
Master of Science in Communication Technology
June 2010
Svein Johan Knapskog, ITEM
Stein Nilsen, FFI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Visualizing Spatial and Temporal
Dynamics of a Class of IRC-Based
Botnets

Andreas Hegna

Problem Description
The amount of useful information that can be extracted from a visualization, depends on the
underlying metrics. Developing an understanding of the nature of the data is an essential part of
constructing new visualization methods. The first part of the study must necessarily contain a
description and analysis of botnets from the viewpoint of constructing visualization metrics. The
second part will focus on the visualization of botnet dynamics, including a short survey of network
visualization tools and methods. Depending on the availability of data and/or simulation resources
it will be up to the student whether to focus on the analysis of real data, or developing and
illustrating concepts using simulated data.

Assignment given: 25. January 2010
Supervisor: Svein Johan Knapskog, ITEM

Abstract

Botnets are a serious threat to the security of personal computers, businesses and
even countries. They can launch attacks on remote systems and infrastructure,
perform espionage and once installed they essentially hand over control of the
computer to a botnet administrator. It is very difficult to detect their presence
in a network as it is hard to distinguish their footprint from normal traffic. By
using Internet Relay Chat (IRC)-based botnets as an example for visualizing
spatial and temporal dynamics, I will attempt to detect the presence of a bot and
visualize the results. Based on previous works for detecting malware, the choice
was made to use process-to-port mapping as the base metric for visualization.
Investigation into botnets was an integral part of the thesis. Published sources
along with research into botnet administrator communities were used to provide
a solid information base. A bot application, which is part of a botnet, can
be regarded in the same way as any other piece of software, but with added
functionality for communication and remote control. As such, it is bound by
the same proprietary technologies. The thesis focuses on a method of detection
that relies on IP and port pairs with host computer metrics, which can be
expanded to a distributed context with the use of Simple Network Management
Protocol (SNMP). The software for process-to-port mapping and visualization
of a botnet has been developed with focus on geographical location. Use of
geography for the Visualization application proved to be a good choice and
communicating applications are shown in a distinct and clear way. Experiments
conducted, successfully detected and visualized the bot communicating with
the command and control server as metrics were collected on a host machine.
The developed visualization software also shows general network activity and
has potential to be used in a more general context. It is concluded that given
some preconditions with regards to a bot’s rootkit capabilities, detection of a

I

botnet is successful. Given the availability of certain SNMP OIDs, it is possible
to perform botnet detection and general network visualization in a large scale
and distributed context.

II

Preface

I started by focusing on how to detect and visualize botnets, the idea was to
focus on detection and implement some ideas for detection based on machine
usage profiles and visualize the results in a way that was easy to understand. I
looked into using Snort logs as a part of the detection scheme, but as the thesis
evolved I focused less on finding new ways of detection as there were a number
of papers on this subject already. Instead the focus shifted to visualization and
process-to-port mapping as I believe that I could contribute with new material
in this area. The original though was to create something that could be used in
a distributed context and that could be run with multiple computers. To limit
the amount of work and still keep a distributed context in mind, the choice was
made to use technologies designed to be distributed but develop the visualization
to function on one host computer.

A great deal of time was spent investigating communities where botnets were
sold and traded. Botnets from these forums are included in the thesis to keep
the material as relevant as possible. Some of the botnet authors own descriptions
of how bots work are also included to give some insight into technology from
their perspective.

In total I wrote about 8500 lines of code for the process-to-port mapping and
about 2500 lines of code for the visualization software. It turned out to require
significantly more work than anticipated to cover both topics and I ended up
giving each topic the same amount of focus. Being given the opportunity to
present my work for the North Atlantic Treaty Organization (NATO) AC/323
(RTO) IST085/RTG041 group on “Interactive Visualisation of Network Dynamics”
was a great motivator to try and create something new. Based on the feedback
that I got from the NATO group I believe I succeeded in doing this. I hope this

III

thesis and its findings will benefit others who want to use host based metrics
and visualization for botnets and network traffic.

Aknowledgements

I would like to thank my professor, Svein Johan Knapskog, for providing good
advice and feedback as well as allowing me to use the Norwegian University of
Science and Technology (NTNU) Quantifiable Quality of Service (Q2S) security
group for input on the work.

I would also like to thank my supervisor, Dr. Stein Nilsen (Principal Scientist
for the Norwegian Defence Research Establishment (FFI)), for providing good
advice and feedback on the work as well as advice on writing a great thesis.
The opportunity given by him to present my thesis at the NATO meeting
on “Interactive Visualisation of Network Dynamics” was a real highpoint the
semester and is something that I will cherish.

I would also like to point out the great support in the Carnivore Forums by
the authors of Carnivore and I especially want to thank Alexander Galloway,
(galloway@nyu.edu), at New York University for providing support and the
source code for Carnivore library. This helped me to better integrate it with my
visualization.

IV

Contents

Abstract III

Preface V

Table of Contents V

List of Figures IX

List of Tables XIII

1 Introduction 1

1.1 Limitations . 2

1.2 Methodology . 2

1.3 Structure . 4

2 Botnet 7

2.1 Introduction . 7

2.2 Botnet evolution . 9

2.3 Detection . 10

V

2.4 Java based Botnet and the theory of the Fully UnDetectable (FUD)
botnet . 12

2.5 Command and Control (C2) Structure and Topology 12

2.5.1 Centralized topologies . 15

2.5.2 Decentralized topologies 21

2.6 Botnet metrics . 23

2.6.1 Terminology . 23

2.6.2 TCP/IP Model . 24

2.6.3 Packet Capture and Analysis 31

2.6.4 Source/Destination Confusion 37

2.6.5 Operating System (OS) metrics 38

2.7 Simple analysis of a Java Based bot 45

2.7.1 Botnet setup . 46

2.7.2 Botnet startup . 49

2.7.3 Botnet commands . 50

2.7.4 Summary for bot analysis 52

3 Visualization 55

3.1 Introduction . 55

3.2 Visualization metrics . 57

3.2.1 Geolocation . 58

3.3 Technology . 61

3.3.1 Processing . 61

4 Experiment 67

4.1 Introduction . 67

VI

4.2 Materials and experiment setup 68

4.2.1 Equipment . 68

4.2.2 Experiment Setup . 69

4.2.3 Setup for IRC server and channel 69

4.2.4 Modification of the “Family Photos” bot 72

4.2.5 Setup for PC1, a bot infected computer 74

4.2.6 Setup for PC2, a bot administrator computer 75

4.3 Methods . 76

4.3.1 Step by step guide for PC2 76

4.3.2 Step by step guide for PC1 78

4.4 Results . 79

4.4.1 Results for PC1 . 79

4.4.2 Results for PC2 . 84

4.5 Analysis . 88

4.5.1 Analysis PC1 . 88

4.5.2 Analysis PC2 . 90

4.5.3 Summary analysis . 91

5 Discussion 93

6 Conclusion 99

7 Future work 101

Literature 103

VII

A Definitions 113

B Software 115

B.1 Starting point . 115

B.2 Process2Port . 117

B.2.1 process2port.objects package 118

B.2.2 process2port package . 118

B.2.3 cmdexecute package . 119

B.2.4 services package . 120

B.2.5 snmp package . 121

B.3 Visualization . 121

B.3.1 Key commands and functionality 122

B.3.2 Visualization functionality 128

B.3.3 Example usage . 137

C SNMP installation 140

C.1 Install SNMP Server on Windows 7 140

C.2 Install Getif on Windows 7 . 141

D Excerpt botnet source code 143

D.1 a.class . 143

D.2 main.class . 145

VIII

List of Figures

2.1 Computer sales per day vs. infections per day in 2009. 8

2.2 A botnet author’s own description of what is perceived to happen
under normal execution of exe files. 13

2.3 A botnet author’s own description of what is perceived to happen
under normal execution of Java ARchive (JAR) files. 14

2.4 Star C2 topology with direct communication between the central
command server and each bot agent. [67, p. 2] 16

2.5 Multi-server C2 topology with direct communications between
each distributed cluster of command servers and each bot agent. [67,
p. 3] . 19

2.6 Hierarchical C2 topology with proxied C2 communication between
the botnet administrator and bots. [67, p. 4] 20

2.7 Random C2 topology with no centralized C2 server infrastruc-
ture. [67, p. 5] . 22

2.8 The TCP/IP model’s four layers of abstraction show with typical
protocols used in each layer. 25

2.9 Differences between the Open System Interconnection (OSI) and
TCP/IP model. 26

2.10 Internet Protocol (IP) datagram that shows the data is repackaged
with the lower layers header. 27

IX

2.11 IP Datagram with IPv4 header and data field. [70, p. 11] 29

2.12 Transmission Control Protocol (TCP) Datagram with TCP header
and data field. [71, p. 15] . 31

2.13 Example of routers that forward, but do not process Transport
Layer data. 32

2.14 Simple graph showing the concept of source/destination confusion. 37

2.15 Excerpt of the available botnet commands for the “Family Photos”
bot. 47

2.16 VirusTotal scan results for jusched.jar 53

3.1 A world map projection from the NASA Blue marble project. [60] 59

3.2 The rendered 3D representation of the Earth with Processing. . . 62

3.3 Only 129 lines of code can generate a high quality 3D representa-
tion of earth in processing. 64

3.4 The Carnivore Library for Processing, displaying a packet dump. [23] 65

4.1 Basic setup for the experiment. 70

4.2 VirusTotal scan results for ModifiedJavaBot.jar. 73

4.3 Extended experiment setup. 77

4.4 ipconfig results for PC1. 80

4.5 Initial Taskmanager results for PC1. 80

4.6 Windows Security Alert for Java Platform SE binary. 81

4.7 netstat results for PC1 before and after ModifiedJavaBot.jar has
been initiated. 82

4.8 Taskmanager results for PC1 after ModifiedJavaBot.jar has been
initiated. 82

4.9 Visualization showing IRC commmunication between Modified-
JavaBot.jar and IRC server in South Africa. 83

X

4.10 Visualization zoomed in on IRC server in South Africa. 84

4.11 Visualization of connections made by ModifiedJavaBot.jar when
PC2 issues the .getip command. 85

4.12 Windump results for PC1. 86

4.13 ipconfig results PC2. 86

4.14 Windows Security Alert for mIRC. 87

4.15 IRC chat conversation between PC1 and PC2 with issued commands. 87

4.16 Windump results for PC2. 88

4.17 PC1 Wireshark request with the .getip command. 89

4.18 PC1 Wireshark response to the .getip command. 89

4.19 PC2 Wireshark request with the .getip command. 90

4.20 PC2 Wireshark response to the .getip command. 90

B.1 Original visualization provided by Carnivore library. [23] 116

B.2 Process2Port package diagram. 117

B.3 Visualization after roughly 4 minutes running time. Running
Peer-to-Peer (P2P) applications at time of visualization include
Skype, Spotify and uTorrent. 123

B.4 Zooming and panning the map. Here showing an unknown con-
nection. 125

B.5 Carnivore console log showing IP and port pairs as well as TCP
Flags. 126

B.6 Visualization showing a list of mapped applications. 127

B.7 Visualization of a “raw” packet capture. 129

B.8 Visualization with host IP filtering resulting in reduced packets. . 130

B.9 Visualization showing mapping of image icon to port number. . . 132

B.10 Visualization showing process to port mapping. 134

XI

B.11 Visualization showing unmapped applications and resulting in
“Missing icon for image name” label. 135

B.12 Visualization showing list of mapped applications in upper left
corner. 136

B.13 Example visualization of captured network traffic with mapped
mIRC connection. 139

XII

List of Tables

B.1 Visualization key commands . 124

B.2 Setup key commands . 126

B.3 Various commands . 127

B.4 Rules commands . 127

XIII

XIV

Acronyms

API Application Programming Interface

ARP Address Resolution Protocol

C2 Command and Control

CSV Comma-separated values

DDoS Distributed Denial of Service

DNS Domain Name System

DOD Department of Defense

FTP File Transfer Protocol

FUD Fully UnDetectable

GT Global Threat

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IDC International Data Corporation

IDPS Intrusion detection and prevention systems

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

XV

IRC Internet Relay Chat

ISN Initial Sequence Number

IRTF Internet Research Task Force

ISO International Organization for Standardization

ISP Internet Service Provider

IT Information Technology

JAR Java ARchive

JVM Java Virtual Machine

LAN Local Area Network

MAC Media Access Control

Malware Malicious Software

MIB Management information base

NATO North Atlantic Treaty Organization

NTNU Norwegian University of Science and Technology

OID object identifier

OS Operating System

OSI Open System Interconnection

P2P Peer-to-Peer

PID Process IDentifier

Q2S Quantifiable Quality of Service

RARP Reverse Address Resolution Protocol

REGEX REGular EXpressions

RFC Request for Comments

SDK Software Development Kit

XVI

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TTL Time-To-Live

UDP User Datagram Protocol

URL Uniform Resource Locator

UTM Universal Transverse Mercator

WMI Windows Management Instrumentation

WMIC Windows Management Instrumentation Command-line

XML Extensible Markup Language

XVII

XVIII

Chapter 1

Introduction

“Throughout the centuries there were men who took first steps,
down new roads, armed with nothing but their own vision.”–Ayn
Rand

Botnets are one of the biggest threats one can face on the Internet and thus
much work has gone into detecting these networks. The different approaches will
be discussed in more detail in Section 2.3, but among these approaches there
are some that stand out with regards to this thesis. “A Host-Based Approach
to BotNet Investigation?” a practical, although manual, approach for botnet
detection for digital investigators is presented. [36] With analysis of packet
captures as well as monitoring running processes, botnets were successfully
detected. I believe that this approach holds merit and by taking the principles
from that paper, it would be possible to contribute to this area of botnet detection.
In Chapter 2, botnets will be explored in more detail.

Representing data is also a great challenge because the amount of informa-
tion available can be vast. Visualization provides a way for representing data
in different ways and thus might yield added value to the user with regards
to finding new points of interest or abstracting away information. One note
about the naming of the visualization software is that when the text references
“Visualization”, with a capital letter, it refers to the developed application. In
Chapter 3, visualization will be explored in more detail.

1

Methodology 2

1.1 Limitations

To be able to limit the scope of the problem description and narrow the focus
on the thesis, further limitations are needed. I will attempt to automatically do
process-to-port mapping with technologies that support a distributed context
as a way of detecting botnets, but to limit the scope these technologies will be
implemented to function on one host machine.

Raw packet capture that is manipulated by host based metrics will be the main
focus of the thesis. In addition, visualization of the metrics will be performed in
order to give the user the possibility to discover patterns in the visualization.
How to best detect the characteristics of botnets will be discussed and based
on the discussed information, selected tools and methods will be used to form
the base metrics for detection and visualization. Ideas from “A Host-Based
Approach to BotNet Investigation?” [36] and the principle of locality by Robert
Lee and Sheau-Dong Lang [37] will also be explored.

The major focus of the thesis will be how to visualize spatial and temporal
dynamics in a way that is stimulating and informative to the user. By spatial
dynamics the information will be displayed according to its relation to the host
computer. By temporal dynamics the information will be showed based on what
time the information was captured. Further limitations will be with regards
to what type of botnet that will be used when attempting visualization. I will
use an IRC-based botnet as they are among the best studied and are still very
predominant in the wild.

1.2 Methodology

Firstly, information will be gathered from books, articles and papers. Forums
where botnet authors communicate, botnets are sold and traded will be part of
the thesis. Resources i collected from the botnet authors themselves will also
give some insight into this technology from their perspective. A shot survey of
visualization software available will also be presented. When an introduction
into the background material is given, an analysis of available metrics will be
explored before the experimentation phase will begin. Before experimenting with
an actual botnet, analysis and visualization of network traffic will be carried out.
The experiment with an actual botnet will be carried out in a controlled manner

2

3 Methodology

and data will be collected for later analysis. The collected metrics will be input
for the visualization and displayed in real time. Results from the experiment
and the corresponding visualization will be discussed in the later chapters.

By using process-to-port mapping I expect to see each connection the host
computers applications are responsible for. The botnet is expected to register
with the computers system monitoring tools in the same way as any other
application, given that a rootkit is not employed. If distinct and detectable
changes are made to the system when the bot is initiated, these statements will
be considered to be proven. These changes will consist of new entries in the
system monitoring tools, log entries from packet captures as well as log entries
and visuals from developed software. The resulting visualization method will
display connections based on distinct applications and not based on traffic volume.
Visuals are expected to produce distinct observational changes supported by
the previous statements. If no changes are observed, these statements will be
considered invalid.

Throughout the thesis I will utilize extensive citations in order to enable
readers and those interested in the same topic, to get access to the same
information and to be able to find the resources I describe.

In the attempt to visualize IRC-based botnets, I will follow as closely as
possible the six steps of the information visualization process; Define the prob-
lem, Assess available data, Process information, Visual transformation, View
transformation and Interpret and decide. [41, p. 120-121]

1. Define the Problem: The need to understand the problem and background
on the topic is a vital part. To be able to find an answer, one must first
know the questions surrounding the topic.

2. Assess available data: Next comes the process of finding out what data is
available.

3. Process information: Next, one has to extract the relevant information
found in the previous step.

4. Visual transformation: How should the visuals be presented?

5. View transformation: The visualization from the previous step is refined
to focus on the most important aspects.

3

Structure 4

6. Interpret and decide: The last step is to look back on what has been
generated and see if the results solve the initial problem.

1.3 Structure

The thesis is organized in the following structure:

• Chapter 1: Introduction
An introduction to the problem is presented and limitations are defined.
The methodology used is explained in detail before an outline of the
structure of the thesis is presented.

• Chapter 2: Botnet
Visualization cannot exist without data and knowledge about botnets.
This chapter provides information and technologies employed by botnets.
Metrics that are useful for detection and visualization are discussed, in
addition to a short analysis of a real world bot.

• Chapter 3: Visualization
How the data is visualized is at the core of this thesis. This chapter discusses
important aspects and metrics related to visualization. Ranging from how
people understand the world around them, to relevant technologies for
presenting the data.

• Chapter 4: Experiment
In order to address the initial problem of the thesis an experiment is carried
out. The developed software is used in conjunction with a modified version
of a real world bot. Results from this experiment forms the basis for the
discussion and conclusion.

• Chapter 5: Discussion
This chapter discusses the findings from the experiment with relation to
the previously presented material.

• Chapter 6: Conclusion
The findings from the thesis are presented in the final conclusion.

4

5 Structure

• Chapter 7: Future work
Possible future work on the findings presented in the thesis will be discussed
in this chapter.

• Appendix A: Definitions
Various important definitions for understanding terms and technologies
mentioned in this thesis. If the reader is not familiar with terms presented,
one should reference this appendix.

• Appendix B: Software
A significant portion of the work went into creating the software used in
the experiment. Details about the developed library for process-to-port
mapping and the visualization can be found in this appendix.

• Appendix C: SNMP installation
A description of how to install and set up the SNMP agent on Windows 7
is described in this appendix.

• Appendix D: Excerpt botnet source code
The compiled byte code, from the analyzed bot from Chapter 2, is shown
in this appendix.

5

Structure 6

6

Chapter 2

Botnet

“15 Feb 1943
If only it were possible to reproduce yourself a million times over

so that you can achieve a million times more than you can today.”
–Dr. Paul Joseph Goebbels, Propaganda Minister for Nazi Ger-

many
–From 15 Feb 1943 entry in the personal diary of Paul Joseph

Goebbels.

2.1 Introduction

Botnets are one of the biggest threats one can encounter in cyberspace today.
They can be, and often are, used as a weapon in the same way as conventional
ordinance. One bot can be bad enough, but usually the network of bots is
significantly bigger. As the quote at the start of this chapter tries to convey; one
evil can be bad, but if you are faced with an enemy that has 1 million copies of
itself, one will be dealing with an entirely different monster.

Botnets are emerging as the prominent threat to the security of companies
and they reportedly threaten national infrastructure and security. [34] [44] More
than 150,000 computers were reportedly infected daily during the second quarter
of 2009. [45] A botnet consisting of one million bots, with the global average

7

Introduction 8

connection speed of 1.7 Mbps [1, p. 12], can wield a crippling 1,7 terabits of
traffic. This is enough to take down most Fortune 500 companies and even
countries as shown in the 2007 cyber attack on Estonia, where the Estonian
parliament, ministries, banks and media were targeted. [18]

According to an International Data Corporation (IDC) [31] press release
from 2009; 284.1 million computers were forecast to be sold in 2009. If all the
infections per day would be from the 778 365 computers sold daily, 150 000 of
the newly purchased computers that day would be infected. This would mean
19% of the sold computers could potentially be infected as seen in Figure 2.1

Figure 2.1: Computer sales per day vs. infections per day in 2009.

“Overall, botnets control more compromised machines than had
been previously believed. Only a handful of criminals (likely a few
hundred) have more than 100 million computers under their control.
This means that cybercriminals have more computing power at their
disposal than the entire world’s supercomputers combined. It’s no
wonder then that more than 90 percent of all e-mail worldwide is
now spam.”–Trend Micro [48]

To be able to have a common understanding of the challenges that this thesis
presents, it is important to give some background knowledge of this Malicious
Software (Malware).

8

9 Botnet evolution

There are several approaches to detecting botnets and compromised com-
puters infected by them. To summarize there are three main ways of detecting
botnets; Signature- and Rule-based Detection, Behavior and Activity Detection
and Command and Control (C2) Session Detection.

2.2 Botnet evolution

The first worm that utilized IRC as a means of remote control was the Pret-
tyPark.Worm in June of 1999, according to “The Evolution of Malicious IRC
Bots” a Symantec white paper. It allowed the attacker to retrieve a variety of
information about the infected system as well as the ability to download and
execute files. [9, p. 6] [15, p. 7-8]

In late 2000 a new kind of bot named Global Threat (GT) bot appeared
which used a hacked copy of the mIRC [39] client executable in combination
with custom scripts to connect to a remote server and wait for commands.
mIRC [39] is an IRC based software package that supports scripts and raw TCP
and User Datagram Protocol (UDP) socket connections. One type of GT bot,
Backdoor.IRC.Aladinz also had some interesting functionalities. It attempted to
delete netstat.exe file from the Windows directory in order to hide its presence
on the infected system. [9, p. 6-7] [15, p. 8-9]

In early 2002 Sdbot appeared with its own IRC client incorporated within its
executable. It was written entirely in C++, could load itself via the Windows
registry and using legitimate-looking process names, it could hide itself to a
degree. [9, p. 9-13] [15, p. 9-10]

Agobot, also known as Gaobot, surfaced in 2002 and even if it was a different
project than Sdbot, it had the majority of the same functionality however the
bot was object oriented and it was more robustly developed. Later versions also
utilized exploits for propagating itself, techniques for hiding itself using rootkit
technology, encryption and polymorphism. Agobot uses IRC for Command and
Control (C2), but it is spread through P2P file-sharing networks. Variations
of Agobot include: Phatbot [83], Forbot, Polybot, and XtremBot. The source
code also showed that functionality was divided into separate source files, it
was distributed with the Microsoft Visual C++ project files and it included
details on how one could obtain a made-to-order Agobot release. [9, p. 13-18] [15,
p. 10-11] Selling of custom bots and botnets are frequently done in plain sight

9

Detection 10

according to my research into these communities.

Spybot, also known as Milkit, is built on Sdbot and emerged in 2003. It added
spyware capabilities such as collecting logs of activity, data from web forms, key
stroke logging, logging of everything copied to the Windows clipboard, killing
antivirus processes and other security products, control of web cameras and
included various exploits. [9, p. 20-30] [15, p. 12-14]

2.3 Detection

Signature- and Rule-based Detection is one of the most widely used choices.
Signature-based detection schemes are based on recognizing something that has
been seen and identified previously. The open source network intrusion prevention
and detection system (IDS/IPS) called Snort [81] is one such solution. It is
configured with a set of rules or signatures from log traffic that has been deemed
suspicious. To be able to improve signature quality it is also useful to be able to
reverse-engineer the actual bot source code, but it is very hard to get a hold of
the entire program.

Behavior and Activity Detection is one of the more active areas with
regards to proposing new solutions for detection. It tries to detect the presence
of botnets by looking at their characteristics, how they interact with their
environment or what the normal behavior of the system should be and see
whether the activity is “un-normal” or “normal”. Some have proposed to identify
the botnet behavior by identifying bot commands through Run-time execution
monitoring. This could involve monitoring access to core windows dll files and
other system variables. [68] Other researchers point to network behavior as a way
of detecting botnets. [85] Claudio Mazzariello and Carlo Sansone proposed ways
of detecting IRC botnets by means of describing behavior for specific classes of
network users. This could involve monitoring the average number of vowels in a
message and deduce what classifies as “human” chat participants. [43] Earlier
work by Binkley and Singh proposed an anomaly-based algorithm for detecting
IRC-based botnet meshes. [6] Another interpretation of establishing “normal”
behavior for a system is based on the principle of locality which was proposed
by Robert Lee and Sheau-Dong Lang. [37]

In the publication “Exploiting Temporal Persistence to Detect Covert Botnet
Channels”, the authors proposed the use of a metric called persistence to capture

10

11 Detection

“lightweight” yet “regular” communication and by using a notion of “destination
atoms”, in which multiple IP destinations are aggregated into a single domain
name. According to the paper they were successful in detecting C2 traffic and
this method also provide a possible solution for detecting “fast-flux” botnets. [24]

Command and Control (C2) Session Detection will attempt to analyze
the packet payload, looking for C2 traffic or more specific; botnet command
strings. Christopher Hanna [26] analyzed IRC packet payloads and could detect
well known bots, but not variants that used different command strings. In the
publication “A Host-Based Approach to BotNet Investigation?”, a practical way
for digital forensics investigators to determine the presence of botnets by looking
at host-based metrics, such as running processes that generate network traffic at
startup. [36]

One problem with “A Host-Based Approach to BotNet Investigation?” [36] is
that you would already need to have a suspicion about the specific computer and
one computer at a time would be examined. The idea of running process-to-port
mapping is not new, but this paper proves that it is possible to determine the
presence of a botnet based on host-based metrics.

By looking at host-based metrics and excluding payload analysis for deter-
mining the presence of C2 traffic; I believe it can be used in a large scale network
context where it is possible for an organization to impose a mandatory basic
setup for data collection. By using visualization to reduce the workload and help
with detection, it could be used as a supplement to established detection schemes
as well as visualization. To the best of my knowledge, there has been no attempt
to visualize specifically botnets. This paper will attempt to do just that and
focus on extracting metrics. Based on information and lessons learned from “A
Host-Based Approach to BotNet Investigation?” [36] as well as the importance
of locality mentioned by Lee and Lang [37], I will attempt to detect botnets
on a host machine and visualize the results. By visualizing the communication
geographically, the visualization itself will hopefully prove more valuable.

11

Command and Control (C2) Structure and Topology 12

2.4 Java based Botnet and the theory of the
Fully UnDetectable (FUD) botnet

Although there have been numerous new botnets since 2003, the majority of
botnets have been based on these early pioneers. If we jump forward to the
present day, some of the developments in the botnet community are the emergence
of Java based botnets. Due to the volatility of the sources, not all claims are
cited.

The main theory behind the rapid growth of Java botnets seems to be the
theory that Java is Fully UnDetectable (FUD) from anti-virus software. The
arguments behind this statement is that where an exe file calls the Windows
System Application Programming Interface (API) directly, the anti-virus software
is monitoring who is requesting access and thus will be detected. An example
description by a botnet administrator can be seen in Figure 2.2. With a Java
ARchive (JAR) file however, the JAR file calls the Java Virtual Machine (JVM),
which in turn calls the Windows System API. According to some botnet
administrators it is not possible to use a signature search on JVM and therefore
they are unaffected by anti-virus software, as described in Figure 2.3.

There are a few Java based botnets in the wild, but it does not seem to be
known who made them as botnet authors often bicker over who made what.
Some tutorials on how to use and administer botnets have been published, and
one such botnet, that will be called “family photos” based on the archive filename
it was shared under, will be used in the experiments conducted in this thesis. One
Java based bot has also been analyzed by Craig Williams at Cisco [102]. This
code is similar to “family photos”, but is presumably the “IRC” bot described
in Section 2.7, due to source code similarities.

2.5 Command and Control (C2) Structure and
Topology

Botnets come in many different implementations and use a variety of different C2
topologies that each has its own strengths and weaknesses. The chosen topology
is typically a choice between the perceived risk by the botnet administrator, the
ease-of-use and the economic model of the particular botnet. [67, p. 1]

12

13 Command and Control (C2) Structure and Topology

Figure 2.2: A botnet author’s own description of what is perceived to happen
under normal execution of exe files.

13

Command and Control (C2) Structure and Topology 14

Figure 2.3: A botnet author’s own description of what is perceived to happen
under normal execution of JAR files.

14

15Command and Control (C2) Structure and Topology - Centralized topologies

C2 topologies can typically be categorized into two main categories:

• Centralized C2 Botnets as shown in Figure 2.4, 2.5 and 2.6.

• Decentralized, or random, P2P Botnets as shown in Figure 2.7

2.5.1 Centralized topologies

The centralized command approach has been proved to be the most widespread
with regards to botnet topologies. It provides the C2 botnet with a rendezvous
point in the network, where the botnet administrator can coordinate malicious
activity with the botnet. Within the category of centralized topologies, there
are some sub categories:

• Star C2 topology

• Multi-server C2 topology

• Hierarchical C2 topology

Star C2 topology

The Star C2 topology is the simplest and arguably the most widely used topology
for botnets, as shown in Figure 2.4. This topology relies on a single centralized
C2 server for communication with all the bot agents. Once a new victim has
been comprised, each bot will “phone home” to receive new instructions directly
from the central command server. [67, p. 1-2]

Pros: Speed of Control: The direct connection between the C2 server and
the bot agent enables fast transfer of instructions and stolen data.

Cons: Single point of failure: If the central C2 server is blocked or disabled,
the botnet will effectively be neutralized. [67, p. 2] The bot may however still
try to connect to the server.

IRC-based Command and Control (C2): Of the C2-based botnets,
the most prominent would be the Internet Relay Chat (IRC)-based botnet.
According to the Active Threat Level Analysis System (Atlas) summary report,

15

Command and Control (C2) Structure and Topology - Centralized topologies16

Figure 2.4: Star C2 topology with direct communication between the central
command server and each bot agent. [67, p. 2]

16

17Command and Control (C2) Structure and Topology - Centralized topologies

per 21.03.2010 from Arbor networks [61], 56,7% of all server ports used was port
6667 which is the default port for IRC servers. 1

These servers have been favored for their ease-of-use and they require minimal
administration for C2. Botnet administrators can use public IRC channels or
create their own. Private IRC-servers can be hosted by botnet friendly IRC
hosting companies, run on previously compromised hosts with high bandwidth
using dynamic Domain Name System (DNS) names for ease of access. Dyn-
DNS [22] and No-IP [63] are some of the more popular choices for this type of
service in conjunction with UnrealIRCd [86] as server software. [9, p. 9] This is a
commonly used method of botnet administration according to the research that
has been done. The IRC channel topic is often used to give instructions to the
botnet or private messages to a specific bot if only one is needed. [62, p. 16-17]

Even though only IRC is mentioned here, there are many other protocols that
also are in use for C2 botnets. Such protocols as ICQ [79], Yahoo! Messenger [94]
and MSN Messenger [59] can be used to relay private messages to the bot.

Web-based Command and Control (C2): Another method of control-
ling a botnet is by HyperText Transfer Protocol (HTTP). Attackers can instruct
the bot to access scripts on a web site and include its identifying information,
such as the machine’s IP address and what port its proxy is running on, with the
Uniform Resource Locator (URL). This will ensure that the web-based C2 server
can track and send commands to the entire botnet via HTTP responses. [62,
p. 17-18]

With a Web-based C2 it is also possible to use social networking sites such
as Twitter [20] or LinkedIn [30] for issuing commands to the botnet. Passing
messages encoded with a shortened URL and hiding it in a picture has also
proved to be a possibility, as shown with the proof-of-concept bot KreiosC2 [104].
This will make it much harder to detect the presence of botnets.

DNS-based Command and Control (C2): The Domain Name System
(DNS) enables domain names such as “Twitter.com” to be translated into numeric
IP addresses. By using a domain name as the rendezvous point, the botnet can
make the C2 traffic look legitimate. One of the biggest advantages of this is that
even if DNS queries are blocked by the firewall, the local DNS server could still
forward the queries to an authoritative server and the C2 traffic would still pass
though the firewall. [62, p. 20]

1As of 2010.06.07, 51.6 % of all server ports used were port 6667.

17

Command and Control (C2) Structure and Topology - Centralized topologies18

A special technique for preserving botnets is known as “fast flux DNS”. This
is where the domain name’s Time-To-Live (TTL) is set to be very short. The
consequence is that the IP addresses to that domain will constantly change and
the lists that are used can range in the thousands per domain name. [24, p. 329]

Multi-server C2 topology

Multi-server C2 topology is an extension of the Star topology where multiple
servers are used to supply C2 instructions to the bot agents. The C2 servers
communicate amongst themselves with regards to how they manage the botnet.
Should one of the servers fail, the remaining servers would assume control of
the bots so they are not lost. This topology requires more planning and effort
when constructing the botnet infrastructure, but the bot agents can be used in
the Star and Multi-server topology. By purposefully distributing the C2 servers
across different geographical locations, communication with the specific bot can
be sped up. If the servers are hosted in multiple countries it can also make it
more resilient to legal shutdown requests. [67, p. 2-3]

Pros: No single point of failure: Should any of the C2 server be taken
down or be disabled, the botnet administrator can still maintain control over all
the bot agents. Geographic optimizing: Multiple geographically distributed
C2 servers can speed up communications with the different botnet components.

Cons: Require advance planning: An additional preparation effort is
needed to construct this multi-server C2 infrastructure. [67, p. 3]

Multiple servers can be achieved by adding backup IRC servers and channels
if the bot is unable to contact the C2 server.

Hierarchical C2 topology

A Hierarchical topology is in place when bot agents have the ability to proxy
new C2 instructions to previously infected computers. This will help to control
different parts of the botnet and it helps to hide the identity of the C2 ren-
dezvous point and botnet administrator because of the additional communication
layer. This will however introduce latency and make it harder for the botnet
administrator to use the botnet in real-time. By using a hierarchical topology
will also mean that no single bot will know the full extent of the entire botnet.

18

19Command and Control (C2) Structure and Topology - Centralized topologies

Figure 2.5: Multi-server C2 topology with direct communications between each
distributed cluster of command servers and each bot agent. [67, p. 3]

19

Command and Control (C2) Structure and Topology - Centralized topologies20

This makes it harder for law-enforcement or investigators to estimate the true
size of the botnet and it makes it easier for the botnet administrator to carve up
parts of the botnet for re-sale. [67, p. 3-4]

Figure 2.6: Hierarchical C2 topology with proxied C2 communication between
the botnet administrator and bots. [67, p. 4]

Pros: Botnet awareness: Interception or hijacking of bot agents will not
reveal all members of the botnet and will unlikely reveal the C2 server. Ease of
re-sale: A botnet administrator can easily carve up parts of the botnet for sale
or rent.

Cons: Command latency: Because there is no direct connection between
the C2 server and the bot agent, there can be a high level of latency when
updated instructions are being passed to the bot agents. This can make it
difficult to execute real-time attacks. [67, p. 4]

20

21Command and Control (C2) Structure and Topology - Decentralized topologies

2.5.2 Decentralized topologies

The decentralized command approach is a more recent botnet topology. There is
no distinct C2 rendezvous point in the network and the botnet administrator
must prove their identity to the network. The best analogy to this topology
would be a Peer-to-Peer (P2P) architecture. Within the category of decentralized
topologies, there is one main sub category:

• Random C2 topology

Random C2 topology

A Random topology means that there is a dynamic master-slave or Peer-to-Peer
(P2P) relationship between bot agents. There is no centralized C2 infrastructure,
instead commands are sent to the botnet via any of the bot agents. These
commands are then “signed” to ensure control and then propagated to all other
agents. Due to the lack of a centralized C2 server and multiple communication
lines between bot agents, the botnet is very resilient towards shutdown or
hijacking. It is easy to identify other members of the botnet by observing a
single infected host. There is a problem with latency because of the random
topology, but with multiple communication lines this is less of a problem. [67,
p. 4]

Sinit [82] and Phatbot [83] are examples of bots that have successfully taken
advantage of this form of communication. Phatbot utilizes the Gnutella cache [16]
servers to establish its list of seed peers and the compromised computers uses
a modified version of the WASTE [90] protocol. [62, p. 19-20] The eDonkey
protocol [35] has also been known to have been used for P2P-based botnets.

Pros: Highly resilient: Lack of a centralized C2 server and many-to-many
communication between bot agents makes the botnet difficult to shutdown.

Cons: Command latency: The ad hoc nature of links between bot agents
makes C2 communication unpredictable, this may result in a high latency for
some parts of the botnet. Botnet enumeration: Passive monitoring of a single
bot agent can enumerate other members of the botnet. [67, p. 5]

21

Command and Control (C2) Structure and Topology - Decentralized topologies22

Figure 2.7: Random C2 topology with no centralized C2 server infrastructure. [67,
p. 5]

22

23 Botnet metrics

2.6 Botnet metrics

Visualizations are useless without data or information from which to base the visu-
alization. According to “A Host-Based Approach to BotNet Investigation?” [36]
it is possible to detect botnets with a combination of host based data and packet
captures in order to prove the presence of a botnet. I will take a further look
into what host based data are available and its uses in the remaining sections of
this chapter.

Botnets follow a Command and Control (C2) architecture and therefore
they need to stay in contact with a server in order to get new commands and
instructions. When communicating with the server it usually uses TCP/IP
protocol for this task and the communication travels through the host computer
and out onto the Internet. In its most basic form, data is stored in ones and
zeros. But for a developer to be able to create more advanced applications, it is
useful to abstract away this information. This will enable the development of
more advanced applications and logic, and the developer can focus on the more
difficult part of creating the logic.

2.6.1 Terminology

In order to have a common understanding of the terminology surrounding the data
sources available for visualization, it is important to point out some key terms.
These definitions are based on the Common Event Expression (CEE) standard
that was published in 2007, but with slight modifications [12, p. 23, 30] [41,
p. 22-23].

• Event: An event is observable situations or modifications within an envi-
ronment that occurs over a time interval. An event may be a state change
or reporting of an activity by a single component within a system.

• Log Entry: A log entry is a single record involving details from one or
more events. It is sometimes referred to as an event log, event record, alert,
alarm, log message, log record, or audit record.

• Log: A log is the collection of one or more log entries, typically written to
a local log file, stored in a database or sent across the network to a server.
A log may also be referred to as an audit log or audit trail.

23

Botnet metrics - TCP/IP Model 24

• Time-series data: All data that can be attributed a point in time. An
example includes log records with timestamps.

• Static data: Data that has no inherit time associated with it.

• Parsing: This is the process of taking a log or a file and identifying each
part of it.

2.6.2 TCP/IP Model

The TCP/IP model, also known as the Internet model or DOD model, and its
related protocols is a description framework, as shown in figure 2.8. It forms
a complete system defining how data should be processed, transmitted, and
received on a TCP/IP network. It is not as strictly divided into layers as the
OSI model and it has four layers which include; Application Layer, Transport
Layer, Internet Layer and Network Access Layer. A system of related protocols,
such as the TCP/IP protocols, is also called a protocol suite. [10, p. 8]

The relation between the seven-layer of the OSI model and the four-layer
TCP/IP model are shown in Figure 2.9.

TCP/IP packet headers

Each layer in the TCP/IP protocol stack performs specific duties. Each of these
layers invokes services that are needed for that specific layer in order to complete
its duties. As an outgoing communication travels down through the different
layers, it includes a bundle of relevant information called a header along with
the actual data. [10, p. 22] A detailed example of this can be seen in Figure 2.10.

From a metrics standpoint each of these layers represents valuable sources of
information. In the context of botnet metrics the TCP and IP headers and their
information is of the most importance. Due to the C2 nature of botnets, they need
to be able to communicate with the rendezvous point. This communication is the
same as every other communication traversing the Internet and therefore they
rely on the same infrastructure. The TCP/IP protocol suite, or Internet Protocol
Suite, forms the backbone of the Internet and Local Area Network (LAN). Some
of the layers of the TCP/IP models layers such as the Link Layer and Application
Layer does not provide information to others communicating parties unless the

24

25 Botnet metrics - TCP/IP Model

Figure 2.8: The TCP/IP model’s four layers of abstraction show with typical
protocols used in each layer.

25

Botnet metrics - TCP/IP Model 26

Figure 2.9: Differences between the OSI and TCP/IP model.

26

27 Botnet metrics - TCP/IP Model

Figure 2.10: IP datagram that shows the data is repackaged with the lower
layers header.

27

Botnet metrics - TCP/IP Model 28

communicating computers are in the same LAN. If that is the case then an
Address Resolution Protocol (ARP) can provide valuable information about the
Link Layer.

With regards to the normal Internet communication between computers,
the only layers that provide significant information to the other party are the
Network Layer and the Transport Layer.

The TCP header from the Transport Layer and IP header from the Internet
Layer provide metrics based on the knowledge that IRC-based botnets is C2
in nature and need a direct connection with a rendezvous point. TCP is a
connection-oriented protocol and therefore it will be the natural communication
choice.

IP header fields: The IP header includes a great deal of information
including source and destination IP addresses of computers, Time-To-Live (TTL)
and many others fields. I will focus on what I believe can provide interesting
metrics in the context of this thesis. The header fields from figure 2.11 are: [70,
p. 11-15]

• Version: Indicates whether the version of IP used is IPv4 or IPv6. Even
though there is nothing in the IPv4 specification about geolocation(identification
of a real-world geographic location), it is possible to deduce what city a
given IP resides from, based only on the fact that IP address blocks tend
to be allocated to regional Internet Service Provider (ISP)s. As of today it
might be easier to determine geographical location of IPv4 addresses based
on this fact. IPv6 based geolocation is out of the scope of this thesis.

• Total Length: Identifies the length of the datagram including IP header
and data payload. This might be useful with regards to extracting the
amount of information being transmitted. As botnet communication tend
to be relatively short and contain a small amount of data compared to
human communication, this may aid in classifying traffic. [85, p. 17]

• Time-To-Live (TTL): This field indicates the amount of time or how many
router hops that the datagram can survive before being discarded. A
router hop is a route the packet travels though on its way to its destination.
This field is used actively by the tracert/traceroute commands mentioned
in section 2.6.5.

28

29 Botnet metrics - TCP/IP Model

• Protocol: This indicates which protocol that will receive the data payload.
Internet Control Message Protocol (ICMP) uses the protocol identifier 1,
TCP uses the protocol identifier 6 and UDP uses the protocol identifier 17.
ICMP is often used with the ping command mentioned in section 2.6.5 and
it is also involved to some degree with the tracert/traceroute commands
mentioned earlier. This field is important with regards to identifying what
type of communication that has been established.

• Source IP address: This field holds the source address of the IP packet.
This identifies the host computer to the rest of the world and is one of the
most valuable information sources in the IP Header.

• Destination IP address: This field holds the destination address of the IP
packet. This identifies the target computer to the rest of the world and is
also one of the most valuable information sources in the IP Header.

Figure 2.11: IP Datagram with IPv4 header and data field. [70, p. 11]

TCP header fields: The TCP header includes a great deal of information,
most notably source port and destination port, among others. I will focus on
what I believe can provide interesting metrics in the context of this thesis. The
header fields from figure 2.11 are as follows: [71, p. 15]

29

Botnet metrics - TCP/IP Model 30

• Source Port: This is the port number assigned to the communicating
application on the host machine. This can help with connecting running
processes on a host machine to the communication. If an “unknown”
application is communicating then this can help indicate suspicious activity.
Well known port numbers and what application is likely to be using them,
is readily available and can aid in process-to-port mapping. [2]

• Destination Port: This is the port number assigned to the communicating
application on the destination machine. This can help with establishing
the type of application which the host application is communicating with.
Well known port numbers and what application is likely to be using them,
is readily available and can aid in process-to-port mapping. [2]

• Sequence Number : If the SYN flag is set to 1, this field provides the Initial
Sequence Number (ISN) which is used for synchronizing. If the SYN flag
is set to 0, then it provides the first byte of a particular segment.

• Acknowledgment Number : If the ACK flag is set to 1, this field contains
the next sequence number that the receiver is expecting. This will be the
last sequence number + 1.

• Control flags: The Control flags communicate special information about
the segment. It indicates what stage a connection is in and contains: URG,
ACK, PSH, RST, SYN and FIN. URG tells that the segment is urgent,
ACK indicates if the Acknowledgement Number is set, PSH tells the TCP
software to push data through the pipeline, RST resets the connection,
SYN indicates if the Sequence number will be synchronized and marks the
start of a connection and FIN is used to indicate that the sender has no
more data to send.

The Sequence Number, Acknowledgment Number and Control flags tell us
something about the connection and who initiated it. This can be valuable
information as to indicate if the host computer contacted an external location, or
if someone connected to the host computer without prior communication. It can
also provide information about how many packets that are being sent, and we
can then have an idea of the amount of information that has been transmitted.
Thus one can choose to discard the remaining packets if we want to only focus
on the initial connection.

Example communication: When two computers communicate over the
Internet, information may be sent through many router hops along the way.

30

31 Botnet metrics - Packet Capture and Analysis

Figure 2.12: TCP Datagram with TCP header and data field. [71, p. 15]

Figure 2.13 shows how data are transmitted over the network to a remote
computer. Typically information in the Internet and Transport layers are
available to the host computer, but if the host computer is located on a local
network they may also be able to access information from the Network Access
layer with ARP.

2.6.3 Packet Capture and Analysis

Packet captures are performed in the moment network packets are handed from
the network interface to the operating system. They contain the complete packet
including the payload. Valuable information can be found in the payload such
as chat logs, emails, username/password pairs among other private and sensitive
information. The use of packet captures for metrics in the bid to detecting
botnets have proved a rich source for solutions. Claudio Mazzariello and Carlo
Sansone proposed one such solution based on payload analysis. [43]

Although packet captures provide detailed information it has some disad-

31

Botnet metrics - Packet Capture and Analysis 32

Figure 2.13: Example of routers that forward, but do not process Transport
Layer data.

32

33 Botnet metrics - Packet Capture and Analysis

vantages: Firstly, there is no logic applied to the traffic in order to interpret it,
hence we do not know how the destined application processes the information.
Secondly, since the capture contains all the information within the packet it will
produce vast amounts of data and in high volume networks this in impractical
to analyze. This was a discussion topic in my meeting with UNINETT [27]
where it was mentioned that their sample rate was 1 of every 100 packets due
to the high traffic rate. Thirdly, there are legal and ethical problems with
capturing the payload of a communication as it may contain private and sensitive
information. [41, p. 27-28]

Legal and Ethical aspects

Before discussing packet capture and analysis further it is important to keep
the legal and ethical aspects in mind. An analogy to packet capture would be a
postman opening or making a photocopy of all letters and then reading them.
We would call opening someone’s letters an invasion of privacy and this is also
against the law. §122 [64] and §145 [65] of the Norwegian Penal code states
that this is punishable by two to six years in prison depending on the severity.
Packet captures could also be relevant with regards to §145 [65] as it includes
attaining unauthorized access to data. We can look at packet captures as being
relevant to the contents of letters or in this case the payload. Illegally collecting
information could also be thought of as wiretapping if the captured packets
include voice conversation or video conferencing. The point that was made in
the meeting with UNINETT [27] and NTNU IT [28] was that it would be an
invasion of privacy to analyze the payloads from packets flowing through their
network. Hence, using payloads for metrics will not be included in this thesis.

Returning to the postman analogy it is also important to note questions
raised by the sender and receiver address. In order to deliver mail and messages
postmen need to know where to send the message and so there is a need for the
destination address to be known to ensure delivery. If the sender also wants
their letter to be returned, in case the recipient does not receive their mail, they
can add the sender address to the mail. This is a well accepted practice, this
changes when it comes to Internet traffic. As presented earlier in this thesis,
one can still get vast amounts of personal information with only the source and
destination addresses. In the meeting with UNINETT [27] they pointed out the
sensitive subject of collecting IP addresses as this might be seen as an invasion
of privacy. The point of the meeting was to investigate what kind of information

33

Botnet metrics - Packet Capture and Analysis 34

that could be used for metrics.

Although UNINETT wanted to ensure the privacy of their users, not everyone
follows this practice and great debate has been sparked by the Swedish FRA
law [69] and possible Norwegian implementation of the EU data retention
directive. [17] The FRA law would enable Sweden’s National Defense Radio
Establishment (FRA) to monitor all outgoing and incoming communications
crossing Sweden’s borders in the name of national security. This would in practice
make wiretapping of all Internet traffic through Sweden a reality. [69] I will not
go into too much detail about these topics, but it is important to realize that the
legality of what can be stored in which circumstance is subject to interpretation.

Packet capture tools

There is a variety of tools available to collect and analyze network traffic. The
most common ones are Wireshark [93], Tcpdump [88], WinDump [97] and Net-
workMiner [29]. Other tools bundled with Wireshark [93] include dumpcap [91]
and tshark [92]. These tools listen on the network interface and take the raw
network traffic and analyze the entire packet to decode the individual network
protocols. Whereas Wireshark [93] and NetworkMiner [29] provides a graph-
ical user interface to better analyze the packets, dumpcap [91], tshark [92],
Tcpdump [88], and WinDump [97] are command-line tools only.

These tools all use the PCAP format from libpcap/Tcpdump [88] which is
the most common format for storing network captures. Wireshark [93] is not
designed for very large network captures so dumpcap [91], Tcpdump [88] or
WinDump [97] are more suited for this purpose. When using Tcpdump [88] or
WinDump [97] there are some settings that are important to mention: [41, p. 28]

• -s 0 : By default WinDump [97] only captures the first 68 bytes of the
packet. This is enough to include IP, ICMP, TCP and UDP headers.
By setting this parameter you will capture the packet headers and the
payload. [98] [89]

• -n: Setting this parameter will prevent WinDump [97] from converting
addresses (i.e., host addresses, port numbers, etc.) into hostnames. [98] [89]

• -e: Setting this parameter will print the link-level header on each dump
line. This will typically be the Media Access Control (MAC) addresses.

34

35 Botnet metrics - Packet Capture and Analysis

• -w filename.pcap: This will enable writing the output to a PCAP file.

The actual data contained within a PCAP [88] file-capture is set to one
packet per line. The data is stored as bytes and thus it is not human readable,
but using the following command it is possible to see what type of information
is contained in a typical capture:
WinDump. exe −n −e − i 2 −s 0

A sample PCAP [88] packet from the previous command yields:
Ê19 : 39 : 40 . 528361 Ë 0 0 : 1 3 : 2 1 : c9 : 8 b :26 > Ë00 :0 c : c f : 3 2 : 4 8 : 0 0 ,
e ther type IPv4 (0 x0800) , l ength Ì85 :
Í129 . 2 4 1 . 2 0 8 . 1 6 3 . Î443 > Í 8 0 . 2 4 9 . 8 4 . 4 3 . Î3989 : ÏP
Ð2653951672:2653951691(19) Ïack
Ñ3408490598 Òwin 64400
Ó<nop , nop , timestamp 3000146 1659722>

The following list shows the typical information you can extract from a packet
capture. For more information about the specific fields in this list, reference
Section 2.6.2:

• Timestamp Ê: By default all output lines are preceded by a timestamp of
the current clock in the form: hh:mm:ss.frac This is dependent on the
kernel clock and thus are only as accurate as the kernel clock. [98] [89]

• MAC address Ë: When the -e parameter is set, the MAC address is
displayed. This can reveal information about the local network. [98] [89]

• Packet Length Ì: The packet length of the packet. [98] [89]

• IP addresses Í: The IP addresses of the endpoints in this communica-
tion. [98] [89]

• Ports Î: The ports used by the communicating IP addresses. [98] [89]

• TCP Flags Ï: The Control flags in the TCP header. P in this case
indicates the PSH flag is set. The ack indicates that this packet contains
an acknowledgment number. [98] [89]

• Sequence Number Ð: The sequence number of the TCP packet and it
indicates that has data. [98] [89]

35

Botnet metrics - Packet Capture and Analysis 36

• Acknowledgment Number Ñ: The acknowledgment number of the TCP
packet. [98] [89]

• Window Ò: win 64400 tells that one can transmit only 64,400 bytes of
data before getting a frame extension. [98] [89]

• Options Ó: Data within these brackets describe options. [98] [89]

In some cases it is preferable to analyze more than the TCP/IP packets.
Higher-level protocols such as IRC and instant messenger traffic are not shown
with Tcpdump [88] or WinDump [97]. Wireshark [93] and its bundled command-
line application tshark [92] can be useful in this circumstance. Before demon-
strating the tshark with a sample packet dump it might be useful to mention
some tshark settings. By first using WinDump [97] for the packet capture and
then use tshark [92] to analyze the capture:

• -t a: This sets the timestamp of the packet capture to the actual time the
packet was captured instead of the default format, which is relative. [92]

• -r filename.pcap: Will read packet data from an input file. [92]

• > filename.txt: Will direct the output to a text file. [92]

A sample capture analyzed with tshark showing the possibility to extract
user names from instant messenger and IRC traffic. Identifying information has
been masked by XXXXX.
2 1 : 10 : 33 . 111285 129 . 241 . 208 . 163 −> 157 . 158 . 2 . 1 61 TCP
http > 54613 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0
MSS=1460 WS=8 TSV=3545401 TSER=3527938244

21 : 10 : 33 . 111450 129 . 241 . 208 . 163 −> 157 . 158 . 2 . 1 61 TCP
t e l n e t > 52865 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

21 : 10 : 34 . 470212 129 . 241 . 208 . 79 −> 129 .241 . 209 . 255 UDP
Source port : 17500 Des t inat i on port : 17500

21 : 10 : 34 . 632333 129 . 241 . 208 . 163 −> 217 . 1 7 . 3 3 . 1 0
IRC Request

36

37 Botnet metrics - Source/Destination Confusion

21 : 10 : 40 . 927979 65 . 54 . 172 . 104 −> 129 .241 . 208 . 163 MSNMS
NLN BSY 1 :XXXXXXXXXX@hotmail.com
Name 2788999228:402822192 <msnobj Creator="
XXXXXXXXXX@hotmail.com " Type="3"
SHA1D="HYbhW4luo864gdjU7qSMhy3h6e0=" S i z e ="10192"
Locat ion="0" Fr i end ly="SwBvAGsAawAAAA=="/>

2.6.4 Source/Destination Confusion

This is a term presented by Raffael Marty in the book “Applied Security Visual-
ization” and I will present the example from the book to clarify this issue. [41,
p. 26-27] If you assume that you are recording network traffic. Here are two
packets from an HTTP connection, recorded by Tcpdump. [88]

Ê18 : 46 : 27 . 849292 IP 192 . 1 68 . 0 . 1 . 3 9559 > 1 2 7 . 0 . 0 . 1 . 8 0 : S
1440554803:1440554803(0) win 32767
Ë18 : 46 : 27 . 849389 IP 1 7 2 . 0 . 0 . 1 . 8 0 > 192 . 1 6 8 . 0 . 1 . 3 9 5 5 9 : S
1448343500:1448343500(0) ack 1440554804 win 32767

The connection was made to the loopback interface to access the Web server
that is running on the host laptop. If a simple parser is used to extract the
source and destination IP addresses, you end up with a graph that looks like
Figure 2.14

Figure 2.14: Simple graph showing the concept of source/destination confusion.

It is possible to see that there are two arrows, one from Ê 192.168.0.1 to
127.0.0.1 and one in the Ë other direction. The connection was however only from
192.168.0.1 to 127.0.0.1, and no connection was opened the other way around.

37

Botnet metrics - Operating System (OS) metrics 38

According to Marty, this happens because the parser mechanically extracted the
source addresses as the first IP in the log, without trying to understand which
packets were flowing from the client to the server and vice versa.

This is very important because in a botnet perspective we want to know if
our computer was connecting to a remote server or if the remote server was
connecting to us. This could indicate either a botnet trying to connect to its
rendezvous point or the botnet administrator might attempt to gain access to
the system. To solve this problem Marty presents the need for a smarter parser
that keeps track of the individual clients and server pairs. Afterglow [40], which
was written by Marty, includes the file tcpdump2csv.pl which he claims can solve
the source/destination confusion problem. It handles this problem by using the
SYN and SYN ACK parts of the three-way-handshake to keep track of who
started the communication.

Regardless of whether a solution based on Marty’s parser is implemented, it
further points out the significance of the TCP Control Flags from Section 2.6.2.

2.6.5 Operating System (OS) metrics

Information useful for creating metrics for detection and visualization of botnets
does not stop with network traffic and packet captures, but the OS has logs
that can provide useful information. In Chapter 2 botnets was explained and as
mentioned previously, botnet applications are the same as every other applications
running on a host computer; an application. The botnet may try to employ
techniques such as using a rootkit, mentioned in Chapter A, to hide from the OS
logs. This will help avoid detection, but they still have an impact on the system.

The get a better idea of what tools are available for gathering metrics from
the host machine in the fight against botnets, I will give a short list of the most
common and useful tools for this purpose.

Network and task management tools

Some of the network management commands/tools that are included with
UNIX systems can help with providing host based data is nslookup/dig, tracer-
oute/tracepath/tracert, ping, ipconfig/ifconfig/winipcfg, netstat and Windows

38

39 Botnet metrics - Operating System (OS) metrics

Management Instrumentation Command-line (WMIC). These tools come with
the operating system and can be accessed through a command shell.

• nslookup/dig: These commands are used to query DNS for resource records.
This may include translating a hostname, such as www.example.com, into its
corresponding IP address, which is 192.0.32.10, and vice versa. On larges
sites such as www.google.com this might result in multiple IP addresses
and these might change over time for a number of reasons. This property
of being able to have multiple IP addresses mapped to a single domain
and change these addresses over time is a DNS technique, called Fast Flux.
This is often exploited by botnet administrators to hide C2 servers. [24,
p. 329] [51]

• traceroute/tracepath/tracert: These commands are used to determine the
most likely route taken by packets traveling through a network. When
the Time-To-Live (TTL) field in an IP packet reaches zero and the packet
did not reach its destination the router that is handling the packet will
respond back to the sending host with information about where the packet
was dropped. [54]

• ping: This command is used to determine if a host is reachable on the
network. Sometimes referred to as ICMP ping because of its use of the
Internet Control Message Protocol (ICMP), this is part of the core protocols
of the Internet Protocol Suite 2.6.2. [52]

• ipconfig/ifconfig/winipcfg: These commands are used to show all current
network interface configurations, such as current IP, the Default Gateway
andMAC address of the network adapter. By using ipconfig /displaydns
it is also possible to view the resolver cache for DNS on the host ma-
chine [49].

• netstat: This is a Windows command that provides information about
network statistics, open sockets and other network related information. [50]
This can be a very useful tool for matching running processes to communi-
cating ports when used in conjunction with another built in Windows tool
called tasklist [53].

• WMIC: This is a command-line tool in Windows that allows access to
system management information such as running processes on the system.
It can provide similar information to netstat, but also vast amounts of other

39

Botnet metrics - Operating System (OS) metrics 40

system information. [55] By running wmic startup list full a detailed
list of what applications that run at startup is shown, which might give infor-
mation about suspicious applications running in the background. Running
wmic process get processid, Name, executablepath will give infor-
mation about the running process.

Although these tools provide useful information about network traffic and
running applications, it is still static data (see Section 2.6.1). Another problem
with these tools are that they don’t provide log files of the information, but
instead you will have to regularly run the commands and parse the data to
be able to store them in log files. WMIC does provide functionality to output
data to Comma-separated values (CSV), but the command still needs to be
executed regularly. A good collection of Windows management tools can also be
found on Microsoft’s Sysinternals website. [76] [41, p. 48-52] A note about these
applications is that a botnet with rootkit capabilities, as explained in Chapter A,
can hide itself from these applications. Thus, there is a risk that botnets are not
detected when using these tools.

SNMP

Simple Network Management Protocol (SNMP) is a protocol for acquiring data
automatically from network management systems. It is part of the Internet
Protocol Suite, as explained in Section 2.6.2, and is used to monitor devices.
The protocol is based on scalar technology and simple definition of managed
objects in which data is stored. [87, p. 44, 105] [11, p. 5]

The management information is stored in the Management information
base (MIB) and it is a type of virtual information store (base). The MIB
contains a (virtual) database of hierarchical objects and are obtained with the
use of object identifier (OID)s, where the OID is the objects position in the
MIB [87, p. 109, 157, 159, 181] [46, p. 6] [47] For UNIX system there is a library
called Net-SNMP [80] available that allows access to SNMP information. [41,
p. 50]

OID’s that can be used to extract useful host based network management
information include:

• .1.3.6.1.2.1.25.4.2.1.1

40

41 Botnet metrics - Operating System (OS) metrics

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunIndex

Displays a unique value for each piece of software running on the host,
which is the Process IDentifier (PID) of the running application. [100]

• .1.3.6.1.2.1.25.4.2.1.2

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunName

This displays the Name of the running application. If this software was
installed locally, this should be the same string as in the corresponding
hrSWInstalledName. [100]

• .1.3.6.1.2.1.25.4.2.1.3

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunID

This displays the product ID of the running application. [100]

• .1.3.6.1.2.1.25.4.2.1.4

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunPath

This displays the Path of the running application. It provides a description
of the location on long-term storage, for example a disk drive, from which
this software was loaded. [100]

• .1.3.6.1.2.1.25.4.2.1.5

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunParameters

Displays a description of the parameters supplied to the running application
when it was initially loaded. [100]

• .1.3.6.1.2.1.25.4.2.1.6

41

Botnet metrics - Operating System (OS) metrics 42

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunType

Displays what type of software the running application is. Values can be
unknown, operatingSystem, deviceDriver or application [100]

• .1.3.6.1.2.1.25.4.2.1.7

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWRun.hrSWRunTable.hrSWRunEntry.hrSWRunStatus

This displays the status of the running application. Values can be running,
runnable, notRunnable or invalid [100]

• .1.3.6.1.2.1.25.6.3

.iso.org.dod.internet.mgmt.mib-2.host.
hrSWInstalled.hrSWInstalledTable

This displays a list of installed software on the host computer with its
installed name, type of software/application and date of install. [100]

• .1.3.6.1.2.1.6.13.1.1

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnTable.tcpConnEntry.tcpConnState

This displays the state of this TCP connection. [75]

• .1.3.6.1.2.1.6.13.1.2

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnTable.tcpConnEntry.tcpConnLocalAddress

This displays the local IP address for this TCP connection. In the case of
a connection that is in the listen state, which means that it is willing to
accept connections for any IP interface associated with the node, the value
0.0.0.0 is used. [75]

• .1.3.6.1.2.1.6.13.1.3

42

43 Botnet metrics - Operating System (OS) metrics

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnTable.tcpConnEntry.tcpConnLocalPort

This displays the local port number for this TCP connection. [75]

• .1.3.6.1.2.1.6.13.1.4

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnTable.tcpConnEntry.tcpConnRemAddress

This displays the remote IP address for this TCP connection. In the case
of a connection that is in the listen state, which means that it is willing to
accept connections for any IP interface associated with the node, the value
0.0.0.0 is used. [75]

• .1.3.6.1.2.1.6.13.1.5

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnTable.tcpConnEntry.tcpConnRemPort

This displays the remote port number for this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.1

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionLocalAddressType

This displays the address type of the local IP address for this TCP con-
nection. [75]

• .1.3.6.1.2.1.6.19.1.2

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionLocalAddress

This displays the local IP address for this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.3

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionLocalPort

43

Botnet metrics - Operating System (OS) metrics 44

This displays the local port number for this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.4

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionRemAddressType

This displays the address type of the remote IP address for this TCP
connection. [75]

• .1.3.6.1.2.1.6.19.1.5

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionRemAddress

This displays the remote IP address for this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.6

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionRemPort

This displays the remote port number for this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.7

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionState

This displays the state of this TCP connection. [75]

• .1.3.6.1.2.1.6.19.1.8

.iso.org.dod.internet.mgmt.mib-2.tcp.
tcpConnectionTable.tcpConnectionEntry.tcpConnectionProcess

The system’s Process IDentifier (PID) for the process associated with this
connection. This is expected to be the same as hrSWRunIndex.

44

45 Simple analysis of a Java Based bot

With the use of SNMP it is possible to retrieve the network information that
I believe is necessary to help detect botnets. Another aspect of the use of SNMP
for collecting this information is that it is designed to function in a distributed
context. This means that if I manage to use these host-based metrics to detect
the presence of a botnet, then this solution can be implemented in a larger scale.
Microsoft included SNMP functionality as standard with Microsoft Windows
XP/Windows 2000/Windows NT and later versions. [56]

According to Aiko Pras, Associate Professor at the University of Twente and
member of Internet Research Task Force (IRTF) Network Management Research
Group, the reason why tcpConnectionEntry gives “empty” answers in Microsoft
Windows is that the objects are not implemented since it is fairly new:

“Anyway, it is often the case (for example for all old devices we can
access via the simpleweb [19]), that certain MIB objects are not yet
implemented. Then you get an “empty” answer.
Unfortunately our Simpleweb [19] devices are all relatively old, and
do not support the new tcpConnectionTable. I would not be surprised
if this is true as well for many devices currently on the market.”–Aiko
Pras, e-mail 2010.05.18 & 2010.05.19

What this means for this thesis is that the process-to-port mapping cannot be
done entirely in SNMP and therefore might be difficult at this time to implement
in a distributed context. Netstat will therefore be used for this purpose. As
with netstat, SNMP on Microsoft Windows may be vulnerable to botnets with
rootkit capabilities. If a bot takes control over the system files associated with
SNMP, it can feed false information back to the user. [57] If the process-to-port
mapping is carried out in a distributed context within an organization that has
access to traffic data, one can compare the results from a central collection point
with the results from the SNMP agent. If the data collected by the central point
does not correspond to what the SNMP agent returns, then this can indicate a
problem with that particular host machine.

2.7 Simple analysis of a Java Based bot

To weave together the information introduced in this and previous chapters, I
will do an analysis of two real world bots. These are both Java based and are

45

Simple analysis of a Java Based bot - Botnet setup 46

very simple and generic examples of bots. It is unlikely that they pose a threat
to networks, but they do have IRC communication features that provide a real
world example on how botnets communicate. I will use the simpler one of the
two latter for the experiment after I have disabled any potentially dangerous
and damaging code blocks.2

It seems like these two botnets come from the same source, but have been
further developed by different people. I call the first Java bot “Family Photos”
because of the filename it is saved as.3According to the author this was to prevent
the file-uploading service from deleting the file. It builds the code into a JAR file
named jusched.jar which functions as the complete bot application. Jusched.exe
is the name of “Java Update Scheduler” and this bot use a filename similar in
an attempt to hide from the user. A screen shot of the botnet source can be
seen in Figure 2.15. The second Java bot I call “IRC” based on the filename
it is saved as.4 The JAR file with the bot application is also called jusched.jar,
which added to my suspicion that the bots come from the same source.

The focus will be on the “Family Photos” bot but similar or added function-
ality from the “IRC” bot will be mentioned. It will be clearly stated which bot
is referenced. An analysis of the “IRC” bot has been written by Craig Williams,
which was also mentioned in Section 2.4, and for a detailed analysis one should
reference his Cisco blog post. [103]

2.7.1 Botnet setup

The botnet provides customizable variables in order to setup the botnet. The
location of the IRC server to be used with the botnet and which port it should
use must be provided. It uses separate IRC channels for command input and
bot response output, each with fields for the password needed to gain access to
the channels. Prefix for the bot’s nickname and what nicknames are designated
the botnet administrators must also be provided.

A list of the variables to be set is extracted from the ConfigDefaults.java file
are as follows:

2Both bots mentioned along with the modified version will be included on the DVD.
3“Family Photos” source code location per 20.06.2010: http://www.megaupload.com/?d=

VC72O61M
4“IRC” source code location per 20.06.2010: http://uppit.com/TW69DX

46

http://www.megaupload.com/?d=VC72O61M
http://www.megaupload.com/?d=VC72O61M
http://uppit.com/TW69DX

47 Simple analysis of a Java Based bot - Botnet setup

Figure 2.15: Excerpt of the available botnet commands for the “Family Photos”
bot.

47

Simple analysis of a Java Based bot - Botnet setup 48

• SERVER: YOURIRC.SERVER.COM

• PORT : 6667

• IN_CHANNEL: #SomeBotnet

• OUT_CHANNEL: #SomeBotnet2

• CHANNEL_IN_PASSWORD: lolz

• NICK_PREFIX : [BOT]

• CHANNEL_OUT_PASSWORD: lolz

• CONTROLLERS : IRCUser1,IRCUSer2,IRCUser3

Before the configuration variables are loaded, the bot first tries to establish if a
remote configuration file is available. Preferences are loaded from Constants.java.
If there is no external configuration file, the bot then loads variables from
ConfigDefaults.java. The issue with the code in particular is that if you don’t
have a valid URL from which to find a configuration file, it will throw an exception
and crash the bot. The URLChecker.java takes an URL as input, but if there is
no valid URL it throws an unhandled java.net.MalformedURLException. The
same thing will happen if the backup URL is not valid.

The nicknames listed in the CONTROLLERS variable are the nicknames of
the botnet administrators. It does not carry out commands from other nicknames
than these.

This bot corresponds to the Star C2 topology described in Section 2.5.1, but
by adding the possibility for backup IRC servers it would be considered to be a
Multi-server C2 topology, which is described in Section 2.5.1

Botnet setup for “IRC” bot

In addition to similar variables as the “Family Photos” bot, the “IRC” bot
has added variables to set password protection for the bot in order to prevent
other competing botnet administrators from stealing it. It also has File Transfer
Protocol (FTP) support and the ability to use a remote setup file.

48

49 Simple analysis of a Java Based bot - Botnet startup

2.7.2 Botnet startup

At startup of the “Family Photos” bot, the main class “Bot.java” is run. It reads
the configuration file and starts a new C2 instance to an IRC server on default
port 6667. After the connection has been made the bot adds itself to startup.
Depending on whether the OS is Windows XP or Windows Vista the bot adds
itself one of the following paths respectively, where “userHome” is the system
property “user.home”:

userHome + "/Start Menu/Programs/Startup"

userHome + "/AppData/Roaming/Microsoft/Windows/Start Menu/
Programs/Startup"

To see whether the bot could successfully be added to startup I did a
test on the host machine. Due to access restrictions set by Windows to the
/Start Menu/Programs/Startup/ folder, the file was not able to be added to
the startup. It was compiled and put in the C:\Users\Andreas\ folder.

Once the bot has added itself to startup, it starts itself to run in the back-
ground. Finally it builds a new jar file named Syn.jar from byte code. Since the
classes are built from byte code and can only be viewed after it has compiled,
they are shown in Appendix D.1 and D.2. Syn.jar contains two classes: “a.class”
and “Main.class”.

Botnet startup for “IRC” bot

At startup the bot reads its configuration file and attempts to connect to an IRC
server on default port 6667. Once a connection to a server is made, it attempts
to add itself to startup and the registry startup:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run

The “ProcessChecker” class will run after the bot is added to startup. This is
explained in Section 2.7.4.

49

Simple analysis of a Java Based bot - Botnet commands 50

2.7.3 Botnet commands

The botnet commands communicate the capabilities of the bot, and these include
IRC channel specific commands, downloading remote files, executing files on
the host, flooding capabilities, spam capabilities, ability to transmit files and
bot commands for update and shutdown among others. These commands are
directly extracted from the Commands.java file:

• .commands: “Shows this dialog”

• .version: “Display bot’s version”

• .exit: “Shut down bot”

• .quit: “Leave IRC server”

• .join: “Join channel”

• .part: “Part channel”

• .nick: “Change nick”

• .nickprefix: “Change nick to prefix + random number”

• .permnick: “Permanently change nick”

• .msg: “Send message”

• .raw: “Send raw line to IRC server”

• .download: “Download file to directory”

• .system: “Execute system command or program”

• .httpflood: “HTTP flood”

• .udpflood: “UDP flood”

• .synflood: “Socket flood”

• .stopfloods: “Stops all floods”

• .getip: “Gets IP address, option to set URL to read from”

• .findip: “If the bot’s IP address matches, it says so”

50

51 Simple analysis of a Java Based bot - Botnet commands

• .mkshell: “Create a new shell for the channel”

• .mkdir : “Make new directory (requires shell on the channel)”

• .cd: “Go into directory (requires shell on the channel)”

• .ls: “List files in current directory (requires shell on the channel)”

• .corrupt: “Corrupts file, option to write message”

• .update: “Updates the bot with the specified jar file URL”

• .send: “Sends file to specified GNXR file server on specified port”

• .zip: “Zips specified file or folder”

• .read: “Reads number of lines from text file”

• .spam: “Spams message based on specified settings”

• .stopspam: “Stops all IRC spamming”

• .ircscript: “Interprets IRC script at specified URL”

When the command .getip is called, the bot uses an automated service from
whatismyip.com [101] to determine its public IP address. This feature, along
with the .commands, .exit, .quit, .join, .part and .raw commands provide all the
features necessary to carry out experiments with regard to detection of botnets
based on communication. This will be explored further in Chapter 4.

Botnet commands for “IRC” bot

The “IRC” bot has similar commands, but also some added features. Whereas
the “Family Photos” bot use “.” to indicate a commands, this bot uses “$”
instead. Since the command file is different from the previous one and do not
contain descriptions so I will add them. The commands are extracted from the
CommandProcess.java file and I show only those that are added features:

• $unlock: Unlocks the commands of the bot if the supplied password is
correct.

51

Simple analysis of a Java Based bot - Summary for bot analysis 52

• $lock: Lock the commands of the bot if the supplied password is correct.

• $getUsername: Return the username of the logged in user on the host
machine.

• $takeScreenshot: Take a screenshot of the host computer.

• $getHomeDir : Return the home directory of the logged in user on the host
machine (“user.home” system property).

• $getOS : Return the OS name running on the host machine (“os.name”
system property).

• $processList: Return a list of running processes with the use of “tasklist”.

• $uploadFile: Upload a file by FTP.

• $disableProcessChecking: Disable process checking.

• $enableProcessChecking: Enable process checking.

2.7.4 Summary for bot analysis

Both bots use IRC for communication on the default port 6667. This corresponds
to the Star C2 topology, described in Section 2.5.1, which mentions that the
majority of botnets use port 6667 and IRC servers for communication.

In order for the bots to load at startup they need to register with the system
to make sure the compromised computer is not lost. Both bots can also add
themselves to startup, but “IRC” bot also adds itself to the registry. This was
also mentioned in Chapter A.

To investigate the claim that a Java based botnet is FUD the jusched.jar
was submitted to VirusTotal [78], which is a service that uses over 40 different
antivirus engines to analyze suspicious files for the presence of viruses, worms,
Trojan horses, and all kinds of malware. The results of this scan are shown in
Figure 2.16.

As the results from VirusTotal [78] shows, the antivirus engines did not detect
the bot. This seems to confirm the claim that a Java based botnet is FUD. The
date of this first scan also shows the age of the bot to some extent. This goes to
show that this bot have been around for some time.

52

53 Simple analysis of a Java Based bot - Summary for bot analysis

Figure 2.16: VirusTotal scan results for jusched.jar

The ProcessChecking.java class in the “IRC” bot is quite interesting because
it looks for what the bot deems as “bad” processes running on the system and
then executes a command to kill the blacklisted processes. Once enabled, it
kills off tcpview.exe, wireshark.exe, ethereal.exe and netstat.exe in an attempt to
hide itself from the user. The method is run every 30 seconds to reduce system
impact, but it is unlikely it would cause too much problems if netstat was used
for data collection. This is because of the relatively large waiting time between
runs. Hiding from system applications was mentioned in Section 2.2, where
bots have tried a variety of ways to hide themselves and from netstat.exe in
particular. Bots also use “rootkit” technology, as mentioned in Chapter A, to
hide themselves from the system, but neither of the bots use this technology.
The fact that botnet authors try to kill these applications just goes to show that
they are seen as a threat to the bot.

53

Simple analysis of a Java Based bot - Summary for bot analysis 54

54

Chapter 3

Visualization

“Ordinary people believe only in the possible. Extraordinary
people visualize not what is possible or probable, but rather what is
impossible. And by visualizing the impossible, they begin to see it
as possible.”–Cherie Carter-Scott

3.1 Introduction

In order to display vast amounts of information to the user in a easy and
understandable manner one can make use of visualization tools. Instead of
manually monitoring vastly different log files and try and extract the useful
information, we try and extract the essence of what is happening and present it
to the user. Computers are good at following rules and pattern recognition is
one example of this. According to C. M. Bishop:

“The field of pattern recognition is concerned with the automatic
discovery of regularities in data through the use of computer algo-
rithms and with the use of these regularities to take actions such as
classifying the data into different categories.” [7, p. 1]

55

Introduction 56

What seems to be the common factor in pattern recognition is the focus on
machine learning with a training set, where the training set in known in advance
and manually inspected. A big focus is on mathematics and discovering patterns
by looking for clustering or use of probability theory. [7, p. 2-4] When visualizing
botnets this might not be the only information that might be useful. Humans
seem to be better equipped to see patterns in data and respond when something
unexpected happens. Pattern detection, especially with regards to geography,
seems to be an intuitive skill for humans.

A visual representation of data enables the communication of vast amounts
of information to the users in a clear and compact way. To do this in the best
possible way it is important to know something about how people understand
visuals. An experiment performed by Tolman [95] on “Cognitive maps in rats
and men”, lead to the concept of the cognitive map. This is where one develops a
mental map of an area. There have been many notions for mental representation
of spatial knowledge and among these are spatial images by Kevin Lynch, which
will be discussed later in this section. [3, p. 22]], and work by Barkowsky to
create a model for representing and processing lean geographic knowledge in the
human mind. It further point to geography as an important factor when making
sense of the world. [3, p. 65]

In the book “Applied Security Visualization” by Marty [41], a number of
different possibilities for visualizing data are presented including different charts,
histograms, plots, graphs, maps and tree maps. 3 of the 13 proposed visualization
methods focused on geographical visualizations and only one directly referenced
a geographical context with event information. [41, p. 110-113] The focus seems
to be on traffic volume instead of events and this may indicate an area where it
is possible to contribute.

In the book, The Image of the City [38] written by Kevin Lynch, a five year
study was conducted on how people perceive and organize spatial information as
they navigate through cities. Using three cities which were “vivid in form and
full of locational difficulties” [38, p. 14], Lynch reported that people understood
their surroundings in consistent and predictable ways, forming metal maps with
five elements:

1. Paths: Paths include streets, sidewalks, railroads or other paths were
people observe their surroundings while moving.

2. Edges: Edges include walls, shores, and edges of development or barri-

56

57 Visualization metrics

ers. They are linear elements not considered to be paths, but breaks in
continuity.

3. Districts: Districts are relatively large sections of a city with a common
identifying character. For example: “Business district”.

4. Nodes: Nodes are points of focus or reference such as intersections, places
of a break in transportation, crossings or convergence of multiple paths.
The person can enter these nodes such as driving through an intersection.

5. Landmarks: Landmarks are typically physical objects such as a building,
sign, store or mountain. They are another point of reference, but in this
case the person does not enter them.

The study found that paths were the predominant city element, although
this varied in importance according to their familiarity with the city. People who
had little knowledge of the city tended to think in terms of topography, large
regions, generalized characteristics, and broad directional relationships. People
who knew the city best of all relied more upon small landmarks and less upon
regions or paths. [38, p. 46-49]

3.2 Visualization metrics

To find good visualization tools we need to know how to accommodate as much
as possible of Lynch’s five elements in order to create an intuitive visualization
tool. Since it is nearly impossible to have intimate knowledge of vast amounts
of log data and packets, Paths and Edges should be the main focus of the
tool in question. However, to accommodate more advanced users and to help
maintain the “big picture” it is also important to have some reference to the
other elements.

By taking cues from the five elements and the concept of the cognitive map at
the start of this chapter, I believe that mapping data in a geographical context
would not introduce new reference systems to the user. By providing metadata
in a compact manor we can reduce the amount of trivial details. This will cover
the spatial dynamics aspect of the problem. To address the temporal dynamics
aspect we also want the visualization to change over time without too much
interaction from the user. It it also important that it is easy to make changes to
the visualization as experimentation introduces many changes.

57

Visualization metrics - Geolocation 58

The focus is not on the volume of traffic, but on the connection itself as
the information being sent is not as important as the fact that the computer is
communicating with a C2 rendezvous point in the first place. This means that
there is no linear mapping of connections onto the visualization. By overwriting
each node when subsequent connections to the same IP are captured, it will
reduce the amount of nodes even if the activity of a particular connection
increases. This will help keep focus on the initial connection and not on how
active or how much data is being transmitted.

Each node or connection will be grouped and assigned an image icon that
corresponds to the application responsible for the connection. Mapping of the
application to the connection will be performed with process-to-port mapping as
described in the previous chapters. The executable’s name will be presented to
the Visualization application in order to assign and compare the image icon. This
will aid in spotting irregularities, emphasize the difference between connections
and show the footprint of an application. For example: If the majority of the
connections are from a web browser, an IRC connection will stand out based on
the different image icon.

Once an interesting observation or connection has been made, it must be
possible to extract more information from the particular observation. Interesting
information such as IP, port, hostname of the server in question, described
in Chapter 2, as well as location information such as city or country will be
presented in the visualization itself without having to leave the application. This
will improved the usability because a user can perform a quick analysis before
deciding to investigate manually instead of having to investigate each suspicious
connection.

Since the focus of the thesis is not detection, but visualization of botnets a
simple scheme of white listing applications known to the user will be employed.
This will be done based on assigned image icons for the applications such that
an unknown application will be presented to the user for further investigation.

3.2.1 Geolocation

Geolocation is the identification of TCP/IP traffic or other computer metrics to
real-world geographic, latitude/longitude coordinates or Universal Transverse
Mercator (UTM) [21] spatial address grid coordinates. When trying to project
locations onto the earth’s surface one may face challenges with regards to

58

59 Visualization metrics - Geolocation

projecting the round earth onto a flat map.

Map projection

The Mercator projection is a conformal projection which means that the angles
and shapes on the globe, project as the same angles or shapes on the map.
What this means in practice is that there is a great variation in scale when you
move away from the central portions of the map. This means that even though
Greenland has a surface area of 1/8 the size of South America it is portrayed as
being the same size. [21] There are numerous ways of doing map projection, but
the one I will use in the thesis is a geographic projection (Plate Carrée), also
called equirectangular projection, used by NASA in their Blue marble project. [60]
It is based on equal latitude-longitude grid spacing. [84, p. 9] An example of this
projection and the image used for the visualization can be seen in Figure 3.1

Figure 3.1: A world map projection from the NASA Blue marble project. [60]

59

Visualization metrics - Geolocation 60

Geolocation tools and resources

A number of tools exist that provide data for geolocation and a number of vendors
provide databases for translating IP addresses into latitude/longitude. The paper
by Robert Lee and Sheau-Dong Lang noted the importance of locality [37] and
by utilizing these resources; I believe a more informative visualization will be
presented to the user. I will provide a quick introduction to some of the most
important tools and vendors of geolocation databases.

• Whois: The whois service is the Internet equivalent of the phone directory.
It provides network information, administrative, and technical contact
information for Internet domains and IP addresses. [96, p. 299]

• traceroute/tracert: This traceroute utility is provided on all UNIX- and
Windows-based systems to give the administrator the ability to show the
most probable route the packets will use the target IP. It achieves this
by using the TTL field, as mentioned in Section 2.6.2. Each time the
TTL field reaches 0, the router handling the packet returns a time-expired
ICMP error message to the original sending computer. By incrementing
the TTL by 1 each time it receives an error message until in reaches
the destination computer. It is possible to determine the most probable
route the packet must have taken to the destination computer based on
these error messages. The devices don’t necessarily provide geographic
information, but they are configured by ISP’s that are geographically
located. Having the location included in the host name helps them when a
network issue requires troubleshooting. [96, p. 306-308]

Some of the best known database vendors for translating IP addresses to
latitude/longitude are:

• MaxMind: MaxMind provides IP address geolocation for credit card fraud
detection. They provide both paid and free solutions for determining a
visitor’s country or city of origin based on the IP address. [42]

• IP2Location: IP2Location provides services to help identify users based
on geographical locations, i.e. country, region, city, latitude, longitude and
other metrics based on IP addresses. [32]

60

61 Technology

• TorIp2Country: Tor [73] is an application to preserve a user’s anonymity
online and it has a free public available database of IP address to coun-
try. [74]

The decision to use Maxmind’s GeoLite City database for this thesis was
based on the quality of the product and because the price was free. Since the
price of IP2Location’s DB18 product is $1399 per server each year and the focus
of the thesis is not geolocation in itself, the Maxmind database would suffice
since accuracy was not of paramount importance. Testing has shown no missing
or misplaced locations.

One note is that the Maxmind’s GeoLite City only supports IPv4 and not
IPv6. There is however a GeoLite IPv6 Country database available.

Geolocation limitations

The accuracy of geolocation must also be kept in mind when using these services
and applications. If the target IP is routed through for example a satellite link,
proxy server or the Tor [73] anonymity service, these factors may affect the
accuracy of the results.

3.3 Technology

3.3.1 Processing

“Processing is an open source programming language and envi-
ronment for people who want to program images, animation, and
interactions. It is used by students, artists, designers, researchers, and
hobbyists for learning, prototyping, and production. It is created to
teach fundamentals of computer programming within a visual context
and to serve as a software sketchbook and professional production
tool.”–processing.org [5]

The project was originally developed by Ben Fry and Casey Reas, but has a
large following of users that develop libraries for use with the software. A large

61

Technology - Processing 62

user following also creates new material on a regular basis and most is released
openly to the community [72].

Features of Processing:

• Open source Java Software Development Kit (SDK).

• Extensive library support.

• Processing code is based on Java and can be used with any Java application.

• Large community backing.

• High quality visuals.

• Highly extendable and customizable.

Figure 3.2: The rendered 3D representation of the Earth with Processing.

I was able to generate a 3D representation of the Earth, as shown in Fig-
ure 3.2, with only 129 lines of code extracted directly from an example on the

62

63 Technology - Processing

Processing [5] [58] website and with a picture from Blue Marble [60], shown in
Figure 3.3.

The processing library seems ideal to develop visualization applications as
it is fairly easy to develop relatively elaborate visuals. With the use of a Java
library for data collection one can easily integrate it into Processing.

Processing library - Carnivore

“Carnivore is a surveillance tool for data networks”–Carnivore [23]

This is a library for processing which uses a network dump, captured by
jPacp [13], to visualize the packets that flow through the network. The data is
displayed based on their IP address and which port that is in use. The main
feature here is that the application uses jPacp [13] to present the data stream
in a controlled manor to the Processing application. It also features a way of
displaying that information with icons and colors. This is highly customizable
and an interesting option. An example of the carnivore library in action can be
seen in Figure 3.4.

This library will provide a tested solution for packet captures and with some
added functionality for visualizing the packets and collecting host based metrics,
there should be sufficient material available for visualizing botnets.

63

Technology - Processing 64

Figure 3.3: Only 129 lines of code can generate a high quality 3D representation
of earth in processing.

64

65 Technology - Processing

Figure 3.4: The Carnivore Library for Processing, displaying a packet dump. [23]

65

Technology - Processing 66

66

Chapter 4

Experiment

“The Internet is the first thing that humanity has built that
humanity doesn’t understand, the largest experiment in anarchy that
we have ever had.”–Eric Schmidt

4.1 Introduction

An important note to consider before carrying out this experiment is that one has
to obtain permission from the parties involved. Not doing so may cause you to
inadvertently break laws and ethical boundaries. For this experiment, the NTNU
Information Technology (IT) department was briefed about the experiment and
what was going to happen, the IRC server administrator was asked for permission
with regards to carrying out the experiment and the bot in question had its
attack features deactivated. The computers used in the experiment were setup
by the author of this thesis and was borrowed with permission from NTNU.
Only one bot was used for this experiment in order to limit the appearance of
a botnet. Channel topics and other bot administrator information were set in
such a way that a potential onlooker did not confuse the experiment with an
actual live botnet. By not gaining permission from the IRC server administrator
may cause them problems and could ultimately result in the server being shut
down by their ISP.

67

Materials and experiment setup 68

All possible precautions were taken to avoid such a case and to keep the
experiment within the boundaries of the law. By taking these precautions,
the definition of a botnet, from Chapter A, will no longer apply for the bot
involved in the experiment, but still keeping the communication capability so the
experiment would be valid. Anyone wanting to replicate the experiment must
keep in mind the legal and ethical aspects involved and perform the experiment
in a safe and controlled manor.

4.2 Materials and experiment setup

In this section a detailed description of the materials and preparation needed to
carry out the experiment will be described.

4.2.1 Equipment

The equipment needed for this experiment is the following:

• Two computers.

• Two Windows 7 licenses.

• Windows SNMP agent available for install.

• Wireshark [93] application.

• mIRC [39] client application.

• WinDump [97] application.

• CamStudio [14] application.

• Network connectivity.

• Network cables.

• Two keyboards.

• Two mice.

• Access to an IRC server.

68

69 Materials and experiment setup - Experiment Setup

• Access to two IRC channels.

• Java based IRC-bot source code.

• Visualization application.

4.2.2 Experiment Setup

The basic experiment setup consists of two computers located in Norway, which
will serve the purpose of the bot, named “PC1”, and a bot administrator
computer, named “PC2”. A remote IRC server located in South Africa will serve
as the Command and Control (C2) rendezvous point for the two computers.

The bot controller will set up and monitor the IRC channels defined in
the setup file of the modified “Family Photos” bot and issue some standard
commands to the bot in order to ensure it is responding correctly. WinDump [97]
packet capture will be performed on both machines and once this is done, the
Visualization will be activated on the machine infected by the bot. Video docu-
mentation will be performed on both the bot and bot administrator computers
with the use of CamStudio [14].

The basic setup of the experiment can be seen in Figure 4.1

4.2.3 Setup for IRC server and channel

The setup of the IRC server and the two IRC channels are done in accordance
with guidelines set by IRC server administrators. They are configured to safely
carry out the experiment in a controlled and transparent manor.

IRC server

The IRC server that was used is located in Northcliff (Johannesburg), South
Africa, and was chosen purely because of its geographic distance from Norway.

IRC server:

za.webcomm.co.za

69

Materials and experiment setup - Setup for IRC server and channel 70

Figure 4.1: Basic setup for the experiment.

70

71 Materials and experiment setup - Setup for IRC server and channel

Permission was obtained from the IRC server administrators and they were
briefed as to what the experiment consisted of. The administrators agreed to
the experiment on two conditions:

1. The bot had to join the channel #bots

2. The bot had to set the mode: MODE [TEST]-FIXED +B, where [TEST]-
FIXED was the nickname of the bot and +B is used to ban a nickname.

Doing this would point out to any onlookers that the bot was registered with
their system and that they were informed of its presence. The bot commands
necessary to complete these requirements are:

• .join #bots

• .raw “MODE [TEST]-FIXED +B”

IRC channel setup

The IRC channels needed to be set up in an informative way to onlookers, as
well as keeping the experiment as contained as possible. The channel modes
used to achieve this is as follows [33] [39]:

Channel modes used:

• +t <topic>: Only channel operators may set the channel topic.

• +n: No external messages can be sent to the channel from users not in
the channel.

• +k <key>: Keyword-protected which will prevent users to connect to the
channel if not familiar with the password.

• +p: Private means that the channel is not visible in any listing.

• +s: Secret means that the channel can show up in channellisting, but users
outside the channel cannot see users inside the channel.

When the channels were created they were set up as follows:

Channel: #PC2_Network_in:

71

Materials and experiment setup - Modification of the “Family Photos” bot 72

• Channel name: #PC2_Network_in

• Channel topic: “Thesis Experiment IN”

• Keyword: “in1234”

• Other channel modes: +n, +p and +s.

Channel: #PC2_Network_out:

• Channel name: #PC2_Network_out

• Channel topic: “Thesis Experiment OUT”

• Keyword: “out1234”

• Other channel modes: +n, +p and +s.

4.2.4 Modification of the “Family Photos” bot

For this experiment, a modification of the “Family Photos” Java based bot
source, explained in Section 2.7, will be performed to neutralize its capabilities.
This can be done since the complete source code is available. Because of ethical
and legal considerations as well as rules from the server that was used, any
damaging code blocks or potentially dangerous capabilities has been removed
or deactivated. This would ensure that the bot used in the experiment did not
cause damage or could be used as part of a real botnet.

As described in the analysis, from Section 2.7.2, the main class of this bot is
the Bot.java class. Modification to the ConfigReader.java has also been done for
the bot to work properly. With the current setup, as described in Section 2.7.2,
the bot will crash if there is no valid external configuration file URL. This
has been circumvented to further prevent the bot going rouge or terminating
unexpectedly.

To point out that the bot had been stripped of its capabilities, all responses
to the command: “.commands” had “neutralized” appended to the response.
Functionality for adding the bot to startup through StartupAdder.java and the
running of Syn.java was also deactivated. In addition to these measures all
classes except; Bot.java, CAC.java, CommandInterpreter.java, Commands.java,

72

73 Materials and experiment setup - Modification of the “Family Photos” bot

Config.java, ConfigDefaults.java, ConfigReader.java, Constants.java, Debug.java,
IRC.java, IRCSocket.java, OutStream.java, URLChecker.java and Util.java have
been removed.

In order for the bot to compile with the included binaries the PATH envi-
ronment variable in Windows needs to be added:

C:\Program Files\Java\jdk1.6.0_17\bin

Once the bot is compiled it will create a jar file named ModifiedJavaBot.jar.
This can be run from a command shell by issuing the command:

java -jar ModifiedJavaBot.jar

An antivirus scan on the compiled ModifiedJavaBot.jar bot was performed
with the use of VirusTotal [78] and the results are shown in Figure 4.2. This
shows that the bot was not detected and thus still have the same FUD properties
as the antivirus results from the analyzed bot, from Section 2.7.4.

Figure 4.2: VirusTotal scan results for ModifiedJavaBot.jar.

Modification of configuration defaults

The ConfigDefaults.java class was modified to reflect the IRC server to be used
in the experiment. For more information on the configuration defaults of the
bot, reference Section 2.7.1.

• SERVER: za.webcomm.co.za

• PORT : 6667

• IN_CHANNEL: #PC2_Network_in

73

Materials and experiment setup - Setup for PC1, a bot infected computer 74

• OUT_CHANNEL: #PC2_Network_out

• CHANNEL_IN_PASSWORD: in1234

• CHANNEL_OUT_PASSWORD: out1234

• NICK_PREFIX : [TEST]

• CONTROLLERS : PC2Controller, PC2Controller2

The IRCSocket.java class is responsible for setting the nickname of the bot.
As default it uses the NICK_PREFIX variable along with a random number
in order to generate the used nickname. This random number function was
replaced with “FIXED” so the final nickname of the bot would always be:
“[TEST]-FIXED”.

Modification of available commands

The Commands.java class was modified to only contain the options described in
Section 2.7.3 and are presented in detail:

• .commands: “Shows this dialog (Neutralized)”

• .exit: “Shut down bot (Neutralized)”

• .quit: “Leave IRC server (Neutralized)”

• .join: “Join channel (Neutralized)”

• .part: “Part channel (Neutralized)”

• .raw: “Send raw line to IRC server (Neutralized)”

• .getip: “Gets IP address, option to set URL to read from (Neutralized)”

4.2.5 Setup for PC1, a bot infected computer

A clean installation of Windows 7 and latest critical updates were performed. User
Account Control (UAC) was deactivated and the Windows Firewall was active.
Wireshark [93], WinPcap [99] and CamStudio [14] were installed according to

74

75Materials and experiment setup - Setup for PC2, a bot administrator computer

the default installation settings provided by the applications. The Windows
SNMP agent was then installed and configured according to the description in
Appendix C.

In order for the Visualization to be run, the Processing [5] application needed
to be installed on the computer and the infected computer will run a copy of
the modified “Family Photos” bot, described in Section 4.2.4.

4.2.6 Setup for PC2, a bot administrator computer

A clean installation of Windows 7 was performed and latest critical updates were
installed. User Account Control for windows was deactivated and Wireshark [93],
WinPcap [99], CamStudio [14] and mIRC was installed according to the default
installation setting provided by the applications.

Configuration of mIRC [39] client

The mIRC [39] client needs to set some details before one can connect to an IRC
server. This is done in the “mIRC Options Window”.

Category: Connect settings:

• Full Name: PC2

• Email address: none

• Nickname: PC2Controller

• Alternative: PC2Controller2

• Invisible mode: Activated (Tacked off)

Category: Connect, Identd settings:

• User ID: PC2Control

• System: UNIX

• Port: 113

75

Methods 76

Category: Connect, Servers settings: Finally, the server described in
Section 4.2.3, za.webcomm.co.za, is added to the IRC server list and marked as
selected.

4.3 Methods

Both computers have been denied Internet access to prevent them being con-
taminated by other malware, until the experiment was carried out. Before the
experiment was performed, both computers were updated with the latest critical
Windows updates and the firewall was activated. To describe the experiment in
the greatest detail possible, a description of setup on each computer is shown.
An extended description of the experiment is also shown in Figure 4.3.

Since there are multiple computers involved in this experiment, each step
will be described for PC2 and PC1 respectively. It is important to carry out the
experiment in this order, because the IRC channels should be set up beforehand
and in order to log the bot’s activity from the botnet administrator.

4.3.1 Step by step guide for PC2

The instructions and tasks to be carried out for the bot administrator computer
is listed in sequential order. The purpose of these instructions is to make sure
the instructions are carried out correctly and provide solid results to base the
analysis on.

1. It is important to have the IP address of the computer for later analysis
in order to correctly identify the machines involved. This is obtained by
running ipconfig, described in Section 2.6.5, in a command shell.

2. Start WinDump [97] in a command shell with the following command:
WinDump.exe -n -e -i 1 -s 0 -w c:\controller.pcap This is useful
for analyzing what information is exchanged between the computers. For
more information on WinDump, see Section 2.6.3.

3. Start mIRC and setup the client and channels according to Section 4.2.6
and Section 4.2.3 respectively.

76

77 Methods - Step by step guide for PC2

Figure 4.3: Extended experiment setup.

77

Methods - Step by step guide for PC1 78

4. Wait for PC1 to complete to startup of the ModifiedJavaBot.jar bot.

5. Once the bot joins the channels, open a private conversation.

6. Send .commands to the bot and wait for response. This will ensure that
the bot is responding correctly.

7. Once the bot has responded it is considered to be running correctly, send
commands required by server administrators according to description
in Section 4.2.3. This will ensure that the experiment is conducted in
accordance with the preconditions set by the IRC server administrator.

8. Send .getip command to retrieve the bot’s public IP for later analysis.
This will ensure we are communicating with the correct computer and this
forms the basis for a successful result.

9. Send .exit command to shut down the bot.

10. Close mIRC, CamStudio and WinDump.

4.3.2 Step by step guide for PC1

The instructions and tasks to be carried out for the bot infected computer is
listed in sequential order. The purpose of these instructions is to make sure
the instructions are carried out correctly and provide solid results to base the
analysis on.

1. It is important to have the IP address of the computer for later analysis.
This is obtained by running ipconfig, described in Section 2.6.5, in a
command shell. This will be compared with the results from the .getip
command performed by PC2 and results from the Visualization application.

2. Start WinDump [97] in a command shell with the following command:
WinDump.exe -n -e -i 1 -s 0 -w c:\experiment2_PC1_bot.pcap For
more information on WinDump, see Section 2.6.3. This will show the com-
munication between the machines from the point of view of the infected
machine, PC1.

3. Capture screenshots of netstat and taskmanager/tasklist to show behavior
before bot is activated. This will be used for later comparison.

78

79 Results

4. Start Visualization application and make sure process2port.csv is not
present in the saveCSV folder, as described in Section B.3.2. This will
ensure a clean base for the results.

5. Start CamStudio and focus the recording window on the area where the
Visualization is running.

6. Start ModifiedJavaBot.jar as described in Section 4.2.4.

7. Capture screenshots of netstat and taskmanager/tasklist for comparison.
This will show the bot’s footprint on the system.

8. Allow for PC2 to carry out the bot commands.

9. Once PC2 has finished its list of instructions and tasks, close the bot if
PC2 did not issue the .exit command.

10. Close Visualization, CamStudio and WinDump.

4.4 Results

Since there are multiple computers involved in this experiment, the results for
PC1 and PC2 will be shown separately.

4.4.1 Results for PC1

To determine what IP PC1 has and to be able to compare it to the results from
PC2, netstat was run. As the result shown in Figure 4.4, the IP address is:
129.241.209.83

Before initiating the bot, netstat and taskmanager showed no connections
to port 6667 and no unknown running processes, as shown in the first part of
Figure 4.7 and Figure 4.5 Once the bot was started, a “Windows Security Alert”
appeared, as seen in Figure 4.6. The alert asked the user to allow “Java Platform
SE binary” to communicate to private and public networks. If a user would be
confronted with this message, the assumption would be that the user would allow
access to both “Private networks” and “Public networks”. Thus both options
was checked off and “Allow access” was selected.

79

Results - Results for PC1 80

Figure 4.4: ipconfig results for PC1.

Figure 4.5: Initial Taskmanager results for PC1.

The bot was now suspected to be running and so netstat and taskmanager
was run again. The results can be seen in the second part of Figure 4.7 and
Figure 4.8. A new connection had appeared and its PID was 464 and the foreign
IP and port pair was: 196.210.236.37:6667.

The taskmanager also showed a new process with PID 464 and image name
of javaw.exe.

During the Visualization, several screen shots were captures with the “s” hot
key. The activity that was captured are shown in Figure 4.9, Figure 4.10 and
Figure 4.11.

Once PC2 was finished with its commands and the final .exit command was
used, netstat and taskmanager results showed that the connection and process
was gone. The Visualization, CamStudio and WinDump were then closed. The
results from WinDump can be seen in Figure 4.12, and the process2port.csv log
file that was created by the Visualization is shown below. Connections with
no public IP have been omitted and the log format has been edited to improve
readability. The format of the log file is explained in Section B.3.2:

80

81 Results - Results for PC1

Figure 4.6: Windows Security Alert for Java Platform SE binary.

81

Results - Results for PC1 82

Figure 4.7: netstat results for PC1 before and after ModifiedJavaBot.jar has
been initiated.

Figure 4.8: Taskmanager results for PC1 after ModifiedJavaBot.jar has been
initiated.

82

83 Results - Results for PC1

Figure 4.9: Visualization showing IRC commmunication between ModifiedJav-
aBot.jar and IRC server in South Africa.

83

Results - Results for PC2 84

Figure 4.10: Visualization zoomed in on IRC server in South Africa.

2010-05-31 21:59:12:134,129.241.209.83,49177,158.38.122.10,80,
CLOSE_WAIT,TCP_RFC,1240,jusched.exe,
C:\Program Files\Common Files\Java\Java Update\,
invalid,application,

2010-05-31 21:59:12:134,129.241.209.83,49190,196.210.236.37,6667,
ESTABLISHED,TCP_RFC,464,javaw.exe,
C:\Program Files\Java\jre6\bin\,invalid,application,

2010-05-31 21:59:12:134,129.241.209.83,49192,72.233.89.199,80,
TIME_WAIT,TCP_RFC,0,System Idle,
, ,operatingSystem,

4.4.2 Results for PC2

To determine what IP PC2 has, netstat was run. As the result in Figure 4.13
shows, the IP address is: 129.241.208.116

Once the mIRC client was started, a “Windows Security Alert” appeared, as

84

85 Results - Results for PC2

Figure 4.11: Visualization of connections made by ModifiedJavaBot.jar when
PC2 issues the .getip command.

85

Results - Results for PC2 86

Figure 4.12: Windump results for PC1.

Figure 4.13: ipconfig results PC2.

seen in Figure 4.14. The alert asked the user to allow “mIRC” to communicate to
private and public networks. As with the “Windows Security Alert” encountered
by PC1, the assumption would be that the user would allow access to both
“Private networks” and “Public networks”. Thus both options was checked off
and “Allow access” was selected.

Once the connection to the IRC server was established and the mIRC client
was configured correctly, the channels were set up. At this point PC1 initiated
the bot and it appeared in both IRC channels. A private conversation was
set up with the bot, as shown in Figure 4.15, and the commands described in
Section 4.3.1 was carried out. The response to the .getip command returned:
128.241.209.83

Once the commands and .exit command had been executed, the bot left the
channels with the message:

[22:02] * [TEST]-FIXED (~TEST-FIX@Webcomm-C3C7E409.item.ntnu.no)
Quit (Connection reset by peer)

The mIRC client, CamStudio and WinDump was then closed. The results
from WinDump can be seen in Figure 4.16.

86

87 Results - Results for PC2

Figure 4.14: Windows Security Alert for mIRC.

Figure 4.15: IRC chat conversation between PC1 and PC2 with issued commands.

87

Analysis 88

Figure 4.16: Windump results for PC2.

4.5 Analysis

The analysis will first be carried out for PC1 and PC2 respectively. Then a final
summary analysis will be given.

4.5.1 Analysis PC1

One thing that was not expected was the requirement of PC1 to scale down
the image to 1024 since it could not cope with the current image size. The
performance of the machine was also significantly lower than on the development
machine and this also impacted the speed of the Visualization application. From
this observation one can conclude that in order to run this type of application it
is essential to have a high performance computer available.

Once the bot was up and running, one could not see the bot JAR file in the
taskmanager and this would correspond to the claim, from Section 2.4, that Java
based botnets are FUD. However, this is not entirely true as the netstat results
showed the connection and its PID 464. The results from taskmanager showed
that PID 464 corresponded to javaw.exe. It is identical to java.exe, but there
is an associated console window with javaw.exe. Since the file that is running
is shown as a different process, this will make it more difficult for a user to see
what is actually running in the background. The port 6667 used by the remote
IP could raise suspicion as it is the default port for IRC, but most users will not
look at netstat data regularly. With a simple change in the server setup this
port can be changed and since many botnets use UnrealIRCd [86] server, this is
trivial and does not prove definitively the presence of a botnet.

In the Visualization javaw.exe was “blacklisted” in the way that the image
icon for this process was changed, but the connection itself was still detected.

88

89 Analysis - Analysis PC1

The image icon was meant as a confirmation if the experiment was successful
in mapping the process. The initial connection to the IRC server is shown in
Figure 4.9. The Visualization application shows that the server is located in
Northcliff, South Africa and it’s IP and port pair is 196.210.236.37:6667. The
netstat results in Section 4.4.1 confirm that this is the connection of the bot. The
server location also confirms that this is the IRC server described in Section 4.2.3.
In Figure 4.10 one can see a close-up of the IRC server.

Once the bot administrator, issues the .getip command, the bot contacts
whatismyip [101] to retrieve the public IP. The result of this is shown in
Figure 4.11.

An analysis of the packet capture performed by WinDump confirms the
connection. The packets were filtered out with the following rule:

(ip.src == 129.241.209.83 || ip.dst == 129.241.209.83) &&
(tcp || http || dns)

The .getip command from the bot controller, PC2, is shown in Figure 4.17
and the returned response is shown in Figure 4.18.

Figure 4.17: PC1 Wireshark request with the .getip command.

Figure 4.18: PC1 Wireshark response to the .getip command.

The process2port.csv log file also shows the connection made by javaw.exe.
With this connection entry logged, we have documented the connection with

89

Analysis - Analysis PC2 90

a date stamp in a way that would not otherwise be possible with netstat and
taskmanager.

4.5.2 Analysis PC2

An analysis of the packet capture performed by WinDump again confirms the
connection and the results of the Wireshark captures from PC1 were filtered out
with the following rule:

(ip.src == 129.241.208.116 || ip.dst == 129.241.208.116) &&
(tcp || http || dns)

The .getip command sent from the mIRC client was captured by Wireshark
and the IP that was returned corresponds to the public IP address of PC1, as
explained in previous sections. The request and response from the PC2 packet
capture is shown in Figure 4.19 and the returned response is shown in Figure 4.20.

Figure 4.19: PC2 Wireshark request with the .getip command.

Figure 4.20: PC2 Wireshark response to the .getip command.

The mIRC logs from PC2 also confirm these findings, but there are some
discrepancies. The timestamps show a slightly different time than files from PC1.

90

91 Analysis - Summary analysis

This is because the clocks on the computers were not synchronized properly,
but this does not affect the results are the time plays a marginal factor in the
visualization and detection.

4.5.3 Summary analysis

The results from both computers show that the botnet seen by PC2 corresponded
to the IP of PC1. The process2port.csv log file, Wireshark results, netstat results
and Visualization screen shots all confirm the presence of the bot.

The botnet IRC server was also detected by the infected host as shown in
the logs from netstat, taskmanager and Visualization as well as in the Visual-
ization application itself. Since no specific adjustments for Java based botnet
detection and visualization was used in the environment, the techniques used
are general and this point towards a wider use of the Process2Port library and
the Visualization.

This experiment shows that it is possible to detect and visualize a botnet
with the use of process-to-port mapping and this has been shown in the images
captured from the Visualization application. The claim that Java based botnets
is Fully UnDetectable (FUD) does not hold true according to the results of this
experiment.

91

Analysis - Summary analysis 92

92

Chapter 5

Discussion

“If it bleeds, we can kill it.”–Arnold Schwarzenegger, Actor and
38th Governor of California. From the movie Predator (1987)

As stated throughout this thesis, botnets are one of the biggest threats
one can face in cyberspace today. They have the ability to launch attacks,
perform espionage and hand over control of the computer. I would argue that
the difficulty to detect their presence is the main reason they can cause such
damage. As the quote the start of this chapter tries to convey, when you
find the presence of the botnet it is much easier to fight it. I believe that a
botnet’s greatest weakness is its need for communication to its C2 rendezvous
point. The inherent structure makes it dependent on communication with its
botnet administrator. This communication that is visualized in the experiment
clearly shows the communications made by the bot residing on the host machine,
including external connections made by the bot.

The Visualization application and Process2Port library used in the visual-
ization of botnets is based on white listing known applications and displaying
these with an image icon. In the experiment this was somewhat reversed by
changing the image icon associated with javaw.exe to represent the presence
of a botnet. The bot was detected with the Visualization application, but it
was not automatically classified as a botnet. I believe there is a big difference
with regards to detection and classification. A user viewing the Visualization

93

Chapter 5. Discussion 94

and observing the botnet is tasked with classifying the connections as those
of a botnet. I believe this method of detection is also in agreement with “A
Host-Based Approach to BotNet Investigation?” [36]. This thesis has focused
on visualizing an IRC-based botnet, but the detection scheme employed can
easily be changed or extended to include related works on botnet detection from
Section 2.3.

The Visualization application and Process2Port library used in the experiment
was used for visualization and detection of a botnet from the perspective of a
host computer. However, the technologies and design choices made throughout
the thesis have a strong focus on showing that the results can also be used in a
distributed context. SNMP was specifically chosen because of its built in support
for deployment in a distributed environment. What was not expected was that
some of the key OIDs turned out to not function properly. This is most likely
because they were too new to have been implemented. This made it necessary
to use netstat to be able to map running processes and connections together,
which limits the ability to focus on distributed technologies as one would need
to install custom software on each computer involved. Once the missing OIDs
are implemented the principles used in this thesis can be used in combination
with a central authority that analysis connections on a network, thus creating a
distributed system for visualizing a larger network.

By using SNMP agents that are already bundled with Windows, I believe
this can provide a valuable tool for system administrators. If one also combines
packet captures from a central authority with what is seen by the host computers
through SNMP, rootkits employed to hide a bot from the host system may still
be detected by the discrepancy between results from the host computer and the
central authority. This may provide a significant increase in detection rate of
botnets running on a network. Using visualization for representing data also
reduces the threshold for user to understand all aspects of the system. The
threshold is reduced since the most technical parts are abstracted away and
replaced with informative nodes.

As botnets use well established channels of communication that is normally
utilized by legitimate application, I believe that the question of automatic
detection and classification of the presence of a botnet boils down to mapping
human behavior in these communication channels. This does require a much
deeper analysis of the data and one will no longer be limited to IP and port
as packet analysis may require analysis of the payload. The issue of privacy
for the users as well as the legal questions that might arise must then be taken

94

95 Chapter 5. Discussion

into consideration. By solely relying on IP and port, which is available to all
intermediate points in the communication and can be regarded as somewhat
public, the techniques presented in this thesis could provide a win-win situation.

I argue that botnets and bot applications are basically the same as any other
legitimate application. The difference is that bots use the existing communication
functionality, originally associated with proprietary applications, to communicate
with C2 rendezvous point or carry out malicious tasks. As shown from the
analysis of the bots in Section 2.7, this also involves using existing functionality
for constructing packets in order to create attack capabilities. Botnets are a
weapon and they can and have been used for that purpose. As the quote from
Appendix B states; any tool is a weapon if you hold it right. This is particularly
true for botnets as they use existing functionality for uses not intended by the
original authors.

The majority of related works done on botnet detection seem to focus on
creating advanced mathematical metrics and packet analysis to detect the
presence of a botnet. The results of the experiment show that this may not be
necessary in order to detect the presence of a bot running on the host computer.
Although the process-to-port mapping technique requires more user interaction,
I believe that it could provide an alternative to other forms of detection or
function as a supplemented to existing administration and monitoring tools.

As mentioned in Section 3.1, humans intuitively create mental maps in
order to navigate in the world. Based on research by Lynch on how humans
navigate, from Section 3.1, the elements Lynch describes also fit quite well with
the elements in the Visualization. By relying on intuitive knowledge from the
user in combination with the Visualization application, I believe that one would
intuitively try to make a mental map and with prolonged usage one could spot
patterns in the communication on the network. This could presumably help
finding new ways of viewing a network, finding discrepancies and in conjunction
with other tools can help viewing the data available in a new way.

The ability to color-code and change animation of events shown in the Visu-
alization application, can also be further utilized if combined with other systems
that produces alarms when faults are detected, such as Intrusion Detection
System (IDS)/Intrusion Prevention System (IPS) systems. Instead of classifying
as “alarm” or “no alarm”, the ability to change the attributes of the elements
available makes it possible to classify the severity of a particular event and
produce the results to the user. This could help reduce the false alarm rates of

95

Chapter 5. Discussion 96

exciting systems as well as presenting the data in a more visually stimulating
way than looking through log files.

Results shows that the principles with regard to process-to-port mapping can
be very useful in detecting botnets, but an unanticipated observation from the
Visualization and process-to-port mapping was that one get access to network
communication in a new way. The main motivation behind the thesis was
“Visualizing Spatial and Temporal Dynamics of a Class of IRC-Based Botnets”,
but the resulting Visualization application shows more than just botnets. It
allows for visualizing all communicating applications and connections to and
from the host computer. This opens up for use in other areas than just botnets
such as investigating communications made by other applications as well, making
this a tool that can be used for more general purposes.

During the development of the Visualization application, TCP flags were
added to the debug console of Processing. One of the reasons for this was to be
able to see if the packets were part of an initial connection, but an observation
showed that there were a disproportionate number of SYN flags. At first I
believed what I was seeing was a SYN attack on a computer on the network,
but later found out that due to the large number of broadcast packets on the
network this assumption was not true. Even though the observation turned
out to be false, it still points out the usefulness of displaying TCP flags to the
user. If the host machine infected with a bot was part of a botnet attack on an
external server, this would presumably be shown in the flags.

The choice to focus on the bot connection itself and not on the volume of
traffic, proved to be a good choice for this context, as was the choice to group
connections into a single node and assigning an image icon corresponding to
the application responsible for the connection. The network the Visualization
application was tested on has a high traffic volume and the test applications also
produced many distinct connections. It is easy to see what connections correspond
to which application and the differences in the image icons helped distinguish
between processes. Instead of permanently changing the node qualities based on
the traffic volume, each node would “activate” each time a packet was received
from a specific IP. This proved very useful as it clearly showed the network
activity at that particular moment in time. It does not seem to be important to
take the actual volume of traffic into account as the activity in the Visualization
provided a clear picture of what was going on. Some of the test applications
used P2P technology and produced numerous distinct nodes. This made the
Visualization quite cluttered, but implementing a functionality to filter out

96

97 Chapter 5. Discussion

specific applications or connections will remove this issue. Using geography as
an integral part of the Visualization proved very rewarding. It made it easy put
the information from the packet capture into context and made it possible to
see the data from a new perspective. The location and time of an observation
also formed new questions that might not have arisen without the Visualization.

In the Visualization application labels are used to display added information.
This includes specific information for a particular connection if a particular node
is selected. Location, IP, port and hostname was primarily the data that was
shown. After the node has been selected and the information is presented to the
user, but it is difficult to see which node the information is relevant for. This
is an area for improvement and integrating the node and its information in a
more informative way would greatly improve the usability of the Visualization
application.

97

Chapter 5. Discussion 98

98

Chapter 6

Conclusion

“Know thy self, know thy enemy. A thousand battles, a thousand
victories.”–Sun Tzu

The results from the experiments show that it is possible to detect and
visualize the presence of a bot on a host computer. Although the Visualization
and Process2Port library used were able to detect and visualize the botnet, it
did not automatically classify the connection as malicious. White listing was
employed to give the communicating applications the correct image icons and
the bot used in the experiment was classified beforehand. The metrics involved
to create this system is based on host based metrics, IP and port. The technique
of process-to-port mapping was able to show connections made by the bot, but
also all other communicating applications running on the host system. This
seems to point to a wider use of the Visualization application for other purposes
than just botnet detection and visualization.

The Process2Port library was successful in mapping each connection an
application was responsible for. It was meant to run on a host system, but the
technologies implemented also shows that it can be used to create a distributed
system based on the same principles as for the single host. To be able to further
develop a distributed system without any additional software installed on the
involved computers, new SNMP OIDs need to be supported.

The Visualization application successfully produced a good overview of the

99

Chapter 6. Conclusion 100

traffic flowing to and from the host machine. Differences with regards to the
communicating applications are displayed in a distinct and clear way. Using
geography as an integral part of the Visualization proved to be a good choice. It
formed new and interesting questions about the observations and presented the
information from a new perspective.

The bot on the host machine was clearly shown as well as the connections
it was responsible for. Results from the experiment and general testing of the
Visualization proved it to be a good tool for general network visualization even
though it was designed for botnet detection and visualization. This would
indicate that it might contribute with something new to the field of visualization.

Botnets are a weapon and the threat posed should not be underestimated and
the damage these networks can inflict on the host system and to other networks
can be severe. The successful detection of this malware is of prime importance
both for home users, businesses and countries.

100

Chapter 7

Future work

“The best way to predict the future is to invent it.”–Alan Kay

During the development of the Process2Port library and Visualization applica-
tion a number of possible extensions were discovered, but due to time constraints
and to limit the scope of the thesis they were omitted. Some of these possible
extensions will be explored in this section.

The Process2port library uses host based metrics in the form of SNMP and
netstat to create the process-to-port mapping of the connections to and from the
host machine. Added functionality with regards to mapping applications could
be extended with the use of Java Virtual Machine Process Status Tool. This
can among other features list the processes that are running on the JVM and
can further help to distinguish legitimate Java processes from the malicious ones
as shown by the Java based botnet. Adding functionality to map connection
hops, with the use of traceroute/tracert, could provide additional information
about which communication trunks the information is likely to pass through.
Extracting the favicons from visited websites would help give more information
about what sites are accessed if one is monitoring a network.

A mapping scheme to parse logs from firewalls, IDS/IPS and other security
systems would add to the intelligence of the nodes as alarms and suspicious
findings could be color coded in the Visualization. Collection of host based
data should ideally be done centrally and a mechanism for sending host metrics

101

Chapter 7. Future work 102

to a central server for processing would also make the Visualization provide a
bigger picture of the network as well as reducing the performance impact on each
computer. The ability to export the data to other formats such as for Google
Earth would make the library useful for other visualization applications as well.

The Visualization application could be improved by creating a more illustra-
tive result by including information about night or day in a particular location.
I attempted to implement this in the current Visualization, but the advanced
mathematics of calculating the position of the sun added significant complexity
and decreased the performance of the application, so it was omitted. Instead
of using a global map of the world, it might be more useful for system adminis-
trators to use geolocation for a smaller geographical area such as an university
campus to map the usage of different applications or occurrences of malware.

Ability to play, pause, forward and rewind the Visualization would make it
easier to step back and investigate suspicious activity without having to monitor
in real time. Being able to load and visualize previously captured data, would
enable the application to function as a demonstration tool as well as real time
monitoring. Since there may be significant traffic on larger networks, the ability
to filter out certain applications, such as Internet browsers, would help make
unusual behavior stand out and reduce clutter. The image icons are currently
manually mapped to the application name, but extracting the image icon directly
from the observed executable would reduce the user’s involvement in setting
up the Visualization application. This would also improve the usability and
allow other applications to use the same concept of mapping image icons to
applications much more easily.

102

Bibliography

[1] Akamai. The state of the internet 3rd quarter 2009. Re-
port, 2009. http://www.akamai.com/dl/whitepapers/Akamai_State_
Internet_Q3_2009.pdf.

[2] Internet Assigned Numbers Authority.
http://www.iana.org/assignments/port-numbers. http://www.iana.org/
assignments/port-numbers.

[3] Thomas Barkowsky. Mental Representation and Processing of Geographic
Knowledge, volume 2541 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2002. http://www.springerlink.com/content/
0lj11k5k1ljg/.

[4] Richard Bejtlich. Extrusion Detection. Addison-Wesley, 1st edition, 2005.

[5] Casey Reas Ben Fry. Processing. http://processing.org/.

[6] James R. Binkley and Suresh Singh. An algorithm for anomaly-based
botnet detection. Paper, 2006. http://web.cecs.pdx.edu/~jrb/jrb.
papers/sruti06/sruti06.pdf.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer, 10 2007.

[8] Bill Blunden. The Rootkit Arsenal. Wordware Publishing, Inc, 1st edition,
2009.

[9] John Canavan. The evolution of malicious irc bots. Pa-
per, 2005. http://www.symantec.com/avcenter/reference/the.
evolution.of.malicious.irc.bots.pdf.

103

http://www.akamai.com/dl/whitepapers/Akamai_State_Internet_Q3_2009.pdf
http://www.akamai.com/dl/whitepapers/Akamai_State_Internet_Q3_2009.pdf
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.springerlink.com/content/0lj11k5k1ljg/
http://www.springerlink.com/content/0lj11k5k1ljg/
http://processing.org/
http://web.cecs.pdx.edu/~jrb/jrb.papers/sruti06/sruti06.pdf
http://web.cecs.pdx.edu/~jrb/jrb.papers/sruti06/sruti06.pdf
http://www.symantec.com/avcenter/reference/the.evolution.of.malicious.irc.bots.pdf
http://www.symantec.com/avcenter/reference/the.evolution.of.malicious.irc.bots.pdf

Bibliography Bibliography 104

[10] Joe Casad. Sams Teach Yourself TCP/IP in 24 Hours. Sams, 4th edition,
2008. http://www.amazon.com/Sams-Teach-Yourself-TCP-Hours/dp/
0672329964.

[11] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network
Management Protocol (SNMP). RFC 1157 (Standard), May 1990. http:
//www.ietf.org/rfc/rfc1157.txt.

[12] Common Event Expression (CEE). Common event expres-
sion white paper. Paper, 2007. http://cee.mitre.org/docs/
Common-Event-Expression-White-Paper.pdf.

[13] Patrick Charles. Jpcap - network packet capture facility for java. http:
//jpcap.sourceforge.net/.

[14] CamStudio community. Camstudio - free streaming video software. http:
//camstudio.org/.

[15] David Harley Craig A. Schiller, Jim Binkley. Botnets - The killer web app.
Syngress, 1st edition, 2007.

[16] Hauke Dämpfling. Gnutella web caching system. http://gnucleus.
sourceforge.net/gwebcache/.

[17] Datatilsynet. Datalagringsdirektivet, 2008. http://www.datatilsynet.
no/templates/article____2156.aspx.

[18] Joshua Davis. Hackers take down the most wired country in europe.
Article, 2007. http://www.wired.com/politics/security/magazine/
15-09/ff_estonia?currentPage=all.

[19] Design and analysis of communication systems Group. Simpleweb, 2010.
http://www.simpleweb.org/.

[20] Jack Dorsey, Evan Williams, and Biz Stone. Twitter. http://twitter.
com/about.

[21] Steven Dutch. The universal transverse mercator system, 2010. http:
//www.uwgb.edu/DutchS/FieldMethods/UTMSystem.htm.

[22] DynDNS. Dyndns. http://www.dyndns.com.

[23] Alexander Galloway. Carnivore - processing library. http://r-s-g.org/
carnivore/.

104

http://www.amazon.com/Sams-Teach-Yourself-TCP-Hours/dp/0672329964
http://www.amazon.com/Sams-Teach-Yourself-TCP-Hours/dp/0672329964
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://cee.mitre.org/docs/Common-Event-Expression-White-Paper.pdf
http://cee.mitre.org/docs/Common-Event-Expression-White-Paper.pdf
http://jpcap.sourceforge.net/
http://jpcap.sourceforge.net/
http://camstudio.org/
http://camstudio.org/
http://gnucleus.sourceforge.net/gwebcache/
http://gnucleus.sourceforge.net/gwebcache/
http://www.datatilsynet.no/templates/article____2156.aspx
http://www.datatilsynet.no/templates/article____2156.aspx
http://www.wired.com/politics/security/magazine/15-09/ff_estonia?currentPage=all
http://www.wired.com/politics/security/magazine/15-09/ff_estonia?currentPage=all
http://www.simpleweb.org/
http://twitter.com/about
http://twitter.com/about
http://www.uwgb.edu/DutchS/FieldMethods/UTMSystem.htm
http://www.uwgb.edu/DutchS/FieldMethods/UTMSystem.htm
http://www.dyndns.com
http://r-s-g.org/carnivore/
http://r-s-g.org/carnivore/

105 Bibliography Bibliography

[24] Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and
Dina Papagiannaki. Exploiting temporal persistence to detect covert botnet
channels. In Recent Advances in Intrusion Detection, volume 5758 of Lecture
Notes in Computer Science, pages 326–345. Springer Berlin / Heidelberg,
2009. http://www.springerlink.com/content/d537672q64130684.

[25] Andreas Groscurth, Thomas Cornet, Richard Welteroth, Steve Bromley,
and Francesc Rosés. Fat jar eclipse plug-in. http://fjep.sourceforge.
net/.

[26] Christopher W. Hanna. Using snort to detect rogue irc bot programs. Tech-
nical report, 2004. http://www.giac.org/certified_professionals/
practicals/gsec/4095.php.

[27] Andreas Hegna, Arne Oslebo, and Morten Knutsen. Meeting with uninett,
02 2010. http://www.uninett.no/.

[28] Andreas Hegna and Stig Henning Verpe. Meeting with ntnu it, 02 2010.
http://www.ntnu.no/adm/it.

[29] Erik Hjelmvik. Networkminer. http://sourceforge.net/projects/
networkminer/.

[30] Reid Hoffman. Linkedin. http://press.linkedin.com/about.

[31] IDC. International data corporation (idc) - press release. Press Release,
2009. http://www.idc.com/getdoc.jsp?containerId=prUS22008509.

[32] IP2Location. Ip2location - bringing geography to the internet. http:
//www.ip2location.com/.

[33] Jolo, prysm, and RuyDuck of EFnet IRChelp(channel). The new irc channel
operator’s guide. http://irchelp.org/irchelp/irctutorial.html.

[34] Chris Brown Ken Baylor. Killing botnets - a view from the trenches. Paper,
2006. http://www.mcafee.com/us/local_content/white_papers/wp_
botnet.pdf.

[35] Alexey Klimkin. edonkey protocol. http://kent.dl.sourceforge.net/
pdonkey/eDonkey-protocol-0.6.2.html.

105

http://www.springerlink.com/content/d537672q64130684
http://fjep.sourceforge.net/
http://fjep.sourceforge.net/
http://www.giac.org/certified_professionals/practicals/gsec/4095.php
http://www.giac.org/certified_professionals/practicals/gsec/4095.php
http://www.uninett.no/
http://www.ntnu.no/adm/it
http://sourceforge.net/projects/networkminer/
http://sourceforge.net/projects/networkminer/
http://press.linkedin.com/about
http://www.idc.com/getdoc.jsp?containerId=prUS22008509
http://www.ip2location.com/
http://www.ip2location.com/
http://irchelp.org/irchelp/irctutorial.html
http://www.mcafee.com/us/local_content/white_papers/wp_botnet.pdf
http://www.mcafee.com/us/local_content/white_papers/wp_botnet.pdf
http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html
http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html

Bibliography Bibliography 106

[36] Frank Y. W. Law, K. P. Chow, Pierre K. Y. Lai, and Hayson K. S. Tse. A
host-based approach to BotNet investigation? In Digital Forensics and
Cyber Crime, volume 31 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages
161–170. Springer Berlin Heidelberg, 2010. http://www.springerlink.
com/content/x28561g15882k83r/.

[37] Robert Lee and Sheau-Dong Lang. Locality-based server profiling for
intrusion detection. In Intelligence and Security Informatics, volume 5075
of Lecture Notes in Computer Science, pages 205–216. Springer Berlin /
Heidelberg, 2010.

[38] Kevin Lynch. The Image of the City. The MIT Press, 1960. http:
//www.amazon.com/Image-City-Kevin-Lynch/dp/0262620014.

[39] Khaled Mardam-Bey. mirc - internet relay chat client. http://www.mirc.
com/.

[40] Raffael Marty. Afterglow. http://afterglow.sourceforge.net/.

[41] Raffael Marty. Applied Security Visualization. Addison-Wesley, 1st edition,
2009.

[42] Maxmind. Maxmind - geolite city. http://www.maxmind.com/app/
geolitecity.

[43] Claudio Mazzariello and Carlo Sansone. Anomaly-based detection of IRC
botnets by means of one-class support vector classifiers. In Image Analysis
and Processing ICIAP 2009, volume 5716 of Lecture Notes in Computer
Science, pages 883–892. Springer Berlin / Heidelberg, 2009.

[44] McAfee. Mcafee, inc. reports botnets threaten national infrastructure
and security. Article, 2006. http://www.mcafee.com/us/about/press/
corporate/2006/20061024_155025_f.html.

[45] McAfee. Mcafee q2 threats report reveals spam, botnets at an all time
high. Article, 2009. http://newsroom.mcafee.com/article_display.
cfm?article_id=3545.

[46] K. McCloghrie and M. Rose. Management Information Base for Network
Management of TCP/IP-based internets. RFC 1156 (Standard), May 1990.
http://www.ietf.org/rfc/rfc1156.txt.

106

http://www.springerlink.com/content/x28561g15882k83r/
http://www.springerlink.com/content/x28561g15882k83r/
http://www.amazon.com/Image-City-Kevin-Lynch/dp/0262620014
http://www.amazon.com/Image-City-Kevin-Lynch/dp/0262620014
http://www.mirc.com/
http://www.mirc.com/
http://afterglow.sourceforge.net/
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity
http://www.mcafee.com/us/about/press/corporate/2006/20061024_155025_f.html
http://www.mcafee.com/us/about/press/corporate/2006/20061024_155025_f.html
http://newsroom.mcafee.com/article_display.cfm?article_id=3545
http://newsroom.mcafee.com/article_display.cfm?article_id=3545
http://www.ietf.org/rfc/rfc1156.txt

107 Bibliography Bibliography

[47] K. McCloghrie and M. Rose. Management Information Base for Network
Management of TCP/IP-based internets: MIB-II. RFC 1213 (Standard),
March 1991. http://www.ietf.org/rfc/rfc1213.txt.

[48] Trend Micro. The internet infestation, how bad is it re-
ally? Article, 2009. http://blog.trendmicro.com/
the-internet-infestation-how-bad-is-it-really/.

[49] Microsoft. Ipconfig. http://technet.microsoft.com/en-us/library/
bb490921.aspx.

[50] Microsoft. netstat. http://technet.microsoft.com/en-us/library/
bb490947.aspx.

[51] Microsoft. Nslookup. http://technet.microsoft.com/en-us/library/
bb490950.aspx.

[52] Microsoft. Ping. http://technet.microsoft.com/en-us/library/
bb490968.aspx.

[53] Microsoft. tasklist. http://technet.microsoft.com/en-us/library/
bb491010.aspx.

[54] Microsoft. Tracert. http://technet.microsoft.com/en-us/library/
bb491018.aspx.

[55] Microsoft. Windows management instrumentation command-line (wmic).
http://technet.microsoft.com/en-us/library/bb742610.aspx.

[56] Microsoft. About snmp, 2009. http://msdn.microsoft.com/en-us/
library/aa377941(VS.85).aspx.

[57] Microsoft. System files for snmp, 2010. http://msdn.microsoft.com/
en-us/library/aa379149(v=VS.85).aspx.

[58] Aaron Koblin Mike Chang. Textured sphere. Source code. http://
processing.org/learning/3d/texturedsphere.html.

[59] Mike Mintz and Andrew Sayers. Msn messenger protocol. http://www.
hypothetic.org/docs/msn/.

[60] Nasa. Blue marble. http://earthobservatory.nasa.gov/Features/
BlueMarble/.

107

http://www.ietf.org/rfc/rfc1213.txt
http://blog.trendmicro.com/the-internet-infestation-how-bad-is-it-really/
http://blog.trendmicro.com/the-internet-infestation-how-bad-is-it-really/
http://technet.microsoft.com/en-us/library/bb490921.aspx
http://technet.microsoft.com/en-us/library/bb490921.aspx
http://technet.microsoft.com/en-us/library/bb490947.aspx
http://technet.microsoft.com/en-us/library/bb490947.aspx
http://technet.microsoft.com/en-us/library/bb490950.aspx
http://technet.microsoft.com/en-us/library/bb490950.aspx
http://technet.microsoft.com/en-us/library/bb490968.aspx
http://technet.microsoft.com/en-us/library/bb490968.aspx
http://technet.microsoft.com/en-us/library/bb491010.aspx
http://technet.microsoft.com/en-us/library/bb491010.aspx
http://technet.microsoft.com/en-us/library/bb491018.aspx
http://technet.microsoft.com/en-us/library/bb491018.aspx
http://technet.microsoft.com/en-us/library/bb742610.aspx
http://msdn.microsoft.com/en-us/library/aa377941(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa377941(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa379149(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa379149(v=VS.85).aspx
http://processing.org/learning/3d/texturedsphere.html
http://processing.org/learning/3d/texturedsphere.html
http://www.hypothetic.org/docs/msn/
http://www.hypothetic.org/docs/msn/
http://earthobservatory.nasa.gov/Features/BlueMarble/
http://earthobservatory.nasa.gov/Features/BlueMarble/

Bibliography Bibliography 108

[61] Arbor networks. Summary report global botnets. Report, 2010. http:
//atlas.arbor.net/summary/botnets.

[62] Aaron Hackworth Nicholas Ianelli. Botnets as a vehicle for online crime.
Article, 2005. http://www.cert.org/archive/pdf/Botnets.pdf.

[63] No-IP. No-ip.com. http://www.no-ip.com.

[64] JD (Justis og politidepartementet). Almindelig borgerlig straffelov (straf-
feloven)(Â§122), 2009. http://www.lovdata.no/cgi-wift/ldles?doc=
/all/tl-19020522-010-015.html&122.

[65] JD (Justis og politidepartementet). Almindelig borgerlig straffelov (straf-
feloven)(Â§145), 2009. http://www.lovdata.no/cgi-wift/ldles?doc=
/all/tl-19020522-010-017.html&145.

[66] J. Oikarinen and D. Reed. Rfc1459 - internet relay chat protocol. RFC,
1993. http://irchelp.org/irchelp/text/rfc1459.txt.

[67] Gunter Ollmann. Botnet communication topologies. Paper,
2009. http://www.damballa.com/downloads/r_pubs/WP%20Botnet%
20Communications%20Primer%20(2009-06-04).pdf.

[68] Younghee Park and Douglas S. Reeves. Identification of bot commands
by run-time execution monitoring. In Proceedings of the 2009 Annual
Computer Security Applications Conference, ACSAC ’09, pages 321–330,
Washington, DC, USA, 2009. IEEE Computer Society.

[69] The Swedish Parliament. Accounting proposal points 2007/08, 2007.
http://www.riksdagen.se/webbnav/?nid=3154&rm=2007/08&bet=F%
C3%B6U15.

[70] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
http://www.ietf.org/rfc/rfc791.txt.

[71] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. http://www.ietf.org/rfc/rfc793.txt.

[72] Open Processing. Open processing. http://www.openprocessing.org/.

[73] Tor project. Tor - anonymity online. http://www.torproject.org/.

[74] Tor project. Tor project - ip-to-country.csv. http://ip-to-country.
webhosting.info/downloads/ip-to-country.csv.zip.

108

http://atlas.arbor.net/summary/botnets
http://atlas.arbor.net/summary/botnets
http://www.cert.org/archive/pdf/Botnets.pdf
http://www.no-ip.com
http://www.lovdata.no/cgi-wift/ldles?doc=/all/tl-19020522-010-015.html&122
http://www.lovdata.no/cgi-wift/ldles?doc=/all/tl-19020522-010-015.html&122
http://www.lovdata.no/cgi-wift/ldles?doc=/all/tl-19020522-010-017.html&145
http://www.lovdata.no/cgi-wift/ldles?doc=/all/tl-19020522-010-017.html&145
http://irchelp.org/irchelp/text/rfc1459.txt
http://www.damballa.com/downloads/r_pubs/WP%20Botnet%20Communications%20Primer%20(2009-06-04).pdf
http://www.damballa.com/downloads/r_pubs/WP%20Botnet%20Communications%20Primer%20(2009-06-04).pdf
http://www.riksdagen.se/webbnav/?nid=3154&rm=2007/08&bet=F%C3%B6U15
http://www.riksdagen.se/webbnav/?nid=3154&rm=2007/08&bet=F%C3%B6U15
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.openprocessing.org/
http://www.torproject.org/
http://ip-to-country.webhosting.info/downloads/ip-to-country.csv.zip
http://ip-to-country.webhosting.info/downloads/ip-to-country.csv.zip

109 Bibliography Bibliography

[75] R. Raghunarayan. Management Information Base for the Transmission
Control Protocol (TCP). RFC 4022 (Standard), March 2005. http:
//www.ietf.org/rfc/rfc4022.txt.

[76] Mark Russinovich, Bryce Cogswell, and Microsoft. Sysinternals. http:
//technet.microsoft.com/en-us/sysinternals/default.aspx.

[77] Philippe Simonet. Getif network tool. http://www.wtcs.org/snmp4tpc/
getif.htm.

[78] Hispasec Sistemas. Virustotal - free online virus and malware scan. http:
//www.virustotal.com/.

[79] Bill Soudan and Denis V. Dmitrienko. Icqlib: The icq library. http:
//sourceforge.net/projects/icqlib/.

[80] Open source community. Net-snmp. http://www.net-snmp.org/.

[81] Inc Sourcefire. Snort. http://www.snort.org/.

[82] Joe Stewart. Sinit p2p trojan analysis. Article, 2003. http://www.
secureworks.com/research/threats/sinit/.

[83] Joe Stewart. Phatbot trojan analysis. Article, 2004. http://www.
secureworks.com/research/threats/phatbot/.

[84] Reto Stöckli, Eric Vermote, Nazmi Saleous, Robert Simmon, and David Her-
ring. The blue marble next generation - a true color earth dataset including
seasonal dynamics from modis. Paper, 2005. http://earthobservatory.
nasa.gov/Features/BlueMarble/bmng.pdf.

[85] W. Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas. Bot-
net detection based on network behavior. In Botnet Detection, volume 36
of Advances in Information Security, pages 1–24. Springer US, 2008.

[86] Nick: Stskeeps. Unrealircd - open source irc deamon. http://www.
unrealircd.com/.

[87] Mani Subramanian. Network Management: An Introduction to Principles
and Practice. Addison Wesley, 1st edition, 1999. http://www.amazon.co.
uk/Network-Management-Introduction-Principles-Practice/dp/
0201357429.

109

http://www.ietf.org/rfc/rfc4022.txt
http://www.ietf.org/rfc/rfc4022.txt
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://www.wtcs.org/snmp4tpc/getif.htm
http://www.wtcs.org/snmp4tpc/getif.htm
http://www.virustotal.com/
http://www.virustotal.com/
http://sourceforge.net/projects/icqlib/
http://sourceforge.net/projects/icqlib/
http://www.net-snmp.org/
http://www.snort.org/
http://www.secureworks.com/research/threats/sinit/
http://www.secureworks.com/research/threats/sinit/
http://www.secureworks.com/research/threats/phatbot/
http://www.secureworks.com/research/threats/phatbot/
http://earthobservatory.nasa.gov/Features/BlueMarble/bmng.pdf
http://earthobservatory.nasa.gov/Features/BlueMarble/bmng.pdf
http://www.unrealircd.com/
http://www.unrealircd.com/
http://www.amazon.co.uk/Network-Management-Introduction-Principles-Practice/dp/0201357429
http://www.amazon.co.uk/Network-Management-Introduction-Principles-Practice/dp/0201357429
http://www.amazon.co.uk/Network-Management-Introduction-Principles-Practice/dp/0201357429

Bibliography Bibliography 110

[88] Tcpdump team. Tcpdump / libpcap. http://www.tcpdump.org/.

[89] Tcpdump team. Tcpdump / libpcap manual. http://www.tcpdump.org/
tcpdump_man.html.

[90] WASTE Development Team. Waste protocol. http://waste.
sourceforge.net/.

[91] Wireshark team. dumpcap. http://www.wireshark.org/docs/
man-pages/dumpcap.html.

[92] Wireshark team. Tshark. http://www.wireshark.org/docs/man-pages/
tshark.html.

[93] Wireshark team. Wireshark. http://www.wireshark.org/.

[94] Philip S. Tellis, Steve McAndrew Smith, Michaël Kamp, Wayne Parrott,
and Ray Van Dolson. Libyahoo2: A c library for yahoo! messenger.
http://libyahoo2.sourceforge.net/.

[95] Edward C. Tolman. Cognitive maps in rats and men, July 1948. http:
//psychclassics.yorku.ca/Tolman/Maps/maps.htm.

[96] Ryan Trost. Practical Intrusion Analysis. Addison-Wesley, 1st edition,
2009.

[97] Gianluca Varenni, Loris Degioanni, Fulvio Risso, and John Bruno. Win-
dump: tcpdump for windows. http://www.winpcap.org/windump/.

[98] Gianluca Varenni, Loris Degioanni, Fulvio Risso, and John Bruno.
Windump: tcpdump for windows manual. http://www.winpcap.org/
windump/docs/manual.htm.

[99] Gianluca Varenni, Loris Degioanni, Fulvio Risso, and John Bruno. Win-
pcap: The windows packet capture library. http://www.winpcap.org/.

[100] S. Waldbusser. Host Resources MIB. RFC 2790 (Standard), March 2000.
http://www.ietf.org/rfc/rfc2790.txt.

[101] WhatIsMyIP.com. Whatismyip.com. http://whatismyip.com.

[102] Craig Williams. Exploring a java bot. Article, 2009. http://blogs.cisco.
com/security/comments/exploring_a_java_bot_part_1/.

110

http://www.tcpdump.org/
http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/tcpdump_man.html
http://waste.sourceforge.net/
http://waste.sourceforge.net/
http://www.wireshark.org/docs/man-pages/dumpcap.html
http://www.wireshark.org/docs/man-pages/dumpcap.html
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/
http://libyahoo2.sourceforge.net/
http://psychclassics.yorku.ca/Tolman/Maps/maps.htm
http://psychclassics.yorku.ca/Tolman/Maps/maps.htm
http://www.winpcap.org/windump/
http://www.winpcap.org/windump/docs/manual.htm
http://www.winpcap.org/windump/docs/manual.htm
http://www.winpcap.org/
http://www.ietf.org/rfc/rfc2790.txt
http://whatismyip.com
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_1/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_1/

111 Bibliography Bibliography

[103] Craig Williams. Exploring a java bot, 2009-2010. http://blogs.
cisco.com/security/comments/exploring_a_java_bot_part_1/,
http://blogs.cisco.com/security/comments/exploring_a_java_
bot_part_2/, http://blogs.cisco.com/security/comments/
exploring_a_java_bot_part_3/, http://blogs.cisco.com/security/
comments/exploring_a_java_bot_part_4/.

[104] Robin Wood. Kreiosc2 - proof of consept bot. http://www.digininja.
org/kreiosc2/.

111

http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_1/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_1/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_2/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_2/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_3/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_3/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_4/
http://blogs.cisco.com/security/comments/exploring_a_java_bot_part_4/
http://www.digininja.org/kreiosc2/
http://www.digininja.org/kreiosc2/

Bibliography Bibliography 112

112

Appendix A

Definitions

In order to discuss and better understand botnets, I will introduce some key
terms.

A Botnet is a collection of computers that are infected with malicious code
without the users knowledge or permission and can be remotely controlled
through a C2 infrastructure also known as Command and Control (C2). This is
also abbreviated to; C&C, CAC or CnC. [62, p. 2]

The term bot is an abbreviation of robot, and is often referred to as a zombie
when part of a Distributed Denial of Service (DDoS) attack. A bot is typically
a component in a Trojan horse or Back Door system that exploits and controls
an individual computer. Most, but not all, bots or Trojans load from the RUN
key in the windows registry, in order to make sure it is loaded after restarting
the machine:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

If the bot is self-propagating, it will take on the characteristics of a worm.
The bot will participate in a botnet and carry out the commands of the botnet
administrator. [62, p. 2] [4, p. 308]

A botnet can be controlled by a single user who own and run it, often referred
to as a botnet admin, botnet administrator, bot herder, bot controller, botnet

113

Appendix A. Definitions 114

operator or botmaster.

The IRC protocol is a text based protocol which is designed to function as
a conferencing system. It allows its users to communicate in real time, where
the server forms a central rendezvous point where clients (or other servers) can
connect to. [66]

Rootkits are pieces of software that embed themselves deep within the inner
circle of the system. In UNIX systems the system administrator’s account is
often referred to as the “root” account. Once installed, they feed the systems
false information, leak sensitive data and hand over control of the system to an
outside attacker. The main services of a rootkit are: Concealment, Command
and Control (C2) and Surveillance. [8, p. 8-11] Remaining undetected may be the
most important service and some rootkits often feed built-in Windows commands
such as netstat.exe [50] and tasklist.exe [53] false information or remove
their own process information in order to remain hidden. [9, p. 28-29]

The term Process-to-port mapping is the process of finding which process,
or application, that is bound to a specific port. For example, applications
using the IRC protocol such as the mIRC [39] client typically use port 6667.
Mapping the communicating ports to their owning application may help to
identify applications that are communicating with the Internet, which are not
expected to do so.

Malware, short for malicious software, is software designed to compromise a
computer without the user’s knowledge or permission. It is a general term used
to describe a variety of different types of unwanted programs, such as viruses,
spyware, adware, Trojan horses, botnets, worms and rootkits to name a few.

114

Appendix B

Software

“Any tool is a weapon if you hold it right.”–Ani DiFranco

One can ask the question: What is the difference between simple and elegant.
In my opinion, simple is simple. Elegant however is simple on the surface and
complex underneath. The point being that a simple visualization can be very
informative if there is substance to the visualization. It does not have to be
complex in order for the data to be shown.

The developed software is mainly divided into two parts. The Process2Port
library handles retrieval of the needed information and storing these mappings for
the search functions that are to be used by the visualization. The Visualization
application uses the created Process2Port library and imported libraries to
visualize the data. In this chapter I will explain in more detail the functionality
of the different parts of the created library and Visualization as well as existing
functionality that is utilized.

B.1 Starting point

The starting point for the software was the Processing application introduced in
Section 3.3.1 and the Carnivore packet capture library for Processing, introduced
in Section 3.3.1. Processing provides an easy way to produce nice visuals and

115

Starting point 116

since it is Java based it is also easy to develop Java libraries that can interact
with Processing.

The Carnivore library is the main basis for the visualization as it provides
packet capture and some readymade examples that give the desired visual effects.
In addition it was easy to modify the code to meet changes. At this point it
would also be useful to point out what I used from existing sources.

Figure B.1: Original visualization provided by Carnivore library. [23]

In Figure B.1 the basis visualization as provided by examples on the carnivore
website are shown. [23] As one can see, the nodes contain image icons for Skype,
iTunes and unknown applications. The logic behind the base classification is;
selecting a particular image icon based on the specific port number of the packet
received or sent. Ports also correspond to a particular color. The placement of
the nodes are decided by the last two IP address bytes, and translated into x/y
coordinates.

From the example provided by Carnivore, I kept the way nodes are displayed.
The node size and ripples are the same, and each node contains an image icon
as well as ports corresponding to a particular color.

116

117 Process2Port

B.2 Process2Port

This library is meant to help with a number of different challenges, but the
main focus is on doing process-to-port mapping, in which communicating ports
are mapped to its “owning” application. That means that if an application
uses P2P technology, which typically uses a wide range of different ports, the
communication can now be tracked back to the application responsible for the
connections. I will not go into too much detail with regards to the actual code
as it is in excess of 6000 lines, not including 2500 lines of Unit Test code. The
package diagram for the Process2Port library can be seen in Figure B.2. The
Process2Port library is also packaged with the FatJar eclipse plug-in [25].1

Figure B.2: Process2Port package diagram.

1The source code is included with the DVD.

117

Process2Port - process2port.objects package 118

B.2.1 process2port.objects package

This library contains the main objects used by the process2port package and
is meant to contain all the information needed for use with the Process2Port
library.

• IPAddress: This object is based on the Carnivore library’s IPAddress
object in order to help with interoperability, but it has some added fea-
tures. The main difference here is an extended functionality from the
java.net.InetAddress.getHostName() method. In addition to allowing the
standard method I have added extended reverse DNS capabilities. This
will be further explained in Section B.2.4.

• Process2Port: This object contains TCP connection and HrSWRunEntry
information in one object. It has a date stamp as well as an extended
range of “get” functions to help push the contained information to the user.
This includes printing the contained information to CSV and Extensible
Markup Language (XML).

• TcpConnectionEntry: This object must not be confused with TcpConnec-
tionEntry SNMP table mentioned in Section B.2.5. It is meant to be a
common container of TCP connection information from netstat, TCP-MIB
(TcpConnEntry) and TCP (Request for Comments (RFC)-793) [71].

B.2.2 process2port package

This package contains the main functionality and for process-to-port mapping.
Process2PortHelper is used for this purpose.

• Process2PortHelper : This is the primary class of the library and handles
the process-to-port mapping.

• Process2PortFile: This class saves the information contained within the
Process2Port objects into a file using CSV format. In addition it also loads
information from a saved file and puts the information into objects. This
is for improving performance and accuracy if a process-to-port mapping
has been carried out previously and the information is still valid.

118

119 Process2Port - cmdexecute package

Process2PortHelper

The Process2PortHelper class can either be started to update the process to
port mapping every 30 seconds, as soon as the update is done or at startup.
This is because the method updating the Process2Port mapping List may take
between 6 and 12 seconds depending on whether HrSWRunEntryHelper and/or
SnmpTcpConnEntryHelper are called. Querying the SNMP agent takes up the
majority of the updating functionality.

All update features, HashMaps and Lists can be called at any time by the Visu-
alization application, thus these features are kept synchronized wherever possible.
This does unfortunately introduce some latency. The main methods used by the
Visualization, is stating how often one wish to update the mappings and the getAc-
tiveproces2portByLocalIPPortPair and getActiveproces2portByRemoteIPPortPair
methods. Input for these methods is the connection IP and port as well as a
distinction to whether the IP and port pair is the local or remote address.

B.2.3 cmdexecute package

This package contains the logic for executing commands in a Command Shell
and retrieval of specific data such as netstat information, ipconfig and some
functionality for killing off processes. The latter is however not implemented
in the current version of the Visualization application. Another note is the
possibility to execute WMIC commands as an alternative to SNMP, but to focus
on the use of SNMP by using CmdExecConnector.

The most important classes in this package are:

• CmdExecConnector : Executes commands in a Command Shell, returns
the output and closes the Command Shell after completion.

• CmdExecConnectorNewWindow: Opens a new Command Shell that the
user can see and executes commands.

• DisplayDNSHelper : Uses CmdExecConnector to execute: ipconfig /displaydns
and returns the values as a DNSEntry object. This information is from the
internal system mapping of IP to host name. The purpose is to use this
with reverse DNS to cut down on execution time and improve accuracy
since not all host’s respond to reverse DNS queries.

119

Process2Port - services package 120

• NetStatHelper : Uses CmdExecConnector to retrieve netstat information,
as mentioned in Section 2.6.5. This is the main component used for
mapping IP and port pairs to a specific Process IDentifier (PID). This
was implemented after the SNMP, see Section 2.6.5, OID needed for this
mapping proved to be difficult to retrieve.

• ProcessKiller : Uses CmdExecConnector with the command taskkill /f
to kill processes by their image name or PID.

B.2.4 services package

This package contains utilities and helper methods used by the other classes in
the library. Methods for date stamps, reverse DNS, Timer, TCP and IP header
information extraction and other miscellaneous methods. These classes can be
accessed by the Visualization application. For example, TcpHeaderHandler and
IpHeaderHandler are used by the Visualization to implement rules based on
Sequence Numbers. See Section 2.6.2 for more information regarding TCP and
IP headers.

• CalendarUtils: This class is used to retrieve the current Time and Date
based on java.util.Calendar. It is used throughout the library for save files,
date stamps for objects and debugging.

• IPUtilities: This class performs reverse DNS (jndi.dns.DnsContextFactory)
in conjunction with DisplayDNSHelper, mentioned in Section B.2.3. Addi-
tional methods include extracting IP addresses based on REGular EXpressions
(REGEX).

• Timer : Simple timer used to do performance analysis on particular meth-
ods.

• TcpHeaderHandler : Based on the JPCAP [13] library with minor modifica-
tions to aid in retrieving values. Was implemented because Carnivore uses
the same library and this has caused some problems. The class provides
an easy way to get access to the TCP header fields.

• IpHeaderHandler : Based on the JPCAP [13] library with minor modifica-
tions to aid in retrieving values. Was implemented because Carnivore uses
the same library and this has caused some problems. The class provides
an easy way to get access to the IP header fields.

120

121 Visualization - snmp package

B.2.5 snmp package

This package contains the logic for connecting to a SNMP agent and retrieving
data. The package also contain helper-methods for retrieving information
from hrSWRunEntry, tcpConnTable as well as tcpConnectionEntry as shown in
Section 2.6.5. Due to challenges with tcpConnectionEntry, netstat was used to
map hrSWRunEntry and tcpConnTable. It is important to note that a SNMP
agent needs to be running on the host system in order for this functionality to
work. For installation instructions on Win7 please reference Appendix C.

• SnmpConnector : Connects to the SNMP agent and retrieve data through
SNMP Get or SNMP Walk. Current SNMP versions supported are version1
and version2c. Useful OID’s are also explicitly written here for ease-of-use.

• HrSWRunEntryHelper : This class retrieves the information from hr-
SWRunEntry mentioned in Section 2.6.5. It stores the information in
a SnmpHrSWRunEntry object and puts them in a HashMap where the
key is the PID of the entry.

• SnmpTcpConnEntryHelper : This class retrieves the information from
TcpConnEntry mentioned in Section 2.6.5. It stores the values in a Tcp-
ConnectionEntry object, mentioned in Section B.2.1, and stores the objects
in a List.

• SnmpTcpConnectionEntryHelper : This class retrieves the information from
TcpConnectionEntry mentioned in Section 2.6.5. Because of problems with
retrieving the information from this table the class is not finished, but
following the same pattern used by the other classes in this package one can
easily implement this table. More information about why there is a problem
retrieving the particular SNMP values are available in Section 2.6.5.

B.3 Visualization

I will focus on the main functionalities provided by the Visualization application.
The Visualization handles geolocation of the packets with the use of “Maxmind -
geolite City” database [42] shown in Chapter 3.2.1. The Carnivore library is used
for some visuals and packet capture. The image used as the background is from
the NASA, Blue marble project [60] as shown in Figure 3.1 from Section 3.2.1.

121

Visualization - Key commands and functionality 122

In order for the Carnivore packet library to function, winPcap [99] also needs to
be installed on the host machine. As with the process-to-port mapping library, I
will not go into too much detail with regards to the actual code as it is in excess
of 2500 lines of code.2

A screen shot of the Visualization application in live mode is shown in
Figure B.3. The images in the picture also referred to as nodes, correspond to
applications running on the local host machine and the location of the nodes are
determined based on the location of the IP address it is communicating with.

The links to each node corresponds to the number of packets associated with
the connection. There might be more than one link to each node, but as stated
in Section 2.6.4 it is problematic to find out if the application receives or sends
the packet. In the context of this thesis this is not of paramount importance
since it is the connection itself which is the interesting part.

The Visualization shows uTorrent, skype, chrome, msn messenger and spotify.
Some of the nodes are not mapped, I.E. the computer images correspond to
connections owned by “System idle” and orange boxes are connections for which
there is no mapping.

B.3.1 Key commands and functionality

The Visualization has a number of hot keys to be able to manipulate the image
and functionality of the Visualization in real time. Without going into too much
detail I will explain the main functionality that the Visualization offers.

Navigation

Functionality for zooming and panning the image is provided to the user, with
the ability to focus on specific parts of the visualization. This can be done
while the Visualization is running. An example of this functionality is shown in
Figure B.4. All the hot keys for navigation are shown in Table B.1.

2The source code is included with the DVD.

122

123 Visualization - Key commands and functionality

Figure B.3: Visualization after roughly 4 minutes running time. Running Peer-
to-Peer (P2P) applications at time of visualization include Skype, Spotify and
uTorrent.

123

Visualization - Key commands and functionality 124

Key Description
Navigation Arrow keys

UP/DOWN Move image UP & DOWN
LEFT/RIGHT Move image LEFT & RIGHT

Navigation Num Pad keys
+ Zoom inn factor 10
- Zoom out factor 10
* Zoom inn factor 100
/ Zoom out factor 100
0 Zoom RESET

8 Move image UP
2 Move image DOWN
4 Move image LEFT
6 Move image RIGHT

7 Move image UP LEFT
9 Move image UP RIGHT
1 Move image DOWN LEFT
3 Move image DOWN RIGHT

5 Move image RESET

Navigation Mouse wheel
UP/DOWN Zoom in & out

Table B.1: Visualization key commands

124

125 Visualization - Key commands and functionality

Figure B.4: Zooming and panning the map. Here showing an unknown connec-
tion.

Setup functionality

These commands focus primarily on the logging functionality in Processing, as
shown in Figure B.5. Information about TCP flags, current time, IP and port
pairs and number of unique nodes currently displayed in the Visualization are
shown in the Figure B.5 log. Debugging commands are mainly used for showing
information from the “headerrules” rule. By enabling the “Image overview table”,
all unique mapped applications will be displayed in a list, as shown in Figure B.6.
All the hot keys for setup functionality are shown in Table B.2.

Various functionality

These commands manipulate the image while the Visualization application is
running. After running the Visualization for a longer period of time, the number
of connections shown can clutter the overall picture. The ability to reset the
tables containing the nodes helps to keep the picture clean. Functionality to
save images, with the possibility to remove all stamps, can be useful for saving

125

Visualization - Key commands and functionality 126

Figure B.5: Carnivore console log showing IP and port pairs as well as TCP
Flags.

Key Description
Setup commands

d Enable Debugging
l Enable light Debugging
z Enable Zooming functionality
g Enable show debug flags
u Enable an Image Name Overview table

Table B.2: Setup key commands

126

127 Visualization - Key commands and functionality

Figure B.6: Visualization showing a list of mapped applications.

interesting findings. All the hot keys for the “various functionality” are shown
in Table B.3.

Key Description
Various commands

f Flush memory, reset HashMaps. (Will remove nodes)
s Save out screen file
t Toggle Stamps

Table B.3: Various commands

Rule functionality

All the hot keys for the rules functionality are shown in Table B.4.

Key Description
Rules commands

p Enable remove Unwanted IP (Not my host IP)
i Enable backup Icons
o Enable Process2Port
h Enable TCP IP header fields

Table B.4: Rules commands

127

Visualization - Visualization functionality 128

B.3.2 Visualization functionality

The metrics used for the Visualization application is reduced and manipulated
with the use of abstraction layers. With each added command it is possible
to reduce the amount of detail shown to the user. This is vital for creating
an overall picture of what is happening, but it can also mean that some useful
information could be lost.

“Raw” packet captures

The core functionality of the Visualization application is displaying “raw” packet
captures, as shown in Figure B.7. All the packets that are caught by the network
interface are shown as small orange boxes, or nodes. Each connection that is
made is divided into two nodes. The host computers public IP is shown to
aid the user with distinguishing what packets are meant for the host and what
packets are destined for other computers on the network. As well as putting the
information in context when investigating further what information a particular
node has. The time of the packet capture as well as the system time is shown
to illustrate any latency the Visualization might have. Each node can also
be color-coded to emphasize attributes for that particular connection. The
color-coding is based on the port used by the individual IP, which was standard
from the Carnivore library’s example. [23] The “host IP”, “System time” and
“Capture time” tags can be hidden, or toggled, by pressing the “t” key shown in
Table B.3.

Host IP filtering

The next step in creating a better overview picture is removing packets on the
network that is not destined for the host computer, as shown in Figure B.8.
Packets are sorted out based on the information in the “host IP” label and
this may constitute a significant difference if the network has a high traffic
volume. When testing the Visualization application on the NTNU network, a
large number of broadcast packets were seen on the network. The overall picture
was significantly improved after activating this functionality. It can be activated
by pressing the “p” key shown in Table B.4.

128

129 Visualization - Visualization functionality

Figure B.7: Visualization of a “raw” packet capture.

129

Visualization - Visualization functionality 130

Figure B.8: Visualization with host IP filtering resulting in reduced packets.

130

131 Visualization - Visualization functionality

Image icon corresponding to port number

Image icon to port number mapping, as shown in Figure B.9, gives each node
an appropriate icon image based on the port number used by the IP. This was
also part of the original material from Carnivore, but it was extended somewhat
to account for applications that was used in the testing. It can be activated by
pressing the “i” key shown in Table B.4. The potential problem with this kind
of mapping is that the port number is mapped to the application that probably
was responsible for the connection.

If a bot using port 6667 was running on the host computer and the mapping
of port 6667 corresponded to mIRC [39], the Visualization would falsely show
the connection coming from the mIRC [39] client. Hence, it would show the
connection as part of a legitimate application.

Process-to-Port mapping

As mentioned in Chapter A, process-to-port mapping is used to map the con-
nection to its owning application. This was done with the use of SNMP and
netstat [50]. When this functionality is activated, by pressing the “o” key shown
in Table B.4, the Process2Port library will create a list of mapped objects with
the use of SNMP and netstat [50]. The corresponding image icon will then be
mapped to the connection, as seen in Figure B.10.

At the startup of the Visualization, a file of previously mapped connec-
tions can be loaded and new connections are saved continuously to the folder:
data\saveCSV\ The default filename for this CSV file is process2port.csv and
the format is: Date stamp, Local IP address, Local port, Remote IP address,
Remote port, TCP connection state, TCP connection object type, Process
IDentifier (PID), Name of the running application, Path of the running ap-
plication, status of the running application, and type of software the running
application is. Not all values may be set in this log file, if the system does not
have the information.

Regardless of the node being mapped one can do a reverse DNS, as mentioned
in Section B.2.4, on the node in question to determine what host server is behind
the IP. In Figure B.10 the connection in question is made to en.pku.edu.cn,
which corresponds to the “Peking University” in China.

131

Visualization - Visualization functionality 132

Figure B.9: Visualization showing mapping of image icon to port number.

132

133 Visualization - Visualization functionality

Location information about the particular node is also shown when selecting
a particular node. In Figure B.10 we see that the server is located in Beijing,
China. This information can be very useful for putting the existing information
into context, as one might see browser activity to a particular location, but not
IRC traffic. In this case the “Google Chrome” browser is connecting to the host
in China.

Missing icon

Applications are white listed beforehand to be able to map the correct icon to the
corresponding name of the running application. In Figure B.11, googletalk.exe
is shown to be missing. If dealing with a bot executable not present in the
white list, it would appear with “missingIconForImageName”. Process-to-port
functionality must be present for this to work.

A rule for further reducing traffic, called “Enable TCP IP header fields”, will
remove packets that have sequential sequence numbers. This will ensure that the
start of the connection will be shown, but the pure data packets that follow will
be discarded. These packets will typically have the PSH flag set, as mentioned
in Section 2.6.2. This functionality can be activated by pressing the “h” key
shown in Table B.4

To be able to save interesting images one can use the “s” key, shown in
Table B.3. All the images that shows visualization in this thesis, is from the
Visualization application and has been captured with this functionality. These
images are saved to folder: data\saveImage\

Image name list

To give a better understanding of what applications are running and communi-
cating on the host computer, the detected running applications are listed with
their image name and corresponding image icon. This can be seen in Figure B.12,
where the detected running applications can be seen in the upper left corner. A
detailed view can also be seen in Figure B.6.

133

Visualization - Visualization functionality 134

Figure B.10: Visualization showing process to port mapping.

134

135 Visualization - Visualization functionality

Figure B.11: Visualization showing unmapped applications and resulting in
“Missing icon for image name” label.

135

Visualization - Visualization functionality 136

Figure B.12: Visualization showing list of mapped applications in upper left
corner.

136

137 Visualization - Example usage

B.3.3 Example usage

When combining these functionalities one can better illustrate the benefits of
this kind of visualization. Figure B.13 shows what a typical snapshot looks like.
Some interesting observations and questions that have arisen from this figure
are:

• All nodes are clustered except one.

• All nodes are in Europe except one.

• Why is my host computer contacting a host in South Africa, Johannesburg?

• Am I currently running mIRC [39]? It uses port 6667 and the node is
mapped to mirc.exe.

• The time is 22:47. Am I at work?

All the nodes in the figure are clustered except one. This is something that
is typical for the captures that have been seen when testing the Visualization.
Typically the nodes one is communicating with is located in Europe, unless a
P2P file sharing application is used. In this figure the majority of the nodes in
Europe are mapped to the Spotify steaming music client, which utilize some
P2P features. It’s quite easy to make out nodes that are not located with the
majority of the communication, which can help indicate unusual behavior. In
this case one node is located in Johannesburg, South Africa. So one could ask
the question; why is the computer contacting a server in South Africa?

The figure also shows that a mIRC [39] client has connected to the server
in South Africa. Some early botnets such as GT bot, mentioned in Section 2.2,
used a hacked copy of the mIRC [39] client to communicate with its C2 server.
In this case one should ask if the user is running the mIRC [39] client. If this
application is not running on the computer, then this may indicate that a botnet
using the mIRC [39] client is running in the background. The server is using
port 6667, which is the default port for IRC and used by 56,7% of all botnets as
described in Section 2.5.1. This further adds to the validity of the claim that
this is an IRC server.

Finally, the time of the capture is also important. According to the “capture
time” stamp, the time is 22:47 and assuming that the host computer in question

137

Visualization - Example usage 138

is a located at the workplace, this could be an employee working overtime or
the computer is communicating without a user. The latter could in turn point
towards an IRC-based botnet running on the host machine.

138

139 Visualization - Example usage

Figure B.13: Example visualization of captured network traffic with mapped
mIRC connection.

139

Appendix C

SNMP installation

C.1 Install SNMP Server on Windows 7

The SNMP service is included with the installation of Windows 7, but you have
to set it up yourself.

1. Go to the “Start” button ⇒ “Control Panel” ⇒ “Programs and Features”
⇒ “Turn Windows features on or off”.

2. Navigate to “Simple Network Management Protocol (SNMP)” and “tack
off” this and “WMI SNMP Provider”. Follow the installation instructions
to the finish.

3. Go to the “Start” button ⇒ “Control Panel” ⇒ “Administrative Tools” ⇒
Open “Services”.

4. Navigate to “SNMP Service” and open.

5. Navigate to the “Agent” tab and fill inn “Contact” and “Location” informa-
tion. Under the “Service” area make sure that “Physical”, “Applications”,
“Datalink and subnetwork”, “Internet” and “End-to-End” is all tacked off.
The “Contact” will be the name of the contact person and “Location” is
your current location.

140

141 Install Getif on Windows 7

6. Navigate to the “Traps” tab and under “Community name” write “public”
and click the “Add to list” button.

7. Navigate to the “Security” tab and make sure “Send authentication trap”
is tacked off.

8. Under “Accepted community names” click on the “Add...” button.

9. In the “SNMP Service Configuration” window that pops up set “Community
rights” to “READ ONLY” and set “Community name” to public.

10. NOTE: If you want to allow write permissions to the SNMP service. Add
another “Accepted community name” with “Community rights”, set to
“READ WRITE” and set the “Community name” to “private”.

11. In the “Security” tab there is also radio buttons for “Accept SNMP packets
from any host” and “Accept SNMP packets from these hosts”. Choose the
latter and click the “Add...” button. In the “SNMP Service Configuration”
window that opens, and under “Host name, IP or IPX address” field, you
write “localhost” and click “Add”. NOTE: Here you can specify which IP
addresses you want to be able to connect to the SNMP Service. If you are
deploying a distributed monitoring system to include the host machine,
add information the address for the central monitoring system here.

12. The service should now be correctly configured and it might be a good
idea to restart the system. After the final step it should be possible to
access the SNMP service by connecting to the IP 127.0.0.1 on Port 161.

To make sure that the service is up and running as well as enumerating the
information in the service, a good program for testing is “Getif”. This will help
troubleshoot any problems with the service and help you locate information on
the host computer. Note that there is an added MIB package on the website
that will allow you to connect and see all the OID’s mentioned in this paper.
Another tool package that can be very useful is the net-SNMP package. This is
also a great troubleshooting tool and this does not require any add-ons to work.

C.2 Install Getif on Windows 7

Getif [77] is a networking tool written for Windows which collects information
from SNMP devices. It makes it easier to discover what kind of information that

141

Install Getif on Windows 7 142

resides within the host computer. Download the tool from the Getif [77] website
and be sure to download the SNMP4tPC Getif MIB collection also.

142

Appendix D

Excerpt botnet source code

D.1 a.class

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

class a extends Thread
{

private File a;
private byte[] b;
public static boolean c;

public a(String paramString)
{

try
{

a(paramString);
}
catch (IOException localIOException)
{
}

}

143

a.class 144

private void a(String paramString)
throws IOException

{
this.a = new File(paramString);
this.b = new byte[(int)this.a.length()];
FileInputStream localFileInputStream = new FileInputStream(this.a);
localFileInputStream.read(this.b);
localFileInputStream.close();

}

public void run()
{

while (true)
{

if (!this.a.exists())
try
{

FileOutputStream localFileOutputStream = new
FileOutputStream(this.a);

localFileOutputStream.write(this.b, 0, this.b.length);
localFileOutputStream.flush();
localFileOutputStream.close();
if (Main.a != 0)

break label62;
}
catch (IOException localIOException)
{
}

label62:
try
{

sleep(30000L);
}
catch (InterruptedException localInterruptedException)
{
}

}
}

}

144

145 main.class

D.2 main.class

class Main
{

public static int a;

public static void main(String[] paramArrayOfString)
{

if (paramArrayOfString.length != 1)
return;

new a(paramArrayOfString[0]).start();
}

}

145

	Title Page
	Problem Description
	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Limitations
	Methodology
	Structure

	Botnet
	Introduction
	Botnet evolution
	Detection
	Java based Botnet and the theory of the Fully UnDetectable (FUD) botnet
	Command and Control (C2) Structure and Topology
	Centralized topologies
	Decentralized topologies

	Botnet metrics
	Terminology
	TCP/IP Model
	Packet Capture and Analysis
	Source/Destination Confusion
	Operating System (OS) metrics

	Simple analysis of a Java Based bot
	Botnet setup
	Botnet startup
	Botnet commands
	Summary for bot analysis

	Visualization
	Introduction
	Visualization metrics
	Geolocation

	Technology
	Processing

	Experiment
	Introduction
	Materials and experiment setup
	Equipment
	Experiment Setup
	Setup for IRC server and channel
	Modification of the ``Family Photos'' bot
	Setup for PC1, a bot infected computer
	Setup for PC2, a bot administrator computer

	Methods
	Step by step guide for PC2
	Step by step guide for PC1

	Results
	Results for PC1
	Results for PC2

	Analysis
	Analysis PC1
	Analysis PC2
	Summary analysis

	Discussion
	Conclusion
	Future work
	Literature
	Definitions
	Software
	Starting point
	Process2Port
	process2port.objects package
	process2port package
	cmdexecute package
	services package
	snmp package

	Visualization
	Key commands and functionality
	Visualization functionality
	Example usage

	SNMP installation
	Install SNMP Server on Windows 7
	Install Getif on Windows 7

	Excerpt botnet source code
	a.class
	main.class

