unit vector defined in the direction in which the joint displaces. Due to the simplicity

of expressing the direction in a body-fixed frame, the unit vector in the inertial frame is later found
as follows

e0
i = R0

i e
i
i (2.32)

where eii is given by the combination of the relevant unit vectors i = [1, 0, 0], j = [0, 1, 0] and
k = [0, 0, 1] in regard to the directions in which the joint is able to displace. The resulting linear
and angular velocities of the center of gravity then become

ω0
j/0 = ω0

j−1/0

v0
cgj/0

= v0
j/0 + q̇ie

0
i + ω0

j/0 × r0
cgj/j

(2.33)

Revolute joint

When evaluating revolute joints, the angular velocity of rigid body j with respect to rigid body
j -1 is the rotational velocity of joint i

ω0
j/j−1 = q̇ie

0
i (2.34)
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As there is no elongation, the second term in the equation of the linear velocity becomes zero. The
resulting expressions of the linear and angular velocities of the center of gravity then become

ω0
j/0 = ω0

j−1/0 + q̇ie
0
i

v0
cgj/0

= v0
j/0 + ω0

j/0 × r0
cgj/j

(2.35)

A general expression of the Jacobian matrix

With the use of the definition of linear velocities given in Equation 2.23 and Equation 2.24, and
the properties of prismatic and revolute joints, the contribution to the linear velocity due to the
generalized coordinate q̇i is described in Equation 2.36. It should be noted that for the cases where
i > j, joint i has no contribution to the linear velocity of rigid body j.

v
(q̇i)
cgj/0

=


q̇ie

0
i × (r0

cgj/0
− r0

i/0), if joint i is revolute and i ≤ j
q̇ie

0
i , if joint i is prismatic and i ≤ j

q̇i03x1, if joint i > j
(2.36)

From the definition of the relation between the linear velocity and the generalized coordinates in
Equation 2.21, the Jacobian matrix of the contribution by a generalized coordinate is defined as
follows

J(q̇i)
vcgj

=


e0
i × (r0

cgj/0
− r0

i/0), if joint i is revolute and i ≤ j
e0
i , if joint i is prismatic and i ≤ j

03x1, if i > j
(2.37)

The contribution to the angular velocity due to the generalized coordinate q̇i is found in a similar
manner

ω
(q̇i)
j/0 =

 q̇ie
0
i , if joint i is revolute and i ≤ j

q̇i03x1, if joint i is prismatic and i ≤ j
q̇i03x1, if i > j

(2.38)

and consequently, the Jacobian matrix of the contribution by a generalized coordinate is defined
as follows

J(q̇i)
ωj

=

 e0
i , if joint i is revolute and i ≤ j

03x1, if joint i is prismatic and i ≤ j
03x1, if i > j

(2.39)

With this, the total linear and angular velocity of the center of gravity of rigid body j is found by
taking the sum of all the individual contributions from n rigid bodies

v0
cgj/0

= J(q̇1)
vcgj

q̇1 + J(q̇2)
vcgj

q̇2 + ...+ J(q̇j)
vcgj

q̇j + 03x1q̇j+1 + ...+ 03x1q̇n

=
[
J

(q̇1)
vcgj

J
(q̇2)
vcgj

... J
(q̇j)
vcgj

03x(n−j)

]
q̇

= Jvcgj (q)q̇

(2.40)

ω0
j/0 = J(q̇1)

ωj
q̇1 + J(q̇2)

ωj
q̇2 + ...+ J(q̇j)

ωj
q̇j + 03x1q̇j+1 + ...+ 03x1q̇n

=
[
J

(q̇1)
ωj J

(q̇2)
ωj ... J

(q̇j)
ωj 03x(n−j)

]
q̇

= Jωj (q)q̇

(2.41)
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2.1. RIGID BODY MODELING

Lastly, the linear and rotational velocities are related to the generalized coordinates in a compact
form as follows

νcgj =

v0
cgj/0

ω0
j/0

 =

Jvcgj (q)

Jωj
(q)

 q̇ = J(q)q̇ (2.42)

where J is the Jacobian matrix that defines the transformation of both the linear and rotational
velocities.

Inverting the Jacobian matrix

A matrix is invertible if it is a square and non-singular matrix, meaning that in most cases the in-
verse of the Jacobian matrix does not exist. However, a right pseudo-inverse matrix J† is developed
as follows for the general case of inverting the Jacobian matrix (Siciliano et al., 2009)

J† = JT (JJT )−1 (2.43)

It is denoted right pseudo-inverse since it satisfies the following condition

JJ† = I (2.44)

Close to a singularity, the inverse of the Jacobian matrix can result in large joint velocities. To
reduce this issue, a damping term is included in the definition of the pseudo-inverse, leading to the
damped least-squares inverse (Siciliano et al., 2009)

J† = JT (JJT + k2I) (2.45)

where k is the damping coefficient. A variety of methods have been developed to determine the value
of the damping coefficient and a common approach is to base it on a Jacobian-dependent variable.
In Nakamura and Hanafusa (1986), the damping coefficient is defined through the definition of the
manipulability measure expressed as

w =
√
det(JJT ) (2.46)

Since the manipulability measure is equal to zero at singular points, but it increases as the ma-
nipulator moves away from singular configurations, it represents a measure of the proximity to
singular points. It is therefore suggested by Nakamura and Hanafusa (1986) to express the damp-
ing coefficient as follows

k =

{
k0(1− w

w0
)2, w < w0

0, w ≥ w0
(2.47)

where k0 is a scaling factor while w0 is the boundary threshold defined around the singularities.
Note that the approach suggested in Nakamura and Hanafusa (1986) does not yield an optimal
solution as the joint velocities can be dampened in configurations were it is not required. Therefore,
optimization methods can be applied as proposed in Deo and Walker (1992).

14



CHAPTER 2. BACKGROUND MATERIAL

Differentiation of the Jacobian matrix

The definition of the derivative of the Jacobian matrix follows from the general definition of the
Jacobian matrix for an open chain of linked rigid bodies. For the linear and angular velocity
contributions induced by the generalized coordinate qi at the arbitrary point pj on the j th rigid
body, the derivative of the Jacobian matrix becomes

J̇
(qi)
vpj /0

=


ė0
i × (r0

cgj/0
− r0

i/0) + e0
i × (ṙ0

cgj/0
− ṙ0

i/0), if joint i is revolute and i ≤ j
ė0
i , if joint i is prismatic and i ≤ j

03x1, if i > j

J̇
(qi)
ωj/0

=

 ė0
i , if joint i is revolute and i ≤ j

03x1, if joint i is prismatic and i ≤ j
03x1, if i > j

(2.48)

The unit vector e0
i was previously defined in Equation 2.32 and consequently, its derivative becomes

the following

ė0
i = Ṙ0

i e
i
i + R0

i ė
i
i (2.49)

By applying the definition of the derivative of the rotation matrix given in Equation 2.9 and the
fact that the derivative of a unit vector equals zero, the expression is simplified to the following

ė0
i = S(ω0

j/0)R0
i e
i
i = S(ω0

j/0)e0
i = ω0

j/0 × e0
i (2.50)

The derivative of the position vectors in the Jacobian matrix is given by the definition in Equation
2.2.

ṙ0
cgj/0

− ṙ0
i/0 = ṙ0

cgj/0
+ ω0

j/0 × r0
cgj/0

− (ṙ0
i/0 + ω0

i/0 × r0
i/0) (2.51)

It becomes obvious that taking the derivative of the Jacobian matrix results in complex expressions
that are prone to mistakes as the number of generalized coordinates increases. Therefore, another
approach is considered since the Jacobian matrix is a function of the generalized coordinates. By
applying the chain rule, the following is true

J̇(q) =
∂J(q)

∂q
q̇ (2.52)

Consequently, Equation 2.52 provides an approach less susceptible to errors in the case where the
expressions in the Jacobian matrix are available for calculation of the partial derivatives.

2.1.6 State-space model

With the development of the Jacobian matrix, the tools that are required to generate the state-
space model of the system have been defined. Sciavicco and Siciliano (2000) show that the rigid
body dynamics can be rewritten into a more conventional form than the one given by Lagrange’s
equation of motion. Equation 2.53 shows the proposed state-space model

B(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.53)

where B(q), C(q, q̇), and g(q) are the mass-inertia matrix, the centripetal and Coriolis matrix
and the restoring force and moment vector, respectively. τ is directly connected to the generalized
forces that were denoted Qi, i.e. actuator forces and friction forces that act on the system.
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2.2. BOND GRAPH MODELING

The mass-inertia matrix is obtained directly from the expression of the kinetic energy in the
system. If the connection between the generalized coordinates and the linear and angular velocities
are given by the Jacobian matrix as shown in Equation 2.42, the expression of the kinetic energy
given in Equation 2.12 can be rewritten to the following

Tj(q, q̇, t) =
1

2
νTj Mjνj , Mj =

[
mjI3x3 03x3

03x3 Ij

]
Tj(q, q̇, t) =

1

2
q̇TJTj (q)MjJj(q)q̇ =

1

2
q̇TBj(q)q̇

T (q, q̇, t) =
1

2
q̇T

n∑
j=1

(Bj(q))q̇ =
1

2
q̇TB(q)q̇

(2.54)

The centripetal and Coriolis matrix cannot be chosen uniquely, but a suggested method is given
by Sciavicco and Siciliano (2000) as

cij =
1

2

n∑
k=1

(
∂bij
∂qk

+
∂bik
∂qj
− ∂bjk

∂qi
), i = 1, 2, ..., n, j = 1, 2, ..., n (2.55)

where cij is the ij th element in the C-matrix and bij is the ij th element in the B-matrix. In
Rokseth (2014), it is shown that the C-matrix can be found by differentiating the kinetic energy
with respect to the generalized coordinates

C(q, q̇)q̇ =
1

2
q̇T

∂B(q)

∂q
q̇ (2.56)

where

qT
∂B(q)

∂q
q =


qT ∂B(q)

∂qi
...

qT ∂B(q)
∂qn

q (2.57)

The g(q)-vector is determined by differentiating the potential energy term in Lagrange’s equation
with respect to the generalized coordinates

g(q) =
∂V

∂q
(2.58)

2.2 Bond graph modeling

Bond graph modeling is an energy based-method that is applied in the development of mathe-
matical models of physical systems. It is based on the intuitive approach where a dynamic system
can be divided into a set of subsystems, components and basic elements that interact through the
exchange of energy (Borutzky, 2010). Since bond graph modeling is based on the conservation
of energy, the exchange of energy is described by basic elements that represent storage, supply,
dissipation or transformation of energy in the system. These basic elements interact through power
bonds that are connected between the power ports of elements. The power ports represent a point
of energetic interaction between different parts of a system and the power bonds that connects
them to each other are considered to transmit power, i.e. energy flow, instantaneously and without
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loss (Pedersen and Engja, 2014). The power that is transmitted over a power bond is represented
by the product of the two power variables effort and flow denoted e and f, respectively.

P (t) = e(t)f(t) (2.59)

The concept of energy exchange between subsystems and the transformations from one form to
another is what makes bond graph modeling suitable for multidisciplinary systems (Borutzky,
2010). For a mechanical system, the effort and flow are force and velocity, respectively, while they
are voltage and current in an electrical system. The transformation from one discipline to another
is done through transformations that will be explained later on.

Similar to other modeling approaches, bond graph modeling requires the correct sign convention
for positive and negative directions. In this case, the sign convention is related to the definition of
the positive direction of the power transmission between elements. In Figure 2.3, the energy flow
between two subsystems is assigned positive in the direction of the half-arrow. It should be noted
that the half-arrow convention is used to distinguish energy flow from signal inputs, which are
given by whole arrows. The vertical line denoted causality stroke that is placed on the half-arrow
defines which system that has an effort input and which system that has a flow input. The effort
input is defined to always be on the side of the power bond to which the causality is assigned,
which in this case would indicate an effort input to subsystem 1 and a flow input to subsystem 2.

Figure 2.3: Power bond describing the energy flow between two systems

Two additional physical quantities are central in the description of the energy flow in a system
and they are related to the effort and flow variables defined earlier. They are called generalized
momentum, p, and generalized displacement, q, and are found through the integration of the effort
and flow, respectively, with respect to time (Borutzky, 2010)

p(t) =

∫ t

0

e(τ)dτ + p(t0) (2.60)

q(t) =

∫ t

0

f(τ)dτ + q(t0) (2.61)

Here p(t0) and q(t0) are the initial conditions. As mentioned earlier, these variables can be related
to multiple disciplines and Table 2.1 shows what they represent when modeling systems in different
physical domains1.

1Only the systems that could be relevant in the master’s thesis are presented
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Table 2.1: Identification of variables (Pedersen and Engja, 2014)

Energy
domain

Effort
(e)

Flow
(f)

Momentum
(p)

Displacement
(q)

Electrical Voltage
[V]

Current
[i]

Flux linkage
[Vs]

Charge
[As] or [C]

Mechanical
translation

Force
[N]

Velocity
[m/s]

Linear
momentum
[kgm/s]

Distance
[m]

Mechanical
rotation

Torque
[Nm]

Angular
velocity
[rad/s]

Angular
momentum

[Nms]

Angle
[rad]

Hydraulic Pressure
[Pa]

Volume
flow rate
[m3/s]

Pressure
momentum
[N/m2s]

Volume
[m3]

It was mentioned that a set of basic ideal elements are used to represent energy storage, dissipation,
supply and transformation in the system. These elements and their constitutive relations will be
discussed in the upcoming sections.

2.2.1 Storage elements

Storage elements are divided into two types: inertia elements, I, and compliance elements, C. In
mechanical systems the I-element represents kinetic energy while the C-element represents potential
energy. As stated in Borutzky (2010), the C-element is characterized by a constitutive relation
between the effort and displacement given by the one-to-one function ΦC

q(t) = ΦC(e(t)) (2.62)

where ΦC must have a unique single-valued inverse Φ−1
C . The same is true for the I-element, which

is characterized by a constitutive relation between the flow and momentum given by the one-to-one
function ΦI

p(t) = ΦI(f(t)) (2.63)

where ΦI must have a unique single-valued inverse Φ−1
I . The requirement related to a unique

single-valued inverse of the one-to-one functions is given such that Equation 2.62 and Equation
2.63 can be solved for the effort and flow, respectively

e(t) = Φ−1
C (q(t)) = Φ−1

C (

∫ t

0

f(τ)dτ) (2.64)

f(t) = Φ−1
I (p(t)) = Φ−1

I (

∫ t

0

e(τ)dτ) (2.65)

Here the importance of proper causality assignment comes to light. If the effort is assigned as
input to a C-element, the flow must be calculated from the differentiation of the effort. Since
differentiation is problematic in situations where there are step signals, a differential causality is
not preferred. An identical issue arises with a flow input to an I-element since the effort must be
calculated from the differentiation of the flow. The constitutive relations of the C-element and the
I-element with derivative causalities are given in Equation 2.66 and Equation 2.67, respectively.

f(t) =
d

dt
[ΦC(e(t))] (2.66)
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e(t) =
d

dt
[ΦI(f(t))] (2.67)

To avoid these problems, integral causality is preferred, implying flow input to a C-element and
effort input to an I-element. With this causality assignment, the expressions in Equation 2.64 and
Equation 2.65, which contain integration rather than differentiation, can be applied. A C-element
and an I-element with integral causalities are shown in Figure 2.4

(a) Capacitor element (b) Inertia element

Figure 2.4: Storage elements

2.2.2 Resistor elements

The element that represents the dissipation of energy is the resistor element R. The causality
assignment of the R-element is indifferent as no differentiation appears regardless of the choice of
flow or effort input. As stated in Borutzky (2010), the R-element is characterized by a constitutive
relation between the effort and flow given by the one-to-one function ΦR

e(t) = ΦR(f(t)) ⇐⇒ f(t) = Φ−1
R (e(t)) (2.68)

where ΦR must have a unique single-valued inverse Φ−1
R . R-elements with effort and flow input are

illustrated in Figure 2.5

(a) Resistor element with effort input (b) Resistor element with flow input

Figure 2.5: Resistor elements

2.2.3 Source elements

Source elements are used to represent the supply of energy to a system either in the form of a flow
from a flow source, Sf, or an effort from an effort source, Se. These elements describe the boundary
conditions and can provide a power variable that is either constant or time-varying. As the source
elements are assumed ideal, the flow source imposes a flow input regardless of the effort and the
effort source imposes an effort input regardless of the flow (Pedersen and Engja, 2014).

(a) Effort source (b) Flow source

Figure 2.6: Source elements

2.2.4 Transformer elements

The last set of basic elements are the ones that most often, but not exclusively, are used to transform
the energy from one domain to another. They differ from the previously presented basic elements
by being 2-port elements that transmit the power from the power bond at one side to the power
bond on the other side, as shown in Figure 2.7.
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(a) Transformer element (b) Gyrator element

Figure 2.7: Transformer elements

As stated in Pedersen and Engja (2014), they are assumed to transmit the power instantaneously
without storing or dissipation of energy, meaning that the power remains unchanged through the
transformation. Therefore, there are two cases of constitutive relations between the flows and efforts
at either side of the transformation element as shown below

e1 = me2

mf1 = f2

(2.69)

e1 = rf2

rf1 = e2

(2.70)

Here m and r represent the transformation modulus for the transformer element, TF, the gyrator
element, GY, respectively. It should be noted that the modulus r always has physical dimensions
while the modulus m can be dimensionless. The TF-element is often used to represent the reduction
in gearboxes or belt transmissions but is additionally applied to relate the two mechanical energy
domains. The GY-element is most commonly utilized to describe the transformation of energy from
one domain to another, which is observed in electric motors and centrifugal pumps.

2.2.5 Modulated elements

The resistor, source and transformation elements can have constitutive relations that are dependent
on variables that are not directly accessible. In that case, the elements are modulated by having
input signals sent to the respective elements. A modulated element is denoted by placing an M in
front of the abbreviation of the element name. This is illustrated in Figure 2.8

(a) Modulated effort source (b) Modulated TF-element (c) Modulated resistor element

Figure 2.8: Modulated elements

2.2.6 Power conserving junctions

Power conserving junctions are employed in addition to the previously described elements to con-
nect the different elements together in the correct manner with respect to the system that is
modeled. They are designed to distribute the energy instantaneously through the connected power
bonds without storing or dissipating energy. This implies that they are based on the concept of
conservation of energy and that the power entering should be equal to the power leaving the power
conserving junction. This condition can be implemented by requiring either equal flows or equal
efforts in the power bonds that are connected to the power conserving junction. The junction where
the efforts are set equal is called a 0-junction. Consequently, only a single causality stroke can be
placed such that it defines an effort input to the 0-junction. The constitutive relation is given by

e1 = e2 = ... = en

f1 + f2 + ...+ fn = 0
(2.71)
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The junction where the flows are set identical is denoted a 1-junction. Consequently, only one of
the causality strokes can be set such that it defines a flow input to the 1-junction. The constitutive
relation is given by

f1 = f2 = ... = fn

e1 + e2 + ...+ en = 0
(2.72)

Figure 2.9 shows the two types of junctions for n connected power bonds

(a) 0-junction (b) 1-junction

Figure 2.9: Power conserving elements

2.2.7 IC-field

IC-fields are suitable when implementing a model into the bond graph language when utilizing
the Lagrangian equations of motion. This is because an IC-field accumulates the total energy
contribution from both the kinetic and potential energy terms, which the Lagrangian equations of
motion are based on. Additionally, it facilitates the removal of the problem related to differential
causalities since IC-fields are defined with integral causalities. This is shown in Figure 2.10 where
the power bond going to the I-element sets the effort input and the power bond directed from
the C-element defines the flow input to the IC-field. Note that an IC-field can be interfaced with
multiple 1-junctions.

Figure 2.10: Illustration of an IC-field

In Rokseth (2014), it is shown that the state-space model derived in Section 2.1.6 can be written
with both the momentum and the generalized coordinates as the system states. This is derived
through the term ∂T

∂q̇i
, which is equal to the momentum pi.

p =
∂T

∂q̇
= B(q)q̇ ⇐⇒ q̇ = B−1(q)p (2.73)

ṗ =
d

dt

∂T

∂q̇
= B(q)q̈ + Ḃ(q)q̇ = B(q)q̈ + q̇T

∂B(q)

∂q
q̇ (2.74)
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By solving the state-space model given in Equation 2.53 for B(q)q̈ and utilizing the definition of
the centripetal and Coriolis matrix given in Equation 2.56, the expression of the derivative of the
momentum can be rewritten to

q̇ = B−1(q)p

ṗ = f(q, q̇) + τ
(2.75)

where

f(q, q̇) =
1

2
q̇T

∂B(q)

∂q
q̇− g(q) (2.76)

As derived in Rokseth (2014) the resulting Equation 2.75 is equal to the constitutive relation that
is employed in an IC-field.

2.3 Marine vessel dynamics

In Rokseth et al. (2017), a generic method for deriving vessel dynamics with the use of Lagrangian
mechanics was developed and the process is presented here. To begin with, it is common to relate
the position and orientation of the vessel to an inertial reference frame, which in terms of Lagrangian
mechanics is a necessity in regard to establishing the equations of motion. In addition, a body-fixed
reference frame is attached to the rigid body that represents the vessel. The vessel position is given
by the position vector r0

b/0 while the orientation is given by the Euler angles Θ = [φ, θ, ψ]T .
Hence, the generalized coordinates of the vessel are chosen as

q =

r0
b/0

Θ

 (2.77)

since they uniquely describe the position and orientation of the vessel.

2.3.1 Vessel kinetic energy

As shown in Equation 2.12, the kinetic energy of the vessel can be expressed as follows

Tb(q, q̇, t) =
1

2
mbv

T (q, q̇)bcgb/0v(q, q̇)bcgb/0 +
1

2
ωT (q, q̇)bb/0I

b
bω(q, q̇)bb/0

Since the kinetic energy must be expressed by generalized coordinates given in an inertial reference
frame, a relation between the generalized coordinates and the linear and angular velocities given
in the body-fixed frame must be derived. From the general expression of the linear velocity of a
rigid body, given in Equation 2.2, the following is defined

vbcgb/0 = vbb/0 + ωbb/0 × rbcgb/b

= Rb
0(Θ)ṙ0

b/0 + T−1
Θ (Θ)Θ̇× rbcgb/b

(2.78)

Here, the relation between position vectors expressed in the body-fixed and inertial reference frames
is given by the rotation matrix R(Θ). Furthermore, the body-fixed angular velocities are related to
the Euler angles through the transformation matrix TΘ(Θ). The transformation matrix is required
as the angular velocities given in the body-fixed frame cannot be integrated directly to obtain
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the angular coordinates. This is because the integration has no immediate physical interpretation
(Fossen, 2011). Hence, it is necessary to develop a link between the angular rates and the Euler rates
since the Euler angles represent actual generalized coordinates. With the use of the zyx-convention,
the body-fixed angular velocities can be related to the Euler rates as follows

ωbrb/0 =

φ̇0
0

+ RT
x (φ)

0

θ̇
0

+ RT
x (φ)RT

y (θ)

0
0

ψ̇

 (2.79)

By combining the terms, the angular rates and Euler rates are related through a transformation
matrix as follows

ωbrb/0 =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


︸ ︷︷ ︸

T−1
Θ (Θ)

φ̇θ̇
ψ̇

 ⇒ TΘ(Θ) =

1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.80)

Consequently, the angular rates of the rigid body have a physical interpretation and can be related
to the inertial frame by applying the transformation matrix TΘ(Θ). The Euler angles that are
required in the calculation of the rotation matrix at every time step can be found by integration

Θ =

φθ
ψ

 =

∫ t

0

(TΘ(Θ)ω0
rb/0)dt (2.81)

With this, the body-fixed linear and rotational velocities can be related to the generalized coordi-
nates as follows

ω =

vbb/0

ωbb/0

 =

[
Rb

0(Θ) 03x3

03x3 T−1
Θ (Θ)

]ṙ0
cgb/0

Θ̇

 = αT q̇ (2.82)

By the development of the quasi-coordinates ω, the resulting equations of motion are dependent
on the body-fixed velocities rather than the velocities given in the inertial frame. This is a useful
attribute when developing a bond graph model of the vessel dynamics, as explained in Rokseth
et al. (2017).

A set of Jacobian matrices that define the relationship between the linear and rotational velocities
in the body-fixed frame and the quasi-coordinates can be derived. First, the expression of the linear
velocity in Equation 2.78 yields

vbcgb/0 =
[
I3x3, ib × rbcgb/b, jb × rbcgb/b, kb × rbcgb/b

]
ω

= Jvcgbω
(2.83)

where ib, jb, and kb represent the unit vectors in the x-, y- and z-directions in the body-fixed frame,
respectively. For the rotational velocity, the relation is simply expressed as

ωbb/0 =
[
03x3, I3x3

]
ω

= Jωb
ω

(2.84)
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By collecting the linear and angular velocities as shown below

νb =

vbcgb/0

ωbb/0

 =

[
Jvb

Jωb

]
ω = Jbω (2.85)

the kinetic energy in terms of the quasi-coordinates becomes

Tb(q,ω) =
1

2
ωTJTb MbωJb, Mb =

[
mbI3x3 03x3

03x3 Ibb

]

=
1

2
ωTBbω, Bb = JTb MbJb

(2.86)

2.3.2 Quasi-equations of motion

With the use of quasi-coordinates, Lagrange’s equation of motion must be differentiated by applying
the chain rule since the quasi-coordinates are functions of the generalized coordinates and their
rates, as explained in Rokseth et al. (2017). Consequently, the quasi-equations of motion are derived
as

d

dt

(
∂T

∂ω

)
+ βTγ

∂T

∂ω
− βT ∂T

∂q
= βT τ (2.87)

where

β = (αT )−1 =

[
R(Θ)0

b 03x3

03x3 TΘ(Θ)

]
(2.88)

and

γ =


ξ11 · · · ξ1k
...

. . .
...

ξk1 · · · ξkk

−

ωTβT ∂α

∂q1
...

ωTβT ∂α
∂qk

 , ξij = ωTβT
∂αij
∂q

(2.89)

In the k × k matrix γ, the term ∂α
∂qi

is found by differentiating every element αij with respect to

the generalized coordinate qi, resulting in a square matrix. On the other hand, the term ∂αij

∂q is a
column vector given by the differentiation of element αij with respect to each of the generalized
coordinates. Note that k refers to the number of generalized coordinates and that the contribution
from the potential energy is not included in the equations of motion as only the kinematics are of
interest at this point.

By the definition of momentum, the term ∂T
∂ω is equal to the momentum of the system. Hence, the

procedure of developing the constitutive relations with respect to the momentum and generalized
coordinates, which was derived in Section 2.2.7, can be utilized in the case of quasi-coordinates as
well. Consequently, by comparing the expression of the momentum to Equation 2.86, the following
is shown

p =
∂T

∂ω
= Bbω ⇐⇒ ω = B−1

b p (2.90)
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Furthermore, by knowing that

ṗ =
dp

dt
=

d

dt

(
∂T

∂ω

)
(2.91)

the following is given by Equation 2.87

ṗ = −βTγ ∂T
∂ω

+ βT
∂T

∂q
+ βT τ

= −βTγBbω +
1

2
βTωT

∂Bb

∂q
ω + βT τ

= f(q,ω) + βT τ

(2.92)

The fact that the quasi-coordinates are not dependent on the generalized coordinates, but rather
their derivatives, and that the mass-inertia matrix is a function of the generalized coordinates is
applied to derive the following relation

∂T

∂q
=

1

2
ωT

∂Bb(q)

∂q
ω (2.93)

where

ωT
∂Bb(q)

∂q
ω =


ωT ∂Bb(q)

∂qi
...

ωT ∂Bb(q)
∂qn

ω (2.94)

The state-space model that describes the kinematics of the vessel is obtained as

ω = B−1
b (q)p

ṗ = f(q,ω) + βT τ
(2.95)

2.3.3 Wave-induced loads

Faltinsen (1990) proposes that it is possible to express the response of a vessel in irregular waves
through a superposition of the response due to various regular sinusoidal wave components. Com-
monly, the problem regarding the derivation of the response is divided into the diffraction and
radiation problems where steady-state conditions are considered. In the diffraction problem, the
vessel is held stationary, i.e. restrained from oscillatory movement, and is subjected to incident
regular waves. The loads generated in this case are denoted wave excitation forces. When consid-
ering the radiation problem there are no incident regular waves, but the vessel is rather forced into
harmonic motion with the wave excitation frequency. The generated radiation loads are related to
added mass, damping and restoring terms.
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Restoring loads

The restoring loads that act on a vessel are the forces and moments generated by the gravitational
and buoyancy forces. The linear restoring force is related to the difference between the gravitational
and buoyancy force. Here, the buoyancy force is related to the volume displaced by the vessel and
is given as follows in an inertial reference frame

f0
b = ∇ρwg (2.96)

Here ∇ is the displaced volume and ρw is the water density. The gravitational force is directly
related to the gravitational constant and the mass of the vehicle and given accordingly in an
inertial reference frame

f0
g = mbg (2.97)

By knowing that the gravitational force acts through the center of gravity while the buoyancy
force acts through the center of buoyancy, the restoring moments expressed in the body-fixed
frame becomes (Fossen, 2011)

τ bR = rbcgb/b ×Rb
0(Θ)f0

g + rbcbb/b ×Rb
0(Θ)f0

b (2.98)

Here rbcgb/b and rbcbb/b are the position vectors to the center of gravity and center of buoyancy,
respectively, given in the body-fixed frame. Consequently, the restoring vector gb(ω) is given as
the following in an inertial reference frame

gb(ω) =

 Rb
0(Θ)(f0

b + f0
g )

rbcgb/b ×Rb
0(Θ)f0

g + rbcbb/b ×Rb
0(Θ)f0

b

 =

[
f bR

τ bR

]
(2.99)

Added mass and damping

The loads due to added mass and damping are dependent on the motion mode, hence the magni-
tudes of the added mass and damping are not necessarily equal in the different degrees of freedom.
Furthermore, both added mass and damping may be highly frequency dependent (Faltinsen, 1990)
and must be taken into account in seakeeping theory. In Fossen (2011), Cummin’s equations, which
represent the movement of a vessel in the time-domain, are transformed into the frequency domain
and give the following expressions for the added mass and damping coefficients at an arbitrary
wave frequency ω

A(ω) = Ā− 1

ω

∫ ∞
0

K̄(τ)sin(ωτ)dτ

B(ω) =

∫ ∞
0

K̄(τ)cos(ωτ)dτ

(2.100)

Here Ā = A(∞) is the added mass coefficient at the infinity frequency and K̄ is the retardation
matrix related to fluid memory. By applying the inverse Fourier transform the following is true
(Fossen, 2011)

K̄(t) =
2

π

∫ ∞
0

B(ω)cos(ωτ)dω (2.101)
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Consequently, by calculating the damping for all frequencies, the added mass can be expressed
through the retardation function. The added mass and damping coefficients can be found with
potential theory programs such as WAMIT (Fossen, 2011).

Considering maneuvering theory, the frequency dependent added mass and potential damping
terms can be approximated by constant values (Fossen, 2011). To approximate the added mass-
inertia and potential damping matrices, a zero-frequency model is applied for surge, sway, and
yaw. When it comes to the heave, roll and pitch modes, the natural frequencies are the dominating
frequencies (Fossen, 2011). Hence, when considering decoupled motion, implying that off-diagonal
terms are negligible compared to the diagonal elements, the added mass-inertia and potential
damping matrices become (Fossen, 2011)

BA ≈


A11(0) 0 0 0 0 0

0 A22(0) 0 0 0 0
0 0 A33(ωheave) 0 0 0
0 0 0 A44(ωroll) 0 0
0 0 0 0 A55(ωpitch) 0
0 0 0 0 0 A66(0)

 (2.102)

Dp ≈


B11(0) 0 0 0 0 0

0 B22(0) 0 0 0 0
0 0 B33(ωheave) 0 0 0
0 0 0 B44(ωroll) 0 0
0 0 0 0 B55(ωpitch) 0
0 0 0 0 0 B66(0)

 (2.103)

where B11(0) = B22(0) = B66(0) = 0. As a side note, the added centripetal and Coriolis can be
defined as follows through added mass-inertia matrix (Fossen, 2011)

CA =

[
03x3 −S(A11v

b
b/0 + A12ω

b
b/0)

−S(A11v
b
b/0 + A12ω

b
b/0) −S(A21v

b
b/0 + A22ω

b
b/0)

]
(2.104)

where

BA =

[
A11 A12

A21 A22

]
(2.105)

In addition to the potential damping, other linear and nonlinear damping phenomena such as skin
friction, vortex shedding, and wave drift affect the vessel. The wave drift damping is related to
second-order wave theory and its contribution is proportional to the significant wave height Hs.
When it comes to the skin friction, it is both a linear and nonlinear frequency dependent damping
caused by laminar and turbulent boundary layers, respectively. The damping force due to vortex
shedding is a nonlinear viscous phenomenon that can be modeled as follows (Fossen, 2011)

DNLv =
1

2
ρwCD(vbb/r)

TA|vbb/r| (2.106)

where A = diag(A1, A2, A3) contains the projected cross-sectional areas under water in the surge,
sway, and heave directions. Note that vbb/r is the vessel velocity relative to an incoming current
with velocity v0

c , given by the following relation in the body-fixed reference frame

vbb/r = vbb/0 −Rb
0(Θ)v0

c (2.107)
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Furthermore, Fossen (2011) presents a method for approximating the linear viscous damping con-
tribution by evaluating the ratio between the total mass of the vessel and typical time constants in
surge, sway, and yaw. To adjust the damping in heave, roll, and pitch, a tunable damping ratio is
introduced similarly to the damping term described for a wire element in Section 2.4.1. Hence, the
following damping coefficients can be used when approximating the linear damping contribution
due to viscous effects

B11v =
mb +A11(0)

Tsurge

B22v =
mb +A22(0)

Tsway

B33v = 2ζheaveωheave(mb +A33(ωheave))

B44v = 2ζrollωroll(Iy +A44(ωroll))

B55v = 2ζpitchωpitch(Iz +A55(ωpitch))

B66v
=
Iz +A66(0)

Tyaw

(2.108)

where the time constants typically are between 100− 250s in surge, sway, and yaw. Furthermore,
the damping ratios are generally chosen as ζheave = ζpitch = 0 and ζroll = 0.1.

Wave excitation forces

With incident regular waves and a vessel restrained from oscillations, there are generated loads
due to the dynamic pressure field induced by the waves. The loads can be divided into Froude-
Krylov and diffraction forces. The Froude-Krylov forces are related to the undisturbed pressure
field induced by an undisturbed wave, while the diffraction forces are generated because the vessel
affects the undisturbed pressure field (Faltinsen, 1990). According to linear wave theory, a velocity
potential of a sine wave propagating along the x-axis is formulated as follows

Φ =
gζa
ω
ekzsin(ωt− kx+ ε) (2.109)

where ζa is the wave amplitude, ω is the wave frequency, k is the wave number, ε is a random
phase angle, z is the vertical distance relative to the surface and x is the propagation of the wave.
The Froude-Krylov pressure for a regular wave can then be found from the velocity potential as
follows

pFK = ρw
∂Φ

∂t
= gζae

kzcos(ωt− kx+ ε) (2.110)

Considering that an irregular sea state can be found by linearly superposing the contribution from
a series of regular waves, the Froude-Kyrlov pressure becomes the following

pFK =

N∑
i=1

ρwgζa,ie
kizcos(ωit− kix+ εi) (2.111)

where N is the number of wave components. By assuming that the vessel has small characteristic
lengths relative to the incoming wavelengths, the following approximation is given for the wave
excitation forces (Faltinsen, 1990)

F = F1i + F2j + F3k (2.112)
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where

Fi = −
∫ ∫

S

pFKnids+Ai1a1 +Ai2a2 +Ai3a3 (2.113)

Here S refers to the integration over the wetted surface of the vessel, ni is a unit vector perpen-
dicular to the wetted surface, Aij are the added mass coefficients and ai is the wave acceleration
at the geometrical mass center of the vessel.

In addition to the first-order solution presented above, higher order theories are utilized to give a
more exact solution to the nonlinear wave problem. Especially second-order effects such as mean
drift loads, difference frequency loads and sum frequency loads are important. The wave-drift forces
are related to the ability of a structure to generate waves, namely the radiated and diffracted waves
(Faltinsen, 1990). Difference frequency loads are related to the nonlinear terms that contain the
difference between the frequencies of different wave components. These loads are relevant for motion
with large resonance periods. Sum frequency loads are related to the nonlinear terms that contain
frequencies higher than the frequency of an individual wave component. These loads are relevant
for motion with small resonance periods. For a thorough explanation of the derivation of mean drift
loads, difference frequency loads and sum frequency loads acting on structures, refer to Faltinsen
(1990).

2.4 Winch modeling

A winch system is a multidisciplinary system consisting of mechanical, electrical and/or hydraulic
and cybernetic systems. With the MCMR Lab in consideration, the modeling process of a power
unit is related to an electrical system. Furthermore, the development of the mechanical dynamics
regarding wire and reel is presented.

2.4.1 Wire

In Pedersen and Pedersen (2005) a common method for modeling wires is described. The wire is
divided into n segments of equal length in order to generate a deflection form that reflects the
behavior of a wire. Each element has two nodes, one at each end, implying that there are n+1
nodes. The elements and nodes are therefore enumerated from i = 1, 2, ..., n and i = 0, 1, ..., n,
respectively, where the ith element is connected to the (i − 1)th and ith node. The total mass
and forces acting along the wire are distributed to the nodes and the sum over the ith element
is defined as concentrated in the ith node. Additional concentrated forces acting on the wire are
considered to act on a node.

As stated in Pedersen and Pedersen (2005), the finite element method (FEM) has been the most
common method for modeling cable motion. However, since it is a comprehensive method where
algebraic expressions are difficult to derive without a set of simplifications, another modeling
approach is suggested. This alternative method divides the wire into a series of mass-spring-damper
systems in order to approximate its behavior. In Pedersen and Pedersen (2005), FEM analysis
was compared to the simplified approach and it showed satisfying results in regard to the average
difference between in the position of the corresponding nodes in the two models. It should be noted
that there are uncertainties regarding the correctness of the FEM model due to the simplifications
that were made. However, the lumped mass-spring-damper approach yielded satisfactory results.
Another point to take into consideration is that the mass matrix in the FEM model contains
off-diagonal elements that impl slower solving of the equations when compared to the lumped
mass-spring-damper model that has a diagonal mass matrix, i.e. a smaller bandwidth. A general
drawing of a mass-spring-damper element is given in Figure 2.11
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Figure 2.11: A general wire element

Wire dynamics

In Sørensen (2013), a set of assumptions regarding the modeling of cables are presented and are
relevant when developing a wire model. The wire is assumed to have no bending stiffness or torsional
stiffness, implying that only axial stiffness is relevant. Hence, the elements are considered to be
bar elements rather than beam elements, which indicates a simplified analysis. Furthermore, the
axial tension is assumed small enough to operate within the linear range of the stress and strain
relationship, and the cross-sectional area of the wire is assumed to not change significantly due to
axial deformations.

Considering the simplified wire model presented in Pedersen and Pedersen (2005), the force in a
spring can be expressed as the relationship between its stiffness and elongation from its initial
length. For a wire element, the spring force can be expressed as

Fswe = kwerwe (2.114)

where the kw is the wire stiffness and rwe is the elongation of the wire element. The stiffness of
the wire can be related to the elasticity modulus E, the cross-sectional area Aw and the length of
a wire element Lwe.

kwe =
EAw
Lwe

(2.115)

The damping is assumed to be linear and can be expressed as a relationship between the damping
coefficient dw and the elongation rate of a wire element ṙwe

Fdwe
= dw ṙwe (2.116)

For a mass-spring-damper system, the critical damping is given as

ccr = 2mwe

√
kw
mwe

= 2
√
kwmwe (2.117)

and through the definition of the damping ratio ζ, the expression of the damping in the system
can be found as follows

ζ =
c

ccr
⇒ c = 2ζ

√
kwmwe (2.118)
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In Skjong and Pedersen (2014), the damping ratio is chosen as ζ = 5 to create an over-damped
system in order to represent the dynamics of a wire.

The last factor in the expression of the damping force is found by evaluating the elongation of each
wire element

rwe =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2 − Lwe (2.119)

The elongation rate is found by taking the derivative of the elongation

ṙwe =
(xi − xi−1)√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2
(ẋi − ẋi−1)

+
(yi − yi−1)√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2
(ẏi − ẏi−1)

+
(zi − zi−1)√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2
(żi − żi−1)

− L̇we

(2.120)

Notice that the length of the wire element varies with time since the length of the total paid
out wire changes while the number of elements remains constant. Since the model operates with
both body-fixed reference frames and the inertial reference frame, rotation matrices are used to
transform the forces and velocities into the correct reference frames. The angles between the nodes
are expressed as follows

ψ = tan−1(
yi − yi−1

xi − xi−1
) (2.121)

θ = tan−1(
zi − zi−1

xi − xi−1
) (2.122)

φ = tan−1(
zi − zi−1

yi − yi−1
) (2.123)

2.4.2 Reel dynamics

A generic reel with wire is illustrated in Figure 2.12, and it is necessary to develop a method for
expressing the reel dynamics.

Figure 2.12: Generic tugger winch reel dimensions
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Obviously, the wire influences the dynamics of the reel as it is connected to and stored onto the
reel. Hence, the reel is affected by the amount of wire that is stored onto it at any given time
instant. Consequently, the contribution from the wire must be included in the model to express
the complete reel dynamics. In Skjong and Pedersen (2014), a reel model is developed by finding
an expression for how the diameter of the reel changes with the amount of wire stored onto it.
This is done by setting the storage volume of a full reel equal to the volume of the wire stored onto
it in that scenario. Note that this method is a simplification of the problem, but that it aims to
approximate the behavior of the system.

Vw = Vr ⇐⇒
D2
w

4
πLw,r =

D2
r,full −D2

r,0

4
πwrfw (2.124)

Here Vw and Vr are the volumes of the wire and the reel storage capacity, respectively, while fw
denotes the packing factor, which is related to the reduced storage capacity due to air gaps between
the wire layers. Depending on how compactly the wire is packed onto the reel, the packing factor is
somewhere in the range 0 < fw < 1. Given the most optimal configuration, as illustrated in Figure
2.13, the packing factor is given as

Figure 2.13: Optimal wire configuration

fw =
πD2

w

4√
3

2 D
2
w

=
π

2
√

3
≈ 0.9069 (2.125)

by comparing the volume of the parallelogram and a circle. Going back to Equation 2.124, the
time-varying reel diameter is acquired as a function of the wire length stored onto the reel as
follows

Dr(Lw,r(t)) =

√
Lw,r(t)D2

w

wrfw
+D2

r,0 (2.126)

With the time-varying reel diameter, the moment of inertia of the reel can be calculated as follows

Ireel(t) = Irod + 2Iflange + Iwire(t) (2.127)

The moments of inertia for a cylinder and a hollow cylinder are the following

Icyl =
1

2
mr2 =

1

8
mD2 (2.128)

Icylhollow
=

1

2
m(r2

2 + r2
1) =

1

8
m(D2

2 +D2
1) (2.129)
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Assuming that the wire forms a hollow cylinder around the reel, the moment of inertia in Equation
2.127 is written as

Ireel(t) =
1

8
mrodD

2
r,0 + 2

1

8
mflangeD

2
r,full +

1

8
ρwLw,r(t)(D

2(Lw,r(t)) +D2
r,0) (2.130)

The wire velocity can be expressed by the radius and angular velocity of the reel

L̇w =
Dr(Lw,r(t))

2
ωr (2.131)

With the wire velocity, the length of each wire element can be calculated by integrating the wire
velocity and dividing it by the number of elements in the wire model.

2.4.3 Electric power unit

As previously mentioned, the power unit will be modeled as an electric motor that converts elec-
trical energy into the mechanical energy that drives the reel. In relation to the models derived in
Gyberg (2017), the electric motor is modeled as an RL-circuit with a GY-element that transforms
the voltage and current into torque and rotational velocity. The constitutive relations of the GY-
element are given in Equation 2.132 and Equation 2.133. Here r1 and r2 are the torque and speed
constants given in Nm

A and RPM
V , respectively.

τm = r1i (2.132)

u =
1

r2
ωm, (2.133)

Considering reduction through the inclusion of a gear, TF-elements are introduced to apply the
reduction coefficient. The reduction coefficient is related to the ratio between the radii or the
number of teeth on two cogwheels (Pedersen and Engja, 2014). Additional features such as belt
transmissions apply further reductions in a similar manner. Note that friction can be included in
the TF-elements through the use of an efficiency factor η provided by component specification
sheets. The moments of inertia of the different components of the power unit are implemented in
I-elements.

2.5 Motion compensation

Marine vessels are subjected to a range of external forces such as wave and wind loads that induce
motion in the six degrees of freedom. During a crane lift operation, the motions affect the movement
of the lifted object and could lead to dangerous situations if not handled correctly. A variety of
motion compensation and restriction methods are used to limit the movement of the lifted object.

2.5.1 Heave compensation

DNV (2011) states that the implementation of a heave compensation device is the most common
method to compensate for the vertical motion of the vessel during a crane lift operation. The
device can be used to control the tension in the wire and the motion of the lifted object. To per-
form this form of motion compensation, both passive and active methods are utilized. A passive
heave compensation system involves the use of a spring-damper system while an active system
can include active components such as controlled winches and pistons. As stated in Driscoll et al.
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(1998), passive systems have been widely employed due to their simplicity. The systems are prac-
tically autonomous and are easy to maintain. On the other hand, in Woodacre et al. (2015), a
combination of field experience and simulations implies that passive systems are limited to roughly
80% decoupling of the heave motion. To further increase the decoupling, active systems must be
incorporated. Furthermore, a passive heave compensation system is unable to compensate for the
relative motion between two independently moving reference frames and renders ship to ship cargo
transfers ineffective. The inclusion of active heave compensation systems can improve the perfor-
mance of the motion compensation but comes at the cost of requiring additional equipment such
as computers, sensor, motors and hydraulic systems. Due to the added number of components,
these systems can become complex, expensive and difficult to maintain.

2.5.2 Constant tension

Another approach called constant tension is performed by controlling the tension in a wire to remain
at a predefined force set-point. Passive systems have commonly been utilized due to their simplicity,
but as stated in Chen et al. (2017) they have drawbacks such as precision during rough sea states
and power consumption due to the cooling of the hydraulic system. Therefore, as most crane
winch systems are equipped with load cells that measure the tension in the wire continuously, active
constant tension (ACT) systems with force feedback can be developed to improve the performance.
Since PID controllers are common in the industry, they are often used to control the tension in
the wire. Consequently, ACT can be implemented in tugger wire systems to limit the pendulum
motion of lifted objects while preventing snap loads. Note that snap loads are characterized by a
spike in tension over a short period of time when slack wire reengages tension.

2.5.3 Inverse dynamics controller

As derived in Siciliano et al. (2009), an inverse dynamics operational controller can be implemented
when it is of interest to track an operational space reference. The operational space refers to the
space in which the crane task is specified and is most often given in a Cartesian reference frame.
It should be distinguished from the joint space that describes the configuration of the crane with
the generalized coordinates. As the name indicates, the controller is based on the dynamics of the
system and the previously developed equations of motion are used as a basis for the development
of a control law. Recalling that the equations of motion for the crane can be written as

B(q)q̈ + C(q, q̇)q̇ + g(q) = τ

it is shown in Siciliano et al. (2009) that an inverse dynamics linearizing control can be chosen as

τ = B(q)y + n(q, q̇)

n(q, q̇) = C(q, q̇)q̇ + g(q)
(2.134)

to give a system of double integrators where

q̈ = y (2.135)

It should be noted that the system in Equation 2.134 is linear and decoupled with respect to the
defined input y (Siciliano et al., 2009). This implies that the input element yi only affects the
generalized coordinate qi independent of the movement of the other joints. Hence, the problem is
reduced to finding a control law y such that it is able to track the trajectory given by the desired
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position rd(t), velocity ṙd(t), and acceleration r̈d(t). Recalling the relationship between the velocity
and generalized coordinates shown in Equation 2.42, the acceleration can be expressed as

r̈ = J(q)q̈ + J̇(q)q̇ (2.136)

and then solved for the generalized acceleration as follows

q̈ = J−1(q)(r̈− J̇(q)q̇) (2.137)

Then, by choosing

y = J−1(q)(r̈d + Kd
˙̃r + Kpr̃− J̇(q)q̇) (2.138)

and inserting Equation 2.137 and Equation 2.138 into Equation 2.135, the error dynamics are are
given by the following expression

¨̃r + Kd
˙̃r + Kpr̃ = 0 (2.139)

where Kd and Kp are positive definite diagonal matrices that are tunable and therefore determine
the operational space error convergence rate to zero. Note that the proposed controller is susceptible
to parameter uncertainties. Thus, a robust configuration is proposed in Appendix C to account for
unmodeled effects.

2.6 Software

This section provides a short introduction to the different software that is utilized during the
development of the simulation models in this thesis.

2.6.1 20-Sim

20-Sim is a modeling and simulation program developed by Controllab that allows a high-level
implementation of models through a graphical editor. It supports the use of bond graphs and block
diagrams while having an efficient numerical analysis and simulation capability (Duindam et al.,
2009). Furthermore, its library contains the standard bond graph and block diagram components.
Elements and submodels of various physical domains are easily interfaced together and provide a
platform that is ideal for a multi-disciplinary system such as an offshore crane.

2.6.2 Maple

Maple is a math software developed by Maplesoft that is capable of performing symbolic compu-
tations for complex mathematical expressions. Hence, the derivation of the algebraic expressions
that are utilized in the simulation models can be calculated in Maple. Furthermore, it supports
automatic code generation for a variety of programming languages, including C. Note that the code
generation is optimized with respect to computational efficiency. Hence, it provides a platform for
the development of a dynamic-link library (DLL) files that are necessary for the process of reducing
the computational power that is required when performing simulations of crane operations.
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2.6.3 MATLAB

MATLAB is a software developed by MathWorks that provides a platform for numerical computing.
It is a powerful tool with respect to executing matrix operations and plotting functions. Hence, in
this thesis, it is utilized in tasks regarding the processing of text files and the creation of graphical
visualizations of simulation data.

2.6.4 Visual Studio

Visual Studio is a platform for the development of computer programs and is supplied by Microsoft.
It provides an environment that is suitable for building DLL-files from the C-code that is generated
in Maple. Hence, computationally intensive operations can be carried out in the DLL-files rather
than by the solver in 20-Sim. Consequently, the overall simulation times can be reduced.
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3 | Crane modeling

In this chapter, the procedure of developing a simulation model of the crane and its auxiliary
equipment will be described through the use of the theory presented in Chapter 2. The crane
simulation model is heavily based on the model developed in Gyberg (2017), but the process of
deriving it is presented to serve as a basis for the understanding of the inner workings as it is the
cornerstone of the thesis. The crane geometry established in Gyberg (2017) is depicted in Figure
3.1. It should be noted that the illustration of the crane is for a case where the lower crane boom
is longer than the one that currently is mounted in the MCMR Lab. Regardless, the notation of
parameters that indicate the positions of the centers of gravity1 are the same for the two crane
boom configurations. Furthermore, the process of implementing auxiliary equipment related to
actuators and winch systems is presented in this chapter. The relevant parameters related to the
model crane are given in Appendix A.1.

(a) Crane dimensions (b) CG in the yz-plane (c) CG in the xz-plane

Figure 3.1: Crane geometry. Taken from Gyberg (2017)

1Note that the centers of mass depicted in Figure 3.1 are equivalent to the centers of gravity in a uniform
gravitational field (Millikan, 1903).
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3.1 Generalized coordinates

The crane is designed with a rotating base and two crane booms that can be moved by pistons.
Accordingly, the system has three degrees of freedom and the three angles θ1, θ2, and θ3, depicted
in Figure 3.2, are a set of generalized coordinates that are suitable in regard to uniquely describing
the position and orientation of the system. The generalized coordinates are therefore defined as

q =

q1

q2

q3

 =

θ1

θ2

θ3

 (3.1)

Figure 3.2: Crane with generalized coordinates. Taken from Gyberg (2017)

3.2 Crane boom actuators

As stated in Gyberg (2017), the crane boom actuators have large masses and should be included
in the dynamic model of the crane. Hence, their orientation in terms of the generalized coordinates
and the crane geometry must be expressed. The two angles δ1 and δ2 are defined as the orientation
of the lower and upper actuator, respectively, with regard to the xy-plane. The geometries of the
lower and upper actuators are presented in Figure 3.3 and are used to develop the expressions of
the angles.
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(a) Lower actuator (b) Upper actuator

Figure 3.3: Actuator geometries. Taken from Gyberg (2017)

For the lower actuator, the following can be derived

ux = sin(θ2) · u
uz = cos(θ2) · u
bx = cos(θ2) · b
bz = cos(θ2) · b
ex = bx + ux − a
ez = h+ bz − uz
e =

√
e2
x + e2

z

giving the angle

δ1(θ2) = sin−1

(
h+ cos(θ2) · b− cos(θ2) · u√

(cos(θ2) · b+ sin(θ2) · u− a)2 + (h+ cos(θ2) · b− cos(θ2) · u)2

)
(3.2)

To derive the angle for the upper actuator, the following can be shown
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c′ =
√
s2 + c2

v =
√
r2 + (L1− w)2

β2 = sin−1
( s
c′

)
ε2 = sin−1

( r
v

)
µ2 = π + θ3 − β2 − ε2
d =

√
v2 + c′2 − 2v · c′ · cos(µ2)

φ2 = cos−1
(c′2 + d2 − v2

2c′d

)
α2 =

π

2
− β2 + θ2 + θ3

κ2 = π − α2 − φ2

yielding

δ2(θ2, θ3) =
π

2
− κ2 = θ2 + θ3 − sin−1

( s
c′

)
+ cos−1

(c′2 + d2 − v2

2c′d

)
(3.3)

3.3 Position vectors

As previously stated, the movement of all the rigid body parts of the crane must be referenced to
an inertial reference frame due to the criteria of Newton’s laws. Since it is most trivial to express
the positions vectors to the centers of gravity in body-fixed frames, rotation matrices are used to
transform them into the inertial frame. Therefore, a set of body-fixed reference frames are defined
on the crane, as illustrated in Figure 3.4.

Figure 3.4: Crane with reference frames
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To begin with, the reference frames must be related to each other through position vectors. In
Section 2.1.1 the notation of the position vectors was defined, and the following relations between
the reference frames can be derived from the geometry given in Figure 3.1

r0
1/0 =

0
0
0

 , r1
2/1 =

0
0
h

 , r2
3/2 =

 0
L1

0

 , r1
4/1 =

0
a
0

 , r2
5/2 =

 0
w
−r

 (3.4)

Furthermore, the position vectors to the centers of gravity must be expressed, and in the body-fixed
frames, they can be defined as

r1
cg1/1

=

Xcg1

Ycg1

0

 , r2
cg2/2

=

0
k
0

 , r3
cg3/3

=

0
n
0

 , r4
cg4/4

=

0
0
p

 , r5
cg5/5

=

0
o
0

 (3.5)

The next step is to relate the position vectors to the inertial reference frame. All the relevant
rotation matrices can be defined with the generalized coordinates and the two actuator angles

R0
1 =

 cos(θ1) sin(θ1) 0
−sin(θ1) cos(θ1) 0

0 0 1

 , R1
2 =

1 0 0
0 cos(θ2) −sin(θ2)
0 sin(θ2) sin(θ2)

 ,
R2

3 =

1 0 0
0 cos(θ3) −sin(θ3)
0 sin(θ3) sin(θ3)

 , R1
4 =

1 0 0
0 cos(δ1) −sin(δ1)
0 sin(δ1) sin(δ1)

 ,
R1

5 =

1 0 0
0 cos(δ2) −sin(δ2)
0 sin(δ2) sin(δ2)


(3.6)

These rotation matrices are combined such that the body-fixed frames can be rotated into the
orientation of the inertial frame. The combinations of rotation matrices that are required for the
previously defined reference frames are stated below

R0
2 = R0

1R
1
2, R0

3 = R0
2R

2
3, R0

4 = R0
1R

1
4, R0

5 = R0
1R

1
5 (3.7)

With the definition of the rotation matrices, the previously defined position vectors can be trans-
formed into the inertial reference frame with the general expression that was defined in Equation
2.2, yielding

r0
2/0 = r0

1/0 + R0
1r

1
2/1, r0

3/0 = r0
2/0 + R0

2r
2
3/2,

r0
4/0 = r0

1/0 + R0
4r

1
4/1, r0

5/0 = r0
2/0 + R0

2r
2
5/2

(3.8)

r0
cg1/0

= r0
1/0 + R0

1r
1
cg1/1

, r0
cg2/0

= r0
2/0 + R0

2r
2
cg2/2

,

r0
cg3/0

= r0
3/0 + R0

3r
3
cg3/3

, r0
cg4/0

= r0
4/0 + R0

4r
4
cg4/4

,

r0
cg5/0

= r0
5/0 + R0

5r
5
cg5/5

(3.9)
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3.4 Defining the Jacobian matrices

With the general expressions derived in Section 2.1.5, the Jacobian matrices that link the linear
and angular velocities of the centers of gravity to the generalized coordinates can be expressed.
To begin with, the unit vectors that define the direction that the crane joints are able to displace
must be defined. The crane base rotates about the z-axis while the two crane booms rotate about
their local x-axes. Hence, three unit vectors are required. Since it is straight forward to express the
unit vectors in the local reference frames, they must be rotated into the inertial reference frame as
follows

e0
1 = R0

1e
1
1 = R0

1k, e0
2 = R0

2e
2
2 = R0

2i, e0
3 = R0

3e
3
3 = R0

3i (3.10)

where i and k are the unit vectors in the local x- and z-directions, respectively. The Jacobian
matrices can then be expressed as follows

J1 =

e0
1 × (r0

cg1/0
− r0

1/0) 03x2

e0
1 03x2


J2 =

e0
1 × (r0

cg2/0
− r0

1/0) e0
2 × (r0

cg2/0
− r0

2/0) 03x1

e0
1 e0

2 03x1


J3 =

e0
1 × (r0

cg3/0
− r0

1/0) e0
2 × (r0

cg3/0
− r0

2/0) e0
3 × (r0

cg3/0
− r0

3/0)

e0
1 e0

2 e0
3


J4 =

e0
1 × (r0

cg4/0
− r0

1/0) e0
2 × (r0

cg4/0
− r0

2/0) 03x1

e0
1 e0

2 03x1


J5 =

e0
1 × (r0

cg5/0
− r0

1/0) e0
2 × (r0

cg5/0
− r0

2/0) e0
3 × (r0

cg5/0
− r0

3/0)

e0
1 e0

2 e0
3



(3.11)

3.5 Mass and inertia matrix

The last step before the equations of motion can be developed is to define the mass and inertia
matrices Mj . As stated in Section 2.1.3, the inertia tensor is dependent on the configuration of the
rigid body with respect to the inertial frame. Therefore, the inertia tensors of each rigid body in
their body-fixed frames must be transformed as defined in Equation 2.14, yielding

I0
1 = R0

1I
1
1R

1
0, I0

2 = R0
2I

2
2R

2
0, I0

3 = R0
3I

3
3R

3
0, I0

4 = R0
4I

4
4R

4
0, I0

5 = R0
5I

5
5R

5
0 (3.12)

Since the mass is independent of the orientation of a body, the mass and inertia matrix of body j
can be formulated as shown below

Mj =

[
mjI3x3 03x3

03x3 I0
j

]
(3.13)
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3.6 Kinematics

As stated earlier, the kinematics disregard the forces that induce the motion of a body and will
be defined inside an IC-field. This implies that the generalized forces τ and the restoring force
and moment vector g(q) in the equations of motion can be excluded at this stage. Therefore, only
the inertia matrix B(q) and centripetal and Coriolis matrix C(q, q̇) are of interest in the IC-field.
They are found as explained in Section 2.1.6 and the algebraic expressions are derived with the use
of a Maple-script developed in Gyberg (2017). The Maple-script has been slightly modified and is
referred to in Appendix B.

Due to the complexity of the expressions in the inertia and centripetal and Coriolis matrices, they
will not be solved directly in 20-Sim but rather processed through a DLL-file. It is done to reduce
the time required by the solver in 20-Sim to perform the calculations of every time step during
a simulation. The required C-code is generated by exporting the algebraic expressions derived in
Maple, and the process of developing the DLL-file is described in Rokseth (2014). In addition to
the steps described in Rokseth (2014), a MATLAB-script has been made to process the text file
containing the C-code such that issues regarding the use of a DLL-file in 20-Sim are circumvented.
Hence, rather than compiling the C-code using Cygwin, the C-code can be inserted directly into a
DLL-project in Microsoft Visual Studio and be built there.

The DLL-file is designed such that the input is a vector containing all the relevant parameters of
the crane model. The output is a vector containing the elements of the mass-inertia and centripetal
and Coriolis matrices. Due to symmetry properties, the output vector can be reduced significantly
and only the relevant elements are returned. The matrices are reassembled inside the IC-field and
the constitutive relations are calculated as described in Section 2.2.7. It should be noted that a
slight modification is applied to the effort expression in Equation 2.75 as the terms containing
forces and moments are removed, i.e. τ and g(q). This is done in accordance with the definition of
the kinematics. Furthermore, since it is convenient to have separate 1-junctions representing the
generalized coordinates and their velocities, the IC-field is connected to a number of 1-junction
corresponding to the number of generalized coordinates in the system. The IC-field representing
the crane is illustrated in Figure 3.5 and the code executed inside the IC-field is referred to in
Appendix B.

Figure 3.5: IC-field interfaced with the generalized coordinates

To reduce the complexity of the model, the calculation of the generalized coordinates is done
in a subsystem called Calculation of angles, which is illustrated in Figure 3.6a. The generalized
coordinates are calculated by integrating the flow signal given by the three 1-junctions connected
to the IC-field and then distributed as signals to the Jacobian matrices and other subsystems that
are dependent on them.
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3.7 Kinetics

In addition to the kinematics, the forces that act on the crane must be included. These forces are
related to gravity, payloads, winches, wires, and actuators and will be interfaced with the IC-field
as generalized forces. The relationship between the kinematics and kinetics is described with MTF-
elements that connect the generalized coordinates to the generalized forces that act on arbitrary
points p on the crane. By recalling the properties of the Jacobian matrices, the constitutive relations
in the MTF-elements are defined as follows

fp = Jpfq

eq = JTp ep
(3.14)

Here ep and fp are the flow and effort at the arbitrary point p, while eq and fq represent the flow
and effort of the generalized coordinates. The modulus that relates the flows and efforts is given
by the Jacobian matrix Jp. Note that when only forces are acting on the arbitrary point p, the
last three rows in the Jacobian matrix can be omitted. On the other hand, when moments are the
sole contributor to the arbitrary point p, the first three rows can be neglected.

3.7.1 Gravitational loads

As previously stated, the crane consists of five body parts that have masses of significance in relation
to their gravitational loads. The Jacobian matrices that relate the velocities at the centers of gravity
of these bodies were developed in Section 3.4 and are implemented into MTF-elements as stated
by the constitutive relation given in Equation 3.14. An overview of the connection between the
IC-field and the gravitational forces is given in Figure 3.6. The Se-elements apply the gravitational
force at the center of gravity of the j th body of the crane as Fcgj = [0, 0, −mjg] in the inertial
reference frame.

(a) IC-field and gravity interfacing (b) Transformation of gravitational loads

Figure 3.6: Interfacing gravitational loads to the IC-field

3.7.2 Actuators

The crane is actuated by three actuators, allowing it to adjust the position of the two crane booms
and rotate the crane base. The design of the actuators themselves is thoroughly described in Gyberg
(2017) and only the interfacing of the actuator forces will be studied further due to its relevance
when developing control algorithms later on.

The actuators that adjust the inclination of the crane booms generate an equal force in both their
connection points to the crane. Hence, it is necessary to develop a relationship between the inertial
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frame and the position of the upper connection points of the two crane boom actuators. Note that
the positions of the lower connection points already have been defined in Section 3.3. By defining
the reference frames 6 and 7 at the upper connection points of the lower and upper actuators,
respectively, their position vectors are given as

r2
6/2 =

 0
b
−u

 , r3
7/3 =

 0
c
−s

 (3.15)

In the inertial reference frame, the position vectors are given by the following expressions

r0
6/0 = r0

2/0 + R0
2r

2
6/2, r0

7/0 = r0
3/0 + R0

3r
3
7/3 (3.16)

The Jacobian matrices are derived as previously described and can be expressed as follows for the
four connection points

J6 =

e0
1 × (r0

4/0 − r0
1/0) 03x2

e0
1 03x2


J7 =

e0
1 × (r0

6/0 − r0
1/0) e0

2 × (r0
6/0 − r0

2/0) 03x1

e0
1 e0

2 03x1


J8 =

e0
1 × (r0

5/0 − r0
1/0) e0

2 × (r0
5/0 − r0

2/0) 03x1

e0
1 e0

2 03x1


J9 =

e0
1 × (r0

7/0 − r0
1/0) e0

2 × (r0
7/0 − r0

2/0) e0
3 × (r0

7/0 − r0
3/0)

e0
1 e0

2 e0
3



(3.17)

The interfacing with the IC-field is carried out through MTF-elements that use the Jacobian
matrices as the moduli in the constitutive relations. Regarding the forces generated at the end-
points of an actuator, they are of equal magnitude, but of opposite sign due to being reaction forces.
They can thus be joined in a 0-junction with their power bonds going in the opposite direction of
one another. The effort in the 0-junction is set by the force generated by the actuator model after
being transformed into the inertial reference frame. The transformation of the local actuator forces
is executed by first decomposing the forces in the lower and upper actuators with respect to δ1(θ2)
and δ2(θ1, θ2), respectively. Then, the decomposed forces are rotated into the inertial frame by
applying a rotation matrix with the angle θ1 about the z-axis. With this, the crane boom actuator
forces can be written as

F0
2 = Fa2R

0
1

 0
cos(δ1)
sin(δ1)

 , F0
3 = Fa3R

0
1

 0
cos(δ2)
sin(δ2)

 (3.18)

where Fai is the amplitude of the local actuator force. The interfacing with the IC-field and actuator
models is shown in Figure 3.7. Note that actuator 1 and actuator 2 refer to the lower and upper
crane boom actuators, respectively.
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Figure 3.7: Crane boom actuator interfacing

When it comes to the actuator that is responsible for the rotation of the crane base, the interfacing
to the IC-field is trivial since the rotation of the base is given by the generalized coordinate q1 = θ1.
This implies that the actuator model developed in Gyberg (2017) can be connected directly to the
generalized velocity q̇1, which is provided by the IC-field. No further modifications are required for
the interfacing between the rotation of the crane base and the IC-field. With the inclusion of the
subsystems that represent the forces applied by the actuators, the crane simulation model becomes
as shown in Figure 3.8

Figure 3.8: Actuator interfacing with IC-field

3.7.3 Main wire implementation and modeling

As explained in Gyberg (2017), the force applied by the main wire onto the crane can be defined as
a generalized force acting on the crane boom tip. By placing reference frame 8 at the crane boom
tip the position vector can be related to the inertial frame as follows

r0
8/0 = r0

3/0 + R0
3r

3
8/3 (3.19)

where

r3
8/3 =

 0
L2

0

 (3.20)
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The Jacobian matrix can then be defined as

J10 =

e0
1 × (r0

8/0 − r0
1/0) e0

2 × (r0
8/0 − r0

2/0) e0
3 × (r0

8/0 − r0
3/0)

e0
1 e0

2 e0
3

 (3.21)

With this, a wire model based on the theory developed in Skjong and Pedersen (2014), which
was presented in Section 2.4, can be attached to the crane tip by using an MTF-element with the
Jacobian matrix as the modulus.

The wire model is as stated in Section 2.4.1, based on connecting a series of mass-spring-dampers to
mimic the dynamics of a wire. By utilizing the theory presented in Skjong and Pedersen (2014), the
wire model developed in Gyberg (2017) can be implemented after applying a set of modifications
to the wire elements. A general wire element is modeled as shown in Figure 3.9. Here, the CR-
element is a combination of an R-element and a C-element and contains the properties of the
spring and damper in the wire model. The spring stiffness is reflected in the properties of the wire,
namely the E-modulus, cross-sectional area and length of the wire element as shown in Equation
2.115. When it comes to the damping, the expression is given in Equation 2.118, where ζ = 5 as
suggested in Skjong and Pedersen (2014) to create an over-damped system. Note that the ζ-value
can be tuned to remove high-frequent vibrations in the wire that would not be present in a real-
world application. Furthermore, since a wire cannot absorb compression forces, a set of conditional
statements are included to ensure that the tension in the wire never goes below zero. The I-element
and Se-element account for the inertia and load that are present due to the mass located at the
end of the wire element. The Sf-element sets the flow of the wire element by applying the wire
velocity, which is given by the winch model that was developed in Gyberg (2017). Lastly, the MTF-
elements denoted XYZ0 and XYZ1 apply the constitutive relation defined for the elongation of
a wire element, which was given in Equation 2.120. The coordinates of the two end-points of the
wire element are required in the constitutive relation, and they are calculated in the Pos-subsystem
by the use of a vector parameterization between the two end-points of the wire. With the use of
a vector parameterization, the number of wire elements can be increased by simply copying and
pasting additional wire elements into the model and connecting them to the required input signals.
Note that this method places the wire elements in a straight line and does not take into account the
correct initial configuration of a wire subjected to gravity. To account for that, catenary equations
could be implemented, but for simplicity, a small initialization phase is allowed at the start of the
simulations to allow the wire to find its equilibrium position.
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Figure 3.9: Wire element

The winch that controls the pay-in and out speed of the wire is implemented as described in Section
2.4.3, and the coupling between the winch and the wire elements is shown in Figure 3.10. A more
thorough description of the process regarding the development of the winch model is found in
Gyberg (2017).

Figure 3.10: Wire elements and winch coupling

By implementing the wire and winch model into the crane system, as shown in Figure 3.11, the
crane simulation model designed in Gyberg (2017) is complete with the exception of the control
system. The implementation of a new control system is presented in the next chapter. Note that
the controller is designed to support the functionality that is required in the upcoming case study.

48



CHAPTER 3. CRANE MODELING

Figure 3.11: Wire and winch interfacing
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4 | Case 1: Tugger winch systems

The purpose of this case study is to implement tugger winch systems that are capable of limiting
pendulum motions and preventing the occurrence of snap loads. In order to create a realistic
scenario, data from a simulation of an offshore operation was provided by Subsea 7. The setup is
illustrated in Figure 4.1, where a 200t payload is suspended from four slings that are connected to
the main wire through the crane block. Furthermore, fixed length tugger wires are connected to
the payload to restrict the movement and to showcase the snap loads that occur during an offshore
operation if no control of the tugger wires is performed.

Figure 4.1: Case setup for the payload

4.1 Model setup and scaling

The simulation model provided by Subsea 7 is of a full-scale offshore operation. Hence, the pa-
rameters retrieved from the SIMA model must be scaled down to correspond with the scale of the
model crane in the MCMR Lab. It is important to note that the SIMA model itself is not modified,
but that the generated simulation data are scaled into their correct magnitudes in relation to the
model scale. Furthermore, the results that are presented in the case study are always given in
accordance with the model scale of the crane designed by Gyberg (2017). Consequently, scaling
laws are applied to modify the relevant parameters and simulation data.

With the scaling laws for classical mechanical systems, it is given that length ∝ λ and time ∝ λ 1
2

(Ghosh, 2011), where the characteristic dimension λ = 25 corresponds to the model scale of 1:25.
Note that the proposed scaling of time is related to weight and inertia forces, and must be scaled
differently with respect to forces given in other domains (Ghosh, 2011). Furthermore, angular
displacements are dimensionless and are not scaled (Ghosh, 2011). From the previously stated
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scaling laws, the following can be derived if the density, ρ, is assumed constant.

mass ∝ ρ · length3 ∝ λ3 (4.1)

With the proposed geometric scaling laws, the moment of inertia is scaled as follows

moment of inertia ∝ mass · length2 ∝ λ5 (4.2)

Additionally, the sea states are scaled, which implies that the significant wave height, Hs, and peak
period, Tp, are scaled with respect to the scaling laws for length and time, respectively. Evidently,
by applying the proposed scaling laws, the magnitudes are reduced while the frequency is increased.
Furthermore, the scaling laws in dynamics can be determined by applying the laws of motion Ghosh
(2011). Considering that the acceleration is the double derivative of the displacement with respect
to time, the following can be shown for the inertia forces

inertia force ∝ mass · length
time2

∝ λ3 (4.3)

Hence, the important dimensions of the crane and payload setup are given as follows in Table 4.1.
Note that the dynamic characteristics of elastic bodies are affected by scaling. This is of importance
when designing the proper dimensions of the tugger wires that are applied in the simulation model.
Therefore, the derivation of the spring stiffness in the model scale and its implications on the
dynamics will be discussed in Section 4.3.7.

Table 4.1: Full scale and model scale parameters

Parameter Full scale Model scale Unit
Sling 1-4, length 18.04 0.7216 m
Main wire, length 36.78 1.4712 m
Tugger wires, length 27.35 1.094 m
Payload, mass 200000.0 12.8 kg
Payload dimensions, LxWxH 10.0x7.56x6.53 0.4x0.3024x0.2612 m
Payload inertia, x-axis 7429000.0 0.7607 kgm2

Payload inertia, y-axis 7962000.0 0.8153 kgm2

Payload inertia, z-axis 2685000.0 0.2749 kgm2

Tugger wire 1, initial force 14207.0 0.909 N
Tugger wire 2, initial force 15145.0 0.969 N
Significant wave height Hs Hs · λ−1 m
Peak period Tp Tp · λ−

1
2 s

Furthermore, the setup of the crane and payload in 20-Sim must imitate the configuration given
in the SIMA model. Firstly, the vessel in the SIMA model is trimmed to have an initial roll angle
of approximately −1.1°. Consequently, tension is induced in the fixed-length tugger wires. Hence,
the configuration must be replicated within the limitations of the model crane at the MCMR Lab.
Therefore, the initial crane boom angles are selected such that they produce an angle of −1.1°
between the upper crane boom and the xy-plane. The tugger wires are then tightened to keep the
main wire perpendicular to the upper crane boom. Furthermore, the initial position of the model
crane is different to the SIMA model regarding their respective inertial reference frames. Hence,
the motion of the crane in SIMA is shifted such that it corresponds to the initial position of the tip
of the crane boom in 20-Sim. Another modification is related to the fact that the tugger winches
are stationary in the MCMR Lab because the crane platform is fixed to the ground. Consequently,
the position of the tugger winches is fixed globally in the SIMA model. This leads to reduced snap
loads in the tugger wires compared to the more realistic case where the tugger winches are attached
to the moving vessel. Regardless, the adjustment makes the experiments performed with the model
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crane comparable to the simulation executed in SIMA. Hence, data regarding the performance of
the tugger winch systems are obtainable.

4.2 Payload model

To recreate the simulation of the offshore operation that was provided by Subsea 7, a similar
payload setup must be developed in the bond graph language. The modeling of wires was described
in Section 2.4.1, and the four slings are included by connecting four wire elements to the end-point
of the main wire. In the opposite end, the four slings are connected to the payload, which will be
modeled as a 3D rigid body. A generic modeling approach for 3D rigid bodies was developed in
Pedersen and Engja (2014) and is applicable for this model. First, Pedersen and Engja established
a general expression for the kinetic energy of a rigid body

T =
1

2

∫ ∫ ∫
ρ(v + ω × r)T (v + ω × r)dV (4.4)

from which they derived the equations of motion using the quasi-Lagrange equations

d

dt
(
∂T

∂v
) + ω × ∂T

∂v
= τ v

d

dt
(
∂T

∂ω
) + ω × ∂T

∂ω
+ v × ∂T

∂v
= τω

(4.5)

where ρ is the density, v is the linear velocity, ω is the angular velocity, and τ v and τω are the
forces and moments, respectively. Note that the proposed approach neglects the contribution of
the potential energy since it is added to the bond graph model at a later stage together with other
external forces. By sorting the expressions generated by the quasi-Lagrange equations, the mass
and Coriolis and centripetal matrices can be formed as shown below

M =

[
mI3x3 −mS(rG)
mS(rG) Ig −mS2(rG)

]
C =

[
03x3 −mS(v)−mS(ω · rG)

−mS(v)−mS(ω · rG) mS(S(v) · rG)− S((Ig −mS2(rG)) · ω)

] (4.6)

where m is the mass, rG is the position vector from the body-fixed frame to the center of gravity,
Ig is the inertia tensor and S(·) is the skew-symmetric matrix.

Recalling the constitutive relation defined for an IC-field in Equation 2.75, the mass and Coriolis
and centripetal matrices can be incorporated into an IC-field to describe the kinetic energy of the
rigid body. Furthermore, forces and moments are added to the system in both the body-fixed and
inertial reference frame, as shown in Figure 4.2.
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Figure 4.2: Generic rigid body

The MTF-element performs the transformation between the body-fixed and the inertial reference
frame by applying the rotation matrix. Note that an angular velocity transformation of the body-
fixed angular rates is carried out as the rotation matrix is dependent on the Euler angles. The
angular velocity transformation matrix was derived in Section 2.3 and given in Equation 2.80.

The next step is to attach the slings to the payload. To develop the required constitutive relation,
the position vectors that indicate the position of sling i = 1, 2, 3, 4 on the payload, given in the
body-fixed frame, are expressed

rbsi/0 = rbb/0 + rbsi/b (4.7)

By the properties of a rigid body, the velocity becomes

vbsi/0 = vbb/0 + ωbb/0 × vbsi/b (4.8)

Then, by defining

ν =

[
vbb/0
ωbb/0

]
(4.9)

the velocity expression can be rewritten to

vbsi/0 =
[
I3x3 i× rbsi/b j× rbsi/b k× rbsi/b

]
· ν (4.10)

where i, j, and k are unit vectors in the x-, y- and z-directions, respectively. By applying the
rotation matrix between the body-fixed and inertial reference frame, the constitutive relation for
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the four slings becomes

v0
si/0

= R0
b

[
I3x3 i× rbsi/b j× rbsi/b k× rbsi/b

]
· ν

= R0
b

1 0 0 0 zsi −ysi
0 1 0 −zsi 0 xsi
0 0 1 ysi −xsi 0

 · ν (4.11)

Note that solely the linear velocities are required as input to the wire models. The constitutive
relation is included in the bond graph model by adding MTF-elements to the 1-junction that
represents the body-fixed linear and angular velocities of the rigid body, which is shown in Figure
4.3.

Figure 4.3: Rigid body with slings attached

The response of the payload model is evaluated by applying forces as impulses in the x- and y-
directions. Note that the payload is connected to four slings, while the main wire is fixed at the
opposite end. Figure 4.4b shows how the payload begins to oscillate symmetrically about its initial
x-position when an impulse is applied in the x-direction. Furthermore, displacement is observed in
the z-direction while the motion along the y-axis is zero. Considering a motion along the x- and
z-axes, the induced pitch motion shown in Figure 4.4c is logical. The same is true when an impulse
is applied in the y-direction, but in this case, the translational motion is about the y-axis and the
rotation is about the x-axis, as shown in Figure 4.4e and Figure 4.4f, respectively. When applying
the two impulses simultaneously, the payload is observed to oscillate as a combination of the two
previous cases, but additionally rotates about the z-axis. This is shown in Figure 4.4h and Figure
4.4i. The response is expected considering that the moments of inertia are different about the x-
and y-axes. Consequently, the payload is assumed to behave in accordance with a real system.
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(b) Payload positions
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(c) Payload angles
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(d) Force impulses
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(e) Payload positions
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(f) Payload angles
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(g) Force impulses
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Figure 4.4: Payload response induced by force impulses

4.3 Controller

In the SIMA model, the movement of the crane tip is induced by the vessel motion that is generated
by the incident waves. As the model crane in the MCMR Lab is placed on a stationary platform,
the actuators are controlled such that the crane tip is able to follow the desired reference trajectory.
In this case, the reference trajectory corresponds to the position data that is obtained from the
simulations executed in SIMA. Hence, an inverse dynamics controller can be designed such that
the operational space error dynamics converges to zero with a time-varying reference, as derived
in Section 2.5.3. To implement the controller, the position, velocity and acceleration references
are required as inputs. Unfortunately, only the position of the crane tip is available from the
simulation executed in SIMA. Hence, the velocity and acceleration must be approximated by a
reference model.
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4.3.1 Reference model

The reference model is designed as a mass-spring-damper system due to its similarities to the phys-
ical dynamics of a marine vessel (Fossen, 2011). To generate the desired trajectories the following
transfer function is applied

h(s) =
ω2
ni

s2 + 2ζiωni
s+ ω2

ni

, i = 1, 2, 3 (4.12)

where ζi and ωni
are the relative damping ratios and natural frequencies, respectively. The block

diagram is shown in Figure 4.5.

Figure 4.5: Reference model block diagram

For this case, the relative damping ratios and natural frequencies are tuned to have a position
output that approximates the input. The reference is tested for a crane tip motion induced by a
sea state with Hs = 2.5m and Tp = 10s. Hence, the crane tip data retrieved from the SIMA model
are scaled down with respect to the previously stated scaling laws. Consequently, the motion of
the crane tip in the model scale corresponds to the motion induced by a sea state with Hs = 0.1m
and Tp = 2.0s. The results are shown in Figure 4.6 for the parameters ζ = diag[ζ1, ζ2, ζ3] =
diag[0.7, 0.7, 0.7] and ωn = diag[ωn1

, ωn2
, ωn3

] = diag[8, 8, 8].
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(a) X-position: SIMA and reference model
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(b) Y-position: SIMA and reference model
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(c) Z-position: SIMA and reference model

Figure 4.6: Comparison of reference model and SIMA data

With the chosen parameters, the reference model produces a position output that barely deviates
from the SIMA simulation data. The most prominent difference between them is the delayed
response of the reference model. This is due to the filter properties of the reference model where
a filter is known to produce a phase lag. Regardless, the critical factor is that the position data
and the desired position have the same frequencies and amplitudes of the equal magnitude. This
is to ensure that the data sent to the controller reflects the movement of a crane on a floating
vessel. Hence, the damping ratios are set to values that indicate an under-damped system such
that the amplitudes of the reference model output are increased to the magnitude of the input.
By modifying the damping ratio to increase the amplitudes rather than increasing the frequency
in an attempt to reduce the phase lag, the simulation time is decreased. The desired velocity and
acceleration should give reasonable approximations of the values that are present in the SIMA
model when considering that the desired position is found by double integration of the desired
acceleration with respect to time.

4.3.2 Inverse dynamics controller

As mentioned, it is of interest to move the crane tip of the 20-Sim model similar to the position
data retrieved from the simulation model made by Subsea 7. This can be achieved by developing
an inverse dynamics controller that takes the desired position, velocity, and acceleration from the
reference model as input and provides the necessary actuator forces as output. Note that slight
modifications are applied to the theory derived in Section 2.5.3 to adapt the inverse dynamics
controller to the crane simulation model.
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External force transformation

As the controller output is the generalized force vector τ , it must be transformed to provide the
forces that the actuators must generate. The procedure of deriving the generalized forces is shown
in Section 2.1.3, and it is applied to develop the transformation matrix. To begin with, the local
force of the crane base is equal to the inertial force, and no transformation is necessary. On the
other hand, both rotation and decomposition of the forces are required for the two remaining
actuators. By recalling the transformation described in Section 3.7.2, the actuator forces in the
inertial frame are written as follows

F0
1 = Fa1

1
0
0

 , F0
2 = Fa2R

0
1

 0
cos(δ1)
sin(δ1)

 , F0
3 = Fa3R

0
1

 0
cos(δ2)
sin(δ2)

 (4.13)

where Fai are the amplitudes of the actuator forces in the local reference frames. By definition,
the generalized forces are expressed as follows

Q1 = Fa1 + (F0
2)T (

∂ra21

∂θ1
− ∂ra22

∂θ1
) + (F0

3)T (
∂ra31

∂θ1
− ∂ra32

∂θ1
)

Q2 = 0 + (F0
2)T (

∂ra21

∂θ2
− ∂ra22

∂θ2
) + (F0

3)T (
∂ra31

∂θ2
− ∂ra32

∂θ2
)

Q3 = 0 + (F0
2)T (

∂ra21

∂θ3
− ∂ra22

∂θ3
) + (F0

3)T (
∂ra31

∂θ3
− ∂ra32

∂θ3
)

(4.14)

The expression is rewritten and solved for the desired local actuator forces as given below. Note
that τ = [Q1, Q2, Q3]T is the output of the inverse dynamics controller.

τ =

Q1

Q2

Q3

 =


1

∂(F0
2)T

∂Fa2
(∂ra21

∂θ1
− ∂ra22

∂θ1
)

∂(F0
3)T

∂Fa3
(∂ra31

∂θ1
− ∂ra32

∂θ1
)

0
∂(F0

2)T

∂Fa2
(∂ra21

∂θ2
− ∂ra22

∂θ2
)

∂(F0
3)T

∂Fa3
(∂ra31

∂θ2
− ∂ra32

∂θ2
)

0
∂(F0

2)T

∂Fa2
(∂ra21

∂θ3
− ∂ra22

∂θ3
)

∂(F0
3)T

∂Fa3
(∂ra31

∂θ3
− ∂ra32

∂θ3
)


︸ ︷︷ ︸

Q


Fa1

Fa2

Fa3


︸ ︷︷ ︸

u

⇒ u =

Fa1

Fa2

Fa3

 = Q−1τ

(4.15)

4.3.3 Controller implementation

To implement the controller, the Q-matrix, h(q)-function and the derivative of the Jacobian matrix
must be determined in addition to the expressions developed in Chapter 3. With the previously
derived tools for expressing the Q-matrix, a DLL-file is generated. It is created through a process
identical to the development of the kinematic crane model. By utilizing the Maple-script developed
in Gyberg (2017), an algebraic expression of the Q-matrix is obtained and exported as C-code. A
MATLAB-script is developed to process the C-code such that it can be built into a DLL-file in
Visual Studio. The Q-matrix can then be evaluated at every time step in 20-Sim by calling the
DLL-file and inserting the output into its proper matrix form.

58



CHAPTER 4. CASE 1: TUGGER WINCH SYSTEMS

The Jacobian matrix of the crane tip must be implemented into the control scheme when the
objective of the controller is to regulate the motion of the crane tip. As for the Q-matrix, the
expression of the Jacobian matrix is retrieved from the Maple-script. It is inverted by applying
the definition of a pseudo-inverse matrix, which was derived in Section 2.1.5. The derivative of the
Jacobian matrix is obtained by applying the chain rule, as explained in Section 2.1.5. The expression
of the pseudo-inverse Jacobian matrix, the Jacobian matrix, and its derivative are inserted into
their respective blocks of the control system that is illustrated in Figure 4.7. Regarding the h(q)-
function, it represents the transformation between the generalized coordinates and the crane tip
position given in the inertial frame. Subsequently, the position vector r0

8/0, given in Equation 3.19,
is applied and performs the proper transformation.

Figure 4.7: Inverse dynamics controller block diagram

4.3.4 Controller verification

The output of the controller is connected directly to the crane model to verify that the controller is
properly implemented together with the external force transformation. In that regard, the motors
and gears that drive the actuators are removed to avoid problems related to synchronization with
the low-level controllers. The first step in testing the controller is to run a simulation where the
main wire and payload are removed from the crane. This initial test is related to the state-space
model that was developed for the crane simulation model in Chapter 3. Here, the equations of
motion are derived for the crane while the payload is added as an external force. Consequently, the
inverse dynamics employed in the controller do not account for main wire and payload dynamics.
Therefore, the controller is first verified for a case without a payload. Then, the controller is
modified to help account for the dynamics of the payload.

Crane without payload

By applying the simulation data that were used when verifying the reference model, the crane
should move according to the generated reference trajectory. The ability of the crane to track the
reference trajectory without significant errors in the position is shown in Figure 4.8. Here, the
average position errors of 1 · 10−4 indicate that the controller behaves properly. The gain matrices
are set to Kp = diag[65, 15, 15] and Kd = diag[5, 1, 1].
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(a) X-position: Crane tip and reference model
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(b) Y-position: Crane tip and reference model

0 10 20 30 40 50 60 70 80 90 100

Time [s]

1.6

1.62

1.64

1.66

1.68

1.7

1.72

z
-p

o
s
it
io

n
 [
m

]

z
d

z
CT

(c) Z-position: Crane tip and reference model

Figure 4.8: Reference and crane tip movement

The controller is then tested for a rougher sea state withHs = 0.26m and Tp = 2.0 to verify whether
the controller is capable of moving the crane tip in accordance with extreme weather conditions.
Again, the difference between the crane tip position and the reference signal is minuscule with a
maximum average error of 7·10−4 in the translational directions. Evidently, the controller functions
properly and the control parameters can be tuned to increase the error convergence rate towards
zero.

Crane with payload

As previously stated, the payload is not accounted for in the equations of motion that the controller
currently is based on. Therefore, the controller is expected to perform poorly when the payload
and wire dynamics are included in the simulation model. Note that a gravity term related to the
mass of the payload must be included in the term n(q, q̇). From the definition of potential energy
in Equation 2.13 and the matrix g(q) in Equation 2.58, the following expression is derived

g6(q) =
∂V6

∂q
=
∂(m6g

T r0
8/0)

∂q
(4.16)

where m6 is the mass of the payload and r0
8/0 is the position vector of the crane tip given in the

inertial reference frame.
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With the inclusion of the gravity term, the simulation data of the sea state with Hs = 0.1m and
Tp = 2.0s are applied to the model. Substantial deviations from the desired positions are observed
in Figure 4.9, and the issue regarding the state-space model is illustrated. Evidently, the forces
calculated by the controller are not adequate for regulating the position of the crane tip when the
payload is added to the crane.
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(a) X-position: Crane tip and reference model
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(b) Y-position: Crane tip and reference model
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(c) Z-position: Crane tip and reference model

Figure 4.9: Reference and crane tip movement with payload attached

To improve the controller, a modification is applied to the state-space model utilized by the con-
troller. To include a complete description of the dynamics of the main wire and payload, additional
generalized coordinates must be defined, thus complicating the development of the crane model.
Therefore, a simplified method is employed where the payload is assumed to be attached directly
to the crane tip. Hence, the modification is performed by assuming that an additional rigid body
is placed with its center of gravity at the crane tip. Consequently, an additional kinetic energy
term must be included in the derivation of the B(q) and C(q, q̇) matrices that were presented in
Chapter 3. In that regard, as the payload is assumed to act on the crane tip, the Jacobian matrix
related to that point has already been developed. The remaining term is thus the inertia tensor,
which can be expressed as follows

I0
6 = R0

8I
8
6R

8
0 (4.17)

where R0
8 = R0

3 because the two reference frames are attached to the same rigid body. I8
6 refers

to the inertia of the rigid body given in the reference frame defined at the crane tip. With this,
the Maple-script utilized when developing the kinematic crane model in Section 3.6 is modified to
include the contributions of the payload. A DLL-file is created to calculate the B(q) and C(q, q̇)
matrices for the modified system that is utilized by the inverse dynamics controller.
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By applying the described modifications to the system model, the controller performance is im-
proved significantly. By setting the gain matrices to Kp = diag[800, 450, 550] and Kd = diag[10, 10, 10],
the maximum average error is below 3 · 10−4. Hence, the performance improves significantly with
the combination of a modified state-space model and tuned gain matrices. Figure 4.10 shows the
enhanced ability regarding moving the crane tip according to the reference signal.
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(a) X-position: Crane tip and reference model
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(b) Y-position: Crane tip and reference model
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(c) Z-position: Crane tip and reference model

Figure 4.10: Reference and crane tip movement with modified state-space model

4.3.5 Actuator controllers

The dynamics of the actuator motors and gears were omitted to avoid interference during the
implementation and verification of the inverse dynamics controller. At this point, they are reintro-
duced because they are an essential part of the functionality of the crane simulation model. Hence,
they must be controlled such that the forces generated by the actuators correspond to the control
output of the inverse dynamics controller. To achieve this, basic PID-controllers with force feed-
back from the actuators are designed. They calculate the voltage outputs that are applied to the
electric motors that drive the actuators. The PID-controllers are taken from the 20-Sim controller
library where the control output in the s-domain is given as follows

u = K · e ·
(

1 +
1

1 + s · Ti
+

s · Td
1 + s · Td

N

)
(4.18)

Here K, Ti, Td, and N are the proportional gain, the integral time constant, the derivative time
constant, and the derivative gain limit, respectively. The error e is given as the difference between
the force set-point and the measured actuator force. In addition, anti-windup is implemented by
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CHAPTER 4. CASE 1: TUGGER WINCH SYSTEMS

limiting the integral term between the upper and lower limits of the nominal voltages of the motors.
The three PID-controllers are tuned to give a satisfactory response with respect to generating the
required actuator forces. In Table 4.2, the controller gains are listed, and it should be noted that
the two crane boom actuators utilize the same parameters because they are designed with identical
gears and motors. Note that the simulation time increases with the inclusion of the controllers and
that further tuning could lead to faster simulations.

Table 4.2: Actuator PID-parameters

PID-parameters Base rotation Crane boom
K 60 40
Ti 0.01 0.01
Td 1.0 1.0
N 1.0 1.0

4.3.6 Tugger winch design

The next step is to implement the tugger winch systems to reduce the pendulum motion of the
payload. As stated previously, tugger wires are susceptible to snap loads in the case where a wire
engages a slack configuration. Therefore, it is of interest to design a winch system that is able to
pay in and out wire such that the tension in the wire is kept above zero but below the safe working
load (SWL). Consequently, the winch motors must be capable of supplying a sufficiently large
rotational speed and moment onto the winch reel while the wire is under tension. As a starting
point, the maximum pay-in speeds, hold-back forces, and pull-in forces for crane mounted tugger
winches are retrieved from data provided by Subsea 7 and presented in Table 4.3.

Table 4.3: Crane mounted tugger winch properties

Pay-in speed [m/s] Hold-back force [kN] Pull-in force [kN]
0.75 98.1 37.3
0.85 86.3 33.4
1.0 73.6 28.4
1.2 61.8 24.5

Beginning with the tugger winch reel, it is designed based on the main wire reel, which was modeled
in Gyberg (2017), and the standard components that are available in the MCMR Lab. As a result,
Figure 4.11 presents a set of suggested parameters for the reel. Note that a structural analysis
should be performed to verify the structural integrity of the reel.

Figure 4.11: Tugger winch reel dimensions
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With the suggested reel dimensions, the required pay-in speed of the tugger winch system is
evaluated. By taking the maximum pay-in speed in Table 4.3 as a reference, the tugger winches
should as a minimum be capable of obtaining those speeds. Furthermore, since it is of interest to
evaluate the requirements of a tugger winch system subjected to different sea states, the maximum
pay-in speed is set to 3m/s in the design phase. In relation to the model crane, the pay-in speed
of the tugger winches becomes vwire = 0.60m/s in the model scale.

To begin with, the maximum rotational velocity that is required to obtain a pay-in speed of 0.60m/s
is when the reel diameter is at its minimum. This corresponds to the case where all the wire has
been paid out. Considering the reel dimensions in Figure 4.11, the maximum required rotational
velocity becomes the following by applying Equation 2.131

ωreel =
2 · vwire
Drod

=
2 · 0.60

10 · 10−3
= 120 rad/s = 1145.9 RPM (4.19)

In addition to fulfilling the criterion regarding pay-in speed, the tugger winch systems must be
capable of generating enough force to operate in the tension set-point range. To that extent, the
maximum required force in the design of the tugger winches is related to the pull-in forces given in
Table 4.3, which indicate a maximum required force of 2.4N in the model scale. In contrast to the
case with the pay-in speed, the maximum torque is required when the reel diameter is at its largest
value. This implies that all the wire is rolled onto the reel. By considering a wire length Lw = 5m,
the largest reel diameter becomes Drmax

= 24mm by utilizing Equation 2.126. Consequently, the
maximum torque is obtained by considering that the torque equals force times distance where the
distance corresponds to the maximum reel radius. Hence, the expression becomes the following

τreel =
Dreelmax

2
· Fp =

24 · 10−3

2
· 2.4 = 0.0288 Nm (4.20)

where τreel and Fp are the maximum required torque and force on the reel, respectively.

An iteration process is employed to encounter a motor and gear combination that fulfills the
proposed criteria. Note that a wide range of gear and motor combinations could satisfy the chosen
criteria, but that the most reasonable option is chosen. The specifications regarding the chosen
components are given in Table 4.4 and Table 4.5.

Table 4.4: Tugger winch motor properties

Parameter Value Unit
Motor model name EC 20 -
Motor model number 351008 -
Nominal voltage 24 V V
Nominal speed 5220 RPM RPM
Nominal torque 7.74 mNm mNm
Nominal current 0.329 A A
Stall torque 19.9 mNm mNm
Terminal resistance 28.6 Ω
Terminal inductance 3.09 mH
Torque constant 23.8 mNm/A
Speed constant 402 RPM/V
Rotor inertia 5.1 gcm2
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Table 4.5: Tugger winch gear properties

Parameter Value Unit
Gearbox model name Planetary Gearhead GP 22 C -
Gearbox model number 143972 -
Reduction 4.4:1 -
Nominal torque 500 mNm
Max intermittent torque 800 mNm
Max efficiency 73 %
Weight 60 g
Mass inertia 0.4 gcm2

From the motor and gear properties, the nominal output speed is 1186RPM with a gear reduction
of 4.4:1. Hence, it complies with the pay-in requirement. Similarly, the nominal torque provided
by the gear fulfills the criterion regarding pull-in forces with its value of 0.034Nm. It should be
noted that the reel will be connected directly to the gear shaft, thus no further reduction is applied
from the gear to the reel. This is a small modification with respect to the main wire winch system
designed in Gyberg (2017). However, a mechanical efficiency factor η = 0.9 is added to account for
possible losses in the reel and gear connection.

4.3.7 Tugger winch implementation

Similar to the slings, the tugger wires are attached to the payload with the use of MTF-elements
containing the constitutive relation defined in Equation 4.11. The winch reel in the other end of
the wire will be globally fixed in accordance with the stationary crane base in the MCMR Lab.
Furthermore, the electric power unit and reel dynamics are implemented as described in Section
2.4 with the use of the motor and gear properties that were given in Table 4.4 and Table 4.5,
respectively. A TF-element is included to apply the mechanical efficiency factor of the reel and
gear connection.

As previously mentioned, the tugger wires are subjected to snap loads when they are not controlled.
To obtain a response in 20-Sim that corresponds to the data retrieved from the SIMA model, the
wires must be scaled correctly. Regarding the wire dynamics, the displacement, stiffness, and
damping must be taken into consideration. Given the general expression of the force generated by
a spring, the following is defined

Fs = kx (4.21)

where k is the spring stiffness and x is the displacement from the equilibrium position. Considering
the unit of the spring stiffness being force per length unit, it is scaled as follows (Groesen and
Molenaar, 2007)

k ∝
mass · lengthtime2

length
∝ λ2 (4.22)

The displacement is a length and obviously proportional to λ. In total, the spring force becomes
proportional to λ3, which corresponds with the definition in Equation 4.3. By further inspection
of the spring stiffness, the following definition is given

k =
Ea

L
(4.23)

where E is Young’s modulus, a is the cross-sectional area of the wire, and L is the length of the
wire. Hence, when both the area and length of the wire are scaled with respect to the proposed
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scaling laws, it becomes evident that Young’s modulus must be scaled to satisfy the scaling laws
of the spring stiffness defined in Equation 4.22. Consequently, the material utilized in the model
scale must be less stiff than the material in the full-scale scenario. On that note, Young’s modulus
utilized in the model scale is found by retrieving the cross-sectional stiffness defined for the tugger
wires in SIMA. With a cross-sectional stiffness of Ea = 13803kN and a standard tugger winch
diameter of D = 20mm, Young’s modulus becomes the following in full-scale

E =
Ea

π(D2 )2
= 43.9GPa (4.24)

Hence, Young’s modulus in the model scale becomes

Em =
E

λ
= 1.76GPa (4.25)

In SIMA, the damping coefficient is set to five percent of the cross-sectional stiffness. Applying the
same condition in the model scale gives the following damping coefficient.

cm = 1.76 · 109 · π 8 · 10−4

2
· 0.05 = 44.2 (4.26)

The damping in the simulation model is adjusted through the damping ratio, and it is found to be
approximately ζ = 12.4 with Equation 2.118. Thus, it is given a value considerably larger than the
one proposed in Skjong and Pedersen (2014). However, the recommendation in Skjong and Pedersen
(2014) is not given by exact science but is rather provided as an estimate of a value that yields
a response similar to real wire dynamics. Therefore, to imitate the wire dynamics implemented in
SIMA, the derived value of the damping ratio is considered suitable. Lastly, the wire density is set
to the density of steel because it is a common wire material.

A PID-controller with force feedback is implemented to control the tugger winches. It is designed
to prevent the tension in the tugger wire from going to zero, but simultaneously allow the tension
to increase towards an upper limit. The upper limit is defined as the maximum hold-back force of
the tugger winch system. It is related to the maximum hold-back force given in Table 4.3, which
becomes 6.28N in the model scale. In relation to the tugger wire tension set-point range, the error
utilized by the PID-controllers is divided into two separate scenarios. The first case is when the
tension in the wire decreases below the initial tension. Here, the error is simply the difference
between the measured and initial wire tension. The second case is when the tension is above the
initial tension, but below the maximum allowed tension. Since it is of interest to limit the pendulum
motion of the payload, the winch system should not pay out wire until approaching the tension
limit. Therefore, a sigmoid function is multiplied with the error that was utilized in the first case
to restrict the winch from paying out excessive wire when the tension in the wire increases. The
sigmoid function that is applied is the logistic function, which is given as follows

f(x) =
1

1 + e−k(x−∆)
(4.27)

where k affects the steepness of the function while ∆ shifts it along the x-axis. Note that the
parameters of the sigmoid function and the PID-gains are found through an iteration process to
obtain the best response from the tugger winch system. The chosen parameters are given in Table
4.6 and Table 4.7, and a plot of the sigmoid function is given in Figure 4.12
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Figure 4.12: Sigmoid function with the chosen parameters

Table 4.6: Sigmoid parameters

Parameters Value
k 5.5
∆ 5.0

Table 4.7: Tugger winch PID parameters

PID-parameters Value
K 20.0
Ti 3.5
Td 0.001
N 10.0

4.3.8 Tugger winch results

In all the simulations, a two seconds initialization phase is included to allow the tugger winches to
pull in wire to generate the initial tension that is caused by the trimming of the vessel in the SIMA
model. The initialization phase is implemented by modifying the crane tip position data to remain
as constant x-, y- and z-values the first two seconds of the simulation. Furthermore, as previously
stated, the results are presented with respect to the magnitudes that are present in a model scale
environment. That implies that the data retrieved from the SIMA model are scaled according to
the proposed scaling laws.

To verify the wire model, simulations are executed in both SIMA and 20-Sim with a moderately
rough sea state with Hs = 0.1m and Tp = 2.0s. Figure 4.13 shows that the snap loads are not
identical and that the maximum magnitude is approximately 35% larger in 20-Sim compared to
SIMA. The differences can be explained by a range of dissimilarities between the setups in the
two simulation environments. First, the damping term in the 20-Sim model is turned off when
the wire is slack to prevent the ability of engaging compression forces. Hence, it is possible that
less damping is applied in this phase compared to how it is defined in SIMA. Consequently, snap
loads of greater magnitudes could be expected. Moreover, the dissimilarity could in part be caused
by the disparity between the two models regarding the fact that the 20-Sim model is designed to
approximate a six degrees of freedom crane tip movement even though the crane itself is stationary.
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Additionally, the initial tension and position of the payload do not fully correspond to the SIMA
model as the 20-Sim crane model is not tilted −1.1°. Instead, the upper crane boom is adjusted to
a −1.1° angle with respect to the xy-plane and the tugger wires are tightened to produce the initial
tension observed in the SIMA model. Consequently, the motion of the payload becomes different,
which undoubtedly causes different loads in the tugger wires. Regardless, the tugger wires have
a similar response and the results are deemed satisfactory with respect to the ability of the wire
model to replicate the effect of snap loads. Considering that the snap loads have higher peaks in
20-Sim, the effectiveness of implementing an active tension controller in this model environment
should prove valid with respect to the realistic scenario given in SIMA as well.
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(a) SIMA: tugger wire 1
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(b) 20-Sim: Tugger wire 1
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(c) SIMA: Tugger wire 2
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(d) 20-Sim: Tugger wire 2

Figure 4.13: Tugger wire snap loads, ζ = 12.4, Hs = 0.1m and Tp = 2.0s

To prevent snap loads from appearing, the active tension mode is activated in the tugger winch
systems. The set-point range is given between the initial tension presented in Table 4.1 and the
maximum hold-back force of the winch. To analyze the effect of the controller, the sea state that
was applied for the previous case with fixed-length tugger wires is utilized. In Figure 4.14a, the
ability to prevent snap loads is illustrated. The controller hinders the wires from entering a slack
configuration by paying in the wire when the tension starts to decrease, as shown in Figure 4.14c
and Figure 4.14b. Furthermore, the tension is kept within the allowed tension range by paying out
wire when the tension starts to increase excessively. Note that the motor speed and gear moment
are well within their limitations in the current sea state, as shown in Figure 4.14d and Figure
4.14e, respectively. Hence, the tugger winch system appears to function in regard to preventing
snap loads from occurring.
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(a) Tugger wire tension
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(b) Tugger wire velocities
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(c) Tugger wire lengths

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

M
o
to

r 
ro

ta
ti
o
n
a
l 
v
e
lo

c
it
y
 [
R

P
M

]

Tugger winch motor 1

Tugger winch motor 2

(d) Motor speed
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Figure 4.14: Tugger winch system characteristics, Hs = 0.1m and Tp = 2.0s

On the other hand, when observing the motion of the payload in Figure 4.15, the control algorithm
is shown to be suboptimal with respect to limiting pendulum motion. Note that to simplify the
comparison of the crane tip and payload motion, the payload data is shifted 0.03847m in the
positive y-direction to accommodate for the initial displacement that is induced when the tugger
wires are tightened the first two seconds of the simulation. The distance the payload data is shifted
corresponds to the steady-state difference in the y-direction between the payload and crane tip when
the crane is fixed in its initial configuration while the tugger wires are tightened to obtain their
initial tension.With a standard PID-controller, substantial amplitudes in the pendulum motion are
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observed in Figure 4.15b. Thus, the impact of implementing a sigmoid function becomes apparent
in Figure 4.15a. Here, the amplitudes are significantly reduced since the winch is restrained from
paying out an excessive amount of wire when the wire tension is within the tension range. Still,
the controller performance is not deemed satisfactory with respect to the payload motion. By
inspection of Figure 4.15a, the difference in the maximum peak values in the y-position are not the
issue, but rather the fact that the payload moves with a phase lag relative to the crane tip. Hence,
the maximum deviation between the crane tip and the payload is found to be 0.1096m in the model
scale, implying that the maximum distance between the crane tip and payload in the y-direction
would be 2.74m in a full-scale scenario. Depending on the criteria regarding allowed pendulum
motion during a crane lift operation, the observed magnitudes could be deemed infeasible. However,
the results are indubitably improved when compared to the case with no tugger wires, as shown
in Figure 4.15c.
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Figure 4.15: Payload and crane tip motion comparison

Furthermore, Figure 4.16 shows how the payload is displaced more when the controller is active
compared to the case with fixed-length tugger wires. This is expected to some extent since the
fixed length tugger wires should hinder motion beyond their maximum lengths while the control
system will pay out wire to hinder excessive tension. However, due to the lacking capabilities of the
applied controller, the difference in motion amplitudes is larger than desired. Consequently, there
is a trade-off between motion amplitudes and preventing snap loads when applying the proposed
controller. Hence, other control techniques are required to both prevent snap loads and limit the
pendulum motion to a greater extent than currently achieved.
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(a) Payload x-position
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(b) Payload y-position

Figure 4.16: Payload motion with and without tension control

Another issue is related to the rotation of the payload about the z-axis. From Figure 4.17 it becomes
apparent that the rotation of the payload is excited to significant magnitudes compared to the crane
motion. This enlightens another issue of basic PID-algorithms controlling two individual tugger
wires. They are not developed to perform a coordinated control of the payload with respect to its
position, but rather individually ensure that the tension in the wire is kept within the tensions set-
point range. Hence, the two tugger winch systems can promote unwanted motion during scenarios
where they are fighting with one another to obtain the desired wire tension. However, compared to
the case with fixed-length wires, the maximum amplitudes of the rotational motion of the payload
about the z-axis is significantly reduced, as shown in Figure 4.17.
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Figure 4.17: Payload and crane yaw motion

Furthermore, there are issues revolving the implementation of a sigmoid function with respect to
the integral term. Since the error is kept close to zero until the wire tension approaches its SWL,
the integral term is not reduced significantly if the wire tensions are at moderate levels. On the
other hand, when the tension goes below the lower limit of the tension range, it immediately starts
to increase. Hence, the integral term has a tendency to increase over time, which is shown in
Figure 4.18. Consequently, the payload has a tendency to gradually be pulled towards the crane
base. To limit this effect, the integral is capped to an upper limit corresponding to a value slightly
higher than the one obtained after the initialization phase. Other methods such as integral reset
were tested, but applying integral limits yielded the best results. To apply further improvements,
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the current controller could be split into two separate controllers that are switched between with
respect to the current state of the system. Hence, one controller is designed for the scenario when
the wire starts to become slack, while the other controller regulates the wire tension when it is
within the tension set-point range. Note that shattering is an issue that must be taken into account
when performing switching between controllers.
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Figure 4.18: Integral terms with and without strict limits

Disregarding the problems related to the payload motion, the system is subjected to a rough sea
state with Hs = 0.22m and Tp = 2.0s. This is to test the limits of the tugger winch system with
respect to its ability to prevent snap loads. Note that the simulations are given over a simulation
period of 200s as the worst scenario of the motor output occurs at a later stage when applying the
proposed sea state. From Figure 4.19a, it becomes apparent that the tugger wires do not go slack
during the simulation, thus snap loads are prevented. Furthermore, the tension is kept within the
maximum allowed value with respect to the proposed hold-back force. Hence, the tugger winch
system is capable of preventing snap loads in rough sea states. By further inspection, Figure 4.19c,
Figure 4.19e, and Figure 4.19f indicate that the system is about to reach its limits. The pay-in
and out speeds approach their design limits of 0.6m/s when the motors have a rotational velocity
of 5000RPM , which is close to their maximum nominal velocities. At the same time, the moment
provided by the gear when paying in wire approaches its limit of 34mNm. Evidently, the applied
sea state pushes the tugger winch system to its maximum capabilities when applying the proposed
controller. Note that more intricate control algorithms could require less motor power, and thus
enable operations in even rougher sea states. In Figure 4.19b, the crane tip and payload motion are
observed to be out of phase, hence producing large relative distances. Consequently, the maximum
distance between the crane tip and payload at any given time is found to be 0.2165m in model
scale, which gives 5.41m in a full-scale scenario. In that regard, the limiting factor is the pendulum
motion of the payload rather than snap loads, as was expected from the previous results. Note that
rougher sea states were simulated but that large rotations about the z-axis rendered the results
infeasible as the payload rotated 180° about its own axis.
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0 20 40 60 80 100 120 140 160 180 200

Time [s]

0.8

0.9

1

1.1

1.2

1.3

1.4

W
ir
e
 l
e
n
g
th

 [
m

]

Tugger wire 1

Tugger wire 2

(d) Tugger wire lengths

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

M
o
to

r 
ro

ta
ti
o
n
a
l 
v
e
lo

c
it
y
 [
R

P
M

]

Tugger winch motor 1

Tugger winch motor 2

(e) Motor speed

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

G
e
a
r 

m
o
m

e
n
t 
[m

N
m

]

Tugger winch gear 1

Tugger winch gear 2

(f) Gear moment

Figure 4.19: Tugger winch system characteristics, Hs = 0.22m and Tp = 2.0s

The implementation of control algorithms that consider both wire tension and payload position
is recommended when the pendulum motion is the limiting factor of the system. On that note, a
source of inspiration could be the model-based control system designed in Ren et al. (2018). Here,
the applied wire tension is calculated by estimating the forces that are required to hold a payload at
the desired position. It is designed for the three planer motions surge, sway and yaw and could be
adapted to accommodate for the dynamic models that are applied in the crane simulation model.
In this master’s thesis, no further development of a control algorithm has been performed due to
the discovery of a scaling error at a late stage of the conducted research. Hence, the whole chapter
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4.3. CONTROLLER

had to be reworked and modified, which limited the time available for the implementation of more
sophisticated controllers. However, the crane simulation model has been extended to include more
accurate payload models and tugger winch systems. Consequently, the performance of other control
systems can be evaluated by simply implementing the control algorithms directly into the existing
simulation model.
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5 | Case 2: Crane and vessel model

The model crane was designed to mimic the functionality of offshore cranes. Hence, the next
step in the progression of the simulation model is related to the dynamics of a floating vessel.
Consequently, a model with six degrees of freedom that is based on vessel dynamics will be added to
the existing crane simulation model. Fortunately, by utilizing the derived framework of Lagrangian
mechanics, a vessel model can be combined with the crane simulation model without applying
considerable modifications. The process regarding the development of the interconnected vessel
and crane dynamics will be presented in detail and is based on the theory described in Rokseth
et al. (2017). To verify the model, the system response in a given sea state will be compared to
the SIMA model provided by Subsea 7. Note that even though the model is based on the ship
data in SIMA, a range of parameters are unavailable and must be approximated. Hence, the reader
should be aware that the developed model is not expected to behave identically to the SIMA
model. However, the comparison is carried out to verify that the vessel and crane response has
the same tendencies as observed in other reliable simulation tools. As stated in Chapter 4, the
results presented in this case study are given with respect to the scale of the model crane in the
MCMR Lab. Furthermore, all relevant parameters related to the combined crane and vessel model
are given in Appendix A.

5.1 Interconnected crane and vessel dynamics

The interconnected vessel and crane dynamics result in a system with six degrees of freedom
related to the vessel and n degrees of freedom related to the crane. This gives a total of k = 6 + n
degrees of freedom. By recalling that the crane is modeled as an open chain of linked rigid bodies,
the generalized coordinates are chosen as the joint displacements. Additionally, the generalized
coordinates related to the vessel were defined in Equation 2.77. Hence, the vector of generalized
coordinates that uniquely describes the position and orientation of the combined system becomes
the following

q =


r0
b/0

Θ
qc

 (5.1)

where the vector qc = [qc1 , ..., qcn ] defines the generalized coordinates related to the crane joints.
Since the quasi-coordinates are related to the generalized velocities through a transformation ma-
trix, the quasi-coordinates vector becomes the following when augmenting Equation 2.82

ω =


v0
b/0

ωbb/0

q̇c

 (5.2)
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5.1. INTERCONNECTED CRANE AND VESSEL DYNAMICS

By the definition of the relation between the quasi-coordinates and the generalized coordinates in
Equation 2.82, the transformation matrix αT must be augmented with respect to the additional
generalized coordinates related to the crane. Consequently, it becomes the following n× n matrix

αT =

 Rb
0 03x3 03xn

03x3 T−1
Θ (Θ) 03xn

0nx3 0nx3 Inxn

 (5.3)

that yields the following inverse

β = (αT )−1 =

 R0
b 03x3 03xn

03x3 TΘ(Θ) 03xn

0nx3 0nx3 Inxn

 (5.4)

5.1.1 Position vectors and rotation matrices

The position vectors that were defined in the development of the crane simulation model in Chapter
3 must be modified to comply with the new system. In this case, the position vectors are related
to the body-fixed reference frame on the vessel rather than the reference frame at the base of the
crane. Therefore, the previously defined inertial frame is renamed as it no longer is inertial, and
the new configuration is depicted in Figure 5.1 and Figure 5.2.

Figure 5.1: Crane and vessel in the YZ-plane
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CHAPTER 5. CASE 2: CRANE AND VESSEL MODEL

Figure 5.2: Crane and vessel in the XY-plane

To apply the modifications, both the position vector from the body-fixed vessel frame to the crane
base and to the center of gravity of the vessel must be defined, and they are expressed as follows

rbcgb/b =

xcgycg
zcg

 , rbcb/b =

xcbycb
zcb

 (5.5)

The position vectors that were defined with respect to the inertial reference frame that previously
was located at the crane base, can be expressed in the body-fixed vessel frame as follows

rb2/b = rbcb/b + rcb1/cb + Rb
1r

1
2/1, rb3/b = rb2/b + Rb

2r
2
3/2,

rb4/b = rbcb/b + rcb1/cb + Rb
4r

1
4/1, rb5/b = rb2/b + Rb

2r
2
5/2

(5.6)

rbcg1/b
= rcb1/cb + Rb

1r
1
cg1/1

, rbcg2/b
= rb2/b + Rb

2r
2
cg2/2

,

rbcg3/b
= rb3/b + Rb

3r
3
cg3/3

, rbcg4/b
= rb4/b + Rb

4r
4
cg4/4

,

rbcg5/b
= rb5/b + Rb

5r
5
cg5/5

(5.7)

Here the position vector rcb1/cb is zero as the origins of the two reference frames are defined at the
same point. Note that the rotation matrices are identical to the ones derived in Chapter 3. This is
because the reference frame at the crane base and the body-fixed vessel frame are attached to the
same rigid body and do not rotate with respect to each other. Thus, the rotation matrices defined
in Equation 3.6 give the following relation

Rb
2 = Rb

1R
1
2, Rb

3 = Rb
2R

2
3, Rb

4 = Rb
1R

1
4, Rb

5 = Rb
1R

1
5 (5.8)

Similarly, the unit vectors ebi are found to be the following

eb1 = Rb
1e

1
1 = Rb

1k, eb2 = Rb
2e

2
2 = Rb

2i, eb3 = Rb
3e

3
3 = Rb

3i (5.9)
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5.1. INTERCONNECTED CRANE AND VESSEL DYNAMICS

5.1.2 Jacobian matrices

Then, the Jacobian matrices that relate the linear and angular velocities to the centers of gravity
can be defined. To begin with, the contribution from the vessel onto the centers of gravity of
the crane components must be considered. By definition, the linear velocity contribution from the
vessel onto the center of gravity of the j th rigid body is expressed as follows

v
(vbb/0)

cgj/0
+ v

(ωb
b/0)

cgj/0
= vbb/0 + ω × rbcgj/b

= I3x3v
b
b/0 +

[
ib × rbcgj/b, jb × rbcgj/b, kb × rbcgj/b

]
ωbb/0

= J
(vbb/0)
vb vbb/0 + J

(vbb/0)
ωb ωbb/0

(5.10)

Similarly, the contribution from the rotational velocity of the vessel can be expressed as follows

ω
(vbb/0)

cgj/0
+ ω

(ωb
b/0)

cgj/0
= 03x3v

b
b/0 + I3x3ω

b
b/0

= J
(ωb

b/0)
vb vbb/0 + J

(ωb
b/0)

ωb ωbb/0

(5.11)

When it comes to the contributions from the generalized velocities q̇ci onto the center of gravity
of the j th rigid body, the method developed in Section 2.1.5 is utilized. The following Jacobian
matrices are obtained for the five crane components of relevant masses

Jb1 =

J
(q̇)
vcg1

J
(q̇)
ω1

 =

eb1 × (rbcg1/b
− rb1/b) 03x2

eb1 03x2


Jb2 =

J
(q̇)
vcg2

J
(q̇)
ω2

 =

eb1 × (rbcg2/b
− rb1/b) eb2 × (rbcg2/b

− rb2/b) 03x1

eb1 eb2 03x1


Jb3 =

J
(q̇)
vcg3

J
(q̇)
ω3

 =

eb1 × (rbcg3/b
− rb1/b) eb2 × (rbcg3/b

− rb2/b) eb3 × (rbcg3/b
− rb3/b)

eb1 eb2 eb3


Jb4 =

J
(q̇)
vcg4

J
(q̇)
ω4

 =

eb1 × (rbcg4/b
− rb1/b) eb2 × (rbcg4/b

− rb2/b) 03x1

eb1 eb2 03x1


Jb5 =

J
(q̇)
vcg5

J
(q̇)
ω5

 =

eb1 × (rbcg5/b
− rb1/b) eb2 × (rbcg5/b

− rb2/b) eb3 × (rbcg5/b
− rb3/b)

eb1 eb2 eb3



(5.12)

The total linear and angular velocity of the center of gravity of the j th rigid body is the sum of
the contributions from the vessel and the generalized velocities q̇ci . Hence, the linear and angular
velocities are obtained as a function of the generalized coordinates and the quasi-coordinates as
follows

vbcgj/0 =

[
J

(vbb/0)
vb J

(vbb/0)
ωb J

(q̇)
vcgj

]
ω

= Jbvcgj
(q)ω

(5.13)
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ωbj/0 =
[
J

(ωb
b/0)

vb J
(ωb

b/0)
ωb J

(q̇)
ωj

]
= Jbωj

(q)ω
(5.14)

The linear and angular velocities of the centers of gravity of the j th rigid body, given in the
body-fixed vessel frame, are then obtained in a compact form as shown below

νbcgj =

vbcgj/0

ωbj/0

 =

Jbvcgj
(q)

Jbωj
(q)

ω = Jbc(q)ω (5.15)

5.1.3 Combined kinetic energy

To develop the equations of motion of the combined system, the kinetic energy of the crane must
be derived. Consequently, the kinetic energy of each individual component of the crane must be
expressed. This is done with the general expression of the kinetic energy of a rigid body, which was
given in Equation 2.12. Therefore, the inertia tensors that are expressed in their local reference
frames must be transformed into the body-fixed vessel frame by utilizing Equation 2.14. The inertia
tensors are obtained as follows

Ib1 = Rb
1I

1
1R

1
b , Ib2 = Rb

2I
2
2R

2
b , Ib3 = Rb

3I
3
3R

3
b , Ib4 = Rb

4I
4
4R

4
b , Ib5 = Rb

5I
5
5R

5
b (5.16)

Then, the sum of the kinetic energy contributions from the crane components is given as follows
by applying Equation 2.54

n∑
j=1

(Tj(q,ω)) =
1

2
ωT

n∑
j=1

(Bj(q))ω (5.17)

On a side note, if the expression of the kinetic energy of the vessel given in Equation 2.86 is to
remain valid, the Jacobian matrix defined in Equation 2.85 must be augmented to comply with
the new dimensions of the quasi-coordinates. This is achieved by the following modification of the
Jacobian matrix

Jb =

[
Jvb 03xn

Jωb
03xn

]
(5.18)

With this, the total kinetic energy of the system can be expressed as

T (q,ω) = Tb(q,ω) +

n∑
j=1

(Tj(q,ω))

=
1

2
ωTB(q)ω

(5.19)

With the expression of the total kinetic energy of the system, the state-space model is obtained by
the steps derived in Section 2.3.2, and a kinematic model of the combined vessel and crane system
can be implemented in an IC-field.
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5.1.4 Crane and vessel kinematics

The process of implementing the interconnected vessel and crane kinematics into an IC-field re-
quires the development of a DLL-file. Note that this is to limit the computational complexity of
the calculations that are performed directly in 20-Sim. Therefore, a Maple-script is created to in-
clude the combined system kinematics. First, the expression of the mass-inertia matrix Bb(q) of
the vessel is implemented by following the steps derived in Section 2.3. Then, the position vectors,
Jacobian matrices, and inertia matrices that were derived previously are inserted, and the total
mass-inertia B(q) is derived in accordance with the preceding section. Unlike the development of
the kinematics of the stationary crane, the interconnected vessel and crane kinematics are derived
with the use of the quasi-equations of motion. Consequently, the algebraic expressions of the ma-
trices γ and ω ∂B(q)

∂q must be derived in addition to the mass-inertia matrix. The two matrices are
derived with the expressions defined in Equation 2.89 and Equation 2.94, respectively. Then, the
algebraic expressions of the three matrices are exported as C-code in preparation of developing
a DLL-file. Note that the MATLAB-script, which was designed for the crane simulation model,
is modified to be capable of transforming the new C-code to a format that complies with the re-
quirements of 20-Sim regarding DLL-files. The DLL-file is then built in Microsoft Visual Studio by
inserting the modified C-code into a DLL-project. Note that the DLL-file is designed to receive an
input vector containing the crane and vessel parameters and give an output vector containing the
required elements of the three matrices γ, ω ∂B(q)

∂q and B(q). The Maple- and MATLAB-scripts
are referred to in Appendix B.

In addition to the kinematics of the rigid bodies, both added mass and added centripetal and
Coriolis effects must be included for the floating vessel. Considering that the crane is above sea
level, the added mass-inertia and centripetal and Coriolis matrices given in Equation 2.102 and
Equation 2.104, respectively, are augmented to the following

BA =



A11(0) 0 0 0 0 0 01x3

0 A22(0) 0 0 0 0 01x3

0 0 A33(ωheave) 0 0 0 01x3

0 0 0 A44(ωroll) 0 0 01x3

0 0 0 0 A55(ωpitch) 0 01x3

0 0 0 0 0 A66(0) 01x3

03x1 03x1 03x1 03x1 03x1 03x1 03x3



CA =

 03x3 −S(A11v
b
b/0 + A12ω

b
b/0) 03x3

−S(A11v
b
b/0 + A12ω

b
b/0) −S(A21v

b
b/0 + A22ω

b
b/0) 03x3

03x3 03x3 03x3



(5.20)

The proposed decoupled added mass matrix is related to maneuvering theory, but considering that
the vessel will be kept stationary with mooring lines, the seakeeping theory could be deemed more
accurate. However, to simplify the process, the added mass coefficients are chosen as constant
values that are related to the average added mass value over a frequency range. Thus, the added
mass values are based on the experiments performed on 2D rectangular cylinders that were carried
out by Vugts (1968). The experimental data regarding added mass in sway motion is on average
40% of the mass of the 2D section. In heave motion, the average value of a 2D section with a beam
four times the size of the draft is roughly 125% of the mass. As stated in Pettersen (2007), the
added mass in roll is small and often below 25% of the inertia about the x-axis. This statement
is confirmed with Vugts (1968), and the added mass in roll is set to 20% of the inertia about the
x-axis. When it comes to the added mass in surge, pitch, and yaw, they are set to 40% of their mass
and inertia, respectively, because accurate estimates are not available without utilizing potential
theory programs.
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With the definition of the added mass, the kinematics can be implemented into an IC-field. The
code contained inside the IC-field is referred to in Appendix B. Furthermore, it is convenient to
divide the quasi-coordinates into the individual generalized velocities when creating interfaces to
the IC-field. Thereby, 1-junctions representing the linear velocities of the vessel, vb

b/0, the rotational
velocities of the vessel, ωbb/0, and the crane joint velocities, q̇c, can be connected to the IC-field.
Note that each crane joint rate is represented by a separate 1-junction, as shown in Figure 5.3.

Figure 5.3: IC-field interfaced with the quasi-coordinates

5.1.5 Crane and vessel kinetics

In this case, the forces that act on the system are related to gravity, payloads, winches, wires,
actuators, and hydrodynamic loads. Recall that the constitutive relation regarding the interfacing
of generalized forces and generalized coordinates was formulated as follows in Equation 3.14 when
developing the crane simulation model

f0
p = Jpf

0
q

e0
q = JTp e0

p

Consequently, an additional transformation must be applied to rotate the generalized forces into
the body-fixed vessel frame in which the quasi-coordinates are given. Hence, the total constitutive
relation in the case of a combined vessel and crane system becomes

f0
p = JpR

0
b(Θ)f bq

ebq = JTp Rb
0(Θ)e0

p

(5.21)

Note that either the three last rows or the three first rows of the Jacobian matrix can be omitted
if only forces or moments are acting on the arbitrary point p, respectively.

5.1.6 Crane and vessel gravitational loads

Considering the constitutive relation given in Equation 5.21, the gravitational loads can be imple-
mented in a similar manner to the method that was presented in Section 3.7.1. The only modifi-
cation is the inclusion of another MTF-element that performs the rotational transformation from
the inertial reference frame to the body-fixed vessel frame. An overview of the transformation of
the gravitational forces is given in Figure 5.4. The Se-elements apply the gravitational force at the
center of gravity of the j th body according to Fcgj = [0, 0, −mjg]. Note that the gravitational
load due to the mass of the vessel will be included when considering the restoring forces that act
on the system.
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Figure 5.4: Interfacing gravitational loads to the IC-field of the combined kinematics

5.1.7 Actuators

The functionality of the actuators remains unchanged when the crane is attached to a floating
vessel. On the other hand, the position vectors and Jacobian matrices developed for the crane
simulation model in Section 3.7.2 must be modified to comply with the new configuration. Note
that the position vectors given in Equation 3.15 stay unaltered because they are related to the
local body-fixed frames defined on the crane. The position vectors to the upper connection points
of the lower and upper crane boom actuators are given as follows

rb6/b = rb2/b + Rb
2r

2
6/2, rb7/b = rb3/b + Rb

3r
3
7/3 (5.22)

The Jacobian matrices are derived as previously described, and can be expressed as follows for the
four connection points of the crane boom actuators

Jb6 =

J
(vbb/0)
vb J

(vbb/0)
ωb eb1 × (rb4/b − rb1/b) 03x2

J
(ωb

b/0)
vb J

(ωb
b/0)

ωb eb1 03x2


Jb7 =

J
(vbb/0)
vb J

(vbb/0)
ωb eb1 × (rb6/b − rb1/b) eb2 × (rb6/b − rb2/b) 03x1

J
(ωb

b/0)
vb J

(ωb
b/0)

ωb eb1 eb2 03x1


Jb8 =

J
(vbb/0)
vb J

(vbb/0)
ωb eb1 × (rb5/b − rb1/b) eb2 × (rb5/b − rb2/b) 03x1

J
(ωb

b/0)
vb J

(ωb
b/0)

ωb eb1 eb2 03x1


Jb9 =

J
(vbb/0)
vb J

(vbb/0)
ωb eb1 × (rb7/b − rb1/b) eb2 × (rb7/b − rb2/b) eb3 × (rb7/b − rb3/b)

J
(ωb

b/0)
vb J

(ωb
b/0)

ωb eb1 eb2 eb3



(5.23)

The interfacing of the crane boom actuators to the IC-field is performed as described in Section
3.7.2, implying that the moduli of the MTF-elements are their respective Jacobian matrices. Note
that the transformation of the local actuator forces that were given in Equation 3.18 is valid if the
rotation matrix R0

1 is replaced with Rb
1 as follows

Fb2 = Fa2R
b
1

 0
cos(δ1)
sin(δ1)

 , Fb3 = Fa3R
b
1

 0
cos(δ2)
sin(δ2)

 (5.24)
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When considering the actuator that rotates the base, it is connected directly to the generalized
velocity q̇c1 and no further modifications must be performed.

5.1.8 Main wire and payload

The force applied by the main wire onto the crane is considered as a generalized force acting on
the tip of the crane. Thus, when following the steps derived in Section 3.7.3, the position vector to
the crane tip becomes

rb8/b = rb3/b + Rb
3r

3
8/3 (5.25)

yielding the following Jacobian matrix

Jb10 =

J
(vbb/0)
vb J

(vbb/0)
ωb eb1 × (rb8/b − rb1/b) eb2 × (rb8/b − rb2/b) eb3 × (rb8/b − rb3/b)

J
(ωb

b/0)
vb J

(ωb
b/0)

ωb eb1 eb2 eb3

 (5.26)

The wire model is implemented as described in Section 3.7.3. Considering that the forces in the
wire model are given in the inertial reference frame, the constitutive relation defined in Equation
5.21 must be applied. Hence, the interfacing with the IC-field is performed identically to the
gravitational loads.

5.1.9 Vessel restoring terms

As defined in Section 2.3.3, the restoring forces are related to the gravitational and buoyancy forces.
With the vessel modeled as a rectangular barge, the displaced volume can be approximated to the
following with a small angle assumption

∇ ≈ AwHd ≈ LBHd (5.27)

Here Aw, L, B, and Hd are the waterplane area, length, width, and draft of the barge, respectively.
The buoyancy force becomes the following by applying Equation 2.96

f0
b = ρwLBHdg (5.28)

Considering that the buoyancy force is a function of the vertical position of the vessel relative to
the water surface, it acts similarly to a spring. This implies that it should be implemented as a
C-element. The gravitational force related to the vessel is given below

f0
b = mbg (5.29)

and is implemented as a Se-element. By recalling that the linear restoring force is the sum of the
buoyancy force and the weight of the vessel, the two forces can be connected to a 1-junction. A
third power bond, representing the linear restoring force, can then be connected to the 1-junction
representing the linear velocity of the vessel. Note that the restoring forces are given in the inertial
frame, hence a rotational transformation is executed in an MTF-element prior to being connected
to the linear velocity of the vessel.
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5.1. INTERCONNECTED CRANE AND VESSEL DYNAMICS

The general expression of the restoring torques was given in Equation 2.98 and is approximated by
cross multiplying the buoyancy force with a righting arm,GZ, that is found through the metacentric
height. The metacentric height is expressed as

GM = KB +BM −KG (5.30)

where GM is the metacentric height, KB is the distance between the keel and center of buoyancy,
BM is the distance between the center of buoyancy and metacenter, and KG is the distance
between the keel and the center of gravity. In this case, the center of buoyancy is considered to be
located at half the depth of the draft of the vessel. The center of gravity is constantly located at
the geometric center of the barge. Lastly, BM is defined as the ratio between the inertia and the
volumetric displacement of the vessel. Hence, the transverse and longitudinal metacentric height
becomes

GMT =
1

2
Hd +

Ix
∇
− 1

2
H

GML =
1

2
Hd +

Iy
∇
− 1

2
H

(5.31)

Note that the inertias Ix and Iy are considered constant even though they vary with the orientation
of the vessel. Considering small rotations in roll and pitch, the righting arm can be expressed as

GZ =

−GMLsin(θ)
GMT sin(φ)

0

 (5.32)

The cross product of the righting arm and the buoyancy force is implemented into a C-element
that is connected to the 1-junction representing the rotational velocities of the vessel.

5.1.10 Vessel damping forces

As a simplification, only the nonlinear vortex shedding and the linear viscous damping are imple-
mented in this model. The nonlinear vortex shedding is based on the expression given in Equation
2.106 and is implemented in an R-element that is connected to the 1-junction representing the
linear velocity of the vessel. In addition, the linear viscous damping terms that are related to the
linear velocities are included in the same R-element. The magnitudes of the linear viscous damping
terms are based on the expressions given in Equation 2.108. As these expressions were derived as
a tool for estimating the viscous damping terms, they are further tuned until the vessel obtains
reasonable damping for surge, sway, and heave motions. Note that the relative velocity of the vessel
is utilized when calculating the damping forces related to the linear velocities. Hence, a current
model is included. In this case, the current is modeled as an incoming velocity with a magnitude in
the north and east directions that ramp up to predefined values. Note that the current is defined in
the inertial reference frame and must be rotated into the body-fixed vessel frame before including
it in the R-element. Furthermore, linear viscous damping is implemented for roll, pitch, and yaw
by connecting an R-element to the 1-junction representing the rotational velocities of the vessel.
The estimates given in Equation 2.108 are used in the process of encountering damping terms that
result in a logical vessel behavior. For an overview of the implementation, refer to Figure 5.6.
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5.1.11 Wave excitation model

The wave excitation model is taken directly from the vessel model developed in Rokseth et al.
(2017). It is based on the potential wave theory presented in Section 2.3.3 and applies a set of
simplifications regarding the integration of the pressure field over the wetted surface of the vessel.
The wetted surface is divided into small square elements where the sum of the contributions onto
each individual element is used as an approximation of the wave excitation loads acting on the
vessel. The partitioning of the wetted surface is limited to the bottom of the vessel. This is shown
in Figure 5.5 where β is the angle between the heading of the vessel and the propagating waves.
Note that the vessel is modeled as a rectangular barge to simplify the process of evaluating the
hydrodynamic loads.

Figure 5.5: Partitioning of wetted surface. Taken from Rokseth et al. (2017)

With the proposed partitioning, Equation 2.113 is applied to express the wave excitation loads,
as explained in Rokseth et al. (2017). The Froude-Krylov pressure is multiplied by the area of a
wetted element to find the load contribution from the element. When it comes to the added mass, it
is assumed equally distributed over the wetted elements. This implies that the added mass matrix
A11, which was defined in Equation 2.105, is divided by the number of wetted elements. The wave
acceleration terms are evaluated at the center of each individual wetted element. Hence, the wave
excitation force contribution from a wetted element can be expressed as follows (Rokseth et al.,
2017)

F bsurgekF bswayk
F bheavek

 =

 0
0

pFK(xi, zi)

+
1

njni
A11R

b
0(Θ)

a1(xi, zi)
a2(xi, zi)
a3(xi, zi)

 (5.33)

Here nj and ni are the numbers of wetted elements in the i- and j-directions depicted in Figure
5.5. The subscript k denotes an element of the wetted surface. Note that a2 = 0 when the wave is
modeled to propagate along the inertial x-axis. The total wave excitation force on the vessel is the

85



5.1. INTERCONNECTED CRANE AND VESSEL DYNAMICS

sum of the contribution of the wetted elements

F bsurgeF bsway
F bheave

 =

K∑
k=1

F bsurgekF bswayk
F bheavek

 (5.34)

where K is the total number of wetted elements. The torques are found as the sum of the cross
products of the wave excitation forces and the position vectors from the pivot point of the vessel
to a wetted element

M b
surge

M b
sway

M b
heave

 =

K∑
k=1

rbk ×

F bsurgekF bswayk
F bheavek

 (5.35)

These equations were implemented into a DLL-file in Rokseth et al. (2017), and that exact DLL-file
is applied to calculate the wave excitation loads in this combined vessel and crane model. Note that
second-order mean drift loads are included in the DLL-file, as explained in Rokseth et al. (2017).

5.1.12 Vessel mooring lines

The vessel is moored to prevent it from drifting from its initial configuration due to incident waves
and current. In this case, the mooring lines are simplified to act as linear and rotational springs
about the center of gravity of the vessel. The linear springs are related to the linear velocity of
the vessel, hence a C-element is connected to the 1-junction that represents the linear velocities.
On the other hand, the rotational springs are related to the angular velocity of the vessel and a
C-element is therefore connected to the 1-junction that represents the rotational velocities. Note
that the spring loads are defined in the inertial reference frame and must be rotated into the body-
fixed vessel frame with MTF-elements. To tune the spring stiffnesses, the SIMA model provided
by Subsea 7 is taken as a reference in regard to the vessel motion during different sea states. Since
the mooring line forces are unavailable in the given SIMA model, the different spring stiffnesses
are simply tuned to limit the vessel motion such that it resembles the motion of the ship in SIMA.
Consequently, there are uncertainties regarding the effect the mooring lines have on the vessel
response.

5.1.13 Complete vessel and crane system

The components that describe the kinematics and kinetics of the system are implemented in the
bond graph language, as depicted in Figure 5.6. Note how the right-hand side of the bond graph
model is identical to the crane simulation model as only the Jacobian matrices are replaced to
comply with the new configuration. The crane is positioned port side of the vessel with its crane
booms pointing along the positive y-axis. The complete system in its initial position is illustrated
in Figure 5.7

86



CHAPTER 5. CASE 2: CRANE AND VESSEL MODEL

Figure 5.6: Vessel and crane bond graph model

Figure 5.7: Vessel and crane 3D animation

5.2 Combined system results

As previously stated, the reader should be aware that the results presented in this section are given
with respect to the scale of the model crane in the MCMR Lab. Consequently, the simulation data
retrieved from the SIMA model are scaled according to the scaling laws defined in Chapter 4.

To begin with, the vessel is deployed in calm waters without waves or current. The vessel is
anticipated to trim about the x-axis due to the torque that is generated by the crane when it is
positioned at the port side of the ship. In Figure 5.8 it is shown that the vessel is trims to an angle
of −5.93°, which with respect to a realistic scenario is larger than expected.
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Figure 5.8: Roll angle with model crane masses

Hence, the mass of the crane is compared with data from a corresponding full-scale offshore knuckle
boom crane. Considering that the model crane is designed with a maximum lifting capacity of 250 t
in a full-scale scenario, the RL-K 7500 knuckle boom crane delivered by Liebherr (Liebherr, 2014)
is a close fit with respect to maximum lifting capacity. A comparison of the relevant parameters is
given in Table 5.1, where both full-scale and model scale values are presented.

Table 5.1: Crane comparison

Parameter RL-K 7500 Model crane Unit
Mass, model scale 42.56 111.1 kg
Main lift capacity, model scale 19.2 16 kg
Mass, full scale 665 1736 ton
Main lift capacity, full scale 300 250 ton

By evaluating the masses of the two cranes, it becomes evident that the model crane is significantly
heavier than an actual offshore crane with similar lifting capacity. Hence, to evaluate the vessel
response with respect to a realistic scenario, the mass of the model crane will be reduced. First, as
the full-scale crane has a 20% larger lifting capacity, its mass is reduced according to the percentage
difference of the lifting capacities, corresponding to 1

6 · 100%. Then, the mass of the model crane
is reduced by the percentage difference between the masses of the two cranes. Hence, the mass of
the model crane is reduced by the following percentage

p =
111.1− 42.56(1− 1

6 )

111.1
= 0.6808 = 68.08% (5.36)

Considering that the model consists of five body parts of relevant masses, each one is reduced by
the percentage p to generate an equally distributed reduction of the crane mass. With the decreased
mass, the roll angle becomes −2.77°, as shown in Figure 5.9. In contrast to the previous roll angle,
this is a more reasonable orientation when the crane booms are positioned directly port side with
a payload of considerable mass. Furthermore, the SIMA model is simulated with an initial −1.1°
roll angle. Hence, the roll angle induced by the modified crane mass and payload is more suitable
when comparing the two vessel responses. Another difference that should be pointed out is that the
vessel is modeled as a barge, which implies the draft of the vessel is smaller in the 20-Sim model.
The increased volume of the barge shape results in a draft of Hd = 0.237m rather than the draft
of Hd = 0.320m that is present in SIMA. Consequently, differences are expected in the vessel and
crane responses that are provided by the two simulation environments.
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Figure 5.9: Roll angle with reduced model crane masses

With the reduced crane mass, the wave model is introduced to induce a vessel and crane motion.
To begin with, the vessel is floating freely without mooring lines. To evaluate the response, a sea
state with Hs = 2.5m and Tp = 10s is applied, which in model scale corresponds to Hs = 0.1m and
Tp = 2.0s. In Figure 5.10a it is shown that the vessel drifts in the negative x- and y-direction. This
is expected when the incident wave is propagating in the negative x-axis and when the vessel has an
initial roll angle due to the crane and payload. Furthermore, the vessel is rotated clockwise which is
reasonable with the initial negative roll angle. To what extent the magnitudes of these translation
and rotation motions correspond with a real scenario is unknown, but the overall behavior appears
reasonable. When it comes to the heave motion, it oscillates in between magnitudes corresponding
to the significant wave height with a frequency close to the peak period. Hence, the heave motion
is deemed satisfactory. The oscillations in roll increase in magnitude when the vessel is turned with
it broadside into the incoming waves, which is logical. Evidently, the vessel response appears to
act according to the anticipated behavior, and the model seems to function properly.
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(a) Vessel surge and sway
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(b) Vessel heave
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(c) Vessel roll and pitch
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(d) Vessel yaw

Figure 5.10: Freely floating vessel motion

To further evaluate the vessel response, the simplified mooring line is attached to the vessel and
the results are compared with the SIMA model provided by Subsea 7. The previously chosen sea
state is applied to both simulation environments. The response of the two models is compared for
all degrees of freedom in Figure 5.11. Note that all data are shifted such that the measurements
begin at the origin of the plots, thus simplifying the comparison of the simulation models. Another
important note is that the results are expected to be different when considering the simplifications
that are applied in the 20-Sim model, e.g. modeling the vessel as a barge and approximating
hydrodynamic coefficients. However, the comparison is carried out to ensure that the 20-Sim model
behaves realistically.

The surge motion given in Figure 5.11a indicates that the amplitudes in surge are slightly smaller
in the 20-Sim model compared to the SIMA model. Furthermore, the frequency of the surge motion
appears to be lower in the 20-Sim model. The same is true for the sway motion, which addition-
ally has significant differences in the motion pattern that initially tends to move in the negative
y-direction. To improve the results, further adjusting the spring stiffnesses could lead to more
accurate frequencies in the surge and sway motions since they are directly linked to the natural
frequencies of the system. Furthermore, the implementation of the mooring line in 20-Sim is inac-
curate compared to an actual mooring line configuration and a more precise model could lead to
improved results. Additionally, since the parameters implemented in the 20-Sim model are based on
simplified theories and approximations, deviations in the amplitudes of the motions are expected.
Considering that the focus of the modeling process is not related to encountering correct parame-
ters but rather verifying that the system has been implemented correctly, the results are deemed
satisfactory. Hence, by obtaining more accurate hydrodynamic parameters and developing more
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realistic mooring lines, the 20-Sim model is expected to behave in accordance with real vessels.

When evaluating the roll motion, Figure 5.11d indicates that the maximum peak-to-peak ampli-
tudes of the motion in the two simulations are of the same magnitude. Regardless, the oscillation
amplitudes are on average higher in the SIMA model. In this case, the frequency is observed to be
roughly the same in the two cases. However, the roll motion in SIMA tends to favor rolling in the
counter-clockwise direction, thus resulting in larger absolute values for the roll angles. The yaw an-
gles have similar magnitudes, but the frequency in the 20-Sim model is slightly lower. Consequently,
the simplified mooring line configuration could be responsible for the deviations in combination
with the approximated hydrodynamic coefficients. Moving on to the motion in heave and pitch,
they are both larger in the 20-Sim model. A reason could be related to the surface elevation that
is generated in the two simulation models. In the SIMA model, the surface elevation is on average
lower than the one produced in 20-Sim, which is shown in Figure 5.12. Note that both waves have
maximum and minimum values within the specified significant wave height, but that the surface
elevation generated in 20-Sim more frequently approaches the maximum values. Consequently, it
is logical that the vessel is excited into greater heave and pitch motions. With unequal incident
waves, it is difficult to compare the excitation of the two models. However, the comparison serves
as a basis for evaluating the functionality of the vessel dynamics modeled in 20-Sim.
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(a) Vessel surge
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(b) Vessel sway
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(c) Vessel heave
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(d) Vessel roll
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(e) Vessel pitch
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(f) Vessel yaw

Figure 5.11: Moored vessel in SIMA and 20-Sim
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Figure 5.12: Comparison of surface elevations

With crane operations in mind, it is important to verify that the crane moves in accordance with
the vessel motion. First, since the crane in the SIMA model remains fixed with respect to its initial
configuration, PID-controllers are applied to the actuators that control the movement of the crane.
They are designed to keep the crane angles close to their initial values during simulations. With
the crane fixed to its initial configuration, the crane tip motion in the 20-Sim model is compared
to the SIMA model. Note that the cranes in the two simulation models are not identical. This is
because the crane in the 20-Sim model is related to the model crane in the MCMR Lab while the
crane model in SIMA is of a real Huisman offshore crane. Hence, the crane tip in SIMA is located
at a higher altitude relative to the vessel and additional deviations between the crane tip motions
in the two models are expected. Regardless, they are compared to ensure that the results from the
20-Sim model are reasonable.

To begin with, the surge motion of the crane tip increase in both cases when compared to the
surge motion of the vessel, which is expected due to the pitch motion of the vessels. Considering
that the pitch motion is greater in the 20-Sim model, the surge motion of the crane tip is increased
more in comparison to the surge motion of the vessel than in the SIMA model. On the other
hand, the sway motion of the crane tips is increased with an equal magnitude, which is sensible
when considering that the roll angles have similar peak-to-peak values. When it comes to the
heave motion, the amplitudes of the crane tips are of greater magnitude than the response of
the vessels. The increase is logical when considering that the cranes have been located a distance
from the body-fixed vessel frame. Hence, they have the potential to be elevated further due to the
pitch and roll motions of the vessel. Considering that the crane tip motion behaves as anticipated
relative to the vessel motion, the system acts in a satisfactory manner. Therefore, the model is
assumed to function properly. Hence, the model can be used as a basis for performing simulations
in preparation for further testing of the model crane in the MCMR Lab on either a floating barge
or a tripod system capable of imitating vessel motion.
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(a) Crane tip x-position
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(b) Crane tip y-position
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Figure 5.13: Crane tip displacement
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6 | Conclusion and further work

6.1 Conclusion

This thesis has presented a comprehensive description of the theory that facilitates the extension
and development of the crane simulation model. The derivation of the relevant system parameters
and the procedures regarding their implementation into the simulation model have been systemat-
ically presented. In short terms, the process consisted of the derivation of rigid body models with
Lagrangian mechanics, the development of DLL-files for reduced computational complexity, the
inclusion of simplified wire and hydrodynamic models and the development of control algorithms
for motion and tension control of the crane and tugger wires, respectively. All the models were
derived through the development of mathematical models and implemented into a bond graph
environment for testing and verification of the system behavior.

A case study was carried out to evaluate the effect of tugger winch systems. To induce a crane tip
motion similar to the data obtained from a ship model in SIMA, an inverse dynamics controller was
designed for the crane. By creating a simplified crane and payload model, the control algorithm
was able to calculate the actuator forces that were required to move the crane tip according to
a given crane tip reference signal. The reference signal consisted of the desired position, velocity,
and acceleration, and was found with a mass-spring-damper reference model. Considering the filter
properties of the reference model, a phase lag was generated, but since the motion pattern of the
input and output remained similar, the results were deemed suitable for testing the tugger winch
system. The scaling of the system and the response of the simplified wire dynamics were evaluated
by a comparison of the snap loads that were induced with fixed length tugger wires. As expected,
the two system responses were not identical due to the differences between the 20-Sim and SIMA
models, but the tendencies were the same. Considering that the snap loads had larger peaks in the
20-Sim model, the effect of implementing an active tension controller in 20-Sim was assumed to be
valid for a real case scenario. The active tension controller was able to prevent snap loads in rough
sea states, but its capabilities related to motion control were not optimal. A phase lag between
the crane tip and payload was induced, thus creating pendulum motions in the x- and y-directions
that were larger than for the case with fixed length tugger wires. Consequently, more sophisticated
control algorithms are required to improve the performance of the system. However, it should be
noted that the motion was significantly smaller than for a case without tugger wires.

The second part of the thesis comprised of a case study related to extending the crane simulation
model to include the dynamics of a floating vessel. The SIMA model served as a basis for verifi-
cation of the combined vessel and crane system response. All model parameters were found in a
combination of applied theory, tuning and comparison with the SIMA model. When the developed
vessel and crane system was excited by incident waves, the system response appeared logical with
respect to the applied sea state. Furthermore, when considering the uncertainties regarding the
chosen hydrodynamic parameters and simplified mooring lines, the motion of the vessel and crane
appeared to behave similarly to the ship and crane in the SIMA model. Consequently, the devel-
oped simulation tool should serve as a valid platform for further testing of the model crane in the
scenario where it is deployed in a wave basin or mounted on a controllable tripod.
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6.2 Further work

The extensions and modifications of the crane simulation model serve as a tool to further improve
the model crane in the MCMR Lab. At this point in time, the Bachmann controller that was
utilized in Gyberg (2017) and Evang (2017) is not connected to the crane. Furthermore, the current
Bachmann controller lacks I/O ports with respect to the implementation of the suggested inverse
dynamics controller. Thus additional ports must be added. For a comprehensive introduction to the
Bachmann controller, refer to the guidelines developed in Gyberg (2017). Alternatively, the control
algorithms can be implemented in LabVIEW, which is the software that currently is utilized when
controlling the crane with joysticks. Another important note regarding the implementation of the
inverse dynamics controller is the lack of force sensors on the actuators. Consequently, the desired
forces that are calculated by the controller must be related to a voltage that sets the current drawn
by the electric motors. Fortunately, considering that the output of the backstepping controller
developed in Evang (2017) is a set of generalized forces, the applied method of controlling the
actuators can be adapted. Furthermore, the inverse dynamics controller is susceptible to modeling
errors and parameter uncertainties. Hence, the stability proof suggested in Appendix C could be
implemented for a robust configuration.

The tugger winch system that was proposed in this thesis is a possible configuration, but a struc-
tural evaluation similar to the FEM analysis carried out in Gyberg (2017) is recommended to
ensure structural integrity during operations. Furthermore, the tugger winch control algorithm
must be further developed to improve the performance of the system regarding limiting pendulum
motions. The method proposed in Ren et al. (2018) is of interest. Here, a model-based feedback
linearization controller is developed to limit payload motion in the three planar motions surge,
sway, and yaw. With an improved control algorithm, the requirements to pay-in speeds and pull-in
forces can be reevaluated regarding the capabilities of the applied control system. Through further
testing, the tugger winch system can be implemented in the MCMR Lab, together with the model
crane. Then, model tests should be executed to verify the simulation model and the tensions that
are induced in the tugger wires.

The interconnected crane and vessel simulation model was implemented with a variety of simpli-
fications and estimations of hydrodynamic coefficients. Hence, potential theory software such as
ShipX and WAMIT is suggested in the derivation of more accurate estimates. Furthermore, the
mooring line system should be implemented in accordance with actual mooring line configurations
to improve the behavior of the system with respect to a real scenario. Alternatively, a dynamic
positioning system can be implemented as proposed in Rokseth et al. (2017). With the proposed
improvements, the simulation model can serve as a platform for testing the crane and its auxiliary
systems before employing it in a wave basin or mounting it on a controllable tripod.
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A | Simulation model parameters

A.1 Crane simulation model

The relevant parameters related to the model crane are given in Table A.1. For the remaining
model parameters, refer to Appendix B.
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A.1. CRANE SIMULATION MODEL

Table A.1: Model crane parameters

Parameter Description Value Unit
m1 Mass of the crane base 67.0 kg
m2 Mass of the lower crane boom 23.3 kg
m3 Mass of the upper crane boom 5.5 kg
m4 Mass of the lower actuator 8.5 kg
m5 Mass of the upper actuator 6.8 kg
I1x Inertia of the crane base about the x-axis 0.0 kgm2

I1y Inertia of the crane base about the y-axis 0.0 kgm2

I1z Inertia of the crane base about the z-axis 1.8 kgm2

I2x Inertia of the lower crane boom about the x-axis 9.2 kgm2

I2y Inertia of the lower crane boom about the y-axis 0.0 kgm2

I2z Inertia of the lower crane boom about the z-axis 9.4 kgm2

I3x Inertia of the upper crane boom about the x-axis 1.6 kgm2

I3y Inertia of the upper crane boom about the y-axis 0.0 kgm2

I3z Inertia of the upper crane boom about the z-axis 1.5 kgm2

I4x Inertia of the lower actuator about the x-axis 2.3 kgm2

I4y Inertia of the lower actuator about the y-axis 0.0 kgm2

I4z Inertia of the lower actuator about the z-axis 2.3 kgm2

I5x Inertia of the upper actuator about the x-axis 1.1 kgm2

I5y Inertia of the upper actuator about the y-axis 0.0 kgm2

I5z Inertia of the upper actuator about the z-axis 1.1 kgm2

Xcm1 Distance to the crane base center of gravity, x-axis 0.0 m
Y cm1 Distance to the crane base center of gravity, y-axis -0.023 m
L1 Length of lower crane boom 1.251 m
L2 Length of upper crane boom 0.96 m
b See Figure 3.1 for reference 0.461 m
a See Figure 3.1 for reference 0.100 m
h See Figure 3.1 for reference 0.495 m
w See Figure 3.1 for reference 0.461 m
c See Figure 3.1 for reference 0.190 m
u See Figure 3.1 for reference 0.140 m
r See Figure 3.1 for reference 0.140 m
s See Figure 3.1 for reference 0.118 m
k See Figure 3.1 for reference 0.533 m
n See Figure 3.1 for reference 0.420 m
o See Figure 3.1 for reference 0.324 m
p See Figure 3.1 for reference 0.440 m
H Height of the payload 0.2612 m
W Width of the payload 0.4000 m
L Length of the payload 0.3024 m
m Mass of the payload 12.8 kg
Ix Inertia of the payload about the x-axis 0.7607 kgm2

Iy Inertia of the payload about the y-axis 0.8153 kgm2

Iz Inertia of the payload about the z-axis 0.2749 kgm2
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APPENDIX A. SIMULATION MODEL PARAMETERS

A.2 Vessel and crane simulation model

Note that the crane parameters are identical to the one presented in Appendix A.1. The exceptions
are the masses of the crane components that were reduced, as explained in Section 5.2.

Table A.2: Combined system parameters

Parameter Description Value Unit
m1 Reduced mass of the crane base 21.3864 kg
m2 Reduced mass of the lower crane boom 7.4374 kg
m3 Reduced mass of the upper crane boom 1.7556 kg
m4 Reduced mass of the lower actuator 2.7132 kg
m5 Reduced mass of the upper actuator 2.1706 kg
mb Mass of the barge 1973 kg
Hb Height of the barge 0.540 m
Bb Beam of the barge 1.280 m
Lb Length of the barge 6.492 m
A11 Added mass in surge 803.4 kg
A22 Added mass in sway 803.4 kg
A33 Added mass in heave 2510.6 kg
A44 Added inertia in roll 83.7 kgm2

A55 Added inertia in pitch 2847.2 kgm2

A66 Added inertia in yaw 2905.7 kgm2

B11 Damping in surge 552.0 kg/s
B22 Damping in sway 370.0 kg/s
B33 Damping in heave 400.0 kg/s
B44 Damping in roll 643.0 kgm2/s
B55 Damping in pitch 1500.0 kgm2/s
B66 Damping in yaw 300.0 kgm2/s
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B | Code and script attachments

This appendix gives an overview of the code and scripts that have been utilized in the development
of the simulation models. Note that the Visual Studio projects are omitted since the content is
generated directly by the attached MATLAB-Scripts. The relevant files are submitted in a zip-file
that is organized with the following folders:

20-Sim models

• 3D models - Contains the STL-files made by Gyberg (2017) for the 3D visualization of the
model crane.

• CraneAndVessel - Contains the 20-Sim EMX-file and the relevant DLL-files for the simulation
of the combined crane and vessel system. Note that the emx-file contains the code for the
IC-field, all the Jacobian matrices, and relevant system parameters.

• CraneAndTuggerWinch - Contains the 20-Sim EMX-file and the relevnat DLL-files for the
simulation of the crane and tugger winch system. Additionally, a CSV-file with the crane tip
motion for different sea states is included. Note that the EMX-file contains the code for the
IC-field, all the Jacobian matrices, and relevant system parameters.

• SnapLoadsTesting.emx - Contains the simplified simulation model that is utilized to reduce
the simulation time when evaluating the snap loads in the tugger wires.

MATLAB-scripts

• CraneAndBarge.m - Contains the MATLAB-script that processes the C-code generated by
the Maple-script. Note that the code must be adjusted to comply with the setup in Maple if
the crane and vessel model is modified.

• GeneralizedLoads.m - Contains the MATLAB-script that processes the C-code generated by
the Maple-script related to the generalized forces of the actuators.

Maple-scripts

• BargeAndCrane.mw - Contains the Maple-script that generates the algebraic expressions
of the combined crane and vessel system. Furthermore, it creates the C-code that must be
processed by the MATLAB-scripts before building the DLL-files.

• Crane.mw - Contains the Maple-script that generates the algebraic expressions of the crane
system. Furthermore, it creates the C-code that must be processed by the MATLAB-Scripts
before building the DLL-files.

• Crane_MassAtCT.mw - Contains the Maple-script that generates the algebraic expressions
of the crane system with a mass located at the crane tip. Furthermore, it creates the C-code
that must be processed by the MATLAB-Scripts before building the DLL-files.
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C | Robust inverse dynamics controller

This appendix presents a possible solution to the uncertainties regarding the dynamics developed
for the simulation model and the actual dynamics of the model crane in the MCMR Lab. The
derivation of a robust controller and its stability proof is based on the robust inverse dynamics
controller developed for the joint space in Siciliano et al. (2009). Note that it is reasonable to
assume that the assumptions that are applied in the proof must be modified before being valid for
the model crane.

C.1 Robust controller stability proof

Recall that the general state-space model is expressed as follows

B(q)q̈ + n(q, q̇) = τ

where

n(q, q̇ = C(q, q̇)q̇ + g(q)

With imperfect compensation, the control output τ can be chosen as follows

τ = B̂(q)y + n̂(q, q̇) (C.1)

where B̂(q) and n̂(q, q̇) are the estimates of the terms related to the model crane. Hence, the error
of the estimates becomes the following

B̃ = B̂−B

ñ = n̂− n
(C.2)

Applying Equation C.1 as a nonlinear control law gives

Bq̈ + n = B̂y + n̂ (C.3)

Since B is invertible, the following is given

q̈ = y + (B−1B̂− I)y + B−1ñ = y − η (C.4)

where

η = (B−1B̂− I)y + B−1ñ (C.5)
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C.1. ROBUST CONTROLLER STABILITY PROOF

By choosing y as previously proposed in Equation 2.138

y = J−1(r̈d + Kd
˙̃r + Kpr̃− J̇q̇)

and applying the expression for the generalized acceleration given in Equation 2.136

q̈ = J−1(r̈− J̇q̇)

the following error dynamics are derived

¨̃r + Kd
˙̃r + Kpr̃ = Jη (C.6)

Hence, the proposed linear PD controller is no longer sufficient since the described system is
nonlinear because η is a nonlinear function. Therefore, the Lyapunov direct method is applied to
derive a controller that ensures error convergence to zero while tracking a trajectory even with
parameter uncertainties. Consequently, the following control law is proposed

y = J−1(r̈d + Kd
˙̃r + Kpr̃− J̇q̇ + ω) (C.7)

where ω is included to guarantee robustness with respect to the parameter uncertainties. In this
case, the following error dynamics are given

¨̃r = −Kd
˙̃r−Kpr̃− ω + Jη (C.8)

By choosing the system states as follows

ξ =

[
r̃
˙̃r

]
(C.9)

the following first order differential matrix equation is obtained

ξ̇ = Hξ + D(Jη − ω) (C.10)

where H and D are 2n× 2n and 2n× n matrices, respectively, expressed as follows

H =

[
0 I
−Kp −Kd

]
, D =

[
0
I

]
(C.11)

Here, the gain matrices are positive definite and given as follows

Kp = diag[ω2
n1, ..., ω

2
nn]

Kd = diag[2ζ1ωn1, ..., 2ζnωnn]
(C.12)

A Lyapunov function candidate is proposed to prove the stability of the controller

V(ξ) = ξTQξ > 0, ∀ ξ 6= 0 (C.13)
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APPENDIX C. ROBUST INVERSE DYNAMICS CONTROLLER

where Q is a 2n× 2n positive definite matrix. By differentiating the Lyapunov function candidate
and inserting the expression in Equation C.10, the following is obtained

V̇(ξ) = ξ̇
T
Qξ + ξQξ̇

= (ξTHT + (Jη − ωTDT )Qξ + ξTQ(Hξ + D(Jη − ω))

= ξT (HTQ + QH)ξ + (Jη − ω)TDTQξ + ξTQD(Jη − ω)

= ξT (HTQ + QH)ξ + 2ξTQD(Jη − ω)

(C.14)

Note that the last two terms in the second to the last simplification are equal since the expressions
are scalar values that are the transposed of one another. Obviously, a scalar value is equal to its
transposed value. Furthermore, the matrix H is chosen such that it only has negative eigenvalues.
Hence, the following definition can be applied

HTQ + QTH = −P (C.15)

where any symmetric positive definite matrix P results in a unique positive definite matrix Q.
Consequently, the derivative of the Lyapunov function candidate becomes the following

V̇(ξ) = −ξTPξ + 2ξTQD(Jη − ω) (C.16)

It is obvious that the first term is negative definite while the second term depends on the choice
of the control parameter ω. By setting

z = DTQξ (C.17)

the second term is expressed as zT (Jη−ω). The control parameter is then chosen to the following

ω =
ρ

||z||
z, ρ > 0 (C.18)

which gives

zT (Jη − ω) = zTJη − ρ

||z||
zT z

≤ ||z|| ||Jη|| − ρ||z||
= ||z||(||Jη|| − ρ)

(C.19)

Consequently, ρ must be chosen such that

ρ ≥ ||Jη||, ∀ r̈d, q, q̇ (C.20)

since η is a function of r̈d, q and q̇. Note that η contains terms related to r and ṙ but that they are
directly related to the generalized coordinates and velocities. To ensure that the inequality holds,
a set of assumptions are proposed in Siciliano et al. (2009). The first is given as follows

supt≥0 ||r̈d|| < QM <∞, ∀ r̈d (C.21)
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C.1. ROBUST CONTROLLER STABILITY PROOF

and it is satisfied by the fact that a reference trajectory cannot require an infinite acceleration.
The second assumption is given by the following inequality

||I−B−1B̂|| ≤ α ≤ 1, ∀ q (C.22)

Since B is a positive definite matrix with upper and lower bound norms, the following inequality
holds

0 < Bm ≤ ||B−1|| ≤ BM <∞, ∀ q (C.23)

Thus, a choice of B̂ that satisfies the assumption expressed in Equation C.22 always exists and is
given as the following (Siciliano et al., 2009)

B̂ =
2

BM +Bm
· I (C.24)

The resulting inequality of the second assumption becomes

||B−1B̂− I|| ≤ BM −Bm
BM +Bm

= α < 1 (C.25)

Note that a more accurate estimate B̂ results in a smaller α. The last assumption is related to the
fact that the joint ranges q are limited. Furthermore, even though unbounded joint velocities q̇
may arise in the limits of unstable systems, they are in reality saturated by the maximum velocities
of the motors. Hence, the following inequality is proposed by assuming that the norm of the error
estimate of the nonlinear function n is bounded (Siciliano et al., 2009)

||n̂|| ≤ Φ ≤ ∞ (C.26)

With the suggested assumptions, the following is given

||Jη|| = ||I−B−1B̂||(||r̈d||+ ||K|| ||ξ||+ ||ω|| − ||J̇|| ||q̇||)− ||J|| ||B−1|| ||n̂||
≤ αQm + α||K|| ||ξ||+ α||ω|| − α||J̇|| ||q̇|| − ||J||BmΦ

(C.27)

With ||ω|| = ρ, the following is derived to satisfy the conditions defined in Equation C.20

ρ ≥ αQm + α||K|| ||ξ||+ α||ω|| − α||J̇|| ||q̇|| − ||J||BmΦ

⇒ρ ≥ 1

1− α
(αQm + α||K|| ||ξ|| − α||J̇|| ||q̇|| − ||J||BmΦ)

(C.28)

Note that further assumptions might be necessary to ensure that the expression derived for ρ holds
as it currently is dependent on q̇. By replacing the dependency on the generalized velocities with
upper limits related to the saturation of the motor velocities, the expression could be improved.
However, by enforcing a value of ρ that fulfills the given inequality, the derivative of the Lyapunov
function candidate is negative definite, and stability is proven with the suggested control law

V̇(ξ) = −ξTPξ + 2zT (Jη − ρ

||z||
z) < 0, ∀ ξ 6= 0 (C.29)
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