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Abstract

This thesis considers the concept of digital twins for condition monitoring purposes, which
is becoming an integral part of the simulation, testing and operation of different products.
The technology has great potential for improving operation and cost efficiency of vessels.
This report discusses the possible applications of digital twins in the maritime industry
and gives an introduction to the digital twin of NTNU’s research vessel RV Gunnerus.

The idea explored in the thesis is the possibility of using a digital twin as a condition
monitoring tool of the Permanent Magnet Azimuth (PM-AZ) thrusters propelling R/V
Gunnerus. As the world fleet is moving towards electric propulsion and automation, con-
dition monitoring of these critical systems will become increasingly important. The thesis
includes a study on condition monitoring and fault detection techniques targeting ves-
sel propulsion systems. State-of-the-art electric propulsion systems are discussed, giving
an overview of contributors to downtime of these systems. Research shows that bear-
ing faults, stator faults, broken rotor bars and eccentricity-related faults are to be given
serious attention regarding fault detection and maintenance.

Several condition monitoring approaches are researched through a literature review. Tech-
niques focusing on Permanent Magnet Synchronous Motors (PMSM) are given the most
attention. Given a complete and high-resolution stream of sensor data from R/V Gun-
nerus, it is debated that a combination of a signal-based and model-based approach moni-
toring the power signals would be a good approach. However, in light of the low quality of
the sensor data, a thermal modelling approach combined with a statistical fault detection
algorithm has been conducted in the case study.

Results from the electromagnetic analysis in RMxprt were used in a Lumped Parameter
Thermal Network to simulate the thermal behaviour of a PMSM. This model simulates the
temperature in the stator core, the armature copper windings, the permanent magnets
and the rotor core. The results of the temperature simulations seem realistic and are
within the expected range. Still, the lack of experimental or historical data from the
vessel makes it hard to verify the accuracy of the results. The results of the simulations
show that the winding temperature under overload scenarios can cause temperatures to
exceed the maximum allowed limit. The distribution of the data was analysed in terms
of normality, and the results show that the winding temperatures at different operating
points are within the range of normality. A fault detection algorithm was modelled to
detect changes in the mean and standard deviation of a time series. The results were
promising, and an overload scenario was detected. A simple lifetime estimation model
based on the winding insulation damage was built to predict the remaining lifetime of the
motor. The results show that operation over the temperature limit will have a large effect
on the remaining lifetime of the motor.

The method used in this thesis has been a physics-based modelling approach in combina-
tion with a data-driven fault detection algorithm. The literature shows that non-invasive
Motor Current Signature Analysis (MCSA) is the most useful technique to identify faults
in rotating electric motors. The low cost and efficiency of data driven-methods based on
artificial intelligence are key elements of future condition monitoring. However, for ves-
sels without proper data infrastructure, a combination of model-based and data-driven
condition monitoring can serve as a good tool for monitoring, fault detection and lifetime
estimation of electrical machinery.
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Sammendrag

Denne oppgaven omhandler bruk av digitale tvillinger for tilstandsovervåking, som har
utviklet seg til å bli en integrert del av simulering, testing og drift av ulike produkter.
Teknologien viser stort potensial for å forbedre driften og kostnadseffektiviteten av skip.
Denne rapporten drøfter mulige anvendelser av digitale tvillinger i den maritime indus-
trien, og gir en introduksjon til den digitale tvillingen av NTNUs forskningsfartøy R/V
Gunnerus.

Ideen utforsket i avhandlingen er muligheten for å bruke en digital tvilling som et til-
standsovervåkingsverktøy for Permanent Magnet Azimuth (PM-AZ) thrustere som driver
R/V Gunnerus. Etter hvert som verdensflåten beveger seg mot elektrisk fremdrift og
automatisering vil tilstandsovervåking av disse kritiske systemene bli stadig viktigere.
Avhandlingen inneholder en undersøkelse av tilstandsovervåking og feildetekteringsteknikker
rettet mot fartøyets fremdriftssystem. Toppmoderne elektriske fremdriftssystemer diskuteres,
noe som gir en oversikt over bidragsytere til nedetid på disse systemene. Forskning viser
at feil på drev, stator, ødelagte rotorstenger og eksentrisitetsrelaterte feil må gis oppmerk-
somhet ved feilsøking og vedlikehold.

Flere tilstandsovervåkningsmetoder undersøkes gjennom en litteraturstudie. Teknikker
som fokuserer på Permanent Magnet Synkron Motorer (PMSM) får mest oppmerksomhet.
Gitt en komplett og høyoppløselig flyt av sensordata fra R/V Gunnerus, vil en kombi-
nasjon av en signalbasert og en modellbasert metode som overvåker signalene være en
god tilnærming. I lys av den lave kvaliteten på sensordataen ble imidlertid en termisk
modelleringsmetode kombinert med en statistisk feildetekteringsalgoritme gjennomført.

Resultatene fra den elektromagnetiske analysen i RMxprt ble brukt i en matematisk
modell for å simulere den termiske oppførelsen til en PMSM. Denne modellen simulerer
temperaturen i stator kjernen, kobberviklingene, permanent magnetene og rotorkjernen.
Resultatene fra temperatursimuleringene virker realistiske og ligger innenfor det forvent-
ede intervallet. Likevel gjør mangelen på eksperimentelle eller historiske data fra fartøyet
det vanskelig å bekrefte nøyaktigheten av resultatene. Resultatene av simuleringene viser
at viklingstemperaturen under overbelastningsscenarier kan føre til at temperaturene over-
skrider den maksimalt tillatte grensen. Sannsynlighetsfordelingen av dataene ble analy-
sert i forhold til normalitet, og resultatene viser at viklingstemperaturene ved forskjellige
driftspunkter ligger innenfor normalitetsområdet. En algoritme for detektering av feil
ble modellert ved å lete etter endringer i gjennomsnitt og standardavvik for en tidsserie.
Resultatene var lovende, og et overbelastningsscenario ble oppdaget. En enkel estimer-
ingsmodell av levetid basert på skade av kobberisolasjonen ble laget for å forutsi gjen-
værende levetid på motoren. Resultatene viser at drift over temperaturgrensen vil ha stor
effekt på motorens gjenværende levetid.

Metoden som brukes i denne oppgaven har vært en fysikkbasert modelleringsmetode i
kombinasjon med en data-drevet feildetekteringsalgoritme. Litteraturen viser at en sig-
naturanalyse av strømmen i motoren er den mest nyttige teknikken for å identifisere feil
i roterende elektriske motorer. Effektiviteten av data-drevne metoder basert på kun-
stig intelligens vil være sentrale elementer i fremtidig tilstandsovervåking. For skip uten
riktig datainfrastruktur kan imidlertid en kombinasjon av modellbasert og data-drevet
tilstandsovervåking fungere som et godt verktøy for overvåking, feilsøking og estimering
av levetid.
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Preface

This paper is a master thesis and a part of the study programme Marine Technology at
the Norwegian University of Science and Technology (NTNU).

The work was carried out during the spring semester of 2019 for the course TMR4930
Marine Technology, master thesis, at the Department of Marine Systems Design/Machin-
ery. The workload and the weighting are 30 ECTS and the supervisor for this thesis is
Amir Rasekhi Nejad. The work in this thesis is a continued work of the project thesis
that was written in the fall semester of 2018. Chapter 2, 3 and 4 is based on the work
done in the project thesis.

The focus in this thesis has been aimed towards modelling of a digital twin of an electric
motor for the purpose of condition monitoring. This is motivated to be an integrated
part of a complete digital twin of R/V Gunnerus, functioning as a fault detection tool
for monitoring the permanent magnet azimuth thrusters. The work has been done by
employing state-of-the-art tools and methods to model and simulate the behaviour of per-
manent magnet motors for marine application. The motor used for analysis was modelled
in RMxprt and MATLAB with simulations done in MATLAB/Simulink. The literature
studies have been conducted to gain insight into the various solutions for electrical propul-
sion systems, as well as methods for modelling and performing fault detection for such
systems.

Conducting different modelling and simulation approaches has been very interesting and
educational. With a background as a marine engineer, modelling of electrical systems
have been challenging but rewarding. As the maritime industry is turning towards elec-
trification and digitalization, I have tried to give a holistic perspective to some of the
challenges and solutions for using digital twins for condition monitoring. I believe this
has been a valuable time for me and that the knowledge I have attained in this project
will be beneficial in the future.
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Chapter 1

Introduction

1.1 Motivation

The growth and pressure of digitalization in the shipping industry are increasing. The
development is rapid, and the amount of data collected from vessels are enormous. How-
ever, to fully utilize the collected data, it needs to be combined with existing models to
describe a clear picture of the system.

Detailed vehicle simulations based on sensor data dynamics as well as physical and dy-
namic models make the building blocks for a “digital twin”. This digital twin refers to
a comprehensive physical and functional description of a component, product or system,
which includes more or less all information that can be useful in later lifecycle phases.

In the maritime industry, there are a lot of possibilities with using digital twins. Large
and complex vessels are dependent on high reliability and operability when sailing around
the world. A digital twin for life cycle monitoring and management could be very advan-
tageous for a more energy efficient and smart ship design. For instance, the digital twin of
a vessels machinery system can be modelled. When including sensor data, the condition
of the system can be monitored. This requires creating a sufficiently high-fidelity model
of these types of systems, as well as formulating algorithms for fault diagnosis. In order to
get an accurate twin, the design would have to be very sophisticated, containing several
subsystems.

During the summer of 2018, NTNU, DNV GL and Digitread collaborated on a project
aimed at developing a digital twin of R/V Gunnerus. This resulted in a detailed 3D
model of the entire vessel, a tool for displaying the different systems and components
in addition to visualized sensor data from the vessel itself. The propulsion system on
Gunnerus is diesel-electric, with three generator sets supplying the different systems with
electric power. This type of electrical propulsion system is a growing segment in the
maritime industry, as vessels become more and more electrified. In order to increase the
performance and reliability of these systems, a tool for fault detection and performance
monitoring should be developed. The idea for this thesis is to explore the possibilities
of improving the digital twin of Gunnerus with a dynamic representation of a system.
The existing digital twin is a static representation of shape, attributes and sensor data.
Simulation will be an enabler to determine the behaviour of the system, making the digital
twin dynamic.
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1.2 Objective

The aim of the thesis is to study and evaluate different condition monitoring techniques
related to electrical propulsion systems on vessels. Another aim is to identify the require-
ments needed to build a dynamic model of such a system. This includes a mapping of the
required sensors as well as the different tools and methods to be used. The thesis aims to
build on some of the work done in the “Gunnerus Digital Twin Project”, and a detailed
description of this project will be included. As of 2015, Gunnerus was equipped with two
new Rolls Royce Permanent Magnet Azimuth Thrusters (PM-AZ). As these thrusters are
based on state-of-the-art technology while being such crucial components with available
sensor data, this assignment will focus on studying different techniques to model these
types of electric propulsion systems.

A case study will include the description and building of a physics-based model of the
electric motor. This model will mainly focus on thermal behaviour, but also include other
types of analysis. The results from the model will be used to perform condition monitoring
and lifetime estimation of the PM-AZ thrusters based on the winding temperature. The
case study will be used to describe how such a model can become an integrated part of the
digital twin. This is a step towards using a digital twin to perform condition monitoring.

1.3 Outline

This section is an explanation of the structure of the thesis. Figure 1.1 is a visualization
of the connection between the chapters.

Chapter 2: Digital Twins
This chapter is an introduction to the concept of digital twins. An overview of the
application of digital twins in the maritime industry is given, and its advantages and
challenges are presented. The digital twin of R/V Gunnerus is described in detail, and
the available data from sensors on board is discussed.

Chapter 3: Electric Propulsion in Maritime
Chapter 3 presents an overview of the state-of-the-art electric propulsion systems used in
the maritime industry. The most popular solutions are described in detail, and research
and literature on advantages and challenges with the different systems are reviewed.

Chapter 4: Fault Detection and Condition Monitoring
This chapter is an overview of the research and literature as well as the state-of-the-art
techniques within fault detection and condition monitoring of rotating electric motors.
Methods for condition monitoring of Permanent Magnet Synchronous Machines are dis-
cussed in detail. A model-based approach for thermal monitoring is reviewed.

Chapter 5: Case Study
In this chapter, the objective and approach of the case study are presented. The motor
used for analysis is also described.

Chapter 6: Modelling and Analysis Theory
The theories behind the methods of thermal modelling and Gaussian processes are de-
scribed in chapter 6. Lumped Parameter Thermal Networks are described, and the theory
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behind using Gaussian processes for regression is presented.

Chapter 7: Methodology
The methodology chapter describes the approach used to obtain the results of the case
study. The relevant software is presented, and the approach of the RMxprt analysis
is shown. The thermal modelling method is described, and simulation approaches are
planned. Faulty stated to be detected is described, and the method for estimating motor
lifetime estimation based on winding temperature is presented.

Chapter 8: Results and Discussion
Results from analysis, simulations etc. are presented and discussed in chapter 8. In addi-
tion to this, uncertainties of the results and the different condition monitoring methods
are discussed.

Chapter 9: Conclusions and Recommendations for Further Work
Key findings from chapter 8 are presented and briefly discussed along with recommenda-
tions for further work.

Figure 1.1: Flow chart of thesis structure
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Chapter 2

Digital Twins

In recent years, digital twins have started to show their potential in the marketplace.
Digital twins are not a new idea, however. Several car manufacturers and the US Air
Force have used them in different stages of a product’s lifecycle, with a goal to reduce
cost and man-hours. In the maritime industry, the examples of fully utilizing integrated
digital twins are lacking. Several tools and models for simulating different systems on a
vessel already exists. A digital twin of a ship will combine all of these available models and
information throughout its lifecycle. A variety of operations can be performed, including
system design, simulation, condition monitoring and predictive maintenance as a tool to
enable greater pro-activity to avoid risks and maximize profitability [68].

Figure 2.1: Virtual doppelganger of RV Gunnerus

In general, the digital twin is a virtual doppelganger of the vessel itself, call it a complex
ecosystem of connected things, such as an autonomous vessel in the Trondheim fjord. The
digital twin is more than just a 3D model. It’s a model that sees the ship as a system
of complex systems like propulsion, navigation, electronics and communication. The idea
is that one can analyze the performance of the vessel under every condition and over
its entire lifecycle, from conceptual design to decommissioning. Digital twins are being
used to model the physical performance, but also how more complex systems will behave
together as a whole [39].
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The enablers of digital twins are three emerging technologies:

• Simulation software and tools

• IoT and sensors

• Power of machine learning and predictive analytics

The simulation software and tools represent the heart of the digital twin. Today, state
of the art tools can replicate and virtualize the performance of products and systems
based on the laws of physics. Digital twins are essentially simulations of components in
action, based on operational data generated over long periods of time by sensors from
critical parts. The Internet of Things, enabled by sensors and increasing connectivity
allows us to capture real-time data, send it to the cloud, and store it in large quantities.
We can then set the emerging power of machine learning and predictive analytics to work
on all those data streams. This serves as a critical tool, providing capabilities that were
previously accomplished through costly trial and error [39].

Figure 2.2: Breakdown of the Digital Twin [68]

The digital twins can bring a lot of value to different industries. The question is how
it will bring value to the maritime industry, and how it will affect the way we build
and operate ships. Optimally the digital twin will be constructed before the design and
building of the real vessel. This will allow designers to start modelling and verifying how
the vessel will perform under different operations and conditions. Building the twin might
start with evaluating different, already existing components together. Data on e.g. type
of propulsion, propeller, main dimensions and hull shapes will then be used to analyze
the interaction between the different systems. Other data layers such as operational data
from similar models, control system software or AIS and weather data can be added
to improve the model. The ship designers can then use this data in combination with
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machine intelligence tools to optimize the design against the requirements, long before
the steel is cut [39].

Then comes the Product Lifecycle Management (PLM) part of the digital twin. Engineers
will be able to see what is happening, and why. They can speed up the simulation in
order to find when, why and how faults will occur. This will allow designers, builders, op-
erators and other stakeholders to reduce costs, improving efficiency and bettering safety
throughout the lifecycle of the vessel [68]. Another point is in regards to the develop-
ment of autonomous ships. To quote Øyvind Smogeli at DNV GL; "Industries such as
maritime are moving over to cyber-physical systems, and you cannot verify and classify
these only on the basis of documentation - these systems need to be tested in a simulated
environment"[39].

2.1 Application of Digital Twins in Maritime

GE has a vision of a digital twin model including all necessary aspects of the physical
asset or larger system including thermal, mechanical, electrical, chemical, fluid dynamic,
material, lifing, economic and statistical models [22]. These models are also meant to
accurately represent the vessel under different variations related to operations. Using
these models combined with techniques like optimization, control and forecasting, the
digital twin can be used to predict outcomes along different axes. In conjunction with the
sensor data, the model will have the ability to predict the vessel’s performance, evaluate
different scenarios, understand trade-offs and enhance efficiency [22]. The digital twin
models are continuously updated as the vessel is operated. At any moment the twin will
represent a faithful representation of the current state.

One potential application for vessels is optimizing efficiency by adjusting operational
settings and finding the best possible load for different operations. Such an optimizer
uses an online performance model together with real-time optimization to give periodic
recommendations for operation. Another application that will be discussed further is
having an asset life optimizer. This application will use different models to predict the
remaining time left before maintenance is required. Maintenance schedules can be altered
if a component experiences an unforeseen anomaly. These anomalies can be caused by
failed components, deviations from the design operating profile etc. The goal of these
models will be to reduce unplanned maintenance and optimize scheduled maintenance
based on condition rather than fixed dates [22].

Digital Twins also has the potential to play a part of all ship manufacturing processes,
achieving optimized ship design, manufacturing and MRO (Maintenance, Repair and
Overhaul) etc. [72]. In the design phase, it involves interaction between the virtual and
the physical world. A digital twin will enable iterative optimization of the design, helping
designers to iteratively adjust and improve the design. Also, digital twins can be used
to predict and verify product functions, behaviour, structures and manufacturability etc.
[66]. The digital twin can accurately find defects in designs through virtual simulations,
make the necessary improvements and thus avoiding tedious verification and testing [57].
Figure 2.3 is a good illustration of digital twin integration of manufacturing processes.
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Figure 2.3: Digital twin in manufacturing [57]

Next, the proven ship design is sent to the yard for manufacturing. From the input of
raw material, steel cutting and to the output of finished vessels, the whole manufacturing
process is managed and optimized through a digital twin [62]. The virtual yard can
simulate and evaluate the different manufacturing strategies until the best planning is
found. In the building phase of the project, real-time monitoring and adjustment of
manufacturing processes can be done through virtual-physical interaction and iteration.
The virtual models will be updated based on data from the yard, staying updated in
case of changes. Using simulation of the virtual yard, the manufacturing process can be
adjusted to achieve optimal manufacturing [57].

As discussed earlier, the virtual model of the vessel will have an as-built standard when
the vessel is completed. The digital twin will then follow the vessel throughout its lifecycle
to provide value-added services. Users can see the latest state and position of the vessel, as
well as any potential faults and warnings. Walkthrough MRO strategies can be executed
in VR or AR in order to evaluate the effectiveness and execution of a plan. Lastly, the
data from the different stages of the vessels lifecycle can be accumulated and inherited to
contribute to the construction and operation of the next generation vessels [57].

The key enablers of digital twins within the maritime industry is presented by Erikstad
in [21]. Figure 2.4 presents the historic and projected development for using digital twins
in maritime.
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Figure 2.4: Historic and projected development of digital twins in maritime [21].

2.2 Digital Twin of R/V Gunnerus

The basis for a digital twin of R/V Gunnerus was developed in a collaborative project
between NTNU, DNV GL and Digitread. The summer of 2018, five NTNU students,
including myself, were involved in a student project aimed at developing the digital twin
of R/V Gunnerus. The purpose of the project was among other things to increase the
knowledge relevant for digitalization within marine technology. This included the chain
from measurement techniques, sensors, data capture from systems and equipment on
board a ship, via structuring and analysis of data, to use the derived information for
decision support.

The summer project contributed to the foundations for an architecture of the R/V Gun-
nerus digital twin. The digital twin consists of different building blocks that are integrated
on a shared platform. These building blocks are:

1. A detailed 3D-model of R/V Gunnerus

2. Vessel/component information and documentation

3. Sensor data information

The detailed 3D-model of the vessel was modelled in Siemens NX. This model was con-
nected to sensor information and data, as well as the vessel product model (PMOD) that
provides information about the different components and systems on board. These ele-
ments were managed and connected through DNV GL’s Veracity data platform. A digital
twin viewer that is supported in Veracity, is integrating and connecting all building blocks
and is where the user can interact with the end product. The workflow connecting these
building blocks is shown in figure 2.5.
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Figure 2.5: Workflow of digital twin development

Figure 2.6 shows another illustration of the building blocks that are a part of the Gunnerus
digital twin. There is a lot more to a digital twin than this, but we have built a basis
to build on in the future. When comparing with figure 2.2, we see that we have covered
more or less 3 of the 7 building blocks in DNV GL’s breakdown of a digital twin. The
information models for systems and components are collected from the vessel PMOD
and connected with the visualized model. The Gunnerus PMOD has been updated this
summer and contains information and parameters on the key components and systems on
board the vessel.

Figure 2.6: Building blocks of Gunnerus Digital Twin

The 3D visualization models of components and structures are very important for hav-
ing a visual and intuitive digital twin. Therefore, a lot of hours was spent doing robust
modelling in Siemens NX. The model consists in part of several smaller assemblies with
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already created components, whereas other systems have to be explicitly modelled. Be-
sides modelling the vessel, the location of the different sensors in the vessel was defined as
a layer on top of the 3D-model. The finished 3D-model was exported to the digital twin
viewer and connected to the vessel information model. An overview of the vessel in the
digital twin viewer can be seen in figure 2.7 below:

Figure 2.7: Overview of vessel in Digital Twin viewer

My task in the project was to connect the 3D model to the information and data available
from the vessel. This required a detailed mapping of the sensors, where each signal was
given a description, a code, and the data from the given sensor was reviewed. Data from
the functioning sensors were filtered in Python and stored in the cloud. Another part of
the task was to update the PMOD of Gunnerus, making sure all useful information about
the different systems and components was available and correct. This PMOD was then
integrated with Veracity as a web-based viewer accessing the PMOD database. This made
it possible to integrate the PMOD information with the digital twin. The next part of
the process was to visualize the filtered sensor data. A dashboard in Power BI was made
for Gunnerus, and this was also made available as a Veracity application. A continuous
dialogue with the 3D-viewer developers helped us connect the PMOD and dashboard with
the 3D-model.

The digital twin of R/V Gunnerus as of now can be used for a variety of purposes, even
though it is far from complete. It serves as a simple platform for learning about basic
naval architecture and terminology related to ships. It can serve as an interactive and
good visualization of the vessel for the crew and users. Key components and system
information can also be easily accessed by clicking a selected ship component.

In addition to the vessel overview and access to metadata, the sensors are shown as
clickable spheres. Like with the vessel components, relevant metadata can be accessed
and links to visualized data from the selected sensor are included. The user functionality
can be seen in figure 2.8, showing some of the sensors found on the vessel. Note the colour
coding of the spheres, allowing the sensor node to display any type of status or faulty
condition at the given position.
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Figure 2.8: Location of sensors and other data sources embedded in the visual ship
model

A summary video of the project can be found by following this link:
http://folk.ntnu.no/asbjorns/Gunnerus_Demo_Video.mp4

2.2.1 Gunnerus Sensor Data

As described in the objective, the Permanent Magnet Azimuth thrusters are equipped
with a number of sensors. Historical data from these are available for evaluation and
analysis. This is the reason why the case study in this thesis focuses on the thruster
system. The study will research how the digital twin of Gunnerus can be developed
further to include condition monitoring and simulation in order to give a health status of
the system. The R/V Gunnerus digital twin already presents a detailed overview of the
PM-AZ thrusters. This can be seen in figure 2.9.

In the same detail view as in figure 2.9, a link to the Power BI dashboard is provided.
This dashboard visualizes sensor data time series and AIS data. Figure 2.10 shows one
part of the dashboard, displaying different signals from Gunnerus while in operation.
For the Digital Twin summer project, a Non-Disclosure Agreement was signed between
NTNU and Rolls-Royce Marine in order to use historical data from the AZ-PM Thrusters.
Appendix A displays a spreadsheet and illustration describing the different sensors from
where data is available. From this illustration, it is clear that there exists data from some
but not all of the interesting vessel subsystems
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Figure 2.9: Detailed view of azimuth thruster with sensor and metadata from product
model.

Figure 2.10: Power BI dashboard visualizing some of the sensor data from Gunnerus.

Making sense of the available sensor data can also be a challenge, as there exists little
standardization in the naming of sensor signals, with data coming from systems delivered
by several vendors. Many signals were ambiguous or nonsensical, and some signals gave
little insight into the physical state of the vessel but only triggered some other control
system function. Other signals, like temperature, did not seem to give any nonzero value
at all. This is discussed further in chapter 5.
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Chapter 3

Electric Propulsion in Maritime

3.1 Introduction

Electric propulsion has developed into one of the most efficient propulsion arrangements
for several vessel types over the last decade [28]. The development of semiconductor
switching devices has opened up for full rpm control of propellers and thrusters, enabling
simplification of the mechanical structure. Electric propulsion also has the potential for
fuel savings compared to direct drive propulsion. This potential lies with the highly vary-
ing operational profile of commercial vessels, who are seldom running at design speed.
This favours electrical production of power that can be produced and stored with the
optimum running of prime movers. Vessels such as icebreakers, cruise vessels, DP off-
shore vessels, LNG carriers and other special vessels etc. are being designed with electric
propulsion [54].

3.2 State-of-the-art

There has been developed a lot of different variants of electrical propulsion systems in
recent years. In the following sections, some of the most common systems will be presented
along with the most common faults and condition monitoring techniques for the given
system. The main types described are conventional fixed pitch systems and different
types of azipod and azimuth propulsion systems, including permanent magnet azimuth
thrusters like the ones installed on R/V Gunnerus.

3.2.1 Conventional Fixed Pitch Propeller

Dual fuel electric vessels have become more or less standard for newbuilding of LNG Car-
riers lately. These have a configuration of either single or double fixed pitch propeller
systems powered by two electric motors each via a twin input/single output reduction
gearbox. This is basically the same mechanical single shaft-line configuration as for tra-
ditional steam or diesel ships [36]. The reduction gear enables the use of medium speed
electric motors of less physical size than corresponding slow speed motors [28]. Figure 3.1
shows such a single-screw propulsion system.
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Figure 3.1: Propulsion system of an LNG carrier [36]

Regardless of the number of propellers, these are typically equipped with four or five dual
fuel engines powering the electric plant. This plant consists of switchboards, transformers,
converters and two synchronous propulsion motors. This system will provide a gain in
efficiency, especially in the lower power range. Synchronous propulsion motors provide
high efficiency and low weight to power ratio. The motors come with two stator windings,
because of the power level that requires double inverter units in the frequency converter.
These sort of systems have a high level of redundancy given the possibility of running on
one stator winding [36].

Figure 3.2: Synchronous motor rotor [38]

Synchronous motors have been the preferred propulsor for application above 10 MW
since the 1980s. For direct slow speed propulsion, synchronous propulsors can be selected
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down to 5 MW application [28]. The synchronous motor has an inner rotor with a
number of poles with field windings around them. Figure 3.2 shows a photograph of a
synchronous motor rotor. The stator of the machine is wound with coils consistent with
the number of poles in the rotor. Synchronous motors require dc current to be supplied to
the rotor, which typically requires slip rings and brushes. These are vulnerable in a marine
application given the contact between the rotating parts while the motor is subjected to
high variation in loads. However, slip rings may be avoided by providing dc to the rotor
with a brushless exciter.

The drivetrain and gearbox of this sort of system will be critical components to monitor.
Failures in gearboxes are costly both due to high repair downtime and the cost of the
gearbox. In [52], the components with a higher probability of failure and lower level of
reliability are detected based on their fatigue damage. This sort of "vulnerability map"
can be used to pinpoint where it is most effective to install condition monitoring devices
on the drivetrain. Acceleration measurements can be used to detect and prevent faults as
fast as possible [25]. Methods to analyze vibration data for fault detection are many in
numbers and well documented. In [53], a frequency based detection scheme is presented
to detect potential faults in a wind turbine gearbox. Statistical methods like the one used
in [25] can also be used for this purpose. This method detects a statistical change to the
data coming from the gearbox.

Other possible faulty components in the system shown in figure 3.1 are the synchronous
propulsion motors. Common faults and fault detection methods for these motors will be
discussed in the next section.

3.2.2 Synchronous Azimuth/Azipod Propulsion

The introduction of podded propulsion and azimuthing thrusters has been a benefit for
electric propulsion. In an Azipod thruster, the electric motor can be mounted directly on
the propeller shaft in a submerged 360o steerable pod. This adds to the efficiency, improve
manoeuvring and reduces installation space and cost [28]. The Azipod has proven well for
ice going vessels and later also for cruise vessels and OSV’s etc. Mechanically, an electric
pod is simple in construction with a low number of rotating parts. The electric motor,
often synchronous, is integrated with the thrust and propeller bearing. A synchronous
electric motor is an AC motor in which, at steady state, the rotation of the shaft is
synchronized with the frequency of the supply current [81]. The electric transmission is
done via slip rings, and the pod is rotated by a steering unit placed directly above the
pod [28]. See figure 3.3 below.
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Figure 3.3: Podded propulsor [38]

Azimuth thrusters are, like the azipods, rotational devices for the production of thrust in
any direction. The electric motor is usually vertically mounted on top of the thruster and
drives an L-shaped gear transmission. Azimuth thrusters have a variable speed thruster
motor drive and a fixed pitch type propeller that simplifies the underwater mechanical
construction and reduces low-thrust losses significantly [1]. Today the propulsion motor
for most azipod and many azimuth thrusters are dual-stator synchronous machines with
a brushless excitation system. The synchronous motor has two stator windings with
a 30-degree phase shift. As mentioned in section 3.2.1, the phase-shifted configuration
with two separate stator windings provides redundancy and fault tolerance, because the
motor also can operate with one stator winding. Commercial shipbuilding still prefers
these traditional synchronous motors because of the efficiency, power factor, reliability
and experience with previous vessels [36].

The most prevalent faults of synchronous propulsion motors can be summed up to four
types [51]:

1. Bearing fault

2. Stator or armature faults

3. Broken rotor bar

4. Eccentricity related faults

For the purpose of detecting these faults, many diagnostic methods have been developed.
These methods involve several different fields of science and technology. The most utilized
methods are [51]:

1. Electromagnetic field monitoring

2. Temperature measurements

3. Infrared recognition

4. Radio-frequency emission monitoring
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5. Noise and vibration monitoring

6. Chemical analysis

7. Acoustic noise measurements

8. Motor-current signature analysis

9. Model, artificial intelligence, and neural-network-based techniques

Many of these faults and their diagnosis techniques are the same for both synchronous,
induction and permanent magnet propulsion motors, with some exceptions.

3.2.3 Asynchronous Azimuth Propulsion

At lower powers, a competitive solution to the synchronous motor is using asynchronous
(induction) azimuth propellers. An induction motor is an AC electric motor in which
the electric current in the rotor needed to produce torque is obtained by electromagnetic
induction from the magnetic field of the stator winding [79]. The selection of induction
motors has historically been for application below 5 MW. For power rating between 5 and
10 MW, the rated RPM is the decisive factor, indicating asynchronous for medium speed
geared propulsion/thruster application up to 10MW. Recently, also asynchronous motors
are introduced for larger ocean-going vessels, and the selection of motor type is mostly
based on vendor preferences. Drilling vessels and OSVs require excellent dynamic posi-
tioning (DP) abilities. These are usually equipped with several thrusters and propulsion
units at both the stern and the bow. In this category, induction motors are usually used.
The thrusters are typically mechanical with an inboard electric motor or a podded unit
with a submerged electric motor [28]. Figure 3.4 shows examples of azipod variants.

Figure 3.4: Examples of azipod variants [28]

When it comes to induction motors, they are very common in industrial, commercial
and residential applications. They are simple, cheap, rugged, compact and efficient. The
stator consists of windings just like in a synchronous machine, while the rotor might have
a winding or a number of conductors around the periphery of the rotor ("squirrel cage").
Figure 3.5 and 3.6 show illustrations of an induction motor. The stator is connected
to a voltage source, and the rotor is closely coupled to the stator while turning with a
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rotational speed ωm. The voltage source produces a rotating flux wave in the stator and
air gap of the motor. The speed of this flux wave is given by

Ωs =
ω

p
(3.1)

where ω is the electrical frequency and p is the number of pole pairs. The motion of the
flux wave with respect to the rotor induces currents in the rotor. These interact in turn
with the flux wave to produce torque [38].

Figure 3.5: Axial view of an induction motor [38] Figure 3.6: Induction motor [38]

One of the advantages of having induction motors as ship propulsors is that they are
physically simple and quite rugged. There is no commutator or slip rings that demand
maintenance. Other than the main shaft bearings, there is no particular component
demanding regular attention. Like all electrical machines, however, they are subject to
the faults listed in section 3.2.2.

3.2.4 Permanent Magnet Azimuth Thrusters

Permanent magnet azimuth thrusters are considered state-of-the-art technology in the
maritime industry. The Permanent Magnet Synchronous Machines (PMSM) are cheap
to manufacture, have a high power density, high efficiency and low cogging torque. The
machines have shown a high fault tolerance, which is an important factor in ship design
[47]. The cross-sectional layout of a surface mounted permanent magnet motor is shown
in figure 3.7.
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Figure 3.7: Cross section of a permanent magnet synchronous machine [15]

The machine consists of an outer stator, a set of permanent magnets and a rotational
core. The stator carries a three-phase winding that produces a magnetic force based on
the value of the stator current. The magnets are mounted on the surface of the rotor
core and create a constant magnetic field [15]. When current is supplied to the stator
the electromagnets are excited in a particular sequence and the resulting magnetic fields
interact with the field from the rotor magnets creating a torque that turns the rotor and
the propeller blades. These blades are joined to a hub in the centre of the thruster, which
is meant to carry the bearings taking the thrust, provide the radial location of the rotor
and improve hydrodynamics. Loads are transferred to the stator through struts, and both
the rotor and stator are operating fully submerged sealed against water ingress [56]. See
figure 3.8 below.

Figure 3.8: Rolls Royce permanent
magnet thruster [56]

Figure 3.9: Gunnerus fitted with two
PM-AZ thrusters [56]

In 2015, two PM-AZ thrusters were manufactured by Rolls Royce and installed on R/V
Gunnerus for a long-term evaluation program. The two thrusters have a rating of 500kW
to match the vessel’s available power. In figure 3.9 one can see the vessel after being
equipped with the new thrusters. A year after the conversion of the vessel, exact compar-
isons before and after were made. Bollard pull increased with 20 % and speed increased
by about one knot for the same input power. Stability was good, and manoeuvrabil-
ity greatly improved. The first year of testing, the thrusters ran more than 1500 hours
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trouble-free [56]. See figure 3.10 below for results from the comparison between the old
and the new propulsion system.

Figure 3.10: Propulsion curve, operating profile and efficiency [56]
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Chapter 4

Fault Detection and Condition
Monitoring

4.1 General

Fault detection is defined as the "determination of faults present in a system and time
of detection" while faults are defined as "unpermitted deviation of at least one charac-
teristic property or variable of the system" [34]. When it comes to maintenance, there
are two different actions, corrective and preventive [55]. Corrective maintenance is a
run-to-failure tactic, while a preventive maintenance tactic is to repair or replace system
components before failure occurs. Corrective maintenance is considered more expensive,
due to unforeseen downtime. However, there is no need for expensive monitoring systems,
and therefore it may still be a preferred strategy. A preventive strategy could be the
scheduling of maintenance or condition monitoring as a tool for fault detection [35].

Traditionally scheduled maintenance actions have been used to keep vessels operating at
a desirable condition and to prevent system failure. This is typically scheduled using a
probabilistic model of repairable system operation, failure and maintenance. However,
this does not eliminate the risk of system failure and implies a risk of having unnecessary
downtime due to maintenance. Therefore, condition-based maintenance policies have
received more and more attention recently [82]. This type of method includes updated
risks of failure and suggests maintenance action or inspection based on the system state
[43]. The objective is to reduce wasted operating time and risk of failure associated with
using a scheduled maintenance tactic.

Condition monitoring has been a technique of interest for a long time. It is a feature that
has proven very valuable for any technical system. The principal objective of condition
monitoring techniques is to construct a reliable mechanism for fault detection so that
the system can be checked and repaired after being shut down in a controlled manner,
avoiding excess downtime imposed by sudden breakdowns [42]. A condition monitoring
system should be capable of monitoring the running machines while predicting the need for
maintenance, identifying and locating the defects in detail and doing lifetime predictions.
Four main parts should be included in a condition monitoring system [27]:
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1. Sensors - converting physical quantities to electrical signals. Sensor selection relies
on the monitoring method. On-line capability, sensitivity and cost are key require-
ments.

2. Data acquisition - data acquisition units are built to realize the amplification and
pre-processing of sensor data.

3. Fault detection - detect an incipient fault appearing in the machine. Can be done
by comparing the results from the sensors with predictive models. Another way is
to use frequency and time-domain signal processing methods to obtain ’signatures’
that represent normal or faulty performance.

4. Diagnosis - post-processing of the detected abnormal signals. Should include the
name and location of each defect, the status of the machine, advises for maintenance
etc.

4.2 State-of-the-art in Condition Monitoring

This section focus on giving a short summary of the recent developments in the field of
condition monitoring and diagnosis of faults for determining the health of electric mo-
tors. This field of research has been attracting attention from researchers for more than
three decades. Early research focuses on Acoustic Emission (AE) monitoring, vibration
signature analysis and Motor Current Signature Analysis (MCSA), but these monitoring
techniques are complex and require expensive sensors [49]. In [85] it is claimed that the
major drawback with such CM techniques is the human interpretation and that automa-
tion of fault detection and diagnostics is a logical progression of the CM technologies.

These automatic fault diagnostic systems require an intelligent system such as artifi-
cial intelligence techniques, Genetic Algorithm (GA), Fuzzy Logic (FL), Artificial Neural
Network (ANN) and expert systems [11]. ANN is a recent development in condition
monitoring of electrical motors but has proven a powerful tool to estimate and predict
the remaining useful lifetime more accurately [26]. Where machine learning algorithms
are more suitable for big data gathering to draw conclusions about its operating state of
health, ANN has been developed to effectively identify bearing faults in electrical rotating
machines [11].

A comprehensive CM analysis based on motor signals must consider the inter-relationship
between mechanical and electrical signals. Sources indicate that the use of stator current
analysis techniques are considered most appropriate for the diagnosis of bearing faults [10].
Various non-contact methods are also widely discussed, and it has been found that Park
vector analysis and instantaneous power analysis techniques are best suited for identifying
motor fault signatures [11]. However, theoretical modelling analysis of machine faults is
necessary to distinguish the faulty signatures, meaning the relevant component of the
higher frequency spectrum that may be present due to machine saturation and harmonics
distortion. In the next section, a review of condition monitoring of permanent magnet
motors will be presented, and some of the most popular techniques will be presented in
detail.
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4.3 Condition Monitoring of Permanent Magnet Ma-
chines

Fault tolerance and reliability in electric propulsion systems are important design features
besides functionality and efficiency for today’s modern vessels. The challenge is that a
fault-tolerant design often requires more space and implies a higher cost. An alternative
is to have more standardized machines and providing fault tolerance through sophisti-
cated control methods. These sort of methods require detailed knowledge of the dynamic
machine behaviour. For permanent magnet motors, this implies both electrical, magnetic
and mechanical conditions [47].

Industrial surveys have revealed that a large percentage of faults in induction motors
occur at stators, rotors, and bearings [37]. The statistical percentages of fault types and
occurrence are listed in table 4.1.

Table 4.1: Fault types and percentage of occurrence in induction motors [42]

Fault type Percentage Category Fault

Rotor faults 10 % Electrical/Mechanical fault

Broken rotor bars
Mass unbalance
Air-gap eccentricity
Rotor winding fault

Stator faults 37 % Electrical fault

Unbalanced supply voltage
Inter-turn fault
Line-line fault
Open short circuit
SLG fault

Bearing faults 41 % Mechanical fault
Air-gap eccentricity
Bearing misalignment
Single point defect

Other faults 12 % Mechanical/Environmental

Colling fan breakage
Vent clog by debris
Ambient temp.
External moisture

For these types of motors, as in most machines, faults occur in sequence. If a certain fault
occurs at one point in the machine, it may cause a more severe fault at another location
in the machine. This phenomenon makes it crucial to detect faults at the incipient stage
[42]. A permanent magnet synchronous motor (PMSM) has many properties in common
with an induction motor. Most of the faults listed in table 4.1 are problematic also
for PMSM motors. In [84], such faults for these kinds of motors are described. As
the permanent magnets of a PMSM are placed on the rotor, the rotor faults are in the
category of demagnetization faults. The permanent magnets can be demagnetized by high
temperatures, over-running load or two motors coupled to a single load. In figure 4.1 is a
diagram of usual faults for a PMSM motor.
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Figure 4.1: A diagram of PMSM usual faults [84]

Condition monitoring techniques can be divided into three fundamental categories [18]:

1. Signature extraction-based approach

2. Model-based approach

3. Knowledge-based approach

Looking at it from a broader perspective, condition monitoring techniques can be classified
into two types: invasive and non-invasive. Where the invasive methods provide accurate
and reliable results through the use of sensors, the non-invasive methods do not require
installation of special sensors. The invasive methods are often complex and expensive but
have a direct approach that does not require much expertise to understand. The non-
invasive methods have a more economical approach with a relatively easy implementation
procedure, but does require a more analytical approach and might require an expert’s
opinion [42].

Since the thrusters of RV Gunnerus are driven by permanent magnet synchronous motors,
the next sections will give more extensive research on condition monitoring techniques for
these types of motors. The three fundamental categories presented above will serve as
subsections, and state-of-the-art approaches will be reviewed for potential use on this
type of thruster. The objective will be to find effective methods to detect several critical
conditions, such as the ones presented in table 4.1.

4.4 Signature-based Approach

Signature-based extraction involves analyzing properties of various output signals from
sensors. Among various condition monitoring techniques, the monitored signals can be
current, voltage, power, vibration, temperature and acoustic emission [42]. For instance,
the frequency domain of the current signal can be used to detect several types of faults.
These signal processing methods are widely used in the field of PMSM fault diagnosis.
They are considered fast and efficient and does not require a specific model. These
methods rely on knowledge of faulty signals from sensors. The faults are often detected
by comparing the measured signals from a healthy and faulty system.
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Joint time-frequency (TF) analysis is a common technique in signal processing. The
problem with using some of these methods to analyze PMSM stator current, including Fast
Fourier transform (FFT), is that some require stationary conditions. The stator current
for PMSMs is easily influenced by torque and speed change, and obtaining stationary
conditions for a PM thruster is unlikely given the constant change in vessel speed and
varying loads [14].

Some methods, however, can cope with the non-stationary conditions. Short-time Fourier
transform (STFT), wavelet transform (WT), Wigner-Ville distribution (WVD), Empirical
Mode Decomposition (EMD) and Hilbert-Huang transform (HHT) are the most usual
TF methods for fault diagnosis in PMSMs [84]. STFT is a useful and simple technique.
This method needs a suitable window (Gaussian, Rectangle etc.) to match with specific
frequencies in the signals. This window has to be chosen before analyzing and can influence
the resolution of the frequency and time. STFT is defined by:

Fx(t, v, h) =

∫ inf

inf

x(u)h ∗ (u− t)e−j2πvudu (4.1)

Where x(t) is the signal to analyze and h(t) is the selected window [84].

Wavelet transform (WT) has developed into one of the most popular tools to be applied
in PMSM diagnosis, as it can analyze non-stationary time series at many different fre-
quencies [64]. WT is different from STFT as it uses a variable-sized-regions windowing
technique, allowing it to detect local features in signals like trends, breakdown points and
discontinuities in higher derivatives [63].

Other methods like EMD and HHT are connected in a way that the analysis is adaptive,
with no need for adaptive filters to follow non-stationary motor frequencies. Intrinsic
Mode Functions (IMF) can be gained through EMD to decompose the signals at different
frequency ranges. IMF can be transformed to Hilbert spectrum by using HHT, which is a
simple technique for PMSM fault diagnosis. With the spectrum obtained by this method,
one can get a full frequency-time energy distribution of the signal. HHT is defined as:

H[x(t)] = y(t) =
1

π

∫
x(t)

t− τ
dτ (4.2)

Where x(t) is the real component of the analytic function, and y(t) is the imaginary
component [30][83]. Signature-based methods can also be used to detect bearing faults.
These faults are best detected with acoustic and vibration monitoring [14]. As of now,
there are no data on vibration or acoustics available from the thrusters of Gunnerus. It
seems that several signature-based approaches have been able to identify signatures of
faulty states for a PMSM motor. However, these are often operating under stationary
conditions.

4.5 Knowledge-based Approach

Knowledge-based methods/Artificial Intelligence (AI) use historical knowledge to deter-
mine faults. It is widely implemented in fault diagnosis and can improve the robustness
and efficiency of this field. Artificial Neural Network (ANN), Fuzzy Logic and Particle
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Swarm Optimization (PSO) are three AI methods that have been used for PMSM fault
diagnosis [84]. These methods have produced excellent results for different types of faults
[14]. However, they require extensive amounts of data, including data under various faulty
modes. These methods are well suited for digital twins, as historical data can be collected
and used to improve the AI-models [42].

Artificial Neural Network (ANN) is a method that can be applied to a lot of problems.
The structure of such a method usually consists of an input layer, a hidden layer and
an output layer. It can represent many kinds of systems such as non-linear by choosing
different transfer functions [84]. See figure 4.2 for illustration of a single node in a network.

Figure 4.2: Neural Network Node [14]

The ANN technique is widely used in PMSM fault diagnosis. Such a network is structured
into layers consisting of different nodes. The outputs from one layer typically become the
inputs to the next layer. The final layer is the output, that contains the information about
the condition and faults of the component. A full network used for condition monitoring
of an induction motor can be seen in figure 4.3. The networks are trained by adjusting
the weighting of the input at each node, based on the data provided to the network [14].
This training data is a set of inputs with an equivalent output reflecting a healthy or
faulty state.

Examples of use are in fault detection of a single phase winding short, by using a multi-
layer dynamic recurrent ANN [58]. In [14], two methods are implemented to support the
digital twin of the autonomous model ReVolt. The first algorithm is a signature-based
method using data from a functional motor, while the second relies on knowledge about
faulty motors. The first method uses the current signal and speed of the motor at various
setpoints. A model of acceptable measurements for each setpoint is calculated to create
a zone that represents a normal functioning motor.

The second method in [14] is based on the ANN showed in figure 4.3. The input nodes
are setpoint (PWM %), motor speed and motor current. When the output indicates a
fault continually for a certain time interval, an alert is triggered. This helps prevent
false positives when the motor is outside normal operation for a very short period. The
network takes in labelled data from both non-functional and functional motors to train
the network. The results from [14] showed that both algorithms were able to identify when
the motors were functioning correctly, and also when one was broken. Results showed
that the ANN was more consistent in detecting the faulty motor.
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Figure 4.3: Structure of Neural Network proposed in [14]

Fuzzy logic is a method that translates the human perception of values. It consists of
variables that are represented by words instead of numbers, fuzzy rules and fuzzy sets
determined by practical experience. The advantages of fuzzy logic are good flexibility
and tolerance to imprecise data [59]. There are examples of fuzzy logic being used to
detect stator winding short circuit of a PMSM. The drawback of this method is that
the results depend on the selection of rules and sets that are determined using practical
experience [84].

Particle Swarm Optimization (PSO) is an evolutionary computation technique that uses
swarm intelligent methodology. At first, a set of arbitrary solutions (particles) are found,
before the optimal solution is discovered by iteration [86]. The PSO technique is fast,
efficient and simple. It has been used for PMSM inter-turn short circuit fault identification
in [45].

4.6 Model-based Approach

Model-based methods are another set of methods for condition monitoring of PMSMs.
These methods use mathematical models of the motors in a healthy and faulty state.
Enabled by powerful computers, various approaches have been proposed to model the
behaviour of these types of motors under faulty conditions [5]. Many techniques have
been presented for the use of the current signal from the motors [71]. The main drawback
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of these approaches is their sensitivity to stator voltage unbalances. To overcome this, a
solution based on the multiple reference frame theory has been suggested in [13]. Other
methods are based on comprehensive mathematical models of PM motors and character-
istic parameters of faults. These models need specified details of the fundamental motor
parameters, as well as initial parameters that characterize the machine condition [5].

[15] presents two different approaches to model the permanent magnet synchronous ma-
chine in a real-time digital simulator (RTDS). This is the traditional dq0 model of the
machine and the embedded phase domain model. The RTDS is a combination of special-
ized computer hardware and software designed specifically for the solution of power system
electromagnetically transients in real time, much like the concept of digital twins. RTDS
combines the real-time operational properties of analogue simulators with the flexibility
and accuracy of digital simulation programs [15].

The dq0 transformation first presented in the late 1920s is widely considered as a sharp
revolution of electric machine analysis [44]. In [44] a generalized dq model (GDQ) for a
PMSM is presented based on an extended Park transformation. The dq0 transformation
of a synchronous machine makes all sinusoidally varying inductance in the abc frame
become constant in the dq frame. This transformation is also called Park transformation
written in equation 4.3 and represented in figure 4.4 below.

Tp =
2

3

 cosφ cos(φ− 2π/3) cos(φ− 4π/3)
−sinφ −sin(φ− 2π/3) −sin(φ− 4π/3)

1/2 1/2 1/2

 (4.3)

Figure 4.4: Park transformation [44]

Where Tp represents the Park transformation matrix. A lot of studies have shown that
PMSM drives using the dq model edition based on the Park transformation have high
performance. In [44], this sort of model produced promising results in modelling a healthy
PMSM motor.

4.6.1 Thermal Modelling of PMSM

Overheating is one of the main reasons for permanent magnet synchronous motors break-
down, and the temperature is usually the main limiting factor for how much a PMSM
can be loaded [41]. Damages can occur either by the breakdown of the stator winding
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insulation or the demagnetization of the magnets if the thermal limit of a PMSM is ex-
ceeded [41]. A suitable temperature prediction method can prevent overheating, improve
the utilization in normal operation, and give a good indication of the condition of the
system in general. An ideal method for predicting temperature would be to have tem-
perature sensors embedded into part of the motor structure. However, these sensors may
in some cases affect the flow of current and cause problems regarding sensor assembling
and maintenance. Another disadvantage is that most sensors have a relatively slow reac-
tion time making them inadequate to the high speed of the heating process during motor
acceleration [77].

An alternative to using temperature sensors are a real-time thermal model (RTTM) of the
motor that can predict the thermal behaviours in time in order to protect the motor from
high temperatures. If the motor is also equipped with temperature sensors, the results
from the thermal model can be compared with the sensor data and give an indication of
the motor condition. A trend in literature is that a considerable number of publications
deal with thermal models for induction motors, but these analytical models can be applied
to PMSM after some modifications [41]. The thermal model can also be combined with a
standard lifetime model of the winding insulation to give an impression of the remaining
lifetime of the motor.

Figure 4.5: (a) Shafted PMSM. (b) Heat flow diagram [16]

Several approaches have been used to model the thermodynamics of a PMSM. Gerling
and Dajaku [24] presents the most common equations for thermal analysis, and give a
good overview of thermal modelling of electrical systems. In [7], Boglietti et al. develop
a simplification of the thermal model presented in [48]. Despite the simplicity of this
model, the accuracy of the resistances only deviates with 2.5%. This error is lower than
uncertainty related to calculating the convectional resistance itself [7]. Andersson [3]
includes two different models of a PM motor, both simplified to some extent. One model
uses optimized component parameters, while the other contains components based on
real physical parameters [16]. Determination of the critical parameters in thermal models
of electrical machines is studied in [8]. The work shows that parameters such as the
convection heat transfer coefficient between winding and air gap, and thermal resistance
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between frame and ambient are critical for the quality of the model. In figure 4.5(a),
an example of a shafted PMSM is shown. Figure 4.5(b) shows the heat flow between
the different parts of the motor. The red arrows represent the heat transport due to
conduction, the green arrows the heat flow due to convection, and the purple due to
radiation. Radiation has not been considered in this paper.

The behaviour of the machines can also be analyzed by combining thermal and elec-
tromagnetic analysis. In [17] and [2], finite-element method (FEM) analysis is used in
combination with a thermal model, where a set of magnetic analyses is used to determine
the parameters of the motor equivalent circuit [16]. Real-time thermal models (RTTM)
are tools that aim to monitor temperatures to protect against thermal stresses and other
faults. A considerable amount of literature can be found in this field, especially concern-
ing stator winding temperature estimation [16]. In [40], an indicator of stator winding
temperature is found by using an estimate of the stator resistance. The advantages of
this method vs conventional thermal modelling are discussed, but it is also pointed out
that the estimation of the stator resistance becomes difficult during high-speed operation.
Neural networks have also been used to estimate the stator resistance, and in [46] a fuzzy
logic estimator is used for accurate estimation.

In Demetriades et al. [16], a reduced RTTM is proposed. The model is a lumped-
parameter configuration for a surface-mounted PMSM, using parameters based on the
geometry of the different components of the motor. The model is discretized and reduced
to minimize complexity. Sciascera et al. present a low computational cost (LCC) thermal
model for online prediction of PMSM winding temperature. The model uses a polynomial
approximation of the solution of a LPTN-model. The results show that the accuracy of
the LCC is similar to the higher cost LPTN. The model only takes into account the Joule
losses in the copper windings and is therefore well suited for applications where these
losses are the main heat source. This is relevant to PMSM with high slot density and
relatively low operational speed [67]. In [41], a simple RTTM with few variable parameters
is presented to predict the real-time thermal behaviour of PMSM. This model includes the
stator core losses besides the Joule losses for more accurate temperature estimation. The
proposed model is a good alternative with a balance between the accuracy, complexity
and computing load [41].
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Chapter 5

Case Study

5.1 Introduction

Given the state-of-the-art technology of Permanent Magnet Azimuth thrusters, the critical
part this system plays in the operation of the vessel and the access to historical sensor
data, this system was selected early on for a case study. The case study aims to develop a
condition monitoring tool for a specific PM electrical motor used in marine applications.
As discussed in section 2.2, the historical sensor data is far from complete, and many
signals are ambiguous, nonsensical and do not seem to give any nonzero value at all. In
addition to this, the sampling frequency of the signals from the electrical drive system is
1 Hz. This sampling rate makes it impossible to conduct many of the analysis discussed
in chapter 4. The Nyquist sampling theorem states that the sampling rate needs to
be at least twice the maximum frequency of the signal of interest [80]. Signature- and
knowledge-based approaches involving vibration or power signals will not give correct
results with this sampling rate. As an example, a current spectrum analysis of the AZ-
PM electrical motors would require a sampling rate of at least 200 Hz given the electric
frequency of the current. With this in mind, the case study will look further into physical
modelling of PMSM’s.

Temperature detection has been a method that has been successful in use. It is a good
global indicator of faulty states and deterioration of electrical machines but has been
neglected more recently because of newer, more attractive methods. However, temper-
ature measurements should still be monitored, especially in combination with a more
modern technique. The problem with the temperature signals from Gunnerus is that, as
mentioned earlier, they are zero values.

Based on the review of the different methods and the evaluation of data quality from
R/V Gunnerus, the case study will intend to use a model-based approach to simulate the
thermal behaviour of a PMSM. With the lack of correct temperature data and accurate
geometric properties of the AZ-PM electrical motors on R/V Gunnerus, the case study will
look at another motor for further analysis. This motor is already modelled in the program
RMxprt, with detailed geometry available and the possibility to perform electromagnetic
analysis for different operational states.
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Figure 5.1: Figure of PMSM [61]

5.2 Motor

The motor chosen for further analysis and modelling is intended for use in marine appli-
cations. The power rating of the motor is 200 kW. This is low compared to the 500 kW
thrusters at R/V Gunnerus [56], but will make for a good case study. The design is an
adjustable-speed permanent magnet synchronous motor, with a rated voltage of 400 volts
and a rated speed of 699 rpm. The number of poles is 22 and the magnets are surface
mounted. Table 5.1 shows the design data of the motor used in the case study, and figure
5.2 show illustrations of the motor design. The complete design sheet and electrical circuit
of the motor can be found in Appendix B.

Table 5.1: General design data

Rated Output Power [kW] 200
Rated Voltage [V] 400

Number of poles [-] 22
Number of stator slots [-] 132

Frequency [Hz] 128.15
Number of phases [-] 3

Outer diameter of stator [mm] 650
Depth [mm] 260

Different operational states for the motor will be analysed, varying with ±20% of the
rated voltage and rpm. This is assumed to represent the interval of normal operation.
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Figure 5.2: Illustration of the motor used for analysis in ANSYS electronics

5.3 Approach

The approach of the case study will be to develop a tool for condition monitoring of the
PMSM, starting with combining different analysis to simulate the thermal behaviour of
the motor. An electromagnetic analysis for all different "normal" operational states will
be carried out. This analysis calculates the power losses in several parts of the motor.
A polynomial fit of the losses will be made for different values of voltage and rpm. The
losses can then easily be calculated for every operational state without having to perform
time-consuming analysis.

The polynomial fit of the power losses will be integrated into a Lumped Parameter Ther-
mal Network to simulate the thermal behaviour of the motor. This thermal model is
meant to calculate the temperature in different parts of the motor for each time-step.
Extensive thermal simulations will be carried out for every operational state in order to
get a sufficient amount of temperature data.

The temperature data will be analysed with regards to distribution and normality, and
this will be used to develop a state prediction algorithm using the measurement residuals
and Gaussian processes. This will be done under the assumption that the faults can be
characterized by changes in the mean and standard deviation of a time series. The incom-
ing signals will be given a ’score’ based on the deviation from the Gaussian distribution
of a healthy motor at the same operating point. This score will then be used to detect
and possibly predict faults.

Another use-case is to use the winding temperature for lifetime estimation of the motor.
Winding insulation failure due to high temperatures is one of the most frequently occurring
electrical faults in a PMSM [75]. Therefore, a simple lifetime estimation model based on
the winding insulation temperature can serve as a handy tool and a good estimation for
the remaining lifetime of the entire motor.

33



Chapter 6

Modelling and Analysis Theory

6.1 Thermal Modelling

Heat transfer in a PMSM can be modelled as a thermal network with thermal resistances
in between its different parts. The model tries to simulate the behaviour of the heat
transfer, by using the physical properties of the motor. This heat transfer is complex, and a
model completely describing the thermal system of a PMSM would be very advanced [41].
The heat can be transported in two different ways, either by conduction or convection.
Conduction occurs if two solid elements are in contact with each other, while convection
is heat transfer between two elements via a fluid or gas. For thermal analysis of electrical
components, electrical networks can be used in order to study the thermal behaviour of
a system [16]. The analogies between electrical and thermal parameters are illustrated in
table 6.1 below.

Table 6.1: Analogy between electrical and thermal parameters

Electrical Parameter Thermal Parameter

Current (i) in [A] Losses (P) in [W]
Voltage (u) in [V] Temperature (T) in [◦C]

Resistance (R) in [Ω] Thermal Resistance (Rth) in [W/K]
Capacitance (C) in [F] Thermal Capacitance (Cth) in [J/K]

Thermal resistances represent the thermal properties of different materials used as well
as the thermal connection between different parts of the component. Similarly, stored
thermal energy can be modelled as a thermal capacitance. Figure 6.1 illustrates the
analogy between the electrical and the thermal circuits [16].

Heat transfer between two structures can be modelled by determining the thermal impedance
of each material. Different parameters such as temperature distribution, mechanical com-
plexity and material properties have to be considered. Conduction occurs when heat is
transferred from one element to another due to a temperature gradient between the two
elements [16]. The energy is transferred from the warmer region to a colder region, as
described by Fourier’s law
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Figure 6.1: Analogy between electric and thermal networks [16]

q = −λAδT
δx

(6.1)

where q is the heat transfer rate, δT/δx is the temperature gradient describing the di-
rection of the heat flow. λ is a positive constant called the thermal conductivity of the
material, and A is the cross-section area. The thermal conductivity describes the mate-
rial’s ability to conduct heat. The conduction thermal resistance is defined as

Rth =
t

Aλ
(6.2)

where t is the thickness of the element [69]. In a similar fashion, convection occurs when
heat is transferred to/from an element by a moving fluid or gas. The rate of heat transfer
is described by

q = hA(Tw − Tinf) (6.3)

where Tw is the temperature of the element, Tinf is the temperature of the fluid, A is
the area of the surface and h is the convection heat transfer coefficient [6]. The thermal
resistance for convection [69] is defined as:

Rth =
1

Ah
(6.4)

There are two different types of convection: natural and forced convection. Natural
convection occurs in the absence of an external source and is driven by buoyancy and
gravity. Forced convection occurs when an external source like a fan or a pump is used
to move fluids [9].

Stored energy in the different nodes of the thermal model is described by thermal capac-
itance Cth [69], and is calculated with the formula

Cth = mCp (6.5)

where m is the mass of the structure and Cp is the specific heat capacity.

The power losses in a PMSM will cause a temperature rise in the different parts of the
motor. Power losses consist of different losses at different locations in the motor. The
most important losses are winding losses and iron losses in the stator and rotor core.
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6.1.1 Lumped Parameter Thermal Network

A LPTN models the heat flow and the temperature distribution inside a motor by using
an equivalent thermal circuit composed of heat sources, thermal resistances and thermal
capacitances [67]. A preliminary selection of the resistances and capacitances can be
determined according to the geometry of the motor and from the physical properties of
the materials used [48]. Figure 6.2 below is an example of a LPTN model schematic for
a PMSM motor. The motor is modelled for only one slot section for symmetry reasons.

Figure 6.2: Example of a LPTN representing the heat flow in a PMSM motor

Some of the parameters in a LPTN are not easily determined. The thermal parameters
in the slot are often uncertain due to a random wound winding configuration [67]. The
external surface and airgap convection coefficients are also very significant parameters, as
shown in [70] and described by equation 6.4. These uncertain and significant parameters
are therefore often tuned based on experimental results [67].

The LPTN uses the node potential method for the resolution of circuits, representing the
system by a set of first order differential equations. Vector T represents the unknown
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temperatures in the different nodes, u is the inputs vector and the matrices A and B are
the state coefficient matrix and the source coefficient matrix:

Ṫ = AT +Bu,

A = C−1A1,

B = C−1B1.

(6.6)

Where matrices A1, B1 and C are shown as follows for a simple 4 node network in series:

A1 =


a11 R−1

2 0 0
R−1

2 a22 R−1
3 0

0 R−1
3 a33 R−1

4

0 0 R−1
4 a44

 (6.7)

where aii represents all resistances connected to node i. The product of matrix B and
vector u represents the losses in the different nodes of the network divided by the capac-
itance:

Bu =


P1C

−1
1

P2C
−1
2

P3C
−1
3

P4C
−1
4

 (6.8)

Where C is a diagonal matrix of the capacitances:

C = diag(C1, ..., C4). (6.9)

In the discrete-time domain, the set of equations above can be discretized using the
forward Euler method [41].

6.1.2 Lower Order Models

Considering the benefits of reduced computational costs, the model can be reduced by
removing less significant components without lowering the accuracy of the model consid-
erably [67]. Using the model in figure 6.2 as an example, it can be reduced to a three-node
circuit as shown in figure 6.3.

The new resistances and thermal capacitances can be calculated with the following for-
mulas

RI =
RiRj

Ri +Rj

(6.10)

RI = Ri +Rj (6.11)

where formula 6.10 merges two parallel resistances, while formula 6.11 is for two resistances
in series.
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Figure 6.3: Three-node LPTN equivalent circuit [67]

6.2 Gaussian Processes

A Gaussian process is a generalization of the Gaussian probability distribution. One can
think of a Gaussian process as defining a distribution over functions, and inference taking
place in the space of functions [60]. Assuming we have some input xi and some outputs
yi, we assume that yi = f(xi), for some unknown function f . The approach is then to
infer a distribution over functions given the data, p(f |X,y), and then use this to make
predictions given new inputs, i.e. to compute

p(y∗|x∗,X,y) =

∫
p(y∗|f,x∗)p(f |X y)df (6.12)

where y∗ are the test targets and x∗ the test inputs. A Gaussian process assumes that
p(f(x1), ..., f(xN) is jointly Gaussian, with some mean µ(x) and covariance

∑
(x) given

by
∑

ij = κ(xi,xj), where κ is a positive definite kernel function. The key point is that
if xi and xj are deemed similar by the kernel, then the output of the function at those
points are also expected to be similar [50]. See figure 6.4 for an illustration.

Figure 6.4: Gaussian process for 2 training points and 1 testing point [50].
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6.2.1 Gaussian Processes for regression

A Gaussian process (GP) defines a probability distribution over functions and is denoted
as:

f(x) ∼ GP (m(x), κ(x,x′) (6.13)

where m(x) is the mean function and κ(x,x′) is the kernel or covariance, i.e.,

m(x) = E[(f(x)−m(x))(f(x′)−m(x′))T] (6.14)

For any finite set of points, this process defines a joint Gaussian:

p(f |X) = N (f |µ,K) (6.15)

where Kij = κ(xi,xj) and µ = (m(x1), ...,m(xN) [50].

Figure 6.5: Gaussian function plots

Figure 6.5 above shows three functions drawn from a GP prior and posterior. The func-
tions in figure (b) have been conditioned on five observations indicated. The shaded area
in both plots represents the mean value with two times the standard deviation added and
subtracted. This area corresponds to the 95% confidence region [60].

Suppose we observe a noise free training set D = {(xi, fi), i = 1 : N}, where fi = f(xi)
is the observed value of the function evaluated at xi. Given a test set X∗ of size N∗ ×D,
the objective is to predict or evaluate a function output f∗.

By definition of the GP, the joint distribution has the form of

(
f
f∗

)
= N

((
µ
µ∗

)
,

(
K K∗
KT
∗ K∗∗

))
(6.16)

where K = κ(X,X) is N×N , K∗ = κ(X,X∗) is N×N∗, and K∗∗ = κ(X∗,X∗) is N∗×N∗.
The form of the posterior is as follows:
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p(f∗|X∗,X, f) = N (f∗|µ∗,Σ∗) (6.17)

µ∗ = µ(X∗) + K∗
TK−1(f − µ(X)) (6.18)

Σ∗ = K∗∗ −K∗
TK−1K∗ (6.19)

Figure 6.5 illustrates this process, where the left figure show samples from the prior,
p(f |X). The figure to the right show samples from the posterior, p(f∗|X∗,X, f). The
model perfectly interpolates the training data, while the uncertainty of the prediction
increases as we move further away from the observed data [50].

This can be used for condition monitoring purposes, as the learned model can be used to
make temperature predictions based on the operational state. Another approach for fault
detection is to assess the effect that new observed data have to the distribution of the
training data. By doing this, a fault can be detected or predicted when a temperature
measurement breaches a certain threshold.
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Chapter 7

Methodology

7.1 Software

The different programs used for analysis, modelling and simulation in this thesis are
ANSYS RMxprt, ANSYS Twin Builder, MATLAB/Simulink and Power BI. This section
will give an overview of the software and how it has been used in the case study.

ANSYS RMxprt is a template-based design tool to create fully customized machine de-
sign flow very efficiently using lower cost machines. The program uses classical analytical
motor theory and equivalent magnetic circuit methods, allowing a calculation of machine
performance in a matter of seconds. RMxprt has the ability to automatically set up a
complete Maxwell 2-D and 3-D project, including geometry, materials and boundary con-
ditions. It automatically generates a reduced order model, considering the nonlinearities
and eddy effects [32]. RMxprt also sets up customized driving circuit topology as a single
component in ANSYS Twin Builder to be coupled with the corresponding electric machine
reduced order model. This is critical for running co-simulation, and a step towards a fully
integrated digital twin.

As mentioned in chapter 5, RMxprt is used in the case study to calculate the power
losses in the PMSM for different operational states. It also provides a design sheet of
the motor that lists all the relevant input parameters and calculated parameters. The
resulting equivalent model is then explored and run in ANSYS Twin Builder, where it is
possible to explore electronic control topologies, loads and interactions with drive-system
and multi-domain components.

ANSYS Twin Builder is a new tool for building, validating and deploying complete systems
simulations and digital twins for predictive maintenance. Twin Builder combines the
power of a multi-domain systems modeller with extensive libraries, 3D-physics solvers and
reduced-order model (ROM) capabilities. This allows you to reuse existing components
and quickly create a systems model of the component. To connect the twin to test or
real-time data, Twin Builder easily integrates with IIoT platforms and contains run-time
deployment options, enabling predictive maintenance on the physical asset [33].

MATLAB/Simulink is used for many calculation and modelling purposes. The thermal
model is made as a MATLAB function and is imported to Simulink for time series sim-
ulation. With Twin Builder it is possible to connect with a Simulink function, making
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it possible to fully integrate the thermal model with the analysis in ANSYS. This is an
enabler towards making the model real-time. In addition to the thermal model, MAT-
LAB is used for the curve fitting of the power losses, the Gaussian Process Regression
and several other functions for data handling and plotting.

7.2 Electromagnetic Model

The electromagnetic model briefly described in section 7.1 is a key part of the case study.
Together with the thermal model, it creates a multi-physics environment of the motor. As
discussed above, the electromagnetic model is made in RMxprt and is used to simulate
the power losses of the motor. These losses are estimated purely by a physics-based
mathematical model. The figure below shows a snippet of the motor in Maxwell 2D:

Figure 7.1: Snippet of the motor in Maxwell 2D

Simulations are run manually for different output power, starting at 20% of the rated
power and ending at cases with overload above the rated power level. At each power
setpoint, a number of simulations are done for ±20% of the rated voltage and rpm. The
rated output power is 200 kW, the rated voltage is 400 V and the rated speed is 699 rpm,
as can be seen in table 5.1. Multiple analyses are done at rated voltage with varying speed,
at rated speed but with varying voltage, and with voltage and speed linearly increasing.
This is done in order to get enough data-points to make an accurate curve fit of the losses.

This curve fit is done in MATLAB with the curve fitting tool, and the results can be seen
in section 8.1. The 3-dimensional fit is the one used in the thermal model, as it covers all
different values of voltage and rpm. The curve fit method best suited for the data is thin
plate interpolation. This method is a spline-based technique for data interpolation and
smoothing. The fit function is stored, and called upon by the thermal model, meaning
that the time-consuming electromagnetic analysis and curve fit is only done one time for
each operating point.

42



7.3 Thermal Model

As described in section 6.1, the heat transfer in a PMSM can be modelled as a thermal
network composed of heat sources, thermal resistances and thermal capacitances. Based
on the physical properties of the motor modelled in RMxprt, the proposed thermal model
try to simulate the heat flow in the PMSM. As mentioned earlier, a model that completely
describes the thermal system of a PMSM would be very complex, therefore a reduced
model is built with the following assumptions:

1. The different parts of the PMSM are symmetrical about the radial and axial direc-
tion.

2. The heat in the different parts of the PMSM is evenly distributed.

3. There is no axial heat flow.

4. The power losses are concentrated in the stator iron core, the rotor iron core and
the stator windings.

5. The heat is removed by natural convection with water flowing around the motor.

Based on the lumped parameter method, a seven-node network is built by exploiting the
motor symmetries. The schematic of the model is shown in figure 7.2. For symmetry
reasons, only one slot section is modelled, with the motor having 136 slots. Notice that
some nodes in the network have the same number due to circuit symmetries. Thus, the
LPTN can be simplified to a seven-node LPTN depicted in figure 7.3. The capacitances
Ci and resistances Ri of the seven-node LPTN can be calculated by using the computation
of the equivalent series and parallel resistances and capacitances. [67].

Notice that the nodes at which the power is injected are coloured red. A selection of the
resistances and capacitances can be determined according to the geometry of the motor
and the physical properties of the materials used [48]. For the convective heat transfer
between the housing and the ambient seawater, the resistance is calculated with formula
6.4, where A represents the contact surface and h is the heat transfer coefficient. The same
equation is used for calculation of the resistance between the stator and rotor through the
air gap. Here, h is the air gap heat transfer coefficient and A is a portion of the surface
of the cylinder whose radius is equal to the air gap radius.

In the air gap, the heat transfer coefficient is

h = Nu · λ/g (7.1)

Where Nu is the dimensionless Nusselt number describing the flow of air through the air
gap. Another quantity is the Taylor number which is used for convection calculation in
the air gap:

Ta = Re2g/Rg (7.2)

Where Re is the Reynolds number and Rg is the air gap radius. For a laminar shear flow
with a low Taylor number, the Nusselt number is constant [4]. The relations between the
Taylor and Nusselt numbers for different flow characteristics are described in [65]. The
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Figure 7.2: LPTN representing the
heat flow within the motor

Figure 7.3: LPTN equivalent circuit sim-
plified for symmetry reasons

air surrounding the end windings and end spaces is assumed to have a low velocity, and
a heat transfer coefficient of h = 14W/m2K is used [29] to calculate the convection from
air to the housing and windings.

For normal operation of the thruster, the motor is naturally cooled by the surrounding
seawater travelling with a speed approximately similar to the vessel speed. The convection
is assumed good enough that the surface temperature equals the seawater temperature
set to 15oC. A heat transfer coefficient of h = 500W/m2K is used [19] for the seawater.
Table 7.1 below lists the thicknesses and thermal conductivities of the various parts of
the motor.

44



Table 7.1: Thermal barriers and conductivities

Description Thickness Conductivity

Housing (steel) 20 mm 40 W/Km
Magnet 14 mm 9 W/Km

Stator yoke 17 mm 38 W/Km
Stator tooth 35 mm 38 W/Km

Copper 35 mm 360 W/Km
Winding (axial) 8 mm 7 W/Km

Air 14.5 mm 0.023 W/Km

The external surface and airgap convection coefficients are significant parameters, as
shown in [70]. These parameters are not easily determined, mainly because of the fluid
dynamics and orientation of the electrical motor. The resistances obtained for the seven-
node network are listed in table 7.2 below:

Table 7.2: Resistances [K/W] of the seven node thermal network

Parameter Value

R1 0.740
R2 0.280
R3 0.327
R4 0.035
R5 0.303
R6 21.191
R7 13.954
R8 21.593
R9 0.581
R10 0.269
R11 0.740

The capacitances, which model the thermal mass of the motor component represented,
are calculated with equation 6.5 as the product of mass and specific heat capacity of the
material. The capacitance is modelled by considering the total mass of the element in
question. The masses available from the RMxprt model are for the stator core, rotor core,
windings and the permanent magnets. Considering this, and the advantages of having a
lower computational cost model, the LPTN can be reduced to a four-node network. This
reduced model is derived from the original seven-node LPTN and is presented in the next
section.

7.3.1 Lower Order Model

Considering that the capacitances can be calculated for the stator core, rotor core, wind-
ings and permanent magnets, these make out the four nodes in the new LPTN:

The new resistances are defined by using equation 6.10 for parallel resistances, and equa-
tion 6.11 for resistances in series:
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Figure 7.4: Four-node LPTN equivalent circuit

RI = R1 +R2 +R4 RII = R3 +R5 RIII =
R6R7

R6 +R7

+R8

RIV = R9 RV = R10 +R11

(7.3)

The capacitances of the four node network are found by using equation 6.5. The masses
of the four different sections are found in the design sheet in RMxprt, and the specific
heat capacity of the metals are found at [20]. As the thermal model only looks at one slot
section, the masses are divided by the number of slots to obtain the correct capacitance.
The capacitances of the stator core, rotor core, windings and permanent magnets can be
found in table 7.3 below:

Table 7.3: Capacitances [J/K] of the four node thermal network

Section Value

Stator core 473.84
Rotor core 167.16
Windings 194.69

Permanent magnet 193.30

As seen in figure 7.4, three out of four nodes are coloured red, meaning that losses occur
at these nodes. These losses are stator core losses in node I, windings copper losses in II
and rotor core losses in IV. Using the equations in 6.6, and discretizing using the forward
Euler method, the calculation algorithm for the PMSM temperature can be expressed as
follows:
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Where k is the number of sampling times, ∆t is the sampling time for the input signals,
Pic are the stator core losses, Pw are the winding losses, Prc are the rotor core losses and
Tamb is the ambient seawater temperature.

7.4 Thermal Simulation

The thermal simulations are done in MATLAB or Simulink by running the LPTN over
time. A set of different simulations and scenarios have been evaluated, and the results
can be seen in section 8.2. Each simulation at a set-point is run for at least 104 time-steps
due to the transient phase of the temperatures. As the ambient temperature is set to
15Co, it takes some time for the temperature to stabilize. The temperatures at rated
operation can quickly be found by running the LPTN for steady-state operation at the
rated power, voltage and rpm. The time-consuming part of the simulations is when every
possible combination of ±20% of voltage and rpm are to be simulated. For both 20kW ,
160kW and 200kW , around 120 thermal simulations were done to get a sufficient amount
of data.

Another type of simulation done is to compare the winding temperatures for different
output power. This model has to include different loss values based on the power output.
The last and final simulation model which also has been imported to Simulink is a model
where the output power, the voltage level and the rpm are taken in at every time-step.
By doing so, thermal simulations can be done with vessel data as input. This will give
a good understanding of how the temperature in the motor behaves under normal and
faulty operation.

7.5 Modelling Faults

This section will describe the faulty operation that is focused on, how it is modelled,
and the connection to ship operation scenarios. In dynamic sailing conditions such as
sailing in heavy weather, turning or operating in icy waters, the actual load of the motor
fluctuates around the averaging operating point of the propeller curve [76]. The averaging
point at cruising speed is normally around 80 % of maximum, or at 160 kW for the
motor in this case study. This fluctuation around the average load can cause overloading.
Because all loads experience the electrical network voltage and frequency, voltage and
frequency swings under fault conditions can cause electrical systems to be switched off.
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Particularly in power systems with a high amount of variable speed drives, constant power
load instability can occur [23].

A combination of an overload scenario with a drop in voltage due to normal fluctuations
can cause an overheating of the motor. This faulty operation will be the one focused on by
the fault prediction algorithm. The winding temperature will be used to detect overload
scenarios. Faulty modelling is done by calculating the power losses at maximum output
power, in combination with a low voltage. This causes high copper losses that result in a
rise in the winding temperature, possibly damaging the winding insulation.

7.6 Fault Detection Algorithm

In section 6.2.1 the computation of predictive distributions is shown for the outputs y∗
corresponding to the novel test input x∗. The distribution of the prediction is Gaussian
with a calculated mean and variance. For practical applications, a loss function can be
utilized in order to make a decision about how to act. This loss function specifies a penalty
incurred by comparing an observed value to the distribution of the test set [60].

The goal is to give a score to each observed temperature value based on the deviation
from the predictive distribution. This score is normally used to improve the predictive
model, while in a fault detection scenario it can be used to detect faulty states.

The method related to the case study is to use the results from the physics-based thermal
model simulating the temperature in the motor at healthy states. The distribution of
the temperature is first tested for normality before the distribution of the data at dif-
ferent operating points is found. This is done by using descriptive statistics in the data
analysis tool in Microsoft Excel. This tool describes the data statistically and provides
useful parameters like mean, standard error, median, standard deviation, sample variance,
kurtosis, skewness and range. This is used to evaluate the normality of the data set by
looking at skewness and kurtosis. These values are considered acceptable between ±1.96
in order to prove normal univariate distribution.

Figure 7.5: Descriptive statistics tool in Excel
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The distribution of the temperature from simulations at rated power specifies the desired
temperatures at that point of operation. The differences in temperature are because the
simulations are done for different levels of voltage and rpm. The data set consists of
over 100 simulations for different combinations of ±20% of rated voltage and rpm. This
is assumed to be the range of normality for operation at rated power. The deviations
in voltage and rpm can be a result of several factors and is a well-known problem for
electrical power systems in ships [12].

Given a prediction method, we can evaluate the normality of the temperature data in
several ways. The simplest method is the squared error loss, where we compute the
squared residual (y∗ − f̄(x∗))

2 between the mean prediction and the target at each test
point. This can be summarized by the mean squared error (MSE) by averaging over the
test set. However, this method is sensitive, and a better option is to normalize by the
variance of the targets of the test cases to obtain the standardized mean squared error
(SMSE). Additionally, if we produce a probability distribution for each test input we can
evaluate the negative log probability of the target under the model [78]. As GPR produces
a Gaussian predictive density, one obtains

− log p(y∗|D,x∗) =
(y∗ − f̄(x∗))

2

2σ2
∗

(7.5)

where the predictive variance σ2
∗ for GPR is the variance of the healthy data σ2

∗ = V(f∗)
that is obtained in the descriptive statistics tool [60]. This model is tested on data from
simulations of the faulty cases discussed in section 7.5. From this, it is possible to develop
a threshold that can be used to detect faulty operation.

7.7 Lifetime Estimation

Experience from industrial applications shows that the bearings and windings insulation
is most likely to fail. High power density leading to high winding temperatures accelerates
thermal ageing additionally, and this is why several studies deal with lifetime calculation
based on the winding insulation [31]. This section will briefly describe the lifetime predic-
tion model of the PMSM based on winding temperature analysis. It is assumed that the
same amount of damage appearing during one driving cycle will occur for every similar
driving cycle. In practice, demagnetizing of magnets or ageing of insulation will lead to
torque ripples, increasing losses and leading to higher temperatures that accelerate the
ageing of the windings. The lifetime model for the winding insulation is combined with
the results from the thermal model.

The deterioration of the winding insulation is a chemical process that can be approximated
by a simple, logarithmic function:

Lw(θ) = L0 · 2
TI−θ
HIC (7.6)

with θ[Co] being the actual temperature, TI[Co] being the temperature index, which is
the reference temperature for reference lifetime L0[h], and HIC[K] being the half-life
index describing the temperature difference for which the lifetime is halved [31].
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The steady-state winding damage can be expressed by:

Dw(t) =
t

Lw(θCu)
(7.7)

The transition from steady-state to dynamic simulation via linear damage accumulation
gives the dynamic winding damage Dw with time-dependent winding temperature θCu(t):

Dw(t) =
1

L0

∫ t

0

2
θCu(τ)−TI

HIC dτ (7.8)

The parameters on the temperature tolerance of the motor are taken from [74]. Assuming
the highest tolerance class, H, the maximum allowable temperature TI is 180Co, HIC is
equal to 10, meaning that each 10Co rise above the maximum temperature may reduce
the lifetime by one half. The lifetime of the engine is assumed to be 10 000 hours while
operating at the maximum temperature.
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Chapter 8

Results and Discussion

8.1 Electromagnetic Simulation - Power losses

In this section, the results from the electromagnetic simulations in RMxprt is presented.
The detailed parameters of the electric motor used for analysis can be seen in the design
sheet of the motor in Appendix B. The model was run at different operational states
with different voltage and rpm values. In order to assess the normality of the results at
more than just the rated power, extensive analyses were run at both 20kW , 160kW and
200kW . For the simulation of over-load cases, the model was run at levels at the rated
power with low voltage.

The results shown are the power losses for different operations, focusing on the iron core
(IC) losses and the armature copper (AC) losses. At 20kW , 160kW and 200kW , the
analysis were run at ±20% of the rated voltage and rpm at 400 and 699, respectively.
Over 100 different combinations of voltage and rpm were analysed, providing enough
data to create a 3-dimensional curve fit of the losses shown in figure 8.6, 8.12 and 8.18.
This curve fit was used to estimate losses in the thermal model. This is discussed further
in the following sections. The table below shows the results of simulations for different
power levels at rated voltage and rpm.

Power Core Loss Copper Loss

20 kW 787.248 W 1203.97 W
160 kW 787.248 W 7440.15 W
200 kW 787.248 W 15789.7 W

Table 8.1: Power losses at 20, 160 and 200 kW

As can be seen from table 8.1, the iron core losses is constant with changes in output
power, while the armature copper losses are increasing significantly with a higher power
output. The following figures show the results and curve fits for iron and copper losses
at 20, 160 and 200 kW. Plots have been made to show how the changes in voltage and
rpm affect the different losses. For 2D-plots with varying rpm, the voltage has been kept
constant at 400 and vice versa. The 3D-plots also include another set of simulations where
the voltage and rpm increase linearly at the same rate. The blue dots represent the results
from analyses, while the coloured line or field represents the curve fit. For curve fitting,
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the MATLAB curve fitting tool has been used. This tool can automatically find the best
method in order to get the best fit possible.

8.1.1 Results

Figure 8.1: IC loss vs rpm at 20kW Figure 8.2: IC loss vs voltage at 20kW

From the graphs above, it is clear that the iron core losses increase with the rpm, but is
not affected by changes in voltage.

Figure 8.3: IC losses at 20 kW, 3D-Plot

The 3D-Plot of the iron core losses show that the losses increase linearly with the rpm
and is constant for increased voltage.
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Figure 8.4: AC loss vs rpm at 20kW Figure 8.5: AC loss vs voltage at 20kW

Figure 8.6: AC losses at 20kW, 3D-Plot

The figures above show the armature copper losses at 20 kW. Figure 8.4 shows that
increasing rpm at rated voltage will cause an increase in AC-losses, while figure 8.5 shows
that the AC-losses decrease with an increasing voltage at rated rpm. This can also be
seen in the 3D-Plot.
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Figure 8.7: IC loss vs rpm at 160kW Figure 8.8: IC loss vs voltage at 160kW

Figure 8.9: IC losses at 160 kW, 3D-Plot

The IC-losses at 160 kW show the same tendency as described for 20 kW.
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Figure 8.10: AC loss vs rpm at 160kW Figure 8.11: AC loss vs voltage at 160kW

Figure 8.12: AC losses at 160kW, 3D-Plot

The AC-losses at 160 kW behave differently than at 20 kW. As can be seen in figure 8.10,
the loss is decreasing with increasing rpm up to around the rated speed. At rpm higher
than the rated speed, the loss starts to increase again. For varying voltage, the loss shows
the same behaviour as with 20 kW power. From the 3D-plot, there is a clear tendency
that the AC-losses are very high at low voltages for all levels of rpm.
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Figure 8.13: IC loss vs rpm at 200kW Figure 8.14: IC loss vs voltage at 200kW

Figure 8.15: IC losses at 200 kW, 3D-Plot

The figures above show the IC losses at 200 kW. Comparing to the IC losses at 160 kW,
it is evident that these losses are the same.
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Figure 8.16: AC loss vs rpm at 200kW Figure 8.17: AC loss vs voltage at 200kW

Figure 8.18: AC losses at 200kW, 3D-Plot

The figures above show the AC-losses at the rated power of 200 kW. The results are
different than at both 20 and 160 kW, showing a more concave reduction with increasing
voltages. This implies that the AC losses at rated speed and voltage at 200 kW is much
higher than the same losses at 160 kW. This can be seen in figure 8.18.
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8.2 Temperature Results

This section presents the results of different temperature simulations. Most simulations
are done for 104 time-steps, with constant power, voltage and frequency through the sim-
ulation. The results include temperatures in different parts of the motor for several power
outputs. There are also plots of the winding temperature for numerous combinations of
voltage and rpm. The steady state temperatures at rated voltage and rpm for different
power outputs can be seen in the table below:

Table 8.2: Temperatures in [Co] at rated voltage and speed for different power output

Power output Stator core Winding Permanent Magnet Rotor core

20 kW 26.7 30.9 20.4 19.0
160 kW 65.6 93.1 36.8 29.4
200 kW 117.7 176.3 58.9 43.4

From table 8.2 the temperature in the stator core and the windings increase significantly
with increased power output. The winding temperature is by far the highest, as an effect
of the increasing copper losses. The windings are also the furthest away from the cooling
effect of the surrounding seawater. This effect, in combination with low losses, can be seen
by the relatively low temperatures in the rotor core and permanent magnets. The results
and ratios between motor parts seem reasonable when compared with relevant literature,
for instance with [67]. The complete time-series plots of the simulations can be seen in
figure 8.19, 8.21 and 8.23. The values displayed in the table are the temperature at the
end of the simulation, i.e. at time-step t = 104.

Figure 8.19 shows the temperature simulation for 20 kW operation. The simulation starts
at t = 0 with the temperature at all four nodes assumed to be equal to the seawater
temperature of 15Co. The temperatures stabilize after around 3000 seconds or 50 minutes.
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Figure 8.19: Temperature in 4 nodes at 20 kW

Figure 8.20: Simulations of winding temperature at 20 kW for different V and rpm
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Figure 8.20 shows the simulation of winding temperatures at 20 kW for variations of
voltage and frequency. The steady-state temperatures range from a minimum of 18.8Co

to 60.9Co, with a mean of 32.7Co. The distribution of the temperatures can be seen in
figure 8.25.

Figure 8.21: Temperature in 4 nodes at 160 kW

Figure 8.21 shows the temperatures in the motor at normal operation of 160 kW. The
winding temperature has risen with around 60 degrees from figure 8.19, while the other
temperatures have had a more moderate increase. This is an effect of the iron core losses
remaining constant with an increase in power, while the copper losses increase. Hence, the
increase in the stator, magnet and rotor-core temperature is due to heat transfer effects
from the windings.

The winding temperatures at 160 kW for different voltages and frequencies show a big
difference from min to max. The values rangee from 62.4Co to 192.1Co with a mean
of 93.7Co. The minimum value occurs with a voltage of 480 and an rpm of 559, which
is the highest voltage and lowest rpm tested for. The maximum temperature occurs
with a voltage of 320 and an rpm of 559, which is the lowest level of both voltage and
rpm tested for. The maximum temperature is over 30 degrees above the second highest
temperature, indicating that the winding temperature is very sensitive at low voltage
levels. The distribution of the temperatures can be seen in figure 8.26.
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Figure 8.22: Simulations of winding temperature at 160 kW for different V and rpm

Figure 8.23: Temperature in 4 nodes at 200 kW
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Figure 8.23 displays temperatures in the motor at the rated power of 200 kW. The winding
and stator temperatures have almost doubled from the levels at 160 kW. As discussed
earlier, this is an effect of the large copper losses at the rated power level.

Figure 8.24: Simulations of winding temperature at 200 kW for different V and rpm

The winding temperatures at 200 kW for varying voltage and rpm has a range not too
far from the range at 160 kW. The minimum value is 95.2Co while the maximum value
is 202.2Co. The same trend for low voltages and high temperatures can be seen here.
However, comparing with the data at 160 kW, the mean is at 161.2Co which is significantly
higher than the mean at 160 kW. The distribution of the temperatures can be seen in
figure 8.27. As discussed in section 7.5, the values exceeding 180Co will be considered
above the maximum limit, and from figure 8.24 there are some scenarios with low voltage
and rpm causing the winding temperature to exceed this limit.

8.3 Distribution of Temperature Data

As described in section 7.6, the winding temperatures for different output power is anal-
ysed with the descriptive statistics tool in Excel. The objective with this analysis is to
test the normality of the winding temperatures at constant power but with voltage and
rpm varying with ±20%. The key results from the analysis at each output power are
displayed in table 8.3. A distribution plot for each operating point is also included.

The plot in figure 8.25 shows the distribution of the winding temperature at 20 kW. From
table 8.3 one can see that the kurtosis is very close to zero, meaning that the "tailedness"
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Table 8.3: Descriptive statistics of winding temperatures at different power outputs

20 kW 160 kW 200 kW

Mean 32.8 103.5 161.2
Standard error 0.88 2.92 2.9

Standard deviation 9.7 32.1 30.8
Sample variance 94.0 1030.5 949.1

Kurtosis -0.033 -0.178 -0.796
Skewness 0.745 0.890 -0.730
Range 42.1 129.6 106.9

Minimum 18.8 62.4 95.2
Maximum 60.9 192.1 202.2

Count 121 121 121

Figure 8.25: Distribution of winding temperatures at 20 kW

of the distribution is small. The skewness is positive, meaning that the distribution is
asymmetrical with a tail towards the right. The values are well within the accepted range
for normality.

Figure 8.26 shows the distribution at 160 kW. This is assumed the point of normal oper-
ation and will be the normal distribution used to detect faults when simulating the vessel
running in cruising speed. The kurtosis and skewness are slightly higher than at 20 kW
but is still well within the accepted range for normality.
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Figure 8.26: Distribution of winding temperatures at 160 kW

Figure 8.27: Distribution of winding temperatures at 200 kW

The distribution at 200 kW is displayed in figure 8.27 above. It shows a different devel-
opment than at 20 and 160 kW, having a negative skewness and larger kurtosis value.
We can see that the peak of the distribution is around 180Co, typically occurring at low
voltages. From table 8.3, one can still see that the values of kurtosis and skewness are
below one, and well within the accepted range of normality. With all the temperature
distributions for different operation having a normal distribution, this method is possible
to use for all operating phases.
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8.4 Fault Detection

In this section, a time-series simulation with varying power level is presented. The sim-
ulation starts with normal operation at 160 kW with rated voltage and rpm. Halfway
through, after 10 000 seconds, an overload scenario is simulated by increasing the power
to 200 and dropping the voltage to around 300. The winding temperature from this sim-
ulation is run through the fault prediction algorithm, and each reading is given a score.
As discussed in section 7.5, the maximum operating temperature allowed is assumed to
be 180 degrees, corresponding to a threshold score at around 3. If this score is breached
a faulty operation is indicated.

Figure 8.28: Simulation of temperature with overload scenario

Figure 8.28 shows the temperature and power output of the simulation. After around 2000
seconds the temperature stabilises at just under 100Co as expected for normal operation
at 160 kW. After 10 000 seconds, the power output is increased to a maximum of 200 kW,
and a voltage drop to 320 V occurs. From the blue line, it can be seen that the winding
temperature reaches levels above 180Co.
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Figure 8.29: Score representing deviation from Gaussian distribution at normal opera-
tion

Figure 8.29 shows the penalty score of the results from the simulation in figure 8.28. As
can be seen, the score is high and decreasing during the transient phase. To prevent
this from causing a false positive, the first 1000 seconds is neglected. At the occurrence
of the overload, the penalty immediately increases. The algorithm is made so that the
threshold needs to be breached for 30 consecutive seconds, and the red square shows where
this occurs. This shows that the algorithm has successfully identified a potential case of
overloading. Results show that the temperature in the winding at the time the fault is
identified is around 182Co, given the 30-second margin. This is assumed to be acceptable.

8.5 Lifetime Estimation

In this section, the expected lifetime and damage of the system for the simulation results
above are presented. The methodology of this model is explained in section 7.5, along
with the NEMA insulation class parameters of the motor.

Figure 8.30 shows the cumulative damage of the winding insulation during the simulation.
Notice how the damage increases when the temperature increase, as expected.
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Figure 8.30: Cumulated winding damage

Figure 8.31: Residual lifetime for winding

Figure 8.31 shows the residual lifetime for the windings. The lifetime is calculated anal-
ogously with the results from the temperature simulation in figure 8.28. Notice how the
expected lifetime of the motor decrease dramatically with the period of time where the
temperature limit is breached.
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8.6 Uncertainty

When running the analysis in RMxprt, an operating temperature needs to be set in
addition to the output power, voltage and frequency. As the losses are calculated in order
to find the temperature, this operating temperature causes some uncertainty, especially
since the losses are affected by the temperature. The best approach would be to have
an iterative process, where the simulated temperatures were fed to RMxprt. As of now,
the operating temperature for the simulations is set to 100Co, which is around the mean
temperature at normal operation.

Uncertainties regarding the Lumped Parameter Thermal Network are also present. When
it comes to affecting the temperature, the resistances for convection and conduction as
well as the capacitances has a large effect on the results. The capacitances are calculated
by using parameters found in the design sheet of the motor and in material properties
tables. The risk of the capacitance being very wrong is therefore assumed to be low. The
resistance, however, requires very specific motor geometry as well as a coefficient for either
conduction or convection. The coefficients for conduction for the same type of motor has
been found in [61], and is assumed accurate. More uncertainty lies with the coefficient
regarding the convection between the seawater and the metal because the table used only
specifies a certain range. This is because of the effects the speed of the vessel and the
temperature of the water have to the convection. Further study has to be carried out in
order to verify this value. The resistance can easily be fitted more accurately if proper
temperature data from a similar motor can be used for training.

The lifetime model is only as valid as the provided inputs from the thermal model. For ex-
ample, the knowledge of bearing the exact temperatures at different points in the machine
is crucial to get accurate results. Temperatures higher than predicted by the simulation
will cause an enormous reduction in winding lifetime.

8.7 CM Methods

Condition monitoring of rotating electric machinery has received intense research interest
for more than 40 years, and there are a lot of different methods available. With the
exponential increase in electrically driven vessels, this will be of interest for the maritime
industry. The condition monitoring approach should be minimalistic, take the minimum
measurements necessary and by analysis extract a detection and diagnosis of the system
or component. The methods that have demonstrated success and future potential have
been evaluated against the specific AZ-PM Thrusters and the signals available.

Temperature detection has been a method that has been successful in use. It is a good
global indicator of deterioration of electrical machines but has been neglected more re-
cently because of newer, more attractive methods. However, temperature measurements
should still be monitored, especially in combination with a more modern technique.

Vibration and shock pulse methods have traditionally been used extensively on electrical
machinery and have proved themselves effective, especially for monitoring bearing dete-
rioration [73]. These methods require specialized sensors with complex analysis, and the
selection and location of the sensors are very important. As of now, there are no accessible
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vibration signals. However, these exist, and access to this data will open up the possibility
of using widely accepted techniques for monitoring of the AZ-PM Thrusters.

Literature has shown that comprehensive monitoring of an AZ-PM thruster can be achieved
by measuring shaft flux, current, power and electrical discharge activity. These are sig-
nals that require complex analysis, but with a robust model, shaft flux, current and power
signals are capable of detecting faults in both the electrical and mechanical parts of an
electric propulsion system [73]. Power monitoring is a method that is comprehensive and
can include all electrical terminal measurements for condition monitoring purposes using
existing sensors. These sensors are equipped on Gunnerus, but the signals show faulty
constant values, as well as having a sample rate that is far too low. Power monitoring
has great potential when the motor is equipped with proper sensors with a high sampling
frequency.

It is important to remember that since the motors operate with such variable speed, some
key problems arise. If the speed of the drive remains constant for long periods at once,
then spectral analysis of flux, voltage, current power or vibration can still be done [73].
For Gunnerus this might be possible, but such periods of steady operation will have to be
identified. If the speed varies significantly, then non-stationary techniques will have to be
used. These have been discussed specifically for permanent magnet motors in section 4.3.
Using the power line as the communication channel for variable speed electric motors has
been promising [73], and should be studied further.

AI and Machine Learning approaches applied to electrical machine drives have proven
successful if they have comprehensive amounts of data available, as well as understanding
the fundamental physical rules of the system. For Gunnerus, this approach might not
be suitable, since the thrusters have had no known failures. Therefore, there exists no
data on faulty states that these methods can use for learning. It is, however, possible to
approach this problem with the method used in this case study. By combining physical
modelling and data-driven techniques, one can model faulty states physically and use the
results for training.
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Chapter 9

Conclusions and Recommendations for
Further Work

9.1 Concluding Remarks

The potential of having Digital Twins of vessels is undoubtedly huge, possibly saving the
maritime industry a lot of time and money. The digital twin system should include a
condition monitoring tool for fault detection of components and systems. As the world
fleet is moving towards electric propulsion, preventing downtime issues related to these
systems will become increasingly important. With vessels requiring high availability com-
bined with complex, electrical systems, rise a maintenance challenge. Having an accurate
condition monitoring tool could be the solution to this challenge.

This thesis has studied the literature on electrical propulsion systems and the condition
monitoring techniques related to such systems on vessels. It has identified the require-
ments needed to build a dynamic model of such a system. This included a mapping of the
required sensors as well as the different tools and methods to be used. The concept of dig-
ital twins, the technology behind it and it’s possible applications to the maritime industry
has also been studied and presented in depth. Several condition monitoring methods have
been researched. Signal-based, model-based and knowledge-based techniques of PMSM
motors have been studied and discussed for possible integration with the digital twin of
Gunnerus. Given a complete and high-resolution stream of sensor data from Gunnerus,
a combination of a signal-based and model-based approach monitoring the power and
vibration signals would be a good approach worth studying further. However, in light of
the low resolution and poor quality of sensor data from the thrusters, a thermal model
was pursued for further study.

The condition monitoring approach of the case study was a combination of a model-based
and a data-driven solution. The satisfactory results from the electromagnetic analysis
were used by the Lumped Parameter Thermal Network to simulate the thermal behaviour
of the motor. Such simulations were done for different "normal" and faulty operational
states, and the results gave insight into the temperature in four parts of the motor. With
the lack of real-time temperature data to compare with, it is hard to verify the accuracy of
the thermal model. However, when comparing with similar studies the results seem to be
realistic and within the expected range. The results show that the winding temperature
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breaches the maximum allowed temperature for insulation class H at maximum power
output, in combination with a voltage drop. The other parts of the motor is well within
this range.

The temperature data were analysed with regards to distribution and normality, showing
that the data was within the range of normality for all the operating points considered. A
state prediction algorithm was developed and tested using the normal distribution char-
acteristics in combination with Gaussian process regression. This was done under the
assumption that the faults could be characterized by changes in the mean and standard
deviation of a time series. A simulation with an overload scenario was performed, and
the incoming signals were given a score based on the deviation from the Gaussian distri-
bution of a healthy motor at the same operating point. A threshold for identifying high
temperatures had been defined, and the fault prediction algorithm managed to detect the
faulty state caused by overload.

Since winding insulation failure due to high temperatures is one of the most frequently
occurring electrical faults in a PMSM, a lifetime estimation based on the winding temper-
ature was done for the same time-series simulation. The results show that operation over
the allowed temperature limit has a large effect on the remaining lifetime of the motor.
This tool can prove handy for simple estimation of the remaining life of the motor.

The method used in this thesis has proven to be a relatively simple and intuitive approach
for fault detection of a PMSM. For a modern vessel with proper sensor data, a pure data-
driven solution is expected to be the best approach in terms of cost and effectiveness.
However, for vessels without proper thermal sensors, such a combination of model-based
and data-driven condition monitoring can prove as a good alternative for control, fault
detection and lifetime estimation.

9.2 Recommendations for Further Work

To improve the accuracy and minimise the uncertainty of the thermal simulations, fine-
tuning of its parameters is required. A number of thermal resistances are nonlinear,
depending on the speed or temperature of the component. The temperature also affects
the losses of the motor, and therefore, the operating temperature of the motor should
be introduced to the RMxprt and thermal model as a feedback loop. Another possible
improvement is to perform a critical parameter tuning procedure, taking into account the
uncertainties on the LPTN’s parameters. This can be achieved by means of a tuning
procedure based on experimental results or temperature sensor data. The procedure can
be used to get an LPTN which is very accurate for time-varying loads. The first step of
this procedure would be to determine the most critical model parameters to be adjusted
with multiplicative correction factors. A general overview of the tuning of these factors
would be as follows:

1. Experimental acquisition of temperature profiles for different operation.

2. Definition of an objective function representing the error between the LPTN pre-
dictions and experimental temperature profiles.

3. Use of an optimization algorithm that finds a set of optimal correction factors min-
imizing the objective function.
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Another possible improvement of the solution is to include the permanent magnet tem-
perature in the fault detection algorithm. As high temperatures in the magnets can cause
demagnetization, this is a fault that can easily be added to the detection algorithm. This
would require doing analysis on the distribution of the magnet temperature at different
operating points.

For the digital twin paradigm to work as a real-time virtual sister vessel, a proper data
flow system is required. Structured data flow with processing, storage etc. must seam-
lessly interact with the different models in order to work as a real-time tool for condition
monitoring. The possible improvement of the Gunnerus Digital Twin must involve im-
proving the sensors on board and sending data in real-time to the cloud. The vessel
data can then be sent through the thermal model, fault prediction algorithm and lifetime
estimation model for online condition monitoring.

In order to make the thermal model computational cost lower, transfer function ap-
proaches can be used for cost reduction with respect to the LPTN. A low computational
cost (LCC) thermal model can be obtained from a polynomial approximation of the solu-
tion of the LPTN. The computational cost reduction with respect to the original model
is a result of the LCC model not requiring computation of inverse matrices. The next
step would then be to integrate this LCC with the digital twin infrastructure of R/V
Gunnerus. This could be done by uploading the model as an application in Veracity. By
doing this, it will be possible to include real-time thermal simulation in the digital twin
viewer, and provide easy access to the fault detection and lifetime estimation results.

While the focus of this thesis was towards electrical thruster systems, many systems
can take advantage of the digital twin paradigm. The opportunity of adding condition
monitoring algorithms and system identification to other systems should be explored
further. Examples include the overall dynamics of the vessel, the estimation of hull stress
based on sensors in combination with AIS/weather data, and much more.
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Appendix A

Gunnerus Sensors

I



Figure A.1: Spreadsheet describing enabled sensors

II



Figure A.2: Gunnerus sensor chart

III



Figure A.3: Gunnerus operational profile 12 h

IV



Appendix B

Motor Model

V



Figure B.1: Design sheet of PMSM

VI



Figure B.2: Circuit of PMSM in Maxwell
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