
K
ristoffer B

orgen K
nudsen

D
eep Learning for Station K

eeping of A
U

Vs

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Kristoffer Borgen Knudsen

Deep Learning for Station Keeping of
AUVs

Master’s thesis in Marine Technology
Supervisor: Ingrid Schjølberg

June 2019

Kristoffer Borgen Knudsen

Deep Learning for Station Keeping of
AUVs

Master’s thesis in Marine Technology
Supervisor: Ingrid Schjølberg
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Preface

This thesis is the final product of a Master of Science degree in marine technology,
with specialisation in cybernetics, at the Norwegian University of Science and Tech-
nology. The research conducted in this thesis spans over the period from January
2019 to June 2019.

The thesis aims to discover the possibilities for station keeping of autonomous under-
water vehicles by the use of machine learning, especially focusing on deep learning
principles. The reader is assumed to have some prior knowledge within machine
learning, hydrodynamics and control theory.

Trondheim, June 5., 2019

Kristoffer Borgen Knudsen

ii

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Acknowledgement

I would like to express gratitude towards my supervisor, Professor Ingrid Schjølberg,
for allowing me to investigate the possibilities on this subject, as well as guidance
throughout the project period. Furthermore, I want to give a special thanks to Post-
doctoral Fellow Mikkel Cornelius Nielsen for his continuous support in the develop-
ment of the simulation environment, as well as the valuable discussions throughout
the project period.

K.B.K

iii

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Abstract

This thesis investigates the possibilities of applying machine learning techniques,
more specifically deep learning, in station keeping of autonomous underwater vehi-
cles, and it is a continuation of the preliminary work done by Knudsen [10].

The usage of deep learning in this thesis surrounds the development of a sufficient
controller design to accomplish station keeping, meaning that the vehicle is kept
stable in all six degrees of freedom (DOF), which is fundamental for performing
underwater operations efficiently. The process of doing underwater control design
is complicated, which is mainly due to the complex underwater environment. The
environment makes the control nonlinear since the vehicle is sensitive to flow and
hydraulic resistance. In turn, the classical model-based approaches become challeng-
ing to apply. These disadvantages, together with the rapid developments in artificial
intelligence (AI), have triggered the interest of using machine learning (ML) tech-
niques in underwater control designs.

To develop and train an ML-based controller for accomplishing station keeping,
there is used a dynamic model of the BlueROV2, which is a small, remotely op-
erated vehicle. The vehicle is controlled in all 6-DOF, trough suggesting the use
of a dual control design which encompasses a Deep Deterministic Policy Gradient
(DDPG) algorithm in conjunction with a Proportional-Derivative (PD) controller.
To sufficiently train the algorithm, two simulation environments, Gazebo and Robot
Operating System (ROS), are used in combination with the machine learning frame-
work TensorFlow. In the simulated environment, the BlueROV2 dynamic model is
not connected by a tether, and is therefore assumed to behave as an autonomous
underwater vehicle.

The simulation results shows that it is possible to sufficiently train a machine learn-
ing algorithm to accomplish station keeping at an arbitrary pose, in all 6-DOF. To
accomplish this the dual control design splits the fully actuated BlueROV2 by using
the DDPG algorithm to control the thrust input in surge x and sway y, and the PD
controller to control the thrust input in heave z, pitch φ, roll θ and yaw ψ. Vali-
dation of the results shows that the vehicle accomplish station keeping with error
values in the order of 10−2m in simulation, and 10−1m in real-life experiments. The
main reasons for the differences are flaws in the dynamic model used in training, as
well as weaknesses related to the real-life pose measurement equipment.

The work in this thesis has also resulted in an abstract submitted to the IEEE
Oceans 2019 conference in Seattle, which is given in Appendix B.

iv

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Sammendrag

Denne oppgaven undersøker mulighetene for å anvende maskinlæring, mer spesifikt
dyp læring, for å holde et autonomt undervannsfartøy i en fast ønsket posisjon (eng:
station keeping). Dette er en videreføring av forarbeidet som ble gjort av Knudsen
p̊a temaet [10].

Bruken av dyp læring i denne oppgaven omhandler utviklingen av et tilstrekke-
lig kontrolldesign for å oppn̊a station keeping, som betyr at fartøyet holdes konstant
i alle seks frihetsgrader (6-DOF, eng: six degrees of freedom). Station keeping egen-
skaper er ekstremt viktig for å kunne gjennomføre undervannsoperasjoner effektivt.
Undervanns kontrolldesign er komplisert, noe som er mye grunnet det komplekse
undervannsmiljøet. Miljøet resulterer i ikke-lineær kontroll siden fartøyet er sensitiv
til strømning og hydraulisk motstand. Dette gjør at klassiske model-baserte kon-
trolldesign er vanskelig å anvende. Disse vanskelighetene, sammen med den raske
utviklingen som har vært i kunstig intelligens, har skapt en stor interesse rundt mu-
lighetene for å bruke maskinlæringsteknikker i undervanns kontrolldesign.

For å utvikle samt trene en kontroller basert p̊a maskinlæring for station keep-
ing brukes en dynamisk modell av en BlueROV2, som er et lite fjernstyrt under-
vannsfartøy. Fartøyet blir kontrollert i 6-DOF ved å foresl̊a bruken av et todelt
kontrolldesign som best̊ar av en Deep Deterministic Policy Gradient (DDPG) al-
goritme og en Proportional-Derivative (PD) kontroller. For å trene kontrolleren
brukes to simuleringsmiljøer, Gazebo og Robot Operating System (ROS), sammen
med maskinlæringsrammeverket TensorFlow. I simulering har BlueROV2en ikke en
fysisk tilkobling til en operatør, noe som gjør at det er antatt at den opptrer som et
autonomt undervannsfartøy.

Resultatene fra simulering viser at det er mulig å tilstrekkelig trene en maskin-
læringsalgoritme for å oppn̊a station keeping i 6-DOF. Dette blir gjort ved å bruke
DDPG algoritmen til å kontrollere thrust bidraget i jag x og svai y, og PD kon-
trolleren til å kontrollere thrust bidraget i hiv z, stamp φ, rull θ og gir ψ. Ved
å validere resultatene viser det seg at station keeping blir oppn̊add med avvik i
størrelsesordenen 10−2m i simulering og 10−1m for det virkelige systemet. Hov-
edgrunnen til forskjellene er at den dynamiske modellen ikke er helt eksakt samt
mangler i det virkelige posisjonssystemet.

Arbeidet med denne oppgaven har ogs̊a resultert i et abstract til IEEE Oceans
2019 konferansen i Seattle. Bidraget finnes i Appendix B.

v

Contents

Preface ii

Acknowledgement iii

Abstract iv

1 Introduction 1
1.1 Background . 1
1.2 Traditional Methods for Station Keeping of AUVs 2
1.3 Motivation for ML-based Control Designs 4
1.4 Contributions . 5
1.5 Structure of the Report . 6

2 Machine Learning - A Literature Review 7
2.1 Machine Learning . 7
2.2 An Introduction to Reinforcement Learning 9

2.2.1 Markov Decision Processes . 10
2.2.2 Dynamic Programming . 13
2.2.3 Policy Gradients . 14

3 Deep Reinforcement Learning 20
3.1 Deep Deterministic Policy Gradients 20

3.1.1 Q-Learning . 22
3.1.2 Policy Learning . 24
3.1.3 Exploration vs. Exploitation 24

3.2 Challenges in Policy Gradient Methods 25
3.3 Trust Region Policy Optimisation . 27

3.3.1 Minorize-Maximization Algorithm 27
3.3.2 Trust Region . 28
3.3.3 Importance Sampling . 28
3.3.4 TRPO . 30

vi

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

3.4 Proximal Policy Optimisation . 31
3.4.1 Optimisation . 31
3.4.2 Adaptive Kullback-Leibler Penalty 33
3.4.3 Clipped Surrogate Objective 33

4 Modeling 36
4.1 Reference Frames . 37
4.2 Dynamic Model of Underwater Vehicles 38

4.2.1 Mass Matrix . 39
4.2.2 Coriolis and Centripetal Force Matrices 39
4.2.3 Damping Matrices . 40
4.2.4 Hydrostatic Terms . 40

5 Method 41
5.1 Controller Implementation for the BlueROV2 41

5.1.1 Implementation of the PD Controller 42
5.1.2 Implementation of the DDPG Algorithm 43
5.1.3 Controller Architecture . 46
5.1.4 Reward Function . 49

5.2 Simulation and Experiment Setup . 49
5.2.1 Simulation Setup . 49
5.2.2 Experiment Setup . 50

6 Reward Shaping 53
6.1 Body-frame Error . 53
6.2 Reward Shaping with Time Constraint 54
6.3 DDPG without Heading . 56

7 Results 60
7.1 DDPG without Heading . 61

7.1.1 Training Results . 63
7.1.2 Validation Results: Simulation 65
7.1.3 Validation Results: MC-lab Experiments 67

7.2 DDPG with Heading . 78
7.2.1 Training Results . 78

8 Discussion 82
8.1 Quality of Pose Measurement Sensors 82
8.2 Dynamic Model . 83
8.3 Limitations in Software . 84
8.4 Difficulties in Reward Function Design 84

vii

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

8.5 Possibilities of TRPOs and PPOs . 85

9 Conclusions 87

10 Further Work 89

A BlueROV2 Parameters 95
A.1 Rigid Body Mass Matrix . 95
A.2 Added Mass Matrix . 95
A.3 Damping Matrices . 96

B IEEE Oceans 2019 Seattle - Abstract 97

viii

List of Figures

1.1 GNC Signal Flow [4] . 2

2.1 Machine Learning . 8
2.2 Reinforcement Learning Architecture [26] 10
2.3 Look-ahead Tree [26] . 12
2.4 Policy Iteration by Acting Greedily [26] 14
2.5 The Bell Curve [23] . 16
2.6 Baysian Distribution [23] . 17
2.7 Markov Chains . 18

3.1 Policy Model Represented as a Net 26
3.2 The Minorize-Maximization Algorithm [5] 27
3.3 Performance of Clipped Surrogate Objective [22] 35

4.1 BlueROV2 by BlueRobotics [1] . 36
4.2 Body-fixed and Earth-fixed Reference Frames 37

5.1 Controller Architecture for the BlueROV2 46
5.2 Gazebo and Robot Operating System (ROS) 50
5.3 MC-lab Setup . 51
5.4 Qualisys Mapping . 52

6.1 Circular Movement in xe . 55
6.2 Lack of Heading Information . 56
6.3 Conflict Between ψ and [x, y] . 58

7.1 DDPG without Heading: Norm of the Error State 62
7.2 DDPG without Heading: Total Reward per Episode 64
7.3 DDPG without Heading: Number of Steps per Episode 64
7.4 DDPG without Heading: Number of PD Penalties per Episode 65
7.5 DDPG without Heading: Performance Validation, [xd, yd, ψd]=[2,0,0] . 66
7.6 DDPG without Heading: Performance Validation, [xd, yd, ψd]=[2,2,0] . 66

ix

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

7.7 Experiment 1: DDPG State Error . 68
7.8 Experiment 1: PD State Error . 69
7.9 Experiment 1: Force . 69
7.10 Experiment 1: Torque . 70
7.11 Experiment 2: DDPG State Error . 71
7.12 Experiment 2: PD State Error . 72
7.13 Experiment 2: Force . 72
7.14 Experiment 2: Torque . 73
7.15 Experiment 3: DDPG State Error . 74
7.16 Experiment 3: PD State Error . 75
7.17 Experiment 3: Force . 75
7.18 Experiment 3: Torque . 76
7.19 Experiment 3: DP 4-corner Test . 77
7.20 DDPG with Heading: Total Reward per Episode 79
7.21 DDPG with Heading: Number of Steps per Episode 80
7.22 DDPG with Heading: Number of PD Penalties per Episode 80

8.1 DDPG: Reward Function . 85

x

List of Algorithms

1 DDPG Algorithm . 48

2 Reward Function with Time Constraint 54

3 DDPG without Heading: Reward Function 62

xi

List of Tables

4.1 The Notation of SNAME (1950) for Marine Vessels 38

6.1 Q-Matrix: without Heading . 57
6.2 Q-Matrix: with Heading . 57

7.1 DDPG: Learning Parameters . 60

xii

Acronyms

Adam adaptive moment estimation.

AI artificial intelligence.

ANN artificial neural network.

AUV autonomous underwater vehicle.

BODY body-fixed reference frame.

CNN convolutional neural network.

COB centre of buoyancy.

COG centre of gravity.

DDPG deep deterministic policy gradient.

DP dynamic positioning.

DPG deterministic policy gradient.

DRL deep reinforcement learning.

GNC guidance, navigation and control.

GNSS global navigation system.

IMU inertial measurement unit.

INS inertial navigation system.

IS importance sampling.

KL kullback-leibler.

xiii

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

MBSE mean-squared bellman error.

MC marine cybernetics.

MCMC markov chain monte-carlo.

MDP markov decision process.

ML machine learning.

MM minorize-maximization.

MP markov property.

NED north-east-down reference frame.

PG policy gradient.

PID proportional, integral, derivative control.

PPO proximal policy optimisation.

RL reinforcement learning.

ROS robot operating system.

ROV remotely operated vehicle.

SPG stochastic policy gradient.

TD temporal difference.

TRPO trust region policy optimisation.

VS visual servoing.

xiv

Chapter 1

Introduction

This thesis is a continuation of the work done by Knudsen on station keeping of
AUVs, which presented a preliminary investigation of the possibilities on the subject
[10]. Knudsen showed that through the use of machine learning (ML) techniques,
more specifically deep reinforcement learning (DRL), it was possible to control an
AUV to reach the desired pose in a simulated environment. However, the developed
algorithm, or agent, was not successful in doing station keeping at the pose. The
studies done in this thesis aims to succeed in achieving station keeping of AUVs
through DRL techniques, both in a simulated environment and in real-life experi-
ments.

1.1 Background

Remotely Operated Vehicles (ROVs) are unmanned and highly manoeuvrable un-
derwater vehicles either connected to a surface-vessel or land, through tethers. The
tethers transmit commands and control signals between an operator and the ROV,
resulting in remote navigation of the vehicle. Primarily, ROVs have been used
to perform inspection tasks, for example, pipeline inspections and exploration of
the oceans. ROVs are commonly divided into classes based on parameters such as
weight, power, capabilities and size. Larger ROVs, which can hold more sensors and
mechanical tools, are usually used for intervention tasks on subsea installation sites.
Smaller ROVs usually perform tasks related to exploration, such as exploration of
minuscule areas, e.g. cavities or pipeline cracks [3].

The main difference between ROVs and Autonomous Underwater Vehicles (AUVs)
is that the latter are un-tethered. As for ROVs, a surface-vessel or land is used to

1

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

communicate with AUVs, but the communication is now usually through a satellite.
The removal of tethers makes the AUVs more manoeuvrable and extends their ap-
plication area. However, when removing the tethers, the AUVs also become highly
dependent on battery life, which is now limited. Because of this, AUVs typically per-
forms less power consuming task compared to ROVs, such as surveillance operations.

One of the long-term benefits in the development of AUV techniques is reduced
cost. Today, both ROVs and AUVs require either connection with a surface-vessel
or by land. Using a surface-vessel is a costly operation, mainly because of vessel day
rates. Furthermore, recovery and launch, meaning taking the vehicle up and down
from the ocean are complex and costly operations. Due to this, the long-term goal of
designing life-of-field AUVs, meaning that the AUVs are resident at the installation
site, could be a great economic benefit. However, to accomplish this, there has to
be further development in robust sensors and autonomous control systems.

1.2 Traditional Methods for Station Keeping of

AUVs

Motion Control is achieved through three different branches; guidance, navigation
and control (GNC), and it contains design of systems that automatically control or
remotely control devices or vehicles that are moving underwater, on the surface or
in space [4]. The flow between these three systems, and how they interact through
data and signal transmission, is illustrated in Figure 1.1.

Figure 1.1: GNC Signal Flow [4]

The branches in GNC systems are defined as follows.

2

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

• Guidance deals with computation of the desired pose, velocity and accelera-
tion, which is transmitted into the control system. Guidance systems usually
consists of motion sensors, external data (such as weather data in Figure 1.1)
and a computer.

• Navigation is the process of directing a craft by determining the pose, course
and distance travelled. To do this, global navigation systems (GNSS), inertial
navigation systems (INS) and motion sensors, such as inertial measurement
units (IMU), are usually used.

• Control (motion control) deals with computing the necessary control forces
and moments based on some control objective, for example station keeping.

Station keeping control falls into the last branch in GNC, and is defined as the abil-
ity of a vehicle to maintain a constant position and orientation (pose), relative to a
reference object [20]. Station keeping capabilities are essential for the performance
of AUVs, to reduce risk, as well as executing intervention tasks efficiently. In rela-
tion to a surface-vessel, station keeping can be viewed as the equivalent to dynamic
positioning (DP) [4] above the surface.

Sufficient control design is crucial to accomplish station keeping capabilities, and
today, most solutions to this surrounds classical control designs. Traditional con-
troller architecture of underwater vehicles are usually based around the principle of
Proportional-Integral-Derivative (PID) algorithms. In all simplicity, the PID con-
troller is a control-loop feedback algorithm, which continuously calculates an error
value based on some control objective. For example, if the goal is to do station
keeping of an underwater vehicle, the error value would be based on some desired
pose and the current pose of the vehicle. The PID algorithm is given in Equation
1.1, where Kp, Ki and Kd denote the coefficients for the proportional, integral and
derivative gains, respectively.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d(t)

dt
(1.1)

The algorithm uses the proportional term to reduce the error, the integral term to
remove possible stationary deviation1 and the derivative term takes the error values
rate of change into account, in order to compensate for future trends of error.

1a constant error

3

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

1.3 Motivation for ML-based Control Designs

Accomplishing a sufficient PID controller for a given control objective is done by
tuning the controller gains in Equation 1.1. The methods of tuning a PID controller
are many [4], but they usually surrounds using the mass- and damping matrices of
the system, as well as defining the natural frequency ωn and the natural damping ζn,
resulting in constant gains. However, the underwater environment is highly complex,
making the autonomous control nonlinear since flow and hydraulic resistance easily
influences the AUVs motions [29]. The result of this is that traditional control tech-
niques, such as nonlinear control with PID [8], is a difficult design process. These
challenges, in combination with the rapid developments in artificial intelligence (AI),
has made many scholars interested in the possibility of applying machine learning
(ML), which is a method of accomplishing AI, in these types of control designs.

As mentioned above, the main reason for investigating the possibilities of ML in
underwater control is that identifying and modelling a real-life system is challeng-
ing and in some cases infeasible due to unobservability and highly nonlinear effects,
which is the case in the underwater environment [15]. The investigation done in this
thesis surrounds the branch within ML that is called reinforcement learning (RL). In
RL, there is no need to model any system or possess any knowledge about the envi-
ronment, meaning that the challenges related to this are non-existent. In traditional
control design, the controller gains, e.g. PID gains, are tuned based on parameters
such as the control objective and the sea state in the operating environment. This
tuning makes them less agile when it comes to changes in these parameters. On
the other hand, an ML-based controller does not care about either of these and in
theory, ML-based controllers should perform just as good independent of the envi-
ronment and control objective. Furthermore, the RL framework, discussed in detail
in Chapter 2, basically describes a closed loop system, which is the basis for every
traditional control design.

The result of this is that ML, and especially RL techniques, have experienced a
steep increase in both popularity and application during the recent years. From
this, several promising RL based techniques have emerged, and in the following sec-
tion, some of these are discussed.

In 2015 Mariano De Paula and Gerardo D. Acosta proposed a trajectory track-
ing algorithm for autonomous vehicles using Adaptive Reinforcement Learning [14],
but this was too general for usage in AUV control. One of the more significant dif-
ficulties, which is also one of the primary goals of AI in control, is to solve complex
tasks from unprocessed, high-dimensional and sensory input [12]. Based on this,

4

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

David Silver et al. proposed a Deterministic Policy Gradient (DPG) algorithm,
for performing complex tasks with high dimensionality and perceptible input [25].
This algorithm showed significantly better performance than using Stochastic Policy
Gradients (SPG), as well as having usage within nonlinear optimisation problems as
well. Yu Runsheng et al. based their research on this when they in 2017 proposed
a Deep Deterministic Policy Gradient (DDPG) for trajectory tracking control of
AUVs [29], which showed significant improvements compared to traditional meth-
ods.

The preliminary studies proposed a dual control design, by combining a PD con-
troller with a DDPG algorithm based on the work of Silver et al. and Runsheng
et al. [10]. The investigation done in this thesis builds further on this research,
where the primary goal is to achieve sufficient station keeping capabilities of the
BlueROV2.

1.4 Contributions

The main contributions from this thesis are listed below.

1. An introduction into how DRL techniques can be used in control of underwater
vehicles.

2. An implementation of a dual control design, which encompasses a DDPG al-
gorithm in conjunction with a PD controller.

3. An implementation of a DRL controller in Gazebo and Robot Operating Sys-
tem (ROS).

4. A verification of that it is possible to train ML-based algorithms in a simulated
environment and apply them to a real-life system.

5. A development of a sufficient reward function design to achieve station keeping
capabilities.

6. A trained DRL based controller which accomplishes station keeping with error
values in the order of 10−2m in simulation, and 10−1m on a real-life system.

7. An abstract has been submitted to the IEEE Oceans 2019 conference in Seattle,
presented in Appendix B.

5

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

1.5 Structure of the Report

This thesis aims to showcase how machine learning techniques, and especially deep
reinforcement learning, can be of advantage in doing station keeping control of un-
derwater vehicles. To do this, the following chapters are presented.

Chapter 2 presents the overlying concepts of machine learning and a profound
investigation into the principles of reinforcement learning and how this can be used
in underwater control designs.

Chapter 3 introduces deep reinforcement learning, which is the basis of how to
use ML in underwater control designs. This chapter considers three state-of-the-art
algorithms within the DRL family: Deep Deterministic Policy Gradients (DDPGs),
Trust Region Policy Optimisation (TRPO) and Proximal Policy Optimisation (PPO).

Chapter 4 presents the dynamic model of the BlueROV2.

Chapter 5 presents the method of developing a dual controller design for the
BlueROV2. This chapter also presents the simulation and experiment setup, which
is used for training and validation.

Chapter 6 discuss sufficient reward function design to accomplish station keep-
ing.

Chapter 7 presents the training results and validation results from the investi-
gation.

Chapter 8 contains a discussion about the results and the prospects of using ma-
chine learning in control.

Chapter 9 concludes the thesis.

Chapter 10 discuss further work on the subject.

6

Chapter 2

Machine Learning - A Literature
Review

This chapter presents an introduction into the concepts of machine learning (ML),
especially focusing on the principles of reinforcement learning (RL) and policy gra-
dients (PG), which is the essence of Deep Deterministic Policy Gradient (DDPG)
algorithms.

2.1 Machine Learning

In 1959 Arthur Samuel coined the concept of machine learning as a field of study that
gives computers the ability to learn without being explicitly programmed. The concept
was further defined in 1998 when Tom Mitchell proposed a more precise definition as

A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on T, as measured by P,
improved with experience E [19].

To clarify this definition, one can look at an AUV performing an intervention task
at an installation site. By doing this specific task, T, over and over again, the per-
formance measure, P, would be an indicator of how well the task is performed. If
P increases with the experience E from doing T over and over again, the AUV is
learning. ML techniques are usually divided into three distinctive methods. These
are displayed in Figure 2.1.

1. Supervised Learning

7

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

2. Unsupervised Learning

3. Reinforcement Learning

Figure 2.1: Machine Learning

Supervised learning is the concept of using known data distributions to train an
algorithm [24]. The algorithm is trained using large sets of data, preferably in the
order of 104 and greater, and the goal is to teach the algorithm how to recognise
any new data input. From a scientific perspective, the algorithm has access to
both the input data x and the output data y, and tries to do model fitting based
on these. Supervised learning is very common in image classification tasks, where
Convolutional Neural Networks1 (CNN) are the state-of-the-art method. In image
classification tasks the network is trained by using large sets of data, including images
(input) and their respective labels (output). If the network is sufficiently trained,
the overall goal is to use a new image as input and have the algorithm output the
correct label.

1see chapter 2.3.1 in Knudsen [10]

8

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Unsupervised learning, on the other hand, is not given data to learn from, but
the algorithm is left alone to discover interesting features in the data [11]. Mathe-
matically the algorithm has the input data, x, but no information about the output
data. This branch of learning is further divided into two sub-branches; Association
and Clustering. In association, the algorithm tries to discover rules, which describes
large portions of the data. For example, when the incident P occurs, L also tends to
happen. In clustering, the algorithm looks for clusters in the data, such as specific
behaviour or trends.

2.2 An Introduction to Reinforcement Learning

In Reinforcement Learning (RL) the overall goal is to train an agent2 to perform
correct actions in an environment. This is done by giving the agent a reward based
on how good it was to take a particular action in the current state. The reward,
Rt, is defined as a scalar feedback signal, indicating how good it was to take that
particular action at that specific step in time, t. The overall goal is to maximise the
total cumulative reward over all time-steps such that the optimal policy is found,
starting in any state. A policy in reinforcement learning can be interpreted as a
strategy. By defining the reward as a scalar signal, this means that we assume that
every action in the real world can be weighted against each other, meaning that even
ethical dilemmas are solvable.

As stated, the goal of reinforcement learning is to maximise the total cumulative
reward over all actions in order to find the optimal policy. This is done by taking an
action, At, in the environment. An important note here is that taking an action at
the time-step t might have a long-term consequence, meaning that the agent does
not necessarily experience the consequence of taking that action in the next time-
step. This is the same principle as, e.g. a financial investment.

In Figure 2.2, the relationship within reinforcement learning is visualised. At each
time-step t the agent will execute an action At, receive an observation Ot, and a
scalar reward Rt. The environment will receive an action At, and return an obser-
vation Ot and a scalar reward Rt to the agent.

2algorithm, computer program

9

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 2.2: Reinforcement Learning Architecture [26]

2.2.1 Markov Decision Processes

When introducing the concepts of reinforcement learning it is necessary to determine
what types of environments that are possible to solve using this type of algorithm.
A Markov Decision Process (MDP) describes a fully observable environment for
reinforcement learning [26]. A given state, St, is said to be Markov if and only if it
satisfies the Markov Property (MP), given by

P [St+1] = P [St+1|S1, ..., St] (2.1)

In all generality the Markov Property states that the future is independent of the past
given the present, meaning that the state will capture all the relevant information
from the history, but the history may be erased once the state is known. Observe
that the Markov Property in Equation 2.1 defines a conditional independence prop-
erty and can therefore be represented by a chain Baysian network. The benefit of
having this representation is revealed in the introduction to policy gradients.

In an environment where all states are Markov, a MDP is a Markov reward pro-
cess with decision. This is given by a tuple

< S,A,P ,R, γ >

10

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

where,

• S - a finite set of states.

• A - a finite set of actions.

• P - a state transition probability matrix.

• R - a reward function, where Ra
s = E[Rt+1|St = s, At = a].

• γ - a discount factor, γ ∈ [0, 1].

The reason for using a discount factor, γ, on the reward has several advantages. From
a mathematical perspective it is convenient to discount, as well as making sure that
infinite returns are avoided. Furthermore, there is also an uncertainty about the
future that is unknown, and the agent do not know if an immediate reward is more
valuable than a future reward. In MDPs, three definitions are essential; the policy
π, the state-value function Vπ(s), and the action-value function qπ(s, a).

• The policy determines how the agent behaves in the environment, meaning
which policy it is following. The policy is dependent on the current state St
and the action At taken in that state. This is defined as

π(a|s) = P[At = a|St = s] (2.2)

• The state-value function is the expected return G by starting in a state s and
following a specific policy π. The state-value function is defined as

Vπ(s) = Eπ[Gt|St = s] (2.3)

• The action-value function takes the chosen action into account. Computing
the expected return G from starting in a state s, taking an action at and
following a policy π. The action-value function is defined as

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.4)

These three definitions are essential for optimising the MDP. In order to use them
the Bellman Expectation Equation is introduced, which transforms the definitions
above into a new set of solvable definitions [26]. This means that both the state-
value function and the action-value function can be decomposed into an immediate
reward, plus the discounted value of the successor state. The Bellman Expectation
equations are given in Equation 2.5 and 2.6.

11

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

• Bellman Expectation Equation for the state-value function Vπ(s) is given by

Vπ(s) = Eπ[Rt+1 + γVπ(St+1)|St = s]

=
∑
a∈A

π(a|s)(Ra
s + γ

∑
s′∈S

Pass′Vπ(s′)) (2.5)

• Bellman Expectation Equation for the action-value function qπ(s, a) is given
by

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a]

= Ra
s + γ

∑
s′∈S

Pass′
∑
a′∈A

π(a′|s′)qπ(s′, a′) (2.6)

By solving the Bellman Expectation equations, the algorithm is able to look one step
ahead based on the current state and the policy it is following. This concept can be
explained through a look-ahead tree, which is illustrated in Figure 2.3. Overall, the
look-ahead tree lets the agent evaluate how good it is to take a particular action,
given the current state and policy.

(a) State-value Function (b) Action-value Function

Figure 2.3: Look-ahead Tree [26]

The overall goal of the MDP is to find the optimal behaviour for the agent, which
means that the MDP is solved when the agent has found the optimal value function,
resulting in the best possible policy. This is done by taking the maximum value
function, maxπ, over both the state-value function and the action-value function.
The optimal policy for the agent is then found by maximising over the optimal
action-value function.

In conclusion, MDPs, which are environments consisting of a tuple< S,A,P ,R, γ >,
is very suitable to solve with reinforcement learning. The tuple above also shows
that an underwater environment can be defined as a MDP. The state (S) would be
the location of the AUV in the environment, the action (A) would be the direction
the AUV is heading in the given state, and the reward (R) would say something

12

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

about how good it is for the AUV to go in this specific direction, based on the con-
trol objective. By defining the underwater environment as an MDP, it shows that
reinforcement learning can be applied to solve control problems in the underwater
environment. Furthermore, the feedback from the environment shows that the rein-
forcement learning framework essentially is a feedback system, which is the essence
of every traditional control design.

2.2.2 Dynamic Programming

Solving MDPs often results in a complex and computational expensive process,
which is where dynamic programming (DP) comes in handy. DP is a method for
solving complex problems, where the problem is broken down into sub-problems,
and solved separately, before combining the solutions [26]. DP works very well for
problems with the following properties; optimal substructure. These properties state
that the problem can be decomposed into overlapping sub-problems, resulting in
solutions that can be cached and reused. In MDPs, using the Bellman equations re-
sults in a recursive decomposition, with the value function both storing and reusing
solutions, which means that MDPs satisfies both properties.

In reinforcement learning, the DP algorithm takes the MDP as input, and return
the optimal value function (V ∗) and an optimal policy (π∗). The way it does this
is by iteratively applying the Bellman Expectation Equations, given in Equation
2.5 and 2.6. This is done by starting with an arbitrary initial value function and
sweep over all states in each iteration. The policy is improved by acting greedily
with respect to Vπ, given by π′ = greedy(Vπ). Acting greedily means that the agent
chooses the action that it believes has the best long-term reward. This concept is
illustrated in Figure 2.4. The algorithm initialises an arbitrary state-value and pol-
icy function, evaluates them, and acts greedily to receive an improved state-value
and policy function. By iteratively doing this, the policy will always converge to the
optimal value function V ∗ and the optimal policy π∗ [26].

13

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 2.4: Policy Iteration by Acting Greedily [26]

2.2.3 Policy Gradients

As stated throughout this chapter, the objective of reinforcement learning is to
maximise the total future cumulative reward r, in order to find the optimal policy
π. The total reward for a given policy can be found by solving

J(θ) = Eπ[r(τ)] (2.7)

In Equation 2.7, r(τ) is the total reward for following a given policy, and θ is a
defined set of parameters to describe the given policy πθ. From the definition of
MDPs, it is known that every MDP has at least one optimal policy, as well as at
least one stationary3 and deterministic4 policy. To find this optimal policy, the agent
needs to find the parameters θ that maximise J , which is commonly done in machine
learning literature through gradient ascent (or descent) methods [7]. Gradient ascent
methods are based on starting with an arbitrary set of parameters and then stepping
through by the use of an update rule. This is given by

θt+1 = θt + α∇J(θt) (2.8)

In order to find the optimal policy, the agent needs to estimate the gradient of the
update rule that contains the optimal set of parameters θt+1. One way to do this is
through integration, but integrals present a challenge because of their computational
complexity and costs. To avoid integral computation, the first step is to reformulate

3the policy only returns action distributions depending on the last visited state
4the policy deterministically selects actions based on the current state

14

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

the gradient by expanding the total reward gradient.

∇Eπ[r(τ)] = ∇
∫
π(τ)r(τ)dτ (2.9)

=

∫
∇π(τ)r(τ)dτ (2.10)

=

∫
π(τ)∇logπ(τ)r(τ)dτ (2.11)

= Eπ[r(τ)∇logπ(τ)] (2.12)

This is known as the Policy Gradient Theorem, which states that the derivative of
the expected reward is the expectation of the product of the reward and gradient of
the log of the policy πθ [7].

∇Eπθ [r(θ)] = Eπθ [r(τ)∇logπθ(τ)] (2.13)

The next step is to expand the definition of the policy πθ(τ). This results in

πθ(τ) = P(s0)
T∑
t=1

πθ(at|st)p(st+1, rt+1|st, at) (2.14)

where P is the ergodic distribution5 when starting in some arbitrary state s0, πθ is
the policy and p is the environmental dynamics, which determines which new state
the agent will transition into. The terms are updated through the product rule
of probability, which is allowed because of the Markov Property. Remember that
the Markov Property states that every action is independent of the previous action,
meaning that the product rule can be applied. T represents the total number of
time steps. By taking the logarithm of Equation 2.14 the result becomes

logπθ(τ) = logP(s0) +
T∑
t=1

logπθ(at|st) +
T∑
t+1

logp(st+1, rt+1|st, at) (2.15)

∇logπθ(τ) =
T∑
t=1

∇logπθ(at|st) (2.16)

−→ ∇Eπθ [r(τ)] = Eπθ [r(τ)(
T∑
t+1

∇logπθ(at|st))] (2.17)

This result shows that neither the ergodic distribution of states P nor the environ-
mental dynamics p provides relevant information to the agent, meaning that the

5a distribution that has the same behaviour averaged over time as averaged over space

15

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

agent don’t really need to possess any information about these. Both P and p are
variables that are extremely difficult to measure exact, so removing these greatly
reduces the complexity of the problem. This results in what is formally known as
model-free algorithms, simply because the environment is not modelled. As stated
in Chapter 1, one of the problems with traditional model-based controllers is that
identifying and modelling a real-life system is challenging and in some cases infeasi-
ble. However, as shown in Equation 2.17, this problem is removed when using policy
gradients.

Although the ergodic distribution of states and the environmental dynamics have
been proved to be negligible in Equation 2.17, the integral term (expectation Eπθ)
is still present. In order to deal with this term a common solution is to sample a
large data set of trajectories, and average them out [7]. Although this is an ap-
proximation of the problem, it is an unbiased one and similar to the approximation
of continuous space integrals into discrete domains. This approximation is known
as Markov Chain Monte-Carlo (MCMC), and it is commonly used to approximate
parametric probability distributions in Bayesian networks6.

Markov Chain Monte-Carlo

In its simplest form Markov Chain Monte-Carlo (MCMC) methods are used to ap-
proximate the posterior distribution of a parameter of interest by randomly sampling
in a probabilistic space [23]. In these methods, a parameter of interest defines the
specific parameter we are interested in, e.g. height in a region. The distribution de-
fines the mathematical representation of every possible value for this parameter, and
the probability of observing each value. This definition is often described through
the Bell curve, displayed in Figure 2.5.

Figure 2.5: The Bell Curve [23]

6a type of probabilistic graphical models that model conditional dependencies between states

16

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

However, in Bayesian networks, the distribution has an additional layer of interpre-
tation. This additional layers contains beliefs, meaning what our beliefs about the
parameter of interest are. For example what is believed to be the human height in
a region, which in a Bayesian distribution would be represented as in Figure 2.6.

Figure 2.6: Baysian Distribution [23]

The belief is represented by the prior distribution since this is our belief prior to see-
ing the data. On the other hand, the likelihood distribution represents the likelihood
of the observed data. By combining these two distributions, the posterior distribu-
tion is achieved, which tells something about which parameter values that maximise
the probability of observing a specific data, given our prior beliefs. As shown in
Figure 2.6, the posterior distribution shows that we are relatively confident in the
likelihood distribution from the data, but still believe that the average height is a
little higher than what the data suggests. Determining the posterior distribution in
the average height case is fairly simple since both the prior and likelihood distribu-
tions have a convenient curve. However, this is often not the case, and it can be
impossible to determine the posterior distribution analytically. This is where the
MCMC methods are applied.

First of all, MCMC methods are a type of Monte Carlo methods. Monte Carlo
is a type of dynamic programming (DP) methods, and consist of simulations that
repeatedly samples random numbers to estimate some fixed parameter. So, instead
of estimating the parameter analytically, which often is impossible, the Monte Carlo
simulation provides an approximation of the parameter. The second layer of MCMC

17

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

methods is Markov Chains, which describes a probabilistic relationship within a se-
quence of events. Each event in the cycle is the result of a set of outcomes, and each
outcome determines which outcome that follows, based on a fixed set of probabilities.

Figure 2.7: Markov Chains

The concept of Markov Chains is illustrated in Figure 2.7, where 4 states and their
respective transition probabilities are shown. For example, if starting in state 3,
there is a 25% probability of transitioning into state 1, 2 or 4, as well as a 25%
probability of staying in state 3. This shows that Markov Chains are also memo-
ryless, meaning that all information needed to predict the next event is available
in the current state. Meaning that no information about the history of events is
necessary [23]. This property is formally known as the Markov Property, which has
been discussed in previous sections.

With some knowledge about how Monte Carlo simulations and Markov Chains work,
we can begin to understand how MCMC methods are able to estimate the posterior
distribution of a parameter of interest. Initially, MCMC methods choose an arbi-
trary parameter value, and through Monte Carlo simulation generate random values
based on some rule of what determines a good parameter value [23]. To do this,
the simulation looks at a pair of parameter values and computes the probability of
each value explaining the data, based on the prior beliefs. The better value is added
to a Markov Chain, which is updated as the simulation continuous and eventually
outputs the posterior distribution of the property.

By doing this an approximation of Equation 2.17 is received, which can then be

18

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

used to find the optimal policy by finding the parameters θ that maximise J in

J(θ) = Eπ[r(τ)] (2.18)

As stated previously, the use of policy gradients is common in reinforcement learning
techniques, and ML in general, to find the optimal policy. The next chapter discuss
Deep Reinforcement Learning (DRL) techniques, which further substantiates the
usage and importance of policy gradients in RL.

19

Chapter 3

Deep Reinforcement Learning

This chapter includes a further investigation into reinforcement learning, more specif-
ically, the branch of learning that is denoted Deep Reinforcement Learning (DRL).
These are methods using the principles of Artificial Neural Networks (ANNs), which
are based on the idea of how biological nervous systems, such as the human brain,
operates [18]. In all simplicity, a neural network1 is a connected graph with input
neurons, output neurons and weighted edges [2]. In recent years there has been a
rapid increase in new methods for deep reinforcement learning, primarily focusing
on benchmark games such as Atari2, AlphaGO3 and AlphaZero4.

From this rapid increase in both popularity and research, three methods have shown
great promise, and are considered state-of-the-art methods within deep reinforce-
ment learning. The first is known as Deep Deterministic Policy Gradients (DDPG),
developed by Googles DeepMind, the second is Trust Region Policy Optimisation
(TRPO), developed at UC Berkeley, and the third is named Proximal Policy Opti-
misation (PPO), developed by OpenAI Gym.

3.1 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradient (DDPG) algorithms are characterised as a type
of policy gradients that are off-policy, model-free and actor-critic. Recall from Sec-
tion 2.2.3 that policy gradients are algorithms which continuously computes noisy

1see chapter 2.3.1 in Knudsen [10]
2collection of computer games such as pong and space invaders.
3computer program that plays the board game Go
4computer program that plays the board game Chess

20

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

estimates from the gradient of the expected reward from following a specific policy,
to optimise the policy end-to-end. Furthermore, by being actor-critic, the policy
function (actor) is independent of the value function (critic). The fact that these
two are independent means that the policy function performs some action in the
current state, while the value function computes a temporal difference5 (TD) error
signal based on the current state and the reward from performing that particular
action.

Being an off-policy algorithm means that the policy function does not make any
assumption if whether or not the agent is following the actual policy. The result
from this is that the policy function, which is used to generate behaviour, is un-
related to the policy that is evaluated and improved. The benefit of having this
separation is that the policy might be deterministic, e.g. greedy6, while the policy
function can continue to sample all possible actions in every state. Meaning that
although the policy itself is deterministic, and thereby only choose the action with
the highest expected reward, the policy function separately evaluates all possible
actions in every state. The reason for doing this is to make sure that the agent
does not converge towards a sub-optimal policy. The last characteristic is that the
algorithms are model-free, which means that the environment is not modelled. A
result of this is that the agent does not know anything about the underlying envi-
ronmental dynamics, and the benefit of this is that the computational complexity
of the problem is significantly reduced compared to model-based methods.

DDPG algorithms are closely connected to Q-learning, in the way that they use
off-policy data and the Bellman equation to learn a Q-function, and then use the
Q-function to learn the optimal policy [17]. The optimal policy is found by solving

a∗(s) = arg max
a

Q∗(s, a) (3.1)

which is based on the fact that if the action-value function Q∗(s, a) is known, the
optimal action a∗(s) can be determined in every state, and from this the optimal
policy π∗(s) can be found. Recall from Chapter 2 that Equation 3.1 is simply an-
other way to define the policy gradient problem in Equation 2.7. DDPG algorithms
are specially designed for environments with continuous action spaces, which is re-
vealed through the computation of the max over all actions max

a
Q∗(s, a). In finite

action spaces, meaning that there exist a finite number of discrete actions, the max
computation is no problem since the Q-values for each action can be computed sep-
arately and compared. However, continuous action spaces cannot exhaustively be

5an agent learning from an environment through episodes with no prior knowledge of the envi-
ronment [28]

6the policy chooses the action with highest expected reward in each state

21

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

evaluated, and solving the optimization problem is highly non-trivial, which results
in calculating max

a
Q∗(s, a) being a very computational expensive routine.

Because of this, the function Q∗(s, a) is assumed to be differentiable with respect to
the action argument in continuous action spaces [17]. By assuming this an efficient,
gradient-based, learning rule for the policy π(s) can be created. Consequently, the
expensive max computation is approximated as max

a
Q∗(s, a) ≈ Q∗(s, π(s)).

3.1.1 Q-Learning

As previously mentioned, DDPG algorithms are closely connected to Q-learning, in
the way that they use the Bellman equation to learn a Q-function, which is then
used to learn the optimal policy. In Equation 2.5 the Bellman equation for the
action-value function Q∗(s, a) was given by

qπ(s, a) = Eπ[Rt+1 + γ qπ(St+1, At+1)|St = s, At = a]

= Eπ[r(s, a) + γ max
a′

Q∗(s
′
, a

′
)]

(3.2)

where qπ = Q∗. In order to understand how this Bellman equation contributes
to learning an approximator to Q∗(s, a) imagine that the approximator is a neural
network Qφ(s, a), with parameters φ and a set of transitions D = (s, a, r, s

′
, d). Here,

s and s
′

defines the current and previous state, a is the action taken, r is the reward
received and d indicates if the state is terminal or not. The terminal state is defined
as the state where a trajectory, or episode, is finished, e.g checkmate in a chess game.
The variable d is either 1 or 0, which represents true or false, respectively. The
goal is to satisfy the Bellman equation, and in order to estimate how close Qφ is to
achieve this a mean-squared Bellman error (MBSE) function is used, which is given
in Equation 3.3.

L(φ,D) = E
(s,a,r,s′ ,d) D

[(Qφ(s, a)− (r + γ(1− d)max
a′

Qφ(s
′
, a

′
)))2] (3.3)

DDPG, and Q-learning algorithms in general, are based on minimising this MSBE
loss function L(φ,D) in order to satisfy the Bellman equation. To accomplish this,
DDPG algorithms utilises two main tricks, which are described in the following
sections.

Replay Buffer

The first trick is the use of a replay buffer, which contains a set D of previous
experiences, and is a common implementation in standard deep neural network

22

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

training algorithms. In Equation 3.3, the replay buffer is represented by the term

Qφ(s, a) (3.4)

The size of the replay buffer has a great influence on the quality of training, in the
sense that it should be sufficiently large such that it contains enough diverse experi-
ence, but if its too large training can become immensely slow. To determine how to
balance this trade-off between enough experience and training time, one should tune
the hyper-parameters of the algorithm. Furthermore, recall that DDPG algorithms
are off-policy, which is revealed through the replay buffer as well. The replay buffer
contains information about old experiences, which possibly were experienced using
outdated policies. Using experience from outdated policies is allowed because of the
Bellman equation, which does not care about which transition tuples that are used,
how the actions are selected, or what happens after a given transition, because the
optimal Q-function should satisfy the Bellman equation for all possible transitions
[17].

Target Network

The second trick involves a target network, represented in Equation 3.3 as the term

r + γ(1− d)max
a′

Qφ(s
′
, a

′
) (3.5)

This term is called the target because minimising the MBSE loss function is effec-
tively the same as trying to make the Q-function be more like this target. This
target is problematic because it depends on the same set of parameters φ that the
algorithm is trying to train, which results in the MSBE minimisation being unsta-
ble. Resolving this issue is done through the use of a copy network, which uses a
set of parameters that comes close to φ, with a time delay. This network, φtarg, is
created by copying from the main network with some fixed step interval. In DDPG
algorithms, the creation of the target network is done through Polyak averaging.

φtarg ←− ρφtarg + (1− ρ)φ (3.6)

Where the Polyak hyper-parameter ρ has a value between 0 and 1. Recall that
computing max

a
Q∗(s, a) in continuous action spaces is a challenge, and using a

target policy network to compute an action that approximately maximises Qφtarg

is how DDPG algorithms deals with this challenge. This procedure is similar to
the update function in Equation 3.6, mainly to use Polyak averaging on the policy
parameters over the whole training period. The result from doing this is that the

23

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Q-learning part of a DDPG algorithm becomes the procedure of minimising the
following MSBE loss function through gradient descent

L(φ,D) = E
((s,a,r,s′ ,d) D

[Qφ(s, a)− (r + γ(1− d)Qφtarg(s
′
, πθtarg(s

′
))))2] (3.7)

where πθtarg is the target policy.

3.1.2 Policy Learning

As mentioned in the previous section, the Bellman equation is used to learn the
Q-function, and the Q-function is then used to learn the optimal policy. The overall
goal of policy learning in DDPGs is to determine a deterministic policy πθ(s), which
gives the action that maximises Qφ(s, a) in every state. Since the action space
is continuous, which resulted in the Q-function being assumed differentiable with
respect to the action, gradient ascent (see Section 2.2.3) can be used to solve the
maximisation problem in equation 3.8, resulting in the optimal policy.

max
θ

E
s∼D

[Qφ(s, πθ(s))] (3.8)

3.1.3 Exploration vs. Exploitation

An important note when dealing with DDPG algorithms, and reinforcement learning
in general, is the relationship between exploration and exploitation of actions. This
is important because the policy in DDPG algorithms is deterministic, meaning that
if the agent is exploring on-policy, in the beginning, it is not certain that it would
experience enough variety of actions to find useful learning signals. This relationship
specifically involves the trade-off between exploitation, meaning that the agent ex-
ploits the learned best action to take in a given state, and exploration, meaning that
the agent tries a new action in a given state. This trade-off deals with the fact that
although the agent has found what it believes to be the optimal action in a given
state, there could always exist an unexplored action that is better. Due to this, the
possibility for exploration is implemented, such that a sub-optimal policy is avoided.

The trade-off between exploration and exploitation is usually determined by a pa-
rameter ε, which is effectively the same as introducing noise into the system. If
ε −→ 0 the agent only exploits previous learned optimal actions, and if ε −→ 1 the
agent always explores new actions in a given state. When the agent is starting to
explore the environment, it has no prior knowledge about it. Due to this, the agent
should explore and exploit actions. However, as the agent discovers more about the

24

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

environment, meaning that it increases its situational awareness, the probability of
the learned policy being optimal increases. This means that ε should decrease as
the knowledge about the environment increases.

3.2 Challenges in Policy Gradient Methods

As described in the last section, DDPG algorithms are a type of policy gradient (PG)
methods. Recall from Chapter 2 that the basic concept of PG methods is to use
gradient ascent (or descent) to follow policies in the direction of the steepest increase
in total reward. However, PG methods are a type of first-order optimisation, which
results in difficulties in curved areas, and creates issues in convergence towards an
optimal policy [6]. Trust Region Policy Optimisation (TRPO) and Proximal Policy
Optimisation (PPO) methods tries to resolve these issues, but to understand how it
is necessary to dig deeper into the challenges related to PG methods.

In PG methods, a policy θ is optimised to achieve the maximum expected discounted
reward. This is given by

max
θ
J(πθ) = E

τ∼πθ
[
∞∑
t=0

γtrt] (3.9)

In order to do this optimisation, PG methods computes the steepest ascent (or
descent) direction of the rewards, denoted g in Equation 3.11, and then update the
policy θ in this direction [6].

g = ∇θJ(πθ) = E
τ πθ

[
inf∑
t=0

γt∇θlogπθ(at|st)Aπθ(st, at)] (3.10)

θk+1 = θk + αg (3.11)

Here, αg is a gradient step taken in the steepest direction. The gradient step in
Equation 3.11 is a first-order derivative, which essentially means that the reward
function is assumed to be flat. This assumption poses a problem if the reward func-
tion is steep or curved, which could result in terrible actions if the step is too large.
Imagine that the reward function looks like a hill, and if the agent chooses to take a
too large step at the top of the hill, it falls down the hill. When the agent resumes
exploration, it does so from a worse state using a bad local policy, meaning that it
probably needs a longer time to recover. At the same time, if the step is too small
the agents learning rate decreases, resulting in learning becoming immensely slow.

25

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Furthermore, the reward function also results in difficulties when it comes to defining
a sufficient learning rate. Imagine that the hill is flat on the top, which means that
the learning rate should be higher than average to accomplish a sufficient learning
speed. However, if the step is too large, and it falls down the hill, this learning rate
is suddenly too high, which results in an exploding policy update [6]. This problem
is one of the main reasons why PG methods are suffering from convergence problems.

The third challenge related to PG methods is that the whole trajectory, or training
episode, is sampled for only one policy update, and the policy cannot update at
every time step.

g = ∇θJ(πθ) = E
τ πθ

[
inf∑
t=0

γt∇θlogπθ(at|st)Aπθ(st, at)]

one policy update per trajectory

(3.12)

The reason for this can be explained by imagining the policy model as a net, as
in Figure 3.1. If the probability of π(s) is increased at one point, the surrounding
points will be pulled up. Similar response will be the case for the states within a
trajectory, and if the policy was to be updated at every time step this will essentially
result in pulling the net up multiple times at the same spots.

Figure 3.1: Policy Model Represented as a Net

26

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

The result from this is that the changes at each time-step affect and magnify each
other, which results in the training process becoming unstable. Due to this, the
policy cannot update at every time step, and since there likely are thousands of
steps in one trajectory, this is not sample efficient, resulting in PG methods needing
10 million or more training steps to reach convergence [6]. The need of 10 million
or more steps is very computationally expensive, especially when combined with the
convergence problems discussed in the previous section as well.

3.3 Trust Region Policy Optimisation

Based on the challenges in policy gradient methods, it is clear that policy changes
should be limited, and a goal would be that every policy change should guarantee an
improvement in rewards. Because of this, it is necessary to develop a more robust
optimisation method in order to produce better policies. This is where Trust Region
Policy Optimisation (TRPO) enters. TRPO uses three different concepts to address
the problems related to policy gradients; Minorize-Maximization algorithm, Trust
Region and Importance Sampling.

3.3.1 Minorize-Maximization Algorithm

The first question to address is how to accomplish a guaranteed improvement in
expected reward for every policy change. This is achieved through the Minorize-
Maximization (MM) algorithm, which is shown in Figure 3.2.

Figure 3.2: The Minorize-Maximization Algorithm [5]

The goal is to approximate the expected reward η (red line), by iteratively max-
imising a lower bound function M (blue line). This is done by starting with an
initial arbitrary policy guess and find the lower bound M for that approximation
[6]. The local optimal point for M , θi, is then used as the next guess. By iteratively
doing this, as shown in Figure 3.2, the policy eventually converges to the optimal

27

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

policy. The result of this is that through the MM algorithm, the expected reward is
guaranteed to improve for every policy change.

3.3.2 Trust Region

In TRPO methods, trust region optimisation is used instead of gradient descent (or
ascent), which was the case in PG methods. Trust region optimisation works by first
determining the maximum step size the agent should explore, and then locate the
optimal point within the trust region. The objective of trust region optimisation is
defined in equation 3.13.

max
s∈Rn

mk(s)

s.t. ||s|| ≤ δ
(3.13)

Here, the goal is to find an optimal point m within the thrust region radius δ, and
by iteratively repeating this process, eventually reaching the optimal policy. One of
the problems with PG methods was that it is mainly an on-policy method, meaning
that the agent stick with what could be a bad policy. Recall that in PG methods
the agent could fall off the hill. On the other hand, in trust region methods, the
region size δ can be readjusted in each iteration based on the curvature of the reward
function. If the divergence between the new and current policy is getting too large,
the trust region can be decreased and increased if it is getting too small. The benefit
of doing this is that the agent has much better control of the learning procedure, as
well as increased learning speed.

3.3.3 Importance Sampling

As previously discussed, PG methods have poor sample efficiency as well, which was
due to the fact that the current policy is used to compute the policy gradient.

∇θJ(θ) = Eτ∼πθ(τ)[∇θ(τ)r(τ)] (3.14)

This is revealed in Equation 3.14, since the reward r(τ) is calculated from the tra-
jectory using the current policy Eτ∼πθ(τ). This means that when the policy changes,
new samples are collected, and the old samples are not reusable, which results in
poor sample efficiency. On the other hand, in TRPO methods Importance Sampling
(IS) is used, which lets the agent choose to sample from the old policy instead. This
is done by sampling data from an old policy q and calibrate the result through the
probability ration between the new policy p and q. This is given by

Ex∼q[
f(x)p(x)

q(x)
] (3.15)

28

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

where f(x) is the function evaluated. From this, Equation 3.14 can be rewritten to
use samples from an old policy instead. This is given by

∇θ′J(θ′) = Eτ∼πθ(τ)[
T∑
t=1

∇θ′ logπθ′(at|st)(
t∏

t′=1

πθ′(at′ |st′)
πθ(at′ |st′)

)(
T∑
t′=t

r(st′ , at′))] (3.16)

where θ and θ′ is the old and new policy, respectively. One note here is that Equation
3.15 has the variance given in Equation 3.17 [21].

1

N
(Ex P [

P (x)

Q(x)
f(x)2]− Ex P [f(x)]2) (3.17)

This means that if the ratio P (x)/Q(x) is large, meaning that the two policies are
far apart, the variance of the estimation gets very large. The result of this is that the
agent cannot use old samples for too long, and the agent should frequently resample.

Using IS also means that the objective function can be changed. Recall that in
policy gradient methods this was given by

g = ∇θJ(πθ) = E
τ∼πθ

[
∞∑
t=0

γt∇θlog πθ(at|st)Aπθ(st, at)] (3.18)

θk+1 = θk + αg (3.19)

From the work done by Schulman et. al in [21] it is shown that this derivative can
be reversed as the objective function given in Equation 3.20.

LPG(θ) = Êt[logπθ(at|st)Ât] (3.20)

where γ is set equal to 1 for simplicity, and by expressing this as importance sampling
the result becomes

LISθold(θ) = Êt[
πθ(at|st)
πθold(at|st)

Ât] (3.21)

By having two policies, πθ and πθold , in the objective function the agent is now able
to control and restrict policy change, which was one of the goals from the challenges
in PG methods.

29

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

3.3.4 TRPO

By using the concepts above the objective function for TRPO methods is defined
by Schulman et al. as

max
π′
Lπ(π′)− C

√
E

s∼dπk
[DKL(π′||π)[s]]

or

max
π′
Lπ(π′)

s.t. E
s∼dπ

[DKL(π′||π)[s]] ≤ δ

(3.22)

where Lπ(π′) is defined as

Lπ(π′) =
1

1− γ E
s∼dπ ,a∼π

[
π′(a|s)
π(a|s)A

π(s, a)]

= E
τ∼π

[
∞∑
t=0

γt
π′(at|st)
π(at|st)

Aπ(st, at)]

(3.23)

and

dπ(s) = (1− γ)
∞∑
t=0

γtP (st = s|π) (3.24)

Here, A is the advantage function, which says something about the expected im-
provement in rewards between the two policies π and π′, and d is the discounted
future state distribution [21]. From this, L can be interpreted as a way of us-
ing importance sampling to estimate the advantage function. Furthermore, DKL is
Kullback-Leibler (KL) divergence, which is a measure of how one data distribution
p is different from another data distribution q, or in this case the difference in data
distribution between two polices. This is given by

DKL(P ||Q) =
N∑
x=1

P (x)log
P (x)

Q(x)
(3.25)

The objective function in Equation 3.22 provides two possible objectives, either a
KL penalised objective, or a KL constrained objective. Theoretically, these two are
the same if the computational resources are unlimited. However, in practice, they
are not. δ imposes a hard constraint in order to control bad policy changes and
is in practice much easier to tune than the constant C. Because of this, TRPO
implementations usually prefers using trust region constraint (KL constrained).

30

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

3.4 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) algorithms are a newer family of algorithms
in the deep reinforcement learning environment, originally proposed by Schulman et
al. from OpenAI Gym in 2017 [22]. Compared to standard policy gradient methods,
such as DPPGs, which does one gradient update each data sample, the PPOs en-
ables multiple epochs7 of minibatch8 updates. Meaning that PPOs utilises multiple
updates each iteration, by passing over a full subset of the training data each update.
Furthermore, OpenAI gym argues that PPOs are easier to implement, more general
and have better sample complexity than TPROs, although it prohibits some of the
same benefits.

As stated throughout, the rapid development in AI has led to several proposed
methods for reinforcement learning with neural network function approximators.
However, there is still room for improvement, especially when it comes to devel-
oping methods that are both scalable, data efficient and robust. Meaning that the
methods are applicable to large state and action spaces, not computational heavy,
and successful on a variety of problems. DDPG algorithms and deep Q-learning
methods, in general, have problems related to both robustness and data efficiency.
Often leading to problems in convergence towards the optimal solution, while TRPO
algorithms consist of complicated algorithms and many architectural flaws related
to noise and parameter sharing [22].

In PPO algorithms these problems are resolved by only using first-order optimi-
sation, but at the same time retain the data efficiency and performance of TPROs.
To do this, Schulman et al. proposes a novel objective function9 with clipped proba-
bility ratios, and policies that are optimised by alternating between sampling policy
data and performing epochs of optimisation on the sampled data.

3.4.1 Optimisation

To optimise the policy, PPO algorithms also utilise the Minorize-Maximization
(MM) algorithm, which was defined in Figure 3.2. Furthermore, PPO algorithms
use the KL-divergence to limit policy change. The KL-divergence was defined for

7one pass over the full training set
8a subset of all the training data
9a function that is desired to maximise or minimise

31

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

two data distributions p and q as

DKL(P ||Q) = Exlog
P (x)

Q(x)
(3.26)

In the same way as TRPO methods, the PPO uses the KL-divergence to evaluate
the difference between two policies, and make sure that the new policy does not
differ too much from the old one. By doing this, it turns out that to limit policy
change, such that the agent does not make bad decisions, the lower bound of M in
the MM algorithm can found as

M = L(θ)− C ∗ K̄L,where (3.27)

L(θ) = Êt[
πθ(at|st)
πθold(at|st)

Ât] (3.28)

where πθ and πθold are the new and current policy, respectively. K̄L is KL-divergence
and C is a constant. L(θ) is the expected advantage function, which was defined in
the previous section. The lower bound of M can be further defined as follows [5].

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃),where (3.29)

C =
4εγ

(1− γ)2
(3.30)

Dmax
KL (π, π̃) = max

s
DKL(π(−|s)||π̃(−|s)) (3.31)

ε = max
s,a

[Aπ(s, a)] (3.32)

The maximum KL-divergence Dmax
KL (π, π̃) is computational heavy to calculate, and

because of this its requirements are relaxed a bit by using mean KL-divergence in-
stead. This is allowed because of the advantage function L. The advantage function
will get less accurate as the error between the new and current policy increases,
where the distance has an upper bound defined as the second term in M . Since the
upper bound of the error is within the trust region, the new policy is guaranteed
to be better than the old policy. However, if the optimal policy exceeds the trust
region, the accuracy might be far off and the policy cannot be trusted. Thus, a
relaxed requirement by using the mean KL-divergence is sufficient, and the whole
objective function can be summarised as

maximise
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât]

subject to Êt[KL[πθold(−|st), πθ(−|st)]] ≤ δ

(3.33)

However, δ is here very small and considered too conservative. By inserting a tune-
able hyperparameter β instead, the conditions are relaxed, and the objective function

32

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

can be re-written as

maximise
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât]− βÊt[KL[πθold(−|st), πθ(−|st)]] (3.34)

In order to make M easy to optimise Taylor expansion is used on the results in
Equation 3.33 and 3.34, which results in the following solution for the policy update.

θk+1 = θk +

√
2δ

gTF−1g
F−1g (3.35)

The second term in this solution is a natural policy gradient, which involves both
a second-order derivative F and its inverse F−1. However, second-order derivatives
are computational expensive operations, and PPO algorithms aim not to do these
operations. This is solved by pushing the first-order derivative solution as close as
possible to the second-order derivative solution through the use of soft constraints.
The idea for doing this is that it is better to have a bad policy decision once in a while
compared to calculating a second-order solution, but by adding a soft constraint as
well we make sure that the policy stays within the trust region, meaning that the
probability of bad decisions are reduced. PPO utilises this through two different
methods, adaptive KL penalty and clipped surrogate objective, which are explained
in the next sections.

3.4.2 Adaptive Kullback-Leibler Penalty

In PPO with adaptive KL penalty the objective is formulated such that the second
term in Equation 3.34 serves as a penalty, where β controls the weight of the penalty.

maximise
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât]− βÊt[KL[πθold(−|st), πθ(−|st)]] (3.36)

The weight β will penalise the objective if the new policy differs from the current
policy. The KL-divergence between the new and current policy is given by the second
term, Êt[KL[πθold(−|st), πθ(−|st)]]. If this term is larger than the target value, β is
reduced, and if it is smaller, β is increased to expand the trust region.

3.4.3 Clipped Surrogate Objective

From Schulman et al. it is proved that PPO with adaptive KL penalty achieves
similar performance as of TRPO, and with speed close to gradient descent methods.

33

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

However, PPO with clipped surrogate objective has been shown to do even better
[22]. In PPOs, two policy networks are used, where πθ(at|st) is the current policy
that is optimised and πθk(at|st) is the previous policy used to collect samples. The
current policy is again optimised through

maximise
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât] (3.37)

Doing this means that the current policy can be improved and optimised by using
samples collected from an old policy, which increases sample efficiency. However,
as the current policy is optimised and improved it will get further away from the
old policy. As the difference increases the variance in the estimation will increase,
and the probability of bad decisions increases as well. Due to this, the two policy
networks πθ(at|st) and πθk(at|st) needs to be regularly synchronised. This is done
by letting

πθk+1
(at|st)←− πθ(at|st) (3.38)

By computing the ratio between the two terms in Equation 3.38, the difference
between the two policy networks can be measured as

rt(θ) =
πθ(at|st)
πθk(at|st)

(3.39)

This ratio is then used two clip the the estimated advantage function if the difference
between the two policies are too large. This results in the clipped surrogate objective
function, displayed in Equation 3.40.

LCLIPθk
(θ) = Êt[min(rt(θ)Ât, clip(rtθ, 1− ε, 1 + ε)Ât)] (3.40)

Here ε is a tuneable hyperparameter, set has ε = 0.2 in [22]. This makes sure that
if the probability ratio between the two policies exceeds the range (1− ε, 1 + ε), the
advantage function is clipped, meaning that the probability ratio is ignored when
the objective is improved and included if it makes the objective worse [22]. This can
be shown by plotting a single step t of the clipped surrogate objective, illustrated in
Figure 3.3.

34

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 3.3: Performance of Clipped Surrogate Objective [22]

Observe in Figure 3.3 that the clipping is based on whether the advantage function
is greater or less than zero. If minibatch gradient ascent is used the loss function
LCLIP can be maximised, meaning that the problem is indeed a first-order problem.

This chapter has introduced three state-of-the-art algorithms within the deep rein-
forcement learning family, and showcased their benefits and challenges. The prelim-
inary studies on the subject evaluated the performance of a DDPG based controller
architecture [10], and as stated in this chapter the DDPG algorithm has problems
related to convergence. However, the preliminary studies showed that the algorithm
was able to learn how to reach a desired pose despite of these difficulties. Due to
this, the controller implementation in the next chapters will surround a DDPG based
controller architecture.

35

Chapter 4

Modeling

This thesis builds on the preliminary work done by Knudsen on station keeping of
AUVs [10], and the following chapter on the model dynamics is based on this work.

In order to evaluate the possibilities of applying DRL techniques in AUV con-
trol, simulations will be conducted using the BlueROV2 by BlueRobitcs [1]. The
BlueROV2 has a 6-thruster vectored configuration, open-source electronics and soft-
ware, and works well for inspections, research, and adventuring. The simulation
model, provided by Nielsen et al. in [16], does not include the BlueROV2’s tether,
which means that the vehicle is assumed to perform as an AUV in simulation.

Figure 4.1: BlueROV2 by BlueRobotics [1]

36

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

4.1 Reference Frames

Figure 4.2: Body-fixed and Earth-fixed Reference Frames

In Figure 4.2, the BlueROV2’s 6 degrees of freedom (DOF) in the Body-fixed and
Earth-fixed reference frames are illustrated. Here, the North-East-Down (NED)
reference frame is used as the earth-fixed reference frame. When analysing motion
in 6-DOF it is convenient to define motion in different reference, or coordinate,
frames. The reference frames are given by

• NED is defined as a coordinate system {n} = (xn, yn, zn) with origin on rela-
tive to the Earth’s reference ellipsoid, commonly defined as the tangent plane
to the surface of the Earth moving with the vessel [4]. Here, the xn axis points
towards true North, the yn axis points towards true East and the zn axis points
downwards normal to the surface.

• BODY is defined as a coordinate system {b} = (xb, yb, zb) with origin ob
centred at the vessels centre of mass, and moving with the body. Here, the
xb axis is directed from aft to fore, the yb transverse axis is directed towards
starboard and the zb normal axis directed from top to bottom.

The notations in Figure 4.2 are defined according to SNAME (1950) [4], which is
given in Table 4.1. The SNAME notation is used throughout this thesis.

37

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Table 4.1: The Notation of SNAME (1950) for Marine Vessels

When dealing with multiple frames, it is necessary to rotate between them, such
that any parameter can be expressed in all frames. This is done through a rotation
matrix. For the BlueROV2, the linear and angular velocities, given in Table 4.1,
are defined in the (Body) frame. From Fossen [4] the Euler angles ; roll (φ), pitch
(θ) and yaw (ψ), can be used to decompose the velocity vector vbb/n into the (NED)
frame. This is given by

vnb/n = Rn
b (Θnb)v

b
b/n (4.1)

where the rotation matrix from (Body) to (NED) is given by

Rn
b (Θnb) =

cψcθ −sψcφ+ cφsθsφ sψsφ+ cψcφsθ
sψcθ cφcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (4.2)

where c = cos and s = sin.

4.2 Dynamic Model of Underwater Vehicles

From Fossen [4], the underwater dynamic equation of motions is defined as

Mv̇ + C(v)v +D(v)v + g(µ) + δ = τ (4.3)

−→ (MRB +MA)v̇ + (CRB(v) + CA(v))v + (DL +DQ)v + g(µ) + δ = τ (4.4)

For simplicity, the external forces, such as environmental forces τenv, are here ne-
glected. Consequently, τ is the force and torque applied by the controller, while δ is
a model uncertainty vector. The terms in Equation 4.4 are defined in the following
sections, and their values are given in Appendix A.

38

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

4.2.1 Mass Matrix

The Mass matrix consist of rigid-body terms and hydrodynamic terms. The hydro-
dynamic terms are due to added mass, which is mass created by the acceleration of
the surrounding water when a vehicle is moving through a stationary fluid [4].

MRB =

[
m ∗ I3x3 03x3

03x3 Ig

]
(4.5)

Ig =

 Ix −Ixy −Ixz
Iyx Iy −Iyz
−Izx −Izy Iz

 (4.6)

MA =

Xu̇ Xv̇ Xω̇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yω̇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zω̇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kω̇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mω̇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nω̇ Nṗ Nq̇ Nṙ

 (4.7)

(4.8)

Here, m denotes the total mass of the vehicle, and Ix, Iy, Iz represents the moment
of inertia about the body axis. Because of symmetry, the products of inertia, here
represented on the off-diagonal, will have the form Ixy = Iyx, Iyz = Izy and Izx =
Ixz. The added mass matrix consist of hydrodynamic derivatives, which is given by

Nk̇ =
∂N

∂k̇
(4.9)

where N = (X, Y, Z,K,M,N) and k = (u, v, ω, p, q, r). For example, Xu̇ represents
the added mass force coefficient in surge due to an acceleration in surge.

4.2.2 Coriolis and Centripetal Force Matrices

The Coriolis-Centripetal matrix also consists of rigid-body and hydrodynamic terms.
From Fossen [4], the rigid-body Coriolis-Centripetal matrix can be found by defining
MRB as

MRB = MT
RB =

[
M11 M12

M21 M22

]
> 0 (4.10)

where M21 = MT
12. CRB is then found by

CRB(ν) =

[
03x3 −S(M11ν1 +M12ν2)

−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)

]
(4.11)

39

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

where ν1 := vbb/n = [u, v, ω]T , ν2 := ωbb/n = [p, q, r]T and S is the cross-product
operator. The hydrodynamic Coriolis-Centripetal matrix can be found in the same
way, by using MA. This yields

MA = MT
A =

[
A11 A12

A21 A22

]
> 0 (4.12)

CA(ν) =

[
03x3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

]
(4.13)

4.2.3 Damping Matrices

As stated previously, the environmental forces are neglected in Equation 4.4, which
means that skin friction and vortex shedding will dominate the damping term. This
leads to the simplified hydrodynamic damping terms in Equation 4.14 and 4.15.

DL = −

Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zω 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Mq 0
0 0 0 0 0 Nr

 (4.14)

DQ = −

Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0
0 0 Zω|ω||ω| 0 0 0
0 0 0 Kp|p||p| 0 0
0 0 0 0 Mq|q||q| 0
0 0 0 0 0 Nr|r||r|

 |v| (4.15)

4.2.4 Hydrostatic Terms

The hydrostatic matrix, expressed as g(µ) in Equation 4.4, accounts for the restoring
forces, which is defined as the relationship between the weight W and the buoyancy
B. By assuming that the vehicle is neutrally buoyant it will satisfy W = B, and
by further assuming that the centre of gravity (COG) and the centre of buoyancy
(COB) are located vertically on the z axis, the hydrostatic matrix can be defined as

g(µ) = [0, 0, 0, B̄GzWcos(φ)sin(φ), B̄GzWsin(θ), 0]T (4.16)

where B̄Gz = zg − zb, with zg being the z component in COG, and zb being the
z component in COB, and µ = [N,E,D, φ, θ, ψ] defined in the (NED) and (Body)
reference frames.

40

Chapter 5

Method

This chapter describes the procedure of developing a sufficient DRL-based station
keeping controller for the BlueROV2. The controller builds on the design proposed
by Knudsen in the preliminary studies [10] and consists of a dual controller which
encompasses a DDPG algorithm in conjunction with a PD controller.

5.1 Controller Implementation for the BlueROV2

The BlueROV2 has 13 states, which are defined hereafter as

• 3 position states defined in the (NED) frame as [x, y, z]

• 4 orientation states defined in the (NED) frame as the quaternions [ε1, ε2, ε3,
η]

• 3 linear velocity states defined in the (Body) frame as [u, v, w]

• 3 angular velocity states defined in the (Body) frame as [p, q, r]

The orientation states are defined as quaternions such that the issue related to
singularity in pitch φ = ±90◦ when using Euler angles is resolved. However, in
order for the controller to use these states they need to be transformed into Euler
angles. The singularity will not be an issue when doing this, since the transformation
does not affect the model measurements. The rotation matrix from (Body) to (NED)
for the quaternions is defined by Fossen [4] as

Rn
b (q) =

1− 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2 + ε3η) 1− 2(ε21 + ε23) 2(ε2ε3 − ε1η)
2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε21 + ε22)

 (5.1)

41

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Furthermore, the relationship between the quaternions and Euler angles is defined
as

Rn
b (Θnb) := Rn

b (q) (5.2)

which is equal tocψcθ −sψcφ+ cφsθsφ sψsφ+ cψcφsθ
sψcθ cφcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (5.3)

where c = cos and s = sin. This results in the following Euler angles, expressed by
the quaternions, which is used in the controller.

φ = atan2(R32, R33) = atan2(2(ε2ε3 + ε1η) = 1− 2(ε21 + ε22)) (5.4)

θ = −sin−1(R31) = −sin−1(2(ε1ε3 − ε2η)) (5.5)

ψ = atan2(R21, R11) = atan2(2(ε1ε2 + ε3η) = 1− 2(ε22 + ε23)) (5.6)

φ and θ defines the pitch and roll angle, respectively. In order to simplify the im-
plementation of a controller based on reinforcement learning it is convenient to not
include these two states in the algorithm. The reason for this is that the overall goal
is to accomplish station keeping, and these two states are not as important as the
rotation about the z-axis, ψ. To further simplify the problem, the position in z is
also neglected, since constant depth is assumed.

Although these three states; φ, θ and z, are not accounted for by the reinforce-
ment learning algorithm, meaning that the algorithm do not produce thrust input
for these direction/orientations, their states will affect the behaviour of the vehi-
cle. In order to resolve this a classical control algorithm is first implemented, such
that these three states are stable on their own. Then, the reinforcement learning
algorithm is implemented for controlling the remaining states.

5.1.1 Implementation of the PD Controller

As mentioned in Chapter 1, the PID controller is a common controller architecture
in underwater designs, but in most cases, only using PD control is sufficient. In order
to accomplish station keeping of the AUV, the PD controller should adjust thrust
in the z direction as well as the rotation in pitch φ and roll θ. The PD controller is

42

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

defined as follows.

τ = Kpe(t) +Kd
d(t)

dt
(5.7)

−→

τz(t)τφ(t)
τθ(t)

 = Kp

e(t)ze(t)φ
e(t)θ

+Kd

ω(t)
p(t)
q(t)

 (5.8)

5.1.2 Implementation of the DDPG Algorithm

As mentioned in Chapter 3, the DDPG is a policy-gradient algorithm, which uses
a stochastic behaviour policy for good exploration, but estimates a deterministic
target policy, which is easy to learn. To implement this, two neural networks are
used, a control neural network (actor) and an evaluation neural network (critic),
based on the experiments done by Runsheng et al. [29].

In order to define the neural networks, the equation of motions for underwater
vehicles, defined in Equation 4.4, is used. By assuming the pitch rotation φ and the
roll rotation θ small, the rotation matrix from (Body) to (NED) can be expressed
as

<(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (5.9)

Furthermore, by assuming the mass matrix, M = MRB+MA, not singular, Equation
4.4 can be modified as

v̇ = M−1(τ −D(v)v − g(η)− C(v)v − δ) (5.10)

<(ψ)v = η̇ (5.11)

Applying the first-order Taylor expansion to this results in

v(t+ 1) = M−1(τ +G(t)) (5.12)

η(t+ 1) = <(ψ(t))v(t) (5.13)

G(t) = (−D(v(t))v − g(η(t))− C(v(t))v(t)− ω) (5.14)

where ω is noise from the environment, and t is a certain moment of the system.
From this, the controller τ can be defined as a function of the position and velocity
of the previous moment. This is given by

τ(t) = µ(v(t), η(t)) (5.15)

43

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

which can be simplified as

τ(t) = µ(st) (5.16)

st = [v(t), η(t)]T (5.17)

The controller τ applies a thrust matrix input to the system in the given state, which
means that it can defined as an action (at) that the vehicle executes in the given
state (st). Since the goal is to accomplish station keeping of the AUV at a desired
state sd, this means that the actor function is designed to minimise the state error
through minimising the reward function, given by

R(st, at) =

∫ ∞
t

γ−(k−t)r(st, at)dk (5.18)

where γ ∈ (0, 1) is the discount factor, which is used to reduce the influence from
possible future states, defined in Chapter 2. This means that an optimisation prob-
lem can be defined as

argmin
st,at

{R(st, at)} (5.19)

s.t. amin ≤ at ≤ amax (5.20)

smin ≤ st ≤ smax (5.21)

In Equation 5.21, amin and amax are equal to the minimum and maximum thrust
input from the controller, respectively. The BlueROV2 has a maximum velocity of
2 [m/s] [1], but in simulation this is set to half of this, resulting in amin = −1[N]
and amax = +1[N].

Critic Function

To solve the argmin optimisation problem, the critic function is defined as

Q(st, at) = R(st, at) =

∫ ∞
t

γ−(k−t)r(st, at)dk (5.22)

Discretize −→ R(st, at) =
∞∑
i=t

γ(i−t)r(st, at) (5.23)

From the Bellman Equation, defined in Chapter 2, it is the given that

Q(st, at) = r(st, at) + γQ(st+1, at+1) (5.24)

44

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

This gives the optimal critic function as

Q̂(st, at) = argmin
st,at

(Q(st, at)) (5.25)

By replacing the critic function with a neural network this results in

Q(st, at) −→ Q(st, at|ω) (5.26)

To evaluate the policy it is first necessary to find the optimal critic function in
Equation 5.25. This is done by defining a Loss function

Loss =
1

2
(yt −Q(st, at|ω))2 (5.27)

yt = r(st, at) + γQ(st, at|ω) (5.28)

By then using the policy gradient algorithm from Silver et al. [25] with a sampled
batch from (st, at), the average Loss function, and its gradient, are given as

¯Loss =
1

N

N∑
i=1

(yi −Q(si, ai|ω))2 (5.29)

∇ω
¯Loss = − 2

N

N∑
i=1

(yi −Q(si, ai|ω))
∂Q(si, ai|ω)

∂ω
(5.30)

The weight, ω, is updated by

ωt+1 = ωt + α∇wLoss (5.31)

where α is the learning rate.

Actor Function

The critic function is now used to update the actor function. This is done by
replacing µ(st) with a neural network, µ(st|θ). By substituting at = µ(st|θ) into
Q(st, at|ω) the results becomes

J = Q(st, µ(st|θ)|ω) (5.32)

The differentiation of J is then given by

∇θJ =
∂Q(st, µ(st|θ)|ω)

∂at

∂µ(st|θ)
∂θ

(5.33)

45

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

In order to update the network, Adam [9] is used, which is a stochastic optimization
method used to update the network weights iteratively. This is given by

mt+1 = ℘×mt + (1− ℘)∇θµ (5.34)

=t+1 = β ×=t + (1− β)∇θµ (5.35)

m̂t =
mt

1− ℘t (5.36)

=̂t =
=t

1− βt (5.37)

θt+1 = θt − η
1√
=̂t
m̂t (5.38)

Here, ℘ and β are the Adam learning rates.

5.1.3 Controller Architecture

The proposed solution is to split the fully actuated BlueROV2, such that the PD
controller controls the states z, φ and θ, in conjunction with a DDPG algorithm
that controls the states x, y and ψ. This results in the dual controller architecture
visualised in Figure 5.1.

Actor	function
(DDPG	Controller)

Position	and
Velocity	states Critic	function

PD	algorithm
, ,τz τϕ τθ

x, y, ψ

z, ϕ, θ, ω, p, q

BlueROV2

Sensors

τDDPG+τDDPG τPD

Update

, ,τx τy τψ

τ

Thruster allocation

Thruster input Noise

Figure 5.1: Controller Architecture for the BlueROV2

46

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

From the BlueROV2’s sensors the controller receives the pose (position and orien-
tation) and velocities in the given state. The PD controller receives the pose states
[z, φ, θ] and the velocity states [ω, p, q], to calculate the needed thrust input in [z, φ,
θ]. At the same time, the DDPG algorithm will receive the pose states [x, y, ψ], to
calculate the needed thrust input in these states. This results in the thrust input
matrix in the given state, st, being equal to

τ =

τx
τy
τz
τφ
τθ
τψ

 (5.39)

The thrust input matrix τ is transmitted through the thruster allocation matrix,
which determines how much force and torque that needs to be generated in each
thruster such that τ is satisfied.

The DDPG algorithm is displayed in Algorithm 1. As shown in the algorithm,
it clips the action at based on the constraint at ∈ [−1, 1] and a factor ε. ε is here the
exploitation versus exploration factor, discussed in Chapter 3. Both networks also
need to be discounted by a learning rate α, which is a hyperparameter controlling
how much the weights in the networks are adjusted with respect to the loss gradient
[30]. A small learning rate makes sure that no local minimum in the loss function
is missed, which is preferable. However, a small learning rate could also result in
a longer time needed to reach convergence. Due to this, the learning rate should
be decreased over the number of episodes, since the agent obtains larger and larger
knowledge about the environment.

47

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Algorithm 1: DDPG Algorithm

Initialise the network classes Q(st, at|ω) and µ(st|ω) with weights ω and θ.
Initialise the replay buffer R as a memory class, M, to hold st, at, rt and st+1.
for ep in MAX EPISODES do

Initialise episode reward to zero
Initialise episode step, t, to zero
while t < MAX EP STEPS do

Initialise desired state, sd
Initialise desired state PID, sd,PD
get position states, x, y, z, and orientation states, ε1, ε2, ε3, η
get the Euler angles φ, θ, ψ from the orientation states
compute st = (x, y, ψ)
Choose action at = µ(st|θ)
clip action based on amax, amin and ε
compute the error state, se
compute the error state PID, se,PID
compute r(st, at)
episode reward += r(st, at)
store in transition R(st, at, rt, st+1)
Randomly select N arrays from R
compute yi = ri + γQ(si, ai|ω)
compute Loss = 1

N

∑N
i=1(yi −Q(si, ai|ω))2

compute ∇ωLoss = 1
N

∑N
i=1(yi −Q(si, ai|ω))∂Q(si,ai|ω)

∂ω

update weight ωt+1 = ωt + α∇ωLoss
compute ∇θJ = 1

N

∑N
i=1

∂Q(si,ai|µ(si|θ))
∂ai

∂µ(si|θ)
∂θ

compute mt = ℘×mt−1 + (1− ℘)∇θµ
compute =t = β ×=t−1 + (1− β)∇θµ
compute m̂t = mt

1−℘t

compute =̂t = =t
1−βt

update weight θt+1 = θt − η 1√
=̂t
m̂t

update weight ω
′
= ρω + (1− ρ)ω

′
(ρ is learning rate)

update weight θ
′
= ρθ + (1− ρ)θ

′

Get velocity states [ωt, pt, qt]
Get τPID from velocity states and st,PD = [z, φ, θ]
Set the output thrust equal to: τ [0, 1, 5] = at and τ [2, 3, 4] = τPD

end

end

48

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

5.1.4 Reward Function

Optimal design of the reward function, r(st, at), in Algorithm 1 is essential for the
behaviour of the algorithm. As mentioned throughout this thesis, the reward is a
feedback from the environment, based on how good it was to take a particular action
in a given state. Due to this, the reward function needs to be designed in such a
way that the agent accomplishes station keeping. The agent is continuously looking
for the highest total cumulative reward in order to determine the optimal policy
starting in any state. Because of this, different reward function designs needs to be
evaluated, more about this in the next chapter.

5.2 Simulation and Experiment Setup

In order to sufficiently train and validate the dual controller, both simulation- and
real-life experiments are used. The idea here is that the agent is trained in simula-
tion, which is computational cheap and safe, and then validated in real-life.

5.2.1 Simulation Setup

A DRL algorithm requires many training samples for the algorithm to reach con-
vergence towards an optimal policy. Therefore, simulation-based training provides
the foundation of the algorithm. To do this, the simulation environments Gazebo
and Robot Operating System (ROS) are used together with the uuv simulator
[13] and a dynamic model of the BlueROV2 [16]. Gazebo, which offers the ability
to accurately and efficiently simulate a robotic system in complex environments,
is used to simulate the Marine Cybernetics (MC) lab at Marin Teknisk Senter in
Trondheim, Norway. ROS is used to simulate the dynamics of the BlueROV2, and
combining these two results in the simulator in Figure 5.2.

49

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 5.2: Gazebo and Robot Operating System (ROS) with the uuv simulator
[13]

For the implementation of the controller design, the programming framework Ten-
sorFlow is chosen. TensorFlow is an open-source machine learning framework, which
works well in combination with the Python programming language.

The uuv simulator provides a set of topics for the vehicle, including sensor mea-
surements, which are updated and published at every time-step. The DDPG and
PD algorithm can subscribe to these topics, meaning that at every time-step they
receive the (NED) position, orientation and velocity values. The computed thrust
matrix is again published back to the ROS model, which enables the vehicle to move
in the simulated MC-lab. The results from this is that the algorithm can store the
pose and the corresponding thrust matrix at every time-step, and by that facilitate
the possibility of learning.

5.2.2 Experiment Setup

The simulation results are validated on the actual BlueROV2 vehicle in the MC-lab
at Marin Teknisk Senter. One of the larger differences between simulation and the
real environment is pose estimation. In the real system, the pose is estimated from
Qualisys, which is a motion-capture system installed in the MC-lab. The Qualisys
setup is shown in Figure 5.3a, 5.3b and 5.4.

50

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

(a) MC-lab, Trondheim, Norway (b) BlueROV2 with Qualisys Nodes

Figure 5.3: MC-lab Setup

In Figure 5.3a, the MC-lab pool is displayed. On each long-side wall, motion-capture
cameras are installed, with 3 cameras on the left side and 2 cameras on the right side.
In Figure 5.3b, the BlueROV2 vehicle is displayed, where 7 reflector balls are at-
tached to the vehicle. In order to estimate the pose, the camera’s need to see enough
reflectors at every position in the pool to be able to determine a shape between them.

Since the vehicle is underwater, the underwater environment also needs to be mapped,
which is done manually by moving a pole with reflectors all around the pool until a
satisfactory map of the pool, from the camera’s perspective, is accomplished.

51

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 5.4: Qualisys Mapping

In Figure 5.4, the Qualisys map of the pool is displayed, where the green shape
displays the vehicle. As long as the cameras manage to determine this shape, the
pose estimation system is active. However, keeping this shape at every pose turned
out to be very demanding, which is discussed in the results.

52

Chapter 6

Reward Shaping

The preliminary studies on station keeping of AUVs, with the use of a DDPG algo-
rithm, showed that the agent managed to converge towards an optimal solution, but
the reward function design was not sufficient for achieving station keeping [10]. The
results showed that the agent had sufficiently learned how to approach the desired
pose, but had not learned how to do station keeping at this pose. However, this was
not due to the capabilities of the agent itself, but the agents’ operational framework
defined in programming. More specifically, wrongful design of the reward function
to accomplish station keeping. Due to this, the investigation suggested to introduce
a time constraint into the reward function, which would make sure that the terminal
state was not reached until the vehicle had kept the desired pose for a sufficient time.

Furthermore, the solution presented in the preliminary work was not universal. A
universal solution means that the vehicle is able to do station keeping at every pose
in the state space, although it has only trained using one specific desired pose. As
a result of this, these two problems are the starting point for the reward function
design in this thesis.

6.1 Body-frame Error

In the preliminary DDPG algorithm design, the agent chose actions based on the
error between the desired pose and the actual pose. This was defined as

sNEDerr =

xd − xsyd − ys
ψd − ψs

 (6.1)

53

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

However, the goal of the algorithm is to learn a universal policy, meaning that the
vehicle should be able to do station keeping at an arbitrary pose. The state error
vector defined in Equation 6.1 is defined in the (NED) frame, which is not universal.
The flaw with this is that if the agent learns to do station keeping at a specific pose,
it will not be able to do station keeping at any other arbitrary pose. To resolve this,
sNEDerr needs to be rotated from the (NED) to (Body) frame, such that the error in
x and y takes heading ψ into account. This is done according to Fossen [4] as

sBodyerr =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

−1 xd − xsyd − ys
ψd − ψs

 (6.2)

6.2 Reward Shaping with Time Constraint

One of the biggest flaws with the lack of a time constraint in the preliminary work
was that the agent had no understanding of which actions to take when the desired
pose was reached. To resolve this a time constraint is implemented in such a way
that the agent has learned all the optimal actions to take close to the desired pose.
This is done by introducing a clock based on the error pose in x and y. This is
defined in Algorithm 2.

Algorithm 2: Reward Function with Time Constraint

if abs(Xe) < 0.2 and abs(Ye) < 0.2 then
r += a
self.clock += 1
if self.clock > b then

r += c
self.clock = 0
done = True

end

end
else

self.clock = 0
end

where Xe and Ye are defined as follows

Xe =

[
xe
xpreve

]
(6.3)

Ye =

[
ye
ypreve

]
(6.4)

54

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Here, xpreve and ypreve denotes the previous error in x and y, respectively. In Algo-
rithm 2, the agent will check if both the error in x and y, as well as their previous
error values, are within some limit, indicating that the vehicle is close to the desired
pose. If this is the case, the agent receives a reward a, and a clock is initialised.
If the clock exceeds some constant b, a large reward c is given, and the terminal
state is reached. The constants a, b and c needs to be tuned in order to accomplish
an optimal behaviour. The constant c is defined as a large reward compared to
a, which is due to the fact that the agent should receive a larger reward for doing
station keeping with some offset compared to only reaching the pose.

Furthermore, the constant b introduces a trade-off between teaching the correct
policy and reaching the terminal state. If b is too large the agent might never reach
the terminal state, and if b is too small the agent might not be at the desired pose
for a sufficient time to learn station keeping.

Figure 6.1: Circular Movement in xe

The preliminary studies used the DDPG algorithm to control the states [x, y, ψ],
while a PD controller was used to control the states [z, φ, θ]. Introducing the time
constraint to the reward function design revealed that the agent was staying within
the correct quadrant in the pool, but instead of doing station keeping it performed
circular movements with an offset from the desired pose, see Figure 6.1. This move-
ment is assumed to be strongly correlated with heading, which in the preliminary

55

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

reward function design was somewhat neglected compared to the x and y states.
In order to resolve this behaviour, the problem was initially simplified, resulting in
investigating reward shaping without having the DDPG algorithm control heading
first. This investigation is discussed in the following section.

6.3 DDPG without Heading

To simplify the problem, the control design was initially changed such that the
DDPG algorithm controls the states [x, y], while the PD controller controls the
states [z, φ, θ, ψ]. Reducing the number of states in the DDPG algorithm should
also simplify the learning process, since the algorithm only needs to learn the opti-
mal behaviour based on 2 versus previously 3 states. Simplifying the problem showed
great promise in convergence towards the optimal policy as ε −→ 0. However, when
the optimal policy was evaluated, it revealed that the vehicle was following a path
towards the edges of the pool, although the agent should have learned. This was
defiantly not optimal, but it was a change from the previous problem, and a step
further in understanding what the underlying issue was.

From evaluating the policy, it seemed to be a conflict between the heading and the
[x, y] states, mainly that the controller tries to satisfy [xBodye , yBodye] −→ 0 while at
the same time satisfy ψBodye −→ 0. Recall that the DDPG and PD are independent
of each other, meaning that the DDPG algorithm does not have any information
about the states in the PD controller. This means that when the agent is supposed
to decide which actions to take in a given state, it does not possess any information
about the heading state. The problem with this is illustrated in Figure 6.2.

Figure 6.2: Lack of Heading Information

56

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

In Figure 6.2, two different AUV poses are illustrated, where the xBodye and yBodye

are similar, but ψBodye is different. For the DDPG algorithm, which only uses xBodye

and yBodye , these two cases are inseparable. Recall that DDPG algorithms are closely
connected to Q-learning in the way that the overall goal is to learn a Q-function and
use this to learn a policy. As ε −→ 0 the agent should only exploit previous learned
actions, which are stored in the Q-matrix. The Q-matrix has the form

xBodye yBodye a r
0.53 2.67 [0.74, 0.9] 10

. . . .

. . . .

Table 6.1: Q-Matrix: without Heading

where arbitrary values are used for illustration. In Table 6.1, the state space,
[0.53, 2.67], and the action space, [0.74, 0.9], have a dimension of 2. In a given state
the agent uses the Q-matrix to choose the action which gave the largest reward in
that state, which is the correct action. From Figure 6.2, it is obvious that this is a
problem when the DDPG algorithm does not possess any heading information.

In order to resolve this, while still using PD control on heading, the state space
of the DDPG algorithm is extended to a dimension of 3. This extends the Q-matrix
into the form

xBodye yBodye ψBodye a r
0.53 2.67 0.32 [0.74, 0.9] 10

.

.

Table 6.2: Q-Matrix: with Heading

Observe that the action space has not changed, meaning that the DDPG algorithm
still only computes the thrust components for [x, y]. This means that the DDPG
algorithm only observes the heading state, while the PD controller still controls it.
The benefit of doing this is that the two cases in Figure 6.2 are no longer inseparable.

Unfortunately, the conflict between satisfying [xBodye , yBodye] −→ 0 while at the same
time satisfy ψBodye −→ 0 was not removed by doing this. Although the agent had
learned the correct policy, the performance evaluation showed a movement pattern as
illustrated in Figure 6.3. In order to explain what is happening here, three different
stages of the repeating pattern are explained.

57

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

1. The agent observers [xBodye , yBodye , ψBodye], and choose the action which reduces
[xBodye , yBodye].

2. The action results in an increase in ψBodye , which the DDPG algorithm does
not control. Remember that it only cares about reducing [xBodye , yBodye].

3. The PD controller now observes an increase in ψBodye , and produces thrust to
reduce this error. The result from this is that the vehicle is pushed back from
the target pose instead.

Figure 6.3: Conflict Between ψ and [x, y]

58

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

From Figure 6.3 it was clear that the conflict between ψBodye and [xBodye , yBodye] was
still present. Recall that the error values are rotated from (NED) to (Body), which
was initially done to make sure that the solution was universal. However, this was
only needed when the DDPG algorithm was controlling all three states [x, y, ψ].
When ψ is no longer controlled by the DDPG algorithm rotating from (NED) to
(Body) is unnecessary since x and y have the same values in the (NED) frame.
Meaning that the solution is universal in (NED), and the rotation matrix can be
removed. The reason for removing this is that it might be the reason for the attitude
in Figure 6.3 since the x and y error are computed from a rotation about ψ, but the
DDPG algorithm does not control ψ .

Removing the rotation removed the problem related to Figure 6.3 and defiantly
resulted in a sufficient reward function for training the agent on the [x, y] states.
This result is presented in the next chapter.

59

Chapter 7

Results

This chapter presents the results from the investigations. The chapter divides the
results into two main control designs; DDPG without heading and DDPG with head-
ing. Both of these cases start by examining the training results and then proceeds
to the validation results from the simulation and real-life experiments.

The control designs utilise a combination of a DDPG algorithm in conjunction with
a PD controller and the learning parameters for the DDPG algorithm are similar in
both designs. Table 7.1 shows the learning parameters for the DDPG algorithm.

number of episodes 4800
number of steps 1000

learning rate actor 10−4

learning rate critic 10−4

reward discount 0.9
memory capacity 104

batch size 16
εmax 0.95
εmin 0.05

Table 7.1: DDPG: Learning Parameters

Furthermore, step and episode are two parameters used throughout this thesis and
are defined as follows.

• A step denotes one computer step in simulation, which in ROS and Gazebo
approximately equals 0.02 seconds.

60

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

• An episode denotes one training period, which is either equal to 1000 steps, or
the number of steps used to reach the terminal state. In each training period,
the vehicle is initialised at the centre of the pool, and begin moving around.
If the terminal state is not reached, the vehicle continues the training period
until 1000 steps, and a new episode initialises. If the terminal state is reached,
indicating that the vehicle has done station keeping at the desired pose for a
sufficient time, the episode terminates and a new episode initialises.

From Table 7.1, the maximum possible number of steps during one full training
session is 4.8 million. Recall that the number of steps in each episode only reaches
1000 if the terminal state is not reached. As discussed in Chapter 3, the DDPG
algorithm has problems related to convergence, meaning that long training sessions
are needed. If the algorithm does not reach convergence towards the optimal policy
during this time, it is also possible to restart the training using the stored training
data from the previous session.

The learning rate α for both the actor and critic neural networks are set as 10−4.
Recall that a small α makes sure that local minima in the loss function are not
missed, but could also result in a longer time needed to reach convergence. To deal
with this, α is initially set small (10−4), such that if convergence becomes an issue,
it can be increased. The reward discount γ, discussed in Chapter 2, makes sure
that the uncertainty about the future is taken into account. This factor has to be
smaller than 1, in order to prove convergence, and γ ≈ 0.9 is usually used. The
memory capacity deals with how much of the previous data that is stored at a time,
which in this case is set as the 10 last episodes (10 000 steps). Recall from Chapter
3 that a batch is defined as a subset of all the training data, and the batch size
sets the size of this batch. Here, the batch size is set as 16, which means that in
each gradient update the algorithm utilises an arbitrary batch of size 16 from the
training data. The last two parameters in Table 7.1 defines the upper- and lower
bound for ε, which makes sure that the agent initially explores new actions, and
gradually exploit learned actions with larger and larger probability.

7.1 DDPG without Heading

In the previous chapter it was discussed how the conflict between [x, y] and ψ re-
sulted in initially defining the DDPG algorithm with a state space of 3 and an
action space of 2. This means that the DDPG algorithm observes [xe, ye, ψe], but
only computes actions to minimise [xe, ye]. While ψe and [ze, φe, θe] are controlled
by the PD controller. Doing this results in the reward function design in Algorithm 3.

61

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Algorithm 3: DDPG without Heading: Reward Function

r = 1
‖serr‖+0.05

r += -6
if abs(serrx) < 0.05 or abs(serry) < 0.05 then

r += 10
end
if abs(Xe) < 0.2 and abs(Ye) < 0.2 then

r += 50
self.clock += 1
if self.clock > 100 then

r += 5000
self.clock = 0
done = True

end

end
else

self.clock = 0
end
if abs(x) > 18.5 or abs(y) > 2.5 then

r += -100
end

The reward function for the DDPG algorithm without heading control is displayed
in Algorithm 3. The first line in the algorithm indicates the reward for being close to
the target pose. Here, the norm of the error state, serr, is summed with a constant
0.05. The reason for doing this is illustrated in Figure 7.1.

Figure 7.1: DDPG without Heading: Norm of the Error State

62

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Taking the sum of the norm and a constant make sure that the agent receives a
minimal reward when the vehicle is far from the desired pose and gives an exponential
increasing reward when it is close. Since heading is not controlled by the DDPG,
serr only contains the error values in x and y. The second line in Algorithm 3 gives
the agent a penalty at each time-step, which is crucial to avoid convergence to a sub-
optimal policy. The following lines include the time constraint for station keeping,
as well as an additional reward if the vehicle is close to either one of the desired
axis. This is done to help the agent in the learning process. The last line in the
algorithm is a penalty related to the bounds of the state space, in this case, the
walls in the MC-lab pool, to make sure that the agent receives a substantial penalty
if the vehicle makes contact with the wall.

7.1.1 Training Results

For each training session, three distinctive parameters are measured, these are the
total reward, number of steps and number of PD penalties. The parameters are
defined as follows

• The total reward is defined as a vector containing the average reward of
the 100 latest episodes. Taking the average is done because of uncertainty in
the measurements. The total reward can be interpreted as a push-back vector,
where the latest reward is added at the end, while the first reward in the vector
is pushed out.

• The number of steps is defined as the number of steps in each episode. If
the terminal state is not reached this is equal to 1000, but if it is reached the
number of steps is less than this. This is done to calculate how many episodes
the agent is able to reach the terminal state, indicating that it has performed
station keeping at the desired pose.

• The number of PD penalties is based on the parameters φ and θ violating
some threshold. This is tracked to prevent a large pitch and roll movement,
which can result in the vehicle spinning, which is not a desired policy.

In Figure 7.2, 7.3 and 7.4, the results from training are displayed. The agent was
trained for approximately 600 episodes. Due to problems related to the software,
Gazebo and ROS, the training session is restarted at episode 400.

63

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

(a) Total Reward: 0 < Episode < 400 (b) Total Reward: 550 < Episode < 600

Figure 7.2: DDPG without Heading: Total Reward per Episode

In Figure 7.2a, the total reward over the first 400 episodes are visualised. Initially,
the agent explores arbitrary actions in the environment, and since it also receives
a penalty at each time-step, the decline during the first 125 episodes is expected.
However, as ε −→ 0, the agent begins to exploit the learned best action in every state,
and from episode 125 in Figure 7.2a, the total reward is increasing. By evaluating
Figure 7.3a as well, one can see that the increase in total reward corresponds to
the terminal state being reached. If the terminal state is reached, it means that the
vehicle has successfully done station keeping at the desired pose for a sufficient time.

(a) Number of Steps: 0 < Episode < 400 (b) Number of Steps: 550 < Episode < 600

Figure 7.3: DDPG without Heading: Number of Steps per Episode

As the number of episodes are reaching 400, one can see in Figure 7.2a that the

64

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

total reward is starting to converge. However, it is not reaching the terminal state
anymore in Figure 7.3a. By looking at the number of PD penalties in Figure 7.4a
as well, the number of PD penalties is suddenly increasing after episode 300. This
obviously impacts the training performance, and to resolve this the training session
is restarted.

(a) PD Penalties: 0 < Episode < 400 (b) PD Penalties: 550 < Episode < 600

Figure 7.4: DDPG without Heading: Number of PD Penalties per Episode

By restarting the training session, while using the stored data from the previous
session, the total reward eventually converges after ≈ 600 episodes. Figure 7.2b
displays the last 50 episodes of the training, which shows that the total reward has
stabilised at approximately 470. By looking at Figure 7.3b as well, it is shown that
in each episode the agent uses approximately 203 steps to reach the terminal state,
and in Figure 7.4b the number of PD penalties are reduced to zero. The agent has
successfully converged to the optimal policy, and the next step is to evaluate the
performance of this policy.

7.1.2 Validation Results: Simulation

In order to evaluate the policy performance, the agent should only exploit the learned
actions in that policy. This means that in every state the agent will determine which
action to take, based on the information stored in the Q-table. During training the
agent was taught to do station keeping at the desired pose given by [xd, yd, ψd] =
[2, 0, 0]. Since the solution should be universal it also needs to be evaluated at a
different arbitrary pose, chosen as [xd, yd, ψd] = [2, 2, 0]. By plotting the error values
in all 6-DOF, [xe, ye, ze, φe, θe, ψd], the following result was achieved.

65

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 50 100 150 200 250 300 350 400 450
step

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

e
rr
o
r

Body error in x, y, ψ

x
y
ψ

0 50 100 150 200 250 300 350 400 450
step

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

e
rr
o
r

Body error in z, φ, θ

z
φ

θ

Figure 7.5: DDPG without Heading: Performance Validation, [xd, yd, ψd]=[2,0,0]

Figure 7.5 displays the state error values in [x, y, ψ] and [z, φ, θ]. The state error
values are defined in meter (m) for [x, y, z] and radian (rad) for [φ, θ, ψ]. The desired
pose is set as [xd, yd, zd, φd, θd, ψd] = [2, 0, 0, 0, 0, 0], and we see that the agent uses
approximately 200 steps to stabilise at [xe, ye] = [0, 0] which is ≈ 4 seconds. The
oscillations are in the order of 10−2m, which is satisfactory.

0 100 200 300 400 500 600 700 800
step

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

e
rr
o
r

Body error in x, y, ψ

x
y
ψ

0 100 200 300 400 500 600 700 800
step

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

e
rr
o
r

Body error in z, φ, θ

z
φ

θ

Figure 7.6: DDPG without Heading: Performance Validation, [xd, yd, ψd]=[2,2,0]

66

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

In Figure 7.6, the agent receives a new desired pose, [xd, yd, zd, φd, θd, ψd] = [2, 2, 0, 0, 0, 0],
at step = 350. This is an arbitrary pose, and the agent is able to sufficiently re-
duce the error once again to satisfy [xe, ye] = [0, 0]. There is no difference in the
performance between these two desired poses, meaning that the vehicle is able to
do station keeping with the same precision at the arbitrary pose. Consequently, the
solution is universal.

Evaluating the first plot in Figure 7.6 also reveals some of the conflict between
satisfying [xe, ye] −→ [0, 0] at the same time as making sure that [ψe] −→ 0, which
was discussed in Chapter 6. Especially when looking at x after step 350, one can
observe that it is 180◦ out of phase from ψ. This means that when ψe increases, the
vehicle has a little bit more struggle of satisfying [xe, ye] −→ [0, 0], resulting in the
not so smooth slope of especially x in this case. This is why it would be beneficial
to use the DDPG algorithm on the heading state ψ as well, which is discussed later.

From the second plot in Figure 7.6 we see that the PD controller is doing a good
job in controlling [z, φ, θ], and ψ. When a new desired pose is given, it uses some
time to stabilise, but the error values are in the order of 10−2m.

7.1.3 Validation Results: MC-lab Experiments

The overall reason for training the agent in a simulated environment, using Gazebo
and ROS, was that in theory the performance of the vehicle in the real-life envi-
ronment should be the same. This means that instead of training the agent on the
real-life system, which is expensive and less safe, the agent is trained in simulation,
and then applied to the real-life system.

This section includes the validation of the DDPG algorithm, without heading con-
trol, in the MC-lab at Tyholt with the actual BlueROV2 vehicle. Here, three ex-
periments are conducted, with different desired pose definitions, as well as a DP
4-corner test. For every test, the following parameters are tracked.

• DDPG state error, which contains information about [xe, ye, ψe].

• DP state error, which contains information about [ze, φe, θe].

• Force, which contains information about the produced force.

• Torque, which contains information about the produced torque.

An important note in these results is that the use of Qualisys as the positioning
system means that the vehicles velocity states are not accessible, resulting in the

67

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

PD controller becoming a P (proportional) regulator.

Experiment 1

In experiment 1, presented by the results in Figure 7.7, 7.8, 7.9 and 7.10, the initial
error state is defined as [xe, ye] = [0.3, 0.3] and at t = 15 seconds a new error state
is given to x such that [xt=15

e , yt=15
e] = [-0.5, 0]. The control objective was defined

as this because it was reasonable to evaluate the performance when only changing
one error state first, and then later include changes in both states. The reason for
choosing t = 15 was to make sure that the vehicle had enough time to become stable
at the desired pose.

0 10 20 30 40 50 60 70
Time [s]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

E
rr

o
r

[m
/r

a
d
]

Error in x, y, heading

x
y
heading

Figure 7.7: Experiment 1: DDPG State Error

68

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 10 20 30 40 50 60 70
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

E
rr

o
r

[m
/r

a
d
]

Error in z, pitch, roll

pitch
roll
z

Figure 7.8: Experiment 1: PD State Error

0 10 20 30 40 50 60 70
Time [s]

0.4

0.2

0.0

0.2

0.4

[N
]

Force

x
y
z

Figure 7.9: Experiment 1: Force

69

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 10 20 30 40 50 60 70
Time [s]

0.001

0.000

0.001

0.002

0.003

[N
m

]

Torque

pitch
roll
heading

Figure 7.10: Experiment 1: Torque

In Figure 7.7, [xe, ye, ψe] is tracked over 70 seconds. Starting off with the initial er-
ror state the vehicle is able to reduce the error value towards zero, with a relatively
small oscillation in the order of 10−1m. At t = 15 seconds the new error state is
given and the agent is able to reduce xe once again towards zero. At t = 35 seconds
a large spike in both xe and ye is observed, which results in xe having a constant
deviation for the remaining seconds. This spike is due to the lack of a robust pose
estimation system, and clearly reveals the flaws of Qualisys. The Qualisys pose es-
timation system is very sensitive, and the possibility of the vehicle loosing its pose
is large. When this happens the agent will continue to produce thrust based on
the last known pose until it hopefully regains the pose estimation system, and can
produce the necessary thrust. However, from Figure 7.7 the agent does a good job
in keeping the desired pose when the pose is known.

Figure 7.8 displays [ze, φe, θe], where the PD controller should keep these states
constant, which it does with small oscillation. These states are also affected by the
disadvantages of using Qualisys, which could explain why especially ze has some
larger spikes. In Figure 7.9 and 7.10, the force and torque outputs, respectively, are
displayed, and these corresponds well with the results shown in Figure 7.7 and 7.8.

70

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Experiment 2

In experiment 2, presented by the results in Figure 7.11, 7.12, 7.13 and 7.14, the
initial error state is defined as [xe, ye] = [0, 0] and at t = 18 seconds a new error
state is given as [xt=18

e , yt=18
e] = [0.5, 0.3]. Here, the control objective was chosen

such that a change in both error states at the same time could be evaluated. From
the experience gained in the first experiment, where Qualisys created problems for
the vehicle, t was increased to 18 seconds to make sure that the vehicle becomes
stable at the desired pose.

0 10 20 30 40 50
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

[m
/r

a
d
]

Error in x, y, heading

x
y
heading

Figure 7.11: Experiment 2: DDPG State Error

71

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 10 20 30 40 50
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

E
rr

o
r

[m
/r

a
d
]

Error in z, pitch, roll

z
pitch
roll

Figure 7.12: Experiment 2: PD State Error

0 10 20 30 40 50
Time [s]

0.0

0.1

0.2

0.3

0.4

[N
]

Force

x
y
z

Figure 7.13: Experiment 2: Force

72

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 10 20 30 40 50
Time [s]

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

[N
m

]

Torque

pitch
roll
heading

Figure 7.14: Experiment 2: Torque

In Figure 7.11, the DDPG state error does not include the unwanted spike presented
in Figure 7.7, and the performance is overall more satisfactory. Again, this has to
do with the positioning system which did not have the same impact on experiment 2
compared to experiment 1. The reason for this is that some areas in the MC-lab had
better pose measurement capabilities, which as previously stated largely impacts the
results. Better pose estimation also reflects the results in Figure 7.12, where the PD
algorithm is able to keep z, φ and θ constant. Again, both the force and torque
computations, visualised in Figure 7.13 and 7.14 respectively, coincides with what
should be expected from the results in Figure 7.11 and 7.12.

Experiment 3

In experiment 3, presented by the results in Figure 7.15, 7.16, 7.17 and 7.18, a DP
4-corner test is conducted. The DP 4-corner test is a benchmark test in validation
of dynamic positioning (DP) systems, and because of this it is included here. The
DP 4-corner test is conducted by defining the error states as the following.

1. [xe, ye] = [0, 0] at t = 0s

2. [xe, ye] = [0.5, 0] at t = 18s

73

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

3. [xe, ye] = [0, 0.5] at t = 38s

4. [xe, ye] = [-0.5, 0] at t = 70s

5. [xe, ye] = [0, -0.5] at t = 90s

Compared to the previous experiments, having the vehicle perform a squared move-
ment results in an even larger possibility of the pose measurements being lost, which
is revealed in the following results.

0 20 40 60 80 100
Time [s]

0.4

0.2

0.0

0.2

0.4

E
rr

o
r

[m
/r

a
d
]

Error in x, y, heading

x
y
z

Figure 7.15: Experiment 3: DDPG State Error

74

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 20 40 60 80 100
Time [s]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

o
r

[m
/r

a
d
]

Error in z, pitch, roll

z
pitch
roll

Figure 7.16: Experiment 3: PD State Error

0 20 40 60 80 100
Time [s]

0.4

0.2

0.0

0.2

0.4

[N
]

Force

x
y
z

Figure 7.17: Experiment 3: Force

75

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

0 20 40 60 80 100
Time [s]

0.002

0.001

0.000

0.001

0.002

0.003

0.004

[N
m

]

Torque

pitch
roll
heading

Figure 7.18: Experiment 3: Torque

From Figure 7.15, the performance in xe and ye are better than what would be
expected based on the large possibility of loosing the pose measurements. The agent
does a satisfactory job in reducing the error values when a new desired pose is given,
and the only larger unwanted spike occurs at t = 55s. The PD state error values in
Figure 7.16 is also satisfactory, with some spikes occurring when a new desired pose
in x and y is given. Once again, the force and torque measurements represented
in Figure 7.17 and 7.18, respectively, coincides with the previous experiments, and
obviously have larger oscillations because of the larger oscillations in Figure 7.15
and 7.16.

76

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 7.19: Experiment 3: DP 4-corner Test

In Figure 7.19, the performance of the DP 4-corner test is visualised, where the
(NED) position in x and y are plotted against each other. The results shows that
the vehicle performs a 4 corner movement, but struggles with overshooting at each
turn. At the corner in [x, y] = [−5.8, 0.5] this struggle is more extreme, but the
reason for this is the loss of pose measurement at t = 55s visualised in Figure 7.15.
However, based on the initial concerns regarding the lack of pose measurements, the
DP 4-corner test performance is better than what was initially expected.

Overall, the experiments conducted in the MC-lab on the BlueROV2 vehicle were
satisfactory, especially based on the disadvantages of using Qualisys. In the areas
where the pose estimation was present the vehicle was able to do station keeping
at the desired pose with error values in the order of 10−1m, with some oscillation,
in all three experiments. However, compared to the performance evaluation in the
simulation environment, where the error values were in the order of 10−2m and the
oscillation was non-existent, this was defiantly worse for the real-life system.

77

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

7.2 DDPG with Heading

Controlling [xNEDe , yNEDe] with the DDPG algorithm, and having the PD controller
control ψNEDe , was a success. The agent was able to satisfactory learn the optimal
policy, which resulted in the vehicle doing station keeping within [xNEDe , yNEDe] ∈
±10−2m. However, the overall goal is still to use the DDPG algorithm to control all
three states, and with increased knowledge from the previous tests, the heading is
included in the DDPG algorithm. Meaning that [xBodye , yBodye , ψBodye] are controlled
by the DDPG, and [zBodye , φBodye , θBodye] are controlled by the PD controller. Observe
that since the DDPG algorithm now controls heading as well the rotation from
(NED) to (Body) needs to be included to make sure that the solution is universal.

The reward function design is the same as in Algorithm 3, the only difference being
that serr now includes heading as well.

7.2.1 Training Results

For each training session, three distinctive parameters are measured, these are the
total reward, number of steps and number of PD penalties. The parameters are
defined as follows

• The total reward is defined as a vector containing the average reward of
the 100 latest episodes. Taking the average is done because of uncertainty in
the measurements. The total reward can be interpreted as a push-back vector,
where the latest reward is added at the end, while the first reward in the vector
is pushed out.

• The number of steps is defined as the number of steps in each episode. If
the terminal state is not reached this is equal to 1000, but if it is reached
the number of steps is less than this. This is done to see how many episodes
the agent is able to reach the terminal state, indicating that it has performed
station keeping at the desired pose.

• The number of PD penalties is based on the parameters φ and θ violating
some threshold. This is tracked to prevent a large pitch and roll movement,
which can result in the vehicle spinning, which is not a desired policy.

Figure 7.20, 7.21 and 7.22 presents the results from training the algorithm over
approximately 1000 episodes.

78

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 7.20: DDPG with Heading: Total Reward per Episode

When returning to the original design, an interesting behaviour was revealed. In
figure 7.20 the total reward over all episodes is illustrated. Recall that the total re-
ward was defined as the average value of the reward R from the 100 latest episodes.
When training is initialised, ε is set equal to 0.95, which means that the probability
of exploring new actions is substantial. This factor, together with the penalty the
agent receives at each time-step, makes the first 200 episodes in Figure 7.20 a rea-
sonable behaviour. The agent receives mainly negative rewards, which is revealed
through this decline in total reward.

As ε −→ 0, the probability of the agent exploiting learned actions increases, and if
the agent has observed the station keeping pose the total reward should increase,
as is shown at episode 300 in Figure 7.20. This is further confirmed by investigat-
ing Figure 7.21, which illustrates the number of steps in each episode. If the station
keeping criteria, defined in the reward function, is not satisfied the episode uses 1000
steps, but if it is satisfied, the terminal state is reached before this. From Figure
7.21 it is clear that around episode 300 the vehicle reach the terminal state prior to
reaching 1000 steps, which means that it has satisfied the station keeping criteria.

79

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 7.21: DDPG with Heading: Number of Steps per Episode

However, as the number of episodes is exceeding 600, the behaviour suddenly changes,
and the total reward is declining rapidly, as shown in Figure 7.20. This is also re-
vealed in Figure 7.21, where the number of steps is suddenly back to 1000, meaning
that the terminal state is not reached.

Figure 7.22: DDPG with Heading: Number of PD Penalties per Episode

80

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

From Figure 7.22 it is revealed that the number of PD penalties has a rapid increase
after episode 600, which coincides with the episode where the previous plots saw a
drastic change in behaviour. After inspecting the simulation through the graphical
user interface as well, which allows for viewing the training, it was revealed that
the roll and pitch movement could suddenly go spinning. This was probably the
reason for the number of PD penalties suddenly increasing, and this defiantly was
an unwanted behaviour. To resolve this, the training session was restarted multiple
times, but unfortunately the algorithm was not able to reach convergence.

81

Chapter 8

Discussion

The results in Chapter 7 revealed that the dual control design was successful in doing
station keeping at an arbitrary pose when the PD controller controlled heading ψ.
The performance evaluation in the simulated environment revealed that the vehicle
was able to satisfy station keeping capabilities with error values in the order of
10−2m. Furthermore, the agent was also successful in the real-life environment,
where performance was slightly worse compared to simulation, but still satisfactory.
As discussed in the previous chapter, the reasons for this were many.

8.1 Quality of Pose Measurement Sensors

First and foremost, the differences in pose measurement sensors between simulation
and real-life were of a significant order. Whereas the agent had access to its pose
at all times in simulation with zero flaws, the Qualisys software resulted in terrible
pose measurement robustness in real-life. Nevertheless, the agent was performing
well in real life as well when the pose measurement sensors were active. Having un-
satisfactory real-life pose measurements also results in not having the possibility to
test the ability of the DDPG algorithm to its full extent. As stated in the introduc-
tion to this thesis, a large part of the motivation for investigating the possibilities of
AI-based controllers is due to the difficult process of doing traditional underwater
control design. The reason for this is the complex underwater environments, which
makes the autonomous control nonlinear since AUV motions are easily influenced by
flow and hydraulic resistance. By only validating the station keeping capabilities in
a calm real-life environment, with the vehicle restricted within a minimal area (0-0.5
m) before losing its pose measurements, the full extent of the agent’s performance
has not been tested.

82

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

The reliability of Qualisys also makes it challenging to compare the performance
of the algorithm with traditional controller architecture, such as a PID controller.
The areas where the pose was known were dependent on parameters such as pitch
and roll angle as well, and because of this, it is impossible to reproduce the same
conditions for every sea trial, which makes it irrelevant to compare performance.
This limitation reveals one of the problems which is often neglected when working
with developing new technology. Although one can develop a new controller, e.g.
based on reinforcement learning, which performs well in a simulated environment,
the liability of the sensors used in real-life is often not discussed. It doesn’t matter
if the controller performs excellently in a simulated environment if the real-life sen-
sor technology is not sufficient. Furthermore, as mentioned in Chapter 7, the PD
algorithm only had a proportional term P when used in experiments. The reason
for this is that the BlueROV2 did not have a velocity sensor, i.e. DVL1, meaning
that the velocity states were not accessible. This is also a factor that could explain
some of the discrepancy between the simulation and MC-lab results.

8.2 Dynamic Model

Another possible reason for the discrepancy between the results is the dynamic
model of the BlueROV2, provided by Nielsen et al. [16]. Chapter 4 presented the
dynamic model, which was the basis for the implementation of the DDPG algorithm
in Chapter 5. The result from this is that the implementation has in fact used a
model-based approach with a model-free algorithm, and due to assumptions used in
the dynamic model it does not fully match the real-life vehicle.

One of the reasons for this mismatch is the coupling between motions. In the
dynamic model of the BlueROV2 the equations of motion in surge x, sway y, heave
z, pitch φ, roll θ and yaw ψ are assumed decoupled, meaning that each equation
can be solved separately. However, this is not the case for a real-life system, where
the equations of motion are coupled, at least to some extent. This means that for a
real-life system the equations of motion in x, y, z, φ, θ and ψ will affect each other,
which is not assumed in simulation, and could be the reason for worse performance.

Furthermore, in the dynamic model, the centre of mass (COG) is defined in the
centre of geometry instead, due to simplicity. This simplification is also a factor
that could have had some impact on the discrepancy.

1Doppler Velocity Log

83

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

8.3 Limitations in Software

Applying the DDPG algorithm to all three states [x, y, ψ] turned out to be a real
challenge, which was largely due to the conflict between ψ and [x, y] emphasised in
Chapter 6. As discussed in Chapter 3, DDPG algorithms, in general, suffers from
convergence difficulties, specifically the training time needed to reach convergence
towards an optimal policy. The state- and action space considerably influence this,
and increasing the action space from 2 to 3 states affects the training time needed
to a great extent. Therefore, based on the theory in Chapter 3, the training time
was expected to increase.

Although this was expected, the issue was made worse when the software being
used also imposed a problem. In order for the algorithm to find the optimal solu-
tion, it needs a large number of simulation steps. Unfortunately, as the number of
steps increased the simulation would freeze, resulting in the flow of messages being
subscribed and published pausing for a longer period. This disadvantage further
increases the necessary simulation time needed to reach convergence and it seemed
to significantly reduce the quality of training as well, which can explain why the
number of PD penalties is suddenly increasing in Figure 7.22. Understanding why
this problem occurred was not accomplished as it was uncertain if it was due to
the simulation environments, the performance of the computer used or the DDPG
algorithm itself.

8.4 Difficulties in Reward Function Design

In Chapter 3, the challenges of policy gradients were discussed. Recall that in
PG methods the steepest ascent (or descent) direction of the rewards is computed,
defined as g in Equation 3.11. g is used to update the policy θ by taking a gradient
step αg in the steepest direction. The problem with this is that the step is a first-
order derivative, which essentially meant that the reward function was assumed to
be flat. In Figure 8.1, the reward function defined in Algorithm 3 is visualised.

84

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

Figure 8.1: DDPG: Reward Function

From Figure 8.1, the reward function is relatively flat in the majority of states,
with a large negative reward along with the states close to the edges of the pool.
However, as the agent reaches the desired pose, there suddenly is a drastic increase
in reward, as seen in Figure 8.1. This increase is due to the second if-sentence in
Algorithm 3, where the agent receives a large reward if the current and previous
error pose are smaller than some value. The issues in Chapter 6 revealed that this
reward function design was needed to accomplish station keeping, but it is not flat.
If the agent reaches the desired pose, indicating the top of the reward function in
Figure 8.1, there is a good chance that it takes a too large step, and falls back down.
When the agent resumes exploration, it does so from a worse state with a bad local
policy, which means that it needs a long time to recover. This factor influence the
convergence of the algorithm, and a more flat reward function would be desirable.
Nevertheless, as shown by the difficulties in Chapter 6, there is a trade-off between
the curvature of the reward function and accomplishing sufficient station keeping of
the vehicle.

8.5 Possibilities of TRPOs and PPOs

Chapter 3 addressed how TRPOs and PPOs aims to deal with some of the challenges
related to DDPGs. Especially PPO with clipped surrogate objective has been shown
to have better performance than TRPO, as well as speed exceeding gradient descent

85

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

methods [22]. Due to this, developing a PPO based controller could be a possible
solution to accomplish ML-based heading control as well. However, in this thesis,
the PPO based controller was not implemented. First of all, the implementation of
the DRL control design was a continuation of the work done during the preliminary
studies, which showed promising results [10]. Because of this, continuing using a
DDPG based controller was a reasonable starting point.

Furthermore, the vehicle was successful in doing station keeping at an arbitrary
pose, both in simulation and in real life. Although this was accomplished by only
using ML on the x and y states, it is not certain at all that the PPO would have done
any better. Remember that one of the major problems was that the training would
freeze when using ROS and Gazebo, and this would happen when the number of
steps exceeded ≈ 106. The discussion about the challenges of PG methods in Chap-
ter 3 concluded that PG methods often need 10 million or more training steps to
reach convergence [6]. However, from the results in Chapter 7, the DDPG algorithm
without heading was able to converge towards an optimal policy only using ≈ 6∗105

steps. Although a PPO based algorithm should need shorter training time to reach
convergence, in theory, it is no guarantee that it would not exceed 106 number of
steps and experience the freeze as well.

Furthermore, it is important to emphasise once again that the major flaw in the
real-life experiments was not having sufficient pose measurement equipment, which
is independent of the chosen deep reinforcement learning algorithm. Qualisys would
probably not be used in a real-life application, e.g. intervention tasks at an installa-
tion site, but there are still flaws in real life sensor equipment as well, such as IMU
and INS. In order to accomplish the full potential of DRL based controllers, there
needs to be further development in robust and reliable sensor technology as well.

86

Chapter 9

Conclusions

This thesis has investigated the possibilities of using deep neural networks, trained
by a deep reinforcement learning algorithm, to accomplish sufficient station keeping
of AUVs in 6-DOF. From today’s challenges in underwater control, in combination
with the rapid developments in artificial intelligence, the possibilities of applying
machine learning techniques in control design has been revealed.

A throughout introduction into the concepts of machine learning has showcased
how reinforcement learning can be applied to solve problems in the underwater en-
vironment. Especially, deep reinforcement learning (DRL) techniques have shown
remarkable results in control problems, and the thesis has discussed the funda-
mentals and advantages of three state-of-the-art methods within this family; Deep
Deterministic Policy Gradient (DDPG), Trust Region Policy Optimisation (TRPO)
and Proximal Policy Optimisation (PPO).

The investigation conducted in this thesis was a continuation of the preliminary
work done on station keeping of AUVs [10]. This work showcased how a DDPG
algorithm could be used to teach an agent to reach a desired pose. As a result of
this, a dual control design, consisting of a DDPG algorithm in conjunction with
a PD controller, was proposed to accomplish station keeping capabilities at an ar-
bitrary pose. The key-component to accomplish sufficient implementation of DRL
techniques is the reward function, and because of this, different reward function
designs were evaluated, which emphasised the importance of using time constraints
and penalise the agent.

The vehicle accomplished station keeping capabilities at an arbitrary pose, by us-
ing a DDPG based controller on the states [x, y] and a PD controller on the states

87

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

[z, φ, θ, ψ]. The controller was successful in both simulation and real-life experi-
ments, with error values in the order of 10−2m and 10−1m, respectively. The reason
for the discrepancy between the simulated and real-life experiments were two-fold.
Firstly, the dynamic model used in training differs from the actual vehicle. Secondly,
the flaws related to the real-life pose measurement equipment. However, the real-
life experiments were satisfactory when the pose measurement equipment worked,
and the thesis has verified that it is possible to train a DRL based controller in a
simulated environment and apply it on a real-life system.

The investigation revealed that controlling heading ψ through ML-based techniques
as well, was a difficult process. This was mainly due to the conflict between satisfying
[xe, ye] −→ [0, 0] at the same time as making sure that ψe = 0. The main drawback
with this conflict was that the time needed for the agent to reach convergence to-
wards an optimal policy would increase significantly. Furthermore, the simulation
environment, ROS and Gazebo, would also freeze as the number of steps increased,
which further extended the time needed as well as aggravating training performance.

Suggestions for further work to resolve this issue, as well as on the subject in general,
are presented in the next chapter.

88

Chapter 10

Further Work

The investigation done in this thesis was successful in teaching a DDPG algorithm
to perform successful station keeping of the BlueROV2 by controlling the x and y
states. However, as discussed throughout the thesis, the algorithm had difficulties
in learning to control heading ψ as well. Furthermore, the real-life experiments also
exposed weaknesses compared to the simulated results. In the following sections,
suggestions for further work in order to resolve these issues, and improve the results,
are discussed.

First and foremost, the issues related to convergence needs addressing. DDPG
algorithms and PG methods, in general, suffers from the fact that it samples the
whole trajectory for only one policy update, and that the policy cannot update at
every time step. This design is not sample efficient since there probably are thou-
sands of steps in one trajectory, which results in PG methods commonly needing 10
million or more training steps [6]. On the other hand, PPO methods enable multiple
epochs of minibatch updates at each time step, which reduces the needed number
of training steps significantly. Due to this, implementing a PPO based controller is
a natural next step, and by changing the DRL method, it could also reveal if the
problems related to freezing were due to the simulation software, Gazebo and ROS,
or the DDPG algorithm itself.

Independent of the chosen DRL method, another suggestion for further work is
to revisit the reward function design. As mentioned and emphasised throughout
this thesis, as well as in the preliminary work, sufficient reward function design is
the key-component for achieving successful implementation of reinforcement learn-
ing techniques. Chapter 6 discussed the difficulties of designing a sufficient reward
function for the DDPG algorithm, but by having the design as shown in Algorithm

89

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

3 and Figure 8.1 the agent was able to learn station keeping capabilities sufficiently.
However, from the discussion in Chapter 8, the trade-off between accomplishing sta-
tion keeping capabilities and having the curved reward function in Figure 8.1 was
revealed. DDPG methods assume a flat reward function curvature, so if it is desired
to continue with this method, a redesign of the reward function could reduce the
time needed for convergence.

One method that could resolve this issue, or at least reduce it, is transfer learning
[27]. The core idea of transfer learning is that the experience gained from perform-
ing one task can help improve learning a related task. Transfer learning is usually
applied to object detection tasks but could be applicable here as well. By dividing
the task of accomplishing station keeping into sub-tasks, the reward function for
each sub-task could be designed as a more flat function, and thereby reduce the
possibility of taking a too large gradient step.

A third suggestion, which also is independent of the choice of DRL method, is
to improve the real-life experiment setup. The real-life pose measurement system,
specifically Qualisys, made it very difficult to measure the possibilities of the DRL
controller to its full extent. Furthermore, since the areas where the system worked
was not constant, it was impossible to reproduce the exact conditions for every trial.
The result of this was that comparing the DRL results to, e.g. a PID controller
was not of any use. Because of this, further work on the subject should defiantly
try to resolve the issues related to Qualisys. One way to do this is to include an
observer into the controller architecture. Observers are state estimators, which aims
to reconstruct unmeasured states. When Qualisys does not work the pose estimate
from the observer can be used instead, such that the agent can continue to compute
the necessary thrust. Furthermore, an observer could also be used to estimate the
velocity states, such that the derivative gain D in the PD controller is available in
real-life as well.

Other suggestions for further work are given below.

• Performance is sensitive to hyper-parameter tuning, such as the learning rate
which was discussed in Chapter 5. Tuning the hyper-parameters in Table 7.1
could improve performance.

• Further development of the BlueROV2’s dynamic model, such that discrepancy
between the simulated and real-life experiments are reduced.

• Use a DVL on the BlueROV2, such that the velocity states are accessible.

• Evaluate performance on a better computer, such as more CPU (GPU) and

90

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

RAM. Throughout this thesis a Dell laptop was used, and although we did not
find evidence that this created the freezing problems it should be checked.

• Include visual servoing (VS) to estimate the pose, which was discussed in the
preliminary work [10].

91

Bibliography

[1] Bluerobotics.

[2] Luis. Bermudez. Overview of Neural Networks. Medium - machinevision, 1(1),
2017.

[3] Soumyajit Dasgupta. What is Remotely Operated Underwater Vehicle (ROV)?
Marine Insight, 1(1), 2017.

[4] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley Sons Ltd, 2011.

[5] Jonathan Hui. RL - Proximal Policy Optimization (PPO) Explained. Medium
- Towards Data Science, 1(1), 2018.

[6] Jonathan Hui. RL - Trust Region Policy Optimization (TRPO) Explained.
Medium - Towards Data Science, 1(1), 2018.

[7] Sanyam Kapoor. Policy Gradients in a Nutshell. Medium - Towards Data
Science, 1(1), June 2018.

[8] Min J. Kim. Way-point tracking of a Hovering AUV by PID Controller. Control,
Automation and Systems (ICCAS), 2015 15th International Conference, 1(1),
2015.

[9] Diederik. Kingma and Jimmy. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 1(1), 2014.

[10] Kristoffer B. Knudsen. Deep Learning for Station Keeping of AUVs: A Pre-
liminary Study. Project Thesis, NTNU, Institute of Marine Technology, 1(1),
December 2018.

[11] Vihar Kurama. Unsupervised learning with python. Medium - Towards Data
Science, 2018.

92

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

[12] Hunt Jonathan J. Pritzel Alexander. Heess Nicholas. Lillicrap, Timothy P.
and Tom Erez. Continuous control with deep reinforcement learning.
arXiv:1509.02971, 1(1), 2015.

[13] Scherer S. Voss M. Douat L. Manhães, M. and T. Rauschenbach. UUV Sim-
ulator: A Gazebo-based package for underwater intervention and multi-robot
simulation. OCEANS 2016 MTS/IEEE Monterey, 1(1), 2016.

[14] Paula De. Mariona and Gerardo G. Acosta. Trajectory tracking algorithm
for autonomous vehicles using adaptive reinforcement learning. OCEANS’15
MTS/IEEE Washington, 1(1), 2015.

[15] Rustad Anne M. Moe, Signe. and Kristian G. Hanssen. Machine Learning in
Control Systems: An Overview of the State of the art. Bramer M., Petridis
M. (eds) Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer
Science, 11311(1), 2018.

[16] Eidsvik O. A. Blanke M. Nielsen, M. C. and I. Schjølberg. Constrained multi-
body dynamics for modular underwater robots - Theory and experiments.
Ocean Engineering, 358-372(1), 2018.

[17] OpenAI. Deep Deterministic Policy Gradient. OpenAI Spinning Up, 1(1), 2018.

[18] K. O’Shea. An Introduction to Convolutional Neural Networks. Research gate,
Aberystwyth University, 1(1), 2015.

[19] Jean Francois. Puget. What is Machine Learning. IBM community, 1(1), 2016.

[20] Jeffery S. Riedel and Anthony J. Healey. Shallow Water Station Keeping of
AUVs Multi-Sensor Fusion for Wave Disturbance Prediction and Compensation.
Naval Postgraduate School, Center for AUV Research, 1(1), 1998.

[21] Levine Sergey. Moritz Philipp. Jordan Michael. Schulman, John. and Pieter.
Abbeel. Trust Region Policy Optimization. University of California, Berkeley,
Department of Electrical Engineering and Computer Sciences, 1(1), 2017.

[22] Wolski Filip. Dhariwal Prafulla. Radford Alec. Schulman, John. and Oleg.
Klimov. Proximal Policy Optimization Algorithms. OpenAI, 1(1), August 2017.

[23] Ben Shaver. A Zero-Math Introduction to Markov Chain Carlo Methods.
Medium - Towards Data Science, 1(1), December 2017.

[24] Badreesh Shetty. Supervised machine learning: Classification. Medium - To-
wards Data Science, 2018.

93

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

[25] David. Silver. Deterministic policy gradient algorithms. Proceedings of the 31st
International Conference on Machine Learning, 1(1), 2014.

[26] David Silver. Introduction to reinforcement learning. University of London,
2015.

[27] Matthew E. Taylor and Peter. Stone. Transfer Learning for Reinforcement
Learning Domains: A Survey. Journal of Machine Learning Research 10 (2009)
1633-1685, 1(1), 2009.

[28] Andre Violante. Simple Reinforcement Learning: Temporal Difference learning.
Medium, 1(1), 2018.

[29] Shi Zhenyu. Huang Chaoxing. Li Tenglong. Yu, Runsheng. and Qiongxiong
Ma. Deep Reinforcement Learning Based Optimal Trajectory Tracking Control
of Autonomous Underwater Vehicle. Proceedings of the 36th Chinese Control
Conference, 1(1), 2017.

[30] Hafidz Zulkifli. Understanding Learning Rates and How It Improces Perfor-
mance in Deep Learning. Medium - Towards Data Science, 1(1), 2018.

94

Appendix A

BlueROV2 Parameters

The following matrices are extracted from BlueRobotics [1].

A.1 Rigid Body Mass Matrix

MRB = −

10.5 0 0 0 0 0

0 10.5 0 0 0 0
0 0 10.5 0 0 0
0 0 0 0.156 0.003 −0.006
0 0 0 0.003 0.214 0.004
0 0 0 −0.006 0.004 0.127

 (A.1)

A.2 Added Mass Matrix

MA = −

7.0377 −1.2910 −1.6817 0.0954 0.2690 −0.0563
0.5638 18.5399 0.9321 0.193 −0.1080 −0.1984
2.6036 8.6394 13.2816 −0.5730 −1.7952 0.2603
0.0587 0.2892 0.0834 0.0546 −0.0087 −0.0284
0.1266 0.1660 0.1468 −0.0124 0.0173 0.0044
−0.0621 −0.2041 −0.0711 −0.0168 0.0061 0.2795

 (A.2)

95

Deep Learning for Station Keeping of AUVs Kristoffer Borgen Knudsen

A.3 Damping Matrices

DL = −diag{0, 0.26, 0.19, 0.895, 0.287, 4.64} (A.3)

DQ = −diag{3.96|u|, 103.25|v|, 74.23|ω|, 0.084|p|, 0.028|q|, 0.43|r|} (A.4)

96

Appendix B

IEEE Oceans 2019 Seattle -
Abstract

97

Deep Learning for Station Keeping of AUVs
1st Kristoffer Borgen Knudsen

Dept. of Marine Technology
NTNU

Trondheim, Norway
kristobk@stud.ntnu.no

2nd Mikkel Cornelius Nielsen
Dept. of Marine Technology

NTNU
Trondheim, Norway

mikkel.cornelius.nielsen@ntnu.no

3rd Ingrid Schjølberg
Dept. of Marine Technology

NTNU
Trondheim, Norway

ingrid.schjolberg@ntnu.no

Abstract—Control of underwater vehicles remains an active
research topic within the literature. Multiple challenges exists for
controlling an underwater vehicle, including highly nonlinear ef-
fects due to hydrodynamics. Control based models seek to model
the underlying dynamics but suffer from the balance between
tractable computation and performance. Machine Learning (ML)
control techniques show promise as an alternative to classical
model-based approaches.

This paper investigates the usage of a model-free deep rein-
forcement learning algorithm, Deep Deterministic Policy Gradi-
ent (DDPG), for station keeping in six degrees of freedom (DOF)
for an underwater vehicle.

Index Terms—underwater robotics, station keeping, deep re-
inforcement learning, deep deterministic policy gradients

I. INTRODUCTION

Station keeping denotes the act of maintaining a constant
position and orientation (pose), relative to a reference object
[1]. Many underwater operations rely on the underwater ve-
hicles station keeping capabilities, and thus station keeping
represents a fundamental control task.

The controller design is crucial for accomplishing station
keeping. Unfortunately, the underwater environment is com-
plex, making the autonomous control nonlinear since flow and
hydraulic resistance easily influences the AUVs motions [2]. In
turn, the classic model-based approaches become challenging
to apply. These challenges, in combination with the rapid
developments in artificial intelligence (AI), have triggered the
interest of applying machine learning (ML) techniques in AUV
control designs.

This paper aims at applying Deep Reinforcement Learning
to enable station keeping for AUVs by a dual controller design.
The dual controller design encompasses a DDPG algorithm,
based on the work of Silver et al. and Runsheng et al. [2] [3],
in conjunction with a PD controller.

II. METHOD

Reinforcement Learning (RL) aims at solving tasks through
an agent, who seek to maximize a reward signal obtained from
the environment in which the agent acts. The reward signal
informs the agent on how good the action taken in a particular
state was. The agent progressively learns the environment
through rewards and tries to maximize the accumulated re-
wards over all states in the environment by finding an optimal
policy to follow [4]. Deep Deterministic Policy Gradients
(DDPGs) is a state-of-the-art DRL algorithm, which utilizes

Artificial Neural Networks (ANNs) to learn a policy. DDPG
has shown remarkable results on both benchmark computer
games [3] and trajectory tracking control of AUVs [2]. This
paper applies DDPG to the station keeping problem on a
BlueROV2 platform.

Fig. 1: Left to right: The simulation environment Gazebo,
the actual BlueROV2 experiment setup, the location of the
experiments at MCLab NTNU.

The BlueROV2 is a small and low-cost remotely-operated-
vehicle (ROV) shown in Figure 1.

A DRL algorithm requires many training samples for the
algorithm to converge. Therefore, simulation-based training
provided the foundation for the algorithm. The Gazebo sim-
ulator with the UUV SIMULATION [5] plugin and a dynamic
model of the BlueROV2 [6] provided a simulation environment
for the training. Real-life experiments conducted in Marine
Cybernetics Laboratory (MCLab), in Trondheim, provided the
validation for the training. The dual controller design splits
the fully actuated BlueROV2 by using a DDPG algorithm to
control the (NED) position in surge x and sway y, and a PD
algorithm to control the (NED) position in heave z and the
(NED) orientations in pitch φ, roll θ and yaw ψ.

III. RESULTS AND DISCUSSION

A. Training results

The training utilizes a simulated environment, which is
safer and can be completed at a faster rate than in a real-life
environment. Two parameters are measured; the total reward
and number of steps. The total reward is a vector containing
the average reward of the last 100 episodes, and each episode
consists of a number of steps. A step denotes one computer
step, and an episode denotes one training interval, which ends
when the number of steps reaches 1000 or the agent reach the
terminal state. The terminal state indicates that the agent has
sufficiently done station keeping.

Fig. 2: Training results: left figures: 0 < episode < 400, right
figures: 550 < episode < 600.

The agent trained for approximately 600 episodes. The left
figures in Figure 2 shows the result from the first 400 episodes.
ROS and Gazebo experienced difficulties when the number of
episodes increased. Therefore, the training simulator restarted
after 400 episodes. The total reward converges towards 450
as the agent reaches approximately 600 episodes. The right
figures in Figure 2 shows the results where the last 50 episodes
remain approximately 450 in the returned reward. From the
bottom right Figure, the agent uses approximately 203 steps
in each episode, meaning that it has sufficiently satisfied the
station keeping criteria in each episode.

B. Validation results

The validation of the training involves both simulation and
real-life testing on the actual vehicle.

1) Simulation: Figure 3 visualizes the body-fixed error
for each DOF. The agent received an initial desired pose
of [xd, yd, zd, φd, θd, ψd] = [2, 0, 0, 0, 0, 0], and at t = 350
a new desired pose was given as [xd, yd, zd, φd, θd, ψd] =
[2, 2, 0, 0, 0, 0]. The desired pose change was done to evaluate
how the agent responds to change in pose, as well as to validate
that the solution was universal.

0 100 200 300 400 500 600 700 800
step

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

e
rr
o
r

Body error in x, y, ψ

x
y
ψ

0 100 200 300 400 500 600 700 800
step

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

e
rr
o
r

Body error in z, φ, θ

z
φ

θ

Fig. 3: Simulated validation results showing convergence of
the ROV to the desired states.

As shown in Figure 3, the agent has sufficiently accom-
plished station keeping capabilities, with error values in the
order of 10−2m.

2) Real-life experiments: The real-life experiments were
conducted on the actual BlueROV2 in the MCLab at NTNU,

Trondheim. Here, the initial error state was defined as [xe, ye]
= [0.3, 0.3] and at t = 18 seconds a new error state was given
to x such that [xt=18

e , yt=18
e] = [-0.5, 0].

0 10 20 30 40 50
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

[m
/r

a
d
]

Error in x, y, heading

x
y
heading

Fig. 4: Real-life validation results, showing the error states for
[x, y, ψ].

From the results in Figure 4, the agent is sufficient in making
sure that [xe, ye] −→ [0, 0] when receiving a new error state,
but the performance is slightly worse than simulation. The
reason for the discrepancy between the simulated and real-
life trials are two-fold. Firstly, the dynamic model used in
training does not exactly match the actual vehicle. Secondly,
the flaws related to the real-life pose measurement equipment.
Unfortunately, these flaws made it very difficult to test the
ability of the DDPG based controller design to its full extent.

IV. CONCLUSION

This paper applied a deep reinforcement learning algorithm
to the station keeping problem for underwater vehicles. The
results revealed that the DDPG algorithm was capable of
conducting station-keeping for an AUV. Both simulation and
real-life experiments validated the presented results. In the
simulated environment station keeping capabilities achieved
an error in the order of 10−2m, and likewise 10−1m in real-
life. The discrepancy between the real and simulated case
is two-fold. Firstly, the dynamics of the simulated vehicle
did not match the actual vehicle exactly. Secondly, the pose
measurement system in the laboratory often lost tracking,
which was detrimental to the results. Further work on the topic
should try to resolve this, as well as including heading control,
ψ, into the DRL controller design.

REFERENCES

[1] J. S. Riedel, and A. J. Healey, “Shallow Water Station Keeping of AUVs
Multi-Sensor Fusion for Wave Disturbance Prediction and Compensa-
tion,” Naval Postgraduate School, Center for AUV Research, vol. 1,
1998.

[2] R. Yu, Z. Shi, C. Huang, T. Li, and Q, Ma, “Deep Reinforcement
Learning Based Optimal Trajectory Tracking Control of Autonomous
Underwater Vehicle,” Proceedings of the 36th Chinese Control Confer-
ence, vol. 1, 2017.

[3] D. Silver, “Deterministic policy gradient algorithms,” Proceedings of the
31st International Conference on Machine Learning, vol. 1, 2014.

[4] D. Silver, “Introduction to Reinforcement Learning,” University of
London l lecture notes, vol. 1, 2015.

[5] M. Manhães, S. Scherer, M. Voss, L. Douat, and T. Rauschenbach,
“UUV Simulator: A Gazebo-based package for underwater intervention
and multi-robot simulation,” OCEANS 2016 MTS/IEEE Monterey, vol.
1, 2016.

[6] M. C. Nielsen, O. A. Eidsvik, M. Blanke, and I. Schjølberg, “Con-
strained multi-body dynamics for modular underwater robots - Theory
and experiments,” Ocean Engineering, 358-372, 2018.

K
ristoffer B

orgen K
nudsen

D
eep Learning for Station K

eeping of A
U

Vs

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Kristoffer Borgen Knudsen

Deep Learning for Station Keeping of
AUVs

Master’s thesis in Marine Technology
Supervisor: Ingrid Schjølberg

June 2019

	Preface
	Acknowledgement
	Abstract
	Introduction
	Background
	Traditional Methods for Station Keeping of AUVs
	Motivation for ML-based Control Designs
	Contributions
	Structure of the Report

	Machine Learning - A Literature Review
	Machine Learning
	An Introduction to Reinforcement Learning
	Markov Decision Processes
	Dynamic Programming
	Policy Gradients

	Deep Reinforcement Learning
	Deep Deterministic Policy Gradients
	Q-Learning
	Policy Learning
	Exploration vs. Exploitation

	Challenges in Policy Gradient Methods
	Trust Region Policy Optimisation
	Minorize-Maximization Algorithm
	Trust Region
	Importance Sampling
	TRPO

	Proximal Policy Optimisation
	Optimisation
	Adaptive Kullback-Leibler Penalty
	Clipped Surrogate Objective

	Modeling
	Reference Frames
	Dynamic Model of Underwater Vehicles
	Mass Matrix
	Coriolis and Centripetal Force Matrices
	Damping Matrices
	Hydrostatic Terms

	Method
	Controller Implementation for the BlueROV2
	Implementation of the PD Controller
	Implementation of the DDPG Algorithm
	Controller Architecture
	Reward Function

	Simulation and Experiment Setup
	Simulation Setup
	Experiment Setup

	Reward Shaping
	Body-frame Error
	Reward Shaping with Time Constraint
	DDPG without Heading

	Results
	DDPG without Heading
	Training Results
	Validation Results: Simulation
	Validation Results: MC-lab Experiments

	DDPG with Heading
	Training Results

	Discussion
	Quality of Pose Measurement Sensors
	Dynamic Model
	Limitations in Software
	Difficulties in Reward Function Design
	Possibilities of TRPOs and PPOs

	Conclusions
	Further Work
	BlueROV2 Parameters
	Rigid Body Mass Matrix
	Added Mass Matrix
	Damping Matrices

	IEEE Oceans 2019 Seattle - Abstract

