Jan Henrik Lenes

Autonomous online path planning
and path-following control for
complete coverage maneuvering
of a USV

—
o 25323
> Z>8Es
T z5292¢2
(] L c o C
=] o € € <
= 29379
z se 58 June 2019
) C-g"_g
=] o £
o o © - C
o oo = O
L O S =
£268%
sow 2
Zwn c
(o]
€
£
—
©
o
jol
[m)]

\/

@NTNU @NTNU

Norwegian University of

Norwegian University of
Science and Technology

Science and Technology

@NTNU

Norwegian University of
Science and Technology

Autonomous online path planning and
path-following control for complete
coverage maneuvering of a USV

Jan Henrik Lenes

Master of Science in Engineering and ICT
Submission date: June 2019

Supervisor: Roger Skjetne, IMT
Co-supervisor: Arild Hepsg, Maritime Robotics

Norwegian University of Science and Technology
Department of Marine Technology

NTNU Trondheim
Norwegian University of Science and Technology
Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Lenes, Jan Henrik

Field of study: Marine control engineering

Thesis title (Norwegian): Autonom online baneplanlegging og banestyring for mangvrering med
full dekning av en USV

Thesis title (English): Autonomous online path planning and path-following control for

complete coverage maneuvering of a USV

Background

The Otter unmanned surface vehicle (USV) is an easily deployable system for seabed mapping and
monitoring in sheltered waters. Electric propulsion and a tightly integrated bathymetric survey system
make this system a cost-efficient solution for bathymetric surveys in sheltered waters such as smaller
lakes, canals, rivers, ponds, and harbor areas.

The objective of this thesis is to develop an autonomous system for the Otter USV capable of mapping
an area without human intervention. The system should be able to create a mapping of the seabed that is
complete by maneuvering on the surface. The USV also needs to avoid obstacles and stay within the
desired survey area. To accomplish this, the USV is equipped with several instruments to sense the
surrounding environment and to keep track of the vehicle motion and onboard systems.

Work description
1. Perform a background and literature review to provide information and relevant references on:
e The Otter USV and sensor package relevant for the project.
e Applicable methods for partitioning the operational workspace.
e Relevant methods for Complete Coverage Path Planning (CCPP).
e Applicable methods for ensuring feasibility of the generated path.
Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the
literature study and project assignment.

2. Describe the Otter USV and its sensor package and sensor fusion, as relevant for the USV, in
particular the lidar, MBES, and vehicle motion sensors and the SLAM method together with
relevant navigation filters. Present a topology drawing documenting the control system and its
information flow.

3. Implement selected methods for CCPP on the Otter USV, including Bio-Inspired Neural Networks
(BINN) and boustrophedon motions. Interface the CCPP methods with SLAM, lidar, IMU, and
GPS.

4. Develop an algorithm that ensures feasibility of the generated path regarding the Otter USV’s
turning radius, speed, and maximum stopping distance.

5. Implement a path-following method for the Otter USV that can track the generated path. Interface
the path-following method with the USV’s thrusters.

6. Test the implemented system by performing a bathymetric survey of a harbor with boats and jetties.

NTNU Faculty of Engineering Science and Technology
Norwegian University of Science and Technology Department of Marine Technology

Specifications
The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor, described topics
may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work. Theories and
conclusions should be based on mathematical derivations and logic reasoning identifying the various steps in the
deduction.

The report shall be organized in a logical structure to give a clear exposition of background, results, assessments, and
conclusions. The text should be brief and to the point, with a clear language. Rigorous mathematical deductions and
illustrating figures are preferred over lengthy textual descriptions. The report shall have font size 11 pts., and it is not
expected to be longer than 70 A4-pages, 100 B5-pages, from introduction to conclusion, unless otherwise agreed upon.
It shall be written in English (preferably US) and contain the following elements: Title page, abstract, acknowledgements,
thesis specification, list of symbols and acronyms, table of contents, introduction with objective, background, and scope
and delimitations, main body with problem formulations, derivations/developments and results, conclusions with
recommendations for further work, references, and optional appendices. All figures, tables, and equations shall be
numerated. The original contribution of the candidate and material taken from other sources shall be clearly identified.
Work from other sources shall be properly acknowledged using quotations and a Harvard citation style (e.g. natbib Latex
package). The work is expected to be conducted in an honest and ethical manner, without any sort of plagiarism and
misconduct. Such practice is taken very seriously by the university and will have consequences. NTNU can use the
results freely in research and teaching by proper referencing, unless otherwise agreed upon.

The thesis shall be submitted with an electronic copy to the main supervisor and department according to NTNU
administrative procedures. The final revised version of this thesis description shall be included after the title page.
Computer code, pictures, videos, dataseries, etc., shall be included electronically with the report.

Start date: January, 2019 Due date: As specified by the administration.

Supervisor: Roger Skjetne
Co-advisor(s): Arild Hepse (Maritime Robotics)

Trondheim, 06.06.2019
L & ;|| " }; ” Digitally signed by Roger Skjetne
\ i) S Date: 2019.06.06 10:40:20 +02'00'
Roger Skjetne

Supervisor

Abstract

Complete coverage maneuvering requires planning and following a path such
that a sensor or end-effector covers every part of the workspace. The design
of complete coverage paths is an essential problem in seabed mapping and
many other robotic applications. The application of coverage algorithms
has been very successful in land-based robots such as lawnmowers and vac-
uum cleaners. Independently, coverage algorithms can be classified as either
offline or online. Offline algorithms assume full prior knowledge of the envi-
ronment, while online algorithms rely on real-time sensor measurements.

Most complete coverage path planning (CCPP) algorithms are offline,
their online use is not common, even for lawnmowers. Online CCPP ap-
proaches for marine surface vehicles are even harder to find. Existing meth-
ods for seabed mapping usually require information about the target region
before the mapping can begin. To address this issue, this thesis considers
the design and testing of an online complete coverage maneuvering system
for seabed mapping with unmanned surface vehicles (USVs).

The proposed system uses a low-cost 2D lidar and vehicle motion sen-
sors for simultaneous localization and mapping (SLAM). The information
gathered from these onboard sensors is used by an online CCPP method in
order to generate a collision-free path. Two different online CCPP methods
are reviewed. One is based on a bio-inspired neural network (BINN), and
the other on boustrophedon motions, also known as lawnmower patterns.
The feasibility of the generated path is ensured by taking into account the
USV’s turning radius and speed. Finally, a line-of-sight guidance law gen-
erates continuous course and speed control to ensure that the USV tracks
the generated path.

The proposed system has been implemented using the Robot Operat-
ing System (ROS) middleware, and is provided as open source packages.
The system has been tested and verified in simulations and real-world ex-
periments with the Otter USV. Results showed that the boustrophedon mo-
tions CCPP method performed satisfactorily, while the BINN CCPP method
tended to generate inefficient paths. Methods for ensuring a feasible path
and guidance managed to successfully make the Otter USV track the gener-
ated path. The proposed sensor fusion and SLAM system performed satis-
factorily in certain situations, but was in general not good enough with the
incorporation of IMU and GNSS data. Furthermore, the low-cost 2D lidar
used in the experiments was, by itself, not capable of providing the detail
necessary for accurate obstacle detection in marine environments.

In conclusion, the proposed system performed satisfactorily and achieved
complete coverage in simulations, and in real-world experiments under cer-
tain conditions. However, the sensor fusion and SLAM system did not per-
form satisfactorily in real-world experiments and should be improved.

iii

Sammendrag

(Norwegian translation of the abstract)

Mangvrering med full dekning krever planlegging og felging av en bane
slik at en observasjonssensor eller robotdel dekker hele arbeidsomradet.
Utformingen av baner med full dekning er et viktig problem ved kartleg-
ging av havbunnen og mange andre anvendelser innen robotikk. Anven-
delsen av dekningsalgoritmer har veert sveert vellykket innen landbasert
robotikk som robotstgvsugere og -gressklippere. Dekningsalgoritmer kan
generelt klassifiseres som enten offline eller online. Offline algoritmer an-
tar full forkunnskap om omgivelsene, mens online algoritmer benytter seg
utelukkende av informasjon innhentet fra maleinstrumenter pa roboten.

De fleste dekningsalgoritmer er offline algoritmer, selv for robotgress-
klippere. Online dekningsalgoritmer for marine overflatefartgy er enda
vanskeligere & finne. Eksisterende metoder for kartlegging av havbunnen
krever som oftest forhandskunnskaper om omradet fgr kartleggingen kan
begynne. Denne avhandlingen gnsker & lgse dette problemet, og omhandler
derfor utvikling og testing av et online system for mangvrering med full
dekning til bruk i kartlegging av havbunnen med ubemannede overflate-
fartgy.

Det utviklede systemet bruker en billig 2D lidar og andre maleinstru-
menter for posisjons- og orienteringsbestemmelse til samtidig lokalisering
og kartlegging av omgivelsene. Denne informasjonen brukes videre av en
online dekningsalgoritme som planlegger en kollisjonsfri bane gjennom ar-
beidsomradet. To forskjellige dekningsalgoritmer er vurdert. En er basert
Pa et bioinspirert nevralt nettverk, og den andre pa a generere enkle gress-
klippermgnster. Det ubemannede overflatefartgyets fart og svingeradius
brukes til & sgrge for at de genererte banene er gjennomfgrbare. En sikt-
linjebasert fartgystyringsmetode sgrger til slutt for at fartgyet fglger den
genererte banen.

Systemet har blitt implementert ved bruk av Robot Operating Sys-
tem, og er publisert som apen kildekode. Systemet har blitt testet og
verifisert i simuleringer og virkelige eksperimenter med det ubemannede
fartoyet Otter USV. Dekningsalgoritmen basert pa gressklippermgnster
ga tilfredsstillende resultater, mens algoritmen basert pa det bioinspirerte
nevrale nettverket genererte ineffektive baner. Metodene for & sgrge for
gjennomfgrbare baner og styring av fartgyet fungerte ogsa tilfredsstillen-
de. Det foreslatte systemet for fusjon av data fra maleinstrumentene var
tilstrekkelig under visse forhold, men generelt ikke godt nok i inkluderin-
gen av posisjonsdata fra GPS. Videre var ikke den billige 2D lidaren god
nok for palitelige objektdetektering i marine omgivelser.

Oppsummert sa fungerte det utviklede systemet godt og oppnadde full
dekning i simuleringer og under visse forhold ogsa i virkelige eksperimenter.
Metoden for fusjon av data fra maleinstrumentene fungerte imidlertid ikke
godt nok og ma forbedres. iv

Preface

This thesis was submitted to the Norwegian University of Science and Tech-
nology (NTNU) in completion of my master’s degree in Engineering and
ICT, with a specialization in the field of Marine Cybernetics. The work
presented herein was carried out during the spring of 2019 under the guid-
ance of Professor Roger Skjetne at the Department of Marine Technology,
and in close collaboration with Maritime Robotics AS and Arild Hepsg who
has been co-supervising this thesis. This work is a continuation of the work
done during my specialization project in the autumn of 2018.

Acknowledgments

A huge thanks to my supervisor, Professor Roger Skjetne, for his helpful
guidance and supervision. He has supported me with his great knowledge of
marine control engineering, guiding me in the right direction and providing
me with good ideas on how to solve the problem.

I would also like to extend my sincere gratitude to all the people at
Maritime Robotics AS that have supported me. They had the idea that
inspired this thesis and have been invaluable in making the project come to
life. T am in particular grateful to Arild Hepsg, Stephanie Kemna, Kenan
Trnka and Sindre Fossen. They have provided me with ideas, helped solve
technical difficulties, and given me valuable feedback on this report.

Trondheim, June 10th, 2019

Jan Henrik Lenes

Contents

MSc thesis description

Abstract

Sammendrag

Preface

Contents

List of Figures

Abbreviations

Nomenclature

1 Introduction

1.1
1.2
1.3
1.4

Background Lo
Objective e
Thesis contributions
Scope and limitations
141 Outline
1.4.2 Limitations

2 Background and literature review

2.1

2.2

2.3
2.4

The Otter USV and its sensor package
2.1.1 TheOtter USV
2.1.2 Relevant sensors
Partitioning of the operational workspace
2.2.1 Grid-based decomposition
2.2.2 Morse-based cellular decomposition.
Relevant methods for CCPP
Feasible path design
2.4.1 Polynomial approximation
242 Dubinspath.

vi

iii

iv

vi

ix

xi

xii

CONTENTS vii

2.4.3 Beziercurveso 15
3 Problem formulation 18
4 Sensor fusion and SLAM 20
4.1 Sensors and drivers Lo 20
4.1.1 Lidar 20
4.1.2 IMU 21
4.1.3 GNSS 22
414 MBES 23
4.2 SLAM with Cartographer 24
5 Map processing and workspace partitioning 25
5.1 Map processing and rolling window 25
5.2 Circular cell partitioning 27
5.3 Square cell partitioningo 29
5.3.1 Representing the varying coverage range of the MBES 30
6 Complete coverage path planning 32
6.1 Bio-inspired neural network 32
6.1.1 Neural network model 32
6.1.2 Using the neural network for path planning 34
6.2 Boustrophedon motions 35
6.2.1 Constructing the boustrophedon motion 36
6.2.2 Determining the backtracking point 37
6.2.3 Planning a path to the backtracking point 38
7 Guidance and path generation 40
7.1 Feasible path generation using straight lines and arc segments 40
7.1.1 Turning direction 41
7.1.2 Center of turning circle 41
7.1.3 Tangentpoint. 41
7.1.4 Generating thepath 42

7.2 Curved path line-of-sight guidance law with time-varying looka-
head distance 43
7.2.1 Cross-track error oL 43
722 QGuidancelaw 44
7.2.3 Time-varying lookahead distance 44
7.2.4 Speed assignment 45
7.2.5 Interfacing with the Otter USV’s thrusters 45
8 Simulations 46
81 Simulator 46
8.2 Map generation with SLAM 46

8.3 Complete coverage maneuvering with boustrophedon motions 47

CONTENTS viii

8.3.1 Constant coverage range 47
8.3.2 Varying coverage range 50

8.4 Complete coverage maneuvering with bio-inspired neural net-
work ..o 51
85 Discussion 53
8.5.1 Sensor fusion and SLAM 53
8.5.2 CCPP with boustrophedon motions 54
8.5.3 CCPP with bio-inspired neural network 55
8.5.4 Path following 56
9 Experiments 58
9.1 Experimental setup L. 58
9.2 Complete coverage maneuvering with boustrophedon motions 59
9.2.1 First experimento 59
9.2.2 Second experimento 60
9.3 Discussion 63
9.3.1 Sensor fusion and SLAM 63
9.3.2 CCPP with boustrophedon motions 64
9.3.3 Pathfollowing, 66
10 Concluding remarks 67
10.1 Conclusions Lo 67
10.2 Further work 68
Bibliography 70
A Cartographer configuration 1
B Source code 111
B.1 Complete coverage maneuvering system 111
B.2 Simulator v
B.3 Running thecode oL I\Y
B.4 Playing back logged data A%

C Video from the first experiment VI

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

2.7

2.8
2.9
2.10
2.11
2.12

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

6.1

The Otter USV and seabed mapping.

Specifications of the Otter USV.
Illustration of a laser scan.
Multibeam echosounder measurement of the seabead..
Grid-based decomposition methods.

Morse-based cellular decomposition with a vertical sweep line.

Complete coverage paths for regions segmented by similar

depth.
Complete coverage with boustrophedon motions and back-

tracking with A* search.
Polynomial approximation of a 6-point rolling window.
Dubinspath.
Simple Dubins path.
Bezier curve. oo
A Bezier curve ensuring that the robot hits the ball from the

right direction in robot soccer.

The control system and its information flow.

The RPLIDAR A3
The Xsens MTi.
Lidar detects nothing or too little for accurate localization.

Geometry of detection points of the MBES.
Information flow in sensor fusion and SLAM.

Rolling window occupancy grid around the USV.
Covering a rectangle using a minimum number of disks.
Circular cell partitioning.,
Square cell partitioning.o
The square cell partition uses the coverage range of the MBES
to determine which cells are set as covered.

Architecture of the 2D neural network.

X

12

13

26

LIST OF FIGURES

6.2

6.3
6.4

7.1
7.2
7.3

8.1
8.2

8.3
8.4

8.5

8.6
8.7

8.8

8.9

9.1
9.2
9.3

9.4
9.5

9.6

C.1

Boustrophedon motion with a symmetric constant coverage

TANEE. « o v v e e e e e e e e e e e e
Conditions for backtracking points.
Smoothing of the A* backtracking path.

Simple Dubins path geometry.
A generated simple Dubins path (green curve).
Line-of-sight guidance geometry for curved paths.

Map generation with SLAM of a simulated environment. . . .
The surrounding environment and target region for the first

simulation.
State at the end of the first simulation.
Visualization of the boustrophedon motions method with con-

stant coverage range at several stages during the simulation. .
The surrounding environment and target region for the sec-

ond simulation. L
State at the end of the second simulation.
Visualization of the boustrophedon motions method with vary-
ing coverage range at several stages during the simulation. . .
Visualization of the bio-inspired neural network method at

several stages during the simulation.
Map by SLAM at the end of the third simulation.

The testing area used for the Otter USV.
State at the end of the first experiment.
Visualization of the boustrophedon motions method at sev-
eral stages during the first experiment
GNSS trajectory in the second experiment.
Trajectory and map according to the SLAM system Cartog-
rapher at different stages of the second experiment.
Visualization of the boustrophedon motions method at sev-
eral stages during the second experiment

Screenshot of video.o

Abbreviations

2D/3D
AHRS
ASV
AUV
BINN
CCPP
COLREGs
EKF
GPS
GNSS
IMU
INS
Lidar
LOS
MBES
MSc
NMEA
NED
ROS
RTK
SLAM
Sonar
UGV
UsSv
VSLAM

2-Dimensional/3-Dimensional

Attitude and Heading Reference System
Autonomous Surface Vehicle
Autonomous Underwater Vehicle
Bio-Inspired Neural Network

Complete Coverage Path Planning
International Regulations for Preventing Collisions at Sea
Extended Kalman Filter

Global Positioning System

Global Navigation Satellite System
Inertial Measurement Unit

Inertial Navigation System

Light Detection And Ranging
Line-of-sight

Multibeam Echosounder

Master of Science

National Marine Electronics Association
The North-East-Down coordinate system
Robot Operating System

Real-Time Kinematic

Simultaneous Localization And Mapping
Sound Navigation And Ranging
Unmanned Ground Vehicle

Unmanned Surface Vehicle

Visual Simultaneous Localization And Mapping

xi

Nomenclature

Symbol Description

€Ecell

S

Srmo W

g

> =

Coverage range in port direction.

Coverage range in starboard direction.

Angle of detection point from the MBES.

Distance to detection point from the MBES.

Radius of circle circumscribing the USV’s footprint.
Obstacle inflation radius.

The rectangular workspace’s length along the x-axis.
The rectangular workspace’s length along the y-axis.
Radius of circles in the circular cell partition.

Flag indicating the status of a cell at row r and column ¢ in the
workspace partition.

Size of cells in the square cell partition.

The set of real numbers.

Neural activity of the ith neuron.

Position (z;,y;) of the ith neuron.

Radius of the neighborhood in the neural network.
Passive decay rate in the neural network.

Upper bound of neural activity.

Lower bound of neural activity.

Upper and lower bound of external input to neural network.
Scaling factor for the external input to the ith neuron.
External input to ¢th neuron.

Connection weight between the i¢th and jth neuron.
Scaling factor for connection weight between neurons.
Tuning constant for how much to penalize turning in the neural
network.

Initial position (x4, y,) of simple Dubins path.

Initial heading of simple Dubins path.

Final position (z,yy,) of simple Dubins path.

Final heading of simple Dubins path.

Turning radius in simple Dubins path.

xil

Unit

rad

—BEBBEE

g
&)

I—l)—‘HI—‘HI—‘Hl—‘HE

E
g

rad
(m,m)
rad

Pmin Minimum feasible turning radius of the USV. m
1

) Turning direction.

De Position (x.,y.) of center of turning circle. (m,m
Dl Position (z7,y;) of tangent point on turning circle. (m,m
P Position (z,y) of USV. (m,m
Dp Point (xp,yp) on path that is closest to the USV. (m,m
Yp Path-tangential angle. rad
Ye Cross-track error. m
A(t) Lookahead distance. m

X Course angle of the USV. rad
Xd Desired course angle. rad
X Error in course angle rad
P Heading angle of the USV. rad
V4 Desired heading angle. rad
I53 Sideslip angle. rad
Apas Maximum lookahead distance. m
Anin Minimum lookahead distance. m
Ka Convergence rate of time-varying lookahead distance. 1

Ua Desired speed. m/s
Unmaz Maximum desired speed. m/s
Unnin Minimum desired speed. m/s
Ymaz Maximum allowed cross-track error in speed assignment. m

Xmaz Maximum allowed course angle error in speed assignment. rad

xiii

Chapter 1

Introduction

1.1 Background

Complete coverage maneuvering is the task of determining and following a
path such that a sensor or end-effector passes over all points of an area of
interest while avoiding obstacles. This is a fundamental challenge in many
robotic applications, such as lawn mowing, floor cleaning, mine detection,
and environmental mapping and surveying. Determining an optimal com-
plete coverage path, i.e. a path that covers every point exactly once, is
closely related to the well-known traveling salesperson problem, which is an
NP-hard problem. This means the computational time required to solve the
problem increases drastically with the size of the input. The problem be-
comes even more difficult to solve in unknown and dynamic environments,
where reliable information about obstacles within the area of interest is not
available prior to the complete coverage task.

Thus, the need arises for online approaches that solve the problem se-
quentially as more and more information become available through onboard
sensors. These approaches operate with no prior information about the
operational area, and this relaxes the requirement of covering every point
exactly once. Due to the crucial role of complete coverage maneuvering in
such a wide range of applications, there are several approaches reported in
the literature. Applications to robotic lawnmowers and vacuum cleaners
are perhaps some of the best-known examples. For references, the reader is
referred to the literature review section of this thesis.

Most research in complete coverage maneuvering is targeted towards
land-based applications, while the application to marine vessels, especially
online approaches, is still lacking in the literature. With new developments
in sensor technologies and robotics, unmanned robots are now capable of
performing many tasks that previously required manned operations. This
opens up for a lot of new possibilities, and the increasing popularity of
autonomous systems is prominent in many sectors. The marine sector is

CHAPTER 1. INTRODUCTION 2

no exception, and it is therefore important to transfer the well-established
methods of land-based robotics to marine robotics.

The Otter is a small unmanned surface vehicle (USV) designed for seabed
mapping and monitoring of sheltered waters, and is equipped with a multi-
beam echosounder (MBES) for this purpose. The Otter is a turn-key and
cost-effective solution for bathymetric surveys, and Maritime Robotics has
suggested implementing complete coverage maneuvering in order to increase
its autonomy. To achieve this, the USV will be equipped with a low-cost 2D
lidar and other vehicle motion sensors required for collision-free maneuvering
on the water surface. The Otter will simultaneously keep track of obstacles
on the surface with the lidar, and the covered area of the seabed with the
multibeam echosounder. With this information, the USV will generate and
follow collision-free paths on the surface in order to achieve complete cov-
erage of the seabed. The Otter USV and an illustration of a bathymetric
survey are shown in Figure 1.1.

Figure 1.1: (a) The Otter USV, courtesy of Maritime Robotics. (b) A
surface vessel mapping the seabed with a multibeam echosounder, courtesy
of the Marine Institute.

1.2 Objective

The main objective of this thesis is the following:

- Design, implement and test a complete coverage maneuvering system
for the Otter USV using a low-cost lidar.

The system should be capable of carrying out bathymetric surveys in un-
known environments without operator assistance. Based on this main ob-
jective, there are 3 subobjectives:

— Autonomous operation requires accurate real-time information about
the USV and its immediate surroundings. Data from several sensors

CHAPTER 1. INTRODUCTION 3

must be fused in order to accurately localize the USV. In addition, a
sufficiently detailed map of the surroundings has to be provided for
use in path planning.

— A complete coverage path planning (CCPP) method must be imple-
mented. The method should be able to generate a collision-free feasible
path that ensures coverage of the desired survey area. Furthermore,
this path needs to be generated online from available sensor data.

—> A guidance and path following method must be implemented. The
USV must be able to follow the path generated from the complete
coverage path planning method.

In order to accomplish these objectives, the author has, together with the
supervisors, formulated the work description attached in the MSc thesis
description in the beginning of this thesis.

1.3 Thesis contributions
The main contributions of this thesis are:

e A simulator for the Otter USV has been developed for ROS Melodic
and Gazebo 9. The simulator implements low-level controllers and is
capable of providing simulated input from several sensors, including
GNSS, IMU and lidar. The simulator has been thoroughly tested
and can be used for verification of methods and algorithms, including
methods for SLAM, sensor fusion, path planning, guidance and path
following.

e A strategy for sensor fusion and simultaneous localization and mapping
(SLAM) with Cartographer. The implemented system fuses data from
GNSS, IMU and 2D lidar to provide localization and mapping of the
surrounding environment.

e A map processing strategy and two methods for partitioning of the
operational workspace. One of them is particularly suited for variable
coverage range sensors.

e Two online CCPP methods. Obstacle avoidance is performed in both
methods using a 2D lidar. One of the methods applies a variable inter-
lap spacing, which to the author’s knowledge has not yet been done in
an online CCPP method for seabed mapping with obstacle avoidance.

e A method that ensures feasibility of the generated path regarding the
Otter USV’s turning radius and speed.

CHAPTER 1. INTRODUCTION 4

e A path following method for the USV that can track the generated
path.

e An interface to Maritime Robotics’ onboard system on the Otter USV
for controlling the USV’s thrusters from ROS.

All implementations are written in C++ for ROS Melodic and are available
in the electronic attachment of this thesis, as well as on the author’s GitHub
page: https://github.com/jhlenes/complete_coverage and https://
github.com/jhlenes/usv_simulator. These code repositories provide a
good starting point and reference for further work with the Otter USV or
other development in ROS.

1.4 Scope and limitations

1.4.1 Outline

The thesis is organized as follows:

Chapter 2: Provides background information and literature references on
relevant topics and theory. This includes the Otter USV and its sensor
package, workspace partitioning, relevant CCPP methods, and feasible path
design.

Chapter 3: Presents the problem formulation which further defines the
problem to be solved. The problem is broken down and formulated as several
subproblems that can be solved individually.

Chapter 4: Describes which sensors are necessary, how sensor data is gath-
ered and how it is fused together with data from other sensors. The SLAM
system Cartographer is introduced.

Chapter 5: Presents how the SLAM map is processed and partitioned to
represent the workspace in a way suitable for CCPP.

Chapter 6: Describes in detail how the CCPP methods work. This includes
how the underlying workspace representation is used, which strategies to use
in the path planning, how to ensure complete coverage, and how to generate
the waypoints.

Chapter 7: Presents how feasible paths are generated from waypoints. A
line-of-sight (LOS) guidance law for curved paths that generates continuous
steering control capable of tracking these paths is also covered.

Chapter 8: Presents results of simulations with sensor fusion and SLAM,
CCPP and path following. The results are discussed with regards to relia-
bility and performance.

Chapter 9: Presents results of real-world experiments with the Otter USV

https://github.com/jhlenes/complete_coverage
https://github.com/jhlenes/usv_simulator
https://github.com/jhlenes/usv_simulator

CHAPTER 1. INTRODUCTION)

in the harbor of Trondheim. The results are discussed with regards to reli-
ability and performance.

Chapter 10: Presents concluding remarks regarding the implemented sys-
tem. Recommendations and suggestions for further work are also presented.

1.4.2 Limitations

Some of the limitations of the implemented system are:

e No distinction is made between moving and stationary obstacles. This
may result in some undesirable behavior regarding moving obstacles.
The system is not in compliance with the Convention on the Interna-
tional Regulations for Preventing Collisions at Sea (COLREGS).

e The system is only tested in simulations and experimentally in a har-
bor. Different environments might offer other challenges not accounted
for.

e The system has not been tested experimentally with a multibeam
echosounder. Varying depth is only considered in simulations.

e The Otter USV already has low-level control developed by Maritime
Robotics. Thus, the implemented system will restrict itself to high-
level planning and provide course and speed control as input to the
existing onboard system.

e A low-cost 2D lidar is the only range-based sensor, obstacles outside
the lidar’s scan plane are not detected.

Chapter 2

Background and literature
review

2.1 The Otter USV and its sensor package

Being able to sense the surrounding environment is crucial for any au-
tonomous robot. In maneuvering, taking the appropriate action is highly
dependent on having up-to-date and accurate information about the sur-
roundings. The USV’s sensors is what translates the environmental con-
ditions into signals suitable for processing. Selecting the proper sensors is
therefore critical, as it directly affects the quality of environmental informa-
tion available, and consequently the maneuvering performance. This section
will present the Otter USV and the sensors that are used in order to sense
the surrounding environment and localize the USV.

2.1.1 The Otter USV

The experimental platform used in this thesis is the Otter USV (Maritime
Robotics AS, 2019), an easily deployable system for bathymetric surveys
developed by Maritime Robotics. The USV has a small footprint of 200 x
105 x 85 cm and a weight of about 95kg. It has a typical operating speed
of about 2 knots, and is propelled by a set of dual electrical fixed thrusters.
The USV’s stable catamaran design offers a payload capacity capable of
supporting a multitude of different sensor configurations. The Otter USV is
depicted in Figure 2.1.

2.1.2 Relevant sensors

Lidar

Lidar (also called LIDAR or LiDAR) stands for light detection and ranging,
and is a method that uses light to measure the distance to a target (National

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

dolrk 0

" Macspoodwithemar 45t

© 20hours(2kts) [95kg

" IME
IN SR

Oversllength200cm

(a)

Figure 2.1: (a) Specifications of the Otter USV, courtesy of Maritime
Robotics. (b) The Otter USV equipped with a lidar in Trondheim harbor.

Ocean Service, 2019). This is done by emitting laser pulses and measuring
the time it takes for the pulse to be reflected. Measuring the distance in a
wide range of directions allow lidars to make accurate and precise depictions
of the surroundings, as illustrated in Figure 2.2.

(a) (b)

Figure 2.2: (a) The USV in a simulated environment with obstacles. (b)
The laser scan created by the lidar depicts an accurate mapping of the
surroundings.

The range, resolution, and field of view vary a lot between different types
of lidars. However, even low-cost 2D lidars can be used for navigation, for
example in vacuum cleaners such as the Roborock S6 (Roborock, 2019). A
low-cost 2D lidar was also used successfully by Ueland (2016) on a marine
vessel to explore and navigate in a basin with unknown obstacles. A sig-
nificant drawback of 2D lidars is that obstacles that occur either above or
below the sensor’s horizontal scan plane will not be detected. To account for
this issue, Spange (2016) incorporated the use of acoustic proximity sensors,
which solves the issue inside the range of the proximity sensors. Both of the
works by Spange (2016) and Ueland (2016) were performed in a basin where
the lidar was largely unaffected by roll and pitch motions caused by waves.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

Examples of better and more expensive 2D lidars are those in use on
the multipurpose unmanned ground vehicles (UGVs) by Clearpath robotics
(Clearpath, 2019). Compared to the cheaper lidars, these usually offer a
significant increase in range, resolution and outdoor availability. State-of-
the-art 3D lidars offer even more detailed depictions of the surrounding
environment and avoid the issue of a single scan plane as in 2D lidars, but
at the cost of a significant price increase. High-end lidars like this can
be used in applications where the requirements to accuracy and precision
are incredibly high, such as terrain mapping and self-driving cars. See for
instance the Velodyne Puck (Velodyne, 2019) and the YellowScan Surveyor
(YellowScan, 2019) lidars.

IMU

An inertial measurement unit (IMU) is a device that measures the angular
rate, force and sometimes magnetic field (Hillcrest Labs, 2019). There are
three main types of motion sensor devices in an IMU, and that is an ac-
celerometer, gyroscope, and magnetometer. IMUs often contain some soft-
ware that combines these measurements in order to provide orientation and
heading, resulting in an attitude and heading reference system (AHRS). If
the IMU has software that also calculates the position relative to a global ref-
erence frame, it is often called an inertial navigation system (INS) (Tampere
University of Technology, 2019). As with lidars, IMUs come with varying
quality. Examples of cheap IMUs are the ones from SparkFun Electronics
(SparkFun, 2019), while the very accurate POS MV (Applanix, 2019) system
from Applanix is a much more accurate and expensive solution.

GNSS

Global navigation satellite system (GNSS) is a navigation system that uses
satellites to provide geo-spatial positioning (European GSA, 2019). GNSS
allows small electronic receivers to determine their latitude, longitude, and
altitude/elevation with high precision (within a few meters) using position-
ing and timing data transmitted from satellites. Popular publicly available
GNSS systems include GPS, GLONASS, and Galileo. GNSS receivers are
found many places such as in phones and watches, and are readily available
at many online electronics stores (SparkFun, 2019). With more advanced
RTK GNSS solutions, the precision of GNSS positioning can be increased
to centimeter level accuracy (Lambert Wanninger, 2019), which is often im-
portant in applications such as land surveys and hydrographic surveys.

MBES

A multibeam echosounder (MBES) is a type of downward-looking sonar
that is frequently used to map the seabed (Nautikaris, 2019). The MBES

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

is usually mounted on a ship’s hull, and emits sound waves in a fan shape
beneath the ship. The time it takes for the sound waves to bounce off the
seabed and return to a receiver on the MBES, is used to determine water
depth. This gives an accurate depiction of the seabed directly beneath the
ship, see Figure 2.3.

25 20 15 10 0
2

4

Figure 2.3: A multibeam echosounder measures the depths in a swath be-
neath the ship. Visualized by Maritime Robotics’ Vehicle Control Station.

There are several use cases for multibeam echosounders, and the field of
view, depth range and resolution vary accordingly. The NORBIT iWBMS
is an example of a compact and high resolution sonar for shallow water
mapping, and can operate in depth ranges of 0.2 — 275 meters (Norbit,
2019). Other sonars, like the Kongsberg Maritime EM 124 are meant to
operate at full ocean depths, and can handle depth ranges of 20 - 11000
meters (Kongsberg Maritime, 2019).

2.2 Partitioning of the operational workspace

The operational workspace of a robot is the space in which the robot is oper-
ating. In the case of the Otter USV, the workspace is the reachable portion
of the desired survey area. Partitioning the workspace then becomes the
task of splitting the workspace into smaller, more manageable regions that
are better suited for path planning. The choice of a partitioning strategy is
an important part of CCPP, and is therefore given a thorough review here.

2.2.1 Grid-based decomposition

In grid-based decomposition, the workspace is decomposed into a collection
of uniform cells ordered in a grid. In this representation, each cell represents
a small region of space in the real world, and is usually the size of the robot’s
footprint, end-effector, or observation sensor’s coverage range. This makes
it very suitable for CCPP, because when all cells in the grid are covered,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

complete coverage is achieved. Grid-based decomposition is, however, an
approximate representation of the workspace. If the area a cell represents
is only partially covered by an obstacle in the real world, the entire cell is
often considered as an obstacle. Some grid-based decomposition methods

are illustrated in Figure 2.4.

T o _JCJ\ N Tl 'JC" Yo
\\\ r;{.' o o Y f’I.I
r .
=t -y -t
P P SR) R
sy W i . I s
s - L . i WL
LR S S p L
.
W 4 W ¢ I O
k) [S r . i
N R e
P Y - - - - b
L n 41 [L Vo
_ L L O P o w _
A I R p S
W ») Y “
i e . ' L
,,,,,,,,,,,, == g _'l,-- - ==
AL A=Y .)
S W W < Vo
4y L 4 W r"r w1
=L e ==l g ==l i
S AR AR A=l
IR S L S L £
I L7 N | L7 N | A

(a) Square cell decomposition (Galceran
and Carreras, 2013b). Obstacles are out-
lined by the dashed lines, and the colored
cells are considered obstacles.

(b) Circular disk decomposition (Guo and
Qu, 2004).

AVAVAVAVAVAVAVAVA
JAVAN

(c) Triangular cell decomposition (Oh
et al., 2004). Colored rectangle represents
obstacles.

Figure 2.4: Grid-based decomposition methods.

Many CCPP methods use a grid-based decomposition in their partition-
ing of the workspace. The grid cells are often square, as in the methods by
Viet et al. (2013) and Yang and Luo (2004). However, other shapes are also
used, such as circular disks (Guo and Qu, 2004) and triangles (Oh et al.,
2004). Decomposition into circular disks with the coverage range as the ra-
dius of the circles, is motivated by the fact the it will sometimes give a more
correct representation of the covered area compared to squares. Circular
disk decomposition has been used in several CCPP methods, such as Guo
and Balakrishnan (2006) and Scibilia et al. (2012). The triangular cells used
by Oh et al. (2004) offers an advantage over other shapes in that each cell
has 12 neighboring cells, resulting in more directions for movement between
neighboring cells.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

An advantage of grid-based decomposition, is that a grid-map is easy
to create and maintain in an implemented system. It is easily represented
in a simple array-structure, which most programming languages have ac-
cess to. One of the downsides of grid-based decomposition is that it is
approximate, and most CCPP methods using grids are therefore resolution-
complete (Galceran and Carreras, 2013b). That is, the completeness of the
methods depend on the resolution of the grid map, as seen in Figure 2.4a.
Another disadvantage is that the requirement to memory becomes large in
big workspaces with very small cell sizes. Grid-based decomposition also re-
quires accurate localization and mapping in order to be able to distinguish
between adjacent grid cells.

2.2.2 Morse-based cellular decomposition

Acar et al. (2002) introduced the term Morse decompositions as a class of
exact cellular decomposition whose cells have a simple structure that can
be readily covered. In Morse-based cellular decomposition, the workspace
is partitioned into non-overlapping cells that, together, exactly cover the
workspace. Thus, exact cellular decomposition. The cells themselves are
created based on critical points of Morse functions. By choosing different
functions, different cell shapes are obtained. These cells are not uniform in
size or shape as in grid-based partitioning, but rather shaped such that each
cell itself can be covered by a simple motion. An example of a simple mo-
tion is the boustrophedon motion, i.e. a simple back-and-forth lawnmower
pattern. Complete coverage is then achieved by covering each individual cell
with a simple motion.

The chosen Morse function defines what Acar terms a slice function, and
this slice is swept through the target space. When the sweep line encounters
an obstacle with a surface normal perpendicular to the sweep line, a critical
point is found. A vertical sweep line results in a boustrophedon decomposi-
tion (Choset et al., 2000). Figure 2.5a shows the online detection of a critical
point and thus the edge of a cell. Figure 2.5b shows a complete exact cell
decomposition of a workspace.

The CCPP method by Acar and Choset (2002) is an example of a method
that uses Morse-based cellular decomposition. This is an online method that,
upon the detection of critical points while moving through the workspace,
creates and modifies cells. Acar et al. (2006) takes this approach one step
further by combining Morse-based cellular decomposition with generalized
Voronoi diagrams. The Voronoi diagrams are used for representing narrow
or cluttered spaces, while Morse-based cellular decomposition is used for
open spaces. This allows for more efficient coverage for certain types of
robots and applications.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

Sweep direction

Cell

C

d; (x)

Sweep line Critical Points

(a) A critical point detected by a robot (b) Cell decomposition of a workspace
moving along the sweep line (Galceran (Acar et al., 2006).
and Carreras, 2013b).

Figure 2.5: Morse-based cellular decomposition with a vertical sweep line.

2.3 Relevant methods for CCPP

There are some works in the literature that address the problem of CCPP for
seabed coverage. Galceran and Carreras (2013a) is an offline CCPP method
for AUVs that takes a bathymetric map as input and generates complete
coverage paths for in-detail inspections of the ocean floor. Williams (2010)
detects underwater mines with an AUV by covering an area by parallel tracks
with varying track-spacing. Another method by Paull et al. (2013) considers
online CCPP for mine countermeasures with AUVs. These methods all
operate on AUVs, and their main focus is on effective mapping of the seabed.
However, online obstacle avoidance is not considered in any of them.

Galceran and Carreras (2012) proposed an efficient offline method for
ASVs and AUVs that minimizes the amount of coverage overlap. Given
a prior depth map, the method starts by segmenting the target area into
regions of similar depth. Each of these regions are then handled as a separate
coverage problem and, assuming no obstacles in the region, covered with
simple parallel back-and-forth laps. Since the spacing between each lap is
constrained by the shallowest point on the surface, the similar-depth regions
reduce the coverage overlap. They further reduce coverage overlapping by
choosing a sweeping direction inside each of these regions that is oriented
perpendicular to the seafloor surface gradient, thus minimizing the difference
between the shallowest and deepest point in one lap. Lastly, the inter-lap
spacing is maximized on a lap-by-lap basis where the spacing is determined
by the shallowest point on the current lap. The complete coverage paths
generated by this method is shown in Figure 2.6.

Most CCPP methods are developed for use with fixed size sensors or

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

Figure 2.6: Complete coverage paths for regions segmented by similar depth
(Galceran and Carreras, 2012).

end-effectors, such as those found in vacuum cleaners, lawnmowers or paint-
ing robots. The comprehensive survey by Galceran and Carreras (2013b)
reviews many of these, and most of them use some sort of boustrophedon
motions. Other methods, like Yang and Luo (2004) and Scibilia et al. (2012),
use a topologically organized neural network to plan the paths. While these
methods do not address the topic of seabed mapping with a variable cov-
erage range sensor, they do address the problem of obstacle avoidance in
unknown environments. One method that makes use of boustrophedon mo-
tions, is the BA* method described in Viet et al. (2013). In this method,
the operational workspace is partitioned into uniform square grid cells. The
method constructs boustrophedon motions by moving between cells in a
north-south-east-west priority. When the robot gets stuck, it uses an A*
search to backtrack to another starting point where a new boustrophedon
motion is started. The paths generated by the method is shown in Figure 2.7.

1 =1 =1 =1 fd==1 fd==1 g=1_
II'_I
_ull

Figure 2.7: Complete coverage with boustrophedon motions and backtrack-
ing with A* search (Viet et al., 2013).

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

2.4 Feasible path design

Most CCPP methods generate paths as waypoints, or as straight-line seg-
ments between waypoints. This is perfectly fine for robotic applications
where the cost of repeatedly starting, stopping and in-place turning is low,
such as lawn mowing and floor cleaning. For other applications, especially
those involving underactuated USVs, this is far less favorable due to an in-
crease in factors such as power consumption and time duration. In these
cases, it is desirable with a feasible path that takes into account the kine-
matic constraints of the robot.

Connecting points with feasible paths can be achieved in several ways,
each with its own advantages and disadvantages. The different approaches
can usually be distinguished into two main categories: combining straight
lines and arc segments, or using splines (Lekkas, 2014). The main disadvan-
tage of using straight lines and arc segments is the curvature discontinuity
which occurs between two consecutive path segments. On the other hand,
the constant curvature of these paths allows for smaller variations in the
control outputs compared to splines. Splines are smooth, but have an al-
ways varying curvature which means the control output is changing all the
time.

2.4.1 Polynomial approximation

Guo and Balakrishnan (2006) proposed an approach for polynomial approx-
imation using a rolling window of six waypoints, see Figure 2.8. A smooth
path is sequentially generated between the third and fourth waypoint. Con-
sequently, this method requires planning at least three waypoints ahead in
time. The approach generates three cubic polynomials from the first four
points, middle four points, and last four points. These three polynomials
are then used to obtain the first and second derivatives of the line-segment
between the third and fourth waypoint. These, in turn, can be used as
boundary conditions in order to obtain a fifth order polynomial which con-
nects the third and fourth waypoint. Consequently, the resulting path is
guaranteed to have continuous second-order derivatives.

2.4.2 Dubins path

Dubins path is the shortest path for a Dubins vehicle between two points
with a constraint on average curvature, and with prescribed initial and ter-
minal positions and tangents (Dubins, 1957). Dubins vehicle is defined as
a non-holonomic vehicle that is constrained to move along planar paths of
bounded curvature, and can only travel forward along the path. The gen-
erated Dubins path is composed only of circular arcs and line segments as
shown in Figure 2.9. By using a robot’s minimum turning radius in the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

Smooth curve between points 3 and 4

Figure 2.8: Polynomial approximation of a 6-point rolling window (Guo and
Balakrishnan, 2006).

generation of the Dubins path, the feasibility of the path is guaranteed.

Figure 2.9: Dubins path, courtesy of Wikipedia.

The guidance system proposed by Scibilia et al. (2012) generates feasible
paths for AUVs by using what is referred to as simple Dubins paths. By
removing the constraint on the terminal heading of a Dubins path, the path
is simplified considerably. The path can further be simplified by requiring
a minimum feasible turning radius that is smaller than half the distance
between the start and end point. The shortest path can then be described
by what is referred to as a simple Dubins path, i.e. a single turn followed by
a straight-ahead movement. A simple Dubins path is shown in Figure 2.10,
the terminal heading is determined from the path.

2.4.3 Bezier curves

Bezier curves are defined by a set of control points, but the curve itself
does not pass through these points, as shown in Figure 2.11. Bezier curves
have several interesting and useful properties for path planning (Choi et al.,
2008). For instance, together the control points define a polygon, and the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

Figure 2.10: Simple Dubins path.

Bezier curve will always be contained within the convex hull of this polygon.
Another useful property is that the first and last points on the curve are
coincident with the first and last control points. Furthermore, the tangents
of the curve at these points are also coincident with the first and last line
segments generated by subsequent control points.

Figure 2.11: Bezier curve, courtesy of Wikipedia.

Jolly et al. (2009) presented an approach to path planning for soccer
robots based on Bezier curves. In robot soccer, it is important to hit the
ball from the correct direction, making Bezier curves an appropriate choice.
While the intended application of the approach is in robot soccer, the gen-
eration of the Bezier curves in itself is applicable for other scenarios as well.
The approach is based on the selection of four control points, as shown in
Figure 2.12. The first and last control points are taken as the estimated
position of the robot and the target. The second control point is located
based on the estimated heading of the robot and a distance (d; in the figure).
Similarly, the third control point is located based on the desired final head-
ing and a distance (dz in the figure). The distances to the second and third
control points are determined through an iterative optimization algorithm
which takes into account the acceleration limits of the robot.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

- X
QALB) R(A,B)

a, v(u)
,’/ 4 \\

Ball \
position \oS (A3, By)

-
)i
Direction \” 0,
of hit

P (Ag, By)

Robot position s C
and orientation Vg

Figure 2.12: A Bezier curve ensuring that the robot hits the ball from the
right direction in robot soccer (Jolly et al., 2009).

Chapter 3

Problem formulation

This thesis considers the problem of autonomous USV maneuvering for com-
plete bathymetric coverage of the seabed. The USV workspace is assumed
to be a bounded rectangular 2D region, with possibly the presence of ob-
stacles. The maneuvering system generates continuous steering control that
allows the USV to efficiently cover the seabed with its observation sensor,
i.e. reducing undesired overlapping sensor coverage. Obstacles within the
target region are avoided. The system operates with no prior knowledge of
the target region.

Most existing complete coverage algorithms are offline and covers the
target region using boustrophedon motions, and the spacing between the
back-and-forth laps is determined by the coverage range of the robot’s sensor
or end-effector. However, when covering the seabed while navigating on the
surface, the observation sensor’s coverage range varies depending on the
water depth. Consequently, existing complete coverage methods that are
aimed towards land-based robots such as vacuum cleaners or lawnmowers
with a constant coverage range, cannot directly be applied to USVs. There
are works in the literature that consider varying coverage range due to water
depth, for both ASVs and AUVs operating at constant depth. However,
online approaches that also consider obstacles in the target region are still
left largely unexplored.

The USV is assumed to be a Dubins vehicle, i.e. a non-holonomic ve-
hicle that is constrained to move along planar paths of bounded curvature,
and can only travel forward along the path. The observation sensor is a
multibeam echosounder that covers the seabed in a swath directly beneath
the USV and perpendicular to the moving direction. The swath extends
a distance ¢, and ¢, in the port and starboard directions, respectively. A
low-cost 2D lidar is mounted on top of the USV and used to detect and
avoid obstacles on the surface. Moving obstacles can be considered as long
as they move slowly compared to the USV. The system fuses information
from lidar, IMU, and GNSS in order to maintain an always up-to-date map

18

CHAPTER 3. PROBLEM FORMULATION 19

of obstacles in the surrounding environment. The map is partitioned into a
grid, which is used by a path planning method to plan collision-free paths
that ensure complete coverage of the seabed. These generated paths con-
sist of a series of waypoints, and are further processed in order to generate
feasible trajectories using simple Dubins paths. These trajectories take into
account the turning radius, speed, and maximum stopping distance of the
USV. Lastly, these trajectories are fed into a path following controller that
generates continuous course and speed control that are passed to the Otter
USV’s onboard systems. A topology drawing of the control system and its
information flow is shown in Figure 3.1. Maritime Robotics’ already existing
systems, which need to be interfaced with, are marked in the figure.

Target region Existing systems

Feasible
path
generation

LOS
guidance S Otter USV
law system

‘Waypoints Smooth path

SLAM and Lidar +
sensor MU+ B
fusion GNSS

Coverage range
MBES E=

Figure 3.1: The control system and its information flow.

Pose and map of surroundings

Partitioned workspace [o]Jelal=Ci (o124

Chapter 4

Sensor fusion and SLAM

SLAM consists of simultaneous estimation of the state of a robot equipped
with onboard sensors, and the construction of a map of the environment
that the sensors are perceiving (Durrant-Whyte and Bailey, 2006). The
robot state is often described by its pose (position and orientation), al-
though other quantities may be included. The map represents aspects of
interest (e.g. obstacles) describing the robot’s surrounding environment.
Both of these things, the robot pose and a map of the surroundings, are
critical components for tasks such as path planning. Consequently, SLAM
is often a key component in autonomous operations where a prior map of
the environment is not available.

SLAM systems require some sort of mapping data about their surround-
ing environment. This data can come from sensors such as lidar (Hess et al.,
2016), sonar (Norgren and Skjetne, 2018), or camera (Mur-Artal and Tardés,
2017) (often called visual SLAM or VSLAM). In order to increase reliability
and robustness, most SLAM systems also support input from other types
of sensors such as IMU, different types of odometry (e.g. wheel odometry
for wheeled robots), altimeter for aerial vehicles, or GNSS (Cartographer
Authors, 2019a; Kohlbrecher et al., 2011). As a result, SLAM is a valuable
tool for sensor fusion.

In this chapter, the sensors of the Otter USV are presented together with
the drivers required to get the sensor data into ROS. The chapter also takes
a closer look how the data from the sensors are used, and why the sensors
are needed. Finally, the SLAM system Cartographer (Hess et al., 2016) is
set up for real-time 2D SLAM in ROS.

4.1 Sensors and drivers

4.1.1 Lidar

In this thesis, mapping of the surrounding environment is done with the
RPLIDAR A3 (Slamtec, 2019), a low-cost 2D lidar. The lidar states a range

20

CHAPTER 4. SENSOR FUSION AND SLAM 21

of 25 m, 360-degree field of view, 16000 samples per second, and outdoor
availability. A ready-to-use ROS driver, the rplidar_ros package (ROS
contributors, 2019b), provides the system with sensor_msgs/LaserScan
messages. This is a data type which holds an array of ranges and their
corresponding angles for one complete revolution of the lidar. The lidar and
a visualization of a laser scan is shown in Figure 4.1.

(a) (b)

Figure 4.1: (a) The RPLIDAR A3. (b) A lidar scan of a small room. The
red, green and blue axis is the position of the lidar

It is possible to autonomously navigate a USV with only a lidar and
SLAM, see for instance Ueland (2016). However, this requires a feature-rich
environment in which it is always possible to find and recognize distinct
features between subsequent lidar scans. Consequently, autonomous navi-
gation with only a lidar is not feasible for situations where distances to the
nearest obstacles often exceeds the range of the lidar. Additional sensors are
also required in scenarios where the lidar is not able to see any difference in
the environment between two consecutive poses, e.g. in a long corridor or
while following a long uniform wall or edge. Since scenarios such as these
are likely to be common in a typical application of the complete system,
additional sensors are required.

4.1.2 IMU

Supplementing the lidar with an IMU increases the robustness and reliabil-
ity of the sensing. This is because the IMU provides accurate orientation,
rotational velocity, and linear acceleration, which can be used as initial esti-
mates for the USV pose when comparing subsequent lidar scans in SLAM.
This is especially useful for a USV operating on the water surface, since roll
and pitch motions are otherwise hard to compensate for. The implemented
system uses an AHRS of the type Xsens MTi (Xsens, 2019), see Figure 4.2.
The Xsens MTi comes with a ROS driver, the xsens_driver package (ROS
contributors, 2019c). This driver provides ROS with sensor_msgs/Imu mes-
sages, which contain orientation, angular velocity, and linear acceleration.
The Xsens, being an AHRS, reports orientation relative to magnetic north,

CHAPTER 4. SENSOR FUSION AND SLAM 22

and the magnetic declination of the operating area can be looked up (e.g.
at NOAA (2019)). Having the orientation relative to true north makes it
possible to later combine the IMU data with for example GNSS data.

Figure 4.2: The Xsens MTi AHRS, courtesy of Xsens.

4.1.3 GNSS

The combination of lidar and IMU works very well in many situations.
SLAM systems usually have no problem localizing and generating maps
when there are many objects within the range of the lidar. However, con-
sider scenarios such as in Figure 4.3 where the lidar detects nothing at all or
too little for accurate localization. Based only on the detections generated
from Figure 4.3b, the USV can be at any point along the wall. In situations
such as these, the SLAM system is mostly relying on IMU data for position-
ing, and position estimates based on integration of linear accelerations from
an IMU will quickly drift. For the intended purposes of the implemented
system, scenarios such as these are to be expected. Thus, another form of
positioning is needed, and in this case GNSS is used.

(a) (b)

Figure 4.3: (a) No obstacles are within the lidar range. (b) The section
of the wall within the lidar range does not provide enough information for
localization.

The GNSS receiver on the USV reports its position as NMEA 0183 GGA
messages. NMEA 0183 is a data specification standard for communica-

CHAPTER 4. SENSOR FUSION AND SLAM 23

tion between marine electronics, defined by the National Marine Electronics
Association (Raymond, 2019). The GGA messages contain, most impor-
tantly, the latitude and longitude of the GNSS receiver. These messages
are parsed with the nmea_navsat_driver ROS driver (ROS contributors,
2019a), which has been slightly modified to allow incoming NMEA messages
over TCP. The driver provides the system with sensor_msgs/NavSatFix
messages, which contain the latitude and longitude.

4.1.4 MBES

The multibeam echosounder measures the depth in a fan shape beneath
the USV. This data is not necessary for collision-free maneuvering on the
surface, and is therefore not included in SLAM. There are SLAM systems
that use MBES data (e.g. Norgren and Skjetne (2018)), so the MBES could
potentially be included in SLAM in order to increase the accuracy. In this
thesis, however, the MBES is only used for keeping track of the covered area
and adapting the spacing between laps in the boustrophedon motions CCPP
method.

To use the MBES, the coverage range must be calculated. Let a detection
point be described by the angle « relative to a line straight down from the
USV, and let the reported distance for that angle be f(«), see Figure 4.4.
Finding the detection point with the maximum angle a4, and minimum
angle i, it is then possible to find the coverage range in the port and
starboard direction with

cp = f(min) sin(aumin) (4.1)

Cs = f(amax) Sin(amam) (42)

where ¢, and ¢ are the coverage ranges in port and starboard directions.

Figure 4.4: Geometry of detection points of the MBES.

CHAPTER 4. SENSOR FUSION AND SLAM 24

4.2 SLAM with Cartographer

Cartographer provides real-time SLAM in 2D and 3D across multiple plat-
forms and sensor configurations (Cartographer Authors, 2019a). In this
thesis, the ROS integration of Cartographer (Cartographer Authors, 2019b)
is applied for 2D operation. By using the 2D version of Cartographer it is
assumed that the floor (water surface) is flat, which is an okay assumption
with a 2D lidar in sheltered waters. This only causes trouble if the heave
motion of the USV causes the lidar to detect different things at different
heights. The 2D version is chosen mainly because it is simpler to work with,
as it requires fewer parameters to be tuned. Furthermore, the additional
benefits of a 3D map are not required for the application in this thesis.
Out of the box, Cartographer accepts sensor_msgs/LaserScan and sensor_

msgs/Imu messages from the lidar and IMU. However, the 2D version does
not readily accept sensor_msgs/NavSatFix messages from the GNSS re-
ceiver. To get around this, it is possible to fuse data from the IMU and
GNSS with an extended Kalman filter (EKF) in order to generate pose
estimates as nav_msgs/Odometry messages. These messages can in turn
be provided to Cartographer. The robot_localization package in ROS
(Moore and Stouch, 2014) offers a collection of state estimation implemen-
tations for incorporation of GNSS data which has been used in this thesis.
The information flow described in this chapter is illustrated in Figure 4.5.

Map

sensor_msgs/LaserScan
Lidar

Cartographer SLAM Pose

sensor_msgs/dmu ‘

IMU

nav_msgs/Odometry

EKF

sensor_m N tFix
GNSS _M5g

Coverage range

MBES

Figure 4.5: Information flow in sensor fusion and SLAM.

Tuning Cartographer is difficult, as it is a very complex system where
many of the parameters affect each other. A tuning methodology is provided
by the authors at Cartographer Authors (2019b). Tuning includes, among
many other things, to set parameters for the scan matcher, the size and
resolution of the submaps, and how much to trust odometry. For instance,
since the provided odometry is a fusing of accurate IMU and GNSS data,
it should be trusted with a high weight. The exact values to set is often
a matter of experimenting and seeing what yields the best results. The
parameters used in the experiments are provided in Appendix A.

Chapter 5

Map processing and
workspace partitioning

The sensor fusion and SLAM subsystem described in Chapter 4, provides
the rest of system with a map of the surrounding environment and the
pose of the USV. The SLAM map in its raw form, however, is often not a
suitable workspace representation for many CCPP methods. The strategy
used for representing the operational workspace largely determines what
kind of path planning methods that can be used. That is why workspace
partitioning is such an important part of CCPP. This chapter describes two
different partitioning methods, each of which will be used in a different
CCPP method. However, the partitioning methods do not operate on the
raw SLAM map either, some map processing is applied first.

5.1 Map processing and rolling window

Information about the surrounding environment is only gathered by the
lidar, meaning the only new information in the SLAM map is contained
within the lidar range. There is one exception to this, and that is corrections
to the SLAM map caused by loop closures. However, these corrections are
often small and are not relevant for the generation of new waypoints in the
immediate vicinity of the USV. Therefore, a huge increase in computational
efficiency can be gained by only considering changes to the map within the
lidar range. In order to do this, a rolling window is applied. The rolling
window is a 2D square occupancy grid which inscribes the circle that is
the lidar’s coverage around the USV, and is always centered at the USV’s
position. The rolling window is shown in Figure 5.1.

In the occupancy grid, each cell has an associated probability [0, 100]
that determines whether it is an obstacle or free space. Unknown is —1.

25

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING26

The following categorization is applied in this thesis

unknown, if cell value = —1
Cell status = ¢ obstacle, if cell value > 50 (5.1)
free, otherwise.

In order to accurately represent the environment with an occupancy grid,
the resolution of the grid must be high. However, a higher resolution also
increases requirements to processing power. Thus, 20 cm per cell is chosen
as the resolution, which is the same as the resolution of the SLAM map.

Figure 5.1: Rolling window occupancy grid around the USV. The red dots
are lidar detections, gray cells are free space, black cells are inflated obsta-
cles, and the rest is unknown.

The USV is in collision with an obstacle whenever some part of the USV
is located at a cell that is an obstacle. Thus, no collision can occur when
the closest obstacle is located more than a distance 7,4, away, where 7,40
is the radius of a circle circumscribing the USV’s footprint. To account for
the USV’s footprint, obstacles must therefore be inflated with an inflation
radius 7; > Tumae. Increasing the inflation radius further creates a buffer
safety zone around obstacles. Obstacle inflation means that any cell (z,y)
is considered an obstacle if the distance to any obstacle (2 ops, Yobs) is shorter
than the inflation radius. In the implemented system, the inflation radius
is chosen as r; = 5.0m while the maximum footprint is 7,4, = 1.0m for
the Otter USV. This ensures that the USV does not travel to close to other
boats, and allows for operator intervention in case something goes wrong.
The obstacles of Figure 5.1 are inflated.

The rolling window is implemented with the costmap_2d package from
the ROS navigation stack (Marder-Eppstein et al., 2010). The rolling win-

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING27

dow is published as a nav_msgs/0OccupancyGrid message in ROS at frequent
intervals.

5.2 Circular cell partitioning

Guo and Qu (2004) considered the problem of covering a rectangle using a
minimum number of circles. Their motivation for partitioning the workspace
into circles comes from the fact that the coverage range of their robot is
represented by a circle. The coverage of the MBES sensor used in this
thesis, however, is a swath on the seabed perpendicular to the USV’s moving
direction. Nevertheless, the use of circles to represent the covered area is
still a valid approach. Consider, without loss of generality, that the USV
travels through the center of each circle with a non-negative speed. With the
added assumption that the radius of the circles is smaller than the MBES
sensor’s coverage in both port and starboard direction. This ensures that
by reaching the circle’s center, at least half of the circle is covered. When
leaving the circle, the remaining half is guaranteed to be covered.

An important thing to note, is that the coverage range of the MBES
varies depending on the water depth. To ensure complete coverage, it is
therefore necessary to use a cell size determined by the shallowest point in
the target region. This will result in undesired overlapping coverage if the
coverage range varies a lot.

Consider the rectangular area W, where x,, and y,, are the lengths of
the rectangular edges along the x-axis and y-axis, respectively. Circles of
radius 7. are placed in strips parallel to the y-axis, such that the distance
between the centers of any two adjacent circles is v/3r.. m columns of these
strips are placed such that the distance between any two adjacent strips is
%7“6. The layout of the circles can be seen in Figure 5.2.

Figure 5.2: Covering a rectangle using a minimum number of disks.

In a global cartesian coordinate system with the origin in the bottom
left corner, m columns of these strips are placed, each containing n; circles.

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING?28

The number of columns m is determined by

wiN

W

Lgwa +1, if 2= mod 1<
27e 27e

8

w mod 1 > %,
27e

W

Lg“” +2, if

2

and the number of circles n; in a column is determined by

Yuw i _Yw 1

L/gch + 1, if Tar mod 1 < 5

ny = (53)
L}/gJ +1+ (I mod 2), if 2= mod 1> 1.

|| is the floor function and mod is the modulo function. The center co-
ordinates of a circle located at column 1 <[< m and row 1 < k < n; are
given by

. (31— 1) re, (k= 1)V3r.], iflmod2=1
e’y ye] = (5.4)
[(%l_l) Te, (]‘C—%) \/37“6] , flmod2=0

Equations (5.2), (5.3), and (5.4) have small corrections to those presented
by Guo and Qu (2004). However, the proof of minimum number of circles
still remains valid with these corrections (Scibilia et al., 2012).

A flag f(r,c) is defined for a cell at row 7 and column ¢ in the grid to
indicate its status as either unknown, free, or obstacle

0, if it is unknown
f(r,e) =<1, ifitis free (5.5)

2, if it is obstacle.

The status of the cells are updated based on data from the rolling window
in Section 5.1. The circles have a radius r. which is a lot bigger than the
size of the cells in the rolling window. Thus, a circle is considered blocked
if any of the cells from the rolling window representing the same area are
blocked. If all cells are free, the circle is considered free. Else, the circle
is considered unknown. In addition, each circle also has a flag setting it as
either covered or uncovered depending on if the USV has traveled through
the center of the circle. Figure 5.3 shows how the processed SLAM map is
partitioned.

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING29

(a) (b)

Figure 5.3: Circular cell partitioning. (a) Processed SLAM map. The red
dots are lidar detections, gray cells are free space, black cells are inflated
obstacles and the rest is unknown. (b) The processed map partitioned into
circular cells. Red circles represent obstacles, green circles represent cov-
ered free space, blue circles represent uncovered free space, and the rest is
unknown.

5.3 Square cell partitioning

A grid-based map representation is proposed in which the entire workspace
is partitioned into square cells of equal size e..;. The grid map works partly
as an occupancy grid, where each cell contains occupancy information to
indicate its status as either free space, obstacle, or unknown

0, if it is unknown
flrye) =<1, ifitis free (5.6)
2, if it is obstacle

where f(r,c) is a flag that takes the row r and column ¢ as arguments, and
returns the status of the cell. In addition, each cell has a flag indicating if
the cell has been covered. As the USV moves around in the workspace, data
from the rolling window of Section 5.1 is used to update the status of the
cells. The size of the cells in the grid map is larger than the size of the cells in
the rolling window. This means a cell in the grid map is only considered free
if all of the cells in the rolling window representing the same area are also
free. If some of them are obstacles, the cell is set as an obstacle. Otherwise,
the status is unknown. Figure 5.4 shows how the processed SLAM map is
partitioned.

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING30

(a) (b)

Figure 5.4: Square cell partitioning. (a) Processed SLAM map. The red dots
are lidar detections, gray cells are free space, black cells are inflated obstacles
and the rest is unknown. (b) The processed map partitioned into square
cells. Red squares represent obstacles, green squares represent covered free
space, blue squares represent uncovered free space, and the rest is unknown.

Consider the rectangular area W, where x,, and y,, are the lengths of
the rectangular edges along the x-axis and y-axis, respectively. The number
of columns m is determined by

m = [Tw 1 (5.7)

€cell

and the number of rows n is

n= [y“’ w (5.8)

€cell

The center coordinates of a cell located at column 1 < [< m and row
1 < k <n are given by

[iﬁ]jl,yfl} = [(l - %) Ecell (k - %) eceu] : (5.9)

Consequently, the row and column of a cell containing the point (z,y) are

given by
[l,k]szJ—Fl,{y J+1]. (5.10)
€Ecell €Ecell

5.3.1 Representing the varying coverage range of the MBES

The coverage of the MBES sensor is a swath of variable length on the seabed
perpendicular to the USV’s moving direction. Let the (z,y) and v be the

CHAPTER 5. MAP PROCESSING AND WORKSPACE PARTITIONING31

position and heading of the USV in the grid map (z-axis downward), and let
cs and ¢, be the swath length in starboard and port direction, respectively.
The cells covered by the swath can then be determined. First, a line segment
is constructed between the endpoints of the swath

[:p—i—cs‘cos(w—kg),y+cs~sin(¢+g)] (5.11)
and - -
[:c—i—cp-cos(@b — 5),y+cp-sin(1/1— 5)} . (5.12)

A modified version of the Bresenham’s line algorithm (Paul E. Black, 2019)
is then used to find the cells that are covered by this line segment. The
modified algorithm by Eugen Dedu (2001) finds the supercover line, i.e. all
the points intersected by a line between two endpoints. This is an algo-
rithm often used in computer graphics for selecting which pixels to set when
drawing a line. In this case, it is instead used to select which cells to set as
covered. An illustration is shown in Figure 5.5.

Figure 5.5: The square cell partition uses the coverage range of the MBES
to determine which cells are set as covered.

The method of representing the varying coverage range described above,
is an approximate method. A small cell size e results in a more accurate
representation of the covered area. On the other hand, a larger cell size
reduces the total amount of cells and therefore also the requirements to
memory and processing power. The implemented system uses a cell size
Ceell = 1.0 m.

Chapter 6

Complete coverage path
planning

Complete coverage path planning is the task of determining a collision-free
feasible path such that a sensor or end-effector passes over all points of an
area of interest. Chapter 4 explained how information gathered from the
sensors are fused with SLAM in order to give accurate localization of the
USV and a 2D mapping of its surroundings. In Chapter 5, this information
was used with partitioning methods in order to create a workspace represen-
tation more useful for path planning. In this chapter, two CCPP methods
are presented which makes use of these partitions. Section 6.1 presents a
method that uses a topologically organized neural network to determine the
path, and Section 6.2 describes a method based on boustrophedon motions
and the A* search algorithm.

6.1 Bio-inspired neural network

This method uses the circular cell partitioning described in Section 5.2.

6.1.1 Neural network model

In Yang and Luo (2004), a neural network architecture is developed for
CCPP where the dynamic neural activity landscape represents the dynami-
cally varying environment of a robot. This neural network is designed such
that uncovered areas stay at the peaks of the neural network, while areas
with obstacles stay in the valleys. Moreover, uncovered areas globally at-
tract through neural activity propagation, while areas with obstacles only
locally push away.

For each circular cell in the workspace partition, associate a neuron x; €
R. Each neuron z; then has a position p; € R? which is at the center of the
associated cell. Given the position p;, the set of neighboring neurons can

32

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 33

then be defined as

neig,, (pi) = {pj| Ipi = pjl < ro} (6.1)

where 9 > 0 is a constant determining the size of the neighborhood, and
|pi — pj| is the Euclidean distance between two neurons with positions p;
and p;. The 2D architecture of the network can be seen in Figure 6.1.

v o v w @ w
X LXeX LY
- e l.l.

o

Figure 6.1: Architecture of the 2D neural network (Luo and Yang, 2008).

The dynamic activity of the ith neuron can be characterized by (Yang
and Luo, 2004)

i = — A + (B - m3) (w + 3wy W) ~ (D@L (62)

where A, B, and D are non-negative constants representing the passive
decay rate and the upper and lower bounds of the neuron, i.e. z; € [-D, B].
I; is the external input to the ith neuron which can be defined as (Scibilia
et al., 2012)
N E, if it is an unvisited area
I; = ¢ —FE, ifitis an obstacle area (6.3)

0, otherwise

where 0 <); < 1 are scaling factors that can be used to prioritize certain
areas, and FE is a constant such that \;E > B. The functions [a]" and [a]~
are defined as [a]" = max{a,0} and [a]- = min{—a,0}. k is the number
of neighboring neurons, and z; is a neuron in the neighborhood of z;, i.e.
p; € neig, (p;i). wi; is the connection weight between the ith and jth neuron

defined as
7

_ (6.4)
’pz‘ - Pj|

’U)Z'j =

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 34

where 1 > 0 is a tuning constant.
The neural connections w;; are defined in the design stage. Therefore,
this neural network does not require any learning procedures. Neural con-

nections only exist in the excitatory input ([IZ‘]Jr + Z?:l (i [wﬂ*) in (6.2).
This means only positive neural activity can propagate. Consequently, un-
covered areas globally attract, while obstacles only locally push away.

6.1.2 Using the neural network for path planning

Positive neural activity represents free uncovered areas. Deciding where to
go next can then simply be done by going towards the most positive neuron
at all times. Given the current position p; and heading 0, Scibilia et al.
(2012) suggest choosing the next position p,, as

F ‘
Pn < T, = argmax {(1 - (11(9(],93)> Azj+ (1—)\)xj} (6.5)
(Pq) Q

zj: ijneigTO

where 0 < A <1 is a tuning constant which can be used to prioritize areas
that do not require a change of direction. The function diff(f,, ;) measures
the smallest angle difference between 0, and 0;. 6; is the angle of the USV
when it reaches p;, and should be determined by the feasible path generation
strategy employed. In this thesis, that means 6; is the angle at the end of a
simple Dubins path constructed from p, and 6, to p,. The computation of
this angle is described in Section 7.1.

Complete coverage is then achieved by following the steps summarized in
Algorithm 1. The steps are slightly modified from the algorithm presented
in Scibilia et al. (2012) in order to incorporate the changes of Luo and Yang
(2008) and make it work for completely unknown environments.

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 35

Algorithm 1: CCPP with bio-inspired neural network
Input: Pose of USV, and rolling window map

1. Partition the workspace into circular cells as described in Sec-
tion 5.2. Set the status of each cell to unknown, and mark all
cells as uncovered.

2. Associate a neuron to each cell in the partition, and set all
neural activities to zero.

3. Update the status of cells nearby the USV with information
from the rolling window of Section 5.1.

4. If no reachable free cells remain, terminate the algorithm. Com-
plete coverage has then been achieved. Else, continue with the
substeps.

(a) Update the status of cells nearby the USV with information
from the rolling window of Section 5.1.

(b) Evolve the neural network as in (6.2).

(¢) Find next position as in (6.5). If the found next position
is the same as the current position, stay still.

(d) Mark the cell corresponding to the current position as cov-
ered.

5. Go to step 4.

6.2 Boustrophedon motions

The proposed method solves the online complete coverage task in unknown
workspaces using boustrophedon motions (i.e. a back-and-forth lawnmower
pattern) and the A* search algorithm. The method works by first perform-
ing a boustrophedon motion in an uncovered region until a critical point is
reached, i.e. a point where all nearby points are already covered or blocked
by obstacles. To find a new uncovered region to cover, the method intelli-
gently detects backtracking points based on accumulated knowledge. The
best backtracking point is chosen as the starting point of the next boustro-
phedon motion, and an A* search is performed in order to reach the next
starting point with the shortest collision-free path possible. When no back-
tracking points are detected, complete coverage is achieved. The usage of
backtracking points is based on the work by Viet et al. (2013), and minimizes
the required number of boustrophedon motions before complete coverage is
achieved. This method uses the square cell partitioning described in Section
5.3.

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 36

6.2.1 Constructing the boustrophedon motion

Collision-free motion is achieved by moving from one free cell to a neigh-
boring free cell in the partition. When performing a boustrophedon motion,
the algorithm’s motion in the grid is defined by its moving direction (north
or south) and its sweeping direction (east or west). The algorithm will start
by moving straight forward in the moving direction until the next position
is either blocked, or everything inside the coverage range is already covered.
The boustrophedon motion is illustrated in Figure 6.2.

When the algorithm can no longer move straight forward it will try
to perform wall following. If there are uncovered free cells in the sweeping
direction, the algorithm will perform wall following in the sweeping direction.
If no uncovered free cells are found, the sweeping direction is switched: from
east to west or from west to east. Wall following is then attempted again
in the new sweeping direction. If the algorithm still cannot find uncovered
free cells, a critical point has been reached and the algorithm backtracks if
possible.

If the algorithm decides to wall follow, it will move in the sweeping direc-
tion twice the number of cells covered by the shortest coverage range on the
current lap. For example, if the algorithm detects a wall after moving north
with a coverage range that varies between 3 and 4 cells, the algorithm will
wall follow 6 cells in the sweeping direction. This approach to variable inter-
lap spacing is inspired by Galceran and Carreras (2012), and minimizes the
overlapping sensor coverage. When the desired number of cells is reached,
or the algorithm is blocked from moving further, wall following is finished.
The moving direction is then switched: from north to south or from south
to north, and the algorithm starts on a new lap. The boustrophedon motion
is summarized in Algorithm 2.

—_
Sweeping direction

Moving|direction

Coverage range
[y S USV position

Lap3

Figure 6.2: Boustrophedon motion with a symmetric constant coverage
range. White cells are free and black cells are obstacles.

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 37

Algorithm 2: Constructing a boustrophedon motion
Input: Pose of USV, coverage range, partitioned workspace, and
rolling window map

1. Check one step along the moving direction.

(a) If the cell is free and the current coverage range ensures
that new cells are covered by moving to it: move one cell
along this direction. Then go to step 2. Else, continue.

(b) If the cell is blocked and uncovered free cells are available in
the sweeping direction: wall follow one cell in the sweeping
direction. Then go to step 2. Else, continue.

(c) If the cell is blocked and uncovered free cells are available
opposite of the sweeping direction: switch sweeping direc-
tion and wall follow one cell in the new sweeping direction.
Then go to step 2. Else, continue.

(d) A critical point has been reached. Terminate the algo-
rithm.

2. Mark cells as covered based on the coverage range and method
of Section 5.3.1.

3. Update the status of cells nearby the USV with information
from the rolling window of Section 5.1. Go to step 1.

6.2.2 Determining the backtracking point

Complete coverage most often requires multiple boustrophedon motions.
After finishing a motion, a backtracking point needs to be determined as the
starting point of the next boustrophedon motion. This can generally be at
any free uncovered cell in the grid map. However, choosing the next starting
point wisely can reduce the amount of boustrophedon motions required to
achieve complete coverage. Viet et al. (2013) therefore suggest a strategy
of choosing candidate backtracking points where the surrounding 8 cells are
considered. Let s; with ¢ = 1,2, ...8 be the surrounding cells as in Figure 6.3.
A backtracking point is then detected if p(s) > 1 where

w(s) = b(s1,s8) + b(s1,s2) + b(ss3, s2) + b(s3, s4) + b(ss, s6)
+ b(ss5, 84) + b(s7, s6) + b(s7,s8) (6.6)

and

(6.7)

B) 1, if (s; is free) and (s; is blocked)
i, Sj) =
! 0, otherwise.

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 38

Note that (6.6) is modified to also include ss, since the proposed method
does not use the same north-south-east-west priority as Viet et al. (2013).
Among these candidates, the backtracking point is chosen as the candidate
with the shortest distance to the current critical point. In this thesis, the
backtracking point with the shortest path using an A* search is chosen. If
no backtracking points are found, complete coverage is achieved and the
method is finished.

(e)

Figure 6.3: Conditions for backtracking points (Viet et al., 2013). White
tiles are free, black tiles are either covered or obstacle, gray tiles can be
anything.

The approach of Viet et al. (2013) assumes that one cell represents the
coverage of a vacuum cleaner. However, the proposed method of this the-
sis assumes a varying coverage range sensor, and the proposed square cell
partitioning allows multiple cells to be marked as covered. Thus, the back-
tracking point should be adjusted so that the distance between the new lap
and the closest lap is twice the shortest coverage range of the latter.

6.2.3 Planning a path to the backtracking point

Planning a path from the critical point to the backtracking point can be
done with a shortest path searching algorithm. The A* algorithm is a pop-
ular choice in robotic applications, and a description of the algorithm can
easily be found online (Red Blob Games, 2019). By performing the search
exclusively over free and already covered cells, the resulting path is guaran-
teed free of static obstacles. If it is discovered that a moving obstacle has
obstructed the backtracking path, a new backtracking point is determined
and the path is replanned from the current position.

A* traverses the partitioned grid map one cell at a time. The low reso-
lution of the cells will therefore lead to a path that is longer and has more
turns than necessary. Inspired by Viet et al. (2013), a smoothing of the
path is done by removing the cells between any two cells with line-of-sight.
Determining line-of-sight between two cells can be done by using the super-

CHAPTER 6. COMPLETE COVERAGE PATH PLANNING 39

cover line algorithm introduced for the square cell partitioning in Section
5.3. Line-of-sight is then achieved if none of the tiles intersected by the
supercover line is an obstacle. The algorithm for smoothing the A* path is
described in Viet et al. (2013). Figure 6.4 shows the difference between a
smoothed and non-smooth backtracking path. The resulting online CCPP
algorithm is summarized in Algorithm 3.

(b)

Figure 6.4: A* smoothing. White cells are free and black cells are obstacles.
(a) A non-smooth A* backtracking path. (b) The backtracking path is
smoothed by removing cells between other cells with line-of-sight.

s N

Algorithm 3: CCPP with boustrophedon motions
Input: Pose of USV, and rolling window map

1. Partition the workspace into square cells as described in Section
5.3. Set the status of each cell to unknown, and mark all cells
as uncovered.

2. Begin to cover the workspace with a boustrophedon motion as
described in Algorithm 2. The boustrophedon motion is finished
when the algorithm arrives at a critical point.

3. With the accumulated knowledge from step 2, detect backtrack-
ing points according to (6.6) and (6.7). If no backtracking points
are found, complete coverage is achieved. Terminate the algo-
rithm. Else, continue with the next step.

4. Determine the best backtracking point by finding the point re-
quiring the shortest A* path. Apply line-of-sight smoothing to
the shortest path.

5. Follow the smoothed A* path to the next starting point. Replan
if it becomes blocked. Go to step 1.

Chapter 7

Guidance and path
generation

The CCPP methods described in the previous chapter generate only one
waypoint ahead in time. The next waypoint is determined only after the
USV has reached its current waypoint. This motivates an online feasible
path generation strategy. Upon each new waypoint, a feasible path is gen-
erated from the current USV pose to the next waypoint. A distinction is
made here between path planning, as the generation of waypoints, and path
generation, as the generation of a smooth curve between two points. To
ensure that this curve is feasible, the USV’s turning radius and speed must
be taken into account. Given the curve from the path generation strategy,
a guidance law generates continuous course and speed control that is passed
on to the USV’s onboard system.

7.1 Feasible path generation using straight lines
and arc segments

A simple Dubins path consists of an arc segment followed by a straight line.
This path is the shortest path that can be generated from a configuration
(position and heading) to a position (Scibilia et al., 2012). Given the initial
position and heading p, = (z4,y,) and 6, and the final position p,, the aim is
to find the shortest path from p, to p,, with initial heading ;. Furthermore,
the turning radius p of the arc segment must be greater than the minimum
feasible turning radius of the USV, i.e. p > pmin, where ppy, is the turning
radius at the minimum required operating speed of the USV. The turning
radius p is a design parameter.

40

CHAPTER 7. GUIDANCE AND PATH GENERATION 41

7.1.1 Turning direction

Consider the straight line defined by the initial position and heading. The
distance from p, to this line is given by

eng = —[zn — zq]sin(0) + [yn — yg] cos(y). (7.1)

The turning direction can be determined checking the sign of e,

1 if >0
g={> o~ (7.2)
—1, otherwise.

The value 6 = 1 corresponds to a left turn, and 6 = —1 corresponds to a
right turn (z-axis assumed positive upward).

7.1.2 Center of turning circle

The arc segment is a segment of a turning circle which is located on a line
perpendicular to the heading line and that goes through p,. The coordinates
for the center of the turning circle are given by

(7.3)

(xq +sin(0y)p, ys — cos(by)p), if it is a right turn
Dc = ($C, yc) =

(xq —sin(By)p, yq + cos(by)p), if it is a left turn,

and the circle has a radius p. In order for a Simple Dubins path to be
constructed, the turning radius p must be small enough such that the final
position p,, is not located inside the turning circle. Ensuring that the turning
radius p is smaller than half the distance between the start and end point,
i.e. Pmin < M, is a sufficient condition that can be imposed by properly
choosing the distance between waypoints in the CCPP methods.

7.1.3 Tangent point

The arc segment starts in p, and follows the turning circle in the turning
direction. The end point of the arc segment, however, is still unknown. This
is determined by one of the tangent points generated by the tangent lines
from the final position p, to the circle. The two lines tangent to the turning
circle can be found by geometrical considerations, for instance by solving
the second order trigonometric equation (Scibilia et al., 2012)

((ze — x5) sin(B) + (yn — ye) cos B)? = p?, (7.4)

where 3 is the angle of the tangent line. From this, two tangent points are
obtained, and the first one encountered along the direction of rotation is
used as the endpoint of the arc segment, denoted p;. The geometry of the
Simple Dubins path is shown in Figure 7.1.

CHAPTER 7. GUIDANCE AND PATH GENERATION 42

Figure 7.1: Simple Dubins path geometry.

7.1.4 Generating the path

In ROS, a path is described by a nav_msgs/Path message, which consists
of an array of poses. Now that the turning direction, turning circle and
tangent point are known, generating poses on the path is trivial. The final
heading of the path becomes

0, = atan2(y, — y;, Tn, — x1) (7.5)

where atan2 is a generalization of arctan that also determines the correct
quadrant. The resolution of the generated path in the implemented system,
i.e. the distance between consecutive poses, is determined by a user-specified
parameter. A simple Dubins path can be seen in Figure 7.2.

Figure 7.2: A generated simple Dubins path (green curve).

CHAPTER 7. GUIDANCE AND PATH GENERATION 43

7.2 Curved path line-of-sight guidance law with
time-varying lookahead distance

The guidance law will keep the USV on the path, or lead it towards the path
if the position error is nonzero. The input to the guidance law is the path
generated in Section 7.1, and the outputs are speed and course assignments.
Figure 7.3 shows the geometry of the curved path LOS guidance problem
and some of the variables involved. The method presented in this section is
based on Lekkas and Fossen (2014).

North

East

course angle

curved path

(T, LOS vector

Figure 7.3: Line-of-sight guidance geometry for curved paths (Lekkas and
Fossen, 2014).

7.2.1 Cross-track error

The cross-track error is the orthogonal distance from the USV position (z, y)
to a path-tangential reference frame defined by a point (zp,y,) and rotated
an angle 7, about the z-axis. The point (xp,y,) is the point on the path
that is closest to the USV position

(xpa Yp, 9,,) = argmin \/(xz - 53)2 + (yi — y)z (7-6)
(z4,9:,0:) € P

where P = [(x1,y1,61), (x2,92,02), ..., (Tn, Yn, 0,)] is the path, and n is the
number of poses in the path. The path tangential angle at any point on the
path is then given by ~, = 0,,. The cross-track error can be computed by

Ye = —(x — mp) sin(vp) + (y — yp) cos(7p)- (7.7)
The control objective for curved path following then becomes
lim y(t) =0. (7.8)

t—+o00

CHAPTER 7. GUIDANCE AND PATH GENERATION 44

7.2.2 Guidance law

An LOS vector is constructed from the USV to a point (z.s, Yi0s) located
on the path-tangential line. The distance from the closest point on the path
(p,Yp) 10 (Tios, Yios) depends on a lookahead distance A(t) > 0. From
geometric consideration of Figure 7.3, the guidance law is given by

Xd = 7p + arctan (_Aye> (7.9)
where x4 is the desired course angle of the USV defined as

Xd = Yd + B (7.10)

14 is the desired heading angle and f is the sideslip angle. Sideslip is the
deviation between where the USV is looking (heading), and the direction it
is moving (course). It is caused by a nonzero sway velocity component, and
occurs due to external forces such as currents, or lateral accelerations while
turning. Since the Otter USV’s onboard system uses course control, this is
already compensated for.

7.2.3 Time-varying lookahead distance

From Figure 7.3 it is easy to see that a small lookahead distance results in
a more aggressive steering, i.e. the desired path is reached faster. However,
it will also contribute to unwanted oscillations around the path. A large
lookahead distance produces smoother steering which avoids oscillations, but
it also means that it takes longer to converge to the path. This motivates
the use of a time-varying lookahead distance. By implementing a time-
varying lookahead distance, the goal is to keep both the advantage of a
faster convergence rate, and the reduction in unwanted oscillations. Lekkas
and Fossen (2014) proposes the following formula

A(ye) = (Amax - Amin)e_KAyg + Amm (7.11)

where Aaz and A, are the maximum and minimum values for A. The
convergence rate Ka, along with A4, and A, constitute design param-
eters to be set by the user.

(7.11) works by assigning a small value to A when the USV is far from
the desired path, and a large value when it is close to the path. Since a
small A results in aggressive steering, the USV will quickly converge towards
the path when it is far away. Similarly, when the USV close to the path,
a large A results in smoother steering which gives smaller overshoot and
fewer oscillations. As opposed to a constant lookahead distance A, (7.11)
increases the number of design parameters that must be determined by the
user.

CHAPTER 7. GUIDANCE AND PATH GENERATION 45

7.2.4 Speed assignment

The following speed assignment is proposed

Ug = max(Upgqz * (1 — M — ﬁ)

yma:c Xma:v

where Uy is the desired speed, U,,q: and U,,;, are the upper and lower
limits for the speed, y. is the cross-track error, and ¥ = x — x4 is the error
in the course angle. ¥immaz and X.mae are design parameters for the maximum
allowed cross-track error and course angle error before the speed is assigned
its minimum possible value.

This speed assignment ensures that the speed is lowered when the USV
deviates from its path. With a lower speed the turning radius decreases,
which in turn makes it easier for the USV to get back on the desired path.
When the speed reaches its minimum, i.e. U = U,;;,, the USV will achieve
its minimum turning radius p,,;, which ensures that any generated path can
be followed. An additional benefit is that when the USV tracks the path
well, the speed is increased in order to save time.

7.2.5 Interfacing with the Otter USV’s thrusters

The guidance system must be connected to the Otter USV’s onboard system,
since the onboard system already contains the thrust allocation strategies
and low-level controllers required to steer the USV. The onboard system has
therefore been modified to accept speed and course assignments over UDP.
Similarly, the guidance system is extended to send these messages. The
messages are serialized based on Google’s Protocol Buffers (Google, 2019),
which is a simple and effective way of communicating between different
systems.

Before the messages can be sent, however, the desired course angle in the
SLAM map’s coordinate frame must be converted to an angle in the NED
frame. The difference between the coordinate frames is just an offset, and
can be adjusted for as follows

Xa = xg M = XA 4y (7.13)

where x and yg are the course and desired course angle in NED, and y“F4M

and X;?LAM are the course and desired course angle in the SLAM map’s

coordinate frame.

Chapter 8

Simulations

8.1 Simulator

A simulation environment for the USV has been set up in ROS Melodic
and Gazebo 9. The simulator supports altering of the system matrices and
thruster configuration. Simulated input can be provided from several sen-
sors, including GNSS, IMU, and 2D lidar. The surrounding environment can
be modified by adding and removing obstacles. The simulator is based on
the Virtual RobotX simulator (OSRF, 2019), and the theory of its operation
is available in Brian Bingham (2019).

8.2 Map generation with SLAM

Figure 8.1b shows the map generated by Cartographer after moving the
USV along the edges of the area in Figure 8.1a. The middle of the map is
unknown due to the lidar’s inability to detect across the middle.

(a) (b)

Figure 8.1: (a) Simulation environment. (b) SLAM map. The white area of
the map represents free space, the black area represents obstacles, and the
dark gray area in the middle is unknown. The black area is hard to see, but
is located at the most distinct transitions from white to dark gray.

46

CHAPTER 8. SIMULATIONS 47

8.3 Complete coverage maneuvering with bous-
trophedon motions

8.3.1 Constant coverage range

The target region and surrounding environment for this simulation is shown
in Figure 8.2. A symmetric constant coverage range of 10m is assumed for
the MBES, i.e. 5m in both starboard and port directions. The simulated
lidar has a range of 25 m, which is the same as the lidar in the real-world
experiments.

Figure 8.2: The surrounding environment and target region for the first
simulation. The USV is depicted at its starting position.

The following parameters were used in the simulations. The inflation
radius is r; = 3.0m, and cell sizes are e,y = 1.0m. The turning radius
of the simple Dubins paths is chosen as p = 0.5m. For the guidance law
Apaz = 5.0m, Apyiy = 2.0m, Ka = 1.0, Upae = 1.5m/s, Ui, = 0.4m/s,
Ymaz = 5.0m, and Xmaer = 7/2.

Figure 8.3a shows the result at the end of the simulation, when the USV
has moved back to its starting position. Figure 8.3b shows the map and
trajectory generated by SLAM at the end of the simulation. Figure 8.4
shows the behavior of the method during the first simulation. At all times,
data from the lidar is used to update the workspace partition and set cells
as either free (blue) or blocked (red). This is why more and more cells of
the partition appear in the visualization. Similarly, data from the simulated
MBES is used to classify cells as covered (green). The partition does not
represent the area beyond the edges of the target region, which is why cells
are not updated (gray) in front of the USV in Figure 8.4c or to the left in
Figure 8.4h.

The subfigures of Figure 8.4 show how the method reacted during the

CHAPTER 8. SIMULATIONS 48

(a) (b)

Figure 8.3: State at the end of the first simulation. The red and blue
curves are the ground truth and estimated trajectories, respectively. (a)
Visualization by the system. Covered area is green, inflated obstacles are
red, lidar detections are light-red. Black line is the connected waypoints.
(b) Map and trajectory by SLAM. The white area of the map represents
free space, the black area represents obstacles, and the dark gray area is
unknown.

simulation. (a) In the beginning there is nothing in front of the USV, so
the system starts by moving straight ahead. (b) When an obstacle appears
in front of the USV, the system knows that there is free space to the right
and therefore performs wall following. (c) The bottom of the target region
is reached, and the system performs wall following of the virtual wall that is
the edge of the target region. (d) A critical point is reached, so the system
plans a path to the closest backtracking point. (e) The system reached the
backtracking point and intelligently adjusted it a little to the left so that
coverage overlap is reduced. Then it reached the bottom of the target region,
figured out that the sweeping direction must be switched, and wall followed
to the left. When turning back up, there is some coverage overlap because
an obstacle blocks the USV from going further left. (f) After reaching the
top of the region and coming back down, the system performs a little wall
following in order to get to the side of the obstacle. (g) When coming back
up the inter-lap spacing is chosen such that there are no uncovered cells
left between the current and previous lap, even though some wall following
occurred in the middle of the previous lap. (h) The remaining area of the
target region is covered.

CHAPTER 8. SIMULATIONS 49

—~ — —~ —~
= — Q. o
~— ~ ~— ~—

Figure 8.4: Visualization of the boustrophedon motions method with con-
stant coverage range at several stages during the simulation. The red-
green-blue axis is the pose of the USV (z-axis positive upwards). Free
covered area is represented by green, free uncovered area by blue, and in-
flated obstacles by red. The light-red dots are the current detection points
of the lidar. The black line is the waypoints connected by line segments.
The red curve trailing the USV is the ground truth trajectory, while the
faint blue curve (often concealed by the red) is the estimated trajectory.

CHAPTER 8. SIMULATIONS 50

8.3.2 Varying coverage range

Figure 8.5a shows the target region and surrounding environment of this
simulation. Figure 8.5b shows the same region’s depth. A simple linearly
varying depth seabed which is at its deepest on the left, and at its shal-
lowest on the right. More specifically, the coverage range varies from 14 m
at the far left, to 4m at the far right. All parameters of the system are
the same as in the previous simulation.

(a) (b)

Figure 8.5: The second simulation. (a) The surrounding environment and
target region. (b) The target region’s varying depth seabed.

Figure 8.6a shows the result at the end of the simulation, and Fig-
ure 8.6b shows the map generated by SLAM at the end of the simulation.
Figure 8.7 shows the visualization by the system at several stages during
the execution.

(a) (b)

Figure 8.6: State at the end of the second simulation. (a) Visualization by
the system. Covered area is green and inflated obstacles are red. Black line
is the connected waypoints. The blue curve is the estimated trajectory.
(b) Map and trajectory by SLAM. The white area of the map represents
free space, the black area represents obstacles, and the dark gray area is
unknown.

CHAPTER 8. SIMULATIONS 51

(a) (b)

(c) (d)
Figure 8.7: Visualization of the boustrophedon motions method with vary-
ing coverage range at several stages during the simulation. The red-green-
blue axis is the pose of the USV (z-axis positive upwards). Free covered
area is green, free uncovered area is blue, and inflated obstacles are red.

The light-red dots are current lidar detections. The black line is the con-
nected waypoints. The blue curve is the estimated trajectory.

8.4 Complete coverage maneuvering with bio-inspired
neural network

The bio-inspired neural network method was tested with the same target
region and environment as in the previous simulation, i.e. the region shown
in Figure 8.5a. The parameters of the neural network model used in this
simulation are A =50, B=0.1, D =0.1, u = 1, and E = 100. The tuning
parameter A is set to A = 0.1 in order to prioritize areas that do not require
a change of direction. The scaling factors A; have all been set to A\; = 1.
The set of neighboring neurons is restricted by 79 = v/3r., meaning only
the 6 surrounding circles in the partition are considered neighbors. The
circles in the partition all have a radius of r. = bm. The rest of the
parameters of the system are the same as in the first simulation described
in Section 8.3.1.

Figure 8.8 shows the visualization by the system at several stages dur-
ing the execution, and Figure 8.9 shows the map generated by SLAM at
the end of the simulation. In Figure 8.8, the next target cell is always the
cell associated with the neuron that has the highest neural activity, but
with a slight preference for going straight forward.

CHAPTER 8. SIMULATIONS 52

(a) (b)

() (d)
Figure 8.8: Visualization of the bio-inspired neural network method at
several stages during the simulation. The red-green-blue axis is the pose
of the USV (z-axis positive upwards). Free covered area is green, free
uncovered area is blue, and inflated obstacles are red. The light-red dots

are current lidar detections. The blue curve is the estimated trajectory.
The green curve is the currently followed simple Dubins path.

Figure 8.9: Map by SLAM at the end of the third simulation. The white
area of the map represents free space, the black area represents obstacles,
and the dark gray area is unknown.

CHAPTER 8. SIMULATIONS 53

8.5 Discussion

8.5.1 Sensor fusion and SLAM

The SLAM map generated in Figure 8.1 quite accurately depicts the simu-
lated environment. The walls are straight, there is a clear transition between
obstacles and free space, and the proportions look very reasonable. Because
of the lidar’s restricted range of only 25 m, the SLAM system is never able
to see across the middle, and thus this area remains uncertain. In the top
left corner, there is an opening without any walls. Even though the USV
traveled across this area, the area still remains uncertain in the map. It
could be reasoned that everything within the lidar’s range should be consid-
ered free space when there are no detections. However, since a lidar’s range
varies depending on the reflectivity of the material and lighting conditions,
care must be taken when assuming free space in the case of no detections.
Cartographer has a parameter allowing to set the distance for assumed free
space. In this case, the purpose was to create an accurate map, so there was
no reason to assume free space.

Figure 8.3b shows the SLAM map, estimated trajectory, and ground
truth trajectory for the first simulation. The SLAM map accurately depicts
the target region in Figure 8.2. Looking closely at the map, there have been
some small errors, as evident by the short strips of duplicated walls on the
right-most inclined wall. This is caused by the SLAM system thinking for a
short time that it has a different pose than it really has, and then mapping
the environment at the wrong place. In a carefully tuned system, such errors
should rarely be seen. There are also some inaccuracies in the mapping of
the jetty in the middle of the map. Overall, however, the mapping looks
good. The estimated trajectory also approximates the ground truth well. It
can be seen to drift a little at times, but it always corrects itself.

The results of the second and third simulations in Figure 8.6b and Fig-
ure 8.9 show many of the same properties. These maps both depict the
environment of Figure 8.5a. It should be noted, however, that the bio-
inspired neural network method used to create the map in Figure 8.9 results
in more errors in the map. This is likely because this method causes the
USV to turn more, which is more difficult for accurate pose estimation. In
particular, turns performed when the lidar detects nothing, i.e. when the
USV is far from obstacles, prevents corrections to pose estimations by loop
closure. The map can only be corrected with loop closures after the lidar
starts detecting obstacles again. If no distinct features are then detected, the
accumulated errors in localization might be too big and difficult to correct
for.

This last argument highlights another very important issue for this par-
ticular application. Namely, that the range of the lidar is very short com-
pared to the size of the workspace. This means the lidar scans are often

CHAPTER 8. SIMULATIONS 54

empty or consist of only a single line-segment of detection points represent-
ing the closest wall or jetty. Cartographer is mainly a lidar-based SLAM
method, and relies heavily on these lidar scans. The data from the lidar,
however, is by itself not nearly enough information to perform SLAM. As
a result, the sensor fusion and SLAM system is very dependent on GNSS,
even when close to obstacles.

8.5.2 CCPP with boustrophedon motions

The first simulation is summarized in Figure 8.3. Figure 8.3a shows that
complete coverage is achieved, and upon completion the USV travels back
to the starting point and stops there. This is also a great example of how
the line-of-sight smoothing of A* paths works as intended. The subfigures
of Figure 8.4 also verify that the many autonomous subfunctions of the
implemented system work as intended in a simulated environment. The
localization and map in Figure 8.3b provided by the sensor fusion and SLAM
subsystem has also proved to be good enough for the algorithms in the rest
of the system to function properly and achieve complete coverage.

The second simulation, in Figure 8.6a and Figure 8.7, shows how the
method performed with a simple linearly varying sea depth. The seabed
shown in Figure 8.5b is overly simplistic, but the simulation nonetheless
showcases the method’s ability to react to the varying coverage range of the
MBES. Figure 8.7 shows the coverage range shrinking as the USV moves
farther to the right and towards shallower waters. As expected, the inter-
lap spacing shrinks to accommodate the smaller coverage range while still
avoiding overlapping coverage.

Note that the second simulation shows a very idealistic scenario, where
the coverage range is constant along the entire length of one lap. Realisti-
cally, even with the best possible sweeping direction, there will be some dif-
ference between the shallowest and deepest point in one lap, which will nec-
essarily result in some overlapping coverage. Since the implemented method
simply chooses the sweeping direction as the heading angle the system starts
with, the choice of sweeping direction is left entirely in the hands of the op-
erator. Leaving this important part of the survey to chance, or to depend
on the operator’s prior knowledge of the area, is a weakness of the system.
A possible extension is therefore to incorporate the ideas of Galceran and
Carreras (2012) for choosing the best sweeping direction, although it would
have to be done online without any prior knowledge. As suggested in the
same paper, a further improvement would be segmentation of the target re-
gion into several smaller similar-depth target regions. This would also have
to be done online. Developing online algorithms for these two extensions
would be a great step forward in the field of autonomous seabed mapping,
and would result in a system that incorporates many of the best practices
of hydrographic surveying.

CHAPTER 8. SIMULATIONS 55

8.5.3 CCPP with bio-inspired neural network

The result of running the third simulation with the bio-inspired neural net-
work is shown in Figure 8.8. The neural network is set up to always target
the neighboring circle with the highest neural activity, but with a preference
for reducing turns. As seen in subfigures (a) and (b), this tends to create
spiraling patterns. Once the spiral pattern is complete, the remaining un-
covered circles are the only cells with high neural activity. Consequently,
the system is attracted to these last remaining uncovered cells, as seen in
(c) and (d), and achieves complete coverage.

This method tends to create more turns than the boustrophedon motions
method, even though the target cell is chosen with a preference for less
turning. In the end, this preference actually causes more turns in total. The
method ends up always delaying turns to the last possible moment, which is
generally not an intelligent way to cover an area with the circular partition
used here. Turning reduces not only the accuracy of SLAM as discussed
above, but more importantly it reduces the quality of the bathymetric data
acquired by the MBES. This is because during turning the accuracy of pose
estimation is reduced, which introduces errors in the mapping of the seabed.
More turns also increase the duration and fuel consumption of the survey.

It should be noted that some other works in the literature have achieved
somewhat better results with almost the same method (e.g. Scibilia et al.
(2012) and Luo and Yang (2008)), and it is likely because of different tuning
parameters resulting in a more intelligent path. The performance of the
method might see a slight improvement by altering the behavior of the neural
network and the choice of the target neuron. For instance by modifying
equation (6.5) or choosing the tuning parameter \; wisely. Scibilia et al.
(2012) states for instance that \; is used to prioritize areas closer to the
initial AUV position. The results of Luo and Yang (2008) show paths that
look very much like boustrophedon motions. However, they use a square
cell partition which, based on these results, might be better suited.

The partition used for this method is not able to adapt to a varying cov-
erage range. Instead, the size of the circular cells must be determined based
on the shallowest point in the target region, i.e. the point which results in
the minimum coverage range. Doing this ensures complete coverage, but
may result in a lot of overlapping coverage if the depth varies a lot. A pos-
sible solution to this would be to repartition the target region with another
cell size when the depth varies more than some threshold. Alternatively,
the target region could be divided into several similar-depth subregions,
each with a different cell size depending on the shallowest point within the
subregion.

Another drawback of the circular cell partitioning is that the cell size
determined by the water depth, also determines how accurately obstacles
are represented. In this simulation, the cells have a radius of r. = 5.0m

CHAPTER 8. SIMULATIONS 56

in order to represent the coverage range. This means that an area of free
space up to 20.0 m wide may be considered an obstacle with an unfortunate
placement of the circles. By comparing the resulting coverage of Figure 8.6a
and Figure 8.8d, it is clear that the circular partition does a worse job of
representing obstacles. The square cell partitioning avoids these issues by
separating the coverage range from the cell size, and allowing multiple cells
to be marked as covered together. An obvious further development of the
bio-inspired neural network CCPP method would therefore be to incorporate
the square cell partitioning instead.

8.5.4 Path following

Figure 8.3a shows that the ground truth trajectory (red line) manages to
track the waypoints (black line) well. Keep in mind that the path that
is actually followed is not the black line connecting the waypoints, but a
simple Dubins path generated from the USV’s pose to the newest waypoint.
This means that the overshoot that appears around sharp corners such as
in Figure 8.4b is to be expected, because the generated simple Dubins path
accounts for the turning radius. This also means that the planned simple
Dubins path often goes outside the green and blue region classified as free
space in the partition, and into the red region classified as inflated obstacles.
As long as obstacles are inflated with a radius greater than the maximum
USV footprint plus the turning radius, i.e. 7; > 7rpee + p, the USV will
avoid collision. However, this should be done more intelligently, because the
increased obstacle inflation radius means that the coverage of the seabed
close to or beneath obstacles is reduced. Consider the possibility of inflating
obstacles in two steps instead, first to incorporate the USV footprint and
then secondly to incorporate the turning radius. This would make it possible
to separate the obstacles region into two new regions: a region which specifies
when the USV has to start turning, and when the USV would definitely be
in collision.

The USV manages to follow the path in the second and third simulation
as well, see Figure 8.6a and Figure 8.8. Looking more closely at Figure 8.6a,
the USV often overshoots a little after the turns. This can likely be improved
by a finer tuning that has a little less aggressive steering. For example, by
increasing the minimum lookahead distance A,,;, or reducing the conver-
gence rate KA. In Figure 8.8, the actual simple Dubins paths to be followed
are shown in green. The USV deviates slightly from the path, always on the
outer side of the turn. This likely means the turning radius is too small for
the simulated model. Another contributing factor could be that the imple-
mented low-level controllers for the simulated USV are very simple and not
finely tuned.

Another thing to note about the results, is that the pose and trajectory
of the USV is provided by SLAM, and the SLAM system will adjust the pose

CHAPTER 8. SIMULATIONS 57

and trajectory if it discovers it has done an error. The pose adjustments
can interfere with the path following by causing steps in the pose of the
USV. Similarly, the trajectory adjustments can make it seem like the path
following was better or worse than it actually was, since the waypoints are
not adjusted.

Chapter 9

Experiments

9.1 Experimental setup

The developed system has been implemented and tested on the Otter USV
in the harbor of Trondheim. The testing area contains various obstacles
like boats and jetties, and is shown in Figure 9.1. Since the boustrophedon
motions CCPP method performed best in the simulations, only that method
has been tested experimentally.

(a) Top-down view from Google Maps. (b) Picture on the testing day.

Figure 9.1: The testing area used for the Otter USV.

The Otter USV has not been equipped with a multibeam echosounder
during the experiments. A symmetric constant coverage range is assumed
for the MBES instead. Consequently, variable water depth is not considered
during path planning. This means the system will be performing almost
the same maneuvers as in a real bathymetric survey, but with a simulated
MBES that reports a constant depth.

o8

CHAPTER 9. EXPERIMENTS 59

9.2 Complete coverage maneuvering with bous-
trophedon motions

9.2.1 First experiment

The boustrophedon motions CCPP method was first tested with a symmet-
ric constant coverage range of 16 m, i.e. the USV was assumed to cover 8 m
of the seabed in both port and starboard directions.

The following parameters were used in the experiment. The inflation
radius is r; = 5.0m, and cell sizes are e.; = 1.0m. The turning radius
of the simple Dubins paths is chosen as p = 1.0m. For the guidance law
Apaz = 4.0m, Apyiy = 1.5m, KA = 1.0, Upae = 1.0m/s, Upip, = 0.4m/s,
Ymaz = 5.0m, and Xmaez = 7/2.

The resulting trajectory reported by the GNSS receiver is illustrated in
Figure 9.2a (not actual location of boats on the testing day). Figure 9.2b
depicts the same trajectory and a map of the surroundings generated by
Cartographer. Figure 9.3 shows the visualization by the system at several
stages during the experiment. The USV reaches the right edge of the target
region, which is why the visualization does not expand further right. The
operator had to intervene at the end in Figure 9.3d, because the USV was
headed straight for an obstacle. A video demonstrating this experiment is
available at https://youtu.be/hq0UKtosnFw and in the electronic attach-
ment of this thesis.

Figure 9.2: State at the end of the first experiment. The starting position
was at the left end of the trajectories. (a) GNSS trajectory overlaid an
aerial photo. (b) Trajectory and map by SLAM. The white area of the map
represents free space, the black area represents obstacles, and the gray area
is unknown. Transparent colors mean uncertainty.

https://youtu.be/hqOUKtosnFw

CHAPTER 9. EXPERIMENTS 60

(a) (b)

(c) (d)
Figure 9.3: Visualization of the boustrophedon motions method at several
stages during the first experiment. The red-green-blue axis is the pose of the
USV (z-axis positive upwards). Free covered area is green, free uncovered
area is blue, and inflated obstacles are red. The light-red dots are current

lidar detections. The black line is the connected waypoints. The blue curve
is the estimated trajectory.

9.2.2 Second experiment

The second experiment consisted of the same setup as in the first experiment
with the same system parameters. The resulting trajectory according to
the GNSS receiver is shown in Figure 9.4. Figure 9.5 shows the SLAM
map and estimated trajectory at different stages during the experiment.
Figure 9.6 shows the visualization by the system during different stages of
the experiment. The USV reaches the right edge of the target region in
Figure 9.6b, which is why the visualization does not expand further right.
The experiment was aborted at the end because the system’s estimated
position deviated too much from the observed position.

CHAPTER 9. EXPERIMENTS 61

Figure 9.4: GNSS trajectory in the second experiment.

Figure 9.5: Trajectory and map according to the SLAM system Cartog-
rapher at different stages of the second experiment. The white area of
the map represents free space, the black area represents obstacles, and the
gray area is unknown. Transparent colors mean uncertainty.

CHAPTER 9. EXPERIMENTS 62

(a) (b)

(c) (d)

(e) (f)
Figure 9.6: Visualization of the boustrophedon motions method at several
stages during the second experiment. The red-green-blue axis is the pose
of the USV (z-axis positive upwards). Free covered area is green, free
uncovered area is blue, and inflated obstacles are red. The light-red dots

are current lidar detections. The black line is the connected waypoints.
The blue curve is the estimated trajectory.

CHAPTER 9. EXPERIMENTS 63

9.3 Discussion

9.3.1 Sensor fusion and SLAM

Figure 9.2b shows the map and trajectory estimated by SLAM for the first
experiment. Comparing it to the aerial photo and the GNSS trajectory in
Figure 9.2a, there are several signs of drift and deviation in the map. Boats
at the top and bottom of the map are not really recognizable as boats, and
the jetty at the bottom is drawn twice with a different angle and position.
The cause for this is that the SLAM system struggles to accurately localize
itself, and so multiple things are mapped on top of each other, resulting in
the cluttered map seen in the figure. The top and bottom jetties are also
shifted a little sideways compared to each other, so the paths that appear
perpendicular to the jetties in the aerial photo, appear sloped in the SLAM
map.

On the other hand, the SLAM trajectory seems to approximate the
GNSS trajectory very well, which might mean that there are some incon-
sistencies in the transformations between the lidar and IMU. However, that
does not explain what happens to the mapping of the boats in the top left
corner of the SLAM map. Those errors are more likely caused by a drift
in the orientation. In fact, during the experiment when the USV moved
straight forward, the estimated position was seen to move at an angle com-
pared to the heading (this can be seen at some times in the attached video).
This strongly suggest a consistent offset between the estimated orientation
and the real orientation. Keep in mind that the GNSS trajectory does not
necessarily depict the actual ground truth (it has the standard GNSS accu-
racy), but it is the closest thing available and will therefore be treated as a
ground truth in the discussion.

There are also other factors that were observed to affect the SLAM
system during the experiment. The mounted lidar states a range of 25m,
which will be somewhat reduced in outdoor operation. However, in the
experiments, the lidar never detected anything more than about 14 m away.
Furthermore, this was only when the lidar rays hit the obstacle’s surface
at a right angle. When the lidar rays hit the surface with an angle, the
range was observed to drop much lower. Dark objects, because of their low
reflectivity, were the most difficult to detect. Some objects, like ships with
a black hull, were not detected at all. The single scan plane of the lidar also
caused some trouble. The lidar was mounted relatively high on the USV, so
the jetty at the top of the SLAM map was too low to be seen when the USV
moved towards the jetty. Luckily, there was a detectable boat on the other
side of the too low jetty that prevented the USV from crashing. Because
the USV has a small pitch angle when moving forward, the jetty was seen
when moving away and appears in the SLAM map.

In the second experiment, the mapping of the same area is better, as seen

CHAPTER 9. EXPERIMENTS 64

in Figure 9.5a. The top and bottom jetty is still shifted a little sideways
compared to each other, causing the almost perpendicular laps of Figure 9.4
to appear slightly sloped in the SLAM map. In Figure 9.5b, the SLAM
system failed to recognize the bottom jetty when backtracking to the left,
which once again seems to have been caused by a drift in orientation. No
system parameters were changed between the two experiments, so it is a
bit unclear as to why this SLAM map is better. The weather did change
though, becoming a little sunnier. This caused a lot of false detections in
the lidar, which is not clear from the SLAM map because only persistent
detections appear in the map. However, the instantaneous data from the
lidar used in the rolling window was affected. This had an impact on path
planning which is discussed in the next section.

In Figure 9.5b the SLAM system has gone a long time without any lidar
detections, and the map becomes very uncertain because of it (transparent
white in the figure). The lack of lidar detections means the SLAM system
must depend entirely on GNSS and IMU for localization. This should cause
no trouble if the fusing of GNSS and IMU data is good. However, the cur-
rent pose and recent trajectory of the USV in Figure 9.5b deviates a lot from
the GNSS trajectory in Figure 9.4. In Figure 9.5¢, only a couple of seconds
later, Cartographer actually realizes this and corrects for it. Note that this
means the fused GNSS and IMU data must have been available all the time,
but is only incorporated correctly after the lidar starts detecting obstacles
again. This most likely means that the implementation of Cartographer runs
some of its graph optimizations only after it has received a certain number
of lidar detections. The documentation states that ”the optimization is run
in batches once a certain number of trajectory nodes was inserted” (Car-
tographer Authors, 2019b). Based on the obtained results, the generation
of these trajectory nodes likely requires lidar detections. This makes the
proposed setup in Cartographer very poorly suited for open marine environ-
ments, especially when using a short range lidar. Exactly the same thing
happens once more in the experiment, and can be seen in Figure 9.5d. After
that, the experiment was aborted. The fact that the USV drifts in the same
direction both times, further emphasizes the possibility of an error in the
orientation estimation.

9.3.2 CCPP with boustrophedon motions

The GNSS trajectory of the first experiment is shown in Figure 9.2a, and it
clearly depicts a boustrophedon motion between the jetties. Figure 9.3 shows
that the system also manages to achieve complete coverage for this area.
Obstacles are identified correctly by the system, and the CCPP method
successfully plans a collision-free path that steers clear of them. The planned
path can be seen inside the inflated obstacles region at some places, or
further into the free space region than it should be. This is because the

CHAPTER 9. EXPERIMENTS 65

status of the cells has changed after the USV reached those waypoints. The
large inaccuracies in localization and mapping experienced during this test
makes this very noticeable.

At the very end of the experiment, just after Figure 9.3d, the system
ended up planning a backtracking path straight through the obstacles seen
at the bottom. This was caused by an error in the implementation of the
system that incorrectly dealt with multiple status changes in a cell, e.g.
caused by mapping inaccuracies. This was discovered and fixed before the
second experiment. However, it does illustrate the fact that the CCPP
method contains very little logic for dealing with uncertainties. Currently,
the only logic aimed at this is the fact that the system replans the next
waypoint if it becomes blocked.

The results of the second experiment are largely influenced by false lidar
detections due to sunlight, and localization drift. The GNSS trajectory
in Figure 9.4 shows that the USV first covers the area between the jetties
with a single boustrophedon motion. The laps are not as nice and straight
as in the previous experiment, but this is because the system avoids the
non-existing obstacles reported by false lidar detections. Next, the system
backtracks and starts a new boustrophedon motion. This motion suffers
from two detours. The cause of the detours was, as explained in the last
section, due to localization drift. After the second detour the experiment
is aborted. Even though the resulting trajectory is not as good as in the
simulations, it does show the system’s main properties working in a real-
world environment. Namely, boustrophedon motions and backtracking.

The subfigures of Figure 9.6 show a closer look at how the CCPP method
reacted during the second experiment. In Figure 9.6a, a false detection
appears in front of the USV. Since it is so close to the USV, this false
detection causes the USV to wall follow to the side of it. Note that it is not
just a single false detection that causes this, but several. They appear, the
obstacle is inflated, the path is replanned, and then they disappear. The turn
at the very beginning of the boustrophedon motion, in the lower left corner,
was not caused by false detections. This was due to the USV’s starting
position being inside the inflated obstacles region. This is a situation that
is not explicitly considered in the implemented system, but since the system
planned a path anyway, it is not entirely safe.

For the rest of the subfigures in Figure 9.6: (b) After wall following to the
side of the false obstacle in (a) and of another one on the way down, there are
two small uncovered regions remaining within the covered area. A possible
extension of the system would therefore be to wall follow not just to the side
of obstacles, but around them. This would have covered these remaining
areas. (c) The USV backtracks and begins another boustrophedon motion
to the left of the starting point (the method was slightly altered for this
experiment to ignore the closer but very small enclosed uncovered areas).
The sweeping direction is switched because of a false detection. (d) Since

CHAPTER 9. EXPERIMENTS 66

the sweeping direction was switched, the USV now continues back down
on the left. (e) The jump in the position of the SLAM system moves the
USV far out from the desired path. (f) The USV manages to get back
on the path after the jump in position. A new jump appears, and the
same thing happens. When the localization drifts as much as it did in this
experiment, the coverage reported by the system is not correct anymore.
After loop closures and trajectory adjustments, the coverage should ideally
be recalculated based on the new estimated trajectory. In this experiment,
however, even the trajectory with loop closure at the end had significant
uncorrected drift which would later have caused problems.

9.3.3 Path following

The localization in both experiments is not really sufficient for making accu-
rate conclusions about the performance of the path following method. The
estimated trajectory is adjusted several times during the experiment by the
SLAM system, while the planned path is kept still throughout the whole
experiment. Furthermore, it should be kept in mind that the planned path
in all figures are the waypoints connected by line segments, and not the
actual simple Dubins paths followed.

Even with the poor localization, the USV still managed to track the
paths. In Figure 9.3, the estimated trajectory seems to follow the planned
path reasonably well most of the time. The same is true for Figure 9.6. The
path following method has therefore been proved to be robust, and should
be considered satisfactorily in both experiments. There are significant de-
viations several places, but it is hard to tell whether they are because of
the path following, localization, or both. However, the path following is
definitely to blame for some of it. In the first experiment, there are some
oscillations in the third lap, see Figure 9.3c. This may seem to be because
of bad path following, but it is clear from looking at logged data of the
experiment that these oscillations are largely affected by pose adjustments
of the SLAM system (it can also be seen from the attached video).

All these problems with localization also made it very hard to tune the
parameters of the system. A significant performance increase in path fol-
lowing is therefore likely achievable by better tuning of the system. One
thing that managed to make the system very reliable and safe during the
experiments, was the buffer safety zone that is added around all obstacles.
This allowed for many smaller things to go wrong, while still making sure
the complete system functioned as a whole and avoided collisions.

Chapter 10

Concluding remarks

10.1 Conclusions

In this thesis, an autonomous online complete coverage maneuvering sys-
tem for USVs has been designed, implemented, and tested. The system is
intended for use in seabed mapping, and one of the main contributions of
this work is a novel approach to online CCPP for variable coverage range
sensors. Implementations in ROS are provided as open source packages.

An approach to sensor fusion with the SLAM system Cartographer has
been proposed. Sensor data from lidar, IMU and GNSS are used. Ex-
periments revealed what is likely a small error in the incorporation of the
orientation from the IMU, which reduced the performance of SLAM. The ex-
periments also revealed that the presented configuration of Cartographer is
unable to accurately perform localization with only GNSS and IMU in cases
where the lidar cannot detect anything. This makes the approach poorly
suited for open marine environments and the use of a short range lidar. It
is therefore recommended to use another approach that incorporates GNSS
data in a better way, and that does not require detecting something with
the lidar at all times.

It has been shown that the low-cost 2D lidar used in the experiments
is, by itself, not good enough for reliable obstacle detection in marine envi-
ronments. Sunlight produces false detections, and some dark objects, such
as boats with a black hull, were not detected at all. The range was barely
sufficient, and the single horizontal scan plane caused some obstacles to go
undetected. It is therefore recommended to make use of additional low-cost
sensors like cameras or proximity sensors to ensure more obstacles are de-
tected. Measures must also be taken to reduce false detections of the lidar.

A map processing technique for inflating obstacles has been presented,
and shown to work well in both simulations and experiments. Two workspace
partitioning methods make use of the processed map. Circular cell parti-
tioning has been presented and simulated with unsatisfactorily results. A

67

CHAPTER 10. CONCLUDING REMARKS 68

square cell partitioning for use with variable coverage range sensors has been
proposed and shown to perform well in both simulations and experiments.

Two CCPP methods have also been presented. A method based on BINN
yielded inefficient paths in simulations, but has proved potential in other
works of the literature. The proposed boustrophedon motions method per-
formed well in both simulations and experiments, and shows great potential
for real-world applications. Further development to increase the method’s
robustness, especially towards inaccuracies, is recommended.

An approach to ensure feasible paths is also presented, which together
with an LOS guidance law perform path-following control of the USV. The
USV managed to track the paths well in simulations, but resulted in some
larger deviations in the experiments. The performance was still good, but
poor localization in the experiments makes accurate conclusions about the
performance hard.

The complete system has been tested in both simulations and real-world
experiments with the Otter USV. The system performed well in simula-
tions, and was shown to efficiently achieve complete coverage of completely
unknown static environments. In real-world experiments, localization and
mapping suffered from inaccuracies, but the rest of the system performed
satisfactorily, including the proposed methods for CCPP, feasible path gen-
eration and path following.

In conclusion, the proposed system performed satisfactorily and achieved
complete coverage in simulations, and in real-world experiments under cer-
tain conditions. However, the sensor fusion and SLAM system did not per-
form satisfactorily in real-world experiments and should be improved.

10.2 Further work

The proposed system’s ability to handle a varying coverage range has only
been verified in simulations. Further testing of the system should include
experimental testing with a multibeam echosounder in a variable depth en-
vironment. Testing in dynamic environments with moving obstacles is also
left undone. For increased safety, the system should be improved to be
able to discern between moving and stationary obstacles. In particular, the
system should be in compliance with the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGsS).

Further development should aim to increase the efficiency of the complete
coverage paths even more. This could, for instance, be done by incorporat-
ing the ideas of Galceran and Carreras (2012) for choosing the best sweep-
ing direction, although it would have to be done online without any prior
knowledge. As suggested in the same paper, another improvement would be
segmentation of the target region into several smaller similar-depth regions.
This would also have to be done online. Implementing these extensions

CHAPTER 10. CONCLUDING REMARKS 69

would result in an autonomous system that incorporates many of the best
practices of hydrographic surveying.

Further development of the system will also require the improvement of
the sensor fusion and SLAM system. Additional low-cost sensors such as
cameras or ultrasonic proximity sensors should be added to complement the
lidar. If cost is not an issue, a reliable 3D lidar or radar should also be
considered. The improved system will need to be able to perform accurate
localization with only GNSS and IMU, since marine operations often involve
featureless wide-open areas where sensors such as lidar, camera and prox-
imity sensors often detect nothing. It should also be considered whether
SLAM is really necessary. If GNSS and IMU provide sufficiently accurate
localization, then sensors such as lidar, camera and proximity sensors are
perhaps best used only for mapping and obstacle detection.

Bibliography

Acar, E. U., Choset, H., 2002. Sensor-based coverage of unknown environ-
ments: Incremental construction of morse decompositions. The Interna-
tional Journal of Robotics Research 21 (4), 345-366.

Acar, E. U., Choset, H., Lee, J. Y., 2006. Sensor-based coverage with ex-
tended range detectors. IEEE Transactions on Robotics 22 (1), 189-198.

Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N., Hull, D., 2002. Morse
decompositions for coverage tasks. The international journal of robotics
research 21 (4), 331-344.

Applanix, 2019. Applanix : POSMV. [Online; accessed 06-May-2019].
URL https://www.applanix.com/products/posmv.htm

Brian Bingham, 2019. robotxdocs. [Online; accessed 8-May-2019].
URL https://github.com/bsb808/robotx_docs/blob/master/
theoryofoperation/theory_of_operation.pdf

Cartographer Authors, 2019a. Cartographer documentation. [Online; ac-
cessed 29-April-2019].
URL https://google-cartographer.readthedocs.io

Cartographer Authors, 2019b. Cartographer documentation. [Online; ac-
cessed 29-April-2019].
URL https://google-cartographer-ros.readthedocs.io

Choi, J.-w., Curry, R., Elkaim, G., 2008. Path planning based on bézier
curve for autonomous ground vehicles. In: World Congress on Engineer-
ing and Computer Science 2008, WCECS’08. Advances in Electrical and
Electronics Engineering-IAENG Special Edition of the. IEEE, pp. 158—
166.

Choset, H., Acar, E., Rizzi, A. A., Luntz, J., 2000. Exact cellular decom-
positions in terms of critical points of morse functions. In: Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International Conference
on. Vol. 3. IEEE, pp. 2270-2277.

70

https://www.applanix.com/products/posmv.htm
https://github.com/bsb808/robotx_docs/blob/master/theoryofoperation/theory_of_operation.pdf
https://github.com/bsb808/robotx_docs/blob/master/theoryofoperation/theory_of_operation.pdf
https://google-cartographer.readthedocs.io
https://google-cartographer-ros.readthedocs.io

BIBLIOGRAPHY 71

Clearpath, 2019. Clearpath Robotics: Autonomous Mobile Robots. [Online;
accessed 27-May-2019].
URL https://www.clearpathrobotics.com/

Dubins, L. E.,; 1957. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents. American Journal of mathematics 79 (3), 497-516.

Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and map-
ping: part i. IEEE robotics & automation magazine 13 (2), 99-110.

Eugen Dedu, 2001. Bresenham-based supercover line algorithm. [Online;
accessed 8-May-2019].
URL http://eugen.dedu.free.fr/projects/bresenham/

European GSA, 2019. What is GNSS? [Online; accessed 6-June-2019].
URL https://www.gsa.europa.eu/european-gnss/what-gnss

Galceran, E., Carreras, M., 2012. Efficient seabed coverage path planning
for asvs and auvs. In: Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, pp. 88-93.

Galceran, E., Carreras, M., 2013a. Planning coverage paths on bathymetric
maps for in-detail inspection of the ocean floor. In: 2013 IEEE Interna-
tional Conference on Robotics and Automation. IEEE, pp. 4159-4164.

Galceran, E., Carreras, M., 2013b. A survey on coverage path planning for
robotics. Robotics and Autonomous systems 61 (12), 1258-1276.

Google, 2019. Protocol Buffers — Google Developers. [Online; accessed 6-
June-2019].
URL https://developers.google.com/protocol-buffers/

Guo, Y., Balakrishnan, M., 2006. Complete coverage control for nonholo-
nomic mobile robots in dynamic environments. In: Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on. IEEE, pp. 1704-1709.

Guo, Y., Qu, Z., 2004. Coverage control for a mobile robot patrolling a
dynamic and uncertain environment. In: Intelligent Control and Automa-
tion, 2004. WCICA 2004. Fifth World Congress on. Vol. 6. IEEE, pp.
4899-4903.

Hess, W., Kohler, D., Rapp, H., Andor, D., 2016. Real-time loop closure in
2d lidar slam. In: Robotics and Automation (ICRA), 2016 IEEE Interna-
tional Conference on. IEEE, pp. 1271-1278.

https://www.clearpathrobotics.com/
http://eugen.dedu.free.fr/projects/bresenham/
https://www.gsa.europa.eu/european-gnss/what-gnss
https://developers.google.com/protocol-buffers/

BIBLIOGRAPHY 72

Hillcrest Labs, 2019. What is an IMU sensor? [Online; accessed 6-June-
2019].
URL https://www.hillcrestlabs.com/posts/
what-is-an-imu-sensor

Jolly, K., Kumar, R. S., Vijayakumar, R., 2009. A bezier curve based path
planning in a multi-agent robot soccer system without violating the ac-
celeration limits. Robotics and Autonomous Systems 57 (1), 23-33.

Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U., 2011. A flexible and
scalable slam system with full 3d motion estimation. In: Safety, Security,
and Rescue Robotics (SSRR), 2011 IEEE International Symposium on.
IEEE, pp. 155-160.

Kongsberg Maritime, 2019. EM 124 Multibeam echosounder, Max. 11000
m - Kongsberg Maritime. [Online; accessed 26-February-2019].
URL https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/
A11Web/960759E6CB358364C12582BF0026000D70penDocument

Lambert Wanninger, 2019. Introduction to Network RTK. [Online; accessed
6-June-2019].
URL http://wuw.wasoft.de/e/iagwgdbl/intro/introduction.html

Lekkas, A. M., 2014. Guidance and path-planning systems for autonomous
vehicles.

Lekkas, A. M., Fossen, T. 1., 2014. Integral los path following for curved
paths based on a monotone cubic hermite spline parametrization. IEEE
Transactions on Control Systems Technology 22 (6), 2287-2301.

Luo, C., Yang, S. X., 2008. A bioinspired neural network for real-time con-
current map building and complete coverage robot navigation in unknown
environments. IEEE Transactions on Neural Networks 19 (7), 1279-1298.

Marder-Eppstein, E.; Berger, E., Foote, T., Gerkey, B., Konolige, K., 2010.
The office marathon: Robust navigation in an indoor office environment.

In: 2010 IEEE international conference on robotics and automation.
IEEE, pp. 300-307.

Maritime Robotics AS, 2019. Otter [USV] - Maritime Robotics. [Online;
accessed 28-April-2019].

URL https://maritimerobotics.com/mariner-usv/otter/

Moore, T., Stouch, D., July 2014. A generalized extended kalman filter
implementation for the robot operating system. In: Proceedings of the
13th International Conference on Intelligent Autonomous Systems (IAS-
13). Springer.

https://www.hillcrestlabs.com/posts/what-is-an-imu-sensor
https://www.hillcrestlabs.com/posts/what-is-an-imu-sensor
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/960759E6CB358364C12582BF0026000D?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/960759E6CB358364C12582BF0026000D?OpenDocument
http://www.wasoft.de/e/iagwg451/intro/introduction.html
https://maritimerobotics.com/mariner-usv/otter/

BIBLIOGRAPHY 73

Mur-Artal, R., Tardés, J. D., 2017. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics
33 (5), 1255-1262.

National Ocean Service, 2019. What is LIDAR? [Online; accessed 6-June-
2019].
URL https://oceanservice.noaa.gov/facts/lidar.html

Nautikaris, 2019. Multibeam system known as a multibeam echosounder
(MBES). [Online; accessed 6-June-2019].
URL https://www.nautikaris.com/products/hydrography/
multibeam-system/

NOAA, 2019. NCEI Geomagnetic Calculators. [Online; accessed 2-June-
2019].
URL https://www.ngdc.noaa.gov/geomag/calculators/magcalc.
shtml

Norbit, 2019. Subsea — Norbit. [Online; accessed 26-February-2019].
URL https://norbit.com/subsea/

Norgren, P., Skjetne, R., 2018. A multibeam-based slam algorithm for ice-
berg mapping using auvs. IEEE Access 6, 26318-26337.

Oh, J. S., Choi, Y. H., Park, J. B., Zheng, Y. F., 2004. Complete cover-
age navigation of cleaning robots using triangular-cell-based map. IEEE
Transactions on Industrial Electronics 51 (3), 718-726.

OSRF, 2019. osrf / vrx - Bitbucket. [Online; accessed 8-May-2019].
URL https://bitbucket.org/osrf/vrx/src/default/

Paul E. Black, 2019. ”Bresenham’s algorithm”, in Dictionary of Algorithms
and Data Structures [online], Paul E. Black, ed. 19 February 2019. [Online;
accessed 6-June-2019].

URL https://www.nist.gov/dads/HTML/bresenham.html

Paull, L., Saeedi, S., Seto, M., Li, H., 2013. Sensor-driven online coverage
planning for autonomous underwater vehicles. IEEE/ASME Transactions
on Mechatronics 18 (6), 1827-1838.

Raymond, E. S., 2019. NMEA Revealed. [Online; accessed 6-June-2019).
URL https://gpsd.gitlab.io/gpsd/NMEA.html

Red Blob Games, 2019. Introduction to the a* algorithm. [Online; accessed
6-June-2018].
URL https://www.redblobgames.com/pathfinding/a-star/
introduction.html

https://oceanservice.noaa.gov/facts/lidar.html
https://www.nautikaris.com/products/hydrography/multibeam-system/
https://www.nautikaris.com/products/hydrography/multibeam-system/
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
https://norbit.com/subsea/
https://bitbucket.org/osrf/vrx/src/default/
https://www.nist.gov/dads/HTML/bresenham.html
https://gpsd.gitlab.io/gpsd/NMEA.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html

BIBLIOGRAPHY 74

Roborock, 2019. Roborock s6 robot vacuum - roborock official website. [On-
line; accessed 2-June-2019].
URL https://en.roborock.com/pages/roborock-s6

ROS contributors, 2019a. nmea navsat driver. [Online; accessed 28-April-
2019].
URL http://wiki.ros.org/nmea_navsat_driver

ROS contributors, 2019b. Rplidar driver. [Online; accessed 28-April-2019].
URL http://wiki.ros.org/rplidar

ROS contributors, 2019c¢. Xsens driver. [Online; accessed 28-April-2019].
URL http://wiki.ros.org/xsens_driver

Scibilia, F., Jorgensen, U., Skjetne, R., 2012. Auv guidance system for dy-
namic trajectory generation. IFAC Proceedings Volumes 45 (5), 198-203.

Slamtec, 2019. Slamtec. [Online; accessed 30-March-2019].
URL https://www.slamtec.com/en/Lidar/A3

Spange, J., 2016. Autonomous docking for marine vessels using a lidar and
proximity sensors. Master’s thesis, Norwegian University of Science and
Technology.

SparkFun, 2019. IMU - SparkFun Electronics : POSMV. [Online; accessed
06-May-2019].
URL https://www.sparkfun.com/categories/160

Tampere University of Technology, 2019. Basic Principles of Inertial
Navigation. [Online; accessed 6-June-2019].
URL http://www.aerostudents.com/courses/avionics/
InertialNavigationSystems.pdf

Ueland, E. S., 2016. Marine autonomous exploration using a lidar. Master’s
thesis, Norwegian University of Science and Technology.

Velodyne, 2019. Puck. [Online; accessed 2-May-2019].
URL https://velodynelidar.com/v1p-16.html

Viet, H. H., Dang, V.-H., Laskar, M. N. U., Chung, T., 2013. Ba*: an on-
line complete coverage algorithm for cleaning robots. Applied intelligence
39 (2), 217-235.

Williams, D. P., 2010. On optimal auv track-spacing for underwater mine
detection. In: 2010 IEEE International Conference on Robotics and Au-
tomation. IEEE, pp. 4755-4762.

Xsens, 2019. MTi. [Online; accessed 25-April-2019].
URL https://www.xsens.com/products/mti/

https://en.roborock.com/pages/roborock-s6
http://wiki.ros.org/nmea_navsat_driver
http://wiki.ros.org/rplidar
http://wiki.ros.org/xsens_driver
https://www.slamtec.com/en/Lidar/A3
https://www.sparkfun.com/categories/160
http://www.aerostudents.com/courses/avionics/InertialNavigationSystems.pdf
http://www.aerostudents.com/courses/avionics/InertialNavigationSystems.pdf
https://velodynelidar.com/vlp-16.html
https://www.xsens.com/products/mti/

BIBLIOGRAPHY 75

Yang, S. X., Luo, C., 2004. A neural network approach to complete coverage
path planning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 34 (1), 718-724.

YellowScan, 2019. YellowScan Surveyor. [Online; accessed 2-May-2019].
URL http://www.yellowscan.fr/products/yellowscan-surveyor

http://www.yellowscan.fr/products/yellowscan-surveyor

Appendix A

Cartographer configuration

The following configuration file was used during the real-world experiments:

include ”map_builder.lua”
include ”trajectory_builder.lua”

options = {
map_builder = MAP_BUILDER,
trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map”,
tracking_frame = ”imu_link”,
published_frame = "base_link”,
odom_frame = ”odom”,
provide_odom_frame = false,
publish_frame_projected_to_2d = false,
use_odometry = true,
use_nav_sat = false,
use_landmarks = false,
num_laser_scans = 1,
num-multi_echo_laser_scans = 0,
num_subdivisions_per_laser_scan = 1,
num_point_clouds = 0,
lookup_transform_timeout_sec = 0.2,
submap_publish_period_sec = 0.3,
pose_publish_period_sec = 5e—3,
trajectory_publish_period_sec = 30e—3,
rangefinder_sampling_ratio = 1.,
odometry_sampling ratio = 1.,
fixed _frame_pose_sampling_ratio = 1.,
imu_sampling_ratio = 1.,
landmarks_sampling_ratio = 1.,

}

MAP_BUILDER.use_trajectory_builder_2d = true
MAP_BUILDER.num_background_threads = 7

APPENDIX A. CARTOGRAPHER CONFIGURATION II

TRAJECTORY _BUILDER_2D.num_accumulated _range_data = 1
TRAJECTORY BUILDER_2D.min_range = 0.5

TRAJECTORY BUILDER_2D.max_range = 24.95

TRAJECTORY _BUILDER_2D.min_z = —1

TRAJECTORY _BUILDER_2D.max_z = 2.

TRAJECTORY _BUILDER_2D.use_imu_data = true

TRAJECTORY _BUILDER._2D.ceres_scan_matcher.translation_weight = 5
TRAJECTORY _BUILDER _2D.ceres_scan_matcher.rotation_weight = 7
TRAJECTORY _BUILDER_2D.missing_data_ray_length = 5
TRAJECTORY _-BUILDER_2D.use_online_correlative_scan_matching = false
TRAJECTORY _BUILDER_2D.submaps.grid_options_2d.resolution = 0.20
TRAJECTORY _BUILDER_2D.submaps.num_range_data = 25

POSE_GRAPH.optimize_every_n_nodes = 15
POSE_GRAPH.optimization_problem.local_slam_pose_translation_weight = 1e6
POSE_GRAPH.optimization_problem.local_slam_pose_rotation_weight = le4
POSE_GRAPH.optimization_problem.odometry_translation_weight = le4
POSE_GRAPH.optimization_problem.odometry_rotation_weight = le7

return options

Appendix B

Source code

All implementations are written in C++ for ROS Melodic and provided in
the electronic attachment. They are also available on the author’s GitHub
page: https://github.com/jhlenes/complete_coverage and https://
github.com/jhlenes/usv_simulator.

B.1 Complete coverage maneuvering system

The complete coverage maneuvering system contains the following ROS
packages:

e coverage_binn: Implementations of BINN CCPP and circular cell
partitioning.

e coverage_boustrophedon: Implementations of boustrophedon mo-
tions CCPP and square cell partitioning. Also contains the simple
Dubins path implementation.

e guidance: Implementation of the LOS guidance law.
e map_inflating: Configuration of map inflation.

)

e mr_obs_connector: Implementation of the interface to Maritime Robotics
onboard system.

e nmea_navsat_driver: Implementation of the slightly modified GNSS
driver.

e otter_slam: Configuration of Cartographer SLAM.

e sensors: Configuration of drivers for lidar, IMU and GNSS. Also
contains the configuration for the EKF.

e usv_msgs: Definition of a message format that contains speed and
course values.

111

https://github.com/jhlenes/complete_coverage
https://github.com/jhlenes/usv_simulator
https://github.com/jhlenes/usv_simulator

APPENDIX B. SOURCE CODE v

B.2 Simulator
The simulator contains the following ROS packages:

e otter_control: Implementations of thrust allocation and controllers
for speed and course control.

e otter_description: Description of the Otter USV, including location
of thrusters and a 3D model for visualization.

e otter_gazebo: Configuration of simulated sensors, thrusters and dy-
namics.

e usv_gazebo_plugins: Implementation of the simulator copied from

OSRF (2019).

e usv_worlds: Description of simulation environment with locations of
obstacles.

B.3 Running the code

After installing the packages in ROS Melodic, the system can be run by fol-
lowing these steps. The commands must be typed into a separate terminal.

If the system is running on the actual Otter USV, this step can be skipped.
Otherwise, simulate the Otter USV with:

roslaunch otter_gazebo otter.launch

If the system is running on the simulated Otter USV, start this guidance:

roslaunch guidance sim_guidance.launch

Otherwise, if the system is running on the actual Otter USV, start this
guidance:

roslaunch guidance real_guidance.launch

Start the boustrophedon motions complete coverage path planning with:

roslaunch coverage_boustrophedon coverage.launch

Alternatively, start the bio-inspired neural network complete coverage path
planning with:

roslaunch coverage_binn coverage_binn.launch

APPENDIX B. SOURCE CODE A%

B.4 Playing back logged data

ROS bagfiles are included in the electronic attachment and can be played
back to visualize the experiments.

Start the visualization with:

roslaunch coverage_boustrophedon visualize.launch

Play back the selected log file with:

rosbag play filename.bag

Appendix C

Video from the first
experiment

A video demonstrating the first experiment is included in the attachment
and also available at https://youtu.be/hqO0UKtosnFw. The video shows
both the the Otter USV’s behavior in the water, and the complete coverage
maneuvering system’s visualization, see Figure C.1.

Figure C.1: Screenshot of video.

VI

https://youtu.be/hqOUKtosnFw

	MSc thesis description
	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	Abbreviations
	Nomenclature
	Introduction
	Background
	Objective
	Thesis contributions
	Scope and limitations
	Outline
	Limitations

	Background and literature review
	The Otter USV and its sensor package
	The Otter USV
	Relevant sensors

	Partitioning of the operational workspace
	Grid-based decomposition
	Morse-based cellular decomposition

	Relevant methods for CCPP
	Feasible path design
	Polynomial approximation
	Dubins path
	Bezier curves

	Problem formulation
	Sensor fusion and SLAM
	Sensors and drivers
	Lidar
	IMU
	GNSS
	MBES

	SLAM with Cartographer

	Map processing and workspace partitioning
	Map processing and rolling window
	Circular cell partitioning
	Square cell partitioning
	Representing the varying coverage range of the MBES

	Complete coverage path planning
	Bio-inspired neural network
	Neural network model
	Using the neural network for path planning

	Boustrophedon motions
	Constructing the boustrophedon motion
	Determining the backtracking point
	Planning a path to the backtracking point

	Guidance and path generation
	Feasible path generation using straight lines and arc segments
	Turning direction
	Center of turning circle
	Tangent point
	Generating the path

	Curved path line-of-sight guidance law with time-varying lookahead distance
	Cross-track error
	Guidance law
	Time-varying lookahead distance
	Speed assignment
	Interfacing with the Otter USV's thrusters

	Simulations
	Simulator
	Map generation with SLAM
	Complete coverage maneuvering with boustrophedon motions
	Constant coverage range
	Varying coverage range

	Complete coverage maneuvering with bio-inspired neural network
	Discussion
	Sensor fusion and SLAM
	CCPP with boustrophedon motions
	CCPP with bio-inspired neural network
	Path following

	Experiments
	Experimental setup
	Complete coverage maneuvering with boustrophedon motions
	First experiment
	Second experiment

	Discussion
	Sensor fusion and SLAM
	CCPP with boustrophedon motions
	Path following

	Concluding remarks
	Conclusions
	Further work

	Bibliography
	Cartographer configuration
	Source code
	Complete coverage maneuvering system
	Simulator
	Running the code
	Playing back logged data

	Video from the first experiment

