
Hybrid Collision Avoidance with
Moving Obstacles

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Yi Chai

2019
Yi Chai NT

NU
N

or
w

eg
ia

n
Un

iv
er

si
ty

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Hybrid Collision Avoidance with Moving
Obstacles

Yi Chai

Marine Technology
Submission date: June 2019
Supervisor: Vahid Hassani, IMT

Norwegian University of Science and Technology
Department of Marine Technology

Problem Description

Background:

Over the past few years, the maritime sector has witnessed an increasing interest in use
of autonomous ships and in particular Autonomous Surface Vehicles (ASV) in complex
applications with high associated risks. The development of autonomous ships provides
much more costeffective and environmentally friendly vessel types. One of the important
aspects in design and operation of ASVs are guidance and navigation in congested water-
ways.

This thesis proposal aims to contribute to the development of a new hybrid COLAV method
based on the integration of deliberate path planning and reactive collision avoidance, that
incorporates the dynamics of the vehicles and is able to generate a collision-free trajectory
handling both static and moving obstacles.

Work Description:

1. Investigate research backgrounds on the following aspects:

• Modeling of the surface vessel

• Bézier curve and differential flatness property

• Reactive dynamic window method

• PLOS path tracking algorithm

2. Develop a hybrid COLAV method based on deliberate and reactive methods, that shall:

• generate a global desired path towards goal, taking dynamics of ASV and static
obstacles into account.

• react to rapidly changing dynamic obstacle to avoid collision while aligning with
global path.

• include the development of interface between deliberate and reactive COLAV meth-
ods.

3. Implement the proposed hybrid COLAV algorithm in PYTHON.

4. Evaluate the performance and robustness of the algorithm through numerical simula-
tions.

i

ii

Abstract

A considerable amount of work has been done in the field of Autonomous Surface Vehi-
cles (ASV) over the past few decades. Autonomous path planning and collision avoidance
(COLAV) are essential for ASV navigating in unknown or partially known environment
with both static and moving obstacles in the vicinity of the vehicle. This thesis proposes a
hybrid COLAV approach based on the integration of a global path planning algorithm and
a reactive collision avoidance approach to address the COLAV issue with the presence of
the moving obstacles.

Bézier curves are exploited as the basis for global path planning, which is formulated
within the framework of optimization, involving constraints like continuity, boundary con-
ditions, static obstacles, etc. Property of differential flatness is used to assign a cost to
each path that reflects the dynamic capabilities of the vehicle, yielding the optimal path by
minimizing the objective function. In addition, a combined pure pursuit and line-of-sight
(PLOS) steering law is implemented to follow the global path.

As a reactive collision avoidance technique, dynamic window (DW) algorithm is employed
to search for optimal velocity pairs which ensure collision-free trajectory handling both
static and dynamic obstacles. Extensive modification has been done to adapt original DW
algorithm to the hybrid COLAV method by incorporating a path alignment function into
the objective function. In particular, the interface between the deliberative and reactive
method is developed, enabling the vehicle to simultaneously track the generated global
path towards the given goal and avoid local collision.

The performance of this hybrid COLAV method has been evaluated through numerical
simulations, and the hybrid COLAV method performs very well handling both static and
moving obstacles. Besides, robustness to noisy measurement has also been tested by con-
sidering Gaussian noise with different standard deviations. Moreover, the major down-
side of the reactive DW algorithm, high sensitivity to local minima, is addressed with the
guidance of the global path. However, for future work, it should be further investigated to
perform maneuvers compliant with the International Regulations for Preventing Collisions
At Sea (COLREG).

iii

Preface

This master thesis has been written as a compulsory part of the Master’s degree in Ma-
rine Technology at Norwegian University of Science and Technology (NTNU) during the
spring semester of 2019. The work done on this thesis has been challenging but rewarding.
After months of hard work, it eventually paid off, which has been a precious and unforget-
table experience of my life.

I would like to express my great gratitude to my supervisor Prof. Vahid Hassani for his
generous help and support throughout the work of this thesis. Besides, I would like to
thank my fellow students, Luhao Shi and Yuan Tian, for their company and interesting
discussion during the semester. Last but not least, I would also like to give a special
thanks to my parents for their incredible support and encouragement.

iv

Table of Contents

Problem Description i

Abstract iii

Preface iv

Table of Contents vi

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Previous Work . 2
1.3 Contributions . 3
1.4 Outline . 4

2 Theoretical Backgrounds 5
2.1 Vessel Dynamics and Modeling . 5

2.1.1 Kinematics . 5
2.1.2 Vessel Dynamics . 7

2.2 Motion Control System . 9
2.2.1 Configuration Space in Motion Planning 9
2.2.2 Path Planning Algorithm . 10
2.2.3 Path Tracking Algorithm . 11

3 Global Path Planning 17
3.1 Bézier Curves . 17
3.2 Differential Flatness . 20

v

3.3 Path Optimization . 23
3.3.1 Decision Variables . 23
3.3.2 Objective Function . 23
3.3.3 Constraints . 24
3.3.4 Implementation . 28

4 Path Planning and Collision Avoidance 31
4.1 Deliberate Path Planning . 32

4.1.1 Grid-based approaches (A* and D*) 32
4.1.2 Rapidly-Exploring Random Tree (RRT) 33

4.2 Reactive Collision Avoidance . 34
4.2.1 Potential Field Method . 34
4.2.2 Velocity Obstacle . 35
4.2.3 Dynamic Window Approach . 35

5 Hybrid COLAV Method 41
5.1 Hybrid COLAV Architecture . 41
5.2 Modified Dynamic Window . 42
5.3 Interface Between Deliberate and Reactive Methods 44

6 Simulation and Results 49
6.1 Simulation Implementation . 49
6.2 Scenarios and Results . 51

7 Conclusion and Future Work 71
7.1 Conclusion . 71
7.2 Future Work . 72

Appendix 73

Bibliography 79

vi

List of Tables

3.1 Initialization parameters . 28

6.1 Basic specifications of Viknes 1030 . 50
6.2 Parameters used in simulation for dynamic window algorithm 50
6.3 Parameters used in simulation for global path planning based on Bézier

curves . 50
6.4 Parameters of the moving obstacles . 55
6.5 Parameters of the moving obstacles . 60
6.6 Parameters of the moving obstacles . 63
6.7 Overview of different simulation scenarios 70

vii

viii

List of Figures

1.1 ASV Global C-Worker for offshore operations (ASV, 2019) 2

2.1 The 6DOF velocities u, v, w, p, q and r in the body-fixed reference frame
(Fossen, 2011) . 5

2.2 Body-fixed reference frame points (Fossen, 2011) 6
2.3 Three-dimensional simplified as two-dimensional space 10
2.4 Vehicle trapped in local minima . 11
2.5 LOS guidance with desired course angle points toward the intersection

point (Fossen, 2011) . 12
2.6 Circle of acceptance with constant radius R (Fossen, 2011) 13
2.7 PLOS path tracking algorithm regarding straight line 15

3.1 Bézier curve of degree 5 with control points and Bézier polygon 19
3.2 Bézier curve satisfying the boundary conditions at endpoints 26
3.3 Feasible path from start to goal based on Bézier curve 29

4.1 Optimal path with diagram with A* algorithm search (Peng et al., 2015) . 32
4.2 Path from initial point to different goals and dynamic obstacles (Naderi

et al., 2015) . 34

5.1 Diagram of hybrid COLAV architecture illustrating the framework 42
5.2 PLOS path tracking algorithm generates trajectory following the desired

global path . 44
5.3 Interface between deliberate and reactive method with PLOS algorithm . 45
5.4 Reactive trajectory aligns well with global path merely considering static

obstacles . 46
5.5 Reactive trajectory aligns well with global path while avoiding moving

obstacles . 47

6.1 Viknes 1030 (Viknes, 2019) . 49
6.2 Trajectory generated by PLOS following the global path 52

ix

6.3 Speed and yaw rate of the trajectory generated by path tracker 53
6.4 Trajectory generated by DW algorithm based on the global path 53
6.5 Speed and yaw rate of the trajectory generated by DW algorithm 54
6.6 ASV collides with straight-line moving obstacles if only tracking global

path . 55
6.7 Trajectory generated by DW algorithm with straight-line moving obstacles 56
6.8 Speed and yaw rate of the trajectory in scenario 2 56
6.9 Snapshots of trajectory in scenario 2 . 57
6.10 ASV trapped in local minima when only employ DW algorithm 58
6.11 ASV avoid local minima when apply hybrid COLAV algorithm 59
6.12 Speed and yaw rate of the trajectory in scenario 3 59
6.13 Trajectory generated by hybrid COLAV algorithm with straight-line mov-

ing obstacles . 60
6.14 Snapshots of trajectory in scenario 4 . 61
6.15 Speed and yaw rate of the trajectory in scenario 4 62
6.16 Trajectory generated by hybrid COLAV algorithm with circular-arc mov-

ing obstacles . 63
6.17 Snapshots of trajectory in scenario 5 . 64
6.18 Speed and yaw rate of the trajectory in scenario 5 64
6.19 Trajectory generated by hybrid COLAV algorithm with random moving

obstacles . 65
6.20 Snapshots of trajectory in scenario 6 . 66
6.21 Speed and yaw rate of the trajectory in scenario 6 66
6.22 Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ

= 6 . 67
6.23 Speed and yaw rate of the trajectory in scenario 5 67
6.24 Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ

= 10 . 68
6.25 Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ

= 15 . 68
6.26 Snapshots of trajectory in scenario 7 . 69

x

Abbreviations

ASV = Autonomous Surface Vehicle
AUV = Autonomous Underwater Vehicle
CCD* = Complete Coverage D*
COLAV = Collision Avoidance
COLREG = International Regulations for Preventing Collisions at Sea
DOF = Degrees of Freedom
DW = Dynamic Window
GNC = Guidance, Navigation and Control
GNSS = Global Navigation Satellite System
LOS = Line of Sight
MPC = Model Predictive Control
NED = North-East-Down
PLOS = Combined Pure Pursuit and LOS
PRM = Probabilistic Roadmap
RRT = Rapidly-Exploring Random Tree
SQP = Sequential Quadratic Programming
USV = Unmanned Surface Vehicle
VHF = Vector Field Histogram
VO = Velocity Obstacles

xi

xii

Chapter 1
Introduction

This introduction section will present the relevant background, motivation and main con-
tributions that have been done so far, in order to give a general overview of frameworks
and techniques that are studied and implemented in this thesis.

1.1 Motivation and Background

Over the past few decades, the field of autonomous vehicles has witnessed an ever increas-
ing interest in motion planning, especially for Autonomous Surface Vehicle (ASV), also
known as Unmanned Surface Vehicle (USV), which can operate on the surface of water
without human intervention. ASV can be used to perform a variety of missions without
a crew in hazardous environment, which declines the risk of causalities to a great extent.
Some research in collision avoidance and other operation has been conducted to ensure
safe and reliable control for ASV. Relevant technologies have applied ASV as a viable
platform, to marine operations and the application areas where they contribute (Manley,
2008).

Compared to other vehicles, USV has the advantages of lower operational cost, more re-
liable safety and wider scope of operation. The upsides above motivate the development
in path planning and collision avoidance (COLAV) for ASV to guarantee considerable re-
liability and manoeuvrability. Path planning algorithm generates geometric paths, from
the initial point to the target, while passing through a couple of waypoints based on the
collision-free goal. However, it is barely possible for ASV to precisely follow a pre-
planned path due to limited information about the environment, on-board sensors with
limited range, speed and acceleration constraints, and disturbance in vehicle state and sen-
sor data (Goerzen et al., 2010).

1

Chapter 1. Introduction

Figure 1.1: ASV Global C-Worker for offshore operations (ASV, 2019)

When it comes to motion planning for Autonomous Surface Vehicles (ASV), collision
avoidance (COLAV) is an essential issue that raises great concerns. The most popular
techniques in the COLAV field are generally divided into two types, deliberate and reac-
tive methods. ASV is required to make real-time response while navigating in the unknown
and cluttered dynamic environment. Hence, a reactive COLAV method that receives data
and information of the immediate environment from sensors, significant contributes to lo-
cal collision avoidance in the presence of both static and dynamic obstacles. Reactive
COLAV methods are widely used due to low demand for computing capabilities, while it
still suffers the risk of being trapped in local minima.

Due to the limitations of reactive method, for instance, high sensitivity to local minima,
it is not adequate to solely employ reactive COLAV guiding an ASV to goal. Deliberate
COLAV methods that rely on the information of the complete environment, become nec-
essary to generate a global path used as guidance for reactive method. Deliberate method
is normally referred to as path planning, aiming to find a route from start to goal point and
is less likely to fail when encountering local minima. Nevertheless, the main drawback
of deliberate method is the demand for long computing time, which makes it no longer
applicable to rapidly changing dynamic environment. As a consequence, it is guaranteed
to yield a collision-free trajectory towards goal by adopting a hybrid COLAV approach
based on the integration of deliberate and reactive method.

1.2 Previous Work

Over the past years, a great variety of methods regarding collision avoidance (COLAV)
have been developed. Deliberate COLAV methods, including graph search algorithms

2

1.3 Contributions

such as A* (Hart et al., 1968) and D* (Stentz et al., 1995), rapidly-exploring random
trees (RRT) (LaValle, 1998) and probabilistic roadmap (PRM) (Kavraki et al., 1994) are
widely used in the field of path planning. In addition to the above methods, spline-based
constrained optimization is also employed to generate global paths. (Hassani and Lande,
2018) presents an effective path planning technique that incorporates the dynamics of USV
based on Bézier curves and differential flatness.

As for reactive COLAV methods, velocity obstacles (VO) method (Fiorini and Shiller,
1998) is one of them, intended for motion planning to avoid static and moving obstacles in
the velocity space. (Ge and Cui, 2002) proposed a new approach based on potential field
for motion planning of robots in a dynamic environment with moving goals and obstacles.
Additionally, dynamic window algorithm is one of the existing reactive COLAV approach,
originally designed for robots with first order nonholonomic constraints (Fox et al., 1997).
A modified DW algorithm presented in (Eriksen et al., 2016), is adapted and tested for
autonomous underwater vehicles (AUV) with second-order nonholonomic constraints.

Extensive research in hybrid COLAV method has also been carried out to solve the exist-
ing issues in both reactive and deliberate approaches. (Seder and Petrovic, 2007) proposes
an improved dynamic window algorithm incorporated with a focused D* search algorithm,
such that the vehicle is less likely to be trapped in local minima. Furthermore, (Serigstad
et al., 2018) introduces a hybrid dynamic window approach, functions as an interface
combined with deliberate path planning approach which generates time parameterized tra-
jectories, yielding the result that vehicle is able to avoid local minima. In (Lopes et al.,
2016), A* algorithm is used as a path planner while a modified dynamic window (DW)
algorithm is implemented enabling the vehicle to avoid dynamic obstacles.

1.3 Contributions
• Present a review of existing COLAV methods and the comparison of them, including

both reactive and deliberate COLAV techniques.

• Based on previous work (Hassani and Lande, 2018), path planning algorithm is
formulated using Bézier curves within the framework of optimization, which is em-
ployed as a deliberate COLAV method in this thesis.

• Differential flatness of the mathematical model has been demonstrated, taking the
dynamics of ASV into account, such that smooth and continuous trajectory can be
followed by the underactuated surface vessel.

• In order to incorporate dynamic obstacles, a modified dynamic window algorithm is
proposed, enabling the vehicle to perform real-time actions and avoid the collision
with moving obstacles.

• To combine global pre-defined paths generated by Bézier curves with dynamic win-
dow algorithm, a combined pure pursuit and LOS path tracking algorithm is intro-

3

Chapter 1. Introduction

duced, which contributes to the extensive development of interface between delib-
erate and reactive COLAV method.

• Last but not least, numerical simulations are carried out to test and demonstrate the
performance of this hybrid method.

1.4 Outline
This thesis is organized as follows:

Chapter 2: This chapter presents the vehicle modeling, including kinematics and kinetics.
Besides, chapter 2 also illustrates the guidance, navigation and control (GNC) system and
elaborate different modules of GNC system. In particular, the principle of PLOS steering
law is introduced.

Chapter 3: A global path planning based on Bézier curve and constrained optimization is
presented. The basic principle and property of Bézier Curves are described in detail in this
chapter. Moreover, differential flatness of the mathematical model for the surface vessel
has been demonstrated with a simplified model.

Chapter 4: Existing motion planning algorithms applied in different situations are intro-
duced and comprehensively compared. Dynamic Window algorithm exploited as reactive
COLAV is highlighted in this chapter.

Chapter 5: In this chapter, a hybrid COLAV architecture is explained and the interface
between reactive and deliberate COLAV method is also presented.

Chapter 6: This chapter presents a series of numerical simulation results concerning path
planning and collision avoidance, which shows the performance and robustness of pro-
posed hybrid COLAV method.

Chapter 7: Chapter 7 presents the conclusion of the work has been currently done and
introduces the future work.

4

Chapter 2
Theoretical Backgrounds

2.1 Vessel Dynamics and Modeling

In this section, the investigation of vessel dynamics mainly focus on kinematics and kinet-
ics, involving geometrical aspects of motion and relevant forces that generates force.

2.1.1 Kinematics

Figure 2.1: The 6DOF velocities u, v, w, p, q and r in the body-fixed reference frame (Fossen, 2011)

5

Chapter 2. Theoretical Backgrounds

Geographic Reference Frames

NED: The NED coordinate system n = (xn, yn, zn) with origin on is referred to as North-
East-Down system, relative to the Earth’s reference. It is usually defined as the tangent
plane on the surface of the Earth moving with the craft, but with axes pointing in different
directions than the body-fixed axes of the vessel. For this system the x axis points towards
true North, the y axis points towards East while the z axis points downwards normal to the
Earth’s surface. The location of n relative to e is determined by using two angles in terms
of longitude and latitude, respectively.

BODY: The body-fixed reference frame b = (xb, yb, zb) with origin ob is a moving co-
ordinate frame that is fixed to the vessel. The position and orientation of the vessel are
described relative to the inertial reference frame, while the linear and angular velocities
of the craft should be expressed in the body-fixed coordinate system. The origin ob is
usually chosen to coincide with a point midships in the water line. In this frame the xb
axis is fixed in the vessel forward direction, yb axis is fixed in the vessel starboard side,
pointing towards east, and zb is fixed in the vertical direction, directed from top to bottom.
The centre of gravity is then located at (xG, 0, zG) in body coordinates. In particular, this
frame is usually used to calculate the motion and the loads acting on the vessel.

Figure 2.2: Body-fixed reference frame points (Fossen, 2011)

The following reference points are defined with respect to CO:
CG – Center of Gravity
CB – Center of Buoyancy
CF – Center of Flotation

6

2.1 Vessel Dynamics and Modeling

Transformations between NED and BODY
The rotation matrix R between two frames a and b is denoted as Rba and it is useful when
deriving kinematic equations of motion for a surface vessel. The linear velocity transfor-
mation the body-fixed frame to NED can be presented as,

Rnb (Θnb) = Rz,ψRy,θRx,φ (2.1.1)

where Rz,ψ , Ry,θ and Rx,φ are rotation matrices about axis zb, yb, xb, respectively.

Since in the case of horizontal motion, only surge, sway and yaw are taken into account
such that rotation matrix about z axis is merely involved. Therefore, the transformation
from BODY to NED can be implemented by the rotation matrix Rz(ψ).

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.1.2)

3DOF Kinematics
DOF, referred to as degree of freedom, consists of independent displacements and rota-
tions, which are exploited to describe the displaced position and orientation of the vessel.
A general body that can move freely in the 3D space has maximum 6 DOFs including three
translational and three rotational components (Sørensen, 2012). In many applications, only
the horizontal motions are taken into account, for instance, ships are often described in the
horizontal plane only considering the motions, surge, sway and yaw (n = 3DOFs). And
the 3DOF kinematics can be expressed as follows,

η̇ = R(ψ)v, R−1(ψ) = RT (ψ) (2.1.3)

where the state vectors reduce to η = [x, y, z]T and v = [u, v, r]T

2.1.2 Vessel Dynamics
In this thesis, a simplified mathematical model and control plant model is nevertheless
sufficient to describe the main physical characteristics of the dynamic system (Sørensen,
2012). A nonlinear low-frequency horizontal plane model for maneuvering in surge, sway
and yaw about zero vessel velocity is based on rigid-body kinetics, and can be presented
as follows:

η̇ = J(η)v

Mv̇ + C(v)v +D(v)v + g(η) = τ
(2.1.4)

where mass matrix, Coriolis and centripetal terms can be represented as

M = MA +MRB

C(v) = CA(v) + CRB(v)
(2.1.5)

D(v) is the damping matrix, and J(η) is the kinematic transformation matrix. In the right-
hand side of the equation, control forces and moments are denoted as τ . Here, we assume

7

Chapter 2. Theoretical Backgrounds

that the mass distribution is homogeneous and xz-plane is symmetric, such that surge mo-
tion is decoupled from sway and yaw. The inertia matrix M consists of rigid body and
added mass, and has the properties M = MT > 0 and Ṁ = 0. Furthermore, it is notable
that the Coriolis and Centripetal matrix is characteristic of the skew symmetric matrix, that
is C(v) = −CT (v).

Since the horizontal motion for the surface vessel can be described by the components
in surge, sway and yaw, and the state vectors including position and velocity can then be
reduced to η = [x, y, ψ]T and v = [u, v, r]T , respectively, which implies that the dynamics
associated with the motion in heave, roll and pitch are neglected. Therefore, the kinematic
transformation matrix J(η) is then identical to the rotation matrix in terms of 3DOF.

J(η) = R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.1.6)

Let the origin of body-fixed frame be fixed in the center line of the vessel at the point
CO, the mass matrix and Coriolis term associated with the rigid-body kinetics then can be
represented as,

MRB =

m 0 0
0 m mxg
0 mxg Iz

 CRB(v) =

0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

(2.1.7)
while mass matrix, Coriolis and Centripetal term associated with the added mass are then
given as,

MA =

−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ

 CA(v) =

0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

(2.1.8)
The inertial matrix, Coriolis and Centripetal matrix then can be expressed as,

MA =

m−Xu̇ 0 0

0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 =

m11 0 0

0 m22 m23

0 m23 m33

 (2.1.9)

C(v) =

0 0 −m23r −m22v
0 0 m11u

m23r +m22v −m11u 0

 (2.1.10)

The damping matrix D(v) is composed of linear damping and nonlinear damping, given
as

D(v) = D +Dn(v) (2.1.11)

The linear damping matrix D in this expression is important for low-speed maneuvering
and station keeping and can be represented as

D =

−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr

 (2.1.12)

8

2.2 Motion Control System

2.2 Motion Control System
The motion control systems consist of three subsystems, namely guidance, navigation and
control (GNC) systems. Guidance system refers to the determination of desired path or
trajectory from the initial position to the goal, and the desired changes in reference posi-
tion, velocity and acceleration of the surface vessel. The navigation system functions to
determine the vessel’s position, velocity and acceleration using global navigation satellite
system (GNSS) and sensors such as accelerometers and gyroscopes. Given information
from the navigation system and reference trajectory from the guidance system, the control
system is used to determine the necessary control forces and moments to follow the refer-
ence trajectory with small error.

The preliminary step for designing a motion control system is to figure out what the control
objective is. Generally, the objective is defined as setpoint regulation, trajectory-tracking
control or path-following control (Fossen, 2011). As the most basic guidance system, the
setpoint regulation uses a constant input as guidance with a controller, referred to as regula-
tor. In trajectory-tracking control, the guidance system is designed to follow a desired tra-
jectory, taking temporal constraints into consideration. By contrast to trajectory-tracking
control, path-following control function as tracking a time-invariant predefined path. In
addition, the path planning system is essential to the guidance system, since the output of
the path planner functions as input to the guidance system. The path planner is used to
design and generate a path, which is expected to be safe and feasible if followed without
deviations. Typically, the output of the path planner are a set of waypoints or desired path.

2.2.1 Configuration Space in Motion Planning
In motion planning, configuration is a key concept, defined as a complete specification
of the position of every point in the system (Spong et al., 2006). Thus the space of all
configurations is defined as configuration space, also denoted as C-space.

For a 3DOF surface vehicle considered in this thesis, the configuration consists of location
and heading angle of the vehicle, denoted as η = (x, y, ψ)T . And a 3-dimensional config-
uration space can be expressed as C = R2×SO(2). Besides, obstacles in the configuration
space can be defined as a set, O = O1,O2, . . . ,On, where Oi denotes the i-th obstacle in
C. In C-space, the set of configurations where the vehicle might collide with an obstacle
is defined as obstacle configuration space, also referred to as forbidden space, and can be
expressed as

Cforb = {η ∈ C|A(η) ∩ O 6= ∅} (2.2.1)

Hence, the remaining set of C is collision-free configuration set, called free configuration
space, denoted as

Cfree = C\Cforb = {η ∈ C|A(η) ∩ O = ∅} (2.2.2)

For a 3D ASV, three-dimensional configuration space can be simplified as two-dimensional
space by approximating the vehicle as a circle or disc with a radius representing the longest
distance from the center point to any other point of the vehicle, shown in Figure 2.3. As a

9

Chapter 2. Theoretical Backgrounds

consequence, the new two-dimensional configuration space is independent of heading ψ,
and the configuration of the vehicle then becomes p = (x, y).

Figure 2.3: Three-dimensional simplified as two-dimensional space

2.2.2 Path Planning Algorithm
Over the past few decades, path planning or trajectory planning has been a hot issue in
the field of automation. Path planning algorithm is intended to generate geometrical path
from the initial point to goal, connecting a sequence of waypoints without considering
temporal assignments. Considerable research has been done on this topic, and overview of
existing path planning algorithm is presented in (LaValle, 2006). Path planning methods
are usually divided into two categories, global and local path planning, also referred to as
deliberate and reactive methods.

Deliberate Methods
Given complete information of the environment, deliberate method is designed to find a
route from the start point to goal. Majority of deliberate path planning algorithms are com-
plete, indicating that the algorithm is always able to find the path if it exists. Global meth-
ods including graph search algorithms such as A* (Hart et al., 1968) and D* (Stentz et al.,
1995), rapidly-exploring random trees (RRT) (LaValle, 1998) and probabilistic roadmap
(PRM) (Kavraki et al., 1994) are widely used. Nevertheless, the main drawback of delib-
erate method is the demand for long computing time, which makes it no longer applicable
to rapidly changing dynamic environment. Compared to local methods, they are much
slower since the global methods are required to calculate all the subsequent motions until
the vehicle reaches the goal, meaning that problems may occur when the vehicle encoun-
ters unexpected situations.

Reactive Methods
Based on data and information of immediate environment from the sensors, reactive ap-
proaches are able to make real-time response that requires low computation capacities.

10

2.2 Motion Control System

Due to the property that only a subset of configuration space is considered, it behaves
in a ”greedy” way to reach the goal, which results in great possibility of being trapped in
local minima, as shown in Figure 2.4. Popular reactive method including Vector Field His-
togram (VFH) (Borenstein and Koren, 1991), Potential field method (Khatib, 1986), and
velocity space based methods, like Velocity Obstacles (VO) (Fiorini and Shiller, 1998) and
Dynamic Window (DW) (Fox et al., 1997) will be elaborated in later section.

Figure 2.4: Vehicle trapped in local minima

2.2.3 Path Tracking Algorithm
Path tracking scheme is required to drive a vehicle to follow a pre-determined path gener-
ated by path planner. Popular path tracking algorithms, including pure pursuit path track-
ing and Line of Sight (LOS) method are both able to steer the vehicle to track a desired
path. The main difference between these two methods is that the pure pursuit guidance law
directly drives the vehicle towards the next waypoint Wi+1, while LOS steers the vehicle
onto the path towards the waypoint, illustrated in Figure 2.7. To absorb the advantages of
both methods, a combined pure pursuit LOS guidance law (Kothari et al., 2014) for ASV
is adopted in this thesis.

Line of Sight
Line of sight (LOS) guidance is a widely-used method that generates heading commands
steering a vehicle to the desired goal position, which consists of a reference point, an inter-
ceptor and a target. Both reference point and target can be viewed as wayponits, denoted
as (xk, yk) and (xk+1, yk+1). LOS guidance law is usually exploited to address practical
path-following issues of marine vehicles due to its simplicity and intuitiveness: it drives
a vessel towards the given point, a constant distance ahead of the vessel along the desired

11

Chapter 2. Theoretical Backgrounds

paths (Fossen, 2011).

Since only horizontal motion is considered for the surface vessel, the speed of the vessel
can be represented as,

U(t) := ||v(t)|| =
√
ẋ(t)2 + ẏ(t)2 ≥ 0 (2.2.3)

The course angle, denoted as χ(t), can be defined as,

χ(t) := atan2(ẏ(t), ẋ(t)) ∈ S := [−π, π] (2.2.4)

where the atan(y, x) is the four-quadrant inverse tangent of y and x, arctan(y, x) ∈
[−π/2, π/2]. Considering a straight-line connecting two waypoints, pk = (xk, yk) and
pk+1 = (xk+1, yk+1), the rotation angle of the straight line with respect to NED reference
frame, denoted as αk can be described as,

αk := atan2(yk+1 − yk, xk+1 − xk) ∈ S := [−π, π] (2.2.5)

Figure 2.5: LOS guidance with desired course angle points toward the intersection point (Fossen,
2011)

12

2.2 Motion Control System

For lookahead-based steering, the course angle consists of two parts and can be expressed
as,

χd(e) = χp + χr(e) (2.2.6)

where e is the cross-track error, normal to the path line between two waypoints, illustrated
in Fig. Besides, the path-tangential angle and velocity-path relative angle can be given as,

χp = αk (2.2.7)

and
χr(e) := arctan(

−e
∆

) (2.2.8)

The relative angle of the velocity-path ensures that the velocity is directed toward a point
on the path located a look-ahead distance ∆(t) > 0 ahead of the direct projection of pn(t)
on to the path. The look-ahead distance can be calculated as follows, illustrated in Figure
2.6.

∆(t) =
√
R2 − e(t)2 (2.2.9)

Figure 2.6: Circle of acceptance with constant radius R (Fossen, 2011)

For path-following controllers, the transformation from the desired course angle χd to the
desired heading angle command ψd can be expressed as,

ψd = χd − β (2.2.10)

where β is the sideslip angle computed by,

β = arcsin(
v

U
) (2.2.11)

The desired heading angle ψd then can be used as the reference in a heading controller.

13

Chapter 2. Theoretical Backgrounds

Pure Pursuit Path Tracking
Pure pursuit path tracking algorithm (Coulter, 1992) has been widely used as a steer-
ing controller for autonomous vehicles. (Yamasaki et al., 2009) proposes a robust path-
tracking method for UAV based on pure pursuit steering law. (Rankin et al., 1998) presents
a review and evaluation of PID, pure pursuit, and weighted steering controller for an au-
tonomous land vehicle. The major objective of this method is to calculate curvatures
enabling the vehicle to chase a moving target point that is some distance ahead of it on the
pre-planned path. The chord length of the arc represents the look-ahead distance joining
current position and goal point, and it’s used when search for the next target point.

Combined Pure Pursuit and LOS (PLOS)
A combined pure pursuit and line-of-sight (PLOS) path tracking algorithm is employed to
achieve two objectives. That is, LOS accounts for the position error d regarding desired
path where d also referred to as cross-track error, while pure pursuit is used to compensate
for the heading error (θd − ψ) towards next waypoint.

Navigation model for ASV is defined as follows

ẋ = v · cosψ (2.2.12a)
ẏ = v · sinψ (2.2.12b)

ψ̇ = u (2.2.12c)

where v is the surge speed of ASV, ψ represents the heading angle while u denotes the
control input.

The initial position of vehicle and waypoints ca be represented as

p = (x, y), Wi = (xi, yi), Wi+1 = (xi+1, yi+1) (2.2.13)

The position error d then can be calculated as

d = R · sin(θ − θu) (2.2.14a)

R = Wi − p =
√

(xi − x)2 + (yi − y)2 (2.2.14b)
θ = atan2(yi+1 − yi, xi+1 − xi) (2.2.14c)
θu = atan2(y − yi, x− xi) (2.2.14d)

where R is the distance from the waypoint Wi to the vehicle, is the LOS angle formed by
waypoints Wi and Wi+1, while θu is the angle formed by vehicle and waypoint Wi.

Apart from minimizing the heading error (θd − ψ), the PLOS algorithm is also aimed at
shrinking the cross-track error d, enabling the vehicle to converge to the desired path, as
depicted in Figure 2.7. As a consequence, a weighted sum of position and heading error is

14

2.2 Motion Control System

derived as the guidance law,

ψd = k1 · (θd − ψ) + k2 · d (2.2.15a)
θd = atan2(yi+1 − y, xi+1 − x) (2.2.15b)

where k1 > 0 and k2 > 0 are the gains, θd is the desired heading angle towards the next
waypoint Wi+1, ψ is the heading angle of the vehicle, and d is the cross-track error, the
distance vehicle deviates from the desired path.

Figure 2.7: PLOS path tracking algorithm regarding straight line

15

Chapter 2. Theoretical Backgrounds

16

Chapter 3
Global Path Planning

In this chapter, a global path planning algorithm based on previous work (Hassani and
Lande, 2018), is introduced. Using Bézier curves as a basis to generate a set of paths
joining the initial and final position while avoiding the collision with static obstacles, the
problem is formulated as a optimization issue. Property of differential flatness is employed
to incorporate the dynamics of the vehicle by assigning corresponding cost to each path.
Furthermore, the optimal path is selected by minimizing the objective function while sat-
isfying the constraints.

3.1 Bézier Curves
Bézier curve is a polynomial parametric curve widely used in the field of animation, com-
puter graphics and path planning. The history of Bézier curve can be tracked back to 1912,
a Russian mathematician Sergei Natanovich Bernstein proposed the concept of Bernstein
polynomials while it was not applied to graphics at that moment. Using Bernstein polyno-
mials as mathematical basis, a French engineer, Pierre Bézier finally made Bézier curves
well known to the world in 1960s. The property of Bézier curve has motivated a variety of
research on path planning exploiting Bézier spline to generate smooth path. (Choi et al.,
2008) proposes two path planning methods based on Bézier curves for autonomous vehi-
cles with waypoints and corridor constraints, in which cubic Bezier curve segments are
exploited to generate smooth path. Besides, a Bézier curve-based cooperative collision-
avoidance method for multiple nonholonomic robots is proposed in (Škrjanc and Klančar,
2010), where optimal path passing through start point and goal point, is obtained by mini-
mizing the cost function, considering path lengths between the robots.

As an effective tool in graphics, Bézier curves are usually exploited to model smooth
curves, and Bézier spline can be generated by lining up multiple Bézier curves. A Bézier
curve is defined by a set of control points, from P0 to Pn, where P0 and Pn are the
endpoints of the curve, and n represents the degree of curve. Thus, the number of control
points for a curve of degree n is n+1, while the intermediate control points are not perfectly

17

Chapter 3. Global Path Planning

lying on the curve. By definition, a Bézier curve of degree n can be represented as

p(t) =

n∑

i=0

Bni (t)pi t ∈ [0, 1] (3.1.1)

where t represents a normalized time variable, and pi denotes the control points together
with the basis function Bni (t) determine the shape of curve. The basis function, also
referred to as Bernstein polynomial, can be explicitly expressed as

Bni =

(
n
i

)
(1− t)n−iti, i = 0, 1, 2, . . . , n (3.1.2)

where
(
n
i

)
is the binomial coefficient, given as

(
n
i

)
=

n!

i!(n− i)! (3.1.3)

For n = 5, the corresponding Bézier curve can be expressed as

p(t) =(1− t)5P0 + 5t(1− t)4P1 + 10t2(1− t)3P2

+ 10t3(1− t)2P3 + 5t4(1− t)P4 + t5P5 t ∈ [0, 1]
(3.1.4)

To simplify the computation of derivatives, it might be sensible to take advantage of ma-
trix representation, since parameters, coefficients and control points can be expressed sep-
arately in that way.

pp(t) =
[
1 t . . . tn

]

b0,0 0 . . . 0
b1,0 b1,1 . . . 0

...
...

. . . 0
bn,0 bn,1 . . . bn,n

p0
p1
...
pn

 (3.1.5)

where coefficients can be denoted as

bi,j = (−1)i−j
(
n
i

)(
i
j

)
(3.1.6)

The polygon is formed by sequentially connecting control points with straight lines, start-
ing from P0 and ending at Pn. This polygon is then called the Bézier polygon or control
polygon. And the Bézier curve is contained in the convex hull of the Bézier polygon. Tak-
ing Bézier curve of degree 5 as an example, control points and Bernstein polynomials are
given as

p0 = [−1,−1]T , p1 = [0, 2]T , p2 = [3, 4]T ,
p3 = [5, 5]T , p4 = [10, 3]T , p5 = [12,−1]T

(3.1.7)

and

B5
0(t) = (1− t)5, B5

1(t) = 5(1− t)4t, B5
2(t) = 10(1− t)3t2

B5
3(t) = 10(1− t)2t3, B5

4(t) = 5(1− t)t4, B5
5(t) = t5

(3.1.8)

18

3.1 Bézier Curves

As shown in Figure 3.1, the Bézier curve of degree 5 is completely contained in the control
polygon, connected by control points.

Figure 3.1: Bézier curve of degree 5 with control points and Bézier polygon

The derivative for a Bézier curve of degree n, is definitely the Bézier curve of degree n-1.
As the derivative for a Bézier curve is independent of control points and parameter t, the
derivative can be obtained based on the derivative of the Bernstein polynomial, which can
be defined as

Bni (t)′ = n(Bn−1i−1 (t)−Bn−1i (t)), t ∈ [0, 1] (3.1.9)

Furthermore, with Eq. (3.1.9) as the basis, the derivative of Bézier curve can be expressed
as

p′(t) = n

n−1∑

i=0

Bn−1i (t)(pi+1 − pi), t ∈ [0, 1] (3.1.10)

To determine the k-th derivative for a Bézier curve, we need to find the control points of
all the derivatives before k, and a general expression can be derived as

qki = qk−1i+1 − qk+1
i , i ∈ 0, 1, . . . , n− k (3.1.11)

where n represents the degree of curve, k denotes the derivative, and qki is the k-th deriva-
tive of control points, e.g, qi = pi+1 − pi. To be specific, the first and second derivatives
at the endpoints of Bézier curve of degree 5 can be expressed as

p′(0) = 5(p1 − p0) p′(1) = 5(p5 − p4)
p′′(0) = 20(p2 − 2p1 + p0) p′′(1) = 20(p5 − 2p4 + p3)

(3.1.12)

where p′(0) and p′(1) represent the first derivative at start point and end point, respec-
tively, while p′′(0) and p′′(1) denote the second derivatives at endpoints.

19

Chapter 3. Global Path Planning

By mathematical definition, curvature is a measure for the rate of change of a curve’s di-
rection in terms of distance along the the curve. Given a parameterized curve with respect
to arc length pp(s), the curvature of curve can be defined as

κ(s) = |T s
ds
| (3.1.13)

where tangent T is referred to as T = dpp
ds , and arc length pp(s) can be derived as

s =

∫ t1

t0

| p′p(τ)dτ |=
∫ t1

t0

√
x′p(τ)2 + y′p(τ)2dτ (3.1.14)

Given the position of control point p(t) = (x(t), y(t)), the curvature of Bézier curve can be
calculated as

κ(t) =
| p′p(t)× p′′p(t) |
| p′p(t) |3

=
| x′p(t)y′′p (t)− x′′p(t)y′p(t) |

(x′p(t)2 + y′p(t)2)
3
2

(3.1.15)

Furthermore, the radius of curvature is defined to be the reciprocal of the curvature that
mostly approximate to the curve at the given point, denoted as

R(s) =
1

κ(s)
(3.1.16)

3.2 Differential Flatness
Differential flat system is characteristic of the competence that it is able to generate effec-
tive control policies for nonlinear systems (Murray et al., 1995). A system is said to be
differential flat if all involving states and inputs can be explicitly expressed by a fictitious
flat output vector and the derivatives in terms of the flat outputs. Specifically, if the system
has states x ∈ Rn and inputs u ∈ Rm, the system is then differential flat if we can find the
flat output y in the form

y = y(x, u, u̇, · · · , u(p)) (3.2.1)

such that

x = x(y, ẏ, · · · , y(q))
u = u(y, ẏ, · · · , y(q))

(3.2.2)

Differential flat systems are essential in the case of that explicit trajectory generation is
required. For the sake of simplicity, trajectories can be planned in output space and then
be mapped to appropriate inputs, due to the fact that the behavior of flat outputs are the
key factors to determine a flat system. The flatness property of the system implies that the
trajectory planning problem can be simplified as algebra in theory, and computationally
attractive algorithms in practice. (Murray et al., 1995) presents initial results on the char-
acterization of differential flatness for mechanical systems and shows how symmetries and

20

3.2 Differential Flatness

inertial properties relate to differential flatness.

In this section, we show that vessel dynamics with three flat output variables [x, y, ψ], is
differential flatness. That is, all relevant states [x, y, ψ, u, v, r] and inputs τu and τr can be
written as algebraic functions of the three flat outputs and their derivatives. In this report,
the main purpose is to derive a path planning approach for an underactuated surface vessel,
in which smooth and continuous trajectory in the flat output space can be followed by the
underactuated surface vessel.

In order to build a flat mathematical model for the surface vessel, some simplifications and
assumptions must be proposed to ensure the differential flatness of the model:
1) The ship is fore/aft symmetric, which means all the off-diagonal elements in inertia
matrix M and damping matrix D would be eliminated.
2) Since the ship motion is assumed to be low-speed, nonlinear damping is neglected in
this report, that is, only linear damping matrix D is considered in (Lande, 2018).

Based on the above assumptions, the simplified mathematical model can be derived as
follows,

η̇ = R(ψ)v

Mv̇ + C(v)v +Dv = τ
(3.2.3)

where τ = [τ1, 0, τ3], M = diag{m11,m22,m33}, and D = diag{d11, d22, d33}

C(v) =

0 0 −m22v
0 0 m11u

m22v −m11u 0

 , R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

Inserting the matrix into the mathematical model, we will obtain a set of motion equations
on a more specific form.

ẋ = ucos(ψ)− vsin(ψ) (3.2.4a)
ẏ = usin(ψ) + vcos(ψ) (3.2.4b)

ψ̇ = r (3.2.4c)
u̇ = vr − β1u+ τu (3.2.4d)
v̇ = −ur − β2v (3.2.4e)
ṙ = −β3r + τr (3.2.4f)

where m11 = m22, β1 = d11
m11

, β2 = d22
m22

, β3 = d33
m33

, τu = τ1
m11

, τr = τ3
m33

Multiplying Eq.(3.2.4a) by cos(ψ) and multiplying Eq.(3.2.4b) by sin(ψ), we then get the
following equations,

ẋcos(ψ) = ucos2(ψ)− vsin(ψ)cos(ψ) (3.2.5a)

ẏsin(ψ) = usin2(ψ) + vsin(ψ)cos(ψ) (3.2.5b)

21

Chapter 3. Global Path Planning

To eliminate the term v, we add the two equations above and rearrange the terms, it then
follows,

u = ẋcos(ψ) + ẏsin(ψ) (3.2.6)

From the equation above, we can draw the conclusion that u can be written as an algebraic
function of the three flat outputs and their derivatives (ẋ, ẏ, ψ).

Similarly, the term v can be derived by multiplying Eq.(3.2.4a) by sin(ψ) and multiplying
Eq.(??) by cosψ,

v = −ẋsin(ψ) + ẏcos(ψ) (3.2.7)

Eq.() then proves that v can be expressed as a function of the flat outputs and their deriva-
tives (ẋ, ẏ, ψ).

As Eq.(3.2.4c) shows, r can be explicitly expressed by the derivative of the heading, that
is ˙psi.

r = ψ̇ (3.2.8)

To prove that the inputs τu and τr are flat, we can rewrite Eq.(3.2.4d) and Eq.(3.2.4f) as,

τu = u̇+ β1u− vr (3.2.9a)
τr = ṙ + β3r (3.2.9b)

Taking the derivative of u and r with respect to time, we then get

u̇ = ẍcos(ψ)− ẋsin(ψ)ψ̇ + ÿsin(ψ) + ẏcos(ψ)ψ̇ (3.2.10a)

ṙ = ψ̈ (3.2.10b)

Inserting Eq.(3.2.9a) into Eq.(3.2.10a), then the following equation can be proved to hold,

τu = ẍcos(ψ) + ÿsin(ψ) + β1(ẋcos(ψ) + ẏsin(ψ)) (3.2.11)

Eq.(3.2.11) proves that input τu is flat, which can be written as a function of flat outputs
and their derivatives (ẋ, ẏ, ẍ, ÿ, ψ).

To further prove τr is flat, insert Eq.(3.2.8) and Eq.(3.2.10b) into Eq.(3.2.9b),

τr = ψ̈ + β3ψ̇ (3.2.12)

Since states [u, v, r] and inputs [τu, τr] have all been proved that they can be written as
functions of flat outputs and their derivatives, thus the system is flat. Differential flatness of
the mathematical model has been demonstrated as above, which can be used as a powerful
property to allow for trajectory planning without the need to solve for the differential
equations of motion at each iteration. Moreover, the trajectory and its derivatives are
sufficient to obtain the states and control inputs at each point along the trajectory. In the
next section, a polynomial-based approach is proposed to smooth the piecewise-linear path
based on the differential flatness of the mathematical model.

22

3.3 Path Optimization

3.3 Path Optimization
Based on the property of Bézier curve and differential flatness, the path planning problem
is then formulated as an optimization problem. The main objective is to generate a path
from initial point to goal consisting of piecewise Bézier curve segments, while dynam-
ics of the vehicle and static obstacle avoidance are involved by imposing constraints on
physics and workspace.

Optimization is an essential tool applied in decision making, which consists of objective
function and certain constraints. To take advantage of this tool, we have to identify the
objective at the first step, which could be time, profit, energy consumption or other quan-
titative measure of the performance. The objective depends on some variables, called
decision variables, reflecting the characteristics of the system. The main goal of this opti-
mization problem is to determine the value for decision variables that optimize the objec-
tive function. Besides, the variables are restricted by some constraints, including equal-
ity constraints and inequality constrains. The process of identifying objective, variables,
and constraints for a given optimization problem is referred to as modeling (Nocedal and
Wright, 2006). Since the mathematical model has been constructed in the previous section,
the next step is to choose an appropriate optimization algorithm and apply the algorithm
to the model. Generally speaking, optimization is to find the minimal or maximal value of
the objective function subject to constraints on the variables, and a general formulation is
given as

min
x∈Rn

f(x) subject to
ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I, (3.3.1)

where f(x) represents the objective function, x is the vector of variables. ci denoted the
constraint functions, E and I are sets of indices for quality and inequality constraints,
respectively.

3.3.1 Decision Variables
To start with the optimization problem, the decision variable ought to be determined. As
the Bézier spline depends on the positions of control points, it is reasonable to select
control points as the decision variable. Assuming that Bézier spline is connected by m
Bézier curve segments, the decision variables can be expressed using a vector as

x1 = {p0,1, . . . , pn,1, p0,2, . . . , pn,2, p0,m, . . . , pn,m} (3.3.2)

where n is the degree of Bézier curve.

3.3.2 Objective Function
Considering path planning, the optimization problem is solved by minimizing the objective
function, that is also known as cost function. Generally, objective function is constructed
considering several aspects, including time cost, energy and fuel consumption with respect
to path planning optimization. In this thesis, cost function f(x) is developed by exploiting
the property of differential flatness and assigning a cost to each path generated by Bézier

23

Chapter 3. Global Path Planning

curves. As illustrated in the previous section, it is natural to choose the x and y coordinates
of Bézier curves as the flat outputs, whose derivatives are also easy to derive.

In addition to differential flatness, the energy consumption is also a key factor that should
be incorporated into the objective function. Assuming that there is no sideslip along the
path, the Newton’s second law of motion and relationship between force and work can be
expressed as follows

∑
F = mu̇, Wab =

∫ b

a

F (s)ds (3.3.3)

where the first expression is related to Newton’s second law, u̇ is the acceleration. W
represents the work traveling along the curve from point a to b, while s denotes the length.
Since the work is related to energy consumption and is dependent on acceleration, the new
cost function can be formulated by using u̇ as the variable.

J =

∫ b

a

g(u̇)ds, g(u̇) =
√
|u̇| (3.3.4)

Another vital assumption to derive the cost function is that the time dependent flat output
can be directly replaced by the parameter of Bézier curve t. Hence, by substituting u̇ with
the first derivative u′(t), the cost function then can be transformed into

J =

m∑

i=1

∫ 1

0

√
|u′i(t)|dt (3.3.5)

where i is the curve segment number, and u′i(t) can be derived by differentiating Eq.
(3.2.6).

3.3.3 Constraints
To find the solution with respect to path planning, we formulate a constrained optimization
problem, where constraints play a fundamental role, where constraints including equality
and inequality constraints are scalar functions of decision variables x, and constraints are
imposed that variable x should satisfy. All constrained involved in the path planning opti-
mization are presented in this section, including various constraints regarding smoothness,
boundary conditions, turning radius and static obstacles.

Parametric Continuity
Parametric continuity is a concept used to describe the smoothness of a parametric curve,
denoted as Cn, where n represents the degree of continuity. By definition, a parametric
curve is defined to beCk continuous if d

kp
dtk

exists and is continuous on [0, 1]. And different
orders of parametric continuity can be expressed as

• C0: Curve is continuous.

• C1: First derivative of the curve is continuous.

24

3.3 Path Optimization

• Cn: From first to n-th derivatives are all continuous.

As the generated curve is connected by several Bézier curve segments, the continuity at
the joint should be taken into consideration. To sure C0 continuity, the last control point
of a curve segment must be the same as the first control point of next segment. For a fifth
order Bézier spline, this constraint can be given as

p5,i = p0,i+1, i ∈ Im−1 (3.3.6)

where m represents the number of curve segments, while i denotes the i-th segment. Be-
sides,C1 continuity can also be guaranteed by imposing constraints on the first derivatives,

p5,i − p4,i = p1,i+1 − p0,i+1, i ∈ Im−1 (3.3.7)

By combining Eq. (3.3.6) and Eq. (3.3.7), the constraint can be further simplified as

p1,i+1 + p4,i = 2p5,i = 2p0,i+1, i ∈ Im−1 (3.3.8)

In order to have a continuous curvature, C2 continuity can be obtained by constraining the
second derivative at the endpoints,

p2,i+1 − 2p1,i+1 + p0,i+1 = p5,i − 2p4,i + p3,i, i ∈ Im−1 (3.3.9)

This constraint can also be simplified by inserting Eq. (3.3.6) as

p2,i+1 − 2p1,i+1 = −2p4,i + p3,i, i ∈ Im−1 (3.3.10)

The given parametric constraints can all be characterised by linear equality constraints.
The path is able to have C0, C1 and C2 by meeting these constraints, and only the first
and last three control points of each segments are required to be considered.

Geometric Continuity
Since the parametric continuity mainly focus on the smoothness of parameterization, and
does not necessarily reflect the smoothness of the curve, geometric continuity is thus in-
troduced to ensure that path also has continuity on course and curvature. Geometric con-
tinuity is a concept to describe smoothness of curve through geometry rather than algebra,
and various orders of geometric continuity can be given as

• G0: Curve is connected at joint points.

• G1: Tangent vector is continuous at joint points.

• G2: Center of curvature is shared at joint points.

To enable the fifth order Bézier spline has G2 continuity, following constraints are im-
posed,

p′i(1) = aip
′
i+1(0), i ∈ Im−1

p′′i (1) = a2i p
′′
i+1(0) + bip

′
i+1(0), i ∈ Im−1

(3.3.11)

where ai and bi are newly introduced decision variables, denoted as a vector set,

x2 = {a1, a2, . . . , am−1, b1.b2, . . . , bm−1} (3.3.12)

where m denotes the number of curve segments, ai are a set of strictly positive constants,
while bi represents a set of arbitrary constants.

25

Chapter 3. Global Path Planning

Boundary Conditions
For path planning algorithm, it is essential to satisfy the boundary conditions of the vehi-
cle. Béizer spline is generated path through the initial and final control points according
to the boundary conditions, while it is not required to necessarily pass through the inter-
mediate control points. Assuming the initial and final pose of the vehicle is defined as
q0 = [x0, y0, ψ0] and qf = [xf , yf , ψf], respectively, and boundary conditions are re-
quired to be compatible with the initial and final pose of vehicle. Figure 3.2 shows that the
Bézier curve is able to be constrained by boundary conditions with q0 = [0,−1, 60◦] and
qf = [8, 0,−45◦].

Figure 3.2: Bézier curve satisfying the boundary conditions at endpoints

Since fifth order Bézier spline is adopted in this thesis and it has been proved to have G2

continuity, the curvature of the curve is capable of smoothly transitioning from the start
point to the end point while meeting the heading constraints regarding boundary condi-
tions. Hence, initial and final constraints for positions and heading are formulated by a set
of linear equality constraints, given as

p0,1 = W0, p5,m = Wf (3.3.13)

where W0 and Wf represent the positions of initial and final control points. As for the
orientation of the vehicle, the heading at the endpoints is dependent on the tangent of the
curve, which can be restricted by a set of constraints,

l0

[
sin(ψ0)
con(ψ0)

]
= 5(p1,1 − p0,1), lf

[
sin(ψf)
con(ψf)

]
= 5(p5,m − p4,m), (3.3.14)

where ψ0 and ψf represent the heading angle at the start and goal control points, respec-
tively, while l0 and lf are strictly positive decision variables, representing the length of
tangents at the endpoints, denoted as a new vector

x3 = l0, lf , where l0, lf > 0 (3.3.15)

26

3.3 Path Optimization

After imposing the constraints above, the decision variables for the path optimization prob-
lem can eventually be determined and written as a vector,

x = {x1, x2, x3}, (3.3.16)

where x1 is dependent on the positions of control points, x2 is included to ensure path is
geometric continuous, while x3 is introduced to satisfy boundary conditions.

Turing Radius
Due to the physical and dynamic constraints of ASV itself, minimum turning radius should
be incorporated as another constraint, reflecting the capability of the vehicle’s maneuver-
ability. The relationship between curvature and turning radius has been explained in the
previous section, that the turning radius is the reciprocal of the curvature. Therefore, the
constraints on turning radius lead to the consequence that the curvature along the path
should be less than the maximum curvature, shown as

κ(t) =
| p′p(t)× p′′p(t) |
| p′p(t) |3

=
| x′p(t)y′′p (t)− x′′p(t)y′p(t) |

(x′p(t)2 + y′p(t)2)
3
2

(3.3.17)

κmax =
1

Rmin
(3.3.18)

κi(t) < κmax, i ∈ Im (3.3.19)

where κmax denotes the maximum curvature, while Rmin represents the corresponding
minimum turning radius. And the constraint is formulated by restricting the curvature
along the path smaller than maximum curvature. Besides, this constrained is characterised
as nonlinear inequality constraint.

Static Obstacles
Besides, as collision avoidance (COLAV) is an inevitable issue in this case, a collision
avoidance scheme should be developed and implemented taking static obstacles into ac-
count. The main objective is to determine the safety margin that the vehicle is allowed
to travel through without suffering the risk of colliding with ant obstacle. To simplify
the case, we assume that each obstacle can be represented by a circle with radius rj and
center point is located at cj = (xj , yj), yielding the forbidden zones. The corresponding
constraint is imposed on the distance from each waypoint pi(t) on the Bézier curve to any
center of static obstacles cj . Assuming there exists n static obstacles, constraint can be
expressed as

rj ≤ |pi(t)− cj |, i, j ∈ Im × In (3.3.20)

The formulated constraint above should be satisfied for any pair(i, j) to guarantee a feasible
and collision-free path. However, if the constraint with respect to obstacle is required to
hold for every pair of i and j, a large number of constraints will be created, resulting in high
computational loads. To shrink the amount of obstacle constraints, pair of i and j should
be pruned and merely consider the minimum distance between the path curve segments

27

Chapter 3. Global Path Planning

and obstacles. In other words, only the most risky pairs of i and j are taken into account.
Thus, the corresponding constraint can be reformulated as

rj ≤ min{|pi(t)− cj |}, i, j ∈ Im × In (3.3.21)

3.3.4 Implementation

Based on previous work (Lande, 2018), this optimization algorithm is implemented in
MATLABr where ”fmincon” is used as the optimization solver providing SQP (Se-
quential Quadratic Programming) algorithm. Since this path optimization is defined as
a nonlinear constrained optimization problem due to the existence of nonlinear objec-
tive function and constraints, the SQP approach is employed as one of the most effective
methods solving for nonlinear constrained optimization. Consider a general nonlinear pro-
gramming problem in the form as

minf(x) (3.3.22a)
subject to ci(x) = 0,i ∈ E , (3.3.22b)

ci(x) ≥ 0,i ∈ I, (3.3.22c)

The model is then reformulated by linearizing both equality and inequality constraints as

min
p

fk + fTk p+
1

2
pTxx

2Lkp (3.3.23a)

subject to ci(xk)T p+ ci(xk) = 0,i ∈ E , (3.3.23b)

ci(xk)T p+ ci(xk) ≥ 0,i ∈ I. (3.3.23c)

As (Lande, 2018) has proved that the quintic Bézier spline has the overwhelming supe-
riority over cubic and quartic Bézier spline by possessing the property of freely set first
and second derivatives at endpoints besides locality and C1, C2 continuity, quintic Bézier
spline is exploited to generate feasible paths. To initialize the algorithm, relevant parame-
ters should be specified including initial and final pose of the vehicle [x, y, ψ], number of
obstacles n, minimum turning radius Rmin and radius of obstacles r. A example of path
planning algorithm based on Bézier curve and optimization is displayed in Figure 3.3, and
the initialization parameters are given in Table 3.1.

Initial pose (0, 0, 0◦) Final pose (1000, 1000, 30◦)
Degree of Bézier curve 5 No. of obstacles 10

Minimum turning radius 100 Radius of obstacles 60

Table 3.1: Initialization parameters

28

3.3 Path Optimization

Figure 3.3: Feasible path from start to goal based on Bézier curve

The result above manifests that the path optimization algorithm based on Bézier curve is
capable of generating a feasible path passing through start point and goal while avoiding
collision with static obstacles at the same time. As a consequence, this path planning
method is employed as a deliberate approach that will be incorporated into hybrid COLAV
architecture in chapter 5.

29

Chapter 3. Global Path Planning

30

Chapter 4
Path Planning and Collision
Avoidance

Path planning is a widespread problem, not only associated with robotics, but also applied
in cybernetics, artificial intelligence and other relevant engineering fields. When it comes
to path planning, a number of factors should be taken into account. In general, it is neces-
sary to consider the initial and final states of the vehicle, internal and external constraints,
specifically, obstacle avoidance and vehicle dynamical constraints should be satisfied at the
same time. Moreover, cost criterion is non-trivial such that the generated trajectory will
minimize the cost while meeting all constraints. In some cases, motion planning module
can operate off-line, by obtaining a prior knowledge of the vehicle and given environment.
While suitable sensors are essential to be employed to monitor the vehicle motion such
that the control system can adjust to movements and operate on-line.

Path planning algorithm generates geometric paths, from the initial point to the final point,
while passing through a couple of waypoints based on the collision-free goal and no spe-
cific time law is involved. Taking the given geometric path as a basis, trajectory planning
integrate time factor into planning algorithm. Time information at the waypoints has im-
portant effect on both kinematic and dynamic properties of the motion. In addition, tra-
jectory planning is of great importance in multiple marine vehicles scenarios, especially
where collision avoidance with dynamic obstacles or other vehicles should be taken into
consideration, as the vehicle must satisfy spatial and temporal schedules simultaneously.
And the trajectory tracking depends on absolute timing, which does not allow for on-line
modification of the plan in case of disturbances during execution (Häusler et al., 2010)

A large number of motion planning methods are considered to address the issue. Among
those existing motion planning approaches, the main objective is to find and optimize the
trajectory through a complex environment while avoiding the collision with obstacles in
the vicinity of a vehicle. In this section, we will give detailed explanation about path
planning and collision avoidance, presenting an overview of a couple of motion planning

31

Chapter 4. Path Planning and Collision Avoidance

algorithms, compare the advantages and disadvantages of each technique, as well as the
application fields. In particular, dynamic window (DW) algorithm exploited as the reactive
COLAV method in this thesis, is emphatically introduced.

4.1 Deliberate Path Planning
Deliberate methods that rely on the information of the complete environment, is normally
referred to as path planning, aiming to find a route from start to goal point. Majority of
deliberate path planning algorithms are complete, indicating that the algorithm is always
able to find the path if it exists. Therefore, it is less likely to fail when encountering local
minima compared to a reactive COLAV method. However, the main downside of deliber-
ate method is the demand for long computing time, which makes it no longer applicable
to rapidly changing dynamic environment.

4.1.1 Grid-based approaches (A* and D*)
Grid-based approaches have been widely used in recent years, in which the environment is
mapped to a set of cells representing individual obstacles at the corresponding positions.
Typically, the graph search method aims to find the optimal path with a grid superimposed
over an area. Informed search algorithms, like A* (Hart et al., 1968) and D* (Stentz et al.,
1995) are adopted to generate optimal paths connecting the initial position to the target
position while avoiding obstacles. A* is the classic and wildly used artificial intelligence
search algorithm, which uses best-first search algorithm with heuristic functions. In gen-
eral, the cost function considered in A* algorithm can be written as follows,

f(s) = g(s) + h(s) (4.1.1)

where g(s) denotes the path cost or distance of getting from the root of the search tree to
current node s, while h(s) represents the heuristic function: an estimate of the distance
from node s to the goal state. Therefore, f(s) denotes the total expected cost of a optimal
solution path from the root, through s, to the goal state. (Peng et al., 2015) presents the
optimal path using A* search algorithm, where the path with the yellow grid in it is the
optimal path from the start point to the end point as shown in Figure 4.1

Figure 4.1: Optimal path with diagram with A* algorithm search (Peng et al., 2015)

32

4.1 Deliberate Path Planning

(Stentz et al., 1995) proposed a popular graph search algorithm, called D* algorithm,
which is applied in rapidly-changing and dynamic environments for its property of fast
re-planning. It has been distinguished from the A* algorithm, as it can be performed with-
out the heuristic function. D* algorithm is becoming important for path planning when
navigate through unknown environment. This technique seeks the sequences of similar
search problems by utilizing previous search patterns. The D* algorithm can be divided
into two stages, initial planning and re-planning phases. When the vehicle stays still at
the start point, the first phase initial planning is executed and re-planning will occur when
the robot detects nodes with changed occupancy values during motion process. For every
searched node n, the D* algorithm computes the path cost g(n) from the node n to the
goal state, and the value of the key function k(n) for the re-planning stage, which stores
the old values g(n) before weights change. (Dakulovic et al., 2011) proposes a novel al-
gorithm called complete coverage D* (CCD*) algorithm, based on the D* search of the
two-dimensional environment occupied grid graph, which is capable of producing new
complete coverage path as the environment changes. The performance of this algorithm
has been evaluated using a Pioneer 3DX mobile robot equipped with a laser range finder.

Applications based on grid-based approaches, such as parking and navigating the road
in unstructured environments are successfully implemented. Nevertheless, this method is
somehow limited with respect to complicated environments due to the exponential growth
of computation complexity.

4.1.2 Rapidly-Exploring Random Tree (RRT)

In order to obtain a set of feasible trajectories, sampling based approaches directly sample
the state space of the vehicle, and choose the best path to implement by evaluating the cor-
responding cost function. AS for nonholonomic path planning, Rapid-Exploring Random
Tree (RRT) technique with RRT variants greatly contributes, which allows for searching
in non-convex and high-dimensional spaces by randomly generating space-filling trees.
Unlike A* and D*, RRT approach directly take the dynamics of the vehicle into account.
In (Devaurs et al., 2016), based on the combination of two RRT variants, an efficient sam-
pling based approach was formulated to address a complicated path planning problem.
Based on RRT algorithm, (Naderi et al., 2015) presents an improved real-time path plan-
ning approach, named dubbed Real-Time RRT, which enables the tree root to move with
the agent while still conserving the previously sampled paths. This online tree planning
strategy does not have to wait for the tree to be fully constructed, since trees are being
expanded concurrent with taking actions. Figure 4.2 shows that this algorithm allows the
user to rapidly switch the target by efficiently taking advantage of the expanded tree. How-
ever, in sampling based path planning method, efficient heuristic functions are required to
achieve real-time planning which is hard to implement in some complex environments.

33

Chapter 4. Path Planning and Collision Avoidance

Figure 4.2: Path from initial point to different goals and dynamic obstacles (Naderi et al., 2015)

4.2 Reactive Collision Avoidance

Based on data and information of the immediate environment from the sensors, reactive
approach also referred to as reactive COLAV method, is able to make real-time response
that requires low computation capacities, which makes it superior when performing in real-
time and dynamic environments. Due to the property that only a subset of configuration
space is considered, reactive COLAV are mostly incomplete methods, yielding the conse-
quence of being stuck in local minima. Some classic reactive COLAV methods, including
Potential Field method (Khatib, 1986), Velocity Obstacle (Fiorini and Shiller, 1998) and
Dynamic Window algorithm (Fox et al., 1997) are elaborated as follows.

4.2.1 Potential Field Method

Potential Field Algorithm originally proposed in (Khatib, 1986), is widely used in path-
planning applications, which assigns a value calculated using an artificial potential func-
tion to each point and simulates the reaction of the vehicle to the potential field as it
navigates towards the minimum potential (Radmanesh et al., 2018). The basic idea of the
algorithm is that the motion in the configuration space is regarded as a moving point sub-
ject to the potential field, that is generated by the target configuration and the obstacles in
C space. To be specific, the target configuration generates attractive potential, while the
obstacles impose a repulsive force or potential on the moving vehicle, such that the vehicle
is attracted towards the goal point and keep away from the obstacles.

In the case of the artificial potential algorithm, two types of functions are usually consid-
ered, one of which is based on harmonic functions, solving a partial differential equation
with a Laplace term, while the other is defined to minimize the distance-to-go function
(Hirsch, 2012). Nevertheless, there exist some challenges for this algorithm, that is the
local minima trap issue, which appears when all attractive and repelling artificial potential
cancel out each other. This is often the case when in the situation where the obstacle is
located between the vehicle and goal or obstacles are closely spaced. Several approaches
have been proposed to address this issue in (Ahuja and Chuang, 1997), for instance, adding
an imaginary obstacle in the local minima region to repel the vehicle.

34

4.2 Reactive Collision Avoidance

4.2.2 Velocity Obstacle

Velocity obstacle (VO) is a velocity space based method designed for robot motion plan-
ning in (Fiorini and Shiller, 1998). Velocity obstacle represents a set of vehicle’s velocities
that might lead to a collision with either static or dynamic obstacle. This VO method is
able to consider moving obstacle as static one by mapping the dynamic obstacle into the
C-space of the vehicle and calculating the relative velocity. Given the current position and
velocity of the vehicle and obstacles, velocities are selected outside of the VO to ensure
safe operations and collision-free trajectory. In (Fiorini and Shiller, 1998), VO method
has been demonstrated with good performance for point and disk robots with the presence
of static and moving obstacles, and extensively for an automated vehicle in highway sce-
nario. And one thing to note is that, VO method is guaranteed to be dynamically feasible
by incorporating admissible velocities with the constraints of vehicle’s accelerations.

Considerable extensive work has been done based on VO method, (Van den Berg et al.,
2008) proposes a new concept, named ”Reciprocal Velocity Obstacle”, for real-time and
multi-agent navigation including both static and moving obstacles. Based on Velocity Ob-
stacle approach, (Kuwata et al., 2014) introduces a motion planning algorithm for USV
to navigate in dynamic and cluttered environments involving International Regulations for
Preventing Collisions at Sea (COLREGS) rules, enabling the USV to be safely deployed
in environments with other traffic boats. Full-scale experiment is carried out and demon-
strates that modified VO method is capable of navigating USV and obeying the COLREGS
rules.

4.2.3 Dynamic Window Approach

Dynamic window method is a local reactive avoidance technique, originally proposed by
(Fox et al., 1997). The advantage of this approach is that it directly incorporates the dy-
namics of the vehicle, that is, the search for commands is implemented in the space of
velocities, consists of translational velocity and rotational rate.

Search Space

Circular trajectories

By adopting velocity space, the pruning of the search space enormously simplify the com-
putational effort. The trajectory of the ASV can be approximated by a sequence of circular
arcs, and each arc is uniquely determined by the velocity vector (v, w) with the radius
r = v

w . For the ASV, the velocity pair is referred as surge speed u and yaw rate r, thus the
velocity vector is transformed into (u, r). For each velocity pair within the velocity space,
the dynamic window approach is designed to predict the trajectory that velocity pair (u, r)
might generate for the next n time intervals. In order to simplify the optimization, we only
consider the first time interval and assume that within the remaining n-1 time intervals,
the velocity vector (u, r) remains unchanged. This assumption is derived based on the
observation that search is automatically repeated after each time interval, while velocity
will remain constant if there are no new commands.

35

Chapter 4. Path Planning and Collision Avoidance

Admissible velocities

The existence of obstacles in the nearby environment imposes restrictions on the trans-
lational and rotational velocities. The distance to the closest obstacle on the trajectory
determines the maximal velocity of the vehicle. That is, the velocity is considered admis-
sible if the vehicle is able to stop before it hits the next obstacle. As a consequence, the
search space is reduced to a set of velocities that allow the vehicle to stop without colliding
with any obstacle. The set of admissible velocities then can be defined as,

Va = {(u, r)|u ≤
√

2 · dist(u, r) · u̇b ∧ r ≤
√

2 · dist(u, r) · ṙb} (4.2.1)

where dist(u, r) represents the distance to the closest obstacle on the corresponding tra-
jectory, while u̇b and ṙb refer to the deceleration in surge and yaw, respectively.

Dynamic window

Due to the presence of kinematic and dynamic constraints, the space is reduced to a certain
span around the current velocity, which only consists of admissible velocities that the vehi-
cle can reach within the next time interval. Thus, the dynamic window can be described as,

Vd = {(u, r)|u ∈ [ua − u̇ ·∆t, ua + u̇ ·∆t] ∧ ω ∈ [ra − ṙ ·∆t, ra + ṙ ·∆t]} (4.2.2)

where the u̇ and ṙ represent the accelerations in surge and yaw direction, and (ua, ra) is
the current velocity vector.

Resulting search space

With the restriction imposed on the velocity space, the resulting search space is the inter-
section of three restricted velocity set, namely, the set of possible velocities Vs, admissible
velocities Va and dynamic window Vd. Consequently, the resulting search space Vr now
can be represented as,

Vr = Vs ∩ Va ∩ Vd (4.2.3)

where the possible velocities Vs is limited by the extreme value of the surge speed u and
yaw rate r.

Vs = {(u, r)|u ∈ [0, umax] ∧ r ∈ [−rmax, rmax]} (4.2.4)

Objective Function

Among those velocity pairs within the resulting search space Vr, velocity vector (u, r)
is chosen to maximize a certain objective function, which consists of some criteria, like
target heading, clearance and velocity.

G(u, r) = α · goal(u, r) + β · dist(u, r) + γ · vel(u, r)
s.t.(u, r) ∈ Vr,

(4.2.5)

36

4.2 Reactive Collision Avoidance

where the terms goal(u, r), dist(u, r) and vel(u, r) is weighted by the factors α, β and γ.
The term goal(u, r) denotes the desired heading angle towards the goal, used to measure
the progress towards the target, which will reach the maximum value if the vehicle moves
directly towards the goal position. This term can be mathematically denoted as the an-
gle between the vector pointing to the goal and vector connecting start point and current
position,

goal(u, r) = arccos(

−→
OA · −−→OB
|−→OA| · |−−→OB|

), (4.2.6)

where O and A represent the start and goal point, respectively, while B denotes the current
point of vehicle.

And term dist(u, r) represents the distance to the closet obstacle, and it will be set to a
large constant value if there is no obstacle on the trajectory.

dist(u, r) =
1

rmin
, (4.2.7)

rmin is referred to the distance from current position of vehicle to the nearest obstacle,
that reveals the most threatening obstacle. And term dist(u, r) is the reciprocal of rmin,
which will reach a maximum value when an obstacle occurs in the vicinity.

The last term regarding velocity vel(u, r) can be expressed as

vel(u, r) = umax − uc. (4.2.8)

where umax and uc represent the maximum surge speed and the current velocity of the ve-
hicle, respectively. The velocity term vel(u, r) is simply the difference between these two
velocities, which means vel(u, r) is exclusively dependent on surge speed u. And velocity
of the vehicle will approach the maximum speed as soon as possible within the restricted
range of acceleration.

Besides, the dynamic window algorithm is originally designed for robots with first-order
nonholonomic constraints and constant acceleration limits, where the first-order nonholo-
nomic constraint is also said to be partially integrable. Since the heading angle of robot
θ(t) depends upon the translational velocity v, which yields a first-order nonholonomic
constraint. The general motion equations of the robot describe the kinematic characteris-
tics of the robot, coordinate at time tn, x(tn) and y(tn) can be expressed as a function of
x(t0), y(t0), v(t) and θ(t) as

x(tn) = x(t0) +

∫ tn

t0

v(t) · cosθ(t)dt (4.2.9a)

y(tn) = y(t0) +

∫ tn

t0

v(t) · sinθ(t)dt (4.2.9b)

As introduced in section 2, the mathematical model of the ASV can be simplified by a 3D
representation,

η̇ = R(ψ)v (4.2.10)

37

Chapter 4. Path Planning and Collision Avoidance

Mv̇ + C(v)v +D(v)v = τ (4.2.11)

In contrast to the robot in the original DW approach, ASV is underactuated with second-
order constraints. Underactuated vessel is defined to have less control inputs than the
dimension of configuration space (r < n) (Fossen, 2011), therefore the ASV is consid-
ered to be underactuated with only two control points: propeller force and rudder angle,
while the dimension of configuration space for surface vessel is 3 (2 < 3). Furthermore,
constraint is supposed to be second-order nonholonomic if it is not partially integrable
in (Oriolo and Nakamura, 1991), where conditions for partial integrability are proposed.
Consider a (n-m)-dimensional constraint of first-order,

g(q, q̇, t) = 0, g ∈ Rn−m. (4.2.12)

As constraint is defined to be partially integrable if it can be integrated to Eq. (4.2.12), we
can differentiate Eq. (4.2.12) with respect to the time variable t,

∂g

∂q
q̇ +

∂g

∂q̇
q̈ +

∂g

∂t
= 0 (4.2.13)

Constraint is partially integrable if it is completely identical to Eq. (4.2.13), indicating that
the term ∂g

∂t must be constant. In the case of ASV, considering the mathematical model,
constraints are partially integrable if Eq. (4.2.11) is able to be integrated into the form as

g(v, v̇, t) = 0 (4.2.14)

The term C(v) +D(V) must be constant to guarantee the constraint is partially integrable,
which conflicts with practical situations. The Coriolis and centripetal term C(v), damping
matrix D(v) do not hold for the condition of being constant, meaning the constraint is not
partially integrable, and thus second-order nonholonomic constraint.

Above all, the original dynamic window approach intended for robot with first-order non-
holonomic constraint and constant acceleration limits is not applicable for ASV with
second-order nonholonomic constraint and time-varying limits. (Eriksen et al., 2016) pro-
posed a modified DW algorithm to adapt to AUV model without degraded performance,
based on the integration of a new trajectory prediction method and a modified search space.
The sideways motion the vehicle has been taken into account, and search space is also
modified to account for the actuator limitations to further ensure feasible steering com-
mands. The limit of yaw rate acceleration is assumed to be symmetric in the original DW
algorithm, described as ṙmin = −ṙmax, resulting in the set of possible velocity as

Vs = {(u, r)|u ∈ [0, umax] ∧ r ∈ [−rmax, rmax]} (4.2.15)

The dynamic window is then modified due to the asymmetry of the acceleration limits,

Vd = {(u, r)|u ∈ [ua+ u̇min ·∆t, ua+ u̇max ·∆t]∧ω ∈ [ra+ ṙmin ·∆t, ra+ ṙmax ·∆t]}
(4.2.16)

Besides, the set of possible velocities Vs is reformulated regarding the actuator saturation
limits,

Vs = {(u, r)|g(u, r) ≥ 0} (4.2.17)

38

4.2 Reactive Collision Avoidance

where the positive semi-definite function g(u, r) is derived by computing the boundaries
of steady state solution of the dynamics, expressed as

Mv̇r = τ − C(v)v −D(v)v = 0 (4.2.18)

The set of possible velocities Vs is then restricted to feasible velocity pairs of rudder and
surge actuation.

The dynamic window (DW) algorithm is adopted as a reactive COLAV method due to
its low computational complexity and the property of flexibility and responsiveness to the
rapidly-changing environment, especially when moving obstacles are considered in this
thesis.

39

Chapter 4. Path Planning and Collision Avoidance

40

Chapter 5
Hybrid COLAV Method

To sum up, previous sections regarding popular COLAV methods have demonstrated the
upsides and downsides of both deliberate and reactive COLAV methods. Specifically,
large amount of computational time is required while performing global path planning
algorithm, which is prone to cause trouble when encountering unexpected situations due to
the lack of real-time rapid response to dynamic and cluttered environments. Furthermore,
to cope with the collision avoidance with dynamic obstacles, dynamic window approach
functioning as a reactive COLAV method is adopted, even though this algorithm suffers
from the risk of being trapped in local minima and not able to find the route. In order to
generate the feasible and collision-free trajectory towards the goal in the presence of both
static and moving obstacles, a hybrid COLAV architecture is motivated to take advantage
of these two methods, resulting in low computational complexity and less probability of
being stuck in local minima.

5.1 Hybrid COLAV Architecture
Base on the integration of global and local COLAV approaches, hybrid COLAV methods
are widely used due to the restriction and drawbacks of either method. To utilize advan-
tages of both methods, (Seder and Petrovic, 2007) proposes an improved dynamic window
algorithm incorporated with a focused D* search algorithm, such that the vehicle is able
to avoid collision with moving obstacles and less likely to be trapped in local minima. Be-
sides, (Serigstad et al., 2018) introduces a hybrid dynamic window approach, functions as
an interface to any deliberate COLAV method which generates time parameterized trajec-
tories, enabling vehicles to avoid local minima. Moreover, (Lopes et al., 2016) proposes
a hybrid motion planner intended for robot with first-order nonholonomic constraints to
navigate in constrained indoor environment, combining A* algorithm and dynamic win-
dow approach.

In general, the hybrid architecture can be formulated as a hierarchy, decomposed into three
layers: global path planner, interface including path tracking algorithm and local COLAV

41

Chapter 5. Hybrid COLAV Method

method. In this thesis, the global path is generated within the framework of optimization,
based on Bézier curves, and dynamic window approach is employed as a reactive COLAV
method taking the moving obstacles into account. While path tracking algorithm (PLOS)
is utilized to convert the global path into the desired trajectory, functioning as a guidance
for DWA, such that the interface between the global and local layer is developed, aiming at
diminishing the distance from current position to the desired trajectory at each time step.
Hybrid navigation architecture can be intuitively illustrated by the flow diagram, shown as
Figure 5.1.

Figure 5.1: Diagram of hybrid COLAV architecture illustrating the framework

In addition to explaining the framework of the hybrid architecture, the diagram above
also indicates the tendency of completeness together with responsiveness, between the
global and local layer. In specific, the reactive CLOAV method is more responsive to the
unforeseen and rapidly-changing environment based on immediate data from the sensor,
and thus plays an important role in collision avoidance with moving obstacles. By contrary,
deliberate path planning algorithm that relies on information of the complete environment
is less responsive, but is capable of generating a feasible path towards the target, in other
words, global method is more complete.

5.2 Modified Dynamic Window
The main objective of DW algorithm is to avoid collision with moving obstacles. In this
thesis, we assume that prior knowledge of moving obstacles is provided, such that the tra-
jectory and positions of moving obstacles at each time step are known. Existing methods

42

5.2 Modified Dynamic Window

solving the issues of moving obstacles can be generally divided into two groups, charac-
terised by extensive state-time methods and potential field approaches. (Fraichard, 1993)
introduces state-time space as a tool, converting the constraints imposed by moving ob-
stacles to static forbidden regions, since the prior knowledge of moving obstacle is give.
While potential field method (Khatib, 1986) is capable of avoiding moving obstacles by
simply generating repulsive force that repels the vehicle from dynamic obstacles. In con-
trast to the methods above, the basic concept of dynamic window with respect to mov-
ing obstacles can be described as calculating the trajectory of moving obstacle with prior
knowledge, and predicted trajectory of vehicle based on the velocity pairs, thus, the dis-
tance between each moving obstacle and vehicle is utilized as an evaluating term in the
objective function. The trajectory of moving obstacles with constant heading and speed,
together with predicted trajectory of vehicle can be calculated by following expressions,
respectively.

xo(tk+1) = xo(tk) + vo × ψo ×∆t

yo(tk+1) = yo(tk) + vo × ψo ×∆t
(5.2.1)

where xo, yo ψo denote the pose of moving obstacles including position and heading angle,
vo and δt represent the velocity and time interval, respectively. Note that the expressions
above are solely applicable to obstacles moving along straight lines, trajectories of other
types will be introduced in later section.

x(tk+1) = x(tk) + u× ψ ×∆t

y(tk+1) = y(tk) + u× ψ ×∆t

ψ(tk+1) = ψ(tk) + r ×∆t

(5.2.2)

where the pose of the vehicle consists of position and heading, denoted as [x, y, ψ], while
velocity pair [u, r] is referred to as surge speed and yaw rate.

Based on the original dynamic window approach discussed in Chapter 4, the original ob-
jective function including evaluation criteria, like progress towards the goal, distance to
obstacle and maximum velocity, can be described as

G(u, r) = α · goal(u, r) + β · dist(u, r) + γ · vel(u, r)
s.t.(u, r) ∈ Vr,

(5.2.3)

In order to integrate with the deliberate COLAV method, necessary modifications are fur-
ther supplemented in DW algorithm to adapt to hybrid COLAV method. To fully exploit
the global predefined path generated by deliberate method, an additional path alignment
term denoted as align(pd, pp) is incorporated into the objective function, which therefore
becomes a key factor to evaluate the performance of the predicted trajectory from DW
algorithm, and further determine the optimal velocity pair (u, r). Therefore, the modified
objective function is given as

G(u, r) = α · goal(u, r) + β · dist(u, r) + γ · vel(u, r)− δ · align(pd, pp)

s.t.(u, r) ∈ Vr,
(5.2.4)

where term align(pd, pp) represents the distance between point on pre-defined trajectory
and current position determined by velocity pair (u, r) at each time step. Besides, these

43

Chapter 5. Hybrid COLAV Method

weight factors α, β, γ and δ determine how the hybrid COLAV favors trajectory concern-
ing collision avoidance or aligning with the global preplanned path.

5.3 Interface Between Deliberate and Reactive Methods
To develop the interface between deliberate and reactive COLAV methods, temporal as-
signment should be considered with respect to global path, in other words; the predefined
path generated by global path planner is obliged to be transformed into the desired tra-
jectory as a guidance for local COLAV method. A combined pure pursuit and LOS al-
gorithm (PLOS) introduced in Chapter 2 is utilized as a path tracking algorithm, where
LOS accounts for the position error or cross-track error d regarding desired path, while
pure pursuit is used to compensate for the heading error (θd − ψ) towards next waypoint.
PLOS path following algorithm enables the vehicle to track the desired path, yielding pose
[xd(t), yd(t), ψd(t)] and velocity pair [ud(t), rd(t)] at each time step, and the generated
trajectory is shown in Figure 5.2.

Figure 5.2: PLOS path tracking algorithm generates trajectory following the desired global path

The desired trajectory consists of a set of complete state of vehicle, and state at time t pd(t)
can be presented as

pd(t) = [xd(t), yd(t), ψd(t), ud(t), rd(t)] (5.3.1)

44

5.3 Interface Between Deliberate and Reactive Methods

As introduced above, a path alignment term is incorporated into the objective function,
resulting in modified dynamic window. The predicted trajectory based on each velocity
pair also generates a complete state at time t, defined as

pp(t) = [xp(t), yp(t), ψp(t), up(t), rp(t)] (5.3.2)

The trajectory alignment is intended to minimize the Euclidean distance between desired
and predicted trajectory at time step ti , denoted as

align(pd(ti), pp(ti)) =‖ pd(ti)− pp(ti) ‖2 (5.3.3)

As depicted in Figure 5.3, the interface between global and local layer is formulated.
For each velocity pair (u, r) within the scope of resulting search space, DW algorithm
generates a corresponding predicted trajectory. Path alignment term align(pd(ti), pp(ti))
is feedback to the modified DW algorithm, further determine the optimal velocity pair that
minimizes objective function, considered as steering command.

Figure 5.3: Interface between deliberate and reactive method with PLOS algorithm

The principle of selecting optimal velocity pair can be expressed as

(u, r) = arg min
(u,r)∈Vr

G(u, r) (5.3.4)

where Vr denotes the resulting search space consisting of admissible velocities with con-
straints. As the resulting search space Vr is an intersection of three restricted velocity sets,

45

Chapter 5. Hybrid COLAV Method

which is a continuous space, Based on the assumption that obstacles move with constant
speed or small variation such that collision won’t occur during short time interval, we
therefore approximate it by discretizing the space Vr into n velocity pairs with a small ve-
locity interval, Further, trajectory in terms of each discrete velocity pair is predicted, and
path alignment is added to evaluate the objective function. Eventually, optimal velocity
pair (u, r) considered as the output of the algorithm, is selected by utilizing the ”argmin”
function.

The weight factors α, β, γ and δ determine how the algorithm favors aligning with the
desired trajectory as much as possible or keeping a fair distance to any obstacles in the
vicinity to guarantee a collision-free trajectory. As constraints of static obstacles have
also been considered in deliberate path planning, the reactive trajectory is able to almost
perfectly follow the desired path if moving obstacles are not involved, as depicted in Figure
5.4.

Figure 5.4: Reactive trajectory aligns well with global path merely considering static obstacles

In the case of avoiding collision with dynamic obstacles, the gain in terms of obstacle
clearance function β should be tuned bigger such that the vehicle is able to avoid when a
moving obstacle emerges in the vicinity. As a consequence, the hybrid algorithm tends to
make compromise, giving up perfectly tracking the desired global path, and the practical
trajectory may deviate from the global path to a certain extent, as shown in Figure 5.5.

46

5.3 Interface Between Deliberate and Reactive Methods

Figure 5.5: Reactive trajectory aligns well with global path while avoiding moving obstacles

47

Chapter 5. Hybrid COLAV Method

48

Chapter 6
Simulation and Results

In this chapter, several numerical simulations are implemented in Python to evaluate the
performance and efficacy of proposed algorithms, including deliberate path planning al-
gorithm based on Bézier spline, dynamic window (DW) and hybrid COLAV algorithm.
Besides, comparisons among these algorithms are presented to highlight the pros and cons
of each method in different scenarios.

6.1 Simulation Implementation
Viknes 1030 is designed with good maneuverability, as shown in Figure 6.1, that is used
as the vessel model in this thesis, and specifications of this ASV are presented in Table
6.1.

Figure 6.1: Viknes 1030 (Viknes, 2019)

49

Chapter 6. Simulation and Results

Parameter Value
Length 10.96 m
Width 3.42 m

Draught 1.15 m
Weight 5975 kg

Table 6.1: Basic specifications of Viknes 1030

To implement the simulation, relevant configuration parameters for each algorithm should
be listed, specifically, parameters used in dynamic window algorithm simulations are given
in Table 6.2, and initialization parameters defined for Bézier curve algorithm are listed in
Table 6.3. In particular, the performance of the algorithm greatly depends on the tuning,
thus it is essential to test the simulation through multiple debugging and eventually assign
appropriate values to tuning parameters.

Parameter Value Comment
umax 10 m/s Maximum surge speed of ASV
umin 0 m/s Minimum surge speed of ASV
rmax 15◦/s Maximum yaw rate of ASV
rmin −15◦/s Minimum yaw rate of ASV
accmax 2 m/s2 Maximum acceleration of ASV

∆u 0.1 m/s Interval of surge speed
∆r 1.0◦/s Interval of yaw rate
∆t 0.1 s Sampling time interval
α 1.0 Weight of yaw rate term in cost function
β 15.0 Weight of distance term in cost function
δ 0.8 Weight of velocity term in cost function
γ 10.0 Weight of alignment term in cost function

Table 6.2: Parameters used in simulation for dynamic window algorithm

Parameter Value Parameter Value
Initial pose [0, 0, 30◦] Final pose [500, 500, 30◦]

Degree of Bézier curve 5 Number of obstacles 7
Min turning radius 100 m Min, Max radii of obstacles 30, 50

Table 6.3: Parameters used in simulation for global path planning based on Bézier curves

Hybrid COLAV algorithm is implemented based on the integration of global path planning
and dynamic window algorithm. At the beginning of every simulation, the global method
together with the PLOS path tracking algorithm are devoted to generate global trajectory
as a guidance for reactive COLAV algorithm. With the knowledge of the desired pose
at each time step, predicted trajectory of discrete velocity pair [u, r] in the search space

50

6.2 Scenarios and Results

is generated, after that, the optimal velocity pair is finally determined by minimizing the
objective function, in order to drive the vehicle towards the goal while avoiding collision
with both static and moving obstacles. It’s remarkable that the task of collision avoidance
takes precedence over reaching the goal to guarantee safety of the vehicle.

6.2 Scenarios and Results
In this section, several simulation scenarios in terms of different situations and algorithms
are presented. A couple of assessment criteria used to evaluate the performance and ro-
bustness of algorithms based on final results, are listed as follows.

• Capability of leading the vehicle to goal;

• Response to unexpected moving obstacles;

• Behaviour when encountering local minima;

• Minimum obstacle clearance.

51

Chapter 6. Simulation and Results

Scenario 1

In the first scenario, the global path planning based on Bézier curve is tested, given initial
and final pose of the vehicle, together with the constraints of static obstacles, approximated
as several circles with different radii, ranging from 30m to 50m.

Figure 6.2: Trajectory generated by PLOS following the global path

As depicted in Figure 6.2, the deliberate algorithm is capable of generating a feasible and
collision-free global path towards goal under the constraints of static obstacles. PLOS path
tracker is adopted and implemented to convert the desired path into the trajectory, that is
further applied to local DW algorithm. The corresponding result reveals that PLOS algo-
rithm is able to generate a trajectory perfectly following the global path with insignificant
errors, particularly, constraints are imposed on the maximum velocity and yaw rate of the
vehicle. As shown in Figure 6.3, the speed keeps rising with a proportion gain until it
reaches the max velocity vmax = 10m/s, while the yaw rate varies over time within the
restricted region.

52

6.2 Scenarios and Results

Figure 6.3: Speed and yaw rate of the trajectory generated by path tracker

The main objective of hybrid COLAV method is to generate a trajectory relies on velocity
pair sequence, aligning well with the global path and simultaneously avoiding static and
moving obstacles. To note that the hybrid algorithm always gives priority to collision
avoidance rather than follows the global path to ensure a collision-free trajectory, which
may deviate from the global path in order to avoid obstacles.

Figure 6.4: Trajectory generated by DW algorithm based on the global path

As depicted in Figure 6.4, the vehicle gives up tracking the path to keep a fair distance from
the obstacle while turning around the obstacle in the vicinity of position x = 400m. As the
constraints of obstacle avoidance imposed on the deliberate method is less strict, yielding
the path fairly close to the obstacle, which is considered as an unacceptable risky behaviour

53

Chapter 6. Simulation and Results

for reactive DW algorithm. Therefore, the simulation result in scenario 1 implies that
hybrid method is able to generate a complete and collision-free trajectory in the presence
of static obstacles. Besides, how the surge speed and yaw rate of ASV change over time is
illustrated in Figure 6.5.

Figure 6.5: Speed and yaw rate of the trajectory generated by DW algorithm

54

6.2 Scenarios and Results

Scenario 2

The major objective of the proposed COLAV algorithm is to avoid collision with the mov-
ing obstacles in the dynamic environment. Nevertheless, the global path generated based
on Bézier curve in conjunction with optimization formulation is inadequate to handle mov-
ing obstacles due to the less responsiveness to unexpected situation. In this scenario,
two moving obstacles with constant speeds and headings are considered, with parame-
ters shown in Table 6.4. After applying the PLOS steering law to global path tracking,
ASV ends up with colliding with the straight-line moving obstacle, as shown in Figure
6.6. The minimum distance between the vehicle and moving obstacles is set to be 30m,
and therefore, collision will occur if the ASV moves into the collision range. The failed
situation indicates that it’s necessary to employ reactive COLAV method to handle moving
obstacles.

Table 6.4: Parameters of the moving obstacles

Parameter Moving Obs 1 Moving Obs 2

Initial position [200, 400] [400, 100]
Heading angle −45◦ 120◦

Moving speed 3 m/s 3 m/s

Figure 6.6: ASV collides with straight-line moving obstacles if only tracking global path

55

Chapter 6. Simulation and Results

Figure 6.7: Trajectory generated by DW algorithm with straight-line moving obstacles

By contrast to global path, Figure 6.7 validates that reactive DW algorithm is more pow-
erful in the case of avoiding collision with moving obstacles. Snapshots of the moving
process show how the vehicle is able to handle moving obstacles by constantly calculat-
ing the objective function and adjusting the heading to yield a feasible and collision-free
trajectory.

Figure 6.8: Speed and yaw rate of the trajectory in scenario 2

56

6.2 Scenarios and Results

Figure 6.9: Snapshots of trajectory in scenario 2

57

Chapter 6. Simulation and Results

Scenario 3

As shown in the above scenario, DW algorithm may manage to generate a collision-free
trajectory leading to the given goal in some cases, but it is undeniable that it also suf-
fers some drawbacks. Due to the downsides of local DW algorithm, high sensitivity to
local minima is prone to cause failure that the ASV gets stuck and is not able to find the
route towards goal. To address this issue, hybrid COLAV method is introduced. By the
comparison of results shown in Figure 6.10 and 6.11, the advantage and necessity of the
hybrid algorithm is demonstrated. When solely apply DW algorithm, the behaviour tends
to be greedy and reach the goal as soon as possible, while ignoring the possibility of being
trapped in local minima. Instead, with the guidance of the complete path from start to
goal, the ASV is able to generate a trajectory towards the target avoiding local minima.

Figure 6.10: ASV trapped in local minima when only employ DW algorithm

58

6.2 Scenarios and Results

Figure 6.11: ASV avoid local minima when apply hybrid COLAV algorithm

Figure 6.12: Speed and yaw rate of the trajectory in scenario 3

59

Chapter 6. Simulation and Results

Scenario 4
The major intention of introducing reactive COLAV method is to take into account the un-
expected situations, for instance, the occurrence of moving obstacles, such that the reactive
algorithm is capable of making real-time response to cope with the rapidly-changing en-
vironment. In scenario 4, two moving obstacles with constant heading angle and velocity
are considered, In other words, the trajectory of either moving obstacle is a straight line,
besides, the specific information of obstacles are listed in Table 6.5.

Table 6.5: Parameters of the moving obstacles

Parameter Moving Obs 1 Moving Obs 2

Initial position [200, 400] [400, 100]
Heading angle −45◦ 120◦

Moving speed 3 m/s 3 m/s

As shown in Figure 6.13, the final trajectory of ASV reveals that vehicle is able to follow
the global path when there is no threat, while significantly deviating from the global path
in the middle section to stay clear of the moving obstacle. The accepted minimum distance
from the vehicle to each moving obstacle is defined to be 30 m, that is, the ASV gets into
the collision when it’s at a distance less than 30m from the obstacle.

Figure 6.13: Trajectory generated by hybrid COLAV algorithm with straight-line moving obstacles

60

6.2 Scenarios and Results

To further illustrate the process of collision avoidance, several snapshots are shown in Fig-
ure 6.14. The first snapshot implies the trend of moving away from the global path, since
the ASV has predicted that two moving obstacles are approaching in opposite directions.
To stay clear of two obstacles at the same time, the vehicle has to find a route traveling
through a narrow passage, such that it could keep a relative safe distance to both moving
obstacles. After getting rid of the moving obstacles, the path alignment takes precedence
as soon as the ASV enters the safe region. As a consequence, the ASV re-follows the
global path leading towards the goal as shown in the fourth snapshot.

Figure 6.14: Snapshots of trajectory in scenario 4

61

Chapter 6. Simulation and Results

Figure 6.15: Speed and yaw rate of the trajectory in scenario 4

62

6.2 Scenarios and Results

Scenario 5

In this scenario, moving obstacles with varying heading and velocity leading to circular-
arc trajectories, are taken into consideration.

Table 6.6: Parameters of the moving obstacles

Parameter Moving Obs 1 Moving Obs 2

Initial position [150, 300] [450, 100]
Equation of motion y = -0.006x2 + 1.8x +165 -0.01x2 + 6.5x - 800

Moving speed 3 m/s -1.5 m/s

Figure 6.16: Trajectory generated by hybrid COLAV algorithm with circular-arc moving obstacles

A set of snapshots are presented as Figure 6.17, making a clear explanation of the moving
process. The vehicle deviates from the global path to avoid the first moving obstacle
emerging in the vicinity by changing the yaw rate, and it starts to catches up with the
global path after entering the safe region. After tracking the path for a short distance, the
occurrence of the second obstacle steers the vehicle off the track again. Further, the vehicle
changes its heading to re-follow the path as soon as it gets rid of the obstacle.

63

Chapter 6. Simulation and Results

Figure 6.17: Snapshots of trajectory in scenario 5

Figure 6.18: Speed and yaw rate of the trajectory in scenario 5

64

6.2 Scenarios and Results

Scenario 6

In scenario 6, unknown dynamic obstacles with random trajectory are employed to evalu-
ate the robustness of the hybrid COLAV algorithm. The unpredictable and rapidly-varying
motion trends have made the collision avoidance task more challenging, demanding for
more responsive performance. As depicted in Figure 6.19, the hybrid algorithm is still
able to generate a collision-free trajectory almost coincided with the desired global path.

Figure 6.19: Trajectory generated by hybrid COLAV algorithm with random moving obstacles

The snapshots at different time shown in Figure 6.20, have revealed more details about how
the vehicle stays clear of the moving obstacles by constantly adjusting its heading angle.
When the vehicle is approaching the second moving obstacle, it is surrounded by static
and moving obstacles on both sides. Compromise has been made to guarantee the safety
by giving up keeping a fair distance to the circle of the static obstacle. As a consequence,
the ASV takes the potential risk of running into the static obstacle to achieve collision
avoidance with moving obstacle.

65

Chapter 6. Simulation and Results

Figure 6.20: Snapshots of trajectory in scenario 6

Figure 6.21: Speed and yaw rate of the trajectory in scenario 6

66

6.2 Scenarios and Results

Scenario 7

To evaluate the robustness of this COLAV algorithm, Gaussian noise is added to the mea-
sured position and velocity of the moving obstacles. In this scenario, the COLAV algo-
rithm only has access to noisy measurements with different standard deviation. Due to
the robustness of the hybrid COLAV algorithm, the vehicle is still capable of generating
a feasible and collision-free trajectory until the noise is increased to an unaccepted value.
And the tolerance limit to noisy measurement is tested by increasing the value of standard
deviation σ.

Figure 6.22: Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ = 6

Figure 6.23: Speed and yaw rate of the trajectory in scenario 5

67

Chapter 6. Simulation and Results

As shown in results including Gaussian noise with standard deviation σ of 6, 10, and 15,
the vehicle is able to follow the global path and avoid random obstacles involving Gaussian
noise with σ = 6 and 10, while it fails to proceed when the σ is set to 15.

Figure 6.24: Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ = 10

Figure 6.25: Trajectory generated by hybrid COLAV algorithm with Gaussian noise σ = 15

68

6.2 Scenarios and Results

Snapshots shown in Figure 6.26, implies that the presence of Gaussian noise on measure-
ment will disturb motion and eventually affect the trajectory of ASV.

Figure 6.26: Snapshots of trajectory in scenario 7

69

Chapter 6. Simulation and Results

Scenario Type Performance

1 Static obstacles

Both reactive and deliberate algorithms
are capable of generating collision-free

trajectory by keeping a fair distance
larger than the corresponding radius
to the center of every static obstacle.

2 Straight-line moving obstacles

The global path planning algorithm
fails to handle moving obstacles,

while the reactive DW approach is capable
of generating a collision-free trajectory.

3 Local minima

Adopting only reactive DW algorithm causes
the consequence of being trapped in the
local minima, while this issue is easily

addressed by introducing the hybrid method.

4 Straight-line moving obstacles

Hybrid COLAV method based on global
path is adopted when including obstacles

moving with constant heading and velocity.
ASV is able to avoid collision with
both static and moving obstacles.

5 Circular-arc moving obstacles

When considering moving obstacles with
varying heading angle, ASV deviates the
global path to stay clear of the moving
obstacles and re-follows the path after

it gets rid of moving obstacles.

6 Random moving obstacles

Moving obstacles with rapidly-changing
motion trends make collision avoidance
more challenging. However, ASV still
manages to generate a collision-free

trajectory aligning well with the global path.

7
Random moving obstacles

with Gaussian noise

Gaussian noise with different standard
deviations are incorporated to test the

robustness and tolerance limits of
the hybrid algorithm.

Table 6.7: Overview of different simulation scenarios

70

Chapter 7
Conclusion and Future Work

7.1 Conclusion

In this thesis, a hybrid COLAV method based on Bézier curves and dynamic window algo-
rithm is introduced. PLOS path tracking algorithm is exploited to track the global path and
extensively contribute to developing the interface between deliberate and reactive COLAV
method. Furthermore, the feasibility and robustness of the algorithm are analysed regard-
ing different scenarios through numerical simulations.

Global path planning method based on Bézier curves within the formulation of optimiza-
tion is introduced, in which Bézier curves is used to generate a set of path, while static
obstacles are regarded as constraints. Property of differential flatness is employed to in-
corporate the dynamics of the vehicle by assigning cost to each path, and the optimal path
is selected by minimizing the objective function while satisfying the constraints. Further,
global path is transformed into planned trajectory used as guidance for reactive COLAV
method through PLOS path tracking algorithm.

As a reactive collision avoidance approach, dynamic window searches for commands in
the space of velocity, consists of surge speed and yaw rate for ASV. Original dynamic win-
dow algorithm (Fox et al., 1997) has been modified to adapt to the newly proposed hybrid
method by incorporating a path alignment function, which is simply the difference value
of planned and predicted trajectory generated by global path planning and reactive DW
algorithm, at each time step. Besides, the proposed hybrid algorithm has been extended to
account for the dynamics of the vehicle.

From the results presented in Chapter 6, the hybrid COLAV method has been proven to
work well handling both static and dynamic obstacles. By taking advantage of deliberate
and reactive methods, the proposed hybrid algorithm manages to generate a collision-free
trajectory towards the goal in all scenarios considered in this thesis, without being trapped
in the local minima or running into unexpected moving obstacles. To test the robustness

71

Chapter 7. Conclusion and Future Work

of the hybrid algorithm, Gaussian noise is included to make only noisy measurements
accessible to the ASV. However, it should be further investigated to promote compatibility
to the International Regulations for Preventing Collisions At Sea (COLREG).

7.2 Future Work
Future work should aim to investigate the extensions and modifications that can be carried
out to improve the developed hybrid COLAV method, mainly focused on the following
topics:

• Adapt the algorithm to be COLREG compliant.

• Adopt a more predictive approach (MPC) to facilitate collision avoidance in guid-
ance system.

• To further investigate the robustness of the system regarding the model uncertainties.

• Adjust the algorithm to meet demands for full-scale experiments.

72

7.2 Future Work

Appendix

Appendix A: Conference Paper
The conference paper submitted to Joint CAMS and WROCO 2019 can be viewed on the
following pages.

73

Hybrid Collision Avoidance with Moving
Obstacles

Yi Chai ∗ Vahid Hassani ∗,∗∗

∗ Centre for autonomous marine operations and systems (AMOS),
Dept. of Marine Technology, Norwegian Univ. of Science and

Technology, Trondheim, Norway.
∗∗ Department of Ships and Ocean Structures, SINTEF Ocean,

Trondheim, Norway.

Abstract: This paper proposes a hybrid collision avoidance (COLAV) approach based on the
integration of a global path planning algorithm and a reactive collision avoidance approach to
address the COLAV issue with the presence of the moving obstacles. Bézier curves are exploited
as the basis for global path planning, while dynamic window (DW) algorithm is employed to
search for optimal velocity pairs which ensure collision-free trajectory. In particular, the interface
between the deliberate and reactive method is developed, enabling the vehicle to simultaneously
track the generated global path towards the goal and avoid local collision. The performance and
robustness of this hybrid COLAV method have been evaluated through numerical simulations.

Keywords: Bézier curve, path planning, dynamic window, collision avoidance

1. INTRODUCTION

A considerable amount of work has been done in the field
of autonomous vehicles and collision avoidance (COLAV)
over the past few decades. Autonomous path planning and
collision avoidance are essential for Autonomous Surface
Vehicles (ASV), navigating in unknown or partially known
environment with static and moving obstacles in the
vicinity of the vehicle. The hybrid COLAV architecture
proposed in this article, decomposes the task into global
path planning and local collision avoidance.

Reactive COLAV methods are widely used due to the
low demand for computing capabilities. Velocity Obsta-
cles method is one of those reactive COLAV approaches,
intended for motion planning to avoid static and moving
obstacles in the velocity space (Fiorini and Shiller, 1998).
(Ge and Cui, 2002) proposed a new potential field method
for motion planning of mobile robots in a dynamic envi-
ronment with moving target and obstacles. Additionally,
dynamic window algorithm is one of the existing reactive
COLAV approach, originally designed for robot with first
order nonholonomic constraints (Fox et al., 1997). A mod-
ified DW algorithm presented in (Eriksen et al., 2016), is
adapted and tested for autonomous underwater vehicles
(AUV) with second-order nonholonomic constraints.

Nevertheless, dynamic window algorithm suffers from
many drawbacks, and the most significant one is high
sensitivity to the local minima. (Seder and Petrovic, 2007)
proposes an improved dynamic window algorithm incor-
porated with a focused D* search algorithm, such that
the vehicle is less likely to be trapped in a local minima.
Furthermore, (Serigstad et al., 2018) introduces a hybrid
dynamic window approach, functions as an interface to
any deliberate COLAV method which generates time pa-

rameterized trajectories, enabling vehicles to avoid local
minima.

Motivated by the above considerations, in this paper, a
hybrid COLAV architecture is presented, based on the
combination of global pre-defined path generated by Bézier
curves and dynamic window algorithm. Furthermore, in-
terface between these two methods is developed, steering
the vehicle to track the global path while avoiding both
static and moving obstacles.

The global path planning is carried out using a new gener-
ation of path planning that incorporates in its formulation
the dynamics of the vehicles and extra data made available
by on board sensors about obstacles and other vehicles
in vicinity (Hassani and Lande, 2018). Bézier Curves are
used as the basis for generating a rich set of paths that
determines spatial and temporal profile of the vehicles.
Using differential flatness property of the vehicle, we are
able to reconstruct all the states of the vehicles during the
maneuver. The calculated states are then used to assign
a cost function to each path that reflects the dynamic
capabilities of the vehicle on that path. Hence, the global
path generated by Bézier curves takes the dynamics of
vehicle into account in their formulations; see (Hassani and
Lande, 2018).

The rest of the article is organized as follows. Section 2
summarizes the results in (Hassani and Lande, 2018) and
presents a brief introduction to the global path generator
used in this article. In section 3, a short description
of the Dynamic Window algorithm is presented. Section
4 describes the key idea behind the proposed hybrid
COLAV technique. The performance and robustness of the
proposed hybrid COLAV algorithm is evaluated through
several simulation scenarios in Section 5. Conclusions and

suggestions for future research are summarized in Section
6.

2. GLOBAL PATH GENERATOR FOR FIXED
OBSTACLES

This section summarized the results of (Hassani and
Lande, 2018) in which, a class of Bézier curves is used to
provide a rich class of potential paths. Using the flatness
property of ASV, all the states and inputs of the ship
along the path is computed from which a cost value can be
assigned to each candidate path. Finally, an optimization
problem is formulated that would give birth to a global
path generator that would generate a path from point A to
point B in presence of fixed obstacles. the calculated path
satisfies dynamic limitations of the ASV such as required
curvature, continuity, smoothness.

2.1 Bézier curve

The mathematical basis for the Bézier curve are the Bern-
stein polynomials, named after the Russian mathemati-
cian Sergei Natanovich Bernstein (Farin, 2014). In 1912
the Bernstein polynomials were first introduced and pub-
lished as a means to constructively prove the Weierstrass
theorem. In other words, as the ability of polynomials
to approximate any continuous function, to any desired
accuracy over a given interval. The slow convergence rate
and the technological challenges in the construction of the
polynomials at the time of publication, led to the Bernstein
polynomial basis being seldom used for several decades to
come. Around the 1960s, independently, two French auto-
mobile engineers of different companies, started searching
for ways of representing complex shapes, such as auto-
mobile bodies using digital computers. The motivation
for finding a new way to represent free-form shapes at
the time, was due to the expensive process of sculpting
such shapes, which was done using clay. The first engineer
concerned with this matter was Paul de Faget de Casteljau
working for Citroën, who did his research in 1959. His
findings lead to what is known as de Casteljau algorithm,
a numerically stable method to evaluate Bézier curves.
De Casteljau work were only recorded in Citroën internal
documents, and remained unknown to the rest of the world
for a long time. His findings are however today, a great tool
for handling Bézier curves (Farin, 2014). The person who
lends his name to the Bézier curves, and is principally
responsible for making the curves so well known, is the
engineer Pierre Étienne Bézier. Bézier worked at Renault,
and published his ideas extensively during the 1960s and
1970s. Both Bézier and de Casteljau original formulations
did not explicitly invoke the Bernstein basis, however the
key features are unmistakably linked to it and today the
Bernstein basis is a key part in the formulation (Farouki,
2012).

A Bézier curve is defined by a set of control points P i

(i = 0 . . . n) for which n denotes the degree of the curve.
The number of control points for a curve of degree n is
n + 1, and the first and last control points will always be
the end points of the curve. The intermediate points does
not necessarily lay on the curve itself. The Bézier curve
can be express on a general form as

P (t) =
n∑

i=0

Bni (t)P i t ∈ [0, 1], (1)

where t defines a normalized time variable and Bni (t)
denotes the blending functions of the Bézier curve, which
are Bernstein polynomials defined as

Bni =

(
n

i

)
(1− t)n−iti, i = 0, 1, 2..., n. (2)

2.2 Differential flatness

A dynamic model of ASV is presented in (Hassani and
Lande, 2018); furthermore, it is shown that the pro-
posed model exhibits a differential flatness property; see
(Van Nieuwstadt and Murray, 1998). A system is said to
be differentially flat if one can find a set of outputs, equal in
number to the number of inputs, such that one can express
all states and inputs as functions of these outputs and their
derivatives. This can be formulated mathematically for a
nonlinear system, as follows. Consider a nonlinear system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (3)

y = h(x) y ∈ Rm, (4)

where x denotes the state vector, u denotes the control
input vector and y denotes the tracking output vector.

Such a system is said to be differentially flat if there exist
a vector z ∈ Rm, known as the flat output, of the form

z = ζ(x, u, u̇, ..., u(r)), (5)

such that

x = φ(y, ẏ, ..., y(q)) (6)

u = α(y, ẏ, ..., y(q)), (7)

where ζ, φ and α are smooth functions.

3. DYNAMIC WINDOW ALGORITHM

Dynamic window method is a local reactive avoidance
technique, searching for inputs implemented in the space
of velocities. The main advantage of this approach is that
it directly incorporates the dynamics of the vehicle, since
the velocity space consists of translational velocity and
rotational rate, which turn into surge speed u and yaw
rate r for ASV, specifically. By adopting velocity space,
the pruning of the search space enormously simplify the
computational effort. Furthermore, the trajectory of the
ASV can be approximated by a sequence of straight lines
and circular arcs, and each arc is uniquely determined by
the velocity tuple (u, r) with the radius R = u/r. For
each velocity pair within the velocity space, the dynamic
window algorithm is designed to predict the trajectory
that velocity pair (u, r) might generate for the next n time
intervals. Then, we only consider the first time interval and
assume that velocity vector remains unchanged within the
remaining n-1 time intervals. This assumption is based on
the observation that search is automatically repeated after
each time interval, while velocity will remain constant if
there are no new commands.

3.1 Search Space

With the constraints imposed on the velocity space, the
resulting search space is the intersection of three restricted
velocity sets, namely, the set of possible velocities Vs,
admissible velocities Va and dynamic window Vd. The set
of possible velocities is limited by the extreme value of the
surge speed u and yaw rate r, which is defined as

Vs = {(u, r)|u ∈ [0, umax] ∧ r ∈ [−rmax, rmax]}. (8)

Due to the kinematic and dynamic constraints, the search
space is reduced to a certain span around the current
velocity, which only consists of reachable velocities within
the next time interval. Thus, the dynamic window can be
described as

Vd = {(u, r)|uc ∈ [u− u̇b ·∆t, uc + u̇a ·∆t]
∧ ω ∈ [rc − ṙb ·∆t, rc + ṙa ·∆t]}, (9)

where accelerations ua and ra are maximal translational
and rotational accelerations, while ub and rb are maximal
breakage decelerations. Terms uc, rc are current surge
speed and yawrate.

The existence of obstacles in the vicinity imposes restric-
tions on the velocity pairs. The velocity is considered
admissible if the vehicle is able to move to the next point
before it hits the next obstacle on the predicted trajectory.
As a consequence, the search space is reduced to a set of
velocities that allow the vehicle to move without colliding
with any obstacle, which can be defined as

Va = {(u, r)|u ≤
√

2 · dist(u, r) · u̇b
∧ r ≤

√
2 · dist(u, r) · ṙb},

(10)

where dist(u, r) represents the distance to the closest
obstacle on the corresponding trajectory.

3.2 Objective Function

Among those velocity pairs within the resulting search
space Vr, velocity vector (u, r) is chosen to maximize a
certain objective function, which consists of some criteria,
like target heading, clearance and velocity.

G(u, r) = α · goal(u, r) + β · dist(u, r) + γ · vel(u, r)
s.t.(u, r) ∈ Vr,

(11)
where the terms goal(u, r), dist(u, r) and vel(u, r) are
weighted by the factors α, β and γ. The terms involved in
the objective function can be denoted as,

goal(u, r) = arccos(

−→
OA · −−→OB
|−→OA| · |−−→OB|

), (12)

dist(u, r) =
1

rmin
, (13)

vel(u, r) = umax − uc. (14)

Trajectory of the vehicle can be calculated with the ve-
locity pairs (u, r), which implies the position is given at
each time step. The term goal(u, r) is used to measure the
progress towards the target, mathematically denoted as
the angle between the vector pointing to goal and vector
connecting start point and current position. rmin is re-
ferred to the distance from current position to the nearest
obstacle, and the distance function dist(u, r) will reach

a maximum value when obstacle occurs in the vicinity.
The velocity term vel(u, r) is the difference value between
maximal surge speed and the current one, which means
vel(u, r) is exclusively dependent on surge speed u.

4. ADAPTIONS FOR HYBRID COLAV

As a reactive COLAV approach, dynamic window algo-
rithm is restricted in many ways. The main drawback is
that the vehicle may suffer from the risk of getting stuck
in local minima and being unable to reach the goal, even
though an exact path leading to the goal exists. Hence,
it becomes necessary to employ a global path generated
by Bézier curves, as a guidance for dynamic window al-
gorithm. Based on the proposed deliberate and reactive
COLAV methods, it’s essential to develop the interface
between global path planning and local collision avoidance
algorithm.

4.1 Pure Pursuit Path Tracking Algorithm

To incorporate global pre-defined path generated by Bé
zier curves with dynamic window algorithm, a path track-
ing algorithm is obliged to be adopted. Pure pursuit path
tracking algorithm (Coulter, 1992) has been widely used as
a steering controller for autonomous vehicles. (Yamasaki
et al., 2009) proposes a robust path-following for UAV us-
ing pure pursuit guidance algorithm. (Rankin et al., 1998)
presents a review and evaluation of PID, pure pursuit,
and weighted steering controller for an autonomous land
vehicle.

The major objective of this method is to calculates curva-
tures enabling the vehicle to chase a moving target point
that is some distance ahead of it on the pre-planned path.
The chord length of the arc represents the look-ahead
distance joining current position and goal point, and it’s
used when search for the next target point. The state of
vehicle, including position and heading need to be updated
after each search, and can be presented as

xi+1 = xi + vcosθi∆t, (15)

yi+1 = yi + vsinθi∆t, (16)

θi+1 = θi + ω∆t. (17)

4.2 Interface between deliberate and reactive COLAV

Desired trajectory has been derived by employing pure
pursuit path tracking algorithm, which can be used as a
guidance for dynamic window. Hence, the interface be-
tween the deliberate and reactive method needs to be
developed, enabling the vehicle to simultaneously track
the generated global path towards the goal and avoid
local collision. Based on the objective function presented
in section 3, a new term corresponding to path alignment
should be incorporated, denoted as align(pp, pt), distance
between point on pre-defined trajectory and current posi-
tion determined by velocity pair (u, r) at each time step.

G(u, r) =α · goal(u, r) + β · dist(u, r)+
γ · vel(u, r)− δ · align(pp, pt)

(18)

These weight factors α, β, γ and δ determine how the hy-
brid COLAV favors trajectory keeping, collision avoidance
or aligning with the global path.

In addition, deliberate COLAV based on Bézier curves
only ensures collision-free path with the presence of static
obstacles, the gain in terms of obstacle clearance function
β should be tuned bigger such that the vehicle is able to
avoid when a moving obstacle emerges in the vicinity. As a
consequence, the practical trajectory may deviate from the
global path to a certain extent, presented in the following
simulation section.

5. SIMULATION RESULTS

In this section, some simulation scenarios are presented
to show the performance of hybrid COLAV method, in-
cluding the ability of following global pre-planed path and
collision avoidance. In the following scenarios, the hybrid
algorithm manages to generate a trajectory from start
point (0, 0) to goal point (1000, 1000) under different
conditions of obstacles.

First Scenario:
As shown in Fig. 1, trajectory of vehicle aligns well
with the global pre-defined path when merely considering
static obstacles. The trajectory solely differs slightly when
approaching a static obstacle, that indicates the prominent
ability of tracking planned path.

Fig. 1. DW trajectory with static obstacles

Second Scenario:
In the second scenario, moving obstacles with constant
speed and heading are involved. Fig. 2 gives us a clear
explication that the vehicle deviates from the global path
by changing the yaw rate while a moving obstacle emerges
in the vicinity and catches up with the path after entering
safe region.

Fig. 2. DW trajectory with straight-line moving obstacles

Third Scenario:
In order to avoid moving obstacles with varying speed
and heading which yield circular arc trajectory, significant
offset from global path occurs for a period of time to
generate a collision-free trajectory, shown in Fig. 3.

Fig. 3. DW trajectory with circular-arc moving obstacles

Fourth Scenario:
In this scenario, an unknown dynamic obstacle with ran-
dom trajectory is employed to evaluate the robustness of
this hybrid method. As depicted in Fig. 4, the vehicle devi-
ates from the global path within a relatively long distance,
to ensure that it stays clear of the collision region. And as
soon as the vehicle keeps a fair distance to the dynamic
obstacle, it re-follows the global path moving towards the
target.

Fig. 4. DW trajectory with random shape moving obsta-
cles

Fifth Scenario:
To evaluate the robustness of this COLAV algorithm, a
Gaussian noise is added to the measured position and
velocity of the obstacle. In other words, in this Scenario the
COLAV algorithm only has access to noisy measurements
of position and speed of the moving obstacle. Fig.5 shows
the comparison of results with different standard deviation
of Gaussian noise. The vehicle is still able to follow the
global path and avoid random obstacle involving Gaussian
noise with zero mean value and standard deviation σ =
5, 10, while it fails to proceed when the standard deviation
is set to 20.

Fig. 5. DW trajectory with random moving obstacles
including Gaussian noise

6. CONCLUSION

A hybrid COLAV method based on Bézier curves and
dynamic window algorithm is introduced. Pure pursuit
guidance is exploited to track the global path and ex-
tensively contribute to developing the interface between
deliberate and reactive COLAV method. Furthermore, the
feasibility and robustness of the algorithm is analysed

regarding different scenarios through numerical simula-
tions. The future work will include conforming with the
International Regulations for Preventing Collisions At Sea
(ColReg).

REFERENCES

Coulter, R.C. (1992). Implementation of the pure pursuit
path tracking algorithm. Technical report, Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST.

Eriksen, B.O.H., Breivik, M., Pettersen, K.Y., and Wiig,
M.S. (2016). A modified dynamic window algorithm for
horizontal collision avoidance for auvs. In 2016 IEEE
Conference on Control Applications (CCA), 499–506.
IEEE.

Farin, G. (2014). Curves and surfaces for computer-aided
geometric design: a practical guide. Elsevier.

Farouki, R.T. (2012). The bernstein polynomial basis:
A centennial retrospective. Computer Aided Geometric
Design, 29(6), 379–419.

Fiorini, P. and Shiller, Z. (1998). Motion planning in
dynamic environments using velocity obstacles. The
International Journal of Robotics Research, 17(7), 760–
772.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic
window approach to collision avoidance. IEEE Robotics
& Automation Magazine, 4(1), 23–33.

Ge, S.S. and Cui, Y.J. (2002). Dynamic motion planning
for mobile robots using potential field method. Au-
tonomous robots, 13(3), 207–222.

Hassani, V. and Lande, S.V. (2018). Path planning for
marine vehicles using bezier curves. In Proceedings
of the 11th IFAC Conference on Control Applications
in Marine Systems, Robotics, and Vehicles, volume 51,
305–310. Elsevier.

Rankin, A.L., Crane, C.D., and Armstrong, D.G. (1998).
Evaluating a pid, pure pursuit, and weighted steering
controller for an autonomous land vehicle. In Mobile
Robots XII, volume 3210, 1–13. International Society for
Optics and Photonics.

Seder, M. and Petrovic, I. (2007). Dynamic window
based approach to mobile robot motion control in the
presence of moving obstacles. In Proceedings 2007 IEEE
International Conference on Robotics and Automation,
1986–1991. IEEE.

Serigstad, E., Eriksen, B.O.H., and Breivik, M. (2018). Hy-
brid collision avoidance for autonomous surface vehicles.
IFAC-PapersOnLine, 51(29), 1–7.

Van Nieuwstadt, M.J. and Murray, R.M. (1998). Real-
time trajectory generation for differentially flat sys-
tems. International Journal of Robust and Nonlin-
ear Control, 8(11), 995–1020. doi:10.1002/(SICI)1099-
1239(199809)8:11¡995::AID-RNC373¿3.0.CO;2-W.

Yamasaki, T., Takano, H., and Baba, Y. (2009). Robust
path-following for uav using pure pursuit guidance. In
Aerial Vehicles. IntechOpen.

Bibliography

Ahuja, N., Chuang, J.-H., 1997. Shape representation using a generalized potential field
model. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (2), 169–
176.

ASV, 2019. https://www.maritimeindustries.org/write/Uploads/
News/2017/Q1/ASV_Global_to_Demonstrate_C-Worker_5_
Autonomous_Surface_Vehicle_at_U.S_Hydro_2017.jpg, accessed
June 1, 2019.

Borenstein, J., Koren, Y., 1991. The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE transactions on robotics and automation 7 (3), 278–288.

Choi, J.-w., Curry, R., Elkaim, G., 2008. Path planning based on bézier curve for au-
tonomous ground vehicles. In: Advances in Electrical and Electronics Engineering-
IAENG Special Edition of the World Congress on Engineering and Computer Science
2008. IEEE, pp. 158–166.

Coulter, R. C., 1992. Implementation of the pure pursuit path tracking algorithm. Tech.
rep., Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.

Dakulovic, M., Horvatic, S., Petrovic, I., 2011. Complete coverage d* algorithm for path
planning of a floor-cleaning mobile robot. In: 18th international federation of automatic
control (IFAC) world congress. pp. 5950–5955.

Devaurs, D., Siméon, T., Cortés, J., 2016. Optimal path planning in complex cost spaces
with sampling-based algorithms. IEEE Transactions on Automation Science and Engi-
neering 13 (2), 415–424.

Eriksen, B.-O. H., Breivik, M., Pettersen, K. Y., Wiig, M. S., 2016. A modified dynamic
window algorithm for horizontal collision avoidance for auvs. In: 2016 IEEE Confer-
ence on Control Applications (CCA). IEEE, pp. 499–506.

Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity
obstacles. The International Journal of Robotics Research 17 (7), 760–772.

79

https://www.maritimeindustries.org/write/Uploads/News/2017/Q1/ASV_Global_to_Demonstrate_C-Worker_5_Autonomous_Surface_Vehicle_at_U.S_Hydro_2017.jpg
https://www.maritimeindustries.org/write/Uploads/News/2017/Q1/ASV_Global_to_Demonstrate_C-Worker_5_Autonomous_Surface_Vehicle_at_U.S_Hydro_2017.jpg
https://www.maritimeindustries.org/write/Uploads/News/2017/Q1/ASV_Global_to_Demonstrate_C-Worker_5_Autonomous_Surface_Vehicle_at_U.S_Hydro_2017.jpg

Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John
Wiley & Sons.

Fox, D., Burgard, W., Thrun, S., 1997. The dynamic window approach to collision avoid-
ance. IEEE Robotics & Automation Magazine 4 (1), 23–33.

Fraichard, T., 1993. Dynamic trajectory planning with dynamic constraints: A’state-time
space’approach. In: Proceedings of 1993 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS’93). Vol. 2. IEEE, pp. 1393–1400.

Ge, S. S., Cui, Y. J., 2002. Dynamic motion planning for mobile robots using potential
field method. Autonomous robots 13 (3), 207–222.

Goerzen, C., Kong, Z., Mettler, B., 2010. A survey of motion planning algorithms from
the perspective of autonomous uav guidance. Journal of Intelligent and Robotic Systems
57 (1-4), 65.

Hart, P. E., Nilsson, N. J., Raphael, B., 1968. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4 (2),
100–107.

Hassani, V., Lande, S. V., 2018. Path planning for marine vehicles using bezier curves.
IFAC-PapersOnLine 51 (29), 305–310.

Häusler, A. J., Ghabcheloo, R., Pascoal, A. M., Aguiar, A. P., 2010. Multiple marine
vehicle deconflicted path planning with currents and communication constraints. IFAC
Proceedings Volumes 43 (16), 491–496.

Hirsch, M. W., 2012. Differential topology. Vol. 33. Springer Science & Business Media.

Kavraki, L., Svestka, P., Overmars, M. H., 1994. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. Vol. 1994. Unknown Publisher.

Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. In:
Autonomous robot vehicles. Springer, pp. 396–404.

Kothari, M., Postlethwaite, I., Gu, D.-W., 2014. Uav path following in windy urban envi-
ronments. Journal of Intelligent & Robotic Systems 74 (3-4), 1013–1028.

Kuwata, Y., Wolf, M. T., Zarzhitsky, D., Huntsberger, T. L., 2014. Safe maritime au-
tonomous navigation with colregs, using velocity obstacles. IEEE Journal of Oceanic
Engineering 39 (1), 110–119.

Lande, S. V., 2018. Path planning for marine vehicles using bézier curves. Master’s thesis,
NTNU.

LaValle, S. M., 1998. Rapidly-exploring random trees: A new tool for path planning.

LaValle, S. M., 2006. Planning algorithms. Cambridge university press.

80

Lopes, A., Rodrigues, J., Perdigao, J., Pires, G., Nunes, U., 2016. A new hybrid motion
planner: applied in a brain-actuated robotic wheelchair. IEEE Robotics & Automation
Magazine 23 (4), 82–93.

Manley, J. E., 2008. Unmanned surface vehicles, 15 years of development. In: OCEANS
2008. Ieee, pp. 1–4.

Murray, R., Rathinam, M., Sluis, W., 1995. Differential flatness of mechanical control
systems. In: Proceedings of the 1995 ASME International Congress and Exposition.

Naderi, K., Rajamäki, J., Hämäläinen, P., 2015. Rt-rrt*: a real-time path planning algo-
rithm based on rrt. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion
in Games. ACM, pp. 113–118.

Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science & Business Me-
dia.

Oriolo, G., Nakamura, Y., 1991. Control of mechanical systems with second-order non-
holonomic constraints: Underactuated manipulators. In: [1991] Proceedings of the 30th
IEEE Conference on Decision and Control. IEEE, pp. 2398–2403.

Peng, J., Huang, Y., Luo, G., 2015. Robot path planning based on improved a* algorithm.
Cybernetics and Information Technologies 15 (2), 171–180.

Radmanesh, M., Kumar, M., Guentert, P. H., Sarim, M., 2018. Overview of path-planning
and obstacle avoidance algorithms for uavs: A comparative study. Unmanned Systems,
1–24.

Rankin, A. L., Crane, C. D., Armstrong, D. G., 1998. Evaluating a pid, pure pursuit, and
weighted steering controller for an autonomous land vehicle. In: Mobile Robots XII.
Vol. 3210. International Society for Optics and Photonics, pp. 1–13.

Seder, M., Petrovic, I., 2007. Dynamic window based approach to mobile robot motion
control in the presence of moving obstacles. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, pp. 1986–1991.

Serigstad, E., Eriksen, B.-O. H., Breivik, M., 2018. Hybrid collision avoidance for au-
tonomous surface vehicles. IFAC-PapersOnLine 51 (29), 1–7.

Škrjanc, I., Klančar, G., 2010. Optimal cooperative collision avoidance between multiple
robots based on bernstein–bézier curves. Robotics and Autonomous systems 58 (1),
1–9.

Sørensen, A. J., 2012. Marine control systems propulsion and motion control of ships and
ocean structures lecture notes.

Spong, M. W., Hutchinson, S., Vidyasagar, M., et al., 2006. Robot modeling and control.
Vol. 3. wiley New York.

Stentz, A., et al., 1995. The focussed dˆ* algorithm for real-time replanning. In: IJCAI.
Vol. 95. pp. 1652–1659.

81

Van den Berg, J., Lin, M., Manocha, D., 2008. Reciprocal velocity obstacles for real-
time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and
Automation. IEEE, pp. 1928–1935.

Viknes, 2019. https://viknes.no/modell/viknes-1030/, accessed May 4,
2019.

Yamasaki, T., Takano, H., Baba, Y., 2009. Robust path-following for uav using pure pursuit
guidance. In: Aerial Vehicles. IntechOpen.

82

https://viknes.no/modell/viknes-1030/

