
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Bøe, Mikael

Numerical Modelling of Sailing
Hydrofoil Boats

Master’s thesis in Marin Teknikk
Supervisor: Steen, Sverre

June 2019

Bøe, Mikael

Numerical Modelling of Sailing Hydrofoil
Boats

Master’s thesis in Marin Teknikk
Supervisor: Steen, Sverre
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MASTER THESIS IN MARINE TECHNOLOGY

SPRING 2019

FOR

Mikael Bøe

Numerical modelling of sailing hydrofoil boats

High-performance sailing boats are increasingly using hydrofoils to lift the hull out of the water and

thereby reduce the total resistance at high speed. For instance have the later America’s Cup yachts been

constructed in this way. When predicting the performance of a sailing yacht, it is common determine the

condition that balances the aerodynamic forces (mainly on the sails and rig) and the hydrodynamic forces

on the hull, keel and rudder. This involves finding the trim, heel, yaw (drift angle), speed and required

rudder – often using an iterative procedure. The process is often named Velocity Prediction Process

(VPP). Traditionally, hydrodynamic forces have been found by interpolation in a large, multi-dimensional

table coming out of an extensive series of captive model tests (using a yacht dynamometer). In the later

years, CFD is increasingly used instead of model tests. Aerodynamic forces might be determined in a

similar way, using wind tunnel experiments, CFD, or analytics-based calculations. For the sail rig, a so-

called polar might be constructed from these experiments or calculations, and used as input to the VPP.

The objective for the master thesis is to develop a simulation model for a sailing hydrofoil boat, aimed for

later inclusion in a training simulator for deck crew. It is expected that emphasis will be put on the

hydrodynamic part, with further focus on the hydrofoil performance. Any graphical user interface or logic

related to the training simulator is not expected, but the aim of creating a mathematical model suitable for

use in a training simulator means that the work shall aim for a time-domain simulation model fast enough

for real-time simulation. It is acknowledged that this again means that fairly drastic simplifications in the

mathematical modelling of the complicated physics might be necessary. The thesis shall include a

description of the theory implemented in the simulation model, clarifying the simplifications used, and

then document the verification and validation of the simulation model, before the performance and

potential of the developed simulation model is discussed.

In the thesis the candidate shall present his personal contribution to the resolution of problem within the

scope of the thesis work.

Theories and conclusions shall be based on mathematical derivations and/or logic reasoning identifying

the various steps in the deduction.

The thesis work shall be based on the current state of knowledge in the field of study. The current state of

knowledge shall be established through a thorough literature study, the results of this study shall be

written into the thesis. The candidate should utilize the existing possibilities for obtaining relevant

literature.

The thesis shall be organized in a rational manner to give a clear exposition of results, assessments, and

conclusions. The text should be brief and to the point, with a clear language. Telegraphic language should

be avoided.

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

The thesis shall contain the following elements: A text defining the scope, preface, list of contents,

summary, main body of thesis, conclusions with recommendations for further work, list of symbols and

acronyms, reference and (optional) appendices. All figures, tables and equations shall be numerated.

The supervisor may require that the candidate, in an early stage of the work, present a written plan for the

completion of the work. The plan shall include a budget for the use of laboratory or other resources that

will be charged to the department. Overruns shall be reported to the supervisor.

The original contribution of the candidate and material taken from other sources shall be clearly defined.

Work from other sources shall be properly referenced using an acknowledged referencing system.

The thesis shall be submitted electronically (pdf) in Inspera:

- Signed by the candidate

- The text defining the scope (this text) (signed by the supervisor) included

The candidate will receive a printed copy of the thesis.

Supervisor : Professor Sverre Steen

Start : 15.01.2019

Deadline : 11.06.2019

Trondheim, 15.01.2019

Sverre Steen

Supervisor

Preface
I would like to thank my supervisor Professor Sverre Steen for guidance and for keeping

me grounded at times I was to ambitious. In addition, I would like to point out that the
project would not have been possible without his knowledge, enthusiasm in the subject
and clear guidance.

Although I have much experience in sailing, the implementation of theory to a numeri-
cal model has challenged me greatly. Therefore, I have benefited greatly from the project
and has increased my knowledge and challenged both my theoretical and practical skills.

It is also important to mention my office colleagues as they have always shown support
during these trying times.

Lastly, I would like to thank my family for continued support throughout my time as
a student.

Mikael Bøe June 10, 2019

iii

Summary

The motivation of this thesis stems from the desire to create a training simulator for
experienced sailors not familiar with hydrofoils. As the approach to such a simulator can
be based on several types of numerical models, a review is made where potential based
methods are deemed the most efficient. Therefore, the goal of the thesis is to view the
feasibility of using a potential flow approach to numerical assessment of sailing hydrofoil
vessels. As such, a model is implemented to analyse the dynamic behaviour of a sailing
hydrofoil, this is investigated to asses whether the method has any merit. In addition, as
a training simulator is the background for the thesis, attempts will be made to approach
real-time computational speeds.

The chosen numerical method behind the simulation is the potential flow based lifting
surface, or vortex lattice method as it is also known as. Briefly explained the lifting
surface model solves Laplace’s equation within the parameters of linear foil theory. It
accomplishes this by applying boundary conditions directly onto the camber line of the
foil thus disregarding the effect of thickness and solving the condition with a distribution
of vortex singularities. Where the condition to be solved is zero normal flow across the
surface. Based on the investigations carried out it is believed the created lifting surface
model sufficiently models the effects of camber and aspect ratio during attached condi-
tions. Furthermore, the modelling of dynamic lift is also believed to be sufficiently ac-
curate during attached conditions, which was investigated against Theodorsen’s function.

The overall simulation model uses the above mentioned lifting surface to determine
the forces from the foils and sail. Thereafter the equation of motion is solved, where
a generic model of the mass matrix has been used as well as an analytical approach to
added mass, where aerodynamic added mass has been neglected. An attempt was made
to simulate the crew of vessel by adjusting their position as well as a de-powering scheme
of the sail, which were both implemented to compensate for roll motion. It is believed the
current model is able to simulate the dynamic behaviour of a sailing hydrofoil. Although,
the model is far from perfect and experienced an abnormal behaviour during specific
conditions. In addition, the current implementation of crew behaviour is believed to have
made the vessel unstable. With regards to a potential based simulator, the method is
adequate but suffers predictably during conditions where viscous effects are dominant.
This means, the simulator will either have to be made for certain scenarios or switch to
adequate models when potential flow suffers.

iv

Sammendrag

Motivasjonen til denne avhandlingen kommer fra ønsket om å lage en treningssimu-
lator for erfarne seilere som ikke er kjent med hydrofoilfartøy. Siden en simulator kan
være basert p̊a flere typer numeriske metoder, blir en undersøkelse gjort hvor potensial
strøm methoder sett som mest egnet. Målet til oppgaven er å se p̊a gjennoførbarheten
ved å bruke metoder fra potensialteori for å simulere hydrofoilseilb̊ater. Basert p̊a at en
treningssimulator er bakgrunn for oppgaven, vil det tilstrebes å n̊a sanntidsberegninger
for farkosten.

Den valgte numeriske metoden bak simulaotren er en potensialteorimentode kalt løfteflate,
kjent som vortex lattice method. Kort fortalt løser løftflaten Laplace’s lingning ved bruk
av lineær foilteori. Dette gjøres ved å plassere grensebetingelsene direkte p̊a kurvatur-
flaten til foilen. Dermed neglisjeres tykkelsen av foilen og ligningen løses med en fordeling
av virvler p̊a kurvaturflaten. Hvor betingelsen som skal bli løst er null normal strømmning
over flaten. Simuleringene tilsier at modellen tar hensin til b̊ade krumning og apsekt-
forholdet av tilstrekkelig grad, under Kutta kondisjon. I tillegg, er det dynamiske løftet
funnet å være tilstrekkelig nøyaktig, sammenlignet med Theodorsen’s funksjon.

Simuleringsmodellen bruker den nevnte løftflaten til å finne kreftene fra foilene og
seilet. Deretter blir bevegelsligningene løst, hvor en generisk model av massematrisen
blir anvdent. En analytisk løsning til tilleggsmassen blir brukt, hvor den aerodynamiske
tilleggsmassen neglisjeres. Et forsøk ble gjort ved å simulere mannskapet til b̊aten ved å
justere posisjonen deres og trimming av seilet, for å kompensere for rullebevegelse. Basert
p̊a resultatene kan det antas at modellen klarer å simulere den dynamiske oppføreselen
til en hydrofoilseilb̊at til tross for at modellen opplevde unormale bevegelser under spe-
sifikke forhold. Den n̊aværende implementeringen av mannskapets manøvre kan gjøre
b̊aten ustabil. Med hensyn til en potensialtoeri basert simulator er metoden tillstrekkelig.
Men signifikante usikkerheter oppst̊ar n̊ar viskøse krefter dominerer. Dette indikerer at
simulatoren bør bygges men hensyn til spesifikke scenarioer eller endres til mer passende
metoder n̊ar potensialtoeri feiler.

v

vi

Contents

1 Introduction 1
1.1 Scope of the Work . 1
1.2 Real time interactive simulation challenges 2
1.3 Numerical Methods . 2

2 Lifting Surface Model 7
2.1 Constant Strength Vortex Segment . 7
2.2 Grid Generation . 10
2.3 Steady Solution . 10
2.4 Unsteady Solution . 13

3 Modelling Sailing Hydrofoils 15
3.1 Kinematics . 15
3.2 Sailing . 16
3.3 Equation of Motion . 18

4 The Simulation Model 19
4.1 Physical Assumptions and Neglections 19
4.2 Overview of the Model . 20
4.3 Geometry . 21
4.4 Hydrodynamics . 23
4.5 Aerodynamics . 24
4.6 Matlab . 24

5 Validation and Verification 25
5.1 Effect of Aspect Ratio . 26
5.2 Effect of Camber . 27
5.3 Wake . 30
5.4 Forced Oscillations in heave. 32

6 Results 35
6.1 1 DOF Stability Tests . 36
6.2 4 DOF Simulation . 39

7 Discussion 53
7.1 Results . 53
7.2 Simulation Model . 55

8 Further Work 59

vii

Conclusion 61

Bibliography i

Appendices iii
A Code: Simulation Model . v

viii

List of Figures

1.1 Potential Flow methods, a - Prandtl’s lifting line, b - Vortex Lattice
Method, c - Panel method. 3

2.1 Nomenclature used by a straight vortex segment. (Katz and Plotkin, 2001) 8
2.2 Result of the pre-processing detailing the elements, control points and

normal vector. 10
2.3 Arrangement of Vortex Rings and orientation (Katz and Plotkin, 2001). . 11
2.4 Modelling of fluid boundary by using the mirror image technique (Faltin-

sen, 2005). 11
2.5 Method of attaching a vortex wake ring to fulfull the Kutta condition (Katz

and Plotkin, 2001). 12

3.1 The 6 DOF velocities u, v, w, p, q and r in the body-fixed reference frame
(Fossen, 2011). 16

3.2 Relationship between driving force and heeling force (Marchaj, 1979). . . 17
3.3 Velocity triangle and related angles (Marchaj, 1979) 17

4.1 Schematic of the overall model. 20
4.2 Mass distribution of the sail boat. 22
4.3 Plane-line intersection method. 22
4.4 Incoming flow felt by the hydrofoils due to the vessels motion. 23

5.1 Convergence test, difference between constant number of cells in chord and
span direction. 26

5.2 Effect of the aspect ratio on the lift coefficient. 26
5.3 Effect of the aspect ratio on the drag coefficient. 27
5.4 Comparison of Lift Coefficient data for NACA 0006 (Abbot et al., 1945). 28
5.5 Comparison of Lift Coefficient data for NACA 1412 (Abbot et al., 1945). 28
5.6 Comparison of Lift Coefficient data for NACA 2412 (Abbot et al., 1945). 29
5.7 Comparison of Lift Coefficient data for NACA 4421 (Abbot et al., 1945). 29
5.8 Comparison of Lift Coefficient data for NACA 23012 (Abbot et al., 1945). 30
5.9 Comparison between a wake turbulence study by NASA and the wake

created by the numerical model (NASA, 1990). 30
5.10 Effect of the wake roll up on the dynamic lift. 31
5.11 Comparison between different wake lengths. 32
5.12 Theodorsen’s theoretical solution and the unsteady solvers solution to an

oscillating foil. 33

6.1 The L’Hydroptere vessel (Sheahan, 2009). 35
6.2 1 DOF Roll Stability test, a - Total Torque, b - Acceleration, over 40 seconds. 36

ix

6.3 1 DOF Roll Stability test, a - Velocity, b - Angle, over 40 seconds. 37
6.4 1 DOF Pitch Stability test, a - Angle, b - Velocity, over 160 seconds. . . . 37
6.5 1 DOF Heave Stability test, a - Total Force, b - Acceleration, c - Velocity,

over 20 seconds. 38
6.6 4 DOF Roll motion, a - Total Torque, b - Acceleration, c - Velocity, d-

Angle over 12 seconds. 39
6.7 4 DOF Pitch motion, a - Total Torque, b - Acceleration, c - Velocity, d-

Angle over 12 seconds. 40
6.8 4 DOF Heave motion, a - Total Force, b - Acceleration, c - Velocity, over

12 seconds. 41
6.9 4 DOF Surge motion, a - Total Force, b - Acceleration, c - Velocity, d-

Submerged Area over 12 seconds. 42
6.10 Total torque in roll, for all wind angles over time, at 6m

s
true wind speed

at 30◦. 43
6.11 Velocity in roll, for all wind angles over time, at 6m

s
true wind speed at 30◦. 44

6.12 Acceleration in roll, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 44

6.13 Roll angle, for all wind angles over time, at 6m
s

true wind speed at 30◦. . 45
6.14 Total torque in pitch, for all wind angles over time, at 6m

s
true wind speed

at 30◦. 46
6.15 Velocity in pitch, for all wind angles over time, at 6m

s
true wind speed at

30◦. 46
6.16 Acceleration in pitch, for all wind angles over time, at 6m

s
true wind speed

at 30◦. 47
6.17 Pitch angle, for all wind angles over time, at 6m

s
true wind speed at 30◦. 47

6.18 Total Force in heave, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 48

6.19 Acceleration in heave, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 49

6.20 Velocity in heave, for all wind angles over time, at 6m
s

true wind speed at
30◦. 49

6.21 Total Force in surge, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 50

6.22 Acceleration in surge, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 51

6.23 Velocity in surge, for all wind angles over time, at 6m
s

true wind speed at
30◦. 51

6.24 Total submerged area, for all wind angles over time, at 6m
s

true wind speed
at 30◦. 52

x

List of Tables

3.1 Reference frame notation for marine vehicles. 15

4.1 Necessary parameters to run the model. 20

6.1 Vessel Parameters. 35
6.2 Foil Parameters, position is relative to the centre of gravity. 35
6.3 Crew Parameters. 35
6.4 Constant Parameters used in the 1 DOF simulations. 36

xi

xii

Nomenclature

List of Abbreviations

DOF Degree of Freedom

FPS Frames Per Second

GPU Graphics Processing Unit

HPC High Performance Computing

ITTC International Towing Tank Conference

LBM Lattice-Boltzmann Method

NACA National Advisory For Aeronautics

NS Navier-Stokes

VLM Vortex Lattice Model

List of Symbols

α True Wind Angle

β Apparent Wind Angle

n Normal Vector

η̈ Acceleration

∆F Force on element with directions x,y,z

∆p Pressure on element

∆t Time Step

∆x Element length in x direction

∆y Element length in y direction

η̇ Velocity

η Displacement

Γ Vortex Strength

xiii

µ Kinematic Viscosity

Φ Perturbation Velocity Potential

φ, θ, ψ Angle about x,y,z axis

Φ∞ Free Stream Velocity Potential

ρ Density

τx,y Tangential vector in x,y direction

Θ Angle Vector about x,y,z axis

CB Block Coefficient

CD Drag Coefficient

CF Frictional Coefficient

CL Lift Coefficient

CM Midship Coefficient

CP Pristmatic Coefficient

CDa Drag Coefficient Slope

CLa Lift Coefficient Slope

FD Driving Force

FR Heeling Force

FT Total Aerodynamic Force

Ma Added Mass Matrix

Q∞ Total Incoming Flow Velocity

Re Reynolds Number

Sb Surface Area

U∞, V∞,W∞ Velocity of Incoming Flow in x,y,z direction

VA Apparent Wind Speed

VT True Wind Speed

wind Induced Downwash

a Influence Matrix

AR Aspect Ratio

b Downwash Influence Matrix

xiv

C Centripetal Matrix

c Chord

D Drag Force

F Force vector with directions x,y,z

I Mass Moment of Intertia

K,M,N Torque about x,y,z axis

L Lift Force

M Mass Matrix

m Mass

N Total Number of Elements

n,m Number of Elements in Chord, Span

p,q,r Rotational velocity about x,y,z axis

R Rotational Matrix

S Skew Matrix

s Span

t Time Step Counter

u,v,w Velocity in x,y,z Direction

X,Y,Z Force in x,y,z direction

xv

Chapter 1

Introduction

The utilization of hydrofoils on a sail powered vessel is nearly as old as the usage of hy-
drofoils, yet academic and industrial interest is not as abundant as conventional hydrofoil
vessels. However, the last few Americas Cup’s has invigorated a broader interest in the
subject, resulting in both acamedic works such as tacking simulations (Lidtke et al., 2013)
and commercial vessels such as the WASPZ (WASZP, 2016).

However as the resources required to participate are large and the time in which the
crew may train with the vessel before the race is small. Therefore it becomes difficult for
new participants to compete. To reduce this gap in experience a training simulator can
be used to familiarise experienced sailors in how to handle such a vastly different vessel.
The motivation of this thesis stems thus from the desire to create a training simulator
for experienced sailors not familiar with hydrofoils. Given the time-frame and resources
available to simulate a sailing hydrofoil vessel, the goal of the thesis is to view the fea-
sibility of using a potential flow approach to numerical assessment of sailing hydrofoil
vessels. In addition, as a training simulator is the background for the thesis, attempts
will be made to approach real-time computational speeds.

1.1 Scope of the Work
The scope of the work is summarised below.

� Development of a simulation model for a sailing hydrofoil model and review its
capability.

� A suitable model for the hydrofoils will be chosen and argued for. In addition, the
model will be verified and validated.

� A suitable model for the sail will be chosen, however an emphasis is placed on the
hydrodynamical part.

1

1.2 Real time interactive simulation challenges
The three main tasks an interactive model has to overcome are and not necessarily in

this order; Simulation, visualisation and steering. Steering is the users interaction with
the simulation, and is required to work in tandem with visualisation and simulation at
the same time (Wenisch et al., 2005). A common attempt at this is to allow some delay,
this is done by updating the geometry based on user interaction while processing the
previous settings (Linxweiler et al., 2010). The speed at which these three tasks have to
be done is measured in frames per second, usually this speed should not be lower than 20
FPS (Ou et al., 2008). Meaning the model has to solve 20 simulations per second, thus
for a single simulation the computational time should not exceed 42 milliseconds.

The challenges described here revolve around computer architecture and mainly deal
with how one efficiently processes and updates data in parallel. The solution to these
challenges often arise from the computer game industry, where all of the above are tackled,
although the industry understandably prioritises visualisation and not physical accuracy
(NVIDIA, 2019). Even though these challenges are not physical in nature, they are
important to mention when assessing a numerical method the simulation solver is to be
based on.

1.3 Numerical Methods
When deciding upon a numerical method for a training simulator the computational

cost can be a deciding factor. However, with reduced computational cost comes negligence
and simplicity which reduce the capabilities of the simulator. Thus a cost-benefit analy-
sis is required to assess the most optimum methodology based on today’s methods and
technology. It is assumed going forward that the hardware utilized in the simulator is not
a supercomputer but at least several times stronger then the average computer. We can
split the basis of the simulator into the four different categories; Empirical methods which
use results from experimental and full scale trials in combination with linearised equations
of motion, potential based methods which neglect the effects of viscosity, Navier-Stokes
based methods and Lattice-Boltzmann methods.

Empirical methods would be the most optimal to base a simulator on, as the compu-
tational cost and development complexity would be smallest of the three. The simulator
would be based on the manoeuvring equations to control the simulator, which would
require the vessels specific non-dimensional manoeuvring coefficients (HochBaum, 2019).
This however would require extensive experimental testing, quickly increasing the time
and effort required to run the simulator. In addition, for each specific vessel, brand new
experiments would have to be performed. Not only is it time consuming to perform model
tests for regular vessels, with sailboats the hull and sail would have to be experimented
on separately, due to how different physical properties are scaled. Although this com-
plication can be removed entirely by performing full scale trials, which could be used to
develop a simulator. Subsequently, this is the reason numerical methods are utilised and
the reason this thesis will not consider such an approach any further.

2

Potential Flow based methods

A potential based approach has the opposite benefits of empirical methods. They are
fast, flexible and have been widely developed and validated throughout their inception
in the 1940’s. However, due to the fluids approximation of inviscid, incompressible and
irrotational the approach suffers when viscous effects are dominant. Thus the application
of an potential approach can only consider the case of attached flowfields. Where this is
not the case, the pressure distribution will be faulty, but the solution will however point
towards where there might exist separation (Chattot and Hafez, 2015). The potential
methods considered here are boundary element methods, namely the Prandtl lifting line,
the vortex lattice method and panel methods, these are visualised in Figures 1.1a, 1.1b
and 1.1c respectively.

(a) (b)

(c)

Figure 1.1: Potential Flow methods, a - Prandtl’s lifting line, b - Vortex Lattice Method,
c - Panel method.

Potential solvers mainly follow the same procedure, although differing in either bound-
ary condition, complexity of the geometry or choice of singularity element. The procedure
is as follows; Discretisation of the geometry, calculate influence coefficients, solve a linear
system of equations and calculate forces. As the methods are very similar and the largest
difference being how the geometry is handled, it can be important to assess what these
simplifications imply.

3

Prandtl’s classical lifting line involves representing the body as a series of horseshoe
elements along the span. Even though the method can account for the effects of aspect
ratio, wing sweep, dihedral and side slip the model becomes inaccurate for lower aspect
ratios. In addition, the method does not consider the camber or thickness, although thick-
ness has an effect the camber is more important (Abbot et al., 1945). As the camber is
not considered, it would be difficult to justify its use when modelling the sail of vessel.
This is due to the sail can be viewed as a very thin foil with a large camber (Marchaj,
2003). Although the model would be sufficient for the hydrofoils if uncambered foils are
utilised.

The lifting surface or vortex lattice method (VLM), distributes a series of vortex ring
elements along both the span and chord on the camber surface. Both the lifting line
and lifting surface are based on linear foil theory as such they both revolve around thin
foils, with small angles of attack and small disturbances of the free stream (Chattot and
Hafez, 2015). Therefore the methods accounts for the same geometrical factors but the
VLM considers camber effects and lower aspect ratios, whereas the thickness is still not
considered. In terms of computational resources the increase is noticeable, but not large.

Panel methods is an extension of the lifting surface from the camber surface to an en-
closed geometry. The method is optimum when any arbitrary geometry is to be handled,
although the method is more prevalent for aerodynamics as the entire aircraft can be
considered as a lifting body. Being able to handle any arbitrary geometry however is a
lucrative capability as many vessels utilise abnormal wing shapes.

As the lifting surface method incorporates the most important geometrical factors af-
fecting the lift of a foil, the method is chosen and implemented further.

Navier-Stokes

Navier-Stokes (NS) methods revolve around solving newtons second law by adhering to
the continuity equation, conservation of energy and kinematic viscosity (Blazek, 2015).
There exist many free and commercial solvers which primarily vary in user friendliness
and mesh generation schemes. The method requires intense computer power and al-
though computational power increases, current growth rate projects half of the normal
rate (Spalart and Venkatakrishnan, 2016).

(Kenny et al., 2008) created a helicopter flight simulator coupled with an CFD solver,
using high performance computing (HPC) clusters. They found when utilizing such
resources that the bottleneck became data messaging between the different systems.
(Roper et al., 2006) performed a similar study although did not couple the CFD tool
with the pilot simulator. Their method was to simulate numerous steady state solutions
and interpolate before exporting to a look-up table for the simulator to use. This type
of approach is valid when training the user for specific tasks and conditions, and can be
updated given time and resources.

4

Based on the studies regarding CFD coupled training simulators, it can be deduced
that such methods are feasible but require extensive computational infrastructure both
to simulate and process data. Which is outside of the scope of this thesis and as such
the method will not be considered further, even though it is most optimal given enough
resources.

Lattice-Boltzmann

The Lattice-Boltzmann method (LBM) is an alternative means to traditional Navier-
Stokes solvers. In contrast, LBM considers the fluid on a microscopic scale while NS is on
a macroscopic scale. On the microscopic scale the particles are represented statistically
as distribution functions (Succi, 2001). The method seems more prevalent in aeronautical
academics with limited studies in the maritime academic community.

The main advantage is LBM’s large parallelisation potential which when working in
tandem with graphics processing units (GPU) allow for very fast computational speeds.
However, due to the meshing scheme in LBM, which is a uniform Cartesian grid, the size
becomes substantial leading to high computational requirements. Thus the method is
most optimal when utilising HPC, compared to traditional CFD which has the option,
although slow, of being run on a laptop.

Although the use of Lattice-Boltzmann methods in training simulators seems non-
existent, several studies have been performed to test its real-time capabilities. (Delbosc,
2015) performed a study testing the real-time simulation of fluids, which suggest the
method is up to the challenge given enough HPC. Other studies such as NASA’s (NASA,
2017) comparison between NS and LBM found LBM to be 12-15 times faster and equally
accurate. However, their lowest grid size of a single landing gear had 56 million cells
while their highest 1.6 billion. Which would require a tremendous amount of HPC to
compute.

5

6

Chapter 2

Lifting Surface Model

This section describes the numerical approximation of a lifting surface and is completely
based on sections 10.4.6, 12.3 and 13.12 in the book Low-Speed aerodynamics (Katz and
Plotkin, 2001). The method is potential based in nature and aims to find the strength
of singularity elements on the body’s surface. The model is split into three aspects, grid
generation, a steady solution and an unsteady solution. The steady solution refers to
static conditions, while the unsteady solution is time-dependent.

Shortly explained the model solves Laplace’s equation within the parameters of lin-
ear foil theory. It accomplishes this by applying boundary conditions directly onto the
camber line of the foil, rather than solving for the flowfield in the whole fluid volume.
The model disregards the effects of thickness and solves the condition with a distribution
of vortex singularities. Where the condition to be solved is zero normal flow across the
surface, which is expressed in equation 2.1. Where Φ is the perturbation potential, Φ∞
is the free stream potential and n is the normal vector of the surface.

O(Φ + Φ∞) · n = 0 (2.1)

Going forward N is the total number of elements distributed across the geometry and
is of size i × j, where i and j are the number of elements along the chord and span
respectively.

2.1 Constant Strength Vortex Segment
The fundamental function behind the model is based on Biot-Savart law, which is

represented in equation 2.2. The equation is comprised of a vortex strength, Γ, the
distance between a vortex and an arbitrary point P in space, ~r, the size of a vortex
segment, d~l, and the radial direction to the evaluated point P denoted r̂.

q =
Γ

4π

∫
d~l × r̂
|~r|3

(2.2)

7

Figure 2.1: Nomenclature used by a straight vortex segment. (Katz and Plotkin, 2001)

The velocity induced by a segment dl of equation 2.2 at a point P is

∆q =
Γ

4π

dl× r

r3
and in scalar form ∆qθ =

Γ

4π

sin β

r2
dl (2.3)

From Figure 2.1 the following relationships are given

l = r sin β and tan(π − β) =
d

l

Which means

l =
−d

tan β
and dl =

d

sin2 β
dβ

Substituting these terms into equation 2.3 and integrating over the section in Figure
2.1 leads to

(qθ)1,2 =
Γ

4πd

∫ β2

β1

sin βdβ =
Γ

4πd
(cos β1 − cos β2) (2.4)

Based on the definitions in Figure 2.1 the following relationships can be established

d =
|r1 × r2|
|r0|

cos β1 =
r0 · r1

|r0||r1|
cos β2 =

r0 · r2

|r0||r2|

In addition, the vector connecting the edges is defined as

r0 = r1 − r2

while the directional vector of the induced velocity is normal to the plane created
between the point P and vortex segment edges and is given by

8

r1 × r2

|r1 × r2|

Substituting the new definitions into 2.4 and multiplying with the directional vector
leads to a Cartesian interpretation of Biot-Savart law. The following procedure is thus
applied to calculate the induced velocity at a point P by a line segment illustrated in
Figure 2.1.

q1,2 =
Γ

4π

r1 × r2

|r1 × r2|2
r0

(
r1

r1

− r2

r2

)
(2.5)

In cartesian coordinates the above is solved by the following procedure. (u, v, w) are
the induced velocities in (x, y, z) directions respectively. Where K is an influence coeffi-
cient and r1 and r2 are the distances towards the evaluated point.

(r1 × r2)x = (yp − y1)(zp − z2)− (zp − z1)(yp − y2) (2.6)

(r1 × r2)y = (zp − z1)(xp − x2)− (xp − z1)(zp − z2) (2.7)

(r1 × r2)z = (xp − x1)(yp − y2)− (yp − y1)(xp − x2) (2.8)

|r1 × r2|2 = (r1 × r2)2
x + (r1 × r2)2

y + (r1 × r2)2
z (2.9)

r0 · r1 = (x2 − x1)(xp − x1) + (y2 − y1)(yp − y1) + (z2 − z1)(zp − z1) (2.10)

r0 · r2 = (x2 − x1)(xp − x2) + (y2 − y1)(yp − y2) + (z2 − z1)(zp − z2) (2.11)

K =
Γ

4π|r1 × r2|2

(
r0 · r1

r1

− r0 · r2

r2

)
(2.12)

u = K · (r1 × r2)x v = K · (r1 × r2)y w = K · (r1 × r2)z (2.13)

9

2.2 Grid Generation
Grid generation is based on a cosine distribution in both chord wise and span wise

direction, this is to minimize the required number of elements. As tests performed by
(Fiddes and Gaydon, 1996) point out the accuracy of the solution increases. In addition
the required number of elements for convergence decreases. The cosine distribution fol-
lows the form of equation 2.14 in both chord wise, x axis, and span wise, y axis, directions.
Where c and s are respectively chord length, span length, while n and m are the number
of elements in chord and span direction respectively. This section also determines the
size and normal vector of each element.

x, y = c, s ·
(

1− cos

(
i · π
n+ 2

))
(2.14)

The configuration of each element follows Weissinger’s quarter-three-quarter-chord ap-
proximation. As in the leading bound vortex is placed on the elements quarter chord line,
while the boundary condition is placed on the elements three-quarter chord line. This
is due to the configurations ability to accurately solve boundary conditions (Faltinsen,
2005). The geometry created is a product of 5 parameters, span length, chord length,
NACA profile and number of elements in chord and span wise directions and is presented
in Figure 2.2.

y

x

z

Figure 2.2: Result of the pre-processing detailing the elements, control points and normal
vector.

2.3 Steady Solution
The model aims to solve a series of singularity elements distributed across the camber

surface. The solution to the lifting problem is now found by finding the strength of each
singularity element. The condition to be satisfied is the zero normal flow across the
surface and is expressed on the right hand side of equation 2.15, which is equation 2.1
except neglecting the perturbation potential. Where (U∞, V∞,W∞) are the free stream
velocity components in (x, y, z) directions while nN is the normal vector for element N .

aN · ΓN = −[U∞, V∞,W∞] · nN (2.15)

10

The left hand side of the equation consists of the singularity elements meant to solve
the boundary condition, where ΓN is the unknown vorticity at element N . The influence
coefficient aN is a matrix describing the influence each element had on the evaluated
control point. The influence of a single element on a single control point is determined by
equation 2.16, where (u, v, w)1 is the induced velocity by segment 1− 2 in Figure 2.3 and
so on going clockwise. Where the induced velocity follows Biot-Savarts Law as presented
in section 2.1.

aN = ((u, v, w)1 + (u, v, w)2 + (u, v, w)3 + (u, v, w)4) · nN (2.16)

Figure 2.3: Arrangement of Vortex Rings and orientation (Katz and Plotkin, 2001).

Before the boundary condition can be solved the effect of the wake has to be considered,
as well as any fluid boundary effects. Fluid boundaries in this case is the sea surface and
if desired the sea floor. Both fluid boundaries are handled in a similar manner where the
so called mirror image method is used, where the geometry is translated above the sea
surface and the induced velocity from this mirror image is added to the already computed
induced velocity as shown in Figure 2.4 and equation 2.17.

Figure 2.4: Modelling of fluid boundary by using the mirror image technique (Faltinsen,
2005).

(u, v, w) = (u, v, w)real + (u, v,−w)imaginary (2.17)

11

The wake is modelled as force free and only effects the trailing edge as shown in Figure
2.5. Where a vortex ring with equal strength has been added to cancel the spanwise
starting vortex. The induced velocity for the trailing edge is thus modified by equation
2.18. Where notation TE and W are respectively trailing edge and wake.

(u, v, w)TE = (u, v, w)TE + (u, v, w)W (2.18)

Figure 2.5: Method of attaching a vortex wake ring to fulfull the Kutta condition (Katz
and Plotkin, 2001).

Once both the right hand side of equation 2.15 and the influence coefficients have been
established only the strength of each element is unknown. As the problem has N num-
ber of unknowns and N number of equations the solution is found by standard matrix
techniques as shown in equation 2.19. With the strength determined, the lift can be
determined through Koutta-Joukowski theorem presented in 2.20. Where ρ is the fluid
density, Q∞ is the total free stream velocity and ∆y is the width of each element.

Γ1

Γ2
...

ΓN

 =

a11 a12 · · · a1N

a11 a12 · · · a1N
...

. . .
...

a1N a2N · · · aNN

−1

[U∞, V∞,W∞] · n1

[U∞, V∞,W∞] · n2
...

[U∞, V∞,W∞] · nN

 (2.19)

∆Li,j = ρQ∞ (Γi,j − Γi−1,j) ∆yi,j (2.20)
L =

M∑
i=1

N∑
j=1

∆Li,j (2.21)

Drag forces follow a similar procedure except here influence coefficient is established
by omitting the leading and trailing segment from equation 2.16. These vortex segments
correspond to segments 1−2 and 3−4 in Figure 2.3. As the circulation is already known
at this point, the induced downwash can be determined by the product of circulation dis-
tribution and influence coefficient. It is important to mention that this drag component
is not the total drag, but only the induced drag due to downwash.

bN = ((u, v, w)2 + (u, v, w)4) · nN (2.22)

12

wind1
wind2

...
windN

 =

b11 b12 · · · b1N

b11 b12 · · · b1N
...

. . .
...

b1N b2N · · · bNN

Γ1

Γ2
...

ΓN

 (2.23)

∆Di,j = −ρwindi,j (Γi,j − Γi−1,j) ∆yi,j
(2.24)

D =
I∑
i=1

J∑
j=1

∆Di,j (2.25)

2.4 Unsteady Solution
The unsteady solution requires changes to how the wake and resulting forces are mod-

elled. The wake in the unsteady solution is made up of shed vortices from the trailing
edge. Where the strength of said vortex is equal the vorticity at the trailing edge. Fur-
thermore, the strength of these shed vortices are constant through time. The initial
position of the shed vortices follows Kutta’s condition, where it is stated that the flow
leaves the foil tangentially (Anderson Jr, 2010). How these vortices move in the wake
field is controlled by equation 2.26, where the velocity at every vortex is the total induced
velocity from the wake field in addition to the induced velocity from the body bound vor-
tices on the foil. Here the notation w is a vortex within the wake field, while b is a body
bound vortex. The new position of vortices within the wake field is then determined by
multiplying with a time step.

(u, v, w)w =
B∑
b=1

(u, v, w)b +
W∑
w=1

(u, v, w)w (2.26)

The wake now considers the perturbation potential in the boundary condition presented
in 2.1 which was neglected in the steady solution. The numerical approximation of this
is represented in equation 2.27. As the influence coefficient, aN , is geometry based it
is only evaluated once, thus for each time step the only new addition is determining
the influence of the wake on the boundary condition. Solving for the strength of the
singularity elements, Γ, leads to the vorticity of each element and subsequently the loads
can now be determined.

aN · ΓN =

W∑
w=1

(u, v, w)w︸ ︷︷ ︸
Perturbation

+ (U∞, V∞,W∞)︸ ︷︷ ︸
Freestream

 · nN (2.27)

13

The loads calculated still follow Kutta-Joukowskie’s theorem, however now the change
in circulation in time, dΓ

dt
, is added. In addition, as for the boundary condition, the

perturbation potential is added. Where ∆x and ∆y is an elements chordwise and spanwise
length. In addition τx and τy represents a panels tangential vector in chord and span
direction respectively. What follows is translating the pressure into a force and summing
up all elements. Where S is a panels area, and ∆~F is a panels force vector in (x, y, z)
directions.

∆pi,j = ρ

(
[U∞ + uw, V∞ + vw,W∞ + ww]i,j ·

(
τxi,j

Γi,j − Γi−1,j

∆xi,j
+ τyi,j

Γi,j − Γi,j−1

∆yi,j

)
+
dΓi,j
dt

)
(2.28)

∆~F = Si,j ·∆p · ni,j ~F =
I∑
i=1

J∑
j=1

∆~F (2.29)

The induced drag has the same additional changes to the calculation. Furthermore,
calculating the induced downwash at each element is unchanged from the steady solver.
Hence the induced downwash follows equation 2.23 before calculating the induced drag
in equation 2.30. Where α is the elements angle relative to the free stream.

∆Di,j = ρ

(
(wind + ww)i,j(Γi,j − Γi−1,j)∆x+

dΓi,j
dt

∆Si,j sinαi,j

)
(2.30)

14

Chapter 3

Modelling Sailing Hydrofoils

The difference between hydrofoil and displacement vessels are the increased number of
equilibrium states which have to be considered. For a displacement vessel, motions such
as heave and pitch will naturally balance itself due to how the wetted surface of the vessel
changes. Although this does not mean it is never a problem, as resonant oscillations can
provoke large outbursts. For a foiling vessel the force balance is more similar to an
airplane than displacement vessels. This is due to the forces in both aircraft and foiling
vessels originate from the same physical principles, the mechanics behind foils.

The complexity of the problem is increased when considering wind powered hydrofoils,
as now the vessel has a fluctuating force attempting to heel the vessel.

3.1 Kinematics
Reference frame notation for vessels moving in 6 degrees of freedom is summarised in

Table 3.1 and visualised in Figure 3.1 (Fossen, 2011). Furthermore, there exist 2 coordi-
nate systems for a marine vessel, an inertial reference frame and a body-fixed reference
frame. As a general rule, velocities and forces are kept in the body-fixed reference frame
while the position and orientation is kept in the inertial reference frame. A transforma-
tion between these two follows Euler’s Theorem on Rotation and is described in equation
3.1. Where the body fixed velocity denoted with b transformed to the inertial frame
denoted s. R is the rotation from body-fixed to the inertial frame expressed in equation
3.2, where Θ is the angular vector containing the roll, pitch and yaw angle. For simplicity
c and s signify cosine and sine respectively.

DOF Description Force/Moment Velocity Position/angle
1 motions in x direction (surge) X u x
2 motions in y direction (sway) Y v y
3 motions in z direction (heave) Z w z
4 rotation about the x axis (roll) K p φ
5 rotation about the y axis (pitch) M q θ
6 rotation about the z axis (yaw) N r ψ

Table 3.1: Reference frame notation for marine vehicles.

15

Figure 3.1: The 6 DOF velocities u, v, w, p, q and r in the body-fixed reference frame
(Fossen, 2011).

usvs
ws

 = Ra
b (Θ)

ubvb
wb

 (3.1)

Ra
b (Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (3.2)

3.2 Sailing
The total aerodynamic force produced by the sail, is regarded as a combination of lift

and drag, and is denoted FT . This force can be decomposed into a force in the direction of
the course sailed defined as driving force, and a force normal to the course sailed defined
as the heeling force. These are visualised in Figure 3.2 (Marchaj, 1979). For this project
the centre of these forces will be constant and determined as the centroid of the sail area.
However, this is an approximation and will depend on the trim of the sail, apparent wind
speed and rotation of the vessel.

It is also important to mention the various terms used in sailing. Upwind sailing refers
to when the wind direction is the opposite direction of the vessel direction. Downwind
sailing is when the vessel moving with the direction of the wind. A jib is the foremost sail
of a vessel while the mainsail is attached to the mast and boom of the vessel. A Tacking
manoeuvre refers to a change in vessel direction such that the wind changes from port
side to starboard side, or vice versa.

16

Figure 3.2: Relationship between driving force and heeling force (Marchaj, 1979).

FR = L sin(β)−D cos(β) (3.3) FH = L cos(β) +D sin(β) (3.4)

The force in direction of the course sailed and the force normal to this can be defined
as in equation 3.3 and 3.4 respectively (Marchaj, 1979). Where β is the apparent wind
angle, which is the wind felt by the vessel due to relativity, the relative wind strength
and its angle are determined through equations 3.5 and 3.6. Where the apparent wind
speed VA is determined by the relativity between the direction of the vessel speed VS,
true wind speed VT and its direction a as shown in Figure 3.3.

Figure 3.3: Velocity triangle and related an-
gles (Marchaj, 1979)

VA =
√
V 2
T + V 2

S + 2VTVS cosα (3.5)

β = cos−1

(
VT cosα + VS

VA

)
(3.6)

The aerodynamic resistance of the hull can be regarded as 2 contributions, viscous
effects and kinetic energy. The viscous effects is mostly friction along the hull and can
be determined as shown in equation 3.7. where S is the surface of the hull and CF is the
frictional correlation line calculated using the ITTC-1978 prediction method. Where V∞
is the relative velocity over the characteristic length Lchar with viscosity υ. While the
resistance due to the kinetic energy can be regarded as dynamic pressure on a flat plate.
The formula in equation 3.8 is derived from Newtons Principa, where α is the angle of of
the flow (Marchaj, 1979).

CF =
0.075

(log(RN)− 2)2
RN =

V∞Lchar
υ Rair =

1

2
ρV 2

ASCF (3.7)

FAR = ρV 2
AS sin2(β) (3.8)

17

3.3 Equation of Motion
The rigid body kinetics of a general marine craft is expressed in equation 3.9. Where η

is a vector representing the motion of the vessel in all degreese of freedom with the η̇ and
η̈ notation signifies velocity and acceleration respectively. While M and C are respectively
the mass and centripetal matrices of the system and are represented in equation 3.10 and
3.11. Where S is a skew matrix and the mass matrix is separated into four equal parts
of size 3× 3.

τ = Mη̈b + Cη̇b (3.9)

M =

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx −Izy Iz

 (3.10)

C =

[
03×3 −S(M11vb +M12wb)

−S(M11vb +M12wb) −S(M21vb +M22wb)

]
(3.11)

To determine the velocities of the next time step, equation 3.9 is solved with respect to
acceleration directly before using Euler’s method to determine the new velocities. This
is shown in equations 3.12 and 3.13 respectively. Where t is a time step counter and ∆t
is the time step.

η̈b = M−1(τ − Cη̇b) (3.12)

η̇b(t+ 1) = η̇b(t) + η̈b∆t (3.13)

18

Chapter 4

The Simulation Model

This section details the implemented model. First an explanation of the assumptions and
neglections are presented, then an overview of the model as a whole is presented before
going into the different routines which make up the model.

4.1 Physical Assumptions and Neglections
The jib of the vessel, i.e foremost sail, is neglected, thus only the mainsail of the vessel

will be considered. Superstructure of the vessel will not be considered, the deck of the
vessel is assumed to be a rigid flat plate. This also holds true for the mast and boom of
the vessel. The mainsail of the vessel is assumed to be rigid and stiffened as to simulate
a non-aero-elastic sail thus luffing will not occur, i.e flapping back and forth.

It is assumed that the current in the ocean is zero thus the incoming flow is equal and
opposite the direction of the motion of the vessel. Furthermore, the sea state is assumed
to be calm-water, thus the effect of waves will be neglected. The wind will be assumed
to be of a constant value with no gusts.

Only foil-borne condition will be evaluated, meaning the simulation terminates if the
hull is in the water. The hydrofoils will not suffer from cavitation and ventilation. In
addition foil interaction effects are neglected, thus all hydrofoils will be evaluated inde-
pendently from each other. The centre of the lift and drag produced by the hydrofoils is
assumed to be at the midpoint of the span.

19

4.2 Overview of the Model
Figure 4.1 is a schematic of how the model operates, the required input which are

simulation, vessel, foil and sail settings are summarised in Table 4.1.

Figure 4.1: Schematic of the overall model.

Simulation Vessel Foil Sail
True Wind Speed LOA Chord Min - Max Chord
True Wind Angle Beam Span Span
Initial Vessel Speed Initial Airgap NACA NACA
Initial Vessel Direction Depth Material Density Material Density
Initial Vessel Orientation C B Angling

C M Position For / aft
C P
Weight
Nr of Crew
Crew Weight
Crew Position

Table 4.1: Necessary parameters to run the model.

First of the geometry is modelled based on section 2.2 and 4.3 and translated between
the body-fixed and inertial reference frame as shown in section 3.1. This section also de-
termines the moment arms of the different contributors and how much of each hydrofoil
is submerged. This is done by modelling the foil as a straight line and finding the point
where the line pierces the sea surface, which is modelled as a flat plane.

With the geometry modelled the forces can be determined which are split into forces
resulting from hydrodynamics and aerodynamics. Both the hydrofoils and sail use the
same lifting surface presented in section 2 to determine the lift and drag. However, the
aerodynamical component uses the principles behind section 3.2 to determine the final
force derived from a sail. Resistance components on the hull also follow the expressions
presented in section 3.2. Before the total force and torque in each direction is calculated
the forces are transformed to account for the vessel orientation.

20

To simulate the crew of the vessel, the helmsman is assumed fixed while the other
is free to move across the deck. This is to simulate the crew adjusting their position
to account for the heeling and pitching of the vessel. This is done by finding the most
optimum position, which is not exactly feasible but justifiable.

Now that the total force and torque acting on the vessel is determined the equations of
motion can be solved as presented in section 3.3. Eulers method is then used to determine
the velocities of the next time step. Now the geometry is updated based on translational
and angular velocities and the loop continues. The simulation continues until either a
desired time has been reached or if the vessel is no longer foil-borne.

4.3 Geometry
The vessel is, geometrically speaking, represented as a series of points. For the hull,

these points are placed equally along the length and in the middle of it’s cross-section.
The surface area of the hull, required for aerodynamical resistance is determined from
equation 4.1. Where L is length, B is beam, D is depth while CB, CP and CM is the
block , prismatic and midships coefficient respectively. It is important to mention that
this is not an accurate method and will overestimate the area, as such it was decided to
modify it by 0.6.

SA = 2 · (LBCP +BDCM + LDCB) · 0.6 (4.1)

The vessel modelled can be described as several independent elements with their own
mass distribution. Where each element is modelled as a point mass distribution. For the
hydrofoils, mass distribution is centred and equally spaced along the quarter chord line
across the camber line. Where the mass is determined by the NACA profile along with
the specified material density, chord and span. The sail follows the same principle as the
hydrofoils. The hull is assumed to have a mass distribution along its longitudinal axis
and proportional to its cross sectional volume. The end product of such an arrangement
can be viewed in Figure 4.2, where x are the foils, 4 is the hull and O is the sail.

The mass moment of inertia is determined as shown in equation 4.2, where x, y and z
is the distance from the centre of gravity to the various point masses and m is the mass
of the point mass.

~I =
I∑
i=1

mi ∗ (y2
i + z2

i) −mi · xi · yi −mi · xi · zi
−mi · xi · yi mi · (x2

i + z2
i) −mi · yi · zi

−mi · xi · zi −mi · yi · zi mi · (y2
i + x2

i)

 (4.2)

21

x

z

y

Foil

Hull

Sail

Figure 4.2: Mass distribution of the sail boat.

To determine the submerged section of a
hydrofoil an intersection point between
a line and plane is found. The foil is rep-
resented by two points (x1, y1, z1) and
(x2, y2, z2) where point 1 is above the
free surface. This creates a line through
the free surface modelled as a plane with
normal vector n = [0, 0, 1] and the point
V = [1, 1, 0] on it, the intersection is
then found as performed in equation 4.3.
The zero in V makes it so the free sur-
face is modelled at z = 0. An exam-
ple of this is shown in Figure 4.3. The
force originating from these hydrofoils
are assumed to be at the midpoint of
the foil, and as such the moment arm
is determined from this point. This will
of course not be valid when entire foil is
below or above the free surface. How-
ever as the simulation terminates once
this occurs it is not of consequence.

Figure 4.3: Plane-line intersection
method.

(x, y, z) = (x1, y1, z1)− n · ((x1, y1, z1)− V)

n ((x2, y2, z2)− (x1, y1, z1))
· ((x2, y2, z2)− (x1, y1, z1)) (4.3)

22

4.4 Hydrodynamics
Due to the scope of the work, added mass has been included however the estimation

is not a numerical method and based on an elliptical shape. Therefore the equation of
motion presented in equation 3.9 changes to equation 4.4. The added mass matrix is
presented in equation 4.5 and due the symmetrical shape most components can be ne-
glected, while m22 = m33 and m55 = m66. The estimation of the different components is
listed beside. The estimation is based on slender body theory and is taken from (Lewis,
1989), where the 2 dimensional cross section is integrated over the length where a and
b are characteristical lengths of an ellipsoid, which in this case are the span and chord
respectively.

τ = (M +Ma)η̈ + Cη̇ (4.4)

Ma =

m11 0 0 0 0 0

0 m22 0 0 0 0
0 0 m22 0 0 0
0 0 0 0 0 0
0 0 0 0 m55 0
0 0 0 0 0 m55

 (4.5)

m11 =

∫
L

ρπb2

m22 =

∫
L

ρπa2

m55 =

∫
L

ρ(a2 − b2)

The lifting surface model works as explained in section 2. Ideally, the steady state
solution would only be determined once. Due to the influence matrix is dependent on the
geometry and not the wake. However, as the vessel is not fixed the geometry and prox-
imity to the sea surface will change, thus the routine presented in section 2.3 has to be
completed for every time step. Even though it is not dependent on time, the parameters
which are used change. This is most important for surface piercing foils as they will have
a varying length.

Furthermore, the incoming flow felt by the hydrofoils is equal and opposite direction
of the vessel motion. This is illustrated in Figure 4.4 where heave and surge velocity is
shown and the incoming velocity is in the opposite direction. This is valid as there is
assumed to be no current or waves, it is valid as the incoming flow of the hydrofoils is
the relative velocity between the fluid and vessel motion.

Figure 4.4: Incoming flow felt by the hydrofoils due to the vessels motion.

23

4.5 Aerodynamics
Aerodynamical forces are determined as presented in section 3.2 where the lift and drag

is based on the lifting surface model presented in section 2. The aerodynamical added
mass is neglected due the density of air is substantially lower than water. It is known
that the air velocity increases farther from the ground, having the same gradual increase
as in a boundary layer. As such the incoming flow follows such a gradual increase in
altitude reaching a maximum at the top of the mast.

• Sail Trim - Roll Control

During the implementation of the model, it was noticeable that the simulation failed
most often due to the roll angle. As such a primitive control device was created to sim-
ulate the crew trimming the sail to compensate for this increasing angle. The control
module works by adjusting the boom angle when a certain roll angle has been reached.
The boom angle was chosen as a change in angle of attack gives the most predictable
outcome and the implementation requires the least amount of programming effort. Fur-
thermore, as these changes occur instantly it is easier to justify the change in angle of
attack then the effect of a sudden decrease in sail area.

The reason roll angle was chosen as a criteria and not its total torque, velocity or
acceleration, is that the vessel requires time to slow down the roll motion. This means the
total torque needs to continuously have changed sign, which would lead to a continuous
change in sign of acceleration thus slowing the velocity and ultimately bringing the vessel
back up.

4.6 Matlab
The model has been implemented in Mathworks Matlab which is a proprietary program-

ming language. The reason is its advantages in matrix manipulation, implementation of
algorithms and user-friendliness. An effort was made to matrices most of the calculations
as most operations are either of a ”loop” type nature or matrix manipulation.

24

Chapter 5

Validation and Verification

This section entails an investigation into the lfitng model. First a convergence test is
performed before verifying whether different geometrical aspects are considered by the
model. The results are validated against empirical and analytical means.

Before delving into the validation is it important to understand the term NACA. NACA
and its digits are a way of describing the sectional shape of a foil. The designation of the
digits follows as such: NACA MPXX, NACA LPQXX, where M is the maximum camber,
P is the position of the maximum camber along the chord and XX is the thickness. The
values are represented as percentages of the chord length.

Figure 5.1 is a convergence test to determine the optimum amount of elements as well
as most optimum arrangement. The convergence is also plotted against experimental
data from (Abbot et al., 1945) and checked against a theoretical value based on Helm-
bold’s lift slope (Chattot and Hafez, 2015). In Figure 5.1 n and m refer to the number
of elements along the chord and span respectively. It is noticeable that the solution does
not change by much after 1000 elements, where the difference between the 1000 mark and
final value is 0.09%. As the difference is negligible, the only tangible effect of increasing
the number of elements is increasing the computational effort.

The discrepancy between the numerical model and experimental is most likely due vis-
cous effects. As the numerical model is potential based it does not consider the effects of
boundary layer or separation. With regard to the boundary layer, (Melnik et al., 1977)
suggested that the boundary layer accounts for approximately 50% of the viscous effect
on lift. This is more noticeable in the coming sections.

25

0 500 1000 1500 2000
0.1065

0.107

0.1075

0.108

0.1085

0.109

0.1095

0.11

Varying n, constant m

Experimental data

Helmbold

Varying m, constant n

Equal n and m

Figure 5.1: Convergence test, difference between constant number of cells in chord and
span direction.

5.1 Effect of Aspect Ratio
An analytical lift slope is tested against the model to quantify the models ability

to capture the effects of aspect ratio. The theoretical formulation used is Helmboldz
formulae for any aspect ratio, it is used due to its simplicity and accuracy. The formulae
is expressed in equation 5.1.

CLα =
πAR(

1 +
√

1 + AR
2

)2 (5.1)

Figure 5.2 depicts the effect of aspect ratio on the lift curve slope, here it is quite
noticeable that the aspect ratio has a clear effect. The effect is largest until an aspect
ratio of 20 which coincides with the studies by (Abbot et al., 1945). The difference
between the theoretical and numerical lift slope is plotted alongside and it is reassuring
to see the difference is within the region of 1− 2%.

0 10 20 30 40 50 60 70 80 90 100

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Numerical Model

Helmbold

0 10 20 30 40 50 60 70 80 90 100

-3

-2

-1

0

1

2

3

Figure 5.2: Effect of the aspect ratio on the lift coefficient.

26

Figure 5.3 is the effect on drag coefficient, here it is quite visible that the drag modelled
is far from correct. The largest contributor to the difference is most likely viscous effects.
The model does not consider the no-slip condition, and can be said to use half the
boundary condition superimposed on the camber surface. As the boundary condition to
be solved is in actuality ”that the normal component of the relative velocity between the
fluid and the solid surface is zero on the boundary” (Anderson Jr, 2010). Thickness effects
would also contribute to the drag in the form of Form drag. In addition, it is important
to remember the model only considers the induced drag. However, even though the
magnitude is not correct, the form of the curve is correct as well as the effect aspect ratio
has on the drag coefficient.

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

Numerical Model

Helmbold

0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

Figure 5.3: Effect of the aspect ratio on the drag coefficient.

5.2 Effect of Camber
To verify whether the model accounts for camber accurately several different profiles

have been selected. The profiles selected are based on the availability of experimental
data, the data presented is taken from (Abbot et al., 1945). To reduce the uncertainty
between the experimental data and the model, the aspect ratio used is of infinite nature
which corresponds to sectional lift. Based on the figures below it can be concluded that
the numerical model sufficiently accounts for the effects of camber. Even though it is not
perfect, the model is only overestimating within a range of 2− 10% during attached flow
conditions. However, expectedly the model grossly overestimates once stalling occurs. In
addition, for increasing camber the model would seem to be overestimating the lift, this
is based on Figures 5.5 through 5.7.

27

-5 5 10

-0.5

0.5

1

Numerical Model

Experimental Data

Figure 5.4: Comparison of Lift Coefficient data for NACA 0006 (Abbot et al., 1945).

-10 -5 5 10 15

-1

-0.5

0.5

1

1.5

2

Numerical Model

Experimental Data

Figure 5.5: Comparison of Lift Coefficient data for NACA 1412 (Abbot et al., 1945).

28

-5 5 10 15 20

-0.5

0.5

1

1.5

2

Numerical Model

Experimental Data

Figure 5.6: Comparison of Lift Coefficient data for NACA 2412 (Abbot et al., 1945).

-5 5 10 15 20

-0.5

0.5

1

1.5

2

2.5

Numerical Model

Experimental Data

Figure 5.7: Comparison of Lift Coefficient data for NACA 4421 (Abbot et al., 1945).

29

-5 5 10 15 20

-0.5

0.5

1

1.5

2

2.5

Numerical Model

Experimental Data

Figure 5.8: Comparison of Lift Coefficient data for NACA 23012 (Abbot et al., 1945).

5.3 Wake
To check whether the behaviour of the wake has been implemented correctly pictures

from real life situations has been used. Figure 5.9 presents an aircraft moving through
died gas to visualise the wake of an aircraft (NASA, 1990) and the numerical models
estimation of the wake. The model shows a good approximation of the wake shape
compared to the real life situation. However, the model would be more accurate if it
considered what type of fluid the foil is enveloped in. At the moment the wake only
considers the strength and position of a vortex.

-2

-2.5

-3

-3.5

-4

-4.5

1

-2.2

0.5 0

-2.1

-0.5

-2

-1

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

Figure 5.9: Comparison between a wake turbulence study by NASA and the wake created
by the numerical model (NASA, 1990).

30

While implementing the model, it was noticeable that the computational cost of the
wake increased with each shed vortex. It is known that a shed vortex has a decreasing
impact on the foil with increasing distance from said foil. As such it was decided to test
whether removing the wake at a certain distance away from the foil would impact the
final results.

Figure 5.10 is a comparison between modifying the wake with a roll up and no roll up.
It is noticeable that converged solution is the same, however the onset of the simulation is
different. This is most likely due to the decreasing importance of the wake with increasing
distance travelled. In addition, the peak behaviour is contributed towards faulty initial
conditions. In reality, the wake would be built up as the foil is accelerating until a
constant velocity. Where as the simulation disregards what lead to the constant velocity.

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Without wake roll up

With wake roll up

Experimental data

Figure 5.10: Effect of the wake roll up on the dynamic lift.

Based on the convergence of the unsteady solution after 10-15 chord lengths in Figure
5.10 it was decided to test whether removing parts of the wake would have a substantial
effect. The motivation for this is to reduce the computational time, as the wake is an
exponential contributor with increasing time step. Figure 5.11 depicts this test with no
wake roll up. Here its noticeable that the effect of the far field wake is very small after
10 chord lengths and negligible after 15.

31

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No Cut off

Wake cut after 10 chords

Wake cut after 5 chords

Experimental Data

Figure 5.11: Comparison between different wake lengths.

The fluctuating lift coefficient at the onset of the simulation in Figure 5.10 and 5.11 is
most likely the result of poor initial conditions. As the foil is suddenly put into constant
forward speed acting as if the acceleration of the foil was near infinite from t = 0 to the
first time step.

5.4 Forced Oscillations in heave.
To validate whether the unsteady solver is correct or not, the foil is forced to oscil-

late in heave. Theodorsen’s function is applied due to its robust and reliable analytical
formulation to the unsteady problem (Faltinsen, 2005). Figure 5.12 shows the difference
between the unsteady solver and Theodorsen’s analytical approach.

Neglecting pitch, Theodorsen’s formulation is expressed in equation 5.2, where Theodorsen’s
function is C(kf) and expressed in equation 5.3, where F and G are the respectively the
real and imaginary parts of the function. As the numerical model is potential flow based,
it was decided to keep the oscillation as smooth as possible and at a low amplitude. The
main reason is to keep the angle of attack relatively low as to avoid regions were vis-
cous effects become important. The two solutions coincide both in shape and magnitude,
however peak difference is at 20%, with a root mean squared difference of 0.14. Different
frequencies were tested and the difference seen in Figure 5.12 is consistent for all tests
which comply with potential parameters.

L = −ρ0.25πc2ḧ+ ρπUcωG(kf)h− ρπUcF (k)ḣ (5.2)

C(kf) = F (kf) + iG(kf) =
H

(2)
1 (kf)

H
(2)
1 (kf) + iH

(2)
0 (kf)

(5.3)

32

0 2 4 6 8 10 12 14 16 18 20

-1.5

-1

-0.5

0

0.5

1

1.5

Theodorsen

Model

Figure 5.12: Theodorsen’s theoretical solution and the unsteady solvers solution to an
oscillating foil.

33

34

Chapter 6

Results

The results presented in this section is based on a vessel as described in Tables 6.1, 6.2
and 6.3, which has drawn inspiration from Figure 6.1. It is important to mention that
the 4 DOF simulations in this section stop due to a zero tolerance of hull in water.

Figure 6.1: The L’Hydroptere vessel (Sheahan, 2009).

Initial conditions for the results below are as follows; The vessel has no acceleration,
the vessel is only moving in x direction, initial vessel speed is 7m

s
.

Vessel LOA Beam Depth Airgap CB CM CP Weight Sail chord Sail Span
6 m 2 m 0.5 m 1 m 0.6 0.5 0.5 250 kg 0.2 - 0.75 m 4.5 m

Table 6.1: Vessel Parameters.

Foils NACA Span Chord Angling Position (x,y,z)
Dihedral 2412 4 m 0.4 m 60 (0.4, 2.5, 0.0) m
Rudder 0012 2 m 0.4 m 0 (-3.0, 0.0, 0.0) m
Rudder T-foil 0012 1 m 0.4 m 0 (-3.0, 0.0, -1.0) m

Table 6.2: Foil Parameters, position is relative to the centre of gravity.

Crew Size Weight
2 80 kg

Table 6.3: Crew Parameters.

35

6.1 1 DOF Stability Tests
The following simulations are performed to determine whether the vessel is stable. As

such all degrees of freedom except the testing parameter are kept constant. The constant
parameters used are presented in Table 6.4. The simulation was only performed for true
wind speeds of 6m

s
with a true wind angle of 25◦.

u v w p q r

7 m
s

0 m
s

0 m
s

0 deg
s

0 deg
s

0 deg
s

Table 6.4: Constant Parameters used in the 1 DOF simulations.

Roll Stability

The sail trim of the vessel is allowed to be adjusted to compensate for the increasing
roll angle, this is to simulate the crew applying countermeasures to the motion. The
simulation was terminated after 2 oscillations, as it was deemed sufficient enough to view
the roll stability.

The decline in total torque in Figure 6.2a is contributed to an increasing submerged
starboard foil and a decreasing submerged port foil. Thus the force balance between
these two becomes greater, allowing the starboard foil to counteract the torque from the
sail until it reaches an equilibrium. However, as the acceleration in roll has only been
positive seen in Figure 6.2b until 7.5 seconds there exists now a constant roll velocity as
seen Figure 6.3a between 2.5 and 5 seconds heeling the vessel. This continues until the
sail is de-powered at a roll angle of 2◦ resulting in a deceleration of the roll velocity. The
de-powering works as intended, however it might be contributing to an unstable solution.
This is based on the peak roll velocity in Figure 6.3a is increasing. Although the increase
is small it can be seen that peak roll angle is increasing in Figure 6.3b. Therefore given
enough time the results may indicate an unstable vessel.

0 5 10 15 20 25 30 35 40

Time [s]

-400

-300

-200

-100

0

100

200

300

400

T
o

rq
u

e
 [

N
m

]

Total Torque in Roll, True wind 6 m/s, angle 25
°

(a)

0 5 10 15 20 25 30 35 40

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
c
c
e

le
ra

ti
o

n
 [

d
e

g
/s

2
]

Roll Acceleration, True wind 6 m/s, angle 25
°

(b)

Figure 6.2: 1 DOF Roll Stability test, a - Total Torque, b - Acceleration, over 40 seconds.

36

0 5 10 15 20 25 30 35 40

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

V
e

lo
c
it
y
 [

d
e

g
/s

]

Roll Velocity, True wind 6 m/s, angle 25
°

(a)

0 5 10 15 20 25 30 35 40

Time [s]

-0.5

0

0.5

1

1.5

2

2.5

A
n

g
le

 [
d

e
g

]

Roll Angle, True wind 6 m/s, angle 25
°

(b)

Figure 6.3: 1 DOF Roll Stability test, a - Velocity, b - Angle, over 40 seconds.

Pitch Stability

As can be seen in Figure 6.4a the pitch motion is severely slower then roll motion in
Figure 6.3b, thus requiring a longer simulation. Although very small the jagged behaviour
in Figure 6.4b is due to the choice of allowing one crew member to move up and down the
cockpit of the vessel to compensate for pitching. This is a gross simplification, however
it is noticeable that the effect has had the intended effect of minimizing pitch motion.

0 20 40 60 80 100 120 140 160

Time [s]

0

0.5

1

1.5

2

2.5

A
n

g
le

 [
d

e
g

]

Pitch Angle, True wind 6 m/s, angle 25
°

(a)

0 20 40 60 80 100 120 140 160

Time [s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

V
e

lo
c
it
y
 [

d
e

g
/s

]

Pitch Velocity, True wind 6 m/s, angle 25
°

(b)

Figure 6.4: 1 DOF Pitch Stability test, a - Angle, b - Velocity, over 160 seconds.

37

Heave Stability

The heave motion illustrated in Figure 6.5 shows a quick and clear convergence towards
equilibrium. Where the reason is due to the total submerged area reduces as the vessel lifts
itself upwards thus reducing the total lift upwards. In addition to the reduced submerged
area, as the vessel is moving upwards the angle of attack turns negative as the relative
velocity of the fluid over the hydrofoils is now negative thus reducing the lift. Although
based on the heave velocity magnitude in Figure 6.5c the effect of a negative angle of
attack would be significantly lower than the reduced submerged area which decreases
from 0 - 12 seconds.

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-40

-20

0

20

40

60

80

100

120

F
o

rc
e

 [
N

]

Total Force in Heave, True wind 6 m/s, angle 25
°

(a)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-8

-7

-6

-5

-4

-3

-2

-1

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

10-3 Heave Acceleration, True wind 6 m/s, angle 25
°

(b)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

V
e

lo
c
it
y
 [

m
/s

]

Heave Velocity, True wind 6 m/s, angle 25
°

(c)

Figure 6.5: 1 DOF Heave Stability test, a - Total Force, b - Acceleration, c - Velocity,
over 20 seconds.

38

6.2 4 DOF Simulation
The results in this section neglect sway and yaw motion. The initial conditions of the

vessel are equal to the 1 DOF simulations and presented in Table 6.4. The simulation
was terminated after 12 seconds as for true wind angles in the range of 25-35 the vessel
no longer maintained foil-borne conditions. Figures 6.6 through 6.9 are the results for a
true wind angle of 25◦, while Figures 6.10 through 6.24 are the results obtained for wind
angles between 25◦ and 75◦ with a step of 5.

Figure 6.6a is the total torque in roll, where the motion is steady until the second de-
powering is initiated at around 8.5 seconds. Differing from the first de-powering which
occurs at around 1 second, the result is a sudden peak in total torque. Subsequently, the
roll velocity is decelerated extremely fast seen when plotting the acceleration and velocity
in Figure 6.6b and 6.6c respectively. The sudden peak is also noticeable in terms of pitch,
heave and surge which can be seen in Figure 6.7a, 6.8a and 6.9a respectively.

0 2 4 6 8 10 12

Time [s]

-3

-2

-1

0

1

2

3

T
o
rq

u
e
 [
N

m
]

104 Total Torque in Roll, True Wind angle 6 m/s, 25
°

(a)

0 2 4 6 8 10 12

Time [s]

-25

-20

-15

-10

-5

0

5

10

15

20

25
A

c
c
e

le
ra

ti
o

n
 [

d
e

g
/s

2
]

Acceleration in Roll, True Wind speed 6 m/s, angle 25
°

(b)

0 2 4 6 8 10 12

Time [s]

-4

-3

-2

-1

0

1

2

3

4

V
e
lo

c
it
y
 [
d
e
g
/s

]

Velocity in Roll, True Wind 6 m/s, angle 25
°

(c)

0 2 4 6 8 10 12

Time [s]

-6

-4

-2

0

2

4

6

A
n
g
le

 [
d
e
g
]

Roll Angle, True Wind speed 6 m/s, angle 25
°

(d)

Figure 6.6: 4 DOF Roll motion, a - Total Torque, b - Acceleration, c - Velocity, d- Angle
over 12 seconds.

39

The effect of the peak on pitch is most noticeable in terms of net change in pitch
velocity seen in Figure 6.7c resulting in a steady increase of pitch angle seen in Figure
6.7d. This is due to the area under the acceleration in positive direction is larger than the
area under the acceleration in negative direction seen in Figure 6.7b. How this effects the
rest of the motions can be viewed as an increase in total submerged area seen in Figure
6.9d, although as the angle is very small the majority of the increased submerged area is
contributed to the heave velocity.

0 2 4 6 8 10 12

Time [s]

-6000

-4000

-2000

0

2000

4000

6000

T
o

rq
u

e
 [

N
m

]

Total Torque in Pitch, True Wind 6 m/s, angle 25
°

(a)

0 2 4 6 8 10 12

Time [s]

-1

-0.5

0

0.5

1

A
c
c
e

le
ra

ti
o

n
 [

d
e

g
/s

2
]

Acceleration in Pitch, True Wind speed 6 m/s, angle 25
°

(b)

0 2 4 6 8 10 12

Time [s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

V
e
lo

c
it
y
 [
d
e
g
/s

]

Velocity in Pitch, True Wind 6 m/s, angle 25
°

(c)

0 2 4 6 8 10 12

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
n

g
le

 [
d

e
g

]

Pitch Angle, True Wind speed 6 m/s, angle 25
°

(d)

Figure 6.7: 4 DOF Pitch motion, a - Total Torque, b - Acceleration, c - Velocity, d- Angle
over 12 seconds.

40

Due to the initial negative heave acceleration seen in Figure 6.8b the vessel gains a
negative heave velocity. This increases the total submerged area seen in Figure 6.9d
resulting in more lift and drag, the increased lift results in a heave force balance seen in
Figure 6.8a. One would thus expect the vessel to eventually have more positive heave
force than negative as the submerged area is steadily increasing. However, as the force in
surge is also steadily decreasing seen in Figure 6.9a the net change in heave force is very
low. The quick change between positive and negative heave force seen between 9 and 10
seconds is therefore attributed to the heave velocities magnitude and direction. First a
force peak occurs which quickly accelerates the heave velocity seen in Figure 6.8c. As the
relative size between surge and heave velocity is now diminished the angle of attack is
increased, while the heave velocity is positive the angle becomes negative thus reducing
the lift. Therefore the lift drops, decelerating the heave motion as seen in Figure 6.8c
before quickly finding a new equilibrium.

0 2 4 6 8 10 12

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

F
o

rc
e

 [
N

]

104 Total Force in Heave, True Wind 6 m/s, angle 25
°

(a)

0 2 4 6 8 10 12

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Acceleration in Heave, True Wind speed 6 m/s, angle 25
°

(b)

0 2 4 6 8 10 12

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

V
e

lo
c
it
y
 [

m
/s

]

Velocity in Heave, True Wind 6 m/s, angle 25
°

(c)

Figure 6.8: 4 DOF Heave motion, a - Total Force, b - Acceleration, c - Velocity, over 12
seconds.

41

The effect of the de-powering scheme is quite noticeable on the surge motion, as seen in
Figure 6.9. Due to the total negative acceleration is higher than total positive acceleration
seen in Figure 6.9b the resulting velocity experiences a clear downwards trend in Figure
6.9c. In addition, as the total submerged area increases the total drag increases thus
decreasing the total force in surge during times when the sail is not de-powered, where
a difference can be seen at 1 second and 6 seconds in Figure 6.9a. This ensures the
downwards trend mentioned earlier, however the main reason for the downwards trend is
the de-powering scheme is active for more of the simulation as seen when the total force
in surge is negative.

0 2 4 6 8 10 12

Time [s]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

F
o

rc
e

 [
N

]

Total Force in Surge, True Wind 6 m/s, angle 25 °

(a)

0 2 4 6 8 10 12

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Acceleration in Surge, True Wind speed 6 m/s, angle 25 °

(b)

0 2 4 6 8 10 12

Time [s]

5

5.5

6

6.5

7

7.5

8

V
e
lo

c
it
y
 [
m

/s
]

Velocity in Surge, True Wind 6 m/s, angle 25 °

(c)

0 2 4 6 8 10 12

Time [s]

1

1.5

2

2.5

3

3.5

A
re

a
 [

m
2
]

Total Submerged Area, True Wind 6 m/s, angle 25 °

(d)

Figure 6.9: 4 DOF Surge motion, a - Total Force, b - Acceleration, c - Velocity, d-
Submerged Area over 12 seconds.

42

It can be safely assumed that the de-powering is the reason for the sudden change,
although the reason a peak occurs now and not every time the sail is de-powered, is due
to the condition of the vessel just prior to the de-powering. Before the peak occurs de-
powering is initiated at approximately 8.5 seconds resulting in a drop in surge force seen
in Figure 6.9a this reduces the forward speed of the vessel seen in Figure 6.9c. As the
forward speed is reduced the angle of attack increases due to relative size between heave
and surge velocity has decreased. In addition, the total submerged area seen in Figure
6.9d has also increased since the last de-powering. Therefore it is believed the peak in
total torque in roll occurs due to the peak in heave, de-powering of the sail reducing the
heel moment and positive roll angle ensuring the starboard foil is more submerged than
its port side counterpart.

All True wind Angles

Predictably the roll angle seen in Figure 6.13 diminishes for increasing wind angle. This
is contributed to the force produced by the sail is diminishing for increasing true wind
angle, due to a decreasing relative wind velocity. It also noticeable that the acceleration
seen in Figure 6.12 decreases with increasing wing angle. It is also noticeable that the
de-powering scheme is working as intended as the roll velocity decelerates. Although it
is noticeable that the roll velocity increases for the second oscillation seen in Figure 6.11
which may indicate that current de-powering scheme implemented is destabilising the
vessel. In addition, the de-powering scheme can also be seen to initiate at a later stage
for increasing true wind angle.

Total torque in Roll, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-6000

-4000

-2000

0

2000

4000

6000

T
o

rq
u

e
 [

N
m

]

Figure 6.10: Total torque in roll, for all wind angles over time, at 6m
s

true wind speed at
30◦.

43

Velocity in Roll, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
e
lo

c
it
y
 [
d
e
g
/s

]

Figure 6.11: Velocity in roll, for all wind angles over time, at 6m
s

true wind speed at 30◦.

Acceleration in Roll, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-6

-4

-2

0

2

4

6

A
c
c
e

le
ra

ti
o

n
 [

d
e

g
/s

2
]

Figure 6.12: Acceleration in roll, for all wind angles over time, at 6m
s

true wind speed at
30◦.

44

Roll Angle, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-6

-4

-2

0

2

4

6

A
n
g
le

 [
d
e
g
]

Figure 6.13: Roll angle, for all wind angles over time, at 6m
s

true wind speed at 30◦.

The severity of the heave peak at 8.5 seconds can be seen to diminish and occur at a
later stage with increasing true wind angle seen in Figure 6.18. In addition, the effect of
the peak can also be seen to diminish in Figures 6.10 and 6.14 which is the total torque
in roll and pitch respectively. The reason is most likely due to a decreased submerged
area seen in Figure 6.24 in the same area. In addition, the velocity in surge is greater in
the same area seen in Figure 6.23 thus the relative size between surge and heave velocity
is lower resulting in a lower angle of attack. One would expect the lower true wind angles
to obtain larger surge velocities due to the larger relative wind speed. However, due to
the de-powering scheme the vessel uses less of the sail at larger true wind angles as a
countermeasure to the roll motion.

It is believed based on Figure 6.17 which visualises the pitch angle for all wind angles,
that pitch motion is less of a problem then roll motion. This is also reinforced by the
1 DOF pitch test where the pitch motion is slow. However, it is noticeable that during
certain wind angles, the pitch angle is steadily increasing. This is most likely the result of
allowing one of the crew members to always find a position which is optimal towards the
total torque in roll and pitch. Which explains the overall small jumps between positive
and negative torque in Figure 6.14. Although the resulting acceleration viewed in Figure
6.16 is small it is almost in all cases the same sign. A negative consequence of this is seen
when visualising the pitch velocity in Figure 6.15. Where the net gain is an increasing
pitch velocity thus never stabilising.

45

Total torque in Pitch, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

T
o

rq
u

e
 [

N
m

]

Figure 6.14: Total torque in pitch, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

Velocity in Pitch, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
e

lo
c
it
y
 [

d
e

g
/s

]

Figure 6.15: Velocity in pitch, for all wind angles over time, at 6m
s

true wind speed at
30◦.

46

Acceleration in Pitch, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d

 A
n

g
le

 [
d

e
g

]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
c
c
e

le
ra

ti
o

n
 [

d
e

g
/s

2
]

Figure 6.16: Acceleration in pitch, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

The effect of pitch on the other motions can be seen when comparing the pitch angle
with the total submerged area in Figures 6.17 and 6.24. Where it seen that for decreasing
pitch angle the total submerged area decreases, the reduced submerged area results in
less drag and lift. The resulting total force in surge can be seen in Figure 6.21 to be
larger in this area, although the difference is small. In terms of heave the effect exists
although small due to the higher surge velocity seen in Figure 6.23 in the same area.

Pitch Angle, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
n
g
le

 [
d
e
g
]

Figure 6.17: Pitch angle, for all wind angles over time, at 6m
s

true wind speed at 30◦.

47

The interaction between surge and heave is less obvious based on Figure 6.18 and 6.23
which are respectively the force in heave and velocity in surge. As one would expect
the force in heave to show the same trend as the velocity in surge, meaning a reduction
in heave when the surge velocity is lower. However, this can be explained by the heave
velocity and total submerged area in Figures 6.20 and 6.24 respectively. Based on Figure
6.24 the total submerged area is larger in areas where the surge velocity is lowest, while
lower in areas where the surge velocity is largest. In addition, the heave velocity is in
general negative in areas where the surge velocity is lowest thus contributing to a larger
heave force. This is due to the incoming flow is equal and opposite the direction of the
vessel motion. Thus a negative heave velocity produces a positive angle of attack, while
a positive heave velocity results in a negative angle of attack. Du. Thus as both are
important for the lift produced it would indicate the net sum in heave force remains
largely the same.

Total Force in Heave, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

F
o

rc
e

 [
N

]

Figure 6.18: Total Force in heave, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

48

Acceleration in Heave, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d

 A
n

g
le

 [
d

e
g

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Figure 6.19: Acceleration in heave, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

Velocity in Heave, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-0.3

-0.2

-0.1

0

0.1

0.2
V

e
lo

c
it
y
 [

m
/s

]

Figure 6.20: Velocity in heave, for all wind angles over time, at 6m
s

true wind speed at
30◦.

49

It is clear that the de-powering scheme of the sail has had a clear effect on the surge
motion of the vessel. This is based on Figure 6.21 visualising the total surge force, where
for most of the simulation is negative. Thus decelerating the forward speed of the vessel
seen in Figure 6.23, however it can be seen that net change in velocity diminishes with
increasing true wind angle. Although this is only valid for the cases where the de-powering
scheme is most prominent. Thus further exemplifying the effect of the de-powering scheme
on the performance of the vessel. The reduced forward speed affects two vital factors,
the apparent wing velocity and importance of heave velocity. For decreasing apparent
wind velocity the forces and torques produced by the sail diminish thus reducing the
required restoring forces. However it also means that if the drag of the vessel does not
decrease faster than the decreasing sail force the vessel will ultimately obtain a vessel
speed where it is no longer able to maintain foil-borne conditions. Although based on
Figure 6.22 visualising the acceleration in surge, the vessel is accelerating faster than it
decelerates when de-powering. In terms of heave velocity, it will affect the hydrofoils
more as the relative size between surge and heave velocity diminishes. This can, if the
difference becomes low enough create large angles of attack. In addition the threshold for
reaching the zero lift angle diminishes. In addition, the increased angle of attack would
also increase the drag coefficient more than an increase in forward speed.

Total Force in Surge, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

F
o

rc
e

 [
N

]

Figure 6.21: Total Force in surge, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

50

Acceleration in Surge, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d

 A
n

g
le

 [
d

e
g

]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Figure 6.22: Acceleration in surge, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

Velocity in Surge, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

6

6.5

7

7.5

8

8.5

V
e

lo
c
it
y
 [

m
/s

]

Figure 6.23: Velocity in surge, for all wind angles over time, at 6m
s

true wind speed at
30◦.

51

Total Submerged Area, true wind speed 6 m/s

1.5 3 4.5 6 7.5 9 10.5 12

Time [s]

30

35

40

45

50

55

60

65

70

75

T
ru

e
 W

in
d
 A

n
g
le

 [
d
e
g
]

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

A
re

a
 [

m
2
]

Figure 6.24: Total submerged area, for all wind angles over time, at 6m
s

true wind speed
at 30◦.

52

Chapter 7

Discussion

In this section are thoughts and comments on the results and overall simulation model.

7.1 Results
This section is a further discussion on the results. First the peak occurrence is dis-

cussed before a discussion on the short simulation time in 4 Degrees of freedom.

Heave Peak Occuring at 8.5 seconds

The magnitude of the peak which occurs for some true wind angles is concerning, al-
though the peak as formerly discussed, is contributed to an increase of submerged total
area, diminished relative size between heave and surge velocities and the roll angle. The
magnitude of the peak results in a roll acceleration equivalent to 2.5 G’s, which according
to NASA is just below the threshold astronauts are subject to when propelling themselves
of the planet (NASA, 1990).

Another explanation for the peak is regrettably a fault in the lifting model. This is
based on the peak like behaviour seen when investigating whether the wake roll up had
any effect in Section 5.3 visualised in Figure 5.10. Where a peak is seen during the de-
velopment of the wake field, here the lift also experiences a sudden jump doubling its lift
coefficient. Although, this occurs only when the wake field has not been fully established,
as the peak occurs far into the simulation the wake field is established. Although, as
mentioned in Section 4.4 the wake is cut after 3 seconds to reduce the computational
time, which was based on the lift being unchanged when removing the wake after 10
chord lengths.

Thus an explanation to the peak could be a ripple effect where the wake is increasingly
faulty as the simulation runs its course. Where for each time step the wake has been
removed the wake becomes increasingly different from an uncut wake field. However,
it is peculiar that it only occurs during the second de-powering, in addition the peak
diminishes with increasing true wind angle seen in Figure 6.8. Also, this phenomenon
does not appear for 1 DOF simulations which lasted longer.

53

To conclude it is unknown whether the vessels specific conditions triggered the peak or
whether the lifting model has a flaw. This based on both arguments being equally valid,
what is known is that the magnitude of the peak is infeasible as the acceleration is far to
large.

Termination after 12 seconds

Based on the 1 DOF simulations the vessel is able to restore itself to its upright position.
However, 4 DOF simulations failed the criteria of foil-borne conditions which suggests the
vessel set-up is not able to maintain foil-borne conditions. Although as discussed in the
results, there are indications the de-powering scheme of the sail is creating an unstable
environment due to increased velocities between oscillations.

Furthermore, the zero tolerance of hull in water might be to strict for the current model
to maintain. As many control devices are primitive and non-existent. These include a
more realistic representation of the crew, a ride height control mechanism to maintain a
stable altitude between the hull and sea surface and lastly the rudder would create a roll
torque on the vessel. As sway and yaw were neglected for the simulations the motions
could contribute towards a more stable vessel. This is further discussed in Section 7.2.

In addition, the roll angle and pitch angle of the vessel seen in Figure 6.13 and 6.17
respectively is rather low for the vessel to fail the foil-borne condition. Although it can
be seen that the vessel has in general a period of negative heave velocity seen in Figure
6.20. The decreased gap between the hull sea surface means the hull will enter the water
a lower roll angle.

Furthermore, the dihedral foils are positioned far out from the hull which is an attempt
at creating a longer moment arm to counter act the sail force. This due to a dihedral foil
has a force component in both z and y direction, the relative size between these depends
on the dihedral angle. As the vessel heels the difference in submerged area changes as one
side is lifted out of the water while the other sinks in. This ensures the force difference
between the port and starboard side increases allowing one side to counteract the heel
moment of the sail. However, as the dihedral has a force component in both z and y
direction one of these will work in the direction of the heeling angle which depends on
which side the vessel is heeling to. Thus to ensure that the force component creating a
heeling torque is kept to a minimum the moment arm either has to be reduced or the
moment arm for the restoring force needs to be increased. Which is why the dihedral foils
are positioned far out, which in turn is why the simulation terminates as the extension
dips below the water long before the hull.

This is a flaw in the simulation and a work around would require an overhaul to how
the submerged section of each foil is determined. In hindsight, the method used described
in Section 4.3 which is a simple plane line intersection function, works perfectly when it is
assumed the vessel will always be foil-borne. In consideration of the results, the method
seems to be sub-optimal, as the results indicate the simulation criteria is too strict.

54

7.2 Simulation Model
This section is a discussion on the neglections, control devices and general weak aspects

of the model.

Potential Flow Approach

Based on the investigations carried out in section 5 to determine and verify the va-
lidity of the lifting model it is safe to conclude the model is adequate during attached
flow conditions. However, the validity of the model suffers greatly when overstepping
its boundaries seen in Figure 5.6 where the lift increases linearly where it should have
dropped due to viscous effects. This means the model can be correct only under certain
conditions, which is a problem with regard to a training simulator. A work around to
this, could be a training simulator where the crew is trained for certain scenarios. Up-
wind sailing and tacking manoeuvres are two such scenarios which can be considered,
although there will be a period during the tacking manoeuvre where the model will not
be entirely correct. This however is not a major problem as the time frame is small and
during a tacking manoeuvre the sail is mostly luffing losing most of its power. Thus there
should not be a problem implementing a suitable routine during the short time the sail
will experience a large angle of attack.

Downwind sailing conditions are out of the question for a purely potential based
method. This is due to the angle of attack being to large, which is a consequence of
the assumptions and neglections made in the lifting surface model with regard to bound-
ary conditions. This is due to the model assumes the separation point is always at the
trailing edge of the foil whereas for larger angles of attack this point will move away from
the trailing edge. Which is due to the model ignores the effects of boundary layer theory.

Neglection of Sway and Yaw

It was decided to neglect the effects of sway and yaw motion based on (Masuyama,
1987) who performed a similar analysis and found that the sideslip angle was small. How-
ever, the sideslip angle would mean a different angle of attack on the hydrofoils. The
addition of sway and yaw would be most noticeable on the dihedral foils as they are
angled thus based on the direction of the sideslip the forces would increase on one side
while decreasing on the other. The effect of a sideslip angle would only be noticeable for
the rudder T-foil when the vessel has a roll angle. The rudder would also require either a
larger angling to minimize the yaw motion or lower depending on the size and direction
of the sideslip. In addition, it would require a control mechanism for the rudder which
if based on the current implementation of the de-powering scheme of the sail, will most
likely end in an even more unstable vessel

In addition, the sideslip would change the apparent wind speed as the true wind an-
gle would no longer be constant. Thus the true wind speed could increase or decrease
pending on the direction of the sideslip. The total effect of sideslip would thus be quite
noticeable as both the sail and hydrofoils would perform differently.

55

Neglection of Resistance Components

In hindsight, a major flaw in the model is that the only drag component the lifting
model considers is the induced drag. Thus the total force in surge should be lower as
resistance due to friction, spray and intersection resistance is not considered. Thus the
surge accelerations in Figure 6.22 are tenuous at best. The vessel should have been decel-
erating faster and acceleration slower as the total drag should be higher, this also means
the heave velocity would have a stronger effect. The effect on total force in heave how-
ever, would largely remain the same as it self stabilises due to changes in submerged area.

Control Devices

The control device for the sail is believed to have worked as intended based on Figure
6.6d, 6.6b and 6.13. Expectedly, the reduced angle of attack on the sail which reduced
the sails force in sway also meant a reduction in the sails surge force. Thus decelerating
the vessel leading to a reduced relative velocity on the hydrofoils. However, as discussed
it is believed it contributed to an unstable solution. Thus the current implementation
should be remodelled when going forward.

Other control devices which were not implemented as their algorithms and search pa-
rameters were not optimal include: A rudder algorithm to minimize yaw motion and an
adjustable foil to minimize heave motion. The search parameters used were the total
torque and force in yaw and heave respectively. This resulted in an unstable solution
where the vessel would gain a constant velocity due to the net gain in acceleration was
either positive or negative. Ideally the algorithm would initiate only when the vessel was
exceeding a certain angle for yaw control and when a certain altitude was exceeded. The
implementation would be similar to the de-powering scheme of the sail, although based
on the results it indicate that the current implementation is unstable.

Real Time Simulation

Current work was able to severely diminish the required computational time for the
lifting model. Where for a single foil the computational time reached as low as 0.06
seconds. However, as there are multiple foils to simulate and a sail, the simulation failed
to accomplish real time speeds. This is also in addition to the time required to run several
other routines handling geometry and dynamics of the vessel. Although, as the foils and
sail are modelled independently from one another and the computation was not done in
parallel, it is believed close to real-time speeds would have been possible if an emphasis
on parallel computing was focused on at an earlier date. However, this would have drawn
time from focusing on modelling the dynamics of a sailing hydrofoil which was the main
task.

56

Geometry Parametrisation

An attempt was made to parametrises the geometry of the vessel, but not implemented
correctly. As such It is not able to adjust how many foils there are, nor can it differentiate
between a mono-hull and a catamaran. The fault is the author did not divest enough
time into this section, and the task was deemed to difficult based on the authors prior
experience with programming and geometry parametrisation. In addition, the shape of
the hydrofoils are limited to rectangular foils or foils with a sweep, this is not a problem
for the current lifting model implemented as complex shapes would require a different
model.

57

58

Chapter 8

Further Work

Further work can be categorised into three sections; improving the physical considera-
tions of the model, improving kinematics and control mechanisms and lastly improving
computational efficiency and speed.

Physical Considerations

� Hydrodynamics

If there is a desire to use more complex shapes than rectangular or swept wings, the
alternative would be a panel method. This would also mean form drag due to the thick-
ness of the foil would be considered. The implementation is very similar to the current
implementation, where the main difficulty would be defining the geometry accurately.
However the number of elements will increase drastically which is not ideal for real-time
simulations.

Interaction effects due to the created wake is also important as the aft foil of a tandem
hydrofoil system has decreased lift. If implemented, several more design choices can then
be investigated. Such as optimum distance between hydrofoils and optimum geometry
for each foil (Kemal, 2015).

Improving upon drag estimations is an important aspect when improving upon the
model. Drag components to be considered are then; wave resistance due to free surface,
interference resistance, spray resistance and frictional resistance.

Non-foilborne conditions should also be considered. This would entail implementing a
suitable model for the hull resistance. A possible candidate is the strip-theory potential
model, the real challenge would be how to define the wetted surface.

� Aerodynamics

Downwind sailing is an aspect which should be looked at when improving the model.
A quasi-empirical approach could be viable as potential based methods are not up to the
task due to large angles of attack. If a wing sail is not desired, then a method to handle
aeroelasticity should be considered as fluttering will affect the effectiveness. In addition,
as previously discussed interaction effects will make it possible to more accurately model

59

the jib sail, the sail ahead of the mainsail. Although it is possible to model it without
interaction effects, however the effect of the mainsail without including interaction effects
would be wrong, which is due to their close proximity to one another.

Kinematics and Control mechanisms

Implementing a model such as presented by (Masuyama, 1987) can be useful when
considering manoeuvres. However, it would also mean finding suitable approximations
of the stability derivatives. The control mechanisms can be improved by adding three
algorithms; a path generator, a tracking function and path following. The path generators
function is to define an area the vessel should move through, while the tracking function
determines where the vessel has been in time, lastly the path following function is to
adjust controllable mechanisms such as sails, crew, rudders and foil flaps to maintain
course.

Model Architecture

High computational power is a given when attempting to simulate in real time, however
increased power means nothing if the model is not able to utilise said power. As such
parallelisation should be be kept in mind when selecting hardware and programming.
Further playing to the program languages strong side should always be considered. The
author is not well versed, but an example is utilising Matlab’s matrix manipulation and
vectorisation.

60

Conclusion

Based on the investigations carried out it is believed the created lifting surface model
sufficiently models the effects of camber and aspect ratio during attached conditions.
Furthermore, the modelling of dynamic lift is also believed to be sufficiently accurate
during attached conditions, which was investigated against Theodorsen’s function.

Current work was able to severely diminish the required computational time for the
lifting model, however as the computations are not done in parallel real-time speeds were
not accomplished.

It is believed the current model is able to simulate the dynamic behaviour of a sail-
ing hydrofoil. Although, the model is far from perfect and experienced an abnormal
behaviour during specific conditions. In addition, the current implementation of crew
behaviour is believed to have made the vessel unstable.

With regards to a potential based simulator, the method is adequate but suffers pre-
dictably during conditions where viscous effects are dominant. This means, the simulator
will either have to be made for certain scenarios or switch to adequate models when po-
tential flow suffers.

61

62

Bibliography

Abbot, I., von Doenhoff, A., and Albert, E. (1945). Summary of airfoil data. 1945. NACA
Report, 824.

Anderson Jr, J. D. (2010). Fundamentals of aerodynamics. Tata McGraw-Hill Education.

Blazek, J. (2015). Computational fluid dynamics: principles and applications.
Butterworth-Heinemann.

Caponneto-Hueber (2019). Caponneto-Hueber. http://www.caponnetto-hueber.com. Ac-
cessed: 2019-02-17.

Chattot, J. and Hafez, M. (2015). Theoretical and applied aerodynamics. Springer.

Delbosc, N. (2015). Real-Time Simulation of Indoor Air Flow using the Lattice Boltzmann
Method on Graphics Processing Unit. PhD thesis, University of Leeds.

Faltinsen, O. M. (2005). Hydrodynamics of high-speed marine vehicles. Cambridge uni-
versity press.

Fiddes, S. and Gaydon, J. (1996). A new vortex lattice method for calculating the flow
past yacht sails. Journal of Wind Engineering and Industrial Aerodynamics, 63(1-
3):35–59.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John
Wiley & Sons.

HochBaum, A. C. (2019). Ship manoeuvrability. Lecture notes.

Katz, J. and Plotkin, A. (2001). Low-speed aerodynamics, volume 13. Cambridge univer-
sity press.

Kemal, O. (2015). A numerical parametric study on hydrofoil interaction in tandem.
International Journal of Naval Architecture and Ocean Engineering, 7(1):25–40.

Kenny, J., Takeda, K., and Thomas, G. (2008). Real-time computational fluid dynamics
for flight simulation. In The Interservice/Industry Training, Simulation&Education
Conference (I/ITSEC).

Lewis, E. V. (1989). Principles of naval architecture vol iii: Motions in waves and con-
trollability. The Society of Naval Architects and Marine Engineers, Jersey City, New
Jersey.

Lidtke, A. K., Marimon Giovannetti, L., Breschan, L. M., Sampson, A., Vitti, M., and
Taunton, D. (2013). Development of an america’s cup 45 tacking simulator.

63

Linxweiler, J., Krafczyk, M., and Tölke, J. (2010). Highly interactive computational
steering for coupled 3d flow problems utilizing multiple gpus. Computing and visu-
alization in science, 13(7):299–314.

Marchaj, C. A. (1979). Aero-hydrodynamics of sailing.

Marchaj, C. A. (2003). Sail performance: techniques to maximize sail power. International
Marine/Ragged Mountain Press.

Masuyama, Y. (1987). Stability analysis and prediction of performance for a hydrofoil
sailing boat. International shipbuilding progress, 34(398):178–188.

Melnik, R., Chow, R., and Mead, H. (1977). Theory of viscous transonic flow over airfoils
at high reynolds number. In 10th Fluid and Plasmadynamics Conference, page 680.

NASA (1990). NASA. https://www.nasa.gov/. Accessed: 2019-04-25.

NASA (2017). Lattice Boltzmann and Navier-Stokes Carte-
sian CFD Approaches for Airframe Noice Predicitions.
https://www.nas.nasa.gov/assets/pdf/ams/2017/AMS20171012Barad.pdf.Accessed :
2019− 02− 20.

NVIDIA (2019). NVIDIA - Computer Game Company. https://www.nvidia.com/. Accessed:
2019-03-14.

Ou, Y.-F., Liu, T., Zhao, Z., Ma, Z., and Wang, Y. (2008). Modeling the impact of frame rate
on perceptual quality of video. In 2008 15th IEEE International Conference on Image
Processing, pages 689–692. IEEE.

Roper, D., Owen, I., Padfield, G., and Hodge, S. (2006). Integrating cfd and piloted simulation
to quantify ship-helicopter operating limits. The Aeronautical Journal, 110(1109):419–
428.

Sheahan, M. (2009). World Sailing Speed Record Smashed.
https://www.yachtingworld.com/news/world-sailing-speed-record-smashed-11654.
Accessed: 2019-05-2.

Spalart, P. and Venkatakrishnan, V. (2016). On the role and challenges of cfd in the aerospace
industry. The Aeronautical Journal, 120(1223):209–232.

Succi, S. (2001). The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford
university press.

WASZP (2016). WASZP - the one design foiler. http://www.waszp.com/. Accessed: 2019-
01-29.

Wenisch, P., Borrmann, A., Rank, E., Van Treeck, C., and Wenisch, O. (2005). Collaborative
and interactive cfd simulation using high performance computers. In 18th Symposium
AG Simulation (ASIM) and EuroSim. Erlangen, Germany.

Wolfson Unit (2019). Wolfson Unit. http://www.wumtia.soton.ac.uk/. Accessed: 2019-02-2.

i

ii

Appendices

iii

First code is the overall simulation model, thereafter are the codes which are used in
succession, however multiple functions are used in different functions.

A Code: Simulation Model

1 clear all

2 close all

3 clc

4 %---%

5 % This a simulation model for a sailing hydrofoil vessel.

There is a zero

6 % tolerance allowance for any foil to be entirely submerged ,

which stops

7 % terminates the simulation. For a further explenation see

the

8 % Master Thesis

9 % "An Unsteady Vortex Lattice Approach To Sailing Hydrofoil

Dynamics ."

10
11 % Specificed number of elements in chord and span directions

respectively.

12 n = 10;

13 m = 10;

14
15 dt = 0.1; % Simulation time step

16 time = 20; % Simulation time

17 t = dt:dt:time; % Simulation time vector

18 % Simulation requires a few time steps to develope the wake

field for the

19 % foils and sail.

20 simstart = 30;

21
22 % True wind angle , can either be a vector or single unit.

Positive value

23 % indicates the wind is on the port side of the vessel.

24 wa = 25:5:75;

25
26 % Truw Wind Speed , can either be a vector or single unit ,

negative value

27 % indicates upwind conditions , negative downwind. N.b the

model is not

28 % accurate for downwind conditions.

29 Vt = -6;

30
31 % Initial value for saving results

32 pp = 0;

33
34 for ll = 1: length(Vt)

v

35
36 for jj = 1: length(wa)

37
38 pp = pp+1;

39
40 % Vessel Parameters are specificed in a different file

41 [wind ,sail ,hull ,pos ,foil] = simparam(n,m);

42
43 wind.angle = wa(jj);

44 wind.Vt = Vt(ll);

45 % Placeholder due to programming.

46 hydro.placeholder = 1;

47 aero.placeholder = 1;

48
49 %----Initial Conditions ------%

50
51 % Creating initial conditions to be evaluated against the

criteria

52 x = pos.crit (1,:); y = pos.crit (2,:); z = pos.crit (3,:);

53 cr = [x' y' z']; % Creating Initial Criteria

54 % Initial conditions in terms of angle and forward speed

55 Para.Vs = 7; Para.phi = 0; Para.theta = 0; Para.xi = 0; Para.

h = 0;

56 Para.Vsy = 2;

57
58
59 % Initial conditions for vessel velocities

60 % p,q,r are the rotational velocities in roll , pitch and yaw

respectively.

61 p = 0; q = 0; r = 0;

62 % u,v,w are the translational velocities in heave , surge and

sway

63 % respectively.

64 u = Para.Vs; v = 0; w = 0;

65 % Initial values for time step and saving.

66 k = 0;

67 kk = 0;

68 % Critiera of the simulation

69 while (k < time/dt && all([cr(2,3) cr(4,3) cr(8,3)] < 0) &&

all([cr(1,3) cr(3,3) cr(7,3)] > 0))

70 % time step counter

71 k = k+1;

72 % Determining the rotational matrix

73 [B] = transmatrix(Para.phi ,Para.theta ,Para.xi);

74
75 Vel = [u; v; w];

76 % Translating the velocities from space to body fixed system.

77 Velw = B*Vel;

vi

78 % Determining true wind angle and speed

79 [wind] = VelocityTriangle(Vel ,wind ,B);

80
81 sail.vel = -wind.Va; sail.dt = dt; sail.k = k;

82 % Saving the vessel orientation

83 sail.rot = B;

84 hydro.rot = B;

85 aero.rot = B;

86
87 [foil ,amr ,pos ,hull] = geomdef(sail ,wind ,B,hull ,pos ,foil ,Velw)

;

88
89 sail.pos = [0 0 1];

90 sail.p = Para.phi;

91
92 % Determining the lift and drag from the sail.

93 aero = liftsail(sail ,wind ,dt ,k,aero ,pos ,simstart);

94
95 % Determining the lift and induced drag from each hydrofoil.

96 hydro = liftmodel(foil ,Vel ,dt,k,hydro ,amr ,pos ,simstart);

97
98 % Translating the forces into the body fixed system

99 [Force] = transforce(B,hydro ,aero ,wind ,hull);

100
101 if k == 1

102 [Ig ,CG] = MMI(pos);

103 end

104 % Determining the added mass of the hydrofoil system.

105 hull.Ma = addedmass(hydro);

106
107 CG = [0 0 hull.char (5)];

108 % velocity vector for the equation of motion.

109 etadot = [u; v; w; p; q; r];

110
111 if k == 1

112
113 momentarm = pos.momentarm;

114 end

115
116 % Determining the total torque and force in each direciton.

117 [equil ,hull] = equi(Force ,momentarm ,hull ,Para);

118 % Solving Equation of Motion with respect to accelerations

119 dydt = solveEOM(equil ,Ig,CG ,hull ,etadot);

120
121 % Euler time integration for translational velocities

122 uvw = Vel + dydt (1:3)*dt *0.5;

123 % Euler time integration for rotational velocities

124 pqr = [p; q; r] + dydt (4:6)*dt;

vii

125
126 if k > simstart

127
128 p = pqr(1); q = pqr(2); r = pqr (3);

129 u = uvw(1); v = uvw(2); w = uvw (3);

130 % if applicable , remove comments from below to simulate

less degreese

131 % of freedom.

132 u = Para.Vs;

133 v = 0;

134 w = 0;

135 q = 0;

136 r = 0;

137 % p = 0;

138 end

139 Para.phi = Para.phi+p*dt;

140 Para.theta = Para.theta+q*dt;

141 Para.xi = Para.xi+r*dt;

142
143 % Saving current parameters

144 cr = pos.crit ';

145 results.equil = equil;

146 results.uvw = Velw;

147 results.pqr = pqr;

148 results.hydro = hydro;

149 results.aero = aero;

150 results.ang = [Para.phi; Para.theta; Para.xi];

151 results.force = [Force.Ff Force.Fs Force.Fv];

152
153 subArea = 0;

154 for j = 1:4

155 domain = hydro.domain(j);

156
157 subArea = subArea+sum(sum(domain.S));

158 clear domain

159 end

160
161 % Saving values for post -prcessing once the wake field is

established.

162 if k > simstart

163 kk = kk+1;

164 ee.Sb(kk) = subArea;

165 ee.mx(kk) = equil.Mx;

166 ee.my(kk) = equil.My;

167 ee.mz(kk) = equil.Mz;

168 ee.fx(kk) = equil.Fx;

169 ee.fz(kk) = equil.Fz;

170 ee.v.x(kk) = u;

viii

171 ee.v.y(kk) = v;

172 ee.v.z(kk) = w;

173 ee.v.p(kk) = p;

174 ee.v.q(kk) = q;

175 ee.v.r(kk) = r;

176 ee.ang.p(kk) = Para.phi;

177 ee.ang.q(kk) = Para.theta;

178 ee.ang.r(kk) = Para.xi;

179 ee.sp(kk) = sqrt(Velw (1) ^2+Vel(2) ^2+Vel(3) ^2);

180 ee.lam(kk) = atand(Velw (2)/Vel(1));

181
182 ee.acc.x(kk) = dydt (1);

183 ee.acc.y(kk) = dydt (2);

184 ee.acc.z(kk) = dydt (3);

185 ee.acc.p(kk) = dydt (4);

186 ee.acc.q(kk) = dydt (5);

187 ee.acc.r(kk) = dydt (6);

188 end

189
190
191 end

192 % Displays time in simulation

193 display (['Finnished at ', num2str(k*dt)])

194 % Displays vessel orientaton

195 figure (124)

196 plot3(pos.foil.cord (:,1),pos.foil.cord (:,2),pos.foil.cord

(:,3),'x')

197 hold on

198 plot3(pos.hull.cord (:,1),pos.hull.cord (:,2),pos.hull.cord

(:,3),'^')

199 hold on

200 plot3(pos.sail.cord (:,1),pos.sail.cord (:,2),pos.sail.cord

(:,3),'v')

201 hold off

202 axis equal

203 grid on

204 drawnow

205
206 % Saving results for post processing

207 saveresults(pp) = results;

208 saveresults2(pp) = ee;

209 % Resetting values for the next true wind angle/speed

210 clear hydro equil aero pos results B wind sail hull foil crit

211 clear aa Velw Vela u v w p q r Para AreA pqr uvw Vel Force

amr angle

212 clear etadot ee kk k momentarm subArea Ig dydt x y z cr

213
214 end

ix

215
216 end

1 function [wind ,sail ,hull ,pos ,foil] = simparam(n,m)

2
3 %-----Vessel Parameters -------%

4
5 hull.char = [6;... % LOA

6 0.5;... % Beam

7 3;... % Gap between hulls , 0 if monohull

8 1;... % Hull Depth

9 1;... % Assumed initial gap between hull and

water surface

10 1;... % Draft

11 0.6;... % Midships Coefficient

12 0.5;... % Block Coefficient

13 0.5]; % Prism Coefficient

14
15 hull.weight = 250; % weight of the vessel

16 % Weight of crew , only 2 crew members simulated , assumed

equal weight of

17 % crew members , below is total weight.

18 hull.crew = 160;

19
20 %-----Sail Parameters ---------%

21
22 sail.chord = [0.2 0.75]; % Sail chord , requires two values

23 sail.height = 4.5; % Sail height;

24 sail.NACAS = '0012'; % Sail NACA profile

25 sail.rho = 1; % Air Density

26 sail.densit = 100; % Material density of the sail

27 sail.n = n; % Number of chordwise elements

28 sail.m = m; % Number of spanwise elements

29
30 %-----Foil Parameters --------%

31
32 foil.chord = [0.4 0.4 0.4 0.4]; % Chord lengths

33 foil.angle = [60 -60 90 0]; % Angle of of foils , 0 if not

used.

34 foil.angle2 = [0 180 0 0]; % Had to rotate port side

foils by 180

35 foil.fore = 0.6; % Position relativ COG

36 foil.aft = -hull.char (1) /2; % Position relativ COGx

37 foil.spans = [4 4 1 2]; % Total Span length of

different foils

38 foil.NACA = {'2412','2412','0012','0012'}; % NACA profiles

39 foil.rho = 1025; % Density of water

40 foil.densit = 1000; % Material density of the foil , assumed

x

carbon fibre

41 foil.n = n; % Number of elements chordwise

42 foil.m = m; % Number of elements spanwise

43 foil.extension = 4.5; % fore foil extension from the hull in

y direction.

44
45 %-----Generating Foil coordinates -----%

46
47 pos = vesselgeom(hull ,foil ,sail);

48
49 %-----Wind Condition -------------------%

50 % Initialising values due to programming.

51 wind.Vt = -7; % Truw Wind Speed

52 wind.Va = 0; % Apparent Wind Speed

53 wind.beta = 0; % Apparent Wind Angle

54
55 end

1 function [pos] = vesselgeom(hull ,foil ,sail)

2 n = foil.n;

3 m = foil.m;

4 hullchar = hull.char;

5
6 fangle = foil.angle (1);

7 foilfor = foil.fore;

8 foilaft = foil.aft;

9 spans = foil.spans;

10
11 % Determining vessel end points

12
13 a = fangle;

14 x1 = foilfor;

15 x2 = foilaft;

16
17 foilx = [x1 x1 x1 x1 x2 x2 x2 x2]';

18 beam = hullchar (2) *0.5;

19 beamgap = hullchar (3) *0.5;

20 depth = hullchar (4);

21 airgap = hullchar (5);

22 draft = hullchar (6);

23 extension = foil.extension;

24
25 y1 = extension;

26 z1 = 0;

27 y2 = y1 -(spans (1)*cosd(90-a));

28 z2 = z1 -(spans (1)*sind(90-a));

29
30 y3 = -y1;

xi

31 z3 = z1;

32
33 y4 = -y2;

34 z4 = z2;

35
36 y5 = spans (3) /2;

37 z5 = -spans (4);

38
39 y6 = -y5;

40 z6 = z5;

41
42 y7 = 0;

43 z7 = 0;

44
45 y8 = 0;

46 z8 = z5;

47
48 foily = [y1 y2 y3 y4 y5 y6 y7 y8]';

49 foilz = airgap +[z1 z2 z3 z4 z5 z6 z7 z8]';

50
51
52 fpos = [foilx foily foilz]';

53 % Didtribution foil points

54 for k = 1: length(foil.spans)

55 if k == 1

56 x = linspace(fpos(1,k),fpos(1,k+1),n)';

57 y = linspace(fpos(2,k),fpos(2,k+1),n)';

58 z = linspace(fpos(3,k),fpos(3,k+1),n)';

59 elseif k == 2

60 x = [x; linspace(fpos(1,k+1),fpos(1,k+2),n) '];

61 y = [y; linspace(fpos(2,k+1),fpos(2,k+2),n) '];

62 z = [z; linspace(fpos(3,k+1),fpos(3,k+2),n) '];

63 elseif k == 3

64 x = [x; linspace(fpos(1,k+2),fpos(1,k+3),n) '];

65 y = [y; linspace(fpos(2,k+2),fpos(2,k+3),n) '];

66 z = [z; linspace(fpos(3,k+2),fpos(3,k+3),n) '];

67 elseif k == 4

68 x = [x; linspace(fpos(1,k+3),fpos(1,k+4),n) '];

69 y = [y; linspace(fpos(2,k+3),fpos(2,k+4),n) '];

70 z = [z; linspace(fpos(3,k+3),fpos(3,k+4),n) '];

71 end

72
73 end

74
75 for k = 1: length(foil.spans)

76
77 [~,~,~,XP,ZP] = foilpoints(cell2mat(foil.NACA(k)),foil.n)

;

xii

78 XP = XP*foil.chord(k);

79 ZP = ZP*foil.chord(k);

80 Volume = foil.spans(k)*polyarea(XP,ZP);

81 mass = Volume *0.3* foil.densit;

82 if k == 1

83 md = ones(n,1)*(mass/n);

84 else

85 md = [md; ones(n,1)*(mass/n)];

86 end

87
88 end

89
90 pos.ff = [foilx foily foilz];

91 pos.foil.cord = [x y z];

92 pos.foil.mass = md;

93 % Distribution hull and sail points

94 [~,~,~,XP,ZP] = foilpoints(sail.NACAS ,sail.n);

95 Volume = sail.height*polyarea(XP,ZP);

96 mass = Volume*sail.densit *0.3;

97 sailmass = ones(n,1)*mass/n;

98
99 sailx = (linspace(-max(sail.chord)/2,-min(sail.chord)/2,n));

100 saily = linspace (0,0,n);

101 sailz = linspace(hull.char (5),sail.height+hull.char (5),n);

102
103 pos.sail.cord = [sailx; saily; sailz]';

104 pos.sail.mass = sailmass;

105
106 hullx = linspace(-hull.char (1)/2,hullchar (1)/2,n);

107 hully = zeros(1,n);

108 hullz = ones(n,1)*hull.char (5);

109 [dd ,ff] = size(hullx);

110 hullmass = ones(ff ,1)*hull.weight /(ff);

111 pos.hull.cord = [hullx; hully; hullz ']';

112 pos.hull.mass = hullmass;

113 pos.crit = fpos;

114
115
116 pos.body.sail = pos.sail.cord;

117 pos.space.sail = pos.sail.cord;

118
119 pos.body.hull = pos.hull.cord;

120 pos.space.hull = pos.hull.cord;

121
122 pos.body.foil = pos.foil.cord;

123 pos.space.foil = pos.foil.cord;

124 end

xiii

1 function [B] = transmatrix(phi ,theta ,xi)

2
3 % This Function creates the rotational matrix

4
5 A = [cosd(xi) -sind(xi) 0; sind(xi) cosd(xi) 0; 0 0 1];

6 C = [cosd(theta) 0 sind(theta); 0 1 0; -sind(theta) 0 cosd(

theta)];

7 D = [1 0 0; 0 cosd(phi) -sind(phi); 0 sind(phi) cosd(phi)];

8
9 B = A*C*D; % yaw , pitch , roll

10
11 end

1 function [wind] = VelocityTriangle(Vel ,wind ,B)

2
3 % This function determines the true wind speed and angle.

4
5 Vs = sqrt(Vel (1)^2+Vel (2)^2+Vel (3) ^2);

6 Vt = wind.Vt;

7 wind_angle = wind.angle;

8 Va = sqrt(Vt^2 + Vs^2 -2*Vt*Vs*cosd(wind_angle));

9 beta = acosd((Vs^2+Va^2 - Vt^2) /(2*Vs*Va));

10
11 W = [-Va*cosd(beta); -Va*sind(beta); 0];

12
13 Wphi = B*W;

14
15 wind.Va = sqrt(Wphi (1)^2+ Wphi (2)^2+ Wphi (3)^2);

16
17 wind.beta = atand(Wphi (2)/Wphi (1));

18
19 end

1 function [foil ,amr ,pos ,hull] = geomdef(sail ,wind ,B,hull ,pos ,

foil ,Vel)

2
3 % This function rotates and translats the geometry of the

vessel. In

4 % addition it also determines the moment arms for torque

calculation.

5
6 n = foil.n;

7 m = foil.n;

8 k = sail.k;

9 dt = sail.dt;

10 hullchar = hull.char;

11 beta = max(wind.beta);

12

xiv

13 ffpos = pos.foil.cord; spos = pos.sail.cord; hpos = pos.hull.

cord;

14 fpos = pos.ff; criteria = pos.crit ';

15
16
17 B0 = transmatrix (0,0,0);

18
19 origin = [0; 0; hull.char (5)];

20 % Rotating geometry and translating it.

21 if k == 1

22
23 newcrit = rotgeom(B,origin ,criteria ,[0 0 0],dt);

24 newfpos = rotgeom(B,origin ,fpos ,[0 0 0],dt);

25 newffpos = rotgeom(B,origin ,ffpos ,[0 0 0],dt);

26 newspos = rotgeom(B,origin ,spos ,[0 0 0],dt);

27 newhpos = rotgeom(B,origin ,hpos ,[0 0 0],dt);

28 charts = rotgeom(B,origin ,spos ,[0 0 0],dt);

29 charth = rotgeom(B,origin ,hpos ,[0 0 0],dt);

30 CG = rotgeom(B,origin ,[0 0 hull.char (5)],[0 0 0],dt);

31
32 pos.bod.foil = newfpos;

33 pos.bod.foil2 = newffpos;

34 pos.bod.sail = newspos;

35 pos.bod.hull = newhpos;

36 pos.bod.crit = newcrit;

37
38 else

39
40 vel = Vel ';

41
42 bodcrit = pos.bod.crit ';

43 bodfpos = pos.bod.foil ';

44 bodffpos = pos.bod.foil2 ';

45 bodspos = pos.bod.sail ';

46 bodhpos = pos.bod.hull ';

47 bodCG = pos.CG;

48
49 bodcrit = rotgeom(B0 ,pos.CG,bodcrit ,vel ,dt);

50 bodfpos = rotgeom(B0 ,pos.CG,bodfpos ,vel ,dt);

51 bodffpos = rotgeom(B0,pos.CG ,bodffpos ,vel ,dt);

52 bodspos = rotgeom(B0 ,pos.CG,bodspos ,vel ,dt);

53 bodhpos = rotgeom(B0 ,pos.CG,bodhpos ,vel ,dt);

54 bodCG = rotgeom(B0,pos.CG ,bodCG ',vel ,dt);

55
56 pos.bod.foil = bodfpos;

57 pos.bod.foil2 = bodffpos;

58 pos.bod.sail = bodspos;

59 pos.bod.hull = bodhpos;

xv

60 pos.bod.crit = bodcrit;

61 pos.bod.CG = bodCG;

62
63 newfpos = rotgeom(B,pos.CG,bodfpos ',[0 0 0],dt);

64 newspos = rotgeom(B,pos.CG,bodspos ',[0 0 0],dt);

65 newhpos = rotgeom(B,pos.CG,bodhpos ',[0 0 0],dt);

66 newffpos = rotgeom(B,pos.CG ,bodffpos ',[0 0 0],dt);

67 newcrit = rotgeom(B,pos.CG,bodcrit ',[0 0 0],dt);

68
69 charts = rotgeom(B,pos.CG,pos.chart.s',vel ,dt);

70 charth = rotgeom(B,pos.CG,pos.chart.h',vel ,dt);

71 CG = rotgeom(B0 ,origin ,pos.CG',vel ,dt);

72
73 end

74 pos.crit = newcrit;

75 fpos = newffpos;

76 newhpos = newhpos ';

77 newspos = newspos ';

78
79 % Finding the submerged section of the hydrofoils

80 P0 = (newfpos (:,2)) ';

81 P1 = (newfpos (:,1)) ';

82
83 I = plane_line_intersect(P0 ,P1);

84
85 newfpos (:,1) = I';

86
87 P0 = (newfpos (:,3)) ';

88 P1 = (newfpos (:,4)) ';

89
90 I = plane_line_intersect(P0 ,P1);

91
92 newfpos (:,3) = I';

93
94 P0 = (newfpos (:,7)) ';

95 P1 = (newfpos (:,8)) ';

96
97 I = plane_line_intersect(P0 ,P1);

98
99 newfpos (:,7) = I';

100 % Determining submerged span lengths

101 span1 = sqrt (((newfpos (2,2)-newfpos (2,1))^2)+((newfpos (3,2)-

newfpos (3,1))^2) +((newfpos (1,2)-newfpos (1,1))^2));

102 span2 = sqrt (((newfpos (2,4)-newfpos (2,3))^2)+((newfpos (3,4)-

newfpos (3,3))^2) +((newfpos (1,4)-newfpos (1,3))^2));

103 span3 = sqrt (((newfpos (2,6)-newfpos (2,5))^2)+((newfpos (3,6)-

newfpos (3,5))^2) +((newfpos (1,6)-newfpos (1,5))^2));

104 span4 = sqrt (((newfpos (2,8)-newfpos (2,7))^2)+((newfpos (3,8)-

xvi

newfpos (3,7))^2) +((newfpos (1,8)-newfpos (1,7))^2));

105
106 foil.span = [span1 span2 span3 span4];

107 % Determining the centre of the hydrofoils

108 arm1 = ((newfpos (:,1)+newfpos (:,2))/2)-CG;

109 arm2 = ((newfpos (:,3)+newfpos (:,4))/2)-CG;

110 arm3 = ((newfpos (:,5)+newfpos (:,6))/2)-CG;

111 arm4 = ((newfpos (:,8)+newfpos (:,7))/2)-CG;

112
113 amr.f = [arm1 arm2 arm3 arm4];

114 % Determining the maximum moment arm obtainable from the

hydrofoils. Some

115 % vector manipulation is performed.

116 fpos2 = fpos ';

117 px = reshape(fpos2 (:,1) ,10,[]);

118 py = reshape(fpos2 (:,2) ,10,[]);

119 pz = reshape(fpos2 (:,3) ,10,[]);

120
121 maxmomentarm = [mean(px(:,1)) mean(px(:,2)) mean(px(:,3))

mean(px(:,4));...

122 mean(py(:,1)) mean(py(:,2)) mean(py(:,3))

mean(py(:,4));...

123 mean(pz(:,1)) mean(pz(:,2)) mean(pz(:,3))

mean(pz(:,4))];

124 % Determining moment arm of sail. Centroid of sail , not

perfectly accurate

125 % but sufficient.

126 x = linspace(min(sail.chord),max(sail.chord),n);

127 z = linspace(0,sail.height ,m)+hull.char (5);

128
129 XCE = sum(x)/length(x);

130 ZCE = (sum(z)/length(z))/2;

131
132 spos (:,2) = ones(n,1)*XCE*abs(sind(beta));

133
134 amr.sail = [XCE /4; XCE*abs(sind(beta)); ZCE];

135
136 L = hullchar (1);

137 B = hullchar (2);

138 D = hullchar (4);

139 Cm = hullchar (7);

140 Cb = hullchar (8);

141 Cp = hullchar (9);

142
143 hull.area = 2*L*D*Cp*Cm*Cb*B*0.6;

144
145 amr.hull = [0; 0; 0];

146

xvii

147 pos.CG = CG;

148 pos.ff = newfpos;

149 pos.chart.s = charts;

150 pos.chart.h = charth;

151 pos.sail.cord = newspos;

152 pos.hull.cord = newhpos;

153 pos.foil.cord = fpos ';

154 hull.mass = sum(pos.hull.mass)+sum(pos.sail.mass)+sum(pos.

foil.mass)+hull.crew;

155
156 % Determining the moment arms for the different hydrofoils.

157 if k == 1

158 maxmomentarm (3,:) = -maxmomentarm (3,:) -1;

159 pos.momentarm.f = maxmomentarm;

160 pos.momentarm.sail = amr.sail;

161 pos.momentarm.hull = amr.hull;

162 end

163
164 end

1 function newpos = rotgeom(B,origin ,pos ,vel ,dt)

2
3
4 [dd ,ff] = size(pos);

5
6 center = repmat(origin ,1,dd)';

7 pos = pos -center;

8 for k = 1:dd

9 if k == 1

10 newpos = B*(pos(k,:) ');

11 else

12 newpos = [newpos B*(pos(k,:) ')];

13 end

14
15 end

16 newpos = newpos+center ';

17 vel = vel.*dt;

18 [dd ,ff] = size(newpos);

19 newpos = newpos+repmat(vel ,ff ,1) ';

20
21 end

1 function I=plane_line_intersect(P0,P1)

2 %plane_line_intersect computes the intersection of a plane

and a segment(or

3 %a straight line)

4 % Inputs:

5 % n: normal vector of the Plane

xviii

6 % V0: any point that belongs to the Plane

7 % P0: end point 1 of the segment P0P1

8 % P1: end point 2 of the segment P0P1

9 %

10 %Outputs:

11 % I is the point of interection

12 % Check is an indicator:

13 % 0 => disjoint (no intersection)

14 % 1 => the plane intersects P0P1 in the unique point I

15 % 2 => the segment lies in the plane

16 % 3 => the intersection lies outside the segment P0P1

17 %

18 % Example:

19 % Determine the intersection of following the plane x+y+z+3=0

with the segment P0P1:

20 % The plane is represented by the normal vector n=[1 1 1]

21 % and an arbitrary point that lies on the plane , ex: V0=[1 1

-5]

22 % The segment is represented by the following two points

23 % P0=[-5 1 -1]

24 %P1=[1 2 3]

25 % [I,check]= plane_line_intersect ([1 1 1],[1 1 -5],[-5 1

-1],[1 2 3]);

26 %This function is written by :

27 % Nassim Khaled

28 % Wayne State University

29 % Research Assistant and Phd

candidate

30 %If you have any comments or face any problems , please feel

free to leave

31 %your comments and i will try to reply to you as fast as

possible.

32
33 n = [0 0 1];

34 V0 = [1 1 0];

35 I=[0 0 0];

36 u = P1 -P0;

37 w = P0 - V0;

38 D = dot(n,u);

39 N = -dot(n,w);

40 check =0;

41 if abs(D) < 10^-7 % The segment is parallel to plane

42 if N == 0 % The segment lies in plane

43 check =2;

44 return

45 else

46 check =0; %no intersection

47 return

xix

48 end

49 end

50 %compute the intersection parameter

51 sI = N / D;

52 I = P0+ sI.*u;

53 if (sI < 0 || sI > 1)

54 check= 3; %The intersection point lies outside

the segment , so there is no intersection

55 else

56 check =1;

57 end

1 function [X,Y,N,X2 ,Y2] = foilpoints(NACA ,n)

2
3
4 Minit = str2double(NACA (1));

5 Pinit = str2double(NACA (2));

6 Tinit = str2double(NACA (3:4));

7
8 gridPts = n;

9
10 M = Minit / 100;

11 P = Pinit / 10;

12 T = Tinit / 100;

13
14 x = linspace (0,1,gridPts) ';

15
16 a0 = 0.2969; a1 = -0.126; a2 = -0.3516; a3 = 0.2843; a4 =

-0.1015;

17
18 theta = zeros(gridPts ,1); yc = zeros(gridPts ,1);

19 dyc_dx = zeros(gridPts ,1);

20
21 for i = 1:1: gridPts

22
23 if (x(i) >= 0 && x(i) < P)

24
25 yc(i) = (M/P^2) *((2*P*x(i))-x(i)^2);

26
27 dyc_dx(i) = ((2*M)/(P^2))*(P-x(i));

28
29 elseif (x(i) >= P && x(i) <=1)

30
31 yc(i) = (M/(1-P)^2) *(1 -(2*P)+(2*P*x(i))-(x(i)^2));

32
33 dyc_dx(i) = ((2*M)/((1-P)^2))*(P-x(i));

34 end

35

xx

36 theta(i) = atan(dyc_dx(i));

37
38 end

39
40
41 term0 = a0 .* sqrt(x);

42 term1 = a1 .* x;

43 term2 = a2 .* x.^2;

44 term3 = a3 .* x.^3;

45 term4 = a4 .* x.^4;

46 yt = 5 * T .* (term0 + term1 + term2 + term3 + term4);

47
48 xu = x - yt .* sin(theta);

49
50 yu = yc + yt .* cos(theta);

51
52 xl = x + yt .* sin(theta);

53
54 yl = yc - yt .* cos(theta);

55
56 X = xu;

57 Y = (yu+yl)/2;

58 X2 = [xu; (fliplr(xl ')) '];

59 Y2 = [yu; (fliplr(yl ')) '];

60 Nx = sin(theta);

61 Nz = cos(theta);

62 N = [Nx ,Nz];

63 end

1 function aero = liftsail(sail ,wind ,dt,k,aero ,pos ,simstart)

2 % This function determines the lift and drag produced by a

sail.

3 n = sail.n;

4 m = sail.m;

5 Vel = [wind.Va*cosd (11); wind.Va*sind (11); 0];

6 % De-powering the sail if a certain roll angle has been

reached.

7 if sail.p > 1.5

8 Vel = [wind.Va*cosd (7); wind.Va*sind (7); 0];

9 end

10 Vel = -Vel;

11 if k == 1

12
13 res.k = 1;

14 domain.CG = pos.CG;

15 domain.rot = aero.rot;

16 domain.vel = Vel;

17 domain.dt = dt;

xxi

18 domain.k = k;

19 domain = geomsail(sail ,domain);

20 domain.rho = 1.25;

21 domain.dt = dt;

22 domain.mm = m; domain.nn = n;

23
24 domain.test.x2 = domain.test.x;

25 domain.test.y2 = domain.test.y;

26 domain.test.z2 = domain.test.z;

27
28 domain.ang.phi = 90;

29 domain.ang.the = 0;

30
31 [dd ,ff] = size(domain.test.x2);

32 res.wake = ones(dd -1,ff -1);

33
34 [res] = UVLM(Vel ,domain ,res);

35 res.wake = res.circ(n,:);

36
37 domain.chart.x = [domain.test.x(1,1) domain.test.x(1,m)];

38 domain.chart.y = [domain.test.y(1,1) domain.test.z(1,m)];

39 domain.chart.z = [domain.test.y(1,1) domain.test.z(1,m)];

40
41
42 else

43
44 domain = aero.domain;

45 domain.rot = aero.rot;

46 domain.CG = pos.CG;

47 domain.vel = Vel;

48 domain.dt = dt;

49 domain.k = k;

50 domain = geomsail(sail ,domain);

51
52 res = aero.res;

53 res.k = k;

54 domain = diplacefast(domain ,Vel);

55 [res] = UVLM(Vel ,domain ,res);

56 domain.test.x2 = [domain.test.x(1,:); domain.test.x2];

57 domain.test.y2 = [domain.test.y(1,:); domain.test.y2];

58 domain.test.z2 = [domain.test.z(1,:); domain.test.z2];

59 res.wake = [res.circ(n,:); res.wake];

60
61 end

62
63 cutoff = simstart;

64 if k > cutoff

65

xxii

66 res.wake(cutoff -1:end ,:) = [];

67 domain.test.x2(cutoff:end ,:) = [];

68 domain.test.y2(cutoff:end ,:) = [];

69 domain.test.z2(cutoff:end ,:) = [];

70
71 end

72
73 aero.domain = domain;

74 aero.res = res;

75 end

1 function [domain] = geomsail(sail ,domain)

2
3 n = sail.n;

4 m = sail.m;

5 span = sail.height;

6 sailchord = sail.chord;

7 NACA = sail.NACAS;

8
9 xg = domain.CG(1);

10 yg = domain.CG(2);

11 zg = domain.CG(3);

12
13 chord = abs(linspace(-max(sailchord),-min(sailchord),m+1));

14 [XP ,ZP ,~] = foilpoints(NACA ,n+1);

15 XP = XP.* chord+domain.vel(1)*domain.dt*domain.k;

16 ZP = ZP.* chord;

17 YS = linspace(0,span ,m+1)+1;

18 wlength = 400;

19 wlength2 = sail.vel(1)*sail.dt;

20 domain.case = 0;

21
22 B = transmatrix (90 ,180 ,180);

23
24 xp = XP;

25 ys = repmat(YS ,n+1,1);

26 zp = ZP;

27 % Creating wake points

28 x2 = [xp(n+1,:); ones(1,m+1) .*(xp(n+1)+wlength)];

29 y2 = [YS; YS];

30 z2 = [ones(1,m+1).*zp(n+1); ones(1,m+1).*zp(n+1)];

31 % Discretising the geometry of the sail

32 x = [xp(n+1,:); ones(1,m+1).*(xp(n+1)+wlength2)];

33 y = [YS; YS];

34 z = [ones(1,m+1).*zp(n+1); ones(1,m+1).*zp(n+1)];

35
36 % Finding control points.

37 for j = 1:m

xxiii

38
39 for k = 1:n

40
41 if (j == m && k == n)

42
43 P = [XP(k,j) YS(j) ZP(k,j); XP(k,j+1) YS(j+1) ZP(

k,j+1);...

44 XP(k+1,j+1) YS(j+1) ZP(k+1,j+1); XP(k+1,j) YS(j) ZP

(k+1,j)];

45
46
47 WW = [P(4,1) P(4,2) P(4,3); P(3,1) P(3,2) P(3,3);...

48 wlength P(3,2) P(3,3); wlength P(4,2) P(4,3)];

49
50
51 elseif j == m

52
53 P = [XP(k,j) YS(j) ZP(k,j); XP(k,j+1) YS(j+1) ZP(k,

j+1);...

54 XP(k+1,j+1) YS(j+1) ZP(k+1,j+1); XP(k+1,j) YS(j) ZP

(k+1,j)];

55
56 elseif k == n

57
58 P = [XP(k,j) YS(j) ZP(k,j); XP(k,j+1) YS(j+1) ZP(k,

j+1);...

59 XP(k+1,j+1) YS(j+1) ZP(k+1,j+1); XP(k+1,j) YS(j) ZP

(k+1,j)];

60
61 WW = [P(4,1) P(4,2) P(4,3); P(3,1) P(3,2) P(3,3);...

62 wlength P(3,2) P(3,3); wlength P(4,2) P(4,3)];

63
64 else

65
66 P = [XP(k,j) YS(j) ZP(k,j); XP(k,j+1) YS(j+1) ZP(k,

j+1);...

67 XP(k+1,j+1) YS(j+1) ZP(k+1,j+1); XP(k+1,j) YS(j) ZP

(k+1,j)];

68
69 end

70
71 % Rotating based on sail orientation

72
73 [Px ,Py,Pz] = rotgeom2(B,sail.pos ,P(:,1),P(:,2),P(:,3)

,0,0,0);

74 P = [Px Py Pz];

75
76 domain.CP{k,j} = mean(P);

xxiv

77 domain.P{k,j} = P;

78 [domain.N{k,j}, S(k,j)] = normalvec(P);

79
80 end

81
82 domain.W{j} = WW;

83
84 end

85
86 % Rotating sail based on orientation

87 [x2 ,y2,z2] = rotgeom2(B,sail.pos ,x2,y2 ,z2 ,0,0,0);

88 [x,y,z] = rotgeom2(B,sail.pos ,x,y,z,0,0,0);

89 [xp ,ys,zp] = rotgeom2(B,sail.pos ,xp,ys ,zp ,0,0,0);

90
91 domain.S = S;

92 domain.wake.x = x2;

93 domain.wake.y = y2;

94 domain.wake.z = z2;

95 domain.test.x = x;

96 domain.test.y = y;

97 domain.test.z = z;

98 domain.test2.x = xp;

99 domain.test2.y = ys;

100 domain.test2.z = zp;

101
102
103 end

1 function [N,S] = normalvec(P)

2 % This function determines the normal vector and surface area

of each

3 % element

4 A = P(3,:)-P(1,:); B = P(2,:)-P(4,:);

5 % N2 = cross(A,B);

6 X = A(2)*B(3)-A(3)*B(2); Y = A(3)*B(1)-A(1)*B(3); Z = A(1)*B

(2)-A(2)*B(1);

7
8 A2 = sqrt(X^2+Y^2+Z^2);

9
10 N = [X/A2; Y/A2; Z/A2];

11
12 E = P(2,:)-P(1,:); F = P(4,:)-P(1,:);

13
14 S11 = F(2)*B(3)-F(3)*B(2);

15 S12 = F(3)*B(1)-F(1)*B(3);

16 S13 = F(1)*B(2)-F(2)*B(1);

17 S21 = E(2)*B(3)-E(3)*B(2);

18 S22 = E(1)*B(3)-E(3)*B(1);

xxv

19 S23 = E(1)*B(2)-E(2)*B(1);

20
21 S = 0.5*(sqrt(S11^2+S12 ^2+S13^2)+sqrt(S21^2+ S22^2+S23^2));

22
23 end

1 function [x,y,z] = rotgeom2(B,pos ,x,y,z,xg ,yg,zg)

2
3 [a,b] = size(x);

4 xg = ones(a,b)*xg;

5 yg = ones(a,b)*yg;

6 zg = ones(a,b)*zg;

7 x = x-xg;

8 y = y-yg;

9 z = z-zg;

10 for i = 1:a

11 for j = 1:b

12
13 trans = B*[x(i,j); y(i,j); z(i,j)];

14 x(i,j) = trans (1)+pos(1);

15 y(i,j) = trans (2)+pos(2);

16 z(i,j) = trans (3)+pos(3);

17 end

18 end

19
20 x = x+xg;

21 y = y+yg;

22 z = z+zg;

23 end

1 function res = UVLM(Vel ,domain ,res)

2 tic

3 m = domain.mm;

4 n = domain.nn;

5 d = 0;

6 nn = cell2mat(domain.N');

7 nn = nn(:);

8 nn = reshape(nn ,3,[]) ';

9 dy = abs(diff(abs(domain.test2.y(1,:))));

10 dy = repmat(dy ,n,1);

11 dx = abs(diff(abs(domain.test2.x(:,1))));

12 dx = repmat(dx ,1,m);

13
14 % Creating incoming velocity vector for

15 Vx = Vel(1).* linspace (0,1,n).^2;

16 Vy = Vel(2).* linspace (0,1,n).^2;

17 Vz = Vel(3).* linspace (0,1,n).^2;

18 Vair = [Vx; -Vy; Vz]';

xxvi

19 % Changing which direction the spanlength is determined

20 if domain.ang.phi == 90

21 asd = 1;

22 dy = abs(diff(abs(domain.test2.z(1,:))));

23 dy = repmat(dy ,n,1);

24 end

25
26 if domain.ang.the == 180

27
28 Vel (3) = -Vel(3);

29 end

30
31 V2 = Vel;

32
33
34 for kk = 1:n

35 for jj = 1:m

36
37 d = d+1;

38 cp = cell2mat(domain.CP(kk ,jj));

39 % Induced Velocity from the body onto the body

40 vel = inducedfast(cp ,domain);

41 % Induced Velocity from the wake onto the body

42 vel2 = inducedfastwake(cp,domain);

43 % Induced Downwash from the body onto the body

44 vel3 = inducedfastdrag(cp,domain);

45 % Induced Downwash from the wake onto the body

46 vel4 = inducedfastdragwake(cp ,domain);

47
48 vel(end -m+1:end ,:) = vel(end -m+1:end ,:)+vel2;

49
50 vel3(end -m+1:end ,:) = vel3(end -m+1:end ,:)+vel4;

51 % Was unable to simulate the free surface as geometry

definition was

52 % not optimal. i.e foil was sticking above z = 0, even

though it

53 % shouldn 't

54 % if domain.case == 1

55 % % Determining effect of free surface

56 % velim = inducedmirror(cp,domain);

57 % velim (:,3) = -velim (:,3);

58 % vel = vel+velim;

59
60 % end

61 % Establishing influence matrix and downwash influence

matrix

62 LHSa = vel*nn(d,:) ';

63

xxvii

64 LHSb = vel3*nn(d,:) ';

65 % Perturbation potential

66 Vw = inducedvel3(cp,domain ,res);

67 % Perturbation Potential + Inflow Potential

68 V = V2 '-Vw;

69 % Neumann Dirichlett Boundary Condition V phi * n = 0

70 if domain.case == 0

71 % Used if sail

72 RHS(d) = -Vair(kk ,:)*nn(d,:) ';

73
74 else

75 % Used if hydrofoil

76 RHS(d) = -V*nn(d,:) ';

77
78 end

79
80 if d == 1

81 Vt = V;

82 a = LHSa ';

83 b = LHSb ';

84 else

85 Vt = [Vt; V];

86 a = [a; LHSa '];

87 b = [b; LHSb '];

88 end

89 end

90 end

91 % Solving the boundary condition for circulation

92 circulation = a\RHS ';

93 drag = b*circulation;

94 circulation = reshape(circulation ,m,[]) ';

95 drag = reshape(drag ,m,[]) ';

96
97 if res.k < 2

98 changecirc = zeros(kk,jj);

99 else

100 oldcirc = res.circ;

101 changecirc = (circulation -oldcirc)./ domain.dt;

102 end

103
104 d = 0;

105 circulation = circulation ';

106 dx = dx ';

107 dy = dy ';

108 changecirc = changecirc ';

109 [kk , jj] = size(circulation);

110 dp = zeros(kk ,jj);

111 % Determining the pressure on each element

xxviii

112 for j = 1:n

113
114 for i = 1:m

115
116 d = d+1;

117 np = null(nn(d,:));

118 npy = np(:,1); npx = np(:,2);

119 if i == 1 && j > 1

120 dp(i,j) = domain.rho *(((Vt(d,:)*npx*circulation(i,j))/dx

(i,j))...

121 +(Vt(d,:)*npy*(circulation(i,j)-circulation(i,j

-1))/dy(i,j))+changecirc(i,j));

122
123 elseif j == 1 && i > 1

124 dp(i,j) = domain.rho*((Vt(d,:)*npx*(circulation(i,j)-

circulation(i-1,j))/dx(i,j))...

125 +(Vt(d,:)*npy*(circulation(i,j))/dy(i,j))+changecirc(

i,j));

126 elseif i == 1 && j == 1

127 dp(i,j) = domain.rho *(((Vt(d,:)*npx*circulation(i,j))/dx

(i,j))...

128 +(Vt(d,:)*npy*(circulation(i,j))/dy(i,j))+changecirc(

i,j));

129 else

130 dp(i,j) = domain.rho*((Vt(d,:)*npx*(circulation(i,j)-

circulation(i-1,j))/dx(i,j))...

131 +(Vt(d,:)*npy*(circulation(i,j)-circulation(i,j

-1))/dy(i,j))+changecirc(i,j));

132
133 end

134
135 if i > m/2

136
137 if i == m && j < n

138 dp(i,j) = domain.rho *(((Vt(d,:)*npx*circulation(i,j))/dx

(i,j))...

139 +(Vt(d,:)*npy*(circulation(i,j)-circulation(i,j

+1))/dy(i,j))+changecirc(i,j));

140
141 elseif j == n && i < m

142 dp(i,j) = domain.rho*((Vt(d,:)*npx*(circulation(i,j)-

circulation(i+1,j))/dx(i,j))...

143 +(Vt(d,:)*npy*(circulation(i,j))/dy(i,j))+changecirc(

i,j));

144 elseif i == m && j == n

145 dp(i,j) = domain.rho *(((Vt(d,:)*npx*circulation(i,j))/dx

(i,j))...

146 +(Vt(d,:)*npy*(circulation(i,j))/dy(i,j))+changecirc(

xxix

i,j));

147 else

148 dp(i,j) = domain.rho*((Vt(d,:)*npx*(circulation(i,j)-

circulation(i+1,j))/dx(i,j))...

149 +(Vt(d,:)*npy*(circulation(i,j)-circulation(i,j

+1))/dy(i,j))+changecirc(i,j));

150
151 end

152
153 end

154
155 end

156 end

157
158 S = domain.S.';

159 S = S(:);

160 res.dP = dp;

161 dp = dp(:);

162 dF = -S.*dp.*nn;

163 F = sum(dF);

164
165 res.Ly = F(2);

166 res.Lz = F(3);

167 if domain.ang.the == 180

168
169 res.Ly = -F(2);

170 end

171
172 res.D = F(1);

173 res.t = toc;

174 res.RHS = RHS;

175 res.circ = circulation;

176 res.LHSa = a;

177 res.LHSb = b;

178 res.k = res.k + 1;

179
180 end

1 function vel = inducedvel3(CP,domain ,sav)

2
3 x = domain.test.x2;

4 y = domain.test.y2;

5 z = domain.test.z2;

6 gamma = sav.wake;

7
8 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

9 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

xxx

(1:1:end -1 ,2:1: end);

10 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

11 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

12
13 xa = [dx ' ax ' bx ' cx ']; xb = [ax ' bx ' cx ' dx '];

14 ya = [dy ' ay ' by ' cy ']; yb = [ay ' by ' cy ' dy '];

15 za = [dz ' az ' bz ' cz ']; zb = [az ' bz ' cz ' dz '];

16 [c,d] = size(xa);

17 gamma = repmat(gamma ',1,4);

18 e = 1e-10;

19
20 xp = CP(1); yp = CP(2); zp = CP(3);

21
22 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

23 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

24 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

25
26 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

27
28 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

29 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

30
31 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

32 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

33 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

34
35 u = K2.* R1R2x2;

36 v = K2.* R1R2y2;

37 w = K2.* R1R2z2;

38
39 u(isnan(u)) = 0;

40 v(isnan(v)) = 0;

41 w(isnan(w)) = 0;

42 cond = (find(R1R22 < e));

43 u(cond) = 0;

44 v(cond) = 0;

45 w(cond) = 0;

46
47 velx = sum(sum(u));

48 vely = sum(sum(v));

49 velz = sum(sum(w));

50
51 vel = [velx vely velz];

52
53 end

xxxi

1 function vel = inducedfast(CP,domain)

2 m = domain.mm;

3 n = domain.nn;

4
5 % This function calculates the induced velocity from a

surface distribution

6 % of vortex rings at a point P. For references see the master

thesis or

7 % Joseph Katz Low Speed Aerodynamics section 10.4.6

8 % The code requires a point P with (x,y,z) and 3 vectors

which determine

9 % every single corner point of the vortex distribution across

the surface

10 % n and m are number of elements in chord wise and span wise

direction

11 % respectively.

12
13
14 x = domain.test2.x;

15 y = domain.test2.y;

16 z = domain.test2.z;

17 gamma = 1;

18 % Splitting the geometry into (i,j),(i+1,j),(i+1,j+1) and (i

+1,j)

19 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

20 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

(1:1:end -1 ,2:1: end);

21 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

22 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

23
24 xa = [dx ' ax ' bx ' cx ']; xb = [ax ' bx ' cx ' dx '];

25 ya = [dy ' ay ' by ' cy ']; yb = [ay ' by ' cy ' dy '];

26 za = [dz ' az ' bz ' cz ']; zb = [az ' bz ' cz ' dz '];

27 e = 1e-10;

28
29 xp = CP(1); yp = CP(2); zp = CP(3);

30
31 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

32 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

33 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

34
35 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

36
37 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

38 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

xxxii

39
40 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

41 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

42 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

43
44 u = K2.* R1R2x2;

45 v = K2.* R1R2y2;

46 w = K2.* R1R2z2;

47
48 % Removing singularities

49
50 u(isnan(u)) = 0;

51 v(isnan(v)) = 0;

52 w(isnan(w)) = 0;

53 cond = (find(R1R22 < e));

54 u(cond) = 0;

55 v(cond) = 0;

56 w(cond) = 0;

57
58 % Rearranging data for future use

59
60 tx = u(:); ty = v(:); tz = w(:);

61 tx2 = reshape(tx,n*m,[]); ty2 = reshape(ty,n*m,[]); tz2 =

reshape(tz,n*m,[]);

62 tx3 = sum(tx2 '); ty3 = sum(ty2 '); tz3 = sum(tz2 ');

63
64 vel = [tx3 ' ty3 ' tz3 '];

65
66 end

1 function vel = inducedfastdrag(CP ,domain)

2
3 m = domain.mm;

4 n = domain.nn;

5 x = domain.test2.x;

6 y = domain.test2.y;

7 z = domain.test2.z;

8 gamma = 1;

9
10 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

11 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

(1:1:end -1 ,2:1: end);

12 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

13 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

14

xxxiii

15 xa = [bx ' dx ']; xb = [cx ' ax '];

16 ya = [by ' dy ']; yb = [cy ' ay '];

17 za = [bz ' dz ']; zb = [cz ' az '];

18 e = 1e-10;

19
20 xp = CP(1); yp = CP(2); zp = CP(3);

21
22 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

23 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

24 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

25
26 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

27
28 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

29 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

30
31 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

32 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

33 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

34
35 u = K2.* R1R2x2;

36 v = K2.* R1R2y2;

37 w = K2.* R1R2z2;

38
39 u(isnan(u)) = 0;

40 v(isnan(v)) = 0;

41 w(isnan(w)) = 0;

42 cond = (find(R1R22 < e));

43 u(cond) = 0;

44 v(cond) = 0;

45 w(cond) = 0;

46
47 vel.x = u;

48 vel.y = v;

49 vel.z = w;

50
51 tx = vel.x(:); ty = vel.y(:); tz = vel.z(:);

52 tx2 = reshape(tx ,2,[]); ty2 = reshape(ty ,2 ,[]); tz2 = reshape

(tz ,2,[]);

53 tx3 = sum(tx2); ty3 = sum(ty2); tz3 = sum(tz2);

54 vel = [tx3 ' ty3 ' tz3 '];

55
56 end

1 function vel = inducedfastdragwake(CP,domain)

2
3 m = domain.mm;

4 n = domain.nn;

xxxiv

5 x = domain.wake.x;

6 y = domain.wake.y;

7 z = domain.wake.z;

8 gamma = 1;

9
10 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

11 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

(1:1:end -1 ,2:1: end);

12 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

13 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

14
15 xa = [bx ' dx ']; xb = [cx ' ax '];

16 ya = [by ' dy ']; yb = [cy ' ay '];

17 za = [bz ' dz ']; zb = [cz ' az '];

18 e = 1e-10;

19
20 xp = CP(1); yp = CP(2); zp = CP(3);

21
22 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

23 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

24 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

25
26 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

27
28 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

29 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

30
31 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

32 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

33 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

34
35 u = K2.* R1R2x2;

36 v = K2.* R1R2y2;

37 w = K2.* R1R2z2;

38
39 u(isnan(u)) = 0;

40 v(isnan(v)) = 0;

41 w(isnan(w)) = 0;

42 cond = (find(R1R22 < e));

43 u(cond) = 0;

44 v(cond) = 0;

45 w(cond) = 0;

46
47 vel.x = u;

48 vel.y = v;

xxxv

49 vel.z = w;

50
51 tx = vel.x(:); ty = vel.y(:); tz = vel.z(:);

52 tx2 = reshape(tx ,2,[]); ty2 = reshape(ty ,2 ,[]); tz2 = reshape

(tz ,2,[]);

53 tx3 = sum(tx2); ty3 = sum(ty2); tz3 = sum(tz2);

54 vel = [tx3 ' ty3 ' tz3 '];

55
56
57 end

1 function vel = inducedfastwake(CP ,domain)

2
3 m = domain.mm;

4 n = domain.nn;

5 x = domain.wake.x;

6 y = domain.wake.y;

7 z = domain.wake.z;

8 gamma = 1;

9
10 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

11 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

(1:1:end -1 ,2:1: end);

12 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

13 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

14
15 xa = [dx ' ax ' bx ' cx ']; xb = [ax ' bx ' cx ' dx '];

16 ya = [dy ' ay ' by ' cy ']; yb = [ay ' by ' cy ' dy '];

17 za = [dz ' az ' bz ' cz ']; zb = [az ' bz ' cz ' dz '];

18 e = 1e-10;

19
20 xp = CP(1); yp = CP(2); zp = CP(3);

21
22 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

23 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

24 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

25
26 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

27
28 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

29 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

30
31 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

32 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

33 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

xxxvi

34
35 u = K2.* R1R2x2;

36 v = K2.* R1R2y2;

37 w = K2.* R1R2z2;

38
39 u(isnan(u)) = 0;

40 v(isnan(v)) = 0;

41 w(isnan(w)) = 0;

42 cond = (find(R1R22 < e));

43 u(cond) = 0;

44 v(cond) = 0;

45 w(cond) = 0;

46
47 vel.x = u;

48 vel.y = v;

49 vel.z = w;

50
51 tx = vel.x(:); ty = vel.y(:); tz = vel.z(:);

52 tx2 = reshape(tx,m,[]); ty2 = reshape(ty,m,[]); tz2 = reshape

(tz ,m,[]);

53 tx3 = sum(tx2 '); ty3 = sum(ty2 '); tz3 = sum(tz2 ');

54 vel = [tx3 ' ty3 ' tz3 '];

55
56 end

1 function vel = inducedmirror(CP ,domain)

2 m = domain.mm;

3 n = domain.nn;

4
5 x = domain.test2.x;

6 y = domain.test2.y;

7 z = -domain.test2.z;

8 gamma = 1;

9
10 ax = x(1:1:end -1 ,1:1:end -1); ay = y(1:1:end -1 ,1:1:end -1); az

= z(1:1:end -1 ,1:1:end -1);

11 bx = x(1:1:end -1 ,2:1: end); by = y(1:1:end -1 ,2:1: end); bz = z

(1:1:end -1 ,2:1: end);

12 cx = x(2:1:end ,2:1: end); cy = y(2:1:end ,2:1: end); cz = z(2:1:

end ,2:1: end);

13 dx = x(2:1:end ,1:1:end -1); dy = y(2:1:end ,1:1:end -1); dz = z

(2:1:end ,1:1:end -1);

14
15 xa = [dx ' ax ' bx ' cx ']; xb = [ax ' bx ' cx ' dx '];

16 ya = [dy ' ay ' by ' cy ']; yb = [ay ' by ' cy ' dy '];

17 za = [dz ' az ' bz ' cz ']; zb = [az ' bz ' cz ' dz '];

18 e = 1e-10;

19

xxxvii

20 xp = CP(1); yp = CP(2); zp = CP(3);

21
22 R1R2x2 = (yp-ya).*(zp-zb)-(zp -za).*(yp -yb);

23 R1R2y2 = -((xp-xa).*(zp-zb))+(zp-za).*(xp -xb);

24 R1R2z2 = (xp-xa).*(yp-yb)-(yp -ya).*(xp -xb);

25
26 R1R22 = R1R2x2 .^2+ R1R2y2 .^2+ R1R2z2 .^2;

27
28 r12 = sqrt((xp-xa).^2+(yp-ya).^2+(zp-za).^2);

29 r22 = sqrt((xp-xb).^2+(yp-yb).^2+(zp-zb).^2);

30
31 r0r12 = (xb-xa).*(xp-xa)+(yb-ya).*(yp-ya)+(zb -za).*(zp -za);

32 r0r22 = (xb-xa).*(xp-xb)+(yb-ya).*(yp-yb)+(zb -za).*(zp -zb);

33 K2 = gamma .*((r0r12./r12)-(r0r22./r22))./(4.* pi.* R1R22);

34
35 u = K2.* R1R2x2;

36 v = K2.* R1R2y2;

37 w = K2.* R1R2z2;

38
39 u(isnan(u)) = 0;

40 v(isnan(v)) = 0;

41 w(isnan(w)) = 0;

42 cond = (find(R1R22 < e));

43 u(cond) = 0;

44 v(cond) = 0;

45 w(cond) = 0;

46
47 % velx = sum(sum(u));

48 % vely = sum(sum(v));

49 % velz = sum(sum(w));

50 %

51 % vel = [velx vely velz];

52
53 tx = u(:); ty = v(:); tz = w(:);

54 tx2 = reshape(tx,n*m,[]); ty2 = reshape(ty,n*m,[]); tz2 =

reshape(tz,n*m,[]);

55 tx3 = sum(tx2 '); ty3 = sum(ty2 '); tz3 = sum(tz2 ');

56
57 vel = [tx3 ' ty3 ' tz3 '];

58
59 end

1 function [domain ,sav] = wakerollup(domain ,sav)

2 % This function calculates the induced velocity at each point

on the wake

3 % of a foil using biot -savart law. It requires a mesh field

of equal size

4 % in (x,y,z) and a foil with (x,y,z) coordinates.

xxxviii

5
6 x = domain.x;

7 y = domain.y;

8 z = domain.z;

9 [a,b] = size(x);

10
11 for k = 1:a

12
13 for l = 1:b

14 % Point in the wake to be evaluated

15 CP = [x(k,l) y(k,l) z(k,l)];

16 % total induced velocity from the foil on the point in

the wake

17 vel = biotsavart(CP ,domain ,sav);

18 % total induced velocity from the wake

19 vel2 = biotsavartwake(CP,domain ,sav);

20 % Combined induced velocity

21 yushx(k,l) = vel2 (1)+sum(vel(:,1));

22 yushy(k,l) = vel2 (2)+sum(vel(:,2));

23 yushz(k,l) = vel2 (3)+sum(vel(:,3));

24
25 end

26
27 end

28
29 domain.vel.x = yushx;

30 domain.vel.y = yushy;

31 domain.vel.z = yushz;

32
33 end

1 function domain = diplace(domain ,Vel)

2
3 dt = domain.dt;

4 P = domain.P;

5 CP = domain.CP;

6
7 X = Vel(1)*dt;

8 Y = Vel(2)*dt;

9 Z = Vel(3)*dt;

10
11 vx = domain.test.vel.x;

12 vy = domain.test.vel.y;

13 vz = domain.test.vel.z;

14
15 domain.test.x2 = domain.test.x2+(vx.*dt);

16 domain.test.y2 = domain.test.y2+(vy.*dt);

17 domain.test.z2 = domain.test.z2+(vz.*dt);

xxxix

18
19 domain.test.x = domain.test.x + X;

20 domain.test.y = domain.test.y + Y;

21 domain.test.z = domain.test.z;

22
23 % domain.test2.x = domain.test.x + X;

24 % domain.test2.y = domain.test.y + Y;

25 % domain.test2.z = domain.test.z;

26
27 X2 = ones (4,1)*Vel(1)*dt;

28 Y2 = ones (4,1)*Vel(2)*dt;

29 Z2 = ones (4,1)*Vel(3)*dt;

30
31 P = cellfun (@(x) [x(:,1)+X2 x(:,2) x(:,3)],P,'un' ,0);

32 CP = cellfun (@(x) [x(1)+X x(2) x(3)],CP,'un' ,0);

33
34 domain.P = P;

35 domain.CP = CP;

36
37 end

1 function domain = diplacefast(domain ,Vel)

2 % This function moves the foil in time.

3 dt = domain.dt;

4 P = domain.P;

5 CP = domain.CP;

6 Vel = -Vel;

7 X= Vel (1)*dt;

8 Y = Vel(2)*dt;

9 Z = Vel(3)*dt;

10
11 % vx = domain.test.vel.x;

12 % vy = domain.test.vel.y;

13 % vz = domain.test.vel.z;

14 %

15 % domain.test.x2 = domain.test.x2+(vx.*dt);

16 % domain.test.y2 = domain.test.y2+(vy.*dt);

17 % domain.test.z2 = domain.test.z2+(vz.*dt);

18
19 domain.test.x = domain.test.x + X;

20 domain.test.y = domain.test.y + Y;

21 domain.test.z = domain.test.z;

22
23 domain.test2.x = domain.test2.x + X;

24 domain.test2.y = domain.test2.y + Y;

25 domain.test2.z = domain.test2.z;

26
27 X2 = ones (4,1)*Vel(1)*dt;

xl

28 Y2 = ones (4,1)*Vel(2)*dt;

29 Z2 = ones (4,1)*Vel(3)*dt;

30
31 P = cellfun (@(x) [x(:,1)+X2 x(:,2) x(:,3)],P,'un' ,0);

32 CP = cellfun (@(x) [x(1)+X x(2) x(3)],CP,'un' ,0);

33
34 domain.P = P;

35 domain.CP = CP;

36
37 end

1 function hydro = liftmodel(foil ,Vel ,dt,k,hydro ,amr ,pos ,

simstart)

2
3 n = foil.n;

4 m = foil.m;

5 % Number of foils to be analysed

6 [gg ,hh] = size(foil.span);

7
8 for j = 1:hh

9
10 Vel (3) = -Vel(3);

11 vel = Vel;

12
13 if k == 1

14
15 domain.CG = pos.CG; % centre of gravity of the vessel

16 domain.rot = hydro.rot; % vessel orientation

17 domain.ang.phi = 90-foil.angle(j); % roll rotation of

specific foil

18 domain.ang.the = foil.angle2(j); % pitch rotation of

specific foil

19 domain.pos = amr.f(:,j); % centre of specific foil

20
21 domain.span = foil.span(j); % Submerged span of specific

foil

22 domain.chord = foil.chord(j); % chord of specific foil

23 domain.n = foil.n; % number of elements chordwise

24 domain.k = k; % time step counter

25 domain.m = foil.m; % number of elements spanwise

26 domain.rho = 1025; % water density

27 domain.NACA = cell2mat(foil.NACA(j)); % NACA profile for

specific foil

28 domain.dt = dt; % time step

29 domain.vel = -vel; % Vessel velocity

30 % Discretisising geometry

31 domain = geomdisc(domain);

32 % Saving wake grid

xli

33 domain.test.x2 = domain.test.x;

34 domain.test.y2 = domain.test.y;

35 domain.test.z2 = domain.test.z;

36 % Initialising wake for the first time step.

37 [dd ,ff] = size(domain.test.x2);

38 res.wake = ones(dd -1,ff -1) .*0.5;

39 res.k = k;

40 % Unsteady Vortex Lattice Method simulator

41 [res] = UVLM(Vel ,domain ,res);

42
43 res.wake = res.circ(n,:);

44 % If Wake roll up is preffered , the below is also used ,

however

45 % diplacefast will also have to be used.

46
47 % [domain ,res] = wakerollupfast(domain ,res);

48
49 else

50 % domain = diplacefast(domain ,Vel);

51 domain = hydro.domain(j);

52 % Updating positions , lengths and orientations

53 domain.CG = pos.CG;

54 domain.rot = hydro.rot;

55 domain.pos = amr.f(:,j);

56 domain.k = k;

57 domain.vel = -vel;

58 domain.span = foil.span(j);

59 % Discretisising geometry

60 domain = geomdisc(domain);

61
62 res = hydro.res(j);

63 res.k = k+1;

64 % Unsteady Vortex lattice Method simulator

65 [res] = UVLM(Vel ,domain ,res);

66 % Saving circulation of wake

67 res.wake = [res.circ(n,:); res.wake];

68 % Saving wake grid

69 domain.test.x2 = [domain.test.x(1,:); domain.test.x2];

70 domain.test.y2 = [domain.test.y(1,:); domain.test.y2];

71 domain.test.z2 = [domain.test.z(1,:); domain.test.z2];

72 % If Wake roll up is preffered , the below is also used ,

however

73 % diplacefast will also have to be used.

74 % [domain ,res] = wakerollup(domain ,res);

75
76 end

77 % Removing wake after a certain period.

78 cutoff = simstart;

xlii

79 if k > cutoff

80
81 res.wake(cutoff -1:end ,:) = [];

82 domain.test.x2(cutoff:end ,:) = [];

83 domain.test.y2(cutoff:end ,:) = [];

84 domain.test.z2(cutoff:end ,:) = [];

85
86 end

87
88 hydro.domain(j) = domain;

89 hydro.res(j) = res;

90
91 clear domain res

92
93 end

94
95 end

1 function [domain] = geomdisc(domain)

2
3 xg = domain.CG(1);

4 yg = domain.CG(2);

5 zg = domain.CG(3);

6
7 span = domain.span;

8 chord = domain.chord;

9 NACA = domain.NACA;

10 n = domain.n;

11 m = domain.m;

12 domain.nn = n;

13 domain.mm = m;

14 domain.vel = domain.vel;

15 [XP ,ZP ,~] = foilpoints(NACA ,n+1);

16 ZP = ZP.* chord;

17 if domain.ang.phi > 90

18 ZP = -ZP;

19 end

20 domain.case = 1;

21 % cosine distribution of elements

22 for k = 1:m+1

23
24 test(k) = span*(1-cos(k*pi/(m+2)))/2;

25
26 end

27
28 for k = 1:n+1

29
30 test2(k) = chord *(1-cos(k*pi/(n+2)))/2;

xliii

31
32 end

33
34 B = transmatrix(domain.ang.phi ,domain.ang.the ,0);

35
36 wlength = 2000;

37 wlength2 = domain.vel(1)*domain.dt;

38 YS = test -span /2;

39 domain.WW{1} = [wlength2+XP(n+1) YS(1) ZP(n+1)];

40 XP = test2 -domain.dt*domain.k*domain.vel(1);

41
42 xp = repmat(XP ',1,m+1);

43 zp = repmat(ZP ,1,m+1);

44 ys = repmat(YS ,n+1,1);

45
46 x = [ones(1,m+1).*XP(n+1); ones(1,m+1).*(XP(n+1)+wlength2)];

47 y = [YS; YS];

48 z = [ones(1,m+1).*ZP(n+1); ones(1,m+1).*ZP(n+1)];

49
50 x2 = [ones(1,m+1).*XP(n+1); ones(1,m+1).* wlength];

51 y2 = [YS; YS];

52 z2 = [ones(1,m+1).*ZP(n+1); ones(1,m+1).*ZP(n+1)];

53
54 for j = 1:m

55
56 for k = 1:n

57
58 if (j == m && k == n)

59
60 P = [XP(k) YS(j) ZP(k); XP(k) YS(j+1) ZP(k);...

61 XP(k+1) YS(j+1) ZP(k+1); XP(k+1) YS(j) ZP(k+1)];

62
63 WW = [XP(k+1) YS(j) ZP(k+1); XP(k+1) YS(j+1) ZP(k

+1);...

64 wlength YS(j+1) ZP(k+1); wlength YS(j) ZP(k+1)];

65
66 elseif j == m

67
68 P = [XP(k) YS(j) ZP(k); XP(k) YS(j+1) ZP(k);...

69 XP(k+1) YS(j+1) ZP(k+1); XP(k+1) YS(j) ZP(k+1)];

70
71 elseif k == n

72
73 P = [XP(k) YS(j) ZP(k); XP(k) YS(j+1) ZP(k);...

74 XP(k+1) YS(j+1) ZP(k+1); XP(k+1) YS(j) ZP(k+1)];

75
76 WW = [XP(k+1) YS(j) ZP(k+1); XP(k+1) YS(j+1) ZP(k+1);

...

xliv

77 wlength YS(j+1) ZP(k+1); wlength YS(j) ZP(k+1)];

78
79
80 else

81
82 P = [XP(k) YS(j) ZP(k); XP(k) YS(j+1) ZP(k);...

83 XP(k+1) YS(j+1) ZP(k+1); XP(k+1) YS(j) ZP(k+1)];

84
85 end

86
87 [Px ,Py,Pz] = rotgeom2(B,domain.pos ,P(:,1),P(:,2),P(:,3)

,0,0,0);

88 P = [Px Py Pz];

89
90 PP = mean(P);

91 domain.CP{k,j} = PP;

92 domain.P{k,j} = P;

93 [domain.N{k,j},S(k,j)] = normalvec(P);

94
95 end

96 domain.W{j} = WW;

97 end

98
99 [x2 ,y2,z2] = rotgeom2(B,domain.pos ,x2 ,y2,z2 ,0,0,0);

100
101 [x,y,z] = rotgeom2(B,domain.pos ,x,y,z,0,0,0);

102
103 [xp ,ys,zp] = rotgeom2(B,domain.pos ,xp ,ys,zp ,0,0,0);

104
105 domain.wake.x = x2;

106 domain.wake.y = y2;

107 domain.wake.z = z2;

108 domain.test.x = x;

109 domain.test.y = y;

110 domain.test.z = z;

111 domain.test2.x = xp;

112 domain.test2.y = ys;

113 domain.test2.z = zp;

114 domain.S = S;

115
116 end

1 function [Force] = transforce(B,hydro ,aero ,wind ,hull)

2
3 [dd ,ff] = size(hydro.res);

4
5 for j = 1:ff

6

xlv

7 force = hydro.res(j);

8
9 F = [-abs(force.D);...

10 -force.Ly;...

11 abs(force.Lz)];

12
13 % Translating forces from space to body.

14 F = B*F;

15 F(1) = -abs(F(1));

16 if j == 1

17 Ff = F;

18 else

19 Ff = [Ff F];

20 end

21
22 end

23 % Driving and heeling force respectively.

24 Fax = aero.res.Ly*sind(wind.beta)-aero.res.D*cosd(wind.beta);

25 Fay = aero.res.Ly*cosd(wind.beta)+aero.res.D*sind(wind.beta);

26
27 Fs = [abs(Fax); abs(Fay); 0];

28 % Translating forces from space to body

29 Fs = B*Fs;

30 % Determining hull resistance

31 Fvx = 2*hull.area*aero.domain.rho*wind.Va^2;

32 Fv = [-Fvx*cosd(wind.beta) 0;...

33 Fvx*sind(wind.beta) 0;...

34 -(hull.mass -hull.crew)*9.81 -hull.crew *9.81];

35
36 Force.Ff = Ff;

37 Force.Fs = Fs;

38 Force.Fv = Fv;

39
40
41 end

1 function [Ig,CG] = MMI(pos)

2 % This function determines the mass moment of inertia matrix

for a system

3 % distributed with points.

4
5 Mf = pos.foil.mass;

6 Mh = pos.hull.mass;

7 Ms = pos.sail.mass;

8 M = [Mf; Mh; Ms];

9
10 X = [pos.foil.cord (:,1); pos.sail.cord (:,1); pos.hull.cord

(:,1)];

xlvi

11 Y = [pos.foil.cord (:,2); pos.sail.cord (:,2); pos.hull.cord

(:,2)];

12 Z = [pos.foil.cord (:,3); pos.sail.cord (:,3); pos.hull.cord

(:,3)];

13
14 mt = sum(M);

15
16 Xcg =(1/mt)*sum(M.*X);

17 Ycg =(1/mt)*sum(M.*Y);

18 Zcg =(1/mt)*sum(M.*Z);

19
20 CG = [Xcg; Ycg; Zcg];

21 Ig = [0 0 0; 0 0 0; 0 0 0];

22
23 [a,b] = size(M);

24 for i =1:a

25 x = (X(i) - Xcg);

26 y = (Y(i) - Ycg);

27 z = (Z(i) - Zcg);

28 m = M(i);

29 Ig = Ig + [m*(y^2 + z^2), -m*x*y, -m*x*z;

30 -m*y*x, m*(x^2 + z^2), -m*y*z;

31 -m*x*z, -m*y*z, m*(y^2 + x

^2)];

32 end

33
34 end

1 function Ma = addedmass(hydro)

2
3 % This function determines the total added mass of the

hydrofoil system.

4
5 [dd ,ff] = size(hydro);

6
7 for j = 1:ff

8
9 domain = hydro.domain(j);

10 span = domain.span;

11 chord = domain.chord;

12 rho = domain.rho;

13
14 m11(j) = span*rho*pi*chord ^2;

15 m22(j) = chord*rho*pi*span ^2;

16 m55(j) = rho*(span^2-chord ^2);

17
18 end

19

xlvii

20 Ma = [sum(m11) 0 0 0 0 0;...

21 0 sum(m22) 0 0 0 0;...

22 0 0 sum(m22) 0 0 0;...

23 0 0 0 0 0 0;...

24 0 0 0 0 sum(m55) 0;...

25 0 0 0 0 0 sum(m55);];

26
27
28
29 end

1 function [equil ,hull] = equi(Force ,amr ,hull ,Para)

2 % This function determines the total force and torque of the

vessel.

3
4 armfoil = amr.f;

5 armsail = amr.sail;

6 armhull = amr.hull;

7
8 Ff = Force.Ff;

9 Fs = Force.Fs;

10 Fv = Force.Fv;

11 % Determining torque components

12 torque = [Ff(3,:).* armfoil (2,:) Fs(3)*armsail (2) Fv(3).*

armhull (2);...

13 Ff(2,:).* armfoil (3,:) Fs(2)*armsail (3) Fv(2).*

armhull (2);...

14 -Ff(1,:).* armfoil (3,:) Fs(1)*armsail (3) Fv(1).*

armhull (3);...

15 -Ff(3,:).* armfoil (1,:) Fs(3)*armsail (1) Fv(3).*

armhull (1);...

16 -Ff(2,:).* armfoil (1,:) Fs(2)*armsail (2) Fv(2).*

armhull (2);...

17 Ff(1,:).* armfoil (2,:) Fs(1)*armsail (2) Fv(1).*

armhull (1);];

18 % notice My, pitch has an hadded torque due to the crew.

19 equil.Mx = sum(torque (1,:))+sum(torque (2,:));

20 equil.My = sum(torque (3,:))+sum(torque (4,:))-Force.Fv(3,2)*

hull.char (1) /4;

21 equil.Mz = sum(torque (5,:))+sum(torque (6,:));

22 equil.Fx = sum(Force.Ff(1,:))+Force.Fs(1)+sum(Force.Fv(1,:));

23 equil.Fy = sum(Force.Ff(2,:))+Force.Fs(2)+sum(Force.Fv(2,:));

24 equil.Fz = sum(Force.Ff(3,:))+Force.Fs(3)+sum(Force.Fv(3,:));

25
26 % Finding optimum position of the additional crew member.

27 A = equil.Mx;

28 B = equil.My;

29 armx = (0: -0.01: - hull.char (1)/2);

xlviii

30 army = (0: -0.01: -(hull.char (2)+hull.char (3))/2);

31
32 if Para.phi > 0

33 newx = A-Force.Fv(3,2)*army /2;

34 [a,b] = min(abs(newx));

35 equil.Mx = equil.Mx-Force.Fv(3,2)*army(b)/2;

36 else

37 b = 1;

38 end

39
40 newx = B-Force.Fv(3,2)*armx /2;

41
42 [d,f] = min(abs(newx));

43 equil.torque = torque;

44 equil.My = equil.My-Force.Fv(3,2)*armx(f)/2;

45 hull.crewpos = [army(b); armx(f)];

46 end

1 function dydt = solveEOM(equil ,Ig ,CG,hull ,etadot)

2 % This function solves the equation of motion.

3 m = hull.mass;

4
5 xg = CG(1); yg = CG(2); zg = CG(3);

6
7 Ix = Ig(1,1); Ixy = Ig(1,2); Ixz = Ig(1,3);

8 Iy = Ig(2,2); Iyx = Ig(2,1); Iyz = Ig(2,3);

9 Iz = Ig(3,3); Izx = Ig(3,1); Izy = Ig(3,2);

10 % Mass matrix as described in property 3.1

11 M = [m 0 0 0 m*zg -m*yg;...

12 0 m 0 -m*zg 0 m*xg;...

13 0 0 m m*yg -m*xg 0;...

14 0 -m*zg m*yg Ix -Ixy -Ixz;...

15 m*zg 0 -m*xg -Iyx Iy -Iyz;...

16 -m*yg m*xg 0 -Izx -Izy Iz;];

17 % Centripetal matrix as described in Theorem 3.2

18 C = [zeros (3,3)...

19 -skew(M(1:3 ,1:3)*etadot (1:3)+M(1:3 ,4:6)*etadot (4:6));

...

20 -skew(M(1:3 ,1:3)*etadot (1:3)+M(1:3 ,4:6)*etadot (4:6))

...

21 -skew(M(4:6 ,1:3)*etadot (1:3)+M(4:6 ,4:6)*etadot (4:6))

];

22
23 u = etadot (1); v = etadot (2); w = etadot (3);

24 p = etadot (4); q = etadot (5); r = etadot (6);

25 % The 6 Equilibrium states

26 Tau = [equil.Fx; equil.Fy; equil.Fz; equil.Mx; equil.My;

equil.Mz];

xlix

27 % Adding added mass to the mass matrix

28 M = M+hull.Ma;

29
30 % dydt = M\(Tau -C*etadot);

31 dydt = M\Tau;

32
33 end

1 function S = skew(X)

2
3 S = [0 -X(3) X(2);...

4 X(3) 0 -X(1);...

5 -X(2) X(1) 0;];

6
7 end

1 function a = posspross(results ,results2 ,wa ,Vt,t)

2 close all

3 [k,l] = size(Vt);

4 [g,h] = size(wa);

5 [dd ,ff] = size(results);

6
7 pwa = pi.*wa ./180;

8 pwa = repmat(pwa ,l,1) ';

9
10 for j = 1:ff

11
12 b = results(j);

13 uvw = b.uvw;

14
15 V(j) = sqrt(uvw(1)^2+uvw (2)^2+uvw (3)^2);

16
17 end

18
19
20 V = reshape(V',[],l);

21 Vfail = V(find(abs(V) > 10));

22 pwfail = pwa(find(abs(V) > 10));

23 V(find(abs(V) > 10)) = 100;

24 pwa(find(abs(V) > 10)) = 100;

25
26 for j = 1:l

27 aa = V(:,j);

28 aa(aa == 100) = [];

29 bb = pwa(:,j);

30 bb(bb == 100) = [];

31 test{j} = [aa bb];

32

l

33 end

34 a = 1;

35
36 figure

37 linsp = {'-','--',':','-.','-.','--',':','-.'};

38 linco = {'b','r','k','m','r','k','m','b'};

39 for j = 1:l

40 aa = cell2mat(test(j));

41 polarplot(aa(:,2),aa(:,1),'linestyle ',linsp{j},'Color ',

linco{j})

42 hold on

43 end

44 thetalim ([0 90])

45 axi = gca;

46 axi.ThetaDir = 'clockwise ';

47 axi.ThetaZeroLocation = 'top';

48 thetatickformat(axi ,'degrees ')

49 axi.RAxis.Label.String = 'Vessel Speed ';

50 axi.ThetaAxis.Label.String = 'True Wind Angle';

51 print('polarspeed ','-depsc ')

52 [dd ,gg] = size(results2);

53 [bb ,cc] = size(t);

54 for j = 1:gg

55 b = results2(j);

56 [dd ,ff] = size(b.mx);

57 mx(j,1:ff) = b.mx;

58 [dd ,ff] = size(b.my);

59 my(j,1:ff) = b.my;

60 [dd ,ff] = size(b.fx);

61 fx(j,1:ff) = b.fx;

62 [dd ,ff] = size(b.fz);

63 fz(j,1:ff) = b.fz;

64 [dd ,ff] = size(b.v.x);

65 vx(j,1:ff) = b.v.x;

66 [dd ,ff] = size(b.v.z);

67 vz(j,1:ff) = b.v.z;

68 [dd ,ff] = size(b.v.p);

69 vp(j,1:ff) = b.v.p;

70 [dd ,ff] = size(b.v.q);

71 vq(j,1:ff) = b.v.q;

72 [dd ,ff] = size(b.Sb);

73 Sb(j,1:ff) = b.Sb;

74 [dd ,ff] = size(b.acc.x);

75 ax(j,1:ff) = b.acc.x;

76 [dd ,ff] = size(b.acc.y);

77 ay(j,1:ff) = b.acc.y;

78 [dd ,ff] = size(b.acc.z);

79 az(j,1:ff) = b.acc.z;

li

80 [dd ,ff] = size(b.acc.p);

81 ap(j,1:ff) = b.acc.p;

82 [dd ,ff] = size(b.acc.q);

83 aq(j,1:ff) = b.acc.q;

84 [dd ,ff] = size(b.acc.z);

85 phi(j,1:ff) = b.ang.p;

86 [dd ,ff] = size(b.acc.p);

87 the(j,1:ff) = b.ang.q;

88
89 end

90 seriies = 1;

91 comp = 1.1;

92
93 xlab = 'Time [s]';

94
95 ylab = 'Force [N]';

96 tit = 'Total Force in Surge , True Wind 6 m/s, angle 25^\ circ'

;

97 miin = -max(abs(fx(seriies ,:)))*comp;

98 maax = max(abs(fx(seriies ,:)))*comp;

99
100 figure

101 a = plotgraph ((0.1:0.1: length(fx(seriies ,:))/10),fx(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

102 print('forcesurge_25 ','-depsc ')

103
104 figure

105 miin = 5;

106 maax = 8;

107 ylab = 'Velocity [m/s]';

108 tit = 'Velocity in Surge , True Wind 6 m/s, angle 25^\ circ';

109 a = plotgraph ((0.1:0.1: length(vx(seriies ,:))/10),vx(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

110 print('velsurge_25 ','-depsc ')

111
112 figure

113 miin = -max(abs(ax(seriies ,:)))*comp;

114 maax = max(abs(ax(seriies ,:)))*comp;

115 ylab = 'Acceleration [m/s^2]';

116 tit = 'Acceleration in Surge , True Wind speed 6 m/s, angle

25^\ circ';

117 a = plotgraph ((0.1:0.1: length(ax(seriies ,:))/10),ax(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

118 print('accsurge_25 ','-depsc ')

119
120 figure

121 ylab = 'Force [N]';

122 tit = 'Total Force in Heave , True Wind 6 m/s, angle 25^\ circ'

lii

;

123 miin = -max(abs(fz(seriies ,:)))*comp;

124 maax = max(abs(fz(seriies ,:)))*comp;

125
126 a = plotgraph ((0.1:0.1: length(fz(seriies ,:))/10),fz(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

127 print('forceheave_25 ','-depsc ')

128
129 figure

130 miin = -max(abs(vz(seriies ,:)))*comp;

131 maax = max(abs(vz(seriies ,:)))*comp;

132 ylab = 'Velocity [m/s]';

133 tit = 'Velocity in Heave , True Wind 6 m/s, angle 25^\ circ';

134 a = plotgraph ((0.1:0.1: length(vz(seriies ,:))/10),vz(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

135 print('velheave_25 ','-depsc ')

136
137 figure

138 miin = -max(abs(az(seriies ,:)))*comp;

139 maax = max(abs(az(seriies ,:)))*comp;

140 ylab = 'Acceleration [m/s^2]';

141 tit = 'Acceleration in Heave , True Wind speed 6 m/s, angle

25^\ circ';

142 a = plotgraph ((0.1:0.1: length(az(seriies ,:))/10),az(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

143 print('accheave_25 ','-depsc ')

144
145 figure

146 ylab = 'Torque [Nm]';

147 tit = 'Total Torque in Pitch , True Wind 6 m/s, angle 25^\ circ

';

148 miin = -max(abs(my(seriies ,:)))*comp;

149 maax = max(abs(my(seriies ,:)))*comp;

150 a = plotgraph ((0.1:0.1: length(my(seriies ,:))/10),my(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

151 print('torquepitch_25 ','-depsc ')

152
153 figure

154 miin = -max(abs(vq(seriies ,:)))*comp;

155 maax = max(abs(vq(seriies ,:)))*comp;

156 ylab = 'Velocity [deg/s]';

157 tit = 'Velocity in Pitch , True Wind 6 m/s, angle 25^\ circ';

158 a = plotgraph ((0.1:0.1: length(vq(seriies ,:))/10),vq(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

159 print('velpitch_25 ','-depsc ')

160
161 figure

162 miin = -max(abs(aq(seriies ,:)))*comp;

liii

163 maax = max(abs(aq(seriies ,:)))*comp;

164 ylab = 'Acceleration [deg/s^2]';

165 tit = 'Acceleration in Pitch , True Wind speed 6 m/s, angle

25^\ circ';

166 a = plotgraph ((0.1:0.1: length(aq(seriies ,:))/10),aq(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

167 print('accpitch_25 ','-depsc ')

168
169 figure

170 miin = -max(abs(the(seriies ,:)))*comp;

171 maax = max(abs(the(seriies ,:)))*comp;

172 ylab = 'Angle [deg]';

173 tit = 'Pitch Angle , True Wind speed 6 m/s, angle 25^\ circ';

174 a = plotgraph ((0.1:0.1: length(the(seriies ,:))/10),the(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

175 print('angpitch_25 ','-depsc ')

176
177 figure

178 ylab = 'Torque [Nm]';

179 tit = 'Total Torque in Roll , True Wind angle 6 m/s, 25^\ circ'

;

180 miin = -max(abs(mx(seriies ,:)))*comp;

181 maax = max(abs(mx(seriies ,:)))*comp;

182
183 a = plotgraph ((0.1:0.1: length(mx(seriies ,:))/10),mx(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

184 print('torqueRoll_25 ','-depsc ')

185
186 figure

187 miin = -max(abs(vp(seriies ,:)))*comp;

188 maax = max(abs(vp(seriies ,:)))*comp;

189 ylab = 'Velocity [deg/s]';

190 tit = 'Velocity in Roll , True Wind 6 m/s, angle 25^\ circ';

191 a = plotgraph ((0.1:0.1: length(vp(seriies ,:))/10),vp(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

192 print('velroll_25 ','-depsc ')

193
194 figure

195 miin = -max(abs(ap(seriies ,:)))*comp;

196 maax = max(abs(ap(seriies ,:)))*comp;

197 ylab = 'Acceleration [deg/s^2]';

198 tit = 'Acceleration in Roll , True Wind speed 6 m/s, angle

25^\ circ';

199 a = plotgraph ((0.1:0.1: length(ap(seriies ,:))/10),ap(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

200 print('accroll_25 ','-depsc ')

201
202 figure

liv

203 miin = -max(abs(phi(seriies ,:)))*comp;

204 maax = max(abs(phi(seriies ,:)))*comp;

205 ylab = 'Angle [deg]';

206 tit = 'Roll Angle , True Wind speed 6 m/s, angle 25^\ circ';

207 a = plotgraph ((0.1:0.1: length(phi(seriies ,:))/10),phi(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

208 print('angroll_25 ','-depsc ')

209
210 figure

211 miin = 1;

212 maax = 3.5;

213 ylab = 'Area [m^2]'; tit = 'Total Submerged Area , True Wind 6

m/s, angle 25^\ circ';

214 a = plotgraph ((0.1:0.1: length(Sb(seriies ,:))/10),Sb(seriies

,:),xlab ,ylab ,tit ,miin ,maax);

215 print('subarea_25 ','-depsc ')

216
217 %%-----------------Images --------------------%

218
219 res = 40;

220 [dd ,ff] = size(wa);

221 [gg ,hh] = size(t);

222 yt = linspace(0,ff,ff);

223 ytlab = linspace(min(wa),max(wa),ff);

224 xt = 0:max(t):hh;

225 xtlab = 0:max(t)/10: max(t);

226 ylab = 'True Wind Angle [deg]';

227 xlab = 'Time [s]';

228
229 figure

230 a = 0.6*10^4;

231 miin = -a;

232 maax = a;

233 barlab = 'Torque [Nm]';

234 tit = 'Total torque in Roll , true wind speed 6 m/s';

235 a = plotimage(mx ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

236 print('torqueroll_va4 ','-depsc ')

237
238 figure

239 a = 5;

240 miin = -a;

241 maax = a;

242 barlab = 'Velocity [deg/s]';

243 tit = 'Velocity in Roll , true wind speed 6 m/s';

244 a = plotimage(vp ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

245 print('velroll_va4 ','-depsc ')

lv

246
247 figure

248 a = 6;

249 miin = -a;

250 maax = a;

251 barlab = 'Acceleration [deg/s^2]';

252 tit = 'Acceleration in Roll , true wind speed 6 m/s';

253 a = plotimage(ap ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

254 print('accroll_va4 ','-depsc ')

255
256 figure

257 a = 7;

258 miin = -a;

259 maax = a;

260 barlab = 'Angle [deg]';

261 tit = 'Roll Angle , true wind speed 6 m/s';

262 a = plotimage(phi ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

263 print('angroll_va4 ','-depsc ')

264
265 figure

266 a = 2000;

267 miin = -a;

268 maax = a;

269 barlab = 'Torque [Nm]';

270 tit = 'Total torque in Pitch , true wind speed 6 m/s';

271 a = plotimage(my ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

272 print('torquepitch_va4 ','-depsc ')

273
274 figure

275 a = 0.5;

276 miin = -0.5;

277 maax = a;

278 barlab = 'Velocity [deg/s]';

279 tit = 'Velocity in Pitch , true wind speed 6 m/s';

280 a = plotimage(vq ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

281 print('velpitch_va4 ','-depsc ')

282
283 figure

284 a = 0.5;

285 miin = -a;

286 maax = a;

287 barlab = 'Acceleration [deg/s^2]';

288 tit = 'Acceleration in Pitch , true wind speed 6 m/s';

289 a = plotimage(aq ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

lvi

xlab ,barlab);

290 print('accpitch_va4 ','-depsc ')

291
292 figure

293 a = 2;

294 miin = -a;

295 maax = a;

296 barlab = 'Angle [deg]';

297 tit = 'Pitch Angle , true wind speed 6 m/s';

298 a = plotimage(the ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

299 print('angpitch_va4 ','-depsc ')

300
301 figure

302 a = 1000;

303 miin = -a;

304 maax = a;

305 barlab = 'Force [N]';

306 tit = 'Total Force in Surge , true wind speed 6 m/s';

307 a = plotimage(fx ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

308 print('forcesurge_va4 ','-depsc ')

309
310 figure

311 miin = 6;

312 maax = 8.5;

313 barlab = 'Velocity [m/s]';

314 tit = 'Velocity in Surge , true wind speed 6 m/s';

315 a = plotimage(vx ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

316 print('velsurge_va4 ','-depsc ')

317
318 figure

319 a = 0.5;

320 miin = -a;

321 maax = a;

322 barlab = 'Acceleration [m/s^2]';

323 tit = 'Acceleration in Surge , true wind speed 6 m/s';

324 a = plotimage(ax ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

325 print('accsurge_va4 ','-depsc ')

326
327 figure

328 a = 2000;

329 miin = -a;

330 maax = a;

331 barlab = 'Force [N]';

332 tit = 'Total Force in Heave , true wind speed 6 m/s';

lvii

333 a = plotimage(fz ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

334 print('forceheave_va4 ','-depsc ')

335
336 figure

337 a = 0.3;

338 miin = -a;

339 maax = a;

340 barlab = 'Velocity [m/s]';

341 tit = 'Velocity in Heave , true wind speed 6 m/s';

342 a = plotimage(vz ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

343 print('velheave_va4 ','-depsc ')

344
345 figure

346 a = 1;

347 miin = -a;

348 maax = a;

349 barlab = 'Acceleration [m/s^2]';

350 tit = 'Acceleration in Heave , true wind speed 6 m/s';

351 a = plotimage(az ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

352 print('accheave_va4 ','-depsc ')

353
354 figure

355 miin = 2;

356 maax = 3;

357 barlab = 'Area [m^2]';

358 tit = 'Total Submerged Area , true wind speed 6 m/s';

359 a = plotimage(Sb ,tit ,miin ,maax ,xt,xtlab ,ytlab ,yt ,res ,ylab ,

xlab ,barlab);

360 print('subarea_va4 ','-depsc ')

361
362 end

1 function a = plotgraph(x,y,xlab ,ylab ,tit ,miin ,maax)

2
3 plot(x,y)

4 ylim([miin maax])

5 xlabel(xlab)

6 ylabel(ylab)

7 title(tit)

8 grid on

9 a = 1;

10 end

1 function a = plotimage(b,d,miin ,maax ,xticks ,Xticklabels ,

Yticklabels ,yticks ,res ,ylab ,xlab ,barlab)

lviii

2
3 imagesc(b)

4 colormap(jet(res))

5 colorbar

6 cb = colorbar;

7 cb.Label.String = barlab;

8 set(gca ,'Ytick ',yticks , 'YTickLabel ', Yticklabels)

9 set(gca ,'Xtick ',xticks ,'XTickLabel ',Xticklabels)

10 ylabel(ylab)

11 xlabel(xlab)

12 caxis([miin maax])

13 title(d)

14 a = 1;

15 end

lix

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Bøe, Mikael

Numerical Modelling of Sailing
Hydrofoil Boats

Master’s thesis in Marin Teknikk
Supervisor: Steen, Sverre

June 2019

