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Abstract 

The market for wind power is booming, driven by environmental concerns and rapidly 

increasing global energy demand. As installed wind power capacity increase, however, so 

does the amount of aging capacity. Because of structural safety concerns, wind turbines 

can only be operated within their designed technical lifetime, which is about 25 years. 

After that point, action need to be taken in order to keep the wind farm operative, such 

as repowering or life-extension.  Since a lot of turbines are reaching the end of their 

technical lifetime, the choice between these strategies will become an increasingly 

important issue. To address this, we apply a real options approach to examine financial 

strategies for repowering and life-extension of wind farms.  

First, we develop a tractable single-factor model to gain general insights into the 

investment problem. In particular, we analyse how the option values in general depend 

on the underlying factors. From this analysis we find that the repowering and life-extension 

option values vary at different rates when the underlying parameters are changed. 

Specifically, we find that the option values are increasing at different rates with the 

volatility of the profit flow, initial price level and the repowering scaling factor. Also, the 

option values are decreasing at different rates with the cost of capital, capacity efficiency 

decline and investment cost. These results show that the relative attractiveness between 

the options can change when the values of the underlying factors are changed.  

Second, we develop a flexible multi-factor model to evaluate and gain insights into specific 

wind power projects. This model incorporates the stochastic nature of electricity prices, 

wind speeds and technological innovation, and can also evaluate project-specific 

characteristics such as technological restrictions and power purchase agreements. In order 

to determine the optimal investment strategies for end-of-life options with the multi-factor 

model, we utilize a numerical algorithm based on the least squares Monte Carlo approach.  

To showcase the applicability and flexibility of the model, it is applied to a numerical case 

study of a generic Norwegian wind farm. From analysis of this case study, we find that the 

optimal decision for a wind farm operator strongly depends on how the market conditions 

develop throughout the lifetime of the wind farm. For favourable early market conditions, 

such as high electricity prices and production, the option to repower is preferable and will 

be exercised. For moderate early market conditions, the operator prefers to wait and see 

which way the market develops; while for unfavourable market conditions, the operator 

will wait for the life-extension option to become available and exercise it optimally during 

the remaining lifetime of the wind farm. Finally, the inclusion of contractual power 

purchase agreements in the case study shows that increasing the fraction of power 

production sold through long-term agreements reduces the electricity price risk exposure 

and incentivises earlier investments in both repowering and life-extension.  
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Sammendrag 

Markedet for vindkraft er i kraftig fremdrift, drevet av hensyn til miljøet og raskt økende 

global energietterspørsel. Men i tråd med at installert vindkraftkapasitet øker, øker også 

mengden aldrende kapasitet. På grunn av hensyn til strukturell sikkerhet kan vindturbiner 

kun brukes innenfor sin tekniske levetid, som er på rundt 25 år. Etter dette kreves aktive 

tiltak for at vindparken skal være operativ, slik som repowering og life-extension. Siden 

mange turbiner vil nærme seg slutten av sin tekniske levetid, vil valg og prioritering av 

disse tiltakene bli viktigere og viktigere over tid. For å adressere dette, anvender vi et 

realopsjonsrammeverk for å undersøke finansielle strategier for repowering og life-

extension av vindparker.  

Først, utvikler vi en letthåndterlig enfaktormodell for å oppnå generell innsikt i 

investeringsproblemet. Spesifikt, analyserer vi hvordan opsjonsverdien generelt avhenger 

av de underliggende faktorene. Fra denne analysen finner vi at opsjonsverdiene for 

repowering og life-extension varierer med ulike rater når de underliggende parametrene 

endres. Opsjonsverdiene øker med forskjellig rate når volatiliteten i profittstrømmen, 

startnivået for prisen eller skaleringsfaktoren for repowering øker; og opsjonsverdiene 

synker med varierende rate når avkastningskravet, nedgangsraten for kapasitets-

effektiviteten eller investeringskostnadene øker. Disse resultatene tilsier at den relative 

attraktiviteten mellom opsjonene kan endres når de underliggende faktorene endres. 

Deretter, utvikler vi en fleksibel multifaktormodell for å evaluere spesifikke vindkraft-

prosjekter. Modellen inkorporerer de stokastiske egenskapene til strømpriser, 

vindhastighet og teknologisk innovasjon, og kan vurdere prosjektspesifikke 

karakteristikker slik som teknologiske restriksjoner og langsiktige kraftavtaler. For å 

vurdere optimale investeringsstrategier for end-of-life vindkraftopsjoner med 

multifaktormodellen, benytter vi en numerisk algoritme basert på least squares Monte 

Carlo-metoden.  

For å synliggjøre hvor anvendbar og fleksibel modellen er, anvender vi den på en numerisk 

casestudie av en generisk norsk vindpark. Ved å analysere dette casestudiet finner vi at 

den optimale beslutningen for vindparkoperatøren er sterkt avhengig av hvordan 

markedsforholdene utvikler seg gjennom vindparkens levetid. For gunstige 

markedsforhold tidlig i levetiden, eksempelvis høy strømpris og kraftproduksjon, er 

repoweringopsjonen foretrukket og vil bli realisert. For moderate markedsforhold tidlig i 

levetiden, vil operatøren foretrekke å vente for og se hvilken retning markedet utvikler 

seg. For ugunstige markedsforhold tidlig i levetiden, vil operatøren foretrekke å vente til 

life-extensionopsjonen blir tilgjengelig og realisere den optimalt innen den resterende 

levetiden til vindparken. Det siste funnet er at inkludering av langsiktige kraftavtaler vil 

redusere vindparkens eksponering mot elektrisitetsprisrisiko, noe som gir insentiv for 

tidligere investering i både repowering og life-extension. 
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Abbreviations 
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Introduction 

The market for wind energy is booming and in rapid growth, driven by the desire to meet 

future energy demand in a sustainable way. A limitation on the speed of this growth is 

however that wind turbines have an expected lifetime of 20 – 25 years, after which 

operation must be stopped due to structural safety concerns. Therefore, the growing 

market for wind power carries with it the issue of how to properly handle a growing number 

of aging turbines. This has, however, already become a pressing concern, as 28 % of 

Europe’s installed wind power capacity will be 15 years or older by 2020. Hence, financial 

strategies that assess the optimal utilization of end-of-life options for wind turbines will be 

of great importance in the years to come, and become increasingly crucial as the market 

for wind energy continues to grow.  

When a wind turbine is approaching the end of its life, the operator has three options 

available: repowering, life-extension and decommissioning. The objective of this thesis is 

to analyse these options from a financial perspective. More specifically, we aim to find 

financial strategies for repowering and life-extension of wind farms that an operator can 

use to optimally allocate his assets. To this end, we focus on evaluating the option values, 

expected exercise time and how the optimal behaviour depends on the underlying factors.  

To account for the irreversibility, uncertainty and flexibility present in the investment 

problem, we employ a real options approach, which entails evaluating the wind power end-

of-life options as American-style call options.  In order to evaluate the end-of-life options 

in a thorough and comprehensive manner, we develop two distinct models from the real 

options framework, a single-factor model and a multi-factor model. For the single-factor 

model, it is assumed that the underlying uncertainty in the operating profit margin can be 

captured by a single stochastic process. This allows for analytical, closed-form solutions 

that are tractable and well suited to provide general insights into the investment problem. 

Particularly, we disentangle the relationship between the option values and their 

underlying factors and analyse how the option values respond to changes in the parameter 

values. 

For the multi-factor model, the profit flow is modelled through its underlying risk factors 

by allowing the price of electricity and wind speed to follow separate, correlated stochastic 

processes. Technological uncertainty is also included, by simulating the arrival of 

technological innovations through an inhomogeneous Poisson jump-process. While no 

longer analytically solveable, the increased flexibility of the multi-factor model makes it 

possible to tailor it to highly project specific conditions, thereby providing an excellent 

decision-making tool for specific wind projects.  To solve the multi-factor model, the least 

squares Monte Carlo approach of Longstaff and Schwartz (2001) is employed, which is a 

flexible numerical solution scheme. In order to demonstrate the applicability of the model, 

we apply it to a case study of a generic Norwegian wind farm and analyse the insights 

provided.   

Within the existing literature, there are several studies that conduct quantitative analysis 

on wind turbine end-of-life options. Himpler and Madlener (2012) study the economics 

and optimal timing of repowering for the case of Danish wind farms. They do so by applying 

a two-factor real options model, where revenues and investment costs are considered 

uncertain and modelled through separate geometric Brownian motions. From this, they 

find that uncertain revenues are a major hinder to further development of repowering in 

Denmark, and that the selling price of the used turbine is a minor factor in the repowering 
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decision. The study is, however, limited to repowering and does not consider life-extension 

or decommissioning. It also imposes limitations on the underlying uncertainty of the 

revenue flows, as they are modelled through a single stochastic process. Mauritzen (2014) 

apply a Cox regression model to Danish wind farms and find that a combination of land 

scarcity and Danish subsidy policies makes turbines in better locations more likely to be 

repowered due to the higher alternative cost.  

Santos-Alamillos et al. (2017) utilizes a mean-variance portfolio optimization approach to 

explore varying wind power repowering scenarios in Spain. They find that repowering can 

contribute to more efficient wind farm portfolios by reducing fluctuations in aggregate 

power supply and increasing productivity. Hou et al. (2017) develops an optimization tool 

for repowering offshore wind turbines with the objective of minimizing the levelized cost 

of energy. Castro-Santos et al. (2016) determines the main costs and feasibility of 

repowering through calculation of the project net present value (NPV), and conclude that 

repowering is a financially viable option. However, neither Santos-Alamillos et al. (2017), 

Hou et al. (2017) or Castro-Santos (2016) consider the optimal timing of the investment. 

Santos-Alamillos et al. (2017) and Hou et al. (2017) provide tools to optimize the 

investments after the decision to repower is made. Castro-Santos et al. (2016) apply a 

now-or-never decision tool to decide whether repowering is viable or not, thereby 

disregarding the value of flexibility in the investment timing as well as the underlying 

uncertainty in the profit flow.  

There are also qualitative studies that aim to shed light on different aspects of end-of-life 

options. Ziegler et al. (2018) reviews current state-of-the-art methodology for lifetime-

extension of onshore wind turbines in Germany, Spain, Denmark and the UK, and find that 

a significant market for end-of-life solutions will develop in the coming years. del Río, 

Calvo Silvosa and Iglesias Gómez (2011) makes a qualitative analysis of instruments and 

design options that support repowering of onshore wind turbines, with the aim of finding 

an optimal policy design for incentivising repowering of wind farms. They find that all 

instruments have their advantages and drawbacks, but feed-in-tariffs seem to be 

particularly appropriate to incentivise repowering.  

Our thesis makes its contribution by addressing some of the limitations in the existing 

literature. First, we expand the study of Himpler and Madlener (2012) by evaluating both 

repowering and life-extension. Second, we develop both a single-factor model and a multi-

factor model in order to address both general and case specific questions related to the 

end-of-life options. The single-factor model provides general insights into the investment 

decision of wind farm operators, and how the underlying factors affect the dynamics of the 

option values. From this analysis we find that the repowering and life-extension option 

values vary at different rates when the underlying parameters are changed; which indicate 

that the specific underlying parameters will determine how attractive the two options are 

relative to one another, and that parameter changes will shift this balance.  

The multi-factor model, which can be calibrated to specific wind projects and impose 

technological and legal restrictions in a flexible manner, evaluates the option values, 

optimal exercise timing and which scenarios that make one option preferable to another. 

We thereby supplement the existing end-of-life options literature by proposing models that 

evaluates all the viable options for an operator, while accounting for practical aspects and 

individual conditions of the wind farm operation in a flexible manner. By applying the 

model to a numerical case study, we find that the optimal decision for the wind farm 

operator strongly depends on how the market conditions develop throughout the lifetime 

of the wind farm. For favourable early market conditions, the option to repower is 
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preferable and will be exercised. For moderate early market conditions, the operator 

prefers to wait and see which way the market develops; while for unfavourable market 

conditions, the operator will wait for the life-extension option to become available and 

exercise it optimally during the remaining lifetime of the wind farm. Finally, the inclusion 

of contractual power purchase agreements in the case study shows that increasing the 

fraction of power production sold through long-term agreements reduces the electricity 

price risk exposure and incentivises earlier investment in both options. By reducing the 

exposure to market conditions, it also makes the result of preferring the repowering option 

for favourable early market conditions less prevailing.  

The rest of this thesis is organized as follows. In Chapter 1, the business case for wind 

power end-of-life options is considered and it is argued for why this is a topic of growing 

economic interest. In Chapter 2, an investment decision analysis is conducted, with the 

objective of identifying an appropriate investment decision tool and evaluating different 

modelling approaches. In Chapter 3, the single-factor and multi-factor real options models 

are developed, and the single-factor model is analysed to provide some general insights 

into the investment problem. In Chapter 4, a numerical case study for a generic Norwegian 

wind farm is presented and the multi-factor model is calibrated to evaluate it. In Chapter 

5, the results from the numerical case are presented, along with a discussion of the 

implications and insights these provide. Finally, in Chapters 6 and 7, the conclusions of 

the thesis are presented and further research is discussed.   
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1 – The business case for wind power end-of-life options 

The world’s energy consumption is expected to dramatically increase in the coming 

decades1. Simultaneously, growing environmental concerns put restrictions on the use of 

fossil fuels and nuclear power. The Paris agreement, which is a political agreement signed 

by virtually every country on earth, limits the carbon emissions of each country in an effort 

to mitigate the damaging effects of global warming2. To meet the increasing demand of 

energy, while simultaneously keeping the political commitment of the Paris Agreement, 

renewable energy will have to play an increasingly important role in the years to come. 

From Figure 1.1, it can be observed that Bloomberg (2018) expects the energy mix to 

consist of more than 64 % renewables by 2050, with wind and solar playing a dominant 

role. 

 

The development of the energy industry already in progress shows a strong global 

commitment to reach this scenario. From Figure 1.2 it can be observed that wind power 

has become a massive global industry, with more than $1 trillion invested in the last 15 

years alone. The trend of development shows that yearly wind power investments are 

rapidly increasing, along with other forms of renewable energy investments. 

Determined to do its part in mitigating global climate change, the European Union (EU) 

has set a combined renewable energy production target for all its member states at 20% 

by 2020, and 32% by 20303. By 2050, Bloomberg (2018) estimates the EU will reach 

almost 90% renewables, with wind and solar power expected to be the most important 

contributors. WindEurope (2017) estimates that by 2030, wind power will cover between 

21.6 – 37.6 % of the EU’s electricity demand, with between 147 – 351 billion EUR invested 

                                           

1 https://www.eia.gov/todayinenergy/detail.php?id=32912 

2 https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement 

3 https://ec.europa.eu/energy/en/topics/renewable-energy 

Figure 1.1: Forecast for the power mix towards 2050. Source: Bloomberg 

https://www.eia.gov/todayinenergy/detail.php?id=32912
https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement
https://ec.europa.eu/energy/en/topics/renewable-energy
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in building 96 – 237 GW of new wind power capacity. Therefore, we can conclude that the 

market for wind power is booming and will continue to do so in the coming decades. 

 

An important concern that naturally arise as this development continues, however, is how 

to deal with aging wind farms. The expected lifetime of a wind turbine is in the range of 

20 – 25 years4, hence as the world continues to install new wind power capacity in line 

with the prognosis from Figure 1.2, there will be an increasing amount of aging wind 

capacity to handle and a rapidly growing market for good end-of-life solutions for wind 

turbines.  

This is, however, not only a concern for the future; the need for proper handling of aging 

turbines is already a pressing issue. In 2016, 12 % of the installed capacity in Europe were 

15 years or older, and by 2020, this share will have increased to 28 % (Ziegler et al., 

2018). In effect, many wind farms will reach the end of their life in the near future, and 

the demand for end-of-life evaluation will become increasingly crucial as installed capacity 

continues to increase.  

 

                                           

4 https://www.renewablesfirst.co.uk/windpower/windpower-learning-centre/how-long-do-wind-turbines-installations-last/ 

Figure 1.2: Global new investment in renewable energy. Source:  Bloomberg 

https://www.renewablesfirst.co.uk/windpower/windpower-learning-centre/how-long-do-wind-turbines-installations-last/
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For wind farms nearing the end of their expected lifetime, there are three available 

options:  

Decommissioning is to dismantle the turbines and recycling the materials, in effect 

shutting down the operation of the wind farm.  

Life-extension is to extend the technical lifetime of the wind farm and is done by 

restoring or upgrading components of the turbines. 

Repowering is to decommission the old turbines and replace them with new and usually 

better turbines.  

Figure 1.3 illustrates the decision tree a wind farm operator is facing at the end of the 

turbine lifetime, and in the following paragraphs each of the three options will be 

elaborated upon. 

 
Figure 1.3: Decision tree facing a wind farm operator 

Note that Figure 1.3 depicts the decision tree for the currently operating wind farm only. 

For each time the wind farm is repowered, the operator will face a new, identical decision 

tree. It should also be mentioned that while the wind farm operator makes his decision at 

the end of the economic lifetime of the wind farm, the decision can at most be postponed 

until the end of the technical lifetime of the wind farm. This is a quite important distinction, 

as the technical lifetime of a wind farm is how long it can operate before it is at risk of 

technical failure, while the economic lifetime is how long it is profitable to keep in operation 

considering alternative costs.  

Although all three options are practically available, decommissioning before the end of the 

technical lifetime of a wind park is generally not economically viable. This is because the 

operating profit of a wind turbine will almost always be positive, and the initial investment 

is close to entirely irreversible after operation has started. For wind power the energy input 
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is free, therefore, the operational costs are mainly related to maintenance (EWEA, 2009). 

It is generally also more profitable to repower a wind farm at the end of its technical 

lifetime rather than to decommission. This is because the location has already been 

deemed economically feasible for wind power production, and technological advancement 

during the lifetime of the wind park will allow the repowered wind farm to utilize the wind 

of the location even better and therefore be more profitable. Hence, decommissioning is 

generally not considered to be an attractive option. There are however circumstances that 

make decommissioning necessary, although they are usually not motivated by financial 

optimization. The wind farm operator might lack the necessary capital to repower or life-

extend his wind farm at the end of the technical lifetime, or the government might be 

unwilling to grant the necessary concession to use the land for this purpose. The operator 

might also have been granted concession to use a location better suited for wind power, 

and lacks the capital for two simultaneous wind projects.  

When assessing the life-extension option there are several aspects that need to be 

considered. As the design lifetime of different components varies, it is common to renew 

only one or a few components at a time. Also, the design lifetime of a component can vary 

quite significantly from its real lifetime, which depends on project specific factors such as 

local wind speeds, turbulence levels and wake effects from nearby turbines (Ziegler et al., 

2018). It is therefore important to utilize site-specific data measured over time to estimate 

the remaining structural lifetime of components when determining how to optimally life-

extend a turbine. Note that optimal life-extension of a turbine is not just a matter of 

financial evaluation, as there are strict legal restrictions to ensure structural safety 

(DNVGL, 2016). In the years post life-extension it is also required to subject the wind park 

to regular inspections to ensure that structural integrity has not been compromised, and 

if found to be the case, the turbine will be shut down until further life- extended (MegaVind, 

2016).  

In addition to allowing the turbine to operate and generate revenues longer, life-extension 

can also have the added benefit of significantly improving the performance of the turbine 

and reducing the levelized cost of electricity. It is also relatively inexpensive compared to 

repowering5. Note that recent developments to monitoring systems have made predicting 

the remaining lifetime of individual turbine components more accurate and less 

expensive6, hence improving the viability of life-extension. Since decommissioning is often 

not an economically viable end-of-life option, as was discussed above, we will for modelling 

purposes assume that life-extension is always followed by repowering. Note that this does 

not entail disregarding decommissioning entirely from the modelling, as choosing not to 

exercise the other end-of-life options in effect is decommissioning.   

Repowering is typically done at the end of the economic lifetime of a wind farm, when the 

opportunity cost of not repowering is estimated to be greater than the expected present 

value of future operating profit flows from the current wind farm. There can also be factors 

unrelated to the economics of the specific wind project that motivate repowering, for 

instance improving the stability of the power grid by repowering to a turbine that has more 

reliable output. Because the operating profit of aging wind farms is almost always positive, 

                                           

5 https://www.spicatech.dk/about-us/press/is-lifetime-extension-of-your-ageing-turbine-the-right-solution/ 

6 https://www.ge.com/renewableenergy/digital-solutions/digital-wind-farm 

https://www.spicatech.dk/about-us/press/is-lifetime-extension-of-your-ageing-turbine-the-right-solution/
https://www.ge.com/renewableenergy/digital-solutions/digital-wind-farm
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scarcity of land is a necessary condition for repowering to be an economically viable option. 

If viable land is not a scarce resource, it would always be more beneficial to keep the old 

wind farm operating until the end of its technical lifetime and invest in a new wind farm 

elsewhere rather than repower. In effect, without land scarcity, the option to repower 

would become an option with only one relevant exercise time – at the end of the technical 

lifetime of the wind farm.  

Scarcity of land arises because land suitable for producing wind power is a limited 

resource. Broadly speaking, there are four factors that affect the attractiveness of wind 

power production at a location. First, political regulation limits where wind farms can be 

installed. Because of noise and visual pollution, wind farms need to be kept away from 

residential areas, nature attractions and other locations of public interest. Second, the 

local wind conditions determine the potential for wind power production at the location. 

Naturally, higher average wind speeds at a location is favourable as it allows higher power 

production. Third, the cost of installing new grid infrastructure for transmission of power 

from the wind farm will vary across locations. In some areas the infrastructure is already 

good enough to handle the power from wind farms, while in other locations additional 

transmission capacity will have to be built at a significant investment cost. Fourth, the 

price of power varies for different areas, both between countries and often also within 

countries. As power markets become more integrated this is a factor of decreasing 

importance, but it is still an important consideration for many projects. The combination 

of these four factors makes the land suitable for wind power production limited, which 

implies significant value in optimal resource utilization.   

From the business case for wind power end-of-life options, we have formulated several 

research questions that we aim to answer throughout this thesis. We have separated the 

questions into two categories, general and project-specific, as we need to tailor a method 

specifically suitable for addressing each category.  

General questions: 

• Which factors affect the end-of-life options?  

 

• How do underlying factors affect the option values and the investment decision?  

 

• How does the option value of repowering change relative to the option value of life-

extension when the underlying parameters change? 

For an operator to make an informed and optimal decision regarding end-of-life options 

for his wind farm, knowing which underlying factors that affect this decision and how is of 

vital importance. From the foundation of these underlying factors, we can then disentangle 

the investment problem into separate parts, quantify them and combine them into a 

decision tool. By analysing how changes in the underlying parameters affect the option 

values, we can build intuition around the investment problem behaviour and identify 

general scenarios for which one option is preferable to another.  
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Project-specific questions: 

• What is the value of having the option to repower or life-extend a specific wind 

farm? 

 

• How long should a specific wind farm operator be expected to wait before exercising 

an end-of-life option for his wind farm? 

 

• In which scenarios are one of the options preferable to the other?  

 

• How does long-term power purchase agreements (PPAs) affect the option values 

and investment decisions for a specific wind farm?  

The project-specific questions are of interest because they are more closely related to the 

actual decision making. Answering the general questions provides a general understanding 

of the end-of-life option behaviour and its relationship with underlying factors, while 

answering the project-specific questions provide insights and recommendations tailored to 

specific, real wind projects. This insight should allow the wind farm operator to determine 

the optimal end-of-life option decision for his wind farm, and how much value these options 

can provide him when utilized. Quantified option values can also be useful for potential 

wind power investors to aid them in properly assessing the value of the asset they are 

considering investing in. Finally, by knowing how the option values for a specific wind farm 

are affected by PPAs, the operator can determine whether such an agreement would be 

optimal for his wind farm.   
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2 – Investment decision analysis  

In this chapter, we first discuss appropriate investment decision tools to help us quantify 

the investment problem, and to determine the value and investment strategies for wind 

power end-of-life options. Then, we develop an understanding of what drives the 

profitability of a wind turbine during its lifetime. More specifically, we identify the factors 

that contribute to the operational profit flow of a wind turbine and how they change over 

time.  

2.1 – Finding the investment decision tool  

Choosing the appropriate decision-making tool depends on the problem at hand and the 

objectives one wishes to achieve. Consequently, we need to know the strengths and 

weaknesses of the possible decision tools at our disposal and evaluate how these will 

impact what we are analysing. One possible approach is to use a cash flow analysis where 

each cash flow element is estimated based on available information and assumptions about 

the future. From the cash-flows one can find the profit flows for each period, which can be 

discounted with an appropriate risk-adjusted cost of capital to find the net present value 

(NPV) of the project.  This type of analysis has the advantages of being simple to perform 

and providing results that are easy to interpret. However, it also has some clear 

drawbacks. According to Dixit and Pindyck (1994), NPV  performs poorly when the 

following characteristics are present: Uncertainty about future profits, investment costs 

are fully or partially irreversible (sunk) and the investment timing is flexible. In the NPV 

case, everything is based on predefined parameter values which does not take uncertainty 

into account. Also, NPV studies do not allow for flexibility in investment timing - it’s a now 

or never decision tool.   

Depending on the research questions and the problem at hand, NPV can still provide some 

useful insights.  Campoccia et al. (2009) utilize NPV-analysis in order to compare different 

political energy support schemes in European countries, with the main goal of putting into 

evidence the main differences in the support policies adopted. Thus, the goal is not to give 

exact representation of the problem, but rather showcase main characteristics. Chong et 

al. (2011) use NPV-analysis to assess the economic feasibility of an innovative wind-solar 

hybrid renewable energy system. In this case, NPV is used to give indications to whether 

the project is even possible, and not to give advice on the final investment decision.  

When uncertainty, irreversibility and managerial flexibility are present in an investment 

problem, Dixit and Pindyck (1994) argue for the implementation of real options models. 

This modelling approach was first introduced by Myers (1977) and the goal was to address 

the shortcomings of traditional capital budgeting approaches, such as the NPV. Real 

options can be considered an extension of the financial option theory and treats investment 

opportunities and real assets in much the same way as financial call or put options. In 

contrast to the “now-or-never” proposition implicit in traditional NPV-analysis, the real 

option method seeks to gain value by deferring an irreversible investment expenditure, 

and in such take managerial flexibility into account. The option pricing theory of Black and 

Scholes (1973) was therefore applied to the valuation of “real”, non-financial assets with 

learning and flexibility. Trigeorgis and Mason (1987) refer to the investment project value 

with managerial flexibility as “expanded” or “strategic” NPV, which is the sum of the 

traditional NPV and the value of managerial flexibility. Hence, the real options model is a 
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valuable tool that more accurately estimates the value of uncertain and flexible projects 

than traditional capital budgeting methods (Herath and Park, 1999; Benninga and 

Tolkowsky, 2002; Newton et al., 2004).  

Real options models can incorporate uncertainty and managerial flexibility, thereby 

gproviding a more realistic representation of many actual investment problems. However, 

there are also some weaknesses with this approach. The two most evident being the 

complexity of calculations and the fact that many financial practitioners are unfamiliar with 

the approach. Horn et al. (2015) find that only 6% of the 1500 largest companies in 

Norway, Sweden and Denmark (500 from each country) make use of real options models. 

Of the non-users, 70% reported that they were unfamiliar with real options concepts and 

techniques, while the remaining 30% argued that the complexity was the primary hinder 

for implementation. This discrepancy between how favourable academics and practitioners 

view real options models indicate that the focus of continued research should be not only 

on developing better models, but on convincing practitioners of their viability and reducing 

the knowledge gap needed to apply them to real problems. A motivation for this thesis 

has therefore been to make the modelling transparent and easy to implement. Horn et al. 

(2015) do however also find the percentage of real options practitioners in the energy 

sector to be 24%, the highest of any specific industry and four times the business 

community average. It can therefore be inferred that the characteristics of the energy 

industry makes real options modelling a more attractive tool.    

Having discussed potential decision tools more generally, we now return our attention to 

financial strategies for repowering and life-extension of wind farms. According to Martínez-

Ceseña and Mutale (2011) and Santos et al. (2014), investments in renewable energy are 

highly irreversible and subject to several uncertainty factors. Consequently, they argue 

that real options modelling is the most suitable tool for renewable energy valuation. 

According to Kozlova (2017), there is a growing number of papers that use real options 

modelling to evaluate renewable energy related projects. The reason for this development 

is found to be the model’s ability to incorporate uncertainty and managerial flexibility when 

assessing irreversible investment cost. As a result, we believe a real options model will be 

the most suitable tool to assess a wind farm’s end-of-life options.  

In the rest of this chapter we discuss the components of the wind farm profit flow in more 

detail. In Chapter 2.2, we look at how the profit flow can be modelled. Then, in Chapter 

2.3, we present general characteristics of the price of energy and discuss how the 

electricity price can be modelled. Finally, in Chapter 2.4, we provide background 

information needed to understand how a wind farm produces energy and discuss how 

production can be modelled.   

2.2 – Modelling approach for the profit flow 

Since uncertainty is an important element of the profit flow of renewable energy projects, 

we consider different possibilities for how it can be modelled. One alternative is to allow 

the profit flow to follow a single stochastic process that captures all the underlying 

uncertainty, and as a result get a single-factor real options model. This is done by Kitzing 

et al. (2017) where the operational gross margin per unit capacity follows a geometric 

Brownian motion (GBM). The uncertainty in the profit flow can also be described by a 

single stochastic process by assuming there is only one component of the profit flow that 
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contributes to the uncertainty. This is done by several papers, for example Fleten and 

Maribu (2004) who assess investment timing and capacity choice of small-scale wind 

turbines where electricity is the only uncertainty factor following a GBM. Another possibility 

is to let the production and electricity price follow separate, uncorrelated GBMs and 

combine them into a single GBM by utilizing that the product of two uncorrelated GBMs 

will itself follow a GBM (Dixit and Pindyck, 1994). By doing so, it is possible to reformulate 

the problem into a single-factor model and solve the problem using a standard approach. 

Letting the operating profit flow follow a single stochastic process makes it possible to 

derive analytical, tractable results while still accounting for the general characteristics of 

the underlying uncertainty of the investment decision. This can be advantageous because 

it allows for general sensitivity analysis of how different parameters affect the profitability 

of the project and to develop a sense of the behaviour of the investment problem. A single-

factor model can therefore be a valuable tool to provide general results and to build 

intuition behind the problem. A drawback is, however, that whenever the investment 

problem is affected by several underlying factors that contribute to the total uncertainty, 

some valuable information might be lost by combining them into a single factor.  

Another viable alternative is therefore to allow the profit flow to be driven by multiple 

underlying stochastic processes and thereby design a multi-factor model. A natural way of 

doing so, is to separate the profit flow into its primary components and let them follow 

separate stochastic processes that capture their individual characteristics. This approach 

can make it possible to capture more of the underlying uncertainty that affect the profit 

flow, thereby making the model better aligned with the physical conditions of the real 

world. A drawback of this approach is however increased complexity, and that results are 

hard to generalize beyond the specific project in consideration.  

Motivated by finding answers to the research questions posed in Chapter 1, we find it 

appropriate to develop both a tractable single-factor model and a flexible multi-factor 

model. The single-factor model can provide insights into the general behaviour of the end-

of-life options and can, due to its tractability, make it easier to disentangle the effects of 

the underlying parameters in the model. To be able to derive closed-form, tractable 

solutions for the single-factor model, it will be necessary to make some simplifying 

assumptions. However, in order to be able to evaluate specific projects, these assumptions 

might need to be relaxed. Hence, we also develop a more flexible multi-factor model that 

can be calibrated to specific wind projects and thereby evaluate them in a more accurate 

and realistic fashion. This allows us to capture project specific variations such as PPAs, 

and some non-financial restrictions related technological and legal aspects of the wind 

farm operation.   

In order to build a multi-factor model, we need to split the profit flow into its primary 

components through separate stochastic processes. Therefore, in the next two 

subchapters, we describe general characteristics and behaviour of the price of energy and 

wind power production, and discuss how they can be modelled. 
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2.3 – Price of energy 

The first primary component of the operating profit flow is the price of energy. As the 

revenues of a wind turbine are generated by producing energy and selling it, the price at 

which the energy is sold is of major importance. Wind turbines generate energy in the 

form of electric power, which is sold either through a market or through long-term 

contracts. The price can also be subject to political subsidies, most often designed to make 

renewable power production more attractive. In this chapter we discuss these sources of 

income for the wind farm in more detail.  

2.3.1 – The market price of electricity 

Electricity share many of the same features as other commodities such as gold and copper. 

It is homogeneous, in that it cannot be easily distinguished where or how it is produced, 

and it is traded in global markets. However, as described in Burger, Graeber and 

Schindlmayr (2014), electricity differs from other commodities on several accounts. First 

and foremost, electricity cannot be stored easily or inexpensively on a large scale in the 

same manner that for instance gold can. Batteries can be utilized to store some energy, 

but they come at a significant cost. For this reason, most of the energy produced must be 

used immediately when it is generated, and consequently, supply and demand of 

electricity must always match at any given time across the grid. Second, electricity exhibit 

transportation constraints. This is because transportation of electricity causes loss of 

energy, making it economically infeasible to transport energy over very long distances. 

Third, the demand for electricity is highly inelastic, which results from the fact that 

electricity is a basic need in many households. Fourth, electricity prices exhibit some 

seasonal effects that are caused by demand varying throughout the year. In the Nordics, 

the heating demand is much higher during winters due to the cold weather, which leads 

to significantly higher demand for electricity during winter than summer. In other parts of 

the world, the opposite can be observed as high summer temperatures drive up the 

electricity demand for cooling. Fifth, the behaviour of the market is heavily dependent on 

the country or region-specific composition of the power plant portfolio. That is, the market 

behaviour depends on which energy sources provide market supply.  

In order to better understand how prices are settled in the market, we consider the day-

ahead Nord Pool market as an example. On the supply side there are a wide range of 

technologies competing for the demand. In a typical country, the supply will be covered 

by renewables, nuclear power, hydro power, natural gas and other fossil fuels. The supply 

creates a stepwise function, as illustrated in Figure 2.1, and is determined by the marginal 

cost of production for each supplier. From the figure we can observe that the bids from 

nuclear and wind power enter the supply curve at the lowest level, due to their low 

marginal costs, followed by combined heat and power plants; while condensing plants and 

gas turbines have the highest marginal costs of power production. The electricity spot 

price is finally determined by matching supply and demand. Consequently, the power plant 

portfolio that contributes to the supply side will play a major role in the final market price. 

If more of the power was produced from the low marginal cost power plants, the price 

level would be moved downwards. The steepness of the demand curve should also be 

noted, which illustrates that the demand is inelastic.    
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Another important observation is that in periods of increased production, the electricity 

price goes down. When the wind is blowing strongly, the production of wind power goes 

up, and consequently the price likely goes down. Similarly, when production decrease, the 

prices goes up. Therefore, the electricity price will be negatively correlated with the 

production.   

 
 

2.3.1.1 – Modelling approach for the price of electricity 

With the general characteristics of electricity in mind, we turn our consideration to how 

the prices behave and can be modelled. The analysis done on electricity prices in this 

thesis will be focused on the Nord Pool Market, as this is where we most easily can retrieve 

usable data. According to Seifert and Uhrig-Homburg (2007) it can be shown through 

investigation of historical spot prices on the Nord Pool market that the prices are 

characterised by high volatility, strong mean-reversion and frequent jumps. The presence 

of mean-reversion can be validated by performing statistical tests, such as the variance 

ratio test and ADF test (Palchykov and Vardøy, 2018). In addition, Lucia and Schwartz 

(2002) analyse the Nordic Exchange’s spot, futures and forward prices and conclude that 

seasonality effects can be observed and are of crucial importance in explaining the shape 

of the futures and forward curves.  

For these reasons, Schwartz (1997), Schwartz and Smith (2000), Lucia and Schwartz 

(2002) and Pilipovic (2007), argue for the inclusion of mean-reverting behaviour, long 

term uncertainty and seasonality when modelling electricity prices. Also, Kaminski (1997), 

Clewlow and Strickland (1999), Deng (2000) and Seifert and Uhrig-Homburg (2007) 

emphasizes the importance of including jump components in the electricity price models. 

A model proposed by Benth, Kallsen and Meyer-Brandis (2007) manages to capture mean-

reverting behaviour, jumps and seasonality through season-dependent jumps and could 

be utilized to capture the aforementioned characteristics.  

However, these articles have the objective of modelling electricity prices as accurately as 

possible. Depending on the problem at hand, it may be both advantageous and reasonable 

to make simplifying assumptions about the price process.  The choice of price process 

Figure 2.1: Example of annual supply and demand for the Nordic power system. 
Source: Windenergythefacts 



15 

 

comes with a tradeoff between accuracy and complexity. By including more of the known 

characteristics, the process is better able to replicate realistic behavior. However, the 

added complexity may not provide any additional insights into the problem at hand if 

short-term variations are not of interest. For long-term investment decisions, it is possible 

to exclude the effects of seasonality and jumps to only focus on long-term behavior. The 

justification of doing so is that short-term variations have relatively little impact on long-

term decisions (Fleten et al., 2007). For modelling long-term behavior of electricity prices, 

an Ornstein-Uhlenbeck process that takes mean-reversion into account or a more simple 

GBM are both viable options. Of these two, the Ornstein-Uhlenbeck is the most flexible 

one and be calibrated to mimic a GBM by letting the mean-reversion speed be low.  

2.3.2 – Power purchase agreements 

As is evident from the previous discussion, the electricity price is subject to considerable 

uncertainty, making it hard to predict what the price will be in the future. As a result, the 

power producer will be facing considerable price risk, and thereby uncertainty in future 

profits. A method for power producers to reduce the exposure to this risk, is by entering 

long-term contracts known as power purchase agreements (PPA). In fact, it is estimated 

that approximately 55 % of all the electricity produced in the Nordic market is sold through 

PPAs or through bilateral electricity trade (trading that takes place outside the power 

exchange)7.  However, the spot and forward prices have considerable impact on the prices 

agreed on in such contracts. In Figure 2.2 we illustrate the dynamics of PPA contracts.  

A PPA is a contract between two parties: A seller (the party producing energy) and a buyer 

(the party purchasing and often using the energy). In the contract, the two parties can 

specify everything related to the energy transaction. This includes the amount of energy, 

at what price and at what time the energy is to be delivered8. Through PPAs, the power 

producer can reduce some of the electricity price risk exposure and hedge some of the 

future revenues. In doing so, the energy producer will also be able secure debt financing 

at lower interest rates as the risk of default is diminished by the PPA.  

                                           

7 https://www.wind-energy-the-facts.org/power-markets.html 

8 https://en.wikipedia.org/wiki/Power_purchase_agreement 

Figure 2.2: Diagram showing the dynamics of a PPA. Source: Enel 

https://www.wind-energy-the-facts.org/power-markets.html
https://en.wikipedia.org/wiki/Power_purchase_agreement
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PPAs have, in addition to reducing price risk for the power producer, other positive 

ramifications. In many cases the buyer is a large energy consumer, i.e. an industrial 

company that utilizes electricity as a key input in their production, implying that the buyer 

itself is exposed to significant electricity price risk. Therefore, both parties can have large 

hedging benefits from settling on a common price. PPAs have also become a popular 

contract form for businesses that want to reduce their carbon footprint. By entering 

agreements with renewable energy producers, companies can make a visible commitment 

to sustainability, and at the same time manage volatile energy costs. For this reason, the 

volume of corporate renewable PPAs almost tripled from 2015 to 20169. 

Most importantly, since PPAs reduce the exposure to electricity price risk, it can contribute 

to making renewable energy projects viable to particularly risk-averse investors such as 

governments. This was the case for the Fosen Vind project, currently the largest wind farm 

in Norway, where Hydro bought close to a third of the expected future power production 

from the project10. While it is certain that the agreement made the profit flow of Fosen 

Vind less risky and was beneficial to the realization of the project, the exact contractual 

specifications remain secret to the public. The exact impact of the agreement on the 

investment decision is therefore not possible to ascertain. This lack of public insight is a 

common denominator for PPAs, as the specific content of these contracts is sensitive 

information due to competition. Therefore, we include PPAs in our model in order to better 

understand the impact the agreements have on the profitability of wind farms and the 

viability of end-of-life options.  

2.3.3 – Subsidy schemes  

In order to reach political targets for renewable energy and to stimulate faster 

development, many governments have introduced different subsidy schemes that 

incentivise power producers to invest in green energy. The subsidy schemes vary from 

country to country, but they are all designed to either increase revenues or to lower costs.  

In Europe, the most common schemes are tradeable green certificates (TGC), feed-in 

tariffs (FIT) and feed-in premiums (FIP).  

In Norway, the subsidy scheme utilized is the TGC. With TGCs, the producers receive, once 

approved for the support scheme, a certain number of certificates based on their 

production targets which they can sell on the certificate market. Thereby, renewable 

energy producers receive the income from selling their certificates on top of the income 

from the energy they sell. The utility companies are on their end obligated to purchase 

the certificates sold on the market, and to levy the cost onto the end consumers when 

selling the energy.  In effect, the cost of the certificates is carried by the consumers11.  

The Norwegian market for TGCs is currently shared between Norway and Sweden. 

Renewable power producers can receive certificates for up to 15 years, with the number 

of certificates being decided based on the amount of energy produced in the allocation 

                                           

9 http://resource-event.eu/new-to-ppas/ 

10https://www.adressa.no/nyheter/okonomi/2016/02/23/Hydro-kj%C3%B8per-str%C3%B8m-fra-Fosen-turbinene-

12192768.ece 

11http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-

vindkraft/Elsertifikater 

http://resource-event.eu/new-to-ppas/
https://www.adressa.no/nyheter/okonomi/2016/02/23/Hydro-kj%C3%B8per-str%C3%B8m-fra-Fosen-turbinene-12192768.ece
https://www.adressa.no/nyheter/okonomi/2016/02/23/Hydro-kj%C3%B8per-str%C3%B8m-fra-Fosen-turbinene-12192768.ece
http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-vindkraft/Elsertifikater
http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-vindkraft/Elsertifikater
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period. However, this is about to change in the coming years. With increasing technological 

development and decreasing capital costs, renewable power projects are becoming more 

profitable. The governments in Norway and Sweden have therefore decided to end the 

support system with a deadline coming up soon. In order to be eligible for support in 

Norway, new wind farm installations need to be connected to the grid before the end of 

year 2021. In addition, those who start operation after 2020 will only be able to receive 

support until 203512.  

Because subsidy schemes are soon to be removed in Norway, and the general international 

trend is following in the same direction due to increasingly profitability, we do not explicitly 

include political subsidy schemes in our model. For further references to studies that 

explicitly considers subsidies, see Eryilmaz and Homans (2016) and Boomsma and 

Linnerud (2015) who investigate how uncertainty in renewable energy policy affects 

investment decisions, Monjas-Barroso and Balibrea-Iniesta (2013) who consider which of 

the countries Denmark, Finland and Portugal that has the strongest public incentive for 

wind energy investments, and Boomsma, Meade and Fleten (2012) and Kitzing et. al. 

(2017) who look at how different support schemes affect the investment decision. It 

should, however, be noted that our multi-factor model is flexible enough to incorporate 

deterministic subsidy schemes such as feed-in tariffs and premiums with very minor 

adjustments, and stochastic subsidy schemes with only somewhat more extensive 

alterations, if this should be desirable. Intuitively, with the tendency of existing subsidies 

being retracted, one would expect repowering to become significantly more valuable 

relative to life-extension close to the retraction deadline. The reason being that repowering 

would make the wind farm eligible for the subsidy scheme, if performed before the 

deadline, while life-extension would not. 

2.4 – Production of energy 

The second major component of the operating profit flow is the production of energy. To 

identify the factors that determine how much power is produced at any given time, it is 

essential to understand technological and physical relations that govern how wind power 

is generated. In addition, we investigate how the performance of wind turbines change 

over time as well as the historical and future development of wind power technology. 

Finally, we consider the behaviour of wind, as the driving force behind wind power 

production, and identify suitable approaches to modelling it.  

2.4.1 – Wind power technology 

This subchapter is structured as follows. In 2.4.1.1, we describe the main components of 

a wind turbine and introduce important equations related to the power generation. In 

2.4.1.2, we investigate how the performance of wind turbines change over the operational 

lifetime. Finally, in 2.4.1.3 we address technological development and discuss different 

ways of modelling technological innovation. 

                                           

12http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-

vindkraft/Elsertifikater 

http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-vindkraft/Elsertifikater
http://www.vindportalen.no/Vindportalen-informasjonssiden-om-vindkraft/OEkonomi/Stoetteordninger-for-vindkraft/Elsertifikater
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2.4.1.1 – Wind turbines and power generation 

A wind turbine consists of a nacelle, mounted atop a tower, and a hub with three blades 

that is connected to the nacelle. Inside the nacelle there is a gearbox, a generator and 

some other minor components. Lift power generated by the wind causes the turbine blades 

to rotate, which in turn causes the generator inside the nacelle to rotate and generate 

electrical power.  

The power generated from a wind turbine can be calculated as (Dixon and Hall, 2014)  

ℎ =
1

2
𝐶𝑝𝜌𝜀𝑔𝐴𝑤

3,                                                                     (2. 1) 

where 𝐶𝑝 is the turbine power coefficient, 𝜌 is the air density, 𝐴 is the cross-sectional area 

swept by the turbine blades, 𝜀𝑔 is the generator efficiency, and 𝑤 is the wind speed. The 

power coefficient of the turbine gives the ratio of the mechanical power extracted by the 

turbine relative to the wind power passing through the cross-section of the turbine blades. 

The maximum theoretical power coefficient, known as the Betz limit, is 59.3% (Dixon and 

Hall, 2014). Note that the Betz limit is calculated assuming no frictional losses, which is 

likely not possible in reality.  

Figure 2.3: Main components and dimensions of a wind turbine 
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The rated capacity is the maximum power output a turbine is designed to achieve, and will 

typically be available for a fairly large range of wind speeds. If the wind speed drops below 

this interval, the power produced will drop rapidly. The lowest wind speed for which a 

turbine can produce power, is known as the cut-in speed. The highest speed for which a 

turbine can produce power, before the turbine will be shut down to avoid damage, is known 

as the cut-off speed. Because the turbine will not operate at its rated capacity all the time, 

the capacity factor, which is the ratio of average power output over the rated capacity, is 

used to indicate actual power production. See Figure 2.4 below for an illustration of how 

the power output varies with wind speed.  

By including the capacity factor, the energy generated yearly by a wind turbine can be 

expressed as  

𝐸 = ℎ ∗ 𝑡 ∗ 𝑘 =  
1

2
𝐶𝑝𝜌𝜀𝑔𝐴𝑤

3𝑡𝑘,                                                                 (2.2) 

where 𝑡 is the number of hours per year and 𝑘 is the capacity factor. Having a high capacity 

factor is important for the wind farm operator because it allows more energy to be 

produced, and production to be more consistent. Thus, when designing a wind turbine, it 

is important to ensure two things: high power output for design conditions and a high 

capacity factor, which enables longer operation at rated capacity.  

 
2.4.1.2 – Performance of wind turbines over time 

Wind turbines are usually delivered by their producers with a promised lifetime of 20-25 

years13, which is what the technical lifetime of the turbine is expected to be. In practise, 

this means that the turbine is expected to perform within a set of structural specifications 

for the designed lifetime, and the turbine producer will be obligated through contractual 

agreements to compensate the operator for any deviations from these specifications. This 

                                           

13 https://www.renewablesfirst.co.uk/windpower/windpower-learning-centre/how-long-do-wind-turbines-installations-last/ 

Figure 2.4: Example of power output of a wind turbine for different 
wind speeds. Source: Windpowerprogram 

https://www.renewablesfirst.co.uk/windpower/windpower-learning-centre/how-long-do-wind-turbines-installations-last/
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insurance protects the operator from the financial burden of most irregular and unexpected 

performance decline. 

The operator is, however, not protected against efficiency decline due to natural wear from 

use. A study conducted by Staffell and Green (2014) on 282 wind farms in the United 

Kingdom found that the capacity factor, also known as the load factor, decreased 

significantly as the turbines aged. By adjusting for local wind conditions, the study 

estimated that the capacity factor decline caused by aging alone was at around 1.6 % per 

year. A more detailed representation of the findings is presented in Figure 2.5 below.  

By performing regular maintenance and replacing minor components, some of the 

performance decline can be slowed down, but not completely reversed. We therefore 

distinguish between reversible and irreversible capacity decline. Staffell and Green (2014) 

argue that if the capacity factor decreases irreversibly with age, the wind farms will 

produce lower cumulative output and, therefore, have increased levelized cost of 

electricity. If the decline becomes too large, it could be profitable to prematurely replace 

the turbines with newer models, implying that the economic lifetime could be significantly 

shorter than the technical lifetime14.  

The operating and maintenance costs (O&M costs) are also expected to increase as the 

turbine ages, primarily to counteract reversible capacity decline, hence the costs can be 

expected to increase while the revenues decline. Note that although Staffell and Green 

(2014) studied wind farms in the UK, we can expect very similar behaviour for any other 

turbines as most commercial turbine models operate in the same way and are exposed to 

the same forces and sources of strain and wear.  

                                           

14 Recall that the technical lifetime of a turbine is how long it can operate before it is at risk of technical failure, 

while the economic lifetime is how long it is profitable to keep it in operation. 

Figure 2.5: Distribution of load factors for UK wind farms as they aged. 
Source: Staffel and Green (2014) 
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2.4.1.3 – Technological development 

With the power equation, ℎ =
1

2
𝐶𝑝𝜌𝜀𝑔𝐴𝑤

3 in mind, it seems natural that the development of 

wind turbines is going in the direction of becoming bigger and better. The swept area is 

𝐴 = 𝜋𝐷, hence doubling the diameter of a turbine will increase the power by a factor of 

6.28. In addition, as wind speed increases significantly with height, a taller turbine will 

experience higher average wind speed. Because 𝑃 ∝ 𝑉3, a doubling of the average wind 

speed will increase the power production by a factor of 8. Improving the efficiency has in 

contrast relatively limited potential, as there is only a first-order dependence between 

power and efficiency, and state-of-the-art turbines are already fairly close to the absolute 

limit of the Betz factor.  

Looking back to the early 1990s, new turbines had a diameter and hub height of about 

35m15. By the early 2000s, the diameter of new turbines had increased to 80m and the 

hub height to 70m16. By 2009, the diameter had increased to 107 m and the hub height 

to 80 m17. Today, the largest turbine in the world is the Vesta V164 at a massive 164m 

diameter and 118m hub height18. Currently in the pipeline is the GE Haliade X19, at an 

immense 220 m diameter and 150 m hub height, expected to be fully developed and 

deployed within 3-5 years; and also in progress are the Sandia SNL-100 and the UpWind 

(Dalhaug, 2018), both expected to dwarf the Haliade X when completed. The development 

can clearly be seen from Figure 2.6, where the global state-of-the-art turbines over time 

are visualised. 

Increasing the power output of turbines also makes it possible to generate the same 

amount of power with fewer turbines, which significantly reduces the investment, 

operating and maintenance cost per unit of power produced over the turbine lifetime. 

Increased scales of economy are also a significant benefit with larger turbines20. Since 

2009, the price per kWh of installed wind power has decreased by 65%, and optimistic 

forecasts expect a further 50% drop by 203021. In Figure 2.7, the capital expenditures for 

wind turbines are plotted for the last 20 years, showing a visible declining trend. There is 

however a caveat for specific wind farms when turbines become larger, which is that the 

necessary spacing between turbines to avoid interference from wake effects increases with 

the rotor diameter (Schwanz, Henke and Chouhy Leborgne, 2012). For an existing wind 

farm with fixed area, the potential output increase through repowering will therefore be 

somewhat diminished by the fact that it will have to reduce the number of turbines to 

accommodate for their larger size.  

                                           

15 https://www.4coffshore.com/windfarms/vindeby-denmark-dk06.html 

16 https://www.4coffshore.com/windfarms/horns-rev-1-denmark-dk03.html 

17 https://www.4coffshore.com/windfarms/inner-dowsing-united-kingdom-uk11.html 

18 http://www.mhivestasoffshore.com/v164-8-0-mw-testing-programme-to-be-ramped-up-with-installation-of-two-additional-
onshore-turbines-in-denmark/ 

19 https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine 

20 https://www.renewableenergyworld.com/ugc/articles/2017/05/08/is-bigger-best-report--part-1-limits-to-scale-in-wind.html 

21 https://www.vox.com/energy-and-environment/2017/8/30/16224582/wind-solar-exceed-expectations-again 

https://www.4coffshore.com/windfarms/vindeby-denmark-dk06.html
https://www.4coffshore.com/windfarms/horns-rev-1-denmark-dk03.html
https://www.4coffshore.com/windfarms/inner-dowsing-united-kingdom-uk11.html
http://www.mhivestasoffshore.com/v164-8-0-mw-testing-programme-to-be-ramped-up-with-installation-of-two-additional-onshore-turbines-in-denmark/
http://www.mhivestasoffshore.com/v164-8-0-mw-testing-programme-to-be-ramped-up-with-installation-of-two-additional-onshore-turbines-in-denmark/
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.renewableenergyworld.com/ugc/articles/2017/05/08/is-bigger-best-report--part-1-limits-to-scale-in-wind.html
https://www.vox.com/energy-and-environment/2017/8/30/16224582/wind-solar-exceed-expectations-again
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In addition to producing more power, an objective of wind turbine improvement is also to 

produce power more reliably. Since the capacity factor indicates the average power output 

compared to the maximum possible output, it provides an indication of the consistency of 

the power production and is thereby a good measure of reliability. The average capacity 

factor for new turbines has increased from 25.4% in 1998 - 2001, to 32.1% in 2004 - 

2011, to 42.5% in 2014 - 201522. Today, many new turbines reach well above 50% 

capacity factor, with the current record held by the Norwegian energy producer Equinor’s 

                                           

22 https://www.vox.com/energy-and-environment/2018/3/8/17084158/wind-turbine-power-energy-blades 

 

Figure 2.6: Development of wind turbines over time. Source: Wiser and Yang (2010) 

Figure 2.7: Declining trend for wind turbine capital expenditures over time. Source: IRENA (2018) 

https://www.vox.com/energy-and-environment/2018/3/8/17084158/wind-turbine-power-energy-blades
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offshore Hywind turbines at 65%23. From the wind turbine energy equation, 𝐸 =
1

2
𝐶𝑝𝜌𝜀𝑔𝐴𝑤

3𝑘, it can be observed that the energy production depends linearly on the 

capacity factor. Hence, improved capacity factor will significantly increase the energy 

produced, and thereby the revenues generated. A less obvious, but also quite significant 

benefit of this development, is that more reliable power production reduces the need for 

backup power. This can significantly reduce costs and makes wind power a more attractive 

part of the energy mix.  

The technological development of wind turbines can affect the investment decision in at 

least two ways. First, the alternative cost of wind farms currently in operation increases 

when better turbines becomes available, because the new turbines would be able to 

produce more power on the same land. The assumption of land scarcity is implicit in this 

argument. In other words, valuable land can be utilized better with newer turbines, which 

creates an incentive for replacing existing turbines. Second, as technology develops and 

globally installed capacity increases, wind turbine producers become better positioned to 

enjoy economies of scale24. This leads to lower investment costs, which provides incentive 

for earlier investment. The rate of technological development is therefore an important 

factor impacting the end-of-life investment decision and should be included in financial 

models in an appropriate manner.   

2.4.1.3.1 – Modelling approach for technological innovation 

When modelling technological innovation for a specific industry, the goal is typically to 

replicate the probability of new technology arrival in the coming period. This is commonly 

done by introducing a stochastic jump process, with an arrival rate reflecting the 

probability of new technology arrival, see for instance Farzin, Huisman and Kort (1998). 

Hoppe (2002) conducts a survey on existing literature on the timing of new technology 

adoption, and finds it appropriate to separate it into two broad categories: literature 

concerned with the modelling of arrival rates and value of new technology (see McCardle 

(1985) and Vettas (1998)), and literature concerned with the strategic interaction in the 

product market (see Hendricks (1992) and Riordan (1992)). In our thesis, the relevance 

of technological uncertainty is through the stochastic nature of new technology arrivals, 

as the value of the new technology is evaluated directly through the real options model. 

The arrival rate of the stochastic jump process can either be considered constant for the 

entire modelling period (Farzin, Huisman and Kort, 1998), have different levels for 

different regimes (Hagspiel, Huisman and Nunes, 2015) or be time-varying (Easley et.al., 

2007).  In reality, the expected arrival rate will be time-dependent, because as time pass 

circumstances involving the development changes and more information becomes 

available. The inclusion of time-dependency does, however, come at a significant cost of 

added complexity, and unless it can be quantified in a reliable manner it will not provide 

any meaningful contributions to the accuracy of results. In Easley et al. (2007), time-

varying arrival rates are used in the context of financial trading, where short-term 

variations in investor information cause time-varying arrivals of stock trades. When 

                                           

23 https://www.equinor.com/en/news/15feb2018-world-class-performance.html 

24 https://www.renewableenergyworld.com/ugc/articles/2017/05/08/is-bigger-best-report--part-1-limits-to-scale-in-wind.html 

https://www.equinor.com/en/news/15feb2018-world-class-performance.html
https://www.renewableenergyworld.com/ugc/articles/2017/05/08/is-bigger-best-report--part-1-limits-to-scale-in-wind.html
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considering stock trading, short-term variations are very significant. However, for long-

term investment problems such as in renewable energy projects, short-term variations 

even out in the long-run. Therefore, time-varying arrival rates may be unnecessarily 

complex for wind power end-of-life option analysis.  

Assuming a constant arrival rate, on the other hand, provides mathematical tractability 

and can be used to model long-term behaviour of technology innovation. However, as 

already mentioned, the arrival rate is by nature time-varying. For instance, the arrival rate 

may change following very recent innovations or breakthroughs in the development 

process. It can therefore be useful to consider a middle ground between constant arrival 

rate and time-varying rates, which can be achieved by allowing the arrival rate to change 

discretely for different regimes. This allows for some flexibility in the modelling of 

technological innovation, while also keeping complexity relatively modest.  

2.4.2 – Wind speed  

From the power equation of a wind turbine, it can be observed that the wind speed is the 

only parameter with exhibiting stochastic behaviour. The other equation parameters will 

either be specified through the turbine design conditions, or can be measured at the 

specific wind farm location. For instance, the swept area is determined by the diameter of 

the turbine blades, which is given from design conditions, and the local air density at the 

wind farm can be found by measurement. Thus, to investigate the uncertainty of the 

energy production, we focus our attention on wind speeds.     

The phenomenon of wind is, very generally explained, caused by differences in air 

pressure. More precisely, when there exist differences in pressure, air accelerates from 

higher to lower pressure. At medium and high latitudes, the wind speed is also affected 

by the rotation of the earth (Nfaoui, 2012). Local wind speeds are also strongly affected 

by the topography of the area, as hitting obstacles will generate friction that slows it down. 

Observations of wind show that wind speeds are non-steady and fluctuate significantly 

both throughout a day and across different days25. This can be seen from Figure 2.8, which 

shows power output from one of the world’s biggest wind farms, Jiuquan, on a typical day, 

and Figure 2.9 which shows a typical daily average wind speed curve over a month.   

                                           

25 http://www.wind-power-program.com/wind_statistics.htm 

Figure 2.8: Curve of typical daily distribution of wind power generation in Jiuquan. 
Source: Li and Zhi (2016) 

http://www.wind-power-program.com/wind_statistics.htm
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These characteristics make the prediction of future wind speeds challenging. Thus, to 

estimate the power delivered from a wind turbine through its power curve it is necessary 

to know the probability distribution of the wind speed. Despite that the distribution of wind 

speeds is highly location specific, the distributional shapes from different locations share 

many properties. Therefore, our objective is to find one or more distributions that 

adequately describes the general behaviour of wind speeds. 

2.4.2.1 – Modelling wind speed 

Studies on the distribution of wind speeds show that there are several distributions that 

could fit historical wind speed data. Pobocikova, Sedliackova and Michalkova (2017) 

demonstrate that the Weibull, Gamma and lognormal distributions provide satisfactory 

representation of the wind speed data at an airport in Slovakia at a significance level of 

0.05. However, there are some significant differences between them, and the study 

concludes that the Weibull distribution gives the best fit to the available data. Garcia et al. 

(1998) reaches the same conclusion when testing the Weibull and lognormal distribution 

on 20 locations in Navarre. Hennessey (1977), Justus et al. (1978), Conradsen, Nielsen 

and Prahm (1984) and Pang, Forster and Troutt (2001) also show that the Weibull 

distribution in general provides a good, but not perfect, fit to wind speed data. An example 

of how the Weibull distribution fits wind speed data is shown in Figure 2.10. 

Figure 2.10: Fit of Weibull distribution for a given set of wind speed data. Source: Ricci et al. (2014) 

Figure 2.9: Typical daily average wind speed curve over a month. Source: Li and Zhi (2016) 
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Even though many papers argue in favor of the Weibull distribution, some studies have 

found the Gamma and lognormal distributions to better fit to the wind speed data at certain 

locations. One example of this is Akyuz and GamGam (2017). There are also studies 

conducted on specific locations that find no distribution to be consistently superior to 

others. Zhou et al. (2010) tests the Weibull, Rayleigh, gamma, lognormal and inverse 

Gaussian distribution on wind speed data at five locations in North Dakota and find that 

no particular distribution outperforms the others at all locations. Hence, the goodness of 

fit of a particular distribution must be considered to be location specific, and the choice of 

distribution should be based on the wind speed data available.  
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3 - Real options modelling 

In this chapter, we present and develop the two real options models we use to address 

the research questions posed in Chapter 1. These models are, as was discussed in Chapter 

2, a tractable single-factor model used for general analysis and a flexible multi-factor 

model used for case-specific analysis. We begin in Chapter 3.1 by developing the general 

concepts that apply to both models. Then, in Chapter 3.2, we develop the single-factor 

model and present some general insights derived from it. Finally, in Chapters 3.3 and 3.4, 

we develop the multi-factor model and discuss how to apply it through a numerical solution 

algorithm known as least squares Monte Carlo.   

3.1 – General modelling concepts  

In the following subchapter we present a general description of our real options modelling 

problem and formalise its major fundamental concepts. We begin by formulating the 

investment decision as an optimal stopping problem. Then, we define the operating profit 

margin as a measure for the turbine profitability, and finally introduce the capacity 

efficiency that provides a useful adjustment to the profit margin.  

3.1.1 – The optimal stopping problem 

We consider a profit-maximizing wind power producer, that is operating a single wind 

farm. The wind farm can consist of one or more wind turbines. The producer receives cash 

flows continuously from operating his wind farm and has the option to make a single 

irreversible investment in either repowering or life-extension at some time 𝑡. As 

decommissioning is very rarely economically motivated, as was discussed in Chapter 1, 

we have chosen to omit this option from explicit consideration. Consequently, after 

performing life-extension, the wind farm will have to be repowered.  

We can view this situation as an optimal stopping problem, where the producer wants to 

find the optimal time, 𝜏, to exercise his options. In general, an optimal stopping problem 

will divide the state space into two distinct regions, the continuation region and the 

stopping region, separated by an optimal investment threshold. By expressing the 

continuation value as a partial differential equation, the investment threshold and option 

value can then be derived by using the stopping value as a boundary condition. This relies 

on the observation that the value of continuation and the value of immediate investment, 

i.e. stopping value, must be equal at the optimal threshold. At each point in time, the 

producer will have to compare the expected value of keeping his current wind farm in 

operation for another period and the value of exercising his best option immediately and 

receiving the expected stopping value Ω𝑡. Note that Ω𝑡 will be either repowering or life-

extension depending on which is expected to be most profitable at time 𝑡. Mathematically, 

we can express this situation with a recursive optimization algorithm known as the Bellman 

equation. The general equation will then take the form  

𝑟𝑉𝑡 = 𝑚𝑎𝑥
𝜏

 {G𝑡 +
1

dt
𝐸[𝑑𝑉]},                                                         (3.1) 

with the boundary condition 

𝑉𝜏 = Ω𝜏 
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Here 𝑉𝑡 = 𝑉(𝐺𝑡) is the value of wind farm at time 𝑡, and 𝐺𝑡 is the operating profit margin at 

time 𝑡, which will be explained in detail in the next subchapter.  

3.1.2 – The operating profit margin 

The operating profit margin is a good measure of the profitability of a turbine, as it 

measures the revenue generated less the cost of production at any given time. Therefore, 

we start by defining the gross operating profit margin, 𝑔𝑡, as the instantaneous revenue 

flow we receive from operation. More specifically, the gross operating profit margin is the 

product of the electricity price and the instantaneous power production of the turbine at 

full capacity efficiency.  

As discussed in Chapter 2.4.1, the performance of wind tubines tend to decline over time 

while O&M costs tend to increase. To capture this effect, we introduce the turbine capacity 

efficiency 𝑄𝑡 and assume it to follow an exponentially declining process on the form 

𝑄𝑡 = 𝑄0𝑒
−𝛾𝑡,                                                                   (3.2) 

where 𝑄0 is the initial level and 𝛾 is the capacity decline factor per time unit. Note that 𝛾 

can be allowed to vary over time or change depending on the turbine’s state of operation. 

The capacity efficiency is not related to the traditional measures for turbine efficiency, but 

is rather a measure of current power output relative to the rated power ouput of the 

turbine. By multiplying this with the gross operating profit margin, we can then define the 

net operating profit margin as 

𝐺𝑡 = 𝑔𝑡𝑄0𝑒
−𝛾𝑡                                                                 (3.3) 

The gross operating profit margin can then, by calibrating 𝛾, capture both declining 

performance and increasing O&M costs over time. It can also, by adjusting 𝑄0, account for 

the initial cost of operation for the specific wind farm in consideration. 

After repowering, we assume the initial level of the capacity efficiency to increase as it is 

measured relative to the rated power output of the turbine currently in operation. In 

practice this means that the capacity efficiency after repowering can be significantly above 

100%, to reflect the technological improvements of the repowered turbine, both in terms 

of higher output and better performance. Similarly, the capacity efficiency can also 

increase post life-extension, as life-extension might improve the performance of 

components and partially reverse performance decline suffered by the turbine over its 

operational lifetime. By denoting the scaling of capacity efficiency post repowering as 𝐾𝑅 

and the capacity efficiency post life-extension as 𝐾𝐿, the capacity efficiency for the three 

different states can now be expressed as 

𝑄𝑡 = 𝑄0𝑒
−𝛾𝑡, original capacity efficiency.  

    𝑄𝑡
𝑅 = 𝐾𝑅𝑄0𝑒

−𝛾𝑡, capacity efficiency after repowering. 

               𝑄𝑡
𝐿 = 𝐾𝐿𝑄0𝑒

−𝛾𝑡, capacity efficiency after lifetime-extension. 
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3.2 – Developing the single-factor model 

Having considered the general modelling concepts, a single-factor model can now be 

developed to address the general research questions from the end of Chapter 1 and 

provide some general insights into how the end-of-life option values depend on their 

underlying factors. We begin the chapter by making some model-specific assumptions and 

discuss why they are made and how realistic they are. Then, we formulate the optimal 

stopping problem based on these assumptions and go on to solve the stopping problem to 

derive a closed-form, single-factor model. Finally, we utilize the single-factor model to 

analyse the investment problem and present the general results.  

3.2.1 – Underlying assumptions  

To be able to derive an analytical model with closed-form solutions, we first make some 

simplifying assumptions. While these assumptions might be too rigid for a specific wind 

project, we believe them to be justified for a more general analysis of wind turbine end-

of-life option behaviour.  

The first assumption is that the gross operating profit margin can be considered to follow 

a geometric Brownian motion on the form 

𝑑𝑔𝑡 = 𝛼𝑔𝑏𝑚𝑔𝑡𝑑𝑡 + 𝜎𝑔𝑏𝑚𝑔𝑡𝑑𝑍𝑡                                                        (3.4) 

This way of modelling the operating profit margin of a wind turbine is in line with the 

method of Kitzing et al. (2017). Their argument is that modelling the operating profit 

margin of a wind turbine with a GBM seems reasonable as a first approximation due to the 

long-term horizon of wind power projects. This argument in turn is based on a result from 

Dixit and Pindyck (1994), which states that the product of two processes following GBM 

will also be a GBM. In other words, if the electricity price and the instantaneous power 

production are GBMs, then so is the gross operating margin. Hence, the assumption we 

make is essentially that both the spot price of electricity and the wind speed follows GBM, 

or in other words that both are lognormally distributed. As discussed in Chapters 2.2.1 

and 2.4.2.1, this can for many situations be a reasonable assumption. 

With this assumption in place, we can then show that the net operating profit margin 𝐺𝑡 

will evolve according to the following GBM (see Appendix A2.1 for proof) 

𝑑𝐺𝑡 = (𝛼𝑔𝑏𝑚 − 𝛾)𝐺𝑡𝑑𝑡 + 𝜎𝑔𝑏𝑚𝐺𝑡𝑑𝑍𝑡                                                          (3.5) 

By expressing 𝐺𝑡 in this manner, with the capacity efficiency enveloped into the stochastic 

process, direct time dependence is avoided. This is essential to be able to derive an 

analytical and tractable solution.  

The second assumption we make is that the technical lifetime of both the turbine currently 

in operation and the repowered turbine is infinite. Considering that an option will have to 

be exercised within the technical lifetime of the turbine for the solution to be non-trivial, 

and that the repowered turbine is expected to operate for around 25 years following the 

exercise time, this assumption is likely to have limited effect on the results. The magnitude 

of the option values might be overestimated to some degree, but the model dynamics and 
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option behaviour should not be significantly affected. Therefore, making this assumption 

seems reasonable considering the objectives of the model, and it allows the model to avoid 

direct time-dependence.  

Finally, we assume that the model parameters are deterministic. This includes 𝐾𝑅, 𝐾𝐿, 𝛾, 

𝛼𝑔𝑏𝑚 and 𝜎𝑔𝑏𝑚. Considering 𝐾𝑅 to be constant is equivalent to assuming that technological 

innovation is deterministic. While necessary to provide an analytical solution, it comes at 

the cost of being unable to analyse the impact of technological uncertainty on the option 

values. It can however still evaluate how technological development, i.e. increasing values 

of 𝐾𝑅, will affect the general behavior of the options. For 𝐾𝐿 and 𝛾, time-variation can be 

considered highly project specific, and thus for a more generalised analysis they might as 

well be assumed constant. While both parameters, 𝛼𝑔𝑏𝑚 and 𝜎𝑔𝑏𝑚, related to our stochastic 

profit flow are likely to exhibit some short-term variation, in particular 𝜎𝑔𝑏𝑚 because the 

underlying electricity price can be expected to display some form of time-dependence, 

clustering and leverage effects (Goto and Karolyi, 2004), the long time horizon of our 

investment problem should make these effects insignificant (Fleten et al., 2007).  

  

3.2.2 – Formulating the optimal stopping problem 

Making use of our assumptions, we can now formulate our optimal stopping problem as 

𝑉 = max
𝜏
{𝐸[∫ 𝐺𝑡𝑒

−𝑟𝑡𝜏

𝑡=0
𝑑𝑡] ⏟          

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+𝑚𝑎𝑥 {𝐸[∫ 𝐺𝑡𝑒
𝛾𝜏𝐾𝐿𝑒

−𝑟𝑡𝑑𝑡
𝜏+∆𝑡𝐿
𝑡=𝜏

− 𝐼𝐿𝑒
−𝑟𝜏]⏟                      

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑓𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

+

 𝐸[∫ 𝐺𝑡𝑒
𝛾∆𝑡𝐾𝑅𝑒

−𝑟𝑡𝑑𝑡
∞

𝑡=𝜏+∆𝑡
− 𝐼𝑅𝑒

−𝑟(𝜏+∆𝑡𝐿)
⏟                        
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑎𝑓𝑡𝑒𝑟 𝑙𝑖𝑓𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 ] , 𝐸[∫ 𝐺𝑡𝑒
𝛾𝜏𝐾𝑅𝑒

−𝑟𝑡𝑑𝑡
∞

𝑡=𝜏
− 𝐼𝑅𝑒

−𝑟𝜏]⏟                    
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔

 }}       (3.6)   

To find an analytical solution, we need to separate this into two subproblems. Let 𝑉𝑅 denote 

the value of the option to repower, and 𝑉𝐿 denote the value of the option to life-extend. 

We can then consider the options 𝑉𝑅 and 𝑉𝐿 separately to find an analytical solution for 

each, and then compare these solutions afterwards. While doing this separation is an 

analytical necessity, it also allows us to consider how underlying factors affect the two 

option values separately. Our optimal stopping problem is now reformulated to  

𝑉𝑅 =
max

𝜏
{
 

 
𝐸 [∫ 𝐺𝑡𝑒

−𝑟𝑡
𝜏

𝑡=0

𝑑𝑡]
⏟          
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+  𝐸

[
 
 
 
∫ 𝐺𝑡𝑒

𝛾𝜏𝐾𝑅𝑒
−𝑟𝑡𝑑𝑡

∞

𝑡=𝜏

− 𝐼𝑅𝑒
−𝑟𝜏

⏟                  
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 ]

 
 
 

}
 

 
                     (3.7) 

𝑉L =
max

𝜏

{
 
 
 

 
 
 𝐸 [∫ 𝐺𝑡𝑒

−𝑟𝑡
𝜏

𝑡=0

𝑑𝑡]
⏟          
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+ 𝐸 [∫ 𝐺𝑡𝑒
𝛾τ𝐾𝐿𝑒

−𝑟𝑡𝑑𝑡
τ+∆tL

𝑡=τ

− 𝐼𝐿𝑒
−𝑟τ]

⏟                      
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

+ 𝐸

[
 
 
 
∫ 𝐺𝑡𝑒

𝛾∆tL𝐾𝑅𝑒
−𝑟t𝑑𝑡

∞

𝑡=τ+∆t

− 𝐼𝑅𝑒
−𝑟(τ+∆tL)

⏟                        
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑎𝑓𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 

]
 
 
 

}
 
 
 

 
 
 

                   (3.8) 
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Note that because we incorporated the capacity efficiency into the stochastic process of 

𝐺𝑡, we need to introduce the terms 𝑒𝛾𝜏 and 𝑒𝛾Δ𝑡𝐿 to ensure that the performance decline 

of the current turbine does not affect the performance of the repowered turbine.  

In the following subchapters, we derive the two option values 𝑉𝑅 and 𝑉𝐿 from the optimal 

stopping problem. The derivations can be found in full detail in appendix A2.2 and A2.3.  

3.2.3 – Solving the optimal stopping problem  

By inserting the expression for 𝐺𝑡 into equations 3.7 and 3.8, and setting 𝜏 = 0, we find 

the stopping values for repowering and life-extension, respectively, to be 

ΩR = 𝐸 [∫ 𝐾𝑅𝐺𝑡𝑒
−𝑟𝑡𝑑𝑡

∞

0

− 𝐼 | 𝐺0 = 𝐺] =  
𝐾𝑅𝑄0𝐺

𝑟 − (𝛼𝑔𝑏𝑚 − 𝛾)
− 𝐼𝑅 ,                     (3.9) 

and 

Ω𝐿 = 𝐸 [∫ 𝐺𝑡𝐾𝐿𝑒
−𝑟𝑡𝑑𝑡

∆𝑡

0

− 𝐼𝐿  | 𝐺0 = 𝐺] + 𝐸 [∫ 𝐺𝑡𝑒
𝛾∆𝑡𝐾𝑅𝑒

−𝑟𝑡𝑑𝑡
∞

∆𝑡

− 𝐼𝑅𝑒
−𝑟∆𝑡  | 𝐺0 = 𝐺] 

                    =  
𝐺𝑄0

𝑟−(𝛼𝑔𝑏𝑚−𝛾)
(𝐾𝐿 (1 − 𝑒

−(𝑟−(𝛼𝑔𝑏𝑚−𝛾))∆𝑡) + 𝐾𝑅𝑒
−(𝑟−𝛼)∆𝑡) − (𝐼𝐿 + 𝐼𝑅𝑒

−𝑟∆𝑡)           (3.10)  

The value of continuation can be found from the Bellman equation as 

𝑟𝑉𝑖(𝐺𝑡) = G𝑡 +
1

𝑑𝑡
𝐸[𝑑𝑉𝑖]                                                         (3.11) 

Note that 𝑖 is a general index representing either repowering (R) or life-extension (L).  

Applying Ito’s lemma to expand 𝑑𝑉𝑖 provides 

𝑑𝑉𝑖 =
𝜕𝑉𝑖
𝜕𝐺

((𝛼𝑔𝑏𝑚 − 𝛾)𝐺𝑡𝑑𝑡 + 𝜎𝑔𝑏𝑚𝐺𝑡𝑑𝑧) +
1

2

𝜕2𝑉𝑖
𝜕𝐺2

𝜎𝑔𝑏𝑚
2 𝐺𝑡

2𝑑𝑡,                 (3.12) 

 

and inserting the expression for 𝑑𝑉𝑖 into equation 3.12  results in the ordinary differential 

equation (ODE) 

 𝑟𝑉𝑖(𝐺) = 𝐺𝑡 + (𝛼𝑔𝑏𝑚 − 𝛾)𝐺𝑡
𝜕𝑉𝑖
𝜕𝐺

+
1

2
𝜎𝑔𝑏𝑚
2 𝐺𝑡

2
𝜕2𝑉𝑖
𝜕𝐺2

                              (3.13) 

By using the stopping values as boundary conditions, this ODE can be solved to construct 

the single-factor model, which is presented in Figure 3.1.  

 

 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To provide some intuition behind the model, a brief interpretation of the repowering value 

expression is provided. The lifetime-extension expression has a very similar interpretation; 

hence we do not delve into it specifically.  

 

Figure 3.1: Summary of the single-factor model 

The life-extension option  

𝑉𝐿 = (
𝐺

𝐺𝐿
)
𝛽

(
𝑄0𝐺𝐿
𝑟∗

(𝐾𝐿(1 − 𝑒
−𝑟∗∆𝑡) + 𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡 − 1) − (𝐼𝐿 + 𝐼𝑅𝑒
−𝑟∆𝑡)), 

with 

𝐺𝐿 =
𝛽

(𝛽 − 1)

𝑟∗(𝐼𝐿+𝐼𝑅𝑒
−𝑟∆𝑡)

𝑄0(𝐾𝐿(1 − 𝑒
−𝑟∗∆𝑡) + 𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡 − 1) 
  

𝛽 =  (
1

2
−
(𝛼𝑔𝑏𝑚 − 𝛾)

𝜎𝑔𝑏𝑚
2 ) + √(

(𝛼𝑔𝑏𝑚 − 𝛾)

𝜎𝑔𝑏𝑚
2 −

1

2
)

2

+ 
2𝑟

𝜎𝑔𝑏𝑚
2  >  1 

𝑟∗ = r − (αgbm − γ) 

 

The repowering option 

𝑉𝑅 = (
𝐺

𝐺𝑅
)
𝛽

 (
𝑄0𝐺𝑅(𝐾𝑅 − 1)

𝑟∗
− 𝐼𝑅), 

with 

𝐺𝑅 = 
𝛽

(𝛽 − 1)
 

𝑟∗𝐼𝑅
𝑄0(𝐾𝑅 − 1)

 

𝛽 =  (
1

2
−
(𝛼𝑔𝑏𝑚 − 𝛾)

𝜎𝑔𝑏𝑚
2 ) + √(

(𝛼𝑔𝑏𝑚 − 𝛾)

𝜎𝑔𝑏𝑚
2 −

1

2
)

2

+ 
2𝑟

𝜎𝑔𝑏𝑚
2  >  1 

𝑟∗ = r − (αgbm − γ) 
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The term 
𝐺𝑅(𝐾𝑅−1)

𝑟−(𝛼𝑔𝑏𝑚−𝛾)
− 𝐼𝑅 = (

𝐺𝑅𝐾𝑅

𝑟−(𝛼𝑔𝑏𝑚−𝛾)
− 𝐼𝑅 ) − 

𝐺𝑅

𝑟−(𝛼𝑔𝑏𝑚−𝛾)
 is the value of paying 𝐼𝑅  to 

receive a perpetual cash flow 𝐾𝑅𝐺𝑅, minus the value of a perpetual cash flow 𝐺𝑅. Both with 

a discount rate 𝑟 and a growth rate 𝛼𝑔𝑏𝑚 − 𝛾. Hence, we can interpret this as the value 

gained by repowering at the optimal threshold 𝐺 = 𝐺𝑅 , minus the lost cash flow from 

decommissioning the old turbine at the same threshold. The term (
𝐺

𝐺𝑅
)
𝛽
can be interpreted 

as a stochastic discount factor, that discounts the payoff the firm receives by repowering 

at 𝐺 = 𝐺𝑅 to the current time. Hence, the total expression can be interpreted as the value 

of paying a strike price of 𝐼𝑅 − 𝐺𝑅/𝑟
∗ to receive the value of the underlying asset 𝐾𝑅𝐺𝑅/𝑟

∗, 

discounted with an appropriate factor.  

3.2.4 – Insights from the single-factor model  

With the single-factor model presented in Figure 3.1., we can now address the general 

research questions posed at the end of chapter 1. These three questions are: 

• Which factors affect the end-of-life options?  

 

• How do underlying factors affect the option values and the investment decision?  

 

• How does the option value of repowering change relative to the option value of life-

extension when the underlying parameters change? 

To provide robust answers, we rely primarily on the mathematics of the model to analyse 

how the option values depend on the underlying factors. In addition, we provide some 

qualitative reasoning for the economics behind the results and visualise them graphically. 

In doing so, we hope to build a stronger intuition for the option value behavior that can 

back up the mathematical understanding. Note that for simplicity in the mathematical 

expressions, we utilize 𝜂𝑖  to denote terms of the expression that are independent of the 

parameter currently under consideration.  

General insight 1 - The option values are decreasing in 𝑟 at different rates. 

The repowering investment threshold can be reformulated as 𝐺𝑅 = 𝜂𝑟
∗, where 𝑟∗ is linearly 

increasing in 𝑟. Hence, it can be observed that 𝐺𝑅 is linearly increasing in 𝑟. By inserting 

this expression into the repowering option value, it can be reformulated as 𝑉𝑅 =
𝜂1

(𝑟∗)𝛽+1
−

𝜂2
(𝑟∗)𝛽

. Recalling that 𝛽 > 1, the option value must then be decreasing in 𝑟.  

The life-extension investment threshold 𝐺𝐿 can be reformulated as 𝐺𝐿 = 
𝑟∗(𝜂1+𝜂2𝑒

−𝑟∆𝑡)

𝜂3+𝜂4𝑒
−𝑟∗∆𝑡) 

, 

which is non-linearly increasing in 𝑟. The life-extension option value can then be 

reformulated as 𝑉𝐿 =
𝜂5

(𝐺𝐿)
𝛽 
((
𝐺𝐿

𝑟∗
𝜂4𝑒

−𝑟∗∆𝑡 + 𝜂3) − (𝜂1 + 𝜂2𝑒
−𝑟∆𝑡)), which is decreasing in 𝑟 at 

a different rate than the repowering option value. It might not be immediately obvious 

from the mathematical expression that the option value is decreasing, but the trend is 

quite obvious from the plot presented in Figure 3.2 below. The intuition behind these 

results is that increasing 𝑟 will make future cash flows from the repowered or life-extended 
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turbine less valuable relative to the cash flows received from continued operation which 

occur earlier. It also makes the repowering and life-extension investment costs greater 

relative to the cash flows from the repowered or life-extended turbine received later in the 

future, which favours postponing the option investment. 

General insight 2 – The option values are increasing in 𝜎 at different rates. 

It can be observed that for both the option values and thresholds, the volatility only enters 

the expressions through 𝛽. While 𝛽’s dependence on volatility might not be straightforward 

to interpret from its expression, Dixit and Pindyck (1994) show that 𝛽 on such a functional 

form will be decreasing in 𝜎. The repowering threshold can be reformulated as 𝐺𝑅 =
𝛽

𝛽−1
𝜂1 

and the life-extension threshold as 𝐺𝐿 =
𝛽

𝛽−1
𝜂2. It can then be observed that both 

investment thresholds are increasing in 𝜎, and at different rates for 𝜂1 ≠ 𝜂2. The 

repowering option value can be reformulated as  𝑉𝑅 = (
𝐺

𝐺𝑅
)
𝛽
(𝐺𝑅𝜂4 − 𝜂3) and the life-

extension option value as 𝑉𝐿 = (
𝐺

𝐺𝐿
)
𝛽
(𝐺𝐿𝜂5 − 𝜂6).  Recalling that the investment threshold 

should be above the current value of the profit margin for our investment decision, or the 

option would already be in the stopping region, it must hold that 𝐺/𝐺𝑅  <   1 and 𝐺/𝐺𝐿  <

 1. The term (𝐺/𝐺𝑖) 
𝛽 is therefore increasing for increasing 𝜎, and thereby are both option 

values increasing in 𝜎. It can further be observed that the option values will be increasing 

in 𝜎 at different rates when (𝐺𝑅𝜂4 − 𝜂3)𝐺𝑅
−𝛽
≠ (𝐺𝐿𝜂5 − 𝜂6)𝐺𝐿

−𝛽
, which implies that their 

value will change relative to one another if this condition holds. These results are in line 

with the findings of Dixit and Pindyck (1994), who argue that increasing volatility will result 

in both increased option value and reduced probability of exercise simultaneously.  

The intuition behind these results is that higher volatility makes future cash flows more 

uncertain, hence waiting for new information becomes more valuable. The flexibility of 

being able to choose when or if to exercise an option therefore has increased value when 

the volatility of the operational profit flow is higher. The results are visualised in Figure 

3.3.  

Figure 3.2: Option values and investment thresholds for different costs of capital 
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General insight 3 – The option values are decreasing in 𝛾 at different rates. 

The repowering investment threshold can be reformulated as 𝐺𝑅 = 𝜂𝑟
∗, where 𝑟∗ is linearly 

increasing in 𝛾. Hence, it can be observed that 𝐺𝑅 is linearly increasing in 𝛾. By inserting 

this expression into the repowering option value, it can be reformulated as 

𝑉𝑅 =
𝜂1

(𝑟∗)𝛽+1
−

𝜂2
(𝑟∗)𝛽

. Recalling that 𝛽 > 1, the option value must then be increasing in 𝛾.  

The life-extension investment threshold 𝐺𝐿 can be reformulated as 

𝐺𝐿 = 
𝑟∗𝜂1

𝜂2−𝜂3𝑒
−𝑟∗∆𝑡 

, which can both  increase and decrease nonlinearly in 𝛾 depending on the 

values of 𝜂1, 𝜂2 and 𝜂3. The life-extension option value can then be reformulated as 

𝑉𝐿 =
𝜂4

(𝐺𝐿)
𝛽 
((
𝐺𝐿

𝑟∗
𝜂3𝑒

−𝑟∗∆𝑡 + 𝜂2) − 𝜂1), which again provides no straightforward dependence 

on 𝛾. To supplement our mathematical understanding, we therefore plot the option values 

and find the behaviour displayed in Figure 3.4 to hold for realistic parameters. The result 

is therefore that the life-extension option value is decreasing in 𝛾, and at a different rate 

than the repowering option depending on the parameter values.  

The intuition behind these results is that increasing 𝛾 makes the turbine capacity efficiency 

drop faster over time, thereby making both the currently operating turbine and the 

repowered turbine less valuable. The repowered turbine is, however, affected more 

severely by this decline than the current turbine, as the repowered turbine has a greater 

initial capacity efficiency. In combination with the cost of repowering being independent 

of 𝛾, thereby making the cost larger relative to the value gained by exercising the option, 

the repowering option becomes less attractive. The life-extension option is less affected 

by this; as it allows for postponed repowering and continued operation of the current 

turbine at a point where the absolute value of the capacity efficiency already has dropped 

Figure 3.3: Option values and investment thresholds for different values of the operational profit 
flow volatility 



36 

 

quite far, making the relative effect of 𝛾 less significant. The resulting effect is therefore 

that the life-extension option value is decreasing in 𝛾 at a lower rate than the repowering 

option value.  

An important point to make regarding this result, is that it is contingent upon both the 

currently operating turbine and the repowered turbine experiencing the same 𝛾. If this 

was not the case, and the 𝛾 of the currently operating turbine were to increase relative to 

the repowered turbine, the option values would increase. While not visualised, this can be 

observed from the mathematical expressions of the model. The intuition is that repowering 

(and life-extension followed by repowering) becomes more valuable because the currently 

operating turbine becomes less valuable relative to the repowered turbine.  

It can be remarked from Figure 3.4 that while both option values are decreasing in 𝛾, the 

repowering threshold is increasing while the life-extension threshold is decreasing. This 

might seem surprising at first, but recall that the investment threshold is primarily an 

indicator of how likely the option is to be exercised. For the life-extension option, one can 

therefore reason that while an increase in 𝛾 makes the probability of hitting the investment 

threshold higher, it also makes the value of exercising the option lower, and this second 

effect is dominating.      

General insight 4 – The option values are increasing in 𝑃0 at different rates. 

It can be observed that the current price of electricity 𝑃0 only enters the option value 

expressions through 𝐺, which is linearly increasing in 𝑃0. The investment thresholds are 

independent of 𝑃0, which is natural considering the investment problem formulation. The 

repowering option value can be reformulated as 𝑉𝑅 = 𝐺
𝛽𝜂1 and the life-extension option 

value as 𝑉𝐿 = 𝐺
𝛽𝜂2. It can then be observed that both option values are increasing in 𝑃0, 

and at different rates when 𝜂1 ≠ 𝜂2. Assuming this condition holds, this implies that the 

relative value of the two options will change depending on the current market conditions.  

Figure 3.4: Option values and investment thresholds for different values of the capacity efficiency 
decline 
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The intuition behind these results is that both repowering and life-extension increases the 

capacity efficiency of the wind turbine,  and thereby increases the wind power output, 

which results in better utilization of the high electricity price. The results are visualised in 

Figure 3.5 below.  

 

General insight 5 – The option values are increasing in 𝐾𝑅 at different rates. 

The repowering investment threshold can be reformulated as 𝐺𝑅 =  
𝜂1

𝐾𝑅−1
, which is 

decreasing in 𝐾𝑅. Inserting this expression into the repowering option value and 

reformulating it then yields 𝑉𝑅 = (
1

𝐺𝑅
)
𝛽

 (𝜂2 − 𝜂3), which is increasing in 𝐾𝑅. The life-extension 

investment threshold can be reformulated as 𝐺𝐿 =
𝜂4

𝜂5+𝐾𝑅𝑒
𝜂6

, which is decreasing in 𝐾𝑅 at a 

different rate than the repowering threshold when 
𝜂1

𝐾𝑅−1
≠

𝜂4

𝜂5+𝐾𝑅𝑒
𝜂6

. The life-extension option 

value can then be reformulated as  𝑉𝐿 = (
1

𝐺𝐿
)
𝛽
(𝐺𝐿𝐾𝐿𝜂7 + 𝜂8), which is increasing in 𝐾𝑅 at a 

different rate than the repowering option value when 𝜂2 − 𝜂3 ≠ 𝐺𝐿𝐾𝐿𝜂7 + 𝜂8.  

The intuition behind this result is that increasing 𝐾𝑅 represents greater technological 

development, which makes the output difference between the currently operating turbine 

and the turbine you could repower to larger. The cost of repowering will naturally also 

increase as the new turbines get bigger and more sophisticated, but the increased 

operational cash flows increase at a higher rate. The reason why the life-extension option 

behaves in a very similar manner as the repowering option in regard to changes in 𝐾𝑅 can 

be attributed entirely to the fact that the life-extension option includes the value of 

repowering post life-extension. Hence, as 𝐾𝑅 becomes large the life-extension option value 

is dominated by the postponed repowering value. The results are visualised in Figure 3.6.  

Figure 3.5: Option values for different values of the current electricity price 
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General insight 6 – The repowering option value is decreasing in 𝐼𝑅, and the life-

extension option value is decreasing in both 𝐼𝑅 and 𝐼𝐿.  

The repowering investment threshold can be reformulated as 𝐺𝑅 = 𝜂1𝐼𝑅, hence the 

threshold is increasing in 𝐼𝑅. Inserting this into the repowering option value and 

reformulating it yields 𝑉𝑅 = 𝜂2(𝐼𝑅)
1−𝛽 , which is decreasing in 𝐼𝑅 because 1 − 𝛽 < 0. The life-

extension investment threshold can be reformulated as 𝐺𝐿 = 𝜂3 + 𝜂4𝐼𝑅 or 𝐺𝐿 = 𝜂5 + 𝜂6𝐼𝐿, 

hence the threshold is increasing in both 𝐼𝑅 and 𝐼𝐿. Inserting these expressions into the 

life-extension option value and reformulating then yields 𝑉𝐿 = 𝜂7(𝜂3 + 𝜂4𝐼𝑅)
1−𝛽 + 𝜂8 + 𝜂9𝐼𝑅 or 

𝜂7(𝜂5 + 𝜂6𝐼𝐿)
1−𝛽 + 𝜂10 + 𝜂11𝐼𝐿, hence the life-extension option value is decreasing in both 𝐼𝑅 

and 𝐼𝐿. These insights on the investment costs of 𝐼𝑅 and 𝐼𝐿 are visualized in Figure 3.7 and 

3.8.  

The intuition behind these results is that when the cost of investment increases while the 

benefit from investment remains the same, the options become more expensive to 

exercise while the underlying value is unchanged, thereby reducing the option value. The 

life-extension option value is negatively affected by increases in both investment costs 

because the strike price of the life-extension option is a weighted sum of the two 

investment costs on the form 𝑆 = 𝐼𝐿 + 𝐼𝑅𝑒
−𝑟∆𝑡.  

  

 

 

 

Figure 3.6: Option values and investment thresholds for different values of the repowering scaling 
factor 
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Figure 3.7: Option values and investment thresholds for different costs of repowering 

Figure 3.8: Option values and investment thresholds for different costs of life-extension 
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3.3 – Developing the multi-factor model 

Having addressed the general research questions from Chapter 1 through our single-factor 

model, we can now turn our attention to the project-specific research questions. To 

appropriately address these, we develop a more flexible multi-factor model that can be 

calibrated to a specific project. We begin the chapter by discussing how to model the 

underlying stochastic factors in our investment problem, which are the price of electricity, 

power output and technological innovation. From this, we can redefine the operating profit 

margin and then reformulate the optimal stopping problem. Finally, we estimate the 

stopping values for our optimal stopping problem and discuss how to implement the 

numerical procedure of least squares Monte Carlo to estimate the option value and 

expected timing of exercise.  

3.3.1 – Modelling the electricity price 

Recall from Chapter 2.3.1.1 that considering the long time horizon of the end-of-life wind 

power investment problem, short-term characteristics such as jumps and seasonality can 

be expected to have little impact. We therefore limit the scope of our focus to modelling 

of the long-term behavior of the electricity price. Since the Ornstein-Uhlenbeck both 

captures mean-reversion and is flexible enough to mimic the behavior of a GBM if that 

should be desirable, we choose to proceed with an Ornstein-Uhlenbeck process.  

Let the logarithm of the electricity price follow the process  

𝑑𝑋𝑡 = 𝜅𝑃 (𝛼 −
𝜎2

4𝜅𝑃
− 𝑋𝑡)𝑑𝑡 +  𝜎𝑑𝑍𝑃 ,                                                 (3.14) 

which implies the electricity spot price can be expressed as 𝑃𝑡 = 𝑒
𝑋𝑡. 

Modelling the price in this manner allows for mean-reversion and captures some of the 

skewness in the price. It also makes the implicit assumption that prices are always 

positive, which is reasonable considering that empirical data show that power prices very 

rarely are negative. In addition, as storage technology continues to improve and renewable 

energy becomes better integrated into the power grid, the likelihood of negative electricity 

prices will become even smaller in the future.  

3.3.2 – Modelling the power output 

The main challenge of modelling the power output is to find an appropriate distribution for 

capturing the characteristics of the wind speed. From the discussion in Chapter 2.4.2 it is 

evident that several distributions could provide satisfactory results, and that in specific 

cases some distributions are superior to others. Hence, the most appropriate distribution 

should be chosen on a case-by-case basis by evaluating the measured wind data from the 

site. Evaluating the wind distribution data from our numerical case, we find the Weibull 

distribution to provide the best fit. Hence, we want to design a stochastic process that 

ensures the wind speeds are Weibull distributed. By applying a procedure from Ernstsen 

and Boomsma (2018), a variable that is approximately Weibull distribution can be defined 

by utilizing a standard normal variable and a mathematical transformation. Note that this 

procedure is applicable to any choice of wind distribution, hence the expressions we derive 
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for the multi-factor model are not Weibull-specific. By replacing the cumulative Weibull 

distribution with the cumulative distribution of your choice in the expressions, they will 

hold for that distribution.  

Assume that the wind speed is driven by some underlying stochastic weather factor 𝑈𝑡, 

and let it follow an Ornstein-Uhlenbeck process on the form  

𝑑𝑈𝑡 = −𝜅𝑈𝑈𝑡𝑑𝑡 + √2𝜅𝑈𝑑𝑍𝑈,                                                        (3.15) 

where the dynamics of the process are chosen such that 𝑈𝑡 is normally distributed. We 

assume 𝑍𝑃 and 𝑍𝑈 to be correlated with a correlation coefficient 𝜌, to reflect that electricity 

prices tend to drop when there is much wind power available and vice versa.  

The cumulative distribution function for a Weibull distribution is 

𝐹(𝑤) =  1 − 𝑒
−(

𝑤

𝑎
)
𝑏

   for 𝑤 ≥ 0 and 𝐹(𝑤) = 0 for 𝑤 < 0, 

where 𝑏 is a shape parameter and 𝑎 is a scale parameter. The inverse cumulative 

distribution is then given by  

𝐹−1(𝑥) =  𝜉(− ln(1 − 𝑥))1/𝛽 for 0 ≤ 𝑥 < 1 

The Ornstein-Uhlenbeck process for the weather factor is what is known as 𝜌-mixing 

(Forman and Sørensen, 2008). It then follows from Theorem 4.2 from Bradley (1985) that 

for all transformations of 𝜌-mixing processes, for which the autocorrelation is defined, it 

is bounded by a function that decays exponentially. To obtain the appropriate limiting 

process we let Φ(⋅) denote the standard normal distribution function and Φ𝑡(⋅) denote the 

distribution function of 𝑈𝑡. Also let 𝐹(⋅) denote the desired cumulative distribution function 

for a random variable, and assume that the density has support given by the interval 𝐼 ⊆

ℝ such that the distribution function is strictly increasing on the interior of 𝐼. With this 

assumption, the quantile function 𝐹−1(⋅) is the inverse of 𝐹(𝑤) for 𝑤 𝜖 𝐼. Following the 

procedure of Ernstsen and Boomsma (2018), if the wind speed, 𝑊𝑡, then is defined as the 

random variable 𝑊𝑡 = 𝐹
−1(Φ(𝑈𝑡)), the fact that 𝑈𝑡 converges in distribution to the 

standard normal distribution when time goes to infinity can be utilized to get 

ℙ(𝑊𝑡 ≤ 𝑤) =  ℙ (𝑈𝑡  ≤ Φ
−1(𝐹(𝑤))) =  Φ𝑡 (Φ

−1(𝐹(𝑤))) → 𝐹(𝑤) 𝑓𝑜𝑟 𝑡 → ∞ 

Thus, the cumulative distribution function of wind speeds is given by the desired 𝐹(⋅) in 

the limit. We can then define the wind speed as 

𝑊𝑡 = 𝐹
−1(Φ(𝑈𝑡)),                                                                         (3.16) 

where 𝐹(⋅) is the cumulative distribution function of a Weibull distribution. With this, we 

have ensured the modelled wind speeds are approximately Weibull distributed, with non-

normal, mean-reverting behaviour and exponentially decaying autocorrelation. Note again 
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that from the results above, 𝐹(⋅) can be chosen to be whichever distribution is most 

suitable for the specific wind speed data under consideration.  

Considering the power output for different wind speeds presented in Chapter 2.4.1, a 

piecewise linear power output function, ℎ, can be expressed on the form  

 

ℎ(𝑤) = {

0                                      𝑖𝑓 𝑤 < 𝑤0 𝑜𝑟 𝑤 > 𝑤2
ℎ01(𝑤)                                     𝑖𝑓 𝑤0 < 𝑤 < 𝑤1
ℎ12                                             𝑖𝑓 𝑤1 < 𝑤 < 𝑤2

 

 

where ℎ12 is the rated capacity and ℎ01(𝑤) =  
1

2
𝐶𝑝𝜌𝜀𝑔𝐴𝑤

3. 

This function can more conveniently be expressed as a piece-wise linear function of the 

underlying weather factor 𝑈𝑡 as  

ℎ(𝑓(𝑢)) = {

0                                                      𝑖𝑓 𝑢 < 𝑢0 𝑜𝑟 𝑢 > 𝑢2
ℎ12(𝑢 − 𝑢0)/(𝑢1 − 𝑢0)                      𝑖𝑓 𝑢0 < 𝑢 < 𝑢1
ℎ12                                                           𝑖𝑓 𝑢1 < 𝑢 < 𝑢2

,               (3.17) 

 

where 𝑢0 = Φ
−1(𝐹(𝑤0)), 𝑢1 = Φ

−1(𝐹(𝑤1)) and 𝑢2 = Φ
−1(𝐹(𝑤2)). 

Note that for 𝑢0 < 𝑢 < 𝑢1 we have made the simplifying assumption that the power output 

will increase linearly from 0 to ℎ12. While this is not entirely realistic, it is necessary to 

simplify the derivations of the expected values.    

3.3.3 – Modelling technological innovation  

As discussed in Chapter 2.4.1.3.1, it is common to model technological innovation as a 

stochastic jump process. Motivated by including technological uncertainty in the multi-

factor model to make it more realistic and flexible, we therefore assume the repowering 

scaling factor to follow a stochastic jump process on the form  

𝐾𝑅(𝑡) = 1 + (𝐾𝑟 − 1)𝜃𝑡,                                                                 (3.18) 

where 𝐾𝑟 represents the scaling of the capacity efficiency factor of the repowered turbine, 

i.e. the size of the technological innovation. Recall from Chapter 2.4.1.3.1 that we also 

consider it beneficial to allow the arrival rate of innovation to change across different 

regimes. For our investment problem, the time elapsed since the previous innovation 

occurred can be considered a reasonable indicator for regime change, as developing larger 

and more sophisticated turbines requires solving a series of complex engineering problems 

that often rely on the solution of previous problems. In line with the method of Hagspiel, 

Huisman and Nunes (2015), we define 𝜃𝑡 as a non-stationary Poisson process with an 

arrival rate 𝜆𝑡 that depends on the time since the previous technological innovation arrived. 

Denote the time elapsed since the previous technological innovation, Γ𝑡 , and assume the 

sequence of inter-renewal times {Γ𝑡} consists of independently and identically distributed 
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random variables. Right after a technology arrival, i.e. a turbine with better performance 

being made commercially available, the arrival rate is equal to 𝜆1 ≥ 0. If no arrival should 

happen for a time period of length ∆, the arrival rate changes to 𝜆2 ≥ 0. The arrival rate 

can now be formally stated as 

𝜆𝑡(𝜔) = 𝜆11{Γ<∆} + 𝜆21{Γ≥∆},                                                       (3.19) 

where 1{𝐴} is equal to one if 𝐴 is true and zero otherwise. The time between consecutive 

technology arrivals, hereby denoted by 𝑌, is now given by 

𝑌~𝑌11{Γ<∆} + 𝑌21{Γ≥∆}, 

with 

𝑌1~𝐸𝑥𝑝(𝜆1),      𝑌2~𝐸𝑥𝑝(𝜆2). 

Assuming Δ to be constant, Hagspiel, Huisman and Nunes (2015) now show that the first 

two moments of 𝑌 can be expressed as 

𝐸[𝑌] =
1

𝜆1
(1 − e−𝜆1Δ(1 + λ1Δ) ) + e

−λ1Δ (
1

𝜆2
+ Δ) 

𝑉𝑎𝑟[𝑌] =
1

𝜆1
2 (1 +

1

𝜆2
2 𝑒

−2Δ𝜆1(𝜆1 − 𝜆2)𝜆2 +
1

𝜆2
2 𝑒

−2Δ𝜆1(𝜆1 − 𝜆2)𝜆1(−1 + 2𝑒
Δ𝜆1(1 + Δ𝜆2)) 

For the special case of 𝜆1 = 0, the expressions simplify to   

𝐸[𝑌] =  Δ +
1

𝜆2
 

𝑉𝑎𝑟[𝑌] =
1

𝜆2
2 

Using these expressions, we can calibrate the arrival rates 𝜆1 and 𝜆2 based on real data. 

Finally, we can now define our stochastic jump as 

𝜃𝑡 = {
0                         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1 − 𝜆𝑡
1                                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝜆𝑡

                                   (3.20) 

In theory we could utilize the same procedure to make 𝐾𝐿 stochastic, in the same manner 

as 𝐾𝑅. However, 𝐾𝐿 represents the scaling of the capacity efficiency factor after replacing 

components of the turbine, and has little to do with technological innovation. Therefore, 

we do not consider it to be stochastic in nature. Consequently, we define a deterministic, 

time-dependent process for it on the form 

𝐾𝐿(𝑡) =  1 − (1 − 𝐾𝑙)(1 − 𝑒
−𝛾𝑡)                                                          (3.21) 
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Note the difference in subscripts between 𝐾𝐿 and 𝐾𝑙. Defining the process in this way, 𝐾𝑙 

represents the fraction of the performance decay experienced by the turbine in the time 

interval [0, 𝑡] that can be reversed by life-extending it.  

3.3.4 – Redefining the operating profit margin 

Using our recently defined stochastic processes for the electricity spot price and the 

weather factor, the gross instantaneous operating profit margin, 𝑔𝑡, can now be expressed 

as  

𝑔𝑡 = 𝑃𝑡ℎ(𝑤𝑡) = 𝑒
𝑋𝑡ℎ(𝑓(𝑈𝑡))                                                         (3.22) 

For such a process, Ernstsen and Boomsma (2018) show that the expected value can be 

found from equation 3.23 below. Note that 𝜑 denotes the standard normal probability 

density function and Φ denotes the standard normal cumulative density function. 

  

𝐸[𝑔𝑡  | 𝑋𝑠, 𝑈𝑠] =  𝑒
𝑋𝑠 exp(−𝜅𝑝(𝑡−𝑠))+𝛼𝑡 [ℎ12(Φ(𝑢̃2) − Φ(𝑢̃1)) +

ℎ12
𝑢̃1 − 𝑢̃0

(φ(𝑢̃0) − φ(𝑢̃1))

−
𝑢̃0ℎ12
𝑢̃1 − 𝑢̃0

(Φ(𝑢̃1) − Φ(𝑢̃0))],                                                                                      (3.23)  

with 

𝑢̃𝑖 = 𝑢𝑖 + (𝑢𝑖 − 𝑈𝑠)
𝑒−𝜅𝑈(𝑡−𝑠)

1 − 𝑒−2𝜅𝑈(𝑡−𝑠)
− 𝜌𝜎

√2𝜅𝑈
(𝜅𝑈 + 𝜅𝑃)

1 − 𝑒−𝜅𝑈(𝑡−𝑠)

1 − 𝑒−2𝜅𝑈(𝑡−𝑠)
 

𝛼𝑡 = (𝛼 − 𝜖𝜎)(1 − 𝑒
−𝜅𝑃(𝑡−𝑠)) 

𝜖𝜎 = 
𝜎2

4
𝑒−𝜅𝑃(𝑡−𝑠) 

Introducing the exponentially declining capacity efficiency 𝑄𝑡 = 𝑄0𝑒
−𝛾𝑡 and setting the 

starting time to zero, i.e. 𝑠 = 0, the net operating profit margin can be expressed as  

𝐺𝑡 = 𝑄𝑡𝑔𝑡 = 𝑒
−𝛾𝑡𝑒𝑋𝑡ℎ(𝑓(𝑈𝑡))                                                    (3.24) 

 

The expected value can then be expressed as 

𝐸[𝐺𝑡  | 𝑋0, 𝑈0] = 𝑄0𝑒
𝑋𝑠 exp(−𝜅𝑝𝑡)+𝛼𝑡−𝛾𝑡 [ℎ12(Φ(𝑢̃2) − Φ(𝑢̃1)) +

ℎ12
𝑢̃1 − 𝑢̃0

(φ(𝑢̃0) − φ(𝑢̃1))

−
𝑢̃0ℎ12
𝑢̃1 − 𝑢̃0

(Φ(𝑢̃1) − Φ(𝑢̃0))]                                                                                        (3.25) 
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From this, we can take a step further and introduce PPAs to our model. Let Υ be the 

fraction of the total power production that is sold at the spot price, and (1 − Υ) the fraction 

sold through a PPA at a fixed price 𝑃̅. The net operating profit margin can then be 

expressed as 

𝐺̃𝑡 = 𝑄0𝑒
−𝛾𝑡((1 − Υ)𝑃̅ℎ(𝑤𝑡) + Υ𝑃𝑡ℎ(𝑤𝑡)) 

= 𝑄0𝑒
−𝛾𝑡 ((1 − Υ)𝑃̅ℎ(𝑓(𝑈𝑡)) + Υ𝑒

𝑋𝑡ℎ(𝑓(𝑈𝑡)))                         (3.26) 

Taking the expectation of this expression, we find that  

𝐸[𝐺̃𝑡  | 𝑋0, 𝑈0] = 𝑄0𝑒
−𝛾𝑡 ((1 − Υ)𝑃̅𝐸[ℎ(𝑓(𝑈𝑡))| 𝑈0] + Υ𝐸[𝑔𝑡  | 𝑋0, 𝑈0])             (3.27) 

with 

𝐸[ℎ(𝑓(𝑈𝑡))] =  ℎ12 (Φ(
𝑢2 − 𝜇𝑢
𝜎𝑢

 ) − Φ(
𝑢1 − 𝜇𝑢
𝜎𝑢

 )) +
ℎ12𝜎𝑢

√2𝜋(𝑢1 − 𝑢0)
(𝑒

−
(𝑢0−𝜇𝑢)

2

2𝜎𝑢
2

− 𝑒
−
(𝑢1−𝜇𝑢)

2

2𝜎𝑢
2
)

+
(𝜇𝑢 − 𝑢0)ℎ12
𝑢1 − 𝑢0

(Φ(
𝑢1 − 𝜇𝑢
𝜎𝑢

 ) − Φ(
𝑢0 − 𝜇𝑢
𝜎𝑢

 )),                                                 (3.28) 

where  

𝜇𝑢 = 𝑈0𝑒
−𝑘𝑢𝑡, 

𝜎𝑢 = √1 − 𝑒
−2𝑘𝑢𝑡. 

Detailed derivation of equation 3.28 above can be found in Appendix A3. Given this new 

expression for the operating profit margin and its expectation, we can now move on to 

redefine the optimal stopping problem. In the next subchapter we formulate our optimal 

stopping problem, before we move on to consider different possible solution schemes.  

3.3.5 – Reformulating the optimal stopping problem  

Making use of our new modelling assumptions from the previous subchapters, and setting 

𝑄0 to 1 for simplicity, we can now reformulate the optimal stopping problem from equation 

3.6 in the following manner 
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𝑉 = max
𝜏
{𝐸[∫ 𝐺̃𝑡𝑒

−𝑟𝑡𝜏

𝑡=0
𝑑𝑡] ⏟          

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+𝑚𝑎𝑥 {𝐸[∫ 𝐺̃𝑡𝐾𝐿(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑇𝐿
𝑡=𝜏

− 𝐼𝐿𝑒
−𝑟𝜏]⏟                    

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑓𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

+

𝐸[∫ 𝑒𝛾𝑇𝐿𝐺̃𝑡𝐾𝑅(𝑡)𝑒
−𝑟𝑡𝑑𝑡

𝑇𝐿+25

𝑡=𝑇𝐿
− 𝐼𝑅𝑒

−𝑟(𝑇𝐿+𝜏)
⏟                          
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑎𝑓𝑡𝑒𝑟 𝑙𝑖𝑓𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 ] , 𝐸[∫ 𝐺̃𝑡𝐾𝑅(𝑡)𝑒
−𝑟𝑡𝑑𝑡

25

𝑡=𝜏
− 𝐼𝑅𝑒

−𝑟𝜏]⏟                    
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔

 }},    

 

with 𝑇𝐿 = (25 − 𝜏𝐿) + ∆𝑡𝐿, where 𝜏𝐿 denotes the time the life-extension option is exercised.  

From this formulation, the stopping values for repowering and life-extension, respectively, 

are found to be 

Ω𝑅 = 𝐾𝑅∫ 𝑒−𝑟𝑡𝐸[𝐺̃𝑡  | 𝑋𝜏𝑅 , 𝑈𝜏𝑅] 𝑑𝑡 − 𝐼𝑅 
25

0

                                             (3.30) 

Ω𝐿 = [𝐾𝐿∫ 𝐸[𝐺̃𝑡| 𝑋𝜏𝐿 , 𝑈𝜏𝐿]𝑒
−𝑟𝑡𝑑𝑡

𝑇𝐿

0

− 𝐼𝐿]  

+[𝐾𝑅∫ 𝑒𝛾𝑇𝐿𝐸[𝐺̃𝑡|𝑋𝑇𝐿 , 𝑈𝑇𝐿]𝑒
−𝑟𝑡𝑑𝑡

𝑇𝐿+25

𝑇𝐿

− 𝐼𝑅𝑒
−𝑟𝑇𝐿  ]                             (3.31) 

Note that when we calculate the stopping value, the values for 𝐾𝑅 and 𝐾𝐿 will not be time-

dependent as their level is set at the time of stopping. As there exists no analytical 

solutions for the integrals in the stopping values, these will have to be solved numerically 

for every set of input values (𝑡, 𝑋𝑡 , 𝑈𝑡).  

In contrast to the single-factor model, the introduction of multiple stochastic factors and 

time-dependent variables implies that an analytical solution is no longer available. An 

appropriate numerical solution scheme must therefore be applied to find an approximate 

solution. To find the most appropriate numerical solution method for our model, we begin 

the next subchapter by evaluating different relevant alternatives. Then, after making a 

choice of solution scheme, we provide a detailed description of how this scheme can be 

applied to our model through an algorithm.  
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3.4 - The numerical procedure 

To solve the problem presented in Chapter 3.3, several numerical methods can be applied. 

The most commonly used methods include the binomial lattice approach (see Cox, Ross 

and Rubinstein (1979)), the finite difference method (see Brennan and Schwartz (1978)) 

and Monte Carlo simulation techniques, which was first developed by Boyle (1977). The 

binomial lattice approach and finite difference method both have the disadvantage of being 

poor at handling problems with many stochastic processes. In the binomial lattice method, 

the number of nodes grows exponentially with the number of stochastic processes, which 

makes applying it to multi-factor models computationally challenging. For the finite 

difference method, a maximum of two or three stochastic processes can be included in the 

problem, because higher dimensional partial differential equations cannot be obtained. 

Longstaff and Schwarz (2001) argue that simulation methods provide a promising 

alternative to traditional finite difference and binomial techniques; as they can be readily 

applied to options that depend on multiple factors, and value derivatives with both path-

dependent and American-exercise features. They are also well suited to parallel 

computing, which allows for significant gains in computational speed and efficiency. 

Simulation is also highly flexible, for instance allowing state variables to follow general 

stochastic proccesses such as jump diffusions, as in Merton (1976) and Cox and Ross 

(1976), non-Markovian processes, as in Heath, Jarrow and Morton (1976), and even 

general semimartingales, as in Harrison and Pliska (1981). The Monte Carlo simulation 

method in particular is well suited to handle multiple stochastic processes, as the 

computational time complexity only increases linearly with the number of processes 

included. We therefore consider Monte Carlo simulation to be the most appropriate method 

for solving our multi-factor model.  

In the literature, there are several nuances to the Monte Carlo simulation approach. The 

traditional method presented by Boyle (1977) was forward-looking and could therefore 

only be used to value options with fixed exercise time, i.e. European-style options. 

Therefore, several authors have suggested ways of adjusting this approach to be able to 

value American-style options where exercising is possible at any time within a given 

timeframe. Tilley (1993) suggests an algorithm that resembles the lattice method in 

finding the continuation value of holding the option. However, this method is unable to 

capture the complexities involving a multi-factor model. Carriere (1996) proposes a 

backwards induction algorithm and shows that the pricing of an American-style option is 

equivalent to calculating a series of conditional expectations. However, Stentoft (2004) 

argues that the conditional expectation is challenging to compute, making Tilley’s (1993) 

model less suitable for multi-factor models. Broadie and Glasserman (1997) uses a 

combined simulation and decision tree approach to create a confidence interval for the 

option value that converges to the true price. However, Grant et al. (1997) show that the 

data quantity increases exponentially for each time step. Thus, for problems with many 

possible exercise times, this model becomes infeasible to solve.  

Longstaff and Schwarz (2001) pioneered a relatively simple algorithm for valuing 

American-style options based on Monte Carlo simulation. The algorithm is called least 

squares Monte Carlo (LSM), a name derived from its use of cross-sectional least squares 

regression to estimate the continuation value of an option at a given possible exercise 

point. The algorithm is simple to apply, computationally inexpensive and can be 

implemented for problems with many stochastic factors. Also, the method is flexible in the 
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sense that one can control the behavior in each decision node, e.g. through restricting 

possible exercise points to some nodes. It has also become popular within the real options 

literature (Kozlova, 2017), something Rodrigues and Armada (2006) credit to its 

simplicity.  Based on these advantages, we find the algorithm suitable to apply to our real 

options model. In the next subchapter, we delve into the specifics of how the algorithm is 

applied to our model.  

3.4.1 - The LSM-algorithm  

Returning our attention to the optimal stopping problem presented in Chapter 3.3.5, we 

can now apply the LSM algorithm in order to determine the option value. To do so, we 

start by discretizing the time interval until maturity, [0, 𝑇], into N intervals, so the length 

of each interval is ∆𝑡 =
𝑇

𝑁
. The stochastic variables (𝑋, 𝑈) are simulated with 𝐾 paths, and 

combined to 𝐾 paths of simulated realizations. Applying this terminology, we can now 

discretize the expected development of our stochastic variables to get 

𝑑𝑋𝑡 = 𝜅𝑃 (𝛼 −
𝜎2

4𝜅𝑃
− 𝑋𝑡)∆𝑡 +  𝜎√∆𝑡 𝑊𝑋,𝑡 , 𝑊𝑋,𝑡~𝑁(0,1)                  (3.32) 

𝑑𝑈𝑡 =  −𝜅𝑈𝑈𝑡∆𝑡 + √2𝜅𝑈∆𝑡 𝑊𝑈,𝑡 ,                            𝑊𝑈,𝑡~𝑁(0,1)                  (3.33) 

For each of the 𝐾 paths we can now simulate the development of the stochastic factors by 

utilizing equations 3.32 and 3.33 above and generating random standard normal numbers. 

At each time and for each path we generate two random standard normal numbers 𝑟1 and 

𝑟2, and use these to calculate our stochastic increments as 

𝑊𝑋,𝑡 = 𝑟1       ;     𝑊𝑈,𝑡 = 𝜌𝑟1 +√1 − 𝜌
2 𝑟2                                         (3.34) 

The transformation above, which is an application of the Cholesky decomposition, ensures 

that our stochastic increments in addition to being standard normally distributed also share 

the correlation 𝜌 of the electricity price and the weather factor.   

Dividing our optimal stopping problem into a finite number of sub-problems, we can 

express the option value at each point in time with a Bellman equation as 

𝑉(𝑡𝑛, 𝑋𝑡𝑛 , 𝑈𝑡𝑛) = max(Ω(𝑡𝑛, 𝑋𝑡𝑛 , 𝑈𝑡𝑛), 𝑒
−𝑟∆𝑡𝐸[𝑉(𝑡𝑛+1, 𝑋𝑡𝑛+1 , 𝑈𝑡𝑛+1)]),                  (3.35) 

where the exercise value Ω(𝑡𝑛, 𝑋𝑡𝑛 , 𝑈𝑡𝑛) is whichever is highest of the repowering and life-

extension value in the given node. Note that this value also includes the cost of exercising 

the option.  

In the final time step 𝑇, which is the expected remaining technical lifetime of the turbine, 

the continuation value is zero and the optimal decision is to repower or life-extend the 

turbine if the expected value of doing so is positive. The value of exercise can be estimated 

from the stopping value expressions utilizing a numerical solution scheme, and we will 

utilize a globally adaptive quadrature which is a native function in Matlab. In all previous 

time steps, the optimal decision is determined by comparing the value of continuation with 

the value of immediate exercise. It is in this area the LSM algorithm makes its major 
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contribution, as it provides a method for estimating the value of continuation. This is done 

by regressing subsequently realized cash flows and assuming that the expectation function 

conditional on information available at each step can be expressed as a linear combination 

of a set of basis functions denoted Ψ𝑖(𝑡, 𝑋𝑡 , 𝑈𝑡), where 𝑖 = 1,2, … ,𝑚 is the order of the basis 

functions. By denoting the regression coefficients 𝛼𝑖, we can then express the continuation 

value as  

𝑓(𝑡, 𝑋𝑡 , 𝑈𝑡) =∑𝛼𝑖Ψ𝑖(𝑡, 𝑋𝑡 , 𝑈𝑡)

𝑚

𝑖=1

                                                      (3.36) 

Moren and Navas (2003) find that the LSM-algorithm is robust to the choice of basis 

function. In addition, Palchykov and Vardøy (2018) find benefits to using Laguerre 

polynomials, hence we choose to utilize this functional form in our conditional expectation 

regression. The Laguerre polynomial is a polynomial function with the general form  

𝐿𝑛(𝑋) = 𝑒
−
𝑋
2
𝑒𝑋

𝑛!

𝑑𝑛

𝑑𝑋𝑛
(𝑋𝑛𝑒−𝑋)                                                       (3.37) 

As recommended by Longstaff and Schwartz (2001), we use both our stochastic 

parameters and their cross product in the conditional expectation function, to get the 

functional form  

𝑓(𝑡, 𝑋𝑡 , 𝑈𝑡) =  ∑𝑎𝑖

𝑚

𝑖=1

𝑒−
𝑋
2
𝑒𝑋

𝑖!

𝑑𝑖

𝑑𝑋𝑖
(𝑋𝑖𝑒−𝑋) +∑𝑎𝑗

𝑚

𝑗=1

𝑒−
𝑈
2
𝑒𝑈

𝑗!

𝑑𝑗

𝑑𝑈𝑗
(𝑈𝑗𝑒−𝑈)

+∑𝑎𝑘

𝑚

𝑘=1

𝑒−
𝑋𝑈
2
𝑒𝑋𝑈

𝑘!

𝑑𝑘

𝑑(𝑋𝑈)𝑘
((𝑋𝑈)𝑘𝑒−𝑋𝑈)                                                                 (3.38) 

The continuation value expressed in equation 3.39 above is however only the expected 

value of postponing the exercise of your option another period. For our wind turbine, as 

with other assets that provide cash flows prior to options being exercised, it is also 

necessary to include the cash flows received by waiting another period. The operational 

profit flow from operating a wind turbine for a single period, can be found as 

𝜋∆𝑡 = ∫ 𝐺𝑡

∆𝑡

0

(𝑥𝑇 , 𝑢𝑇)𝑒
−𝑟𝑡𝑑𝑡 = ∫ 𝑒−𝛾𝑡𝑔𝑇

∆𝑡

0

𝑒−𝑟𝑡𝑑𝑡 

= 𝑔𝑇 ∫ 𝑒−(𝑟+𝛾)𝑡𝑑𝑡
∆𝑡

0
= 

𝑔𝑇

𝑟+𝛾
(1 − 𝑒−(𝑟+𝛾)∆𝑡),                                      (3.39)   

where for relatively small time-steps 

𝑔𝑇 = Υ𝑒
−𝛾𝑇𝑒𝑥𝑇ℎ(𝑢𝑇) + (1 − Υ)𝑒

−𝛾𝑇𝑃̅ℎ(𝑢𝑇)                                       (3.40)  

However, because ℎ(𝑢𝑇) relies on a single realization of the weather factor that is assumed 

representative for the entire period ∆𝑡, it will become increasingly inaccurate as the length 

of ∆𝑡 increases. Therefore, if the frequency of the time-steps used in the calculations are 

not sufficiently high to properly capture the short-term variations of the wind speed, it is 
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better to use an expected average for the power output. By denoting the capacity factor 

of the specific wind turbine 𝑘𝑡, this can be expressed as  

𝑔𝑇 = Υ𝑒
−𝛾𝑇𝑒𝑥𝑇ℎ12𝑘𝑡 + (1 − Υ)𝑒

−𝛾𝑇𝑃̅ℎ12𝑘𝑡                                    (3.41) 

Note that [𝑔𝑇] = 𝑁𝑂𝐾/ℎ, and it should have the time scale as ∆𝑡. Hence, if e.g. [∆𝑡] =

 years, 𝑔𝑇 should be multiplied with 8670 h/year. Combining the operation profit flow with 

equation 3.39 above, we can now express the total expected continuation value as  

𝐹(𝑡, 𝑋𝑡 , 𝑈𝑡) = ∑ 𝛼𝑖Ψ𝑖(𝑡, 𝑋𝑡 , 𝑈𝑡)
𝑚
𝑖=1 + 𝜋∆𝑡(𝑋𝑡, 𝑈𝑡)                                     (3.42)                                                            

By starting at the final time step and proceeding recursively through each step until the 

first, we can for each path find an optimal exercise time 𝜏𝑘 and a corresponding optimal 

exercise value 𝑉(𝜏𝑘 , 𝑋𝜏𝑘 , 𝑈𝜏𝑘). The option value is then found by taking the average of the 

discounted exercise values for all simulation paths, which can be expressed as 

𝑉(𝑡0, 𝑋0, 𝑈0) =  
∑ 𝑉(𝜏𝑘,𝑋𝜏𝑘 ,𝑈𝜏𝑘)𝑒

−𝑟(𝜏𝑘−𝑡0)𝐾
𝑘=1

𝐾
                                             (3.43)   

Using the exercise times 𝜏𝑘, we can also construct a logical matrix 𝑀 where each index 

(𝑘, 𝑡) will take the value 1 if 𝑡 | 𝑘 = 𝜏𝑘 and 0 otherwise. The expected time of exercise can 

then be found as a weighted sum of the exercise times on the form  

𝐸𝑡,𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 = 
∑ ∑ 𝑀(𝑘, 𝑡) ∗ 𝑡𝐾

𝑘=1
𝑇/∆𝑡
𝑡=1

𝐾
                                                 (3.44) 

and the probability of the option being exercised within a certain time 𝑡1 can be estimated 

as 

𝑃𝑡1
∗ = 

∑ ∑ 𝑀(𝑘, 𝑡)𝐾
𝑘=1

𝑡1/∆𝑡
𝑡=1

𝐾
                                                          (3.45) 

The accuracy and computational time complexity of the LSM algorithm depends on the 

number of simulated paths 𝐾, the number of time steps 𝑇/∆𝑡 and the number of basis 

functions 𝑀. Stentoft (2004) shows that the estimated option value from the LSM 

algorithm converges to its true value as 𝐾 and 𝑀 tends to infinity, although this is not 

computationally feasible to simulate. Therefore, one must find a compromise that yields 

satisfactory results both in terms of accuracy and computational time.  
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4 - Model calibration and parameterization 

Choosing if and when to undertake investment in end-of-life options, in addition to 

deciding which option to invest in, is a key decision for any wind power producer. This 

decision is largely determined by the input parameters used in the model, hence it is 

essential to choose parameters on a case-by-case basis to best capture the characteristics 

of each specific project. In the numerical case we present in this thesis, we consider a 

single generic Norwegian wind farm with homogenous turbines. The model is calibrated to 

this case, and parameters are chosen by using a combination of market data, industry 

reports and scientific literature. It should be emphasized that neither parameter estimates, 

nor the calibration methods can be applied indiscriminately to other wind power projects, 

and should be evaluated for each specific project. In the following subchapters we first 

calibrate the risk factors, followed by estimation of financial, turbine, end-of-life and 

simulation parameters. Finally, we discuss some case-specific assumptions. The parameter 

values used in the baseline case are summarised in Table 4.1 below.  

Table 4.1: Baseline case parameter values 
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4.1 – Price of electricity 

Recall that the natural logarithm of the electricity price 𝑋𝑡, follows the Ornstein-Uhlenbeck 

process 

 𝑑𝑋𝑡 = 𝜅𝑃 (𝛼𝑃 −
𝜎2

4𝜅𝑃
− 𝑋𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑍𝑃  

In line with the method of Dixit and Pindyck (1994) we can integrate this process and 

reformulate it to a regression model on the form 

𝑥𝑡 − 𝑥𝑡−1 = 𝑎 + 𝑏𝑥𝑡−1 + 𝜀𝑡 ,                                                    (4.1) 

and apply it to a set of discrete price data. In doing so, the volatility of the model can be 

estimated as  

𝜎̂ =  𝜎̂𝜀√
2log (1 + 𝑏̂)

(1 + 𝑏̂)
2
− 1

                                                           (4.2) 

Considering that our model is evaluating a long-term investment decision, we would ideally 

like to calibrate it to a long-term prognosis from a reliable source. A drawback with the 

regression model presented above is however that it requires relatively high frequency of 

data for accuracy, while prognoses tend to provide very few data points. Therefore, we 

instead utilize historical spot data for the central Norwegian power market from Nord Pool, 

and estimate the volatility 𝜎𝑃 to be 17.27% annually. The remaining two parameters, 𝜅𝑃 

and 𝛼𝑃, are however better suited to be calibrated to a prognosis. This is because in 

contrast to the volatility that captures rapid, short-term variations, these two parameters 

are primarily related to the long-term trend of the process and can therefore be estimated 

from lower frequency data. Note that while we assume constant volatility for our numerical 

case, the model can easily be implemented with dynamic volatility as well.  

Using a 22-year prognosis from Statnett, the system operator of the Norwegian power 

system, we set the mean-reversion level of the process, 𝛼𝑃 −
𝜎2

4𝜅𝑃
, to be 5.725 NOK/MWh. 

The prognosis is presented in Figure 4.1. Note that as the figure presents electricity prices 

in €/MWh, so we need to use the €/NOK exchange rate to convert the values to NOK/MWh 

and take the natural logarithm for our parameter estimates. From the prognosis we also 

set the initial level of our process, 𝑋0, to 5.923 NOK/MWh. Having determined values for 

volatility, initial level and mean-reversion level, we can now set the mean-reversion speed 

𝜅𝑃 to follow the trend of the prognosis. From Dixit and Pindyck (1994) we find the expected 

value of an Ornstein-Uhlenbeck at a given time 𝑡 to be 

𝐸[𝑋𝑡  | 𝑋0] =  𝑋0𝑒
−𝜅𝑃𝑡 + (𝛼𝑃 −

𝜎2

4𝜅𝑃
)(1 − 𝑒−𝜅𝑃𝑡)                                       (4.3) 
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Figure 4.1: 22-year prognosis of electricity prices. Source: Statnett 

 

In line with the prognosis we expect the process to reach its mean-reversion level for the 

first time in 2040, and can thereby solve the equation above iteratively to find 𝜅𝑃 = 0.1858. 

From the expression for the mean-reversion level we can then determine 𝛼𝑃 to be 5.765 

NOK/MWh. While it should be noted that multiple values of 𝜅𝑃 satisfy the above equation 

depending on the tolerance level used in the convergence criterion for the iterative solution 

process, we consider the chosen value to represents a decent approximation of the drift. 

This is visualised in Figure 4.2 below.  

Figure 4.2: Expected electricity log price over time from the Ornstein-Uhlenbeck process 
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The correlation 𝜌 between the price of electricity and the weather factor depends to a large 

degree on how much of the total energy mix in an area consists of wind power. The larger 

the market share of wind power, the larger is the dependence of the total energy supply 

on the weather and thereby the correlation between weather and prices. The estimate of 

this parameter is, therefore, dependent on area-specific data, and ideally also requires 

high-frequency data of wind speeds and electricity prices. Unfortunately, companies are 

not very forthcoming with such wind data for competitive reasons, and meteorological 

data, if available, are measured at too low altitude above the ground to be applied to wind 

turbines. In the absence of appropriate data for estimation, we therefore make due with 

the value of 𝜌 = −0.1503 from Ernstsen and Boomsma (2018), that was estimated for a 

model with similar risk factors as ours. Intuitively, this seems to be a sensible value as 

the correlation should be negative and relatively modest considering that wind power only 

makes up a relatively small part of the energy mix in Norway. It should however be noted 

that because wind power is a significantly larger part of the energy mix in Denmark than 

in Norway, utilizing this estimate for a Norwegian wind farm is likely to provide a more 

conservative option value.  

The PPA-price 𝑃̅ is determined by negotiation between the two contract parties and will 

therefore not only depend on specific market conditions, but also the negotiating power of 

the two parties involved. While PPA contracts are relatively common, the publicly available 

data on them are limited as companies tend to withhold price information for competitive 

reasons26. A general guideline is that the contract should be fairly priced27, but its 

interpretation in a specific situation seems quite subjective. Nonetheless, in an effort to 

apply this principle, we choose to utilize the prognosis from Figure 4.1. as a risk-neutral 

long-term proxy for the price of electricity and calibrate 𝑃̅ to this as a vector of yearly 

values. However, as was discussed in Chapter 2.3.2, the PPA allows the producer to reduce 

the price risk of his project and thereby acquire debt financing at lower interest rates. We 

therefore consider it fair that the producer pays a modest risk premium of 2% to the buyer 

of the contract, and include this in our estimate.  

4.2 – Weather factor 

Recall that the weather factor follows the Ornstein-Uhlenbeck process given by 

𝑑𝑈𝑡 = −𝜅𝑈𝑈𝑡𝑑𝑡 + √2𝜅𝑈𝑑𝑍𝑈 

We can thereby apply the regression model from equation 4.1 to a discrete data set. 

Utilizing wind speed time series from the Norwegian area Måkaknuten, measured at 100m 

altitude above ground level, we can run the regression analysis. In doing so, we estimate 

the weather factor volatility to be 5.74% and from this we find the mean-reversion speed 

to be 𝜅𝑈 = 0.00165. 

As discussed in Chapter 2.3.2, the most common way to approximate the wind speed 

distribution in a model is through a Weibull distribution function. Nielsen (2011) consider 

                                           

26 https://e24.no/energi/norsk-hydro/hydro-inngaar-vindkraftavtale-med-verdens-lengste-varighet/24396381 

27 https://aleasoft.com/ppa-opportunity-agents-risk-management-european-electricity-market/ 

https://e24.no/energi/norsk-hydro/hydro-inngaar-vindkraftavtale-med-verdens-lengste-varighet/24396381
https://aleasoft.com/ppa-opportunity-agents-risk-management-european-electricity-market/
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and compare the methods of moments estimation, maximum likelihood estimation and 

rank regression to estimate the parameters of a two-parameter Weibull distribution. His 

findings are that for a sufficiently large data set, no method is significantly more accurate 

than another. We therefore choose to apply maximum likelihood estimation to our data 

set, resulting in a Weibull scale parameter of 𝑎 = 10.03 and a Weibull shape parameter of 

𝑏 = 1.96. For transparency, the historical realized distribution of wind speeds for 

Måkaknuten is presented in Table 4.2 below. 

Table 4.2: Realised wind speed distribution for Måkaknuten at 100m altitude above ground level 

 

4.3 – Technological innovation 

Recall that for technological innovation we have the stochastic jump model  

𝐾𝑅(𝑡) = 1 + (𝐾𝑅 − 1)𝜃𝑡, 

where 𝜃𝑡 follows a non-stationary Poission process with an arrival rate 𝜆𝑡. Denoting the 

time since the previous innovation ∆, 𝜆𝑡 can be expressed as 

𝜆𝑡(𝜔) = 𝜆11{Γ<∆} + 𝜆21{Γ≥∆} 

The technological innovation parameters 𝜆1, 𝜆2 represent the rates at which we expect 

advances in wind turbine technology to be made available, and ∆ the time before regime-

change. Notice that this is not just a matter of new technology being invented, it must 

also be made commercially available and economically viable. After a new turbine model 

has been designed, it might need to clear extensive legal hurdles before it can be sold. 

The company producing it might also need time to improve its production and logistics 

processes and reduce costs before it becomes economically viable for buyers.  
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While historical data for wind power technology the last 20-30 years indicate a very swift 

and exponential growth, this development is expected to significantly slow down in the 

future (Ziegler et al., 2018). In part this is caused by size restrictions, as the newest 

turbines already are so massive it is making transport and installation difficult. While these 

restrictions are less pressing offshore, these turbines introduce other complications such 

as buoyancy and waves that must be adequately addressed when designing new turbines. 

Considering these factors, and looking at a combination of historical data and prognoses, 

we estimate the expected time between one technological innovation being made 

commercially available and the next to be around 15 years, with 𝜆1 = 0 and Δ = 10 years. 

Recalling from Chapter 2.4.1.3 that wind turbine innovation is primarily in the direction of 

bigger and taller, it seems reasonable to assume it will take at least a fairly significant 

amount of time to find solutions to all the added technological complexities.    

4.4 – Financial parameters 

The cost of capital 𝑟 for a wind power project is naturally a function of the risk 

characteristics of that specific project. This among others includes price risk, production 

risk and operational risk. In addition, the financing structure of the project will significantly 

impact 𝑟 as equity financing carries significantly higher risk than debt financing does. The 

average cost of capital for wind power projects in OECD countries is according to IRENA 

(2018) at 7.5%. A recent empirical study from Steffen (2019), however, estimated the 

cost of capital in renewable projects in 46 different countries, and found the appropriate 

rate for countries such as Denmark and the US to be around 5 %. Considering Norway is 

fairly similar to these countries in terms of for instance political stability, and that Norway 

generally is considered to have low risk in its energy projects (Fossen, 2018), we consider 

it reasonable to set the cost of capital for our case at 5%.  

According to a report by NewEnergyUpdate (2018) the average cost of repowering is 1 

million euros per MW for repowering, and 100 000 euros per MW for life-extension. The 

cost of repowering in particular can however be significantly reduced by planning ahead 

for it when building the initial wind park. Good initial planning can allow much of the 

infrastructure for power transport from the initial project to be reused, and experience and 

business connections from the initial project can be conserved to be used in the repowering 

project to reduce costs in all aspects. Assuming for our numerical case that we are able to 

realize much of these cost reductions by good initial planning, and utilizing an exchange 

rate of roughly 10 NOK/Euro, we set the cost of repowering to 8 million NOK per MW and 

the cost of life-extension to 1 million NOK per MW.  

4.5 – Turbine parameters  

The rated power output of the wind park ℎ12 determines the scale of the investment 

problem in consideration and is a given input for any specific wind park.  We set it to 3 

MW to match one of the turbines in GE’s product portfolio28. From the turbine models of 

the two largest global wind turbine producers, Vestas and GE, we can then find normal 

values for the speed parameters to be 𝑤0 = 4𝑚/𝑠, 𝑤1 = 10 𝑚/𝑠 and 𝑤2 = 25 𝑚/𝑠. Wind 

                                           

28 https://www.ge.com/renewableenergy/wind-energy/onshore-wind/turbines/3mw-platform 

https://www.ge.com/renewableenergy/wind-energy/onshore-wind/turbines/3mw-platform
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turbines are usually optimized during design to operate at a specific location, hence we 

have chosen our speed parameters from within the normal range to fit our wind 

distribution.  

According to a 2017 market report from the U.S. Department of Energy, the average 

capacity factor of newly installed wind power in the USA in the period 2014 to 2016 was 

42%, up from 31.5% in the period 2004 - 201129. Considering that the US primarily uses 

the same turbine suppliers as Norway, namely Vestas and GE, we assume this information 

is also fairly representative for Norway. Assuming this trend continues, and that our 

turbines are state-of-the-art, we therefore set our capacity factor 𝑘 to 45%. Building 

further on the assumption that our turbines are state-of-the-art, we can set the expected 

technical lifetime to 𝑇 = 25. As was mentioned in Chapter 1.1, the expected lifetime of a 

wind turbine is is 20-25 years, hence this parameter value is on the higher end of the 

industry average.  

The capacity decline 𝛾 is highly project specific, as it can vary quite significantly both with 

turbine type and location. Different turbine types wear in different ways, and local weather 

conditions and topography cause large variations in the distribution of forces and chemical 

exposure to the turbine. Performance data for specific turbines over time is, however, yet 

another type of data companies tend not to share, hence we have to use a more general 

estimate as a proxy. Assuming the findings of Stafell and Green (2014) presented in 

Chapter 2.3.1.2 also are applicable to Norway, which seems reasonable considering that 

Norway and Britain use the same turbine suppliers, we set 𝛾 to 1.6% annualy. Note that 

while we assume the state-of-the-art turbine in our numerical case will experience 

somewhat lower performance decline than an average turbine, the chosen value of 𝛾 also 

incorporates increasing O&M costs.  

4.6 – End-of-life option parameters 

The repowering capacity scaling factor, 𝐾𝑅, represents the potential improvement to the 

wind farm’s performance by repowering. As a wind farm has constraints on the available 

area, this is not just a matter of new technology being available. With increasing rotor 

diameter of a wind turbine, the wake effects become larger, hence a general rule of thumb 

is that there should be 3-10 diameters30 between each turbine to avoid significant energy 

loss by wind shadowing from upstream turbines. In addition to predicting how much 

performance increase a newer turbine model will offer, this parameter should therefore 

also reflect the area restrictions of the park and how many of the new turbine types can 

be fit into the park. Taking this into consideration, and looking at a combination of 

historical data and prognoses for future development, we find 𝐾𝑅 = 1.25 to be a reasonable 

value. For a wind park with the possibility of expanding to the surrounding area this value 

might be significantly higher, and for a wind park with very tight area restrictions it might 

be even lower.  

                                           

29 https://www.energy.gov/eere/wind/downloads/2017-wind-technologies-market-report 

30https://www.planningni.gov.uk/de/index/policy/planning_statements/pps18/pps18_annex1/pps18_annex1_wind/pps18_anne

x1_technology/pps18_annex1_spacing.htm 

https://www.energy.gov/eere/wind/downloads/2017-wind-technologies-market-report
https://www.planningni.gov.uk/de/index/policy/planning_statements/pps18/pps18_annex1/pps18_annex1_wind/pps18_annex1_technology/pps18_annex1_spacing.htm
https://www.planningni.gov.uk/de/index/policy/planning_statements/pps18/pps18_annex1/pps18_annex1_wind/pps18_annex1_technology/pps18_annex1_spacing.htm
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The life-extension capacity scaling factor, 𝐾𝐿, represents the amount of capacity decline 

suffered by the turbine from the start of its operation that can be reversed by extending 

the lifetime of key components. Like 𝛾, this parameter is highly project specific. Hence, 

the question of which components that should be life-extended and how much they can 

be improved depend significantly on turbine type, location and how it has been worn over 

its lifetime. While we have assumed that life-extension in total will only reverse capacity 

decline, it can, however, improve specific components past their original performance. A 

common example of this is the control system, that can be significantly improved by 

utilizing new software31. As little to no data seems to be publicly available on the nature 

of specific performance increase through life-extension, we set 𝐾𝐿 to 25% which intuitively 

seems to be within the realistic range.  

The increase of the technical lifetime by life-extension Δ𝑡𝐿 can be up to 20 years depending 

on the project specifics32. This is not only a matter of how long life-extension is 

technologically possible for the specific wind project, but also how long is economically 

viable. Increasing the length of life-extension naturally comes at a higher investment cost, 

and a higher opportunity cost by foregoing the option to repower, hence a financial model 

might be needed to find the optimal Δ𝑡𝐿  for a specific project. Because we lack data on 

how the cost of life-extension depends on Δ𝑡𝐿, we choose to set a fixed value of Δ𝑡𝐿 = 5 

years for our numerical case, at the cost of 𝐼𝐿 = 1 mill NOK per MW. Finding the optimal 

length of life-extension with our model is however simply a matter of estimating 𝐼𝐿 as a 

function of Δ𝑡𝐿, and then comparing the stopping values for all realistic pairs (Δ𝑡𝐿 , 𝐼𝐿(Δ𝑡𝐿)) 

in each node.  

4.7 – Simulation parameters 

As mentioned in Chapter 3.4.1, Stentoft (2004) find that the solution provided by the LSM 

algorithm converges to its true value as the number of simulation paths, 𝐾, and order of 

Laguerre polynomials, 𝑚, tends to infinity. As this is not practically feasible, as doing so 

would require an infinite amount of computational time, we must find a satisfactory 

balance between accuracy and computational time complexity. As the variance of Monte 

Carlo simulations decrease with the square root of the number of simulation paths33, the 

number of simulations required to find a satisfactory threshold of accuracy can be quite 

high. In order to lower this threshold, we therefore introduce a variance reduction 

technique known as antithetic variates to our simulations. Using our baseline model 

parameters and conducting extensive numerical testing, we find 𝐾 = 5000 and 𝑚 = 7 to 

be the optimal parameter values for our case. Increasing the number of simulation paths 

or order of polynomials further does not yield significantly different results, hence we find 

this to be the lowest computational time complexity we can achieve without significantly 

sacrificing accuracy. Note that by choosing the order of polynomials to be 7, we get a total 

of 24 basis functions.  

                                           

31   https://www.spicatech.dk/about-us/press/is-lifetime-extension-of-your-ageing-turbine-the-right-solution/ 

32   https://www.windpowerengineering.com/projects/policy/business-case-wind-farm-lifetime-extension/ 

33 https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-

2014/probabilistic-methods-and-optimization/error-estimates-for-the-monte-carlo-method/ 

https://www.spicatech.dk/about-us/press/is-lifetime-extension-of-your-ageing-turbine-the-right-solution/
https://www.windpowerengineering.com/projects/policy/business-case-wind-farm-lifetime-extension/
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/probabilistic-methods-and-optimization/error-estimates-for-the-monte-carlo-method/
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/probabilistic-methods-and-optimization/error-estimates-for-the-monte-carlo-method/
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Regarding the time step ∆𝑡, this is again a trade-off between computational time and 

realism. Ideally having a ∆𝑡 of 1 hour or less would be optimal, as it would allow the use 

of equation 3.40 instead of the approximation in equation 3.41. However, combining such 

a step length with reasonable numbers for 𝐾 and 𝑚 would result in more than a month of 

computational time. In applying the model to evaluate a real wind power project this might 

be a perfectly acceptable timeframe, but as we intend to conduct sensitivity analysis, this 

is not feasible in our case. Because we have to set a time step that is too high to utilize 

equation 3.40, we lose no additional accuracy by choosing a somewhat longer time step. 

Therefore, we set Δ𝑡 to 0.25 years, which we find provides a good balance between 

accuracy and computational time complexity.      

4.8 – Case-specific assumptions 

In addition to our parameter calibrations, we make some case-specific assumptions. These 

assumptions are motivated by a combination of making the case realistic, making the 

results from the sensitivity analysis more straightforward to interpret and reducing the 

computational time of our algorithm.  

The first assumption we make, is that the wind park we are considering is at the very 

beginning of its operational life, i.e. 𝑡0 = 0. The model can however be applied to any value 

of 𝑡0, i.e. at any point in the lifetime of a wind park, hence this assumption is simply to 

make the results easier to interpret. By the same motivation, we choose to utilize the 

same 𝛾 for the turbine both before and after exercising an end-of-life option. This seems 

reasonable to do, as 𝛾 was calibrated from fairly general data. Note that this is not a 

necessary assumption to make in general, as the model can incorporate different values 

for 𝛾 if that seems more appropriate for a specific project. It might for instance be relevant 

to allow gamma to change following repowering and life-extension, or assume it to have 

some dependence on time.  

The next assumptions we make, are that repowering will only be available after 10 years 

of operation and life-extension only available after 20 years of operation. The motivation 

for both is a combination of imposing realistic technological constraints and reducing the 

computational time of our model. For repowering, we have chosen to model the 

technological innovation through a stochastic process where the arrival rate for 𝑡 <  ∆ = 10 

is zero. Therefore, there will be no improved turbine available for 𝑡 < 10 for any simulation 

path, and thereby no incentive to repower before this time. For life-extension, there exist 

technological and legal restrictions that can provide incentive to avoid life-extension too 

long before the expected technical lifetime of the turbine. As was discussed briefly in 

Chapter 1, the structural integrity of the wind turbine is prioritized over economic interests 

when considering life-extension (DNVGL, 2016).  

Evaluating which components to life-extend is therefore not just simply a matter of 

optimizing the performance of the turbine, but of reducing the probability of structural 

failure to a point where the turbine will be legally allowed to operate past its design 

lifetime. The evaluation of remaining life will require an assessment of the site-specific 

component loads, based on the turbine’s operational history and measured wind 

conditions, along with a probabilistic analysis contingent on the current structural condition 

and the impact of possible material degradation on the structure’s fatigue-limit state 



60 

 

(MegaVind, 2016). For further discussion on the technical details and considerations of 

life-extension, see MegaVind (2016). It suffices to say that it is necessary to measure the 

fatigue of different components relatively late in the operational life, which combined with 

performance data and measurements over the turbine lifetime can be used to provide a 

somewhat accurate estimate of the probability of failure for different components and 

thereby decide which components should be life-extended. The design lifetime of 

components and estimations of future structural integrity and fatigue damage are also 

legally subjected to strict safety margins. For instance, assuming quite extreme wind 

conditions, such as the 90th percentile of wind turbulence, when assessing probability of 

failure. Hence, the actual lifetime of a component is often significantly longer than the 

design life or remaining life estimations, as it in reality experiences less extreme loads. 

Measuring and estimating the remaining lifetime of components closer to the expected 

design lifetime will therefore provide more accurate predictions, which in turn can reduce 

costs for life-extension by for instance allowing for less extensive upgrades or replacing 

fewer components. Therefore, we consider the restriction of not being able to life-extend 

until 20 years of operation to be a realistic addition to our case study. The choice of 20 

years is however fairly subjective, so we include a brief discussion of the implications for 

our case of changing the restriction to 15 years.   

The next assumption we make, is that the fraction of power sold through PPA contracts, 

Υ, is constant both pre and post repowering. Depending on the contract specifics, the PPA-

fraction might change over time and might have to be renegotiated when repowering. This 

depends on the contract for the specific project though, so assuming it to be constant for 

our specific case study is perfectly reasonable and makes the PPA-analysis easier to 

conduct and interpret. The model is however perfectly capable of including different values 

for Υ at different times and in different operational states, if that should be the case for 

the specific project under consideration.  

Last, we assume that volatility for our stochastic risk factors are constant over time. 

Dynamic volatility can be included in the model without any major adjustments, but as 

discussed in Chapter 3.3.1, the long-term investment horizon of our numerical case makes 

the short-term fluctuations of volatility unimportant. It should also be noted that for such 

a long time horizon, even attempting to predict the short-term variations of volatility might 

be completely futile.   
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5 - Results 

By implementing the multi-factor model in Matlab, and utilizing parameter values 

determined in Chapter 4, we analyse the end-of-life options for our numerical case in order 

to address the project-specific research questions posed at the end of Chapter 1. We begin 

the analysis by considering the base case option value and expected investment timing 

for each option, and compare them to determine the base case implications for an 

operator. Next, we perform sensitivity analysis to see how the option value and investment 

timing change when parameters diverge from their base case estimates. Finally, we 

analyse how including PPAs impacts the investment problem, and discuss the 

ramifications. 

In order to make the analysis more extensive and informative, we have performed 

valuation on three separate end-of-life option scenarios. These scenarios are as follows:  

i. The option to repower: The wind farm operator only considers repowering.  

ii. The option to life-extend: The wind farm operator only considers life-extension. 

Note that because we assume decommissioning is not financially motivated, as was 

discussed in Chapter 1.2, the life-extension option we consider for our case will 

always be followed by repowering at the end of the extended lifetime.   

iii. The option to either repower or life-extend: The wind farm operator considers both 

the option to repower and the option to life-extend, and can choose the most 

valuable one at any point in time. This implies that if one option is exercised, the 

other is relinquished. In figures and tables that follow, we refer to having both 

options available as the double option.  

5.1 – Base case results and analysis 

For the base case we have estimated the option value and the expected exercise time for 

the three options mentioned above. The results are summarized in Table 5.1. From the 

table it can be observed that all the options are expected to be exercised before the end 

of the technical lifetime of the wind turbine. The option to perform life-extension has the 

lowest option value and the latest expected exercise time, which can be explained by the 

technological restriction imposed on the possible exercise times for this option. If the 

operator could perform life-extension before the last 5 years of the expected technical life, 

the option would become more valuable and the expected exercise time would be reduced. 

This has been confirmed by running a simulation with a less strict technological restriction 

imposed on the life-extension option that allowed for life-extension in the last 10 years of 

operation. It can further be observed that repowering has significantly higher option value 

than the life-extension option and earlier expected exercise. Therefore, if the operator 

could only have one of the two options available, the option to repower would be 

preferable. This effect is largely a result of strong market conditions making early exercise 

valuable, and since repowering is available earlier than life-extension it becomes more 

valuable for the operator. Note that this observation is a result of comparing the options 

after they have been evaluated separately, and not by comparing them simultaneously, 

which is what we do with the double option. 
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Table 5.1: Option value and expected exercise time for the base case 

Having both options available, i.e. the double option, can be observed to provide both the 

highest value and earliest expected exercise time for the operator. This implies that even 

though repowering is overall more valuable than life-extension to the operator, there are 

possible market conditions for which life-extension is most valuable. If this was not the 

case, and repowering was exercised before life-extension in every simulation path, the 

double option would have the same value and expected exercise time as the option to 

repower.  

By investigating the simulation paths where different options are exercised, we can make 

some interesting observations. In scenarios where the market conditions are very 

favourable early in the operational lifetime of the turbine, in particular the price of 

electricity is high, the option to repower will be preferred because it allows the operator to 

utilize the favourable market conditions sooner. In scenarios where the market conditions 

early on are not favourable, the operator is better off by waiting to see how the market 

conditions develop. The longer the operator waits, the closer he gets to the point where 

the life-extension option becomes available, and thereby is more likely to perform life-

extension. If the options have not been exercised before 20 years of operation, a situation 

is reached where life-extension dominates the option to repower. This is because life-

extension allows the operator to keep the current wind farm in operation longer than what 

is possible with only repowering.  

The behaviour of the options can also be analysed by looking at how the exercise times 

are distributed over the technical lifetime of the turbines.  Therefore, we have plotted the 

cumulative probability of option exercise for each option and indicated the expected 

exercise time with a dashed line. The plots for repowering, life-extension and the double 

option are shown in Figure 5.1, Figure, 5.2 and Figure 5.3, respectively.  

From Figure 5.1, it can be observed that the option to repower will not be exercised during 

the first 10 years of operation. This is because new technology is not expected to arrive in 

this period, and thus it is not attractive for the operator to exercise the option. In the last 

15 years of operation, where the probability of new technology arrival increases, the 

cumulative probability of option exercise increases almost linearly before it increases 

abruptly the last year. The sharp increase in exercise probability towards the end can be 

explained by the restriction imposed by the technical lifetime, as the turbine will no longer 

be operational past this point and the operator is therefore unable to postpone the exercise 

decision any further. In the simulations, there are scenarios where continued operation 

beyond the technical lifetime would be beneficial because the market conditions have not 

 Option value 
[𝑴𝑵𝑶𝑲] 

Expected exercise time 
[𝒚𝒆𝒂𝒓𝒔] 

Repowering 
 

34.256 18.73 

Life-extension 
 

28.666 21.46 

Double option 
 

35.156 18.55 
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reached optimal levels for option exercise. However, operation past this point is a matter 

of structural safety and is not legal unless thorough inspections show that the probability 

of structural failure is below acceptable levels.  

 

 

 

Figure 5.1:Cumulative probability of exercising the option to repower 

Figure 5.2: Cumulative probability of exercising the life-extension option 
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From Figure 5.2, the effects of the technical restriction imposed on the life-extension value 

is quite apparent. After 20 years, when the option to life-extend becomes available, a 

sharp increase in the probability of exercise can be observed. Thus, it is safe to conclude 

that the technical restriction has significant impact on the investment decision of the 

operator. While this technical restriction is a realistic aspect of the investment decision 

and should not be neglected, the choice of exactly 20 years is, as was mentioned in 

Chapter 4.8, somewhat subjective. For comparison we therefore conduct a separate 

simulation with the restriction set to 15 years, to see how the option value and expected 

exercises time is affected. The result of this is displayed in Figure 5.3. From the figure it 

can be observed that if life-extension is available earlier, the option value would increase 

significantly, and the expected exercise time would be lower. It can also be noted that the 

expected exercise time of the life-extension option is now lower than the expected exercise 

time of repowering. This implies that the relative favourableness of the two options has 

changed, and that the operator in this scenario would prefer life-extension over repowering 

for favourable market conditions early on. Considering this, it should be emphasised once 

again that both restrictions and parameter values are case-specific, hence results and 

analysis should be considered highly case-specific as well. 

 

From Figure 5.4, it can be observed that having both options available provides the same 

shape, but shifted downwards, as the repowering option during the first 20 years of 

operation. However, after 20 years a jump occurs as the life-extension option becomes 

available. As discussed above, the operator is likely to wait for the option to life-extend to 

be available when the market conditions are less favourable. Waiting longer due to 

unfavourable market conditions, makes it more likely that life-extension will be the 

preferable option.   

Figure 5.3: Cumulative probability of exercising life-extension option with 
relaxed restriction 
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To further emphasize how the option to life-extend provides value when both options are 

available, the cumulative probability of all three options are visualised in the same graph 

in Figure 5.5. From the figure it can be observed that the probability of exercising the 

repowering option before 20 years is about 54%, however, when both options are available 

the probability of having exercised an option before 20 years is only 44%. This 10% 

reduction implies that there are less favourable market scenarios for which the operator 

is better off waiting for the life-extension option to become available.  

 

Figure 5.4: Cumulative probability of exercising when having both options 

Figure 5.5: Comparison of cumulative probability of exercising for all options 
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From the above discussion, the option behaviour for our base case can be summed up in 

the following manner: 

Favourable market conditions: For favourable early market conditions, the 

option to repower is preferable and will be exercised. 

Moderate market conditions: For moderate early market conditions, the 

operator prefers waiting to find out which way the market develops. If the 

market conditions improve sufficiently before the 20-year mark, he will 

exercise the repowering option. If market conditions decline or fail to 

improve sufficiently before the 20-year mark, he will exercise the life-

extension option. 

Unfavourable market conditions: For unfavourable early market conditions, 

that remain unfavourable, the operator will wait for the life-extension option 

to become available and exercise it optimally during the last 5 years of the 

technical lifetime.  

These results are in line with the findings of Décamps, Mariotti and Villeneuve (2006) 

which shows that having two mutually exclusive investment opportunities increases the 

demand for information and provides an additional incentive for delayed investment. This 

is what we observe for moderate market conditions, where the operator waits to see which 

way the market develops.  It should again be emphasized that these results are contingent 

on the assumptions made for the specific case and should therefore not be considered 

general findings.   
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5.2 – Sensitivity analysis 

We perform sensitivity analysis in order to observe how changes in the parameter values 

affect the value and the expected exercise time of the options. The sensitivity analysis is 

conducted by changing one parameter at a time, while the other parameters are fixed at 

their base case value. Specifically, we consider how the option value and exercise time 

changes when a parameter is allowed to diverge ± 10 % and ±20 % from its base case 

value. Key findings for each parameter are presented and addressed in an orderly manner, 

with a particular focus on identifying trends that affect the value of repowering relative to 

life-extension. Complete sensitivity tables can be found in Appendix A1. A final remark 

before we delve into the analysis is that because the LSM algorithm is an estimation 

method, the sensitivity results might be subject to some numerical error. In particular 

changes of small magnitude might provide inconsistent trends as a result, hence one 

should be careful not to draw strong conclusions based on weak trends.  

5.2.1 – Logarithm of the initial electricity price level, 𝑿𝒐 

The logarithm of the initial price level reflects the current market price of electricity. This 

is an important parameter to assess, because evaluation in any real options model is 

contingent upon the current market conditions. In Table 5.2, the sensitivity analysis of 𝑋0 

is presented. For all three options, it can be observed that the option values increase with 

𝑋0. As higher initial value of the electricity price means that the initial market conditions 

are more favourable, this makes intuitively sense. This result is also in line with what we 

expect from the general insights from the single-factor model.  

 𝑿𝟎 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

32.650 
(−4.69 %) 

33.459 
(−2.33 %) 

34.256 
(−) 

35.102 
(+2.47 %) 

36.049 
(+5.23 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

19.12 18.91 18.73 18.55 18.36 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

28.453 
(−0.74 %) 

28.557 
(−0.38 %) 

28.666 
(−) 

28.769 
(+0.36 %) 

28.868 
(+0.70 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.47 21.46 21.46 21.45 21.45 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

33.664 
(−4.24 %) 

34.366 
(−2.25 %) 

35.156 
(−) 

35.900 
(+2.11 %) 

36.830 
(+4.76 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.93 18.74 18.73 18.37 18.19 

Table 5.2: Option value and expected exercise for changes in logarithm of initial price level 

It can be observed for the repowering option and the double option that investment is 

expected sooner for increasing 𝑋0. This is also in line with expectations, because if the 

initial market conditions are more favourable, the investment is likely to be justified 

sooner. The expected exercise time for the life-extension option, however, is unaffected 

by the changes in 𝑋0. This is a natural consequence of the technical restriction imposed 

on the possible exercise time of the option. Since the option cannot be exercised the first 

20 years of operation, the favourable initial market conditions do not have significant 

impact.  
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A final observation on 𝑋0 is that the repowering option is more sensitive to changes than 

the life-extension option is, both in terms of option value and expected exercise time. This 

can be connected to the findings from the base case analysis, where favourable market 

conditions were found to motivate early exercise of the repowering option. Higher 𝑋0 

equates to more favourable initial market conditions. Hence, for increasing 𝑋0 one will 

observe more repowering and less life-extension if the operator has both options available. 

For decreasing 𝑋0, this is reversed, and one will observe less repowering and more life-

extension.  

5.2.2 – Cost of capital, 𝒓   

From Table 5.3 it can be observed that the option value and expected time of exercise 

decreases with 𝑟 for all three options. Intuitively, it makes sense that the option values 

decrease with 𝑟, because the future expected cash flows are discounted at a higher rate 

and therefore becomes less valuable. This result is also consistent with the general insights 

from the single-factor model, where increasing 𝑟 was found to reduce option value. The 

trend of decreasing exercise time for increasing 𝑟 is, however, less intuitively obvious, and 

is related to the fact that all options must be exercised before or at the end of the technical 

lifetime. If the options were available in perpetuity, as was assumed for the single-factor 

model, the investment thresholds would increase with 𝑟 and thus postpone the expected 

exercise time. However, as the options must be exercised within a given timeframe, the 

operator is better off exercising the options earlier for increasing 𝑟 because the future 

profit flows will be discounted at a higher rate and, thus, be less valuable if he waits longer.  

 𝒓 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

44.782 
(+30.73 %) 

39.187 
(+14.39 %) 

34.256 
(−) 

29.974 
(−12.50 %) 

26.157 
(−23.64 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

19.39 18.98 18.73  18.53 18.44 
 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

40.650 
(+41.81 %) 

34.230 
(+19. 41 %) 

28.666 
(−) 

24.045 
(−16.12 %) 

20.230 
(−29.43 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.65 21.49 
 

21.46 21.43 21.41 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

46.065 
(+31.03 %) 

39.944 
(+13.62 %) 

35.156 
(−) 

30.683 
(−12.72 %) 

26.469 
(−24.63 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

19.42 
 

19.06 18.55 18.31 18.30 

Table 5.3: Option value and expected exercise time for changes in the cost of capital 

Further considering the results of Table 5.3, some more interesting observations can be 

made. The life-extension option value is affected more by changes in 𝑟 than the repowering 

option value is, hence the cost of capital will change the value of repowering relative to 

life-extension. Also, looking at the relative changes in the double option value, it can be 

observed that it tends to lie between the relative changes of the repowering and life-

extension option values. Considering this in combination with the fact that the expected 

exercise time of repowering falls with 𝑟 while while the expected exercise time of life-

extension is unaffected, it can be reasoned that increasing 𝑟 will incur a shift in favour of 

repowering when both options are available. For decreasing 𝑟 the opposite occurs, and the 

expected exercise time of the double option can be observed to increase faster than for 
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the repowering option suggesting a significant shift towards more life-extension exercise 

in the simulation paths.  

5.2.3 – Capacity efficiency decline, 𝜸 

From Table 5.4 it can be observed that the option value is decreasing with 𝛾 for all three 

options. This is a reasonable result because higher 𝛾 means that the turbine is degrading 

faster and, therefore, becomes less valuable; which has a higher absolute impact on the 

repowered and life-extended turbine because of the higher initial capacity efficiency. This 

is also supported by the general insights from the single-factor model.  

For the expected exercise time of the options, there are no discernible trends. For the life-

extension option the expected exercise time remains the same for all changes in 𝛾, while 

for the repowering option the expected exercise time increases slightly for both decreasing 

and increasing 𝛾. Intuitively, it makes sense that only small changes in the expected 

exercise time can observed for changes in 𝛾, because the same capacity efficiency decline 

is assumed for all states of operation. If the repowered or life-extended turbines were 

assumed to have a lower 𝛾 than currently operation turbine, one would expect investment 

to come sooner because the incentive of switching to better performing turbine would be 

stronger.  

 𝜸 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

35.069 
(+2.37 %) 

34.917 
(+1.93 %) 

34.256 
(−) 

33.150 
(−3.23 %) 

32.512 
(−5.09%) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

19.01 18.89 18.73 18.97 18.96 
 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

30.150 
(+5.18 %) 

29.203 
(+1.87 %) 

28.666 
(−) 

27.954 
(−2.48 %) 

27.262 
(−4.90 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.46 21.51 
 

21.46 21.46 21.46 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

36.121 
(+2.74 %) 

35.820 
(+1.89 %) 

35.156 
(−) 

34.508 
(−1.84 %) 

33.761 
(−3.97 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.86 
 

18.60 18.55 18.49 18.52 

Table 5.4: Option value and expected exercise time for changes in the capacity efficiency decline 

 

5.2.4 – Mean-reversion parameter, 𝜶 

From Table 5.5 it can be observed that all three option values are strongly increasing in 

𝛼. We can also observe a higher relative change from the base case for increasing 𝛼 than 

for decreasing 𝛼. These observations can be explained by the way the process of the 

electricity price is defined in the model. The price of electricity is modelled through its 

logarithm; hence the mean-reversion parameter is calibrated accordingly. In the option 

stopping values 𝛼 enters through an exponential term, which is the option values are so 

sensitive to changes in 𝛼. The observed skewness of the sensitivity is likely also a result 

of this exponential relationship, as 𝑒1.1𝛼 provides a large change from 𝑒𝛼  in absolute value 

than 𝑒0.9𝛼 does.  
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The expected exercise time can be observed to be decreasing with 𝛼 for all three options. 

This is reasonable as 𝛼 is by far the most significant parameter in determining the mean- 

reversion level of the electricity price. If this level increases, future prospects will be more 

favourable, thereby motivating earlier exercise to take advantage of this. Note, however, 

that the decrease in exercise time is almost the same when 𝛼 is increased by 10 % and 

20 %. This can largely be explained by the restrictions on the possible repowering and 

life-extension times that were discussed in Chapter 4.8, which in effect impose limitations 

on the sensitivity of the expected exercise time. 

By comparing all the options with each other, another interesting observation can be 

made. The repowering option is most sensitive to changes in 𝛼, and the double option has 

relative changes that lie between the repowering and life-extension option. Hence, 

increasing 𝛼 makes repowering more attractive relative to life-extension, while decreasing 

𝛼 has the opposite effect. This can be connected to the findings from the base case, where 

favourable market conditions resulted in earlier exercise of repowering. With high 𝛼, 

favourable market conditions become more likely. Hence, if a wind farm operator expects 

an increase in the mean-reversion level of the electricity price, he would be more inclined 

to exercise the repowering option relative to the life-extension option. If the operator 

expects a decrease in the mean-reversion level of the electricity price, the reverse will be 

the case.  

5.2.5 – Volatility of the electricity price, 𝝈 

From Table 5.6 it can be observed that the expected investment time increases with 𝜎. 

This finding is line with both the insights from the single-factor model and general real 

option studies such as Dixit and Pindyck (1994). When the future becomes more uncertain, 

waiting for more information becomes more valuable. Thus, an operator exposed to more 

uncertain electricity prices is more likely to postpone exercising his options.   

 

 𝜶 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

2.4729 
(−92.78 %) 

13.298 
(−61.18 %) 

34.256 
(−) 

71.460 
(+108.61 %) 

134.50 
(+292.63 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

22.97 20.32 18.73 17.96 17.92 
 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

3.8877 
(−86.44 %) 

12.631 
(−55.94 %) 

28.666 
(−) 

56.879 
(+98.42 %) 

106.95 
(+273.09 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.96 
 

21.66 21.46 21.42 21.41 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

4.0805 
(−88.39 %) 

14.491 
(−58.78 %) 

35.156 
(−) 

72.269 
(+105.57 %) 

135.67 
(+285.91 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.59 
 

20.00 18.55 17.80 17.77 

Table 5.5: Option value and expected exercise time for changes in the mean-reversion parameter 
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Following the general insights from the single-factor model and the discussion of Dixit and 

Pindyck (1994) we would also expect the option value to increase with 𝜎. However, as can 

be observed from Table 5.6, this is not the case for our numerical case. Instead, we find 

that changes in 𝜎 has little to no effect on the option values. From the cumulative 

probability plots presented in Chapter 5.1, it can be observed that the cumulative 

probability of option exercise within the technical lifetime is 100% for all options in our 

numerical case. The options are thereby so profitable in our numerical case that deciding 

not to exercise at any time is not optimal. This removes a significant part of the flexibility 

value of the options, as having the option not to exercise at the end of the technical lifetime 

is essentially worthless. The restriction from the technical lifetime also removes a part of 

the flexibility value of the options, as the currently operating turbine becomes worthless 

at the end of the technical lifetime and thereby forces exercise. In combination, this is 

likely why our results differ from those of Dixit and Pindyck (1994), as they consider a 

perpetual option that can be exercised at any time. It should also be noted that unlike 

Dixit and Pindyck (1994) who assumes their underlying asset values follows a GBM where 

all the volatility is encapsulated in 𝜎, the 𝜎 of our model is only the volatility of one of the 

three underlying risk factors and the mean-reversion speed of the electricity price 𝜅𝑃 limits 

the impact of the price volatility as it draws prices towards the mean-reversion level.  

5.2.6 – Correlation between electricity log price and weather factor, 𝝆 

No discernible trends can be observed for any of the three options in response to changes 

in 𝜌. For both the option values and expected time of investment, there are only very small 

changes. For this reason, the sensitivity table for 𝜌 has been excluded from this chapter, 

and instead we refer to Appendix A1 where the complete sensitivity tables for all 

parameters can be found.  

The fact that no clear trends can be observed for changes in 𝜌 does however have some 

implications for our investment problem. Since the option value and expected investment 

time is almost unaffected by the correlation between the electricity price and the weather 

factor, it might seem reasonable to exclude it from the model. Its inclusion was inspired 

by Ernstsen and Boomsma (2018), who found that negative correlation between power 

production and electricity prices resulted in lower value of generation and reduced 

 𝝈 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

34.292 
(+0.11 %) 

34.296 
(+0.12 %) 

34.256 
(−) 

34.259 
(+0.01 %) 

34.161 
(−0.28 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.48 
 

18.58 18.73 18.87 19.12 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

28.940 
(+0.96 %) 

28.560 
(−0.36 %) 

28.666 
(−) 

28.632 
(−0.12 %) 

28.451 
(−0.88 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.24 21.43 21.46 
  

21.54 
 

21.65 
 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

35.214 
(+0.16 %) 

34.710 
(−1.27 %) 

35.156 
(−) 

34.842 
(−0.89 %) 

34.916 
(−0.68 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.28 18.65 18.55 18.84 18.99 
 

Table 5.6: Option value and expected exercise time for changes in the electricity price volatility 
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investment incentives. However, the key difference that should be noted is that Ernstsen 

and Boomsma utilized hourly data. In contrast, we utilize annualized data with quarterly 

time steps in our numerical case. Hence, if we had used a shorter time-step for the 

simulations, the correlation would likely have a larger impact.  

5.2.7 – The repowering capacity factor, 𝑲𝒓 

From Table 5.7 it can be observed that all three option values are increasing with 𝐾𝑟. This 

is in line with the general insights from the single-factor model, and makes intuitively 

sense because the repowering capacity factor reflects the improvement available by 

repowering.  

 𝑲𝒓 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

30.132 
(−12.04 %) 

30.521 
(−10.90 %) 

34.256 
(−) 

38.115 
(+11.27 %) 

41.953 
(+22.47 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.12 19.13 18.73 18.37 18.08 
 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

25.848 
(−9.83 %) 

26.854 
(−6.32 %) 

28.666 
(−) 

30.233 
(+5.47 %) 

31.612 
(+10.28 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.23 
 

21.55 21.46 21.49 21.56 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

30.405 
(−13.51 %) 

31.363 
(−10.79 %) 

35.156 
(−) 

38.359 
(+9.11 %) 

42.005 
(19.48 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.89 19.31 18.55 18.30 
 

18.24 

Table 5.7: Option value and expected exercise for changes in the repowering capacity factor 

It can further be observed that the repowering option value is more sensitive to changes 

in 𝐾𝑟 than the life-extension option value is. Hence, increasing 𝐾𝑟 will make repowering 

more attractive relative to life-extension, making early exercise of the repowering option 

more likely relative to early exercise of the life-extension option when the double option 

is available. For decreasing 𝐾𝑟, this behaviour is reversed.  

The expected exercise time of the options display non-monotonic behaviour in 𝐾𝑟. For 

increasing 𝐾𝑟, the expected exercise time for the repowering and double option decreases, 

while it for the life-extension option increases. When 𝐾𝑟 is reduced 10 % from its base 

case value, the expected investment time increases for all options; however when 𝐾𝑟 is 

reduced 20 % from its base case value, the expected investment time increases for all 

option relative to their 10 % value. In addition, when 𝐾𝑟 is reduced 20 % from its base 

case value, the expected exercise time of the repowering and the life-extension options 

decreases relative to the base case, while the expected exercise time for the double option 

increases. While interesting, this make the interpretation of the expected investment time 

challenging, and developing a more comprehensive picture of the situation would likely 

require extensive simulations for a broader span of 𝐾𝑟 values. It would, however, be 

interesting to do so in order to determine if there are contradicting effects that govern 

how the expected exercise time responds to changes in 𝐾𝑟, and what the physical 

interpretation of these effects might be.  
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5.2.8 – The life-extension efficiency decline reversal factor, 𝑲𝒍 

From table 5.8, no discernible trend can be observed for any of the option values in 

response to changes in 𝐾𝑙. There is also no strong trend for the expected exercise times. 

For the life-extension option, there seems to be a weak trend toward increasing expected 

exercise time for increasing 𝐾𝑙, but the relative changes are so small that it must be 

considered insignificant when accounting for the possibility of numerical error. This is a 

surprising result at first glance, as 𝐾𝑙 represents the amount of efficiency loss that can be 

reversed by performing life-extension. Hence, we would expect the life-extension option 

value to be significantly increasing with 𝐾𝑙. However, small changes in 𝐾𝑙 affect the 

investment decision minimally for our numerical case. One possible explanation for this 

result might be that a large part of the value from the life-extension option comes from 

the repowering that follows after the extension. If so, the primary value added by life-

extension is the flexibility to postpone repowering further when market conditions are 

unfavourable.  

 𝑲𝒍 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

− 
 

− − − − 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

− − − − − 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

28.229 
(−1.52 %) 

28.537 
(−0.45 %) 

28.666 
(−) 

28.607 
(−0.21 %) 

28.651 
(−0.05 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.52 
  

21.47 21.46 21.50 21.58 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

35.133 
(−0.07 %) 

35.158 
(+0.01 %) 

35.156 
(−) 

35.196 
(+0.11 %) 

35.200 
(+0.13 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.49 18.51 18.55 18.58 18.60 
 

Table 5.8: Option value and expected exercise for changes in the life-extension efficiency decline 
reversal factor 

 

5.2.9 – Mean-reversion speed of the electricity price, 𝜿𝑷 

From Table 5.9 it can be observed a weak trend of the expected exercise time decreasing 

with 𝜅𝑃. This makes sense intuitively, because increasing mean-reversion speed for the 

electricity price implies less variation in the price, thereby making the influence of the 

price volatility less prominent. As previously discussed, less uncertainty about the future 

reduces the incentive to wait and motivates earlier exercise.  

For the option values, no discernible trend is observable. This is quite expected, both 

because the mean-reversion speed for our numerical case is quite low in absolute terms 

and because the Ornstein-Uhlenbeck process of the electricity log price is fairly insensitive 

to small absolute changes in the mean-reversion speed. Hence, for changes to the mean 

reversion speed to have any significant impact on the option values, we would expect to 

need significantly larger changes in absolute value than the small changes incurred by the 

relative changes utilized in the sensitivity analysis. Even so, we can argue qualitatively 

that we would expect increasing 𝜅𝑃 to decrease the option value for our numerical case. 
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This is because the mean-reversion level of the price is significantly below the current 

price level, thus increasing the reversion speed would cause the expected price to drop 

quicker and early market conditions to become less favourable, thereby reducing the 

expected value of option exercise.  

 

5.2.10 – Mean-reversion speed of the weather factor, 𝜿𝑼 

From Table 5.10 it can be observed a weak trend towards decreasing repowering option 

value and later expected exercise time with increasing 𝜅𝑈. For the two other options no 

such trend is discernible. We therefore reason that 𝜅𝑈 has very little effect on the option 

value and investment timing for our numerical case, which can be explained by the low 

base case reversion speed.  However, it should again be emphasized that both the 

parameter estimation and the numerical procedure provide sources of numerical error. We 

are therefore careful not to draw any strong conclusion when only weak trends are 

observable.  Intuitively, we would expect increasing 𝜅𝑈 to decrease the option values. This 

is based on the same type of argument as for the mean-reversion level of the electricity 

Table 5.9: Option value and expected exercise for changes in the electricity mean-reversion speed 

 𝜿𝑷 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

34.281 
(+0.07 %) 

34.284 
(+0.08 %) 

34.256 
(−) 

34.279 
(+0.07 %) 

33.791 
(−1.36 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

19.04 19.00 18.73 18.61 18.74 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

28.312 
(−1.24 %) 

28.405 
(−0.91 %) 

28.666 
(−) 

28.520 
(−0.51 %) 

28.832 
(+0.58 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.66 
 

21.58 21.46 21.46 21.33 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

35.266 
(+0.31 %) 

35.191 
(+0.10 %) 

35.156 
(−) 

35.147 
(−0.03 %) 

35.152 
(−0.01 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.78 18.66 18.55 18.45 18.35 
 

 𝜿𝑼 
− 𝟐𝟎 % −𝟏𝟎 % 𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆 + 𝟏𝟎 % + 𝟐𝟎 % 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

34.574 
(+0.93 %) 

34.438 
(+0.53 %) 

34.256 
(−) 

34.124 
(−0.39 %) 

34.009 
(−0.72 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.67 18.69 18.73 18.77 18.79 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

28.834 
(+0.59 %) 

28.646 
(−0.07 %) 

28.666 
(−) 

28.309 
(−1.25 %) 

28.335 
(−1.15 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.44 
 

21.48 21.46 21.54 21.52 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒄𝒉𝒂𝒏𝒈𝒆  
𝒊𝒏 𝒐𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 

35.476 
(+0.91 %) 

34.960 
(−0.56 %) 

35.156 
(−) 

34.589 
(−1.61 %) 

34.420 
(−2.09 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.47 18.70 18.55 18.80 18.83 
 

Table 5.10: Option value and expected exercise for changes in the weather factor mean-reversion 
speed 
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price; the mean-reversion level is not a favourable level. The mean-reversion level of the 

weather factor is 0, which translates into a wind speed of about 8.3 m/s for our Weibull 

parameters, which is below the rated speed of the turbine we consider. Hence, a higher 

mean-reversion speed makes it more unlikely for the turbine to operate at rated capacity, 

which makes it less profitable.   

5.3 – PPA analysis 

One of the objectives of this thesis is to figure out how PPAs affect the end-of-life 

investment decision for a specific wind farm. To analyse this, we have run simulations 

where we have allowed Υ, the the fraction of energy that is sold through PPAs, to vary.  

Recall that Υ = 0 equates to all energy being sold through PPAs, while Υ = 1 equates to all 

energy being sold through the spot market (which is the baseline case). Thus, decreasing 

Υ means increasing fraction of PPA. The simulations results are presented in Table 5.11 

below.  

 

From the table it can be observed that the option values are decreasing with Υ, which is 

most likely caused by the risk premium the operator pays for the contract. By increasing 

the fraction of energy sold through PPAs, the total amount of risk premiums paid increases 

and, thereby, the expected option values are reduced. Recall from Chapter 2.3.2 that PPAs 

reduce the price risk and thereby reduce the cost of capital for the wind farm. Based on 

the sensitivity analysis on 𝑟 presented in Chapter 5.2.2, we can conclude that this will 

have a positive impact on the option values. This effect is, however, not reflected in the 

table above, as 𝑟 has been kept constant for all PPA fractions. An appropriate way to 

include the dependence of 𝑟 on Υ in the model, would be to express 𝑟 as a linear function 

on the form  

𝑟 = 𝑟𝑓 + 𝑟𝑝 + Υ𝑟𝑒𝑙, 

where 𝑟𝑒𝑙  is the risk-premium related to the electricity price risk and 𝑟𝑝 is the risk-premium 

related to the remaining risk of the project. We have, however, chosen not to include this 

in our PPA analysis for two reasons. The first is that since we observe that Υ and 𝑟 have 

 𝚼 
𝟏. 𝟎 

(𝑩𝒂𝒔𝒆 𝒄𝒂𝒔𝒆) 
𝟎. 𝟕𝟓 𝟎. 𝟓 𝟎. 𝟐𝟓 𝟎. 𝟎 

 
𝑹𝒆𝒑𝒐𝒘𝒆𝒓𝒊𝒏𝒈 

𝑶𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 
[𝑴𝑵𝑶𝑲] 

34.256 
 

33.215 
(−3.04 %) 

32.379 
(−5.48 %) 

31.616 
(−7.71 %) 

30.917 
(−9.75 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.73 18.54 18.22 17.99 17.89 

 
𝑳𝒊𝒇𝒆
− 𝒆𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏 

𝑶𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 
[𝑴𝑵𝑶𝑲] 

28.666 
 

28.188 
(−1.67 %) 

27.784 
(−3.08 %) 

27.030 
(−5.71 %) 

26.551 
(−7.38 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

21.46 21.20 21.10 21.07 21.06 

 
𝑫𝒐𝒖𝒃𝒍𝒆 𝒐𝒑𝒕𝒊𝒐𝒏 

𝑶𝒑𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 
[𝑴𝑵𝑶𝑲] 

35.156 
 

33.864 
(−3.67 %) 

33.248 
(−5.43 %) 

32.295 
(−8.14 %) 

31.454 
(−10.53 %) 

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒆𝒙𝒆𝒓𝒄𝒊𝒔𝒆 
𝒕𝒊𝒎𝒆 [𝒚𝒆𝒂𝒓𝒔] 

18.55 18.53 18.09 18.08 18.07 

Table 5.11: Option values and expected exercise time for different PPA-fractions 
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competing effects on the options, it would make it difficult to disentangle the effect of each 

parameter on the result when considered together. To perform meaningful sensitivity 

analysis, we therefore need to consider Υ and 𝑟 in isolation. The second reason is that 

even if we did consider both simultaneously, the results would heavily depend on being 

able to quantify how much of the risk in the specific case we consider originates from the 

price exposure and how much originates from other sources. To do so would be both 

difficult and likely even more unreliable than regular parameter estimation.  

It can be observed that the expected time of investment is reduced when Υ increases, 

which is in line with intuition as increasing Υ reduces the uncertainty of future profit flows 

and thereby reduces the incentive to wait. This is also consistent with the results found 

for 𝜎 in Chapter 5.2.5, which seems reasonable as both reduced 𝜎 and increased Υ 

diminishes the electricity price risk. As a result, the wind farm operator is incentivised to 

exercise his end-of-life options sooner if part of future energy production can be sold 

through PPA contracts.  

Finally, it can be observed that the repowering option is more sensitive to changes in Υ 

than life-extension is. Thus, life-extension becomes more valuable relative to repowering 

as Υ decreases for our case. A further observation is that decreasing Υ will make the 

operator more likely to perform life-extension when both options are available. This is can 

be reasoned from the fact that the double option experiences the highest negative changes 

for decreasing Υ. Since life-extension has the lowest option value, this implies that the 

PPA makes life-extension more likely relative to repowering. This effect would have been 

further strengthened if 𝑟 had been adjusted for the reduction in price risk, as decreasing 

cost of capital was found to cause shift towards life-extension in Chapter 5.2.2. A final 

remark is that since the price risk exposure decreases with Υ, the exposure to favourable 

market conditions is reduced. Hence, the result of exercising the repowering option for 

favourable early market conditions in the base case becomes less prevailing when Υ is 

increased.   
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6 - Conclusions 

This thesis develops two real options models, a tractable single-factor model and a flexible 

multi-factor model, to evaluate investment in end-of-life solutions for aging wind farms. 

Our primary focus is on assessing optimal financial strategies and providing tools to aid 

wind farm operators in optimally allocating their assets. The need for proper assessment 

of end-of-life solutions will become increasingly important as the market for wind power 

continues to grow, and how well these solutions are handled will play an important role in 

the speed of this growth. By evaluating both repowering and life-extension, and by 

including uncertainty in electricity prices, production of energy, and technological 

innovation, this thesis expands on the currently existing literature. Our single-factor model 

provides general insights into the behaviour of the investment problem, while our multi-

factor model allows for evaluating specific wind farms with non-financial restrictions and 

PPAs.  

The results from the single-factor model show that the repowering and life-extension 

option values are decreasing at different rates with the cost of capital, capacity efficiency 

decline and investment cost. The option values are also increasing at different rates with 

the volatility of the profit flow, initial price level and the repowering scaling factor. 

Consequently, the specific underlying parameters will determine how attractive the two 

options are relative to one another, and parameter changes will shift this balance. 

To a large extent, the case-specific results from the multi-factor model coincide with what 

we expect from the general results of the single-factor model. For the case study 

considered, we find the value of having the option to repower or life-extend the wind farm 

to be 34.25 MNOK and 28.67 MNOK, respectively. For a wind farm operator with a brand 

new wind farm, the option to repower is expected to be exercised after 18.73 years, while 

the option to life-extend is expected to be exercised after 21.46 years. If the operator has 

both options available, the value of this double option is found to be 35.16 MNOK and the 

expected exercise time to be 18.15 years. We also find that all options will be exercised 

before or at the end of the technical lifetime; which implies that the repowering and life-

extension options are very attractive, and as assumed, decommissioning is not 

economically viable for the case.  

From conducting sensitivity analysis on the case study, we find that the optimal decision 

for the wind farm operator depends on how the market conditions develop throughout the 

lifetime of the wind farm. For favourable early market conditions, such as high electricity 

prices and production, the option to repower is preferable and will be exercised. For 

moderate early market conditions, the operator prefers to wait and see which way the 

market develops; while for unfavourable market conditions, such as low electricity prices 

and production, the operator will wait for the life-extension option to become available 

and exercise it optimally within the remaining lifetime of the wind farm. Finally, we find 

that the option values are decreasing with the fraction of energy sold through PPA 

contracts. Simultaneously, the operator is expected to exercise his options earlier, as the 

PPA reduces the exposure to electricity price risk. In addition, less exposure to market 

conditions makes the result of preferring the repowering option for favourable early market 

conditions less prevailing. All these findings are, however, contingent on the case-specific 

assumptions and conditions, and cannot readily be generalized. 
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7 - Discussion 

Before delving into the broader context of our results and interesting directions for further 

research of our investment topic, we feel it appropriate to make some remarks on our 

methodology and how it could be improved upon for future applications of the model. For 

several of the parameters considered in the sensitivity analysis of our numerical case, 

there were weak or undiscernible trends. This might have been a result of only including 

four divergence points from the base case. Conducting a more comprehensive sensitivity 

analysis with a larger range of variation from the base case, before regressing the results 

to evaluate the statistical significance of trends, would likely provide a more accurate 

picture of the option behaviour. The computational time required to do so would however 

have made this infeasible considering the limited time available for our thesis, but for 

future applications of our model it should be remarked that this can be beneficial to provide 

more comprehensive results. Even though we deliberately omitted political subsidy 

schemes, as was discussed in Chapter 2.3.3, we can make a qualitative argument for how 

its inclusion could have affected the results. With the tendency of existing subsidies being 

retracted, one would expect repowering to become significantly more valuable relative to 

life-extension close to the retraction deadline. The reason why being that repowering 

would make the wind farm eligible for the subsidy scheme, if performed before the 

deadline, while life-extension would not. For the Norwegian TCG scheme, this deadline is 

set at the end of 2021, hence if the Norwegian wind farm we considered in our numerical 

case was already relatively close to its expected lifetime this could have had interesting 

implications.    

Considering a broader context than the wind farm operator, our modelling results can also 

have interesting implications for other stakeholders in wind power. Such stakeholders 

include for instance policy makers, capital investors and competing power producers. A 

policy maker might for instance, motivated by improving the stability of the national power 

grid by having a larger amount of more reliable and technologically advanced wind turbines 

in the power mix, utilize the modelling results to devise new policies that make repowering 

more attractive relative to life-extension for wind farm operators. Capital investors might 

naturally use the models to estimate how the option values affect the expected value of 

wind projects they consider investing in, and competing power producers might use the 

modelling results to better predict how wind farms will affect their future competitive 

strength.  

Next, considering interesting extensions to our model and scientific study, the first that 

comes to mind is applying the multi-factor model to an offshore wind farm case study. 

This case study might provide useful insights into the end-of-life investment decisions for 

offshore wind farms, and could also make an interesting comparison for an onshore case. 

A more involved extension would be to model the technological innovation in a more 

elaborate way, as capturing the real stochastic characteristics of innovation through a 

model is a very extensive and complicated topic. Considering that the end-of-life option 

values and behaviour rely significantly on technological innovation, this could provide 

some very interesting results. Yet another extension would be to incorporate 

decommissioning more explicitly through the inclusion of some stochastic restriction, and 

attempt to estimate the probability of this restriction being imposed and how this affects 

the end-of-life options.  Because the decision to decommission usually is based on some 
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form of restriction, such as lack of capital or legal concession, it would be interesting to 

model decommissioning as a distinct option if one is able to predict these restrictions. 

As discussed in Chapter 1, wind power is expected to become one of the dominant energy 

sources in the future global energy markets. A natural consideration that then arise is how 

a larger amount of wind power in the energy mix affects the profitability of individual wind 

farms and their end-of-life options. It can be reasoned qualitatively that this increase in 

market share will significantly increase the negative correlation between the wind speed 

and price of electricity, as a larger part of the market supply depends on the wind speed. 

From this, it can be reasoned that individual wind farms will face reducing revenues as 

their production peaks to a large degree aligns with an increasing number of other wind 

farms. An interesting extension to our model would therefore be the application of game 

theory, to determine how competition from other wind farms, and other power producers 

in general, affect the investment problem. See Huberts et al. (2015) for a review of how 

game theory is considered in the real options literature.   
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Appendix 

 
Appendix A1 – Complete sensitivity tables  

Table A.1: Sensitivity analysis of model input parameters for the option to repower 

Change from  
base                       
case 

Parameter  

 
−𝟐𝟎% 

 
 

 
−𝟏𝟎% 

 
 

 
Bae case 

 
 

 
+𝟏𝟎%  

 
 

 
+𝟐𝟎% 
 

 

[𝑀𝑁𝑂𝐾] 

𝑿𝟎 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years]  

32.650 
(−4.69 %) 

33.459 
(−2.33 %) 

34.256 35.102 
(+2.47 %) 

36.049 
(+5.23 %) 

19.12 18.91 18.73 18.55 18.36 

[𝑀𝑁𝑂𝐾] 

𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years]  

44.782 
(+30.73 %) 

39.187 
(+14.39 %) 

34.256 29.974 
(−12.50 %) 

26.157 
(−23.64 %) 

19.39 18.98 18.73  18.53 18.44 
 

[𝑀𝑁𝑂𝐾] 

𝜸 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

35.069 
(+2.37 %) 

34.917 
(+1.93 %) 

34.256 33.150 
(−3.23 %) 

32.512 
(−5.09%) 

19.01 18.89 18.73 18.97 18.96 
 

[𝑀𝑁𝑂𝐾] 

𝜶 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

2.4729 
(−92.78 %) 

13.298 
(−61.18 %) 

34.256 71.460 
(+108.61 %) 

134.50 
(+292.63 %) 

22.97 20.32 18.73 17.96 17.92 
 

[𝑀𝑁𝑂𝐾] 

𝝈 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

34.292 
(+0.11 %) 

34.296 
(+0.12 %) 

34.256 34.259 
(+0.01 %) 

34.161 
(−0.28 %) 

18.48 
 

18.58 18.73 18.87 19.12 

[𝑀𝑁𝑂𝐾] 

𝝆 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

34.287 
(+0.09 %) 

34.298 
(+0.12 %) 

34.256 34.227 
(−0.08 %) 

34.148 
(−0.32 %) 

18.83 18.74 18.73 18.72 18.78 
 

[𝑀𝑁𝑂𝐾] 

𝑲𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

30.132 
(−12.04 %) 

30.521 
(−10.90 %) 

34.256 38.115 
(11.27 %) 

41.953 
(+22.47 %) 

18.12 19.13 18.73 18.37 18.08 
 

[𝑀𝑁𝑂𝐾] 

𝜿𝑷 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

34.281 
(+0.07 %) 

34.284 
(+0.08 %) 

34.256 34.279 
(+0.07 %) 

33.791 
(−1.36 %) 

19.04 19.00 18.73 18.61 18.74 

[𝑀𝑁𝑂𝐾] 

𝜿𝑼 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

34.574 
(+0.93 %) 

34.438 
(+0.53 %) 

34.256 34.124 
(−0.39 %) 

34.009 
(−0.72 %) 

18.67 18.69 18.73 18.77 18.79 
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Table A.2: Sensitivity analysis of model input parameters for the option to perform life-extension 

       Change from  
base                      
 case 

Parameter  

−𝟐𝟎% 
 

[MNOK] 
 

−𝟏𝟎% 
 

[MNOK] 

Base case 
 

[MNOK] 

+𝟏𝟎% 
 

[MNOK] 

+𝟐𝟎% 
 

[MNOK] 

[𝑀𝑁𝑂𝐾] 

𝑿𝟎 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years]  

28.453 
(−0.74 %) 

28.557 
(−0.38 %) 

28.666 28.769 
(+0.36 %) 

28.868 
(+0.70 %) 

21.47 21.46 21.46 21.45 21.45 

[𝑀𝑁𝑂𝐾] 

𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

40.650 
(+41.81 %) 

34.230 
(+19. 41 %) 

28.666 
 

24.045 
(−16.12 %) 

20.230 
(−29.43 %) 

21.65 21.49 
 

21.46 21.43 21.41 

[𝑀𝑁𝑂𝐾] 

𝜸 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

30.150 
(+5.18 %) 

29.203 
(+1.87 %) 

28.666 27.954 
(−2.48 %) 

27.262 
(−4.90 %) 

21.46 21.51 
 

21.46 21.46 21.46 

[𝑀𝑁𝑂𝐾] 

𝜶 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

3.8877 
(−86.44 %) 

12.631 
(−55.94 %) 

28.666 
 

56.879 
(+98.42 %) 

106.95 
(+273.09 %) 

21.96 
 

21.66 21.46 21.42 21.41 

[𝑀𝑁𝑂𝐾] 

𝝈 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

28.940 
(+0.96 %) 

28.560 
(−0.36 %) 

28.666 28.632 
(−0.12 %) 

28.451 
(−0.88 %) 

21.24 21.43 21.46 21.54 21.65 

[𝑀𝑁𝑂𝐾] 

𝝆 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

28.686 
(+0.07 %) 

28.499 
(−0.58 %) 

28.666 28.692 
(+0.09 %) 

28.581 
(−0.30 %) 

21.48 
 

21.52 21.46 21.47 21.46 

[𝑀𝑁𝑂𝐾] 

𝑲𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

25.848 
(−9.83 %) 

26.854 
(−6.32 %) 

28.666 30.233 
(+5.47 %) 

31.612 
(+10.28 %) 

21.23 
 

21.55 21.46 21.49 21.56 

[𝑀𝑁𝑂𝐾] 

𝑲𝒍 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

28.229 
(−1.52 %) 

28.537 
(−0.45 %) 

28.666 28.607 
(−0.21 %) 

28.651 
(−0.05 %) 

21.52 
  

21.47 21.46 21.50 21.58 

[𝑀𝑁𝑂𝐾] 

𝜿𝑷 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

28.312 
(−1.24 %) 

28.405 
(−0.91 %) 

28.666 28.520 
(−0.51 %) 

28.832 
(+0.58 %) 

21.66 
 

21.58 21.46 21.46 21.33 

[𝑀𝑁𝑂𝐾] 

𝜿𝑼 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

28.834 
(+0.59 %) 

28.646 
(−0.07 %) 

28.666 28.309 
(−1.25 %) 

28.335 
(−1.15 %) 

21.44 
 

21.48 21.46 21.54 21.52 
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Table A.3: Sensitivity analysis for the double option to repower or perform life-extension 

       Change from 
base                      
case 

Parameter  

 
−𝟐𝟎% 

 
 

 
−𝟏𝟎% 

 
 

 
Base 
case 

 
 

 
+𝟏𝟎% 

 
 

 
+𝟐𝟎% 

 
 

[𝑀𝑁𝑂𝐾] 

𝑿𝟎 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years]  

33.664 
(−4.24 %) 

34.366 
(−2.25 %) 

35.156 35.900 
(+2.11 %) 

36.830 
(+4.76 %) 

18.93 18.74 18.73 18.37 18.19 

[𝑀𝑁𝑂𝐾] 

𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠] 

46.065 
(+31.03 %) 

39.944 
(+13.62 %) 

35.156 
 

30.683 
(−12.72 %) 

26.469 
(−24.63 %) 

19.42 
 

19.06 18.55 18.31 18.30 

[𝑀𝑁𝑂𝐾] 

𝜸 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

36.121 
(+2.74 %) 

35.820 
(+1.89 %) 

35.156 
 

34.508 
(−1.84 %) 

33.761 
(−3.97 %) 

18.86 
 

18.60 18.55 18.49 18.52 

[𝑀𝑁𝑂𝐾] 

𝜶 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

4.0805 
(−88.39 %) 

14.491 
(−58.78 %) 

35.156 
 

72.269 
(+105.57 %) 

135.67 
(+285.91 %) 

21.59 
 

20.00 18.55 17.80 17.77 

[𝑀𝑁𝑂𝐾] 

𝝈 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

35.214 
(+0.16 %) 

34.710 
(−1.27 %) 

35.156 
 

34.842 
(−0.89 %) 

34.916 
(−0.68 %) 

18.28 18.65 18.55 18.84 18.99 
 

[𝑀𝑁𝑂𝐾] 

𝝆 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

35.254 
(+0.28 %) 

34.831 
(−0.92 %) 

35.156 
 

34.711 
(−1.27 %) 

34.773 
(−1.09 %) 

18.55 18.75 18.55 18.75 18.75 
 

[𝑀𝑁𝑂𝐾] 

𝑲𝒓 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

30.405 
(−13.51 %) 

31.363 
(−10.79 %) 

35.156 
 

38.359 
(+9.11 %) 

42.005 
(19.48 %) 

18.89 19.31 18.55 18.30 
 

18.24 

[𝑀𝑁𝑂𝐾] 

𝑲𝒍 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
 𝑡𝑖𝑚𝑒, in years] 

35.133 
(−0.07 %) 

35.158 
(+0.01 %) 

35.156 35.196 
(+0.11 %) 

35.200 
(+0.13 %) 

18.49 18.51 18.55 18.58 18.60 
 

[𝑀𝑁𝑂𝐾] 

𝜿𝑷 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

35.266 
(+0.31 %) 

35.191 
(+0.10 %) 

35.156 
 

35.147 
(−0.03 %) 

35.152 
(−0.01 %) 

18.78 18.66 18.55 18.45 18.35 
 

[𝑀𝑁𝑂𝐾] 

𝜿𝑼 
 

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒  
𝑡𝑖𝑚𝑒, in years] 

35.476 
(+0.91 %) 

34.960 
(−0.56 %) 

35.156 
 

34.589 
(−1.61 %) 

34.420 
(−2.09 %) 

18.47 18.70 18.55 18.80 18.83 
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Appendix A2 – Derivations for the single-factor model 

 

A2.1 - The net operating profit margin 

The net operating profit margin can be expressed as 

𝐺𝑡 = 𝑔𝑡𝑒
−𝛾𝑡, 

where 𝑔𝑡 follows geometric Brownian motion on the form 

𝑑𝑔𝑡 = 𝛼𝑔𝑡𝑑𝑡 + 𝜎𝑔𝑡𝑑𝑍. 

The partial derivatives of 𝐺𝑡 can then be found as 

 
𝜕𝐺

𝜕𝑡
= −𝛾𝑔𝑡𝑒

−𝛾𝑡, 
𝜕𝐺

𝜕𝑔
= 𝑒−𝛾𝑡 and 

𝜕2𝐺

𝜕𝑔2
= 0. 

Using Ito’s lemma to expand 𝑑𝐺𝑡  yields 

𝑑𝐺𝑡 = 
𝜕𝐺

𝜕𝑡
𝑑𝑡 +

𝜕𝐺

𝜕𝑔
𝑑𝑔 +

1

2

𝜕2𝐺

𝜕𝑔2
(𝑑𝑔)2. 

Inserting the expression for 𝑑𝑔𝑡 and the partial derivatives of 𝐺𝑡 results in 

𝑑𝐺𝑡 = −𝛾𝑔𝑡𝑒
−𝛾𝑡𝑑𝑡 + 𝑒−𝛾𝑡(𝛼𝑔𝑡𝑑𝑡 + 𝜎𝑔𝑡𝑑𝑍) = (𝛼 − 𝛾)𝑔𝑡𝑒

−𝛾𝑡𝑑𝑡 + 𝜎𝑔𝑡𝑒
−𝛾𝑡𝑑𝑍 

= (𝛼 − 𝛾)𝐺𝑡𝑑𝑡 + 𝜎𝐺𝑡𝑑𝑍 ∎ 

 

A2.2 – The repowering option value 

For the repowering option we can define the optimal stopping problem 

𝑉𝑅 = max⏟
𝜏
{
 

 
𝐸 [∫ 𝐺𝑡𝑒

−𝑟𝑡
𝜏

𝑡=0

𝑑𝑡]
⏟          
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+  𝐸

[
 
 
 
∫ 𝐺𝑡𝑒

−𝛾𝜏𝐾𝑅𝑒
−𝑟(𝑡−𝜏)𝑑𝑡

∞

𝑡=𝜏

− 𝐼𝑅𝑒
−𝑟𝜏

⏟                      
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 ]

 
 
 

}
 

 
 

Note that the value of operating is simply the expected present value of the net operational 

profit margin from the current time until time 𝜏; while the value of repowering is the 

expected present value of the net operational profit margin of the repowered turbine from 

time 𝜏 until infinity, minus present value of the investment cost of repowering.  

The value of instant repowering, i.e. the stopping value, is then given by  

ΩR = 𝐸 [∫ 𝐾𝑅𝐺𝑡𝑒
−𝑟𝑡𝑑𝑡

∞

0

− 𝐼𝑅 | 𝐺0 = 𝐺] =  𝐾𝑅𝐺∫ 𝑒−(𝑟−(𝛼−𝛾))𝑡𝑑𝑡
∞

0

− 𝐼𝑅 
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 =  
𝐾𝑅𝐺

𝑟 − (𝛼 − 𝛾)
− 𝐼𝑅 ∎, 

where we have used the fact that 

𝐸[𝐺𝑡  | 𝐺0 = 𝐺] = 𝐺𝑒
(𝑎−𝛾)𝑡, 

and set 𝑄0 to 1. In the continuation region the Bellman equation applies, which can be 

expressed as  

 𝑟𝑉𝑅(𝐺𝑡) = G𝑡 + lim
𝑑𝑡→0

1

𝑑𝑡
𝐸[𝑑𝑉𝑅] 

Applying Ito’s lemma to expand 𝑑𝑉𝑅 results in 

𝑑𝑉𝑅 =
𝜕𝑉𝑅
𝜕𝐺

𝑑𝐺𝑡 +
1

2

𝜕2𝑉𝑅
𝜕𝐺2

(𝑑𝐺𝑡)
2. 

Using the fact that 𝑑𝐺𝑡 = (𝛼 − 𝛾)𝐺𝑡𝑑𝑡 + 𝜎𝐺𝑡𝑑𝑧, combined with the approximations 

𝑑𝑡2 ≈ 0, 𝑑𝑡 ∗ 𝑑𝑧 ~(𝑑𝑡)
3

2 ≈ 0 and (𝑑𝑧)2 = 𝑑𝑡, 

gives  

(𝑑𝐺𝑡)
2 = 𝜎2𝐺𝑡

2𝑑𝑡. 

Note that we assume that expressions with 𝑑𝑡 to the power of more than unity is zero, 

because these terms go to zero faster than 𝑑𝑡 when 𝑑𝑡 goes to zero.  

Inserting this into the expression for 𝑑𝑉𝑅 gives 

𝑑𝑉𝑅 =
𝜕𝑉𝑅
𝜕𝐺

((𝛼 − 𝛾)𝐺𝑡𝑑𝑡 + 𝜎𝐺𝑡𝑑𝑧) +
1

2

𝜕2𝑉𝑅
𝜕𝐺2

𝜎2𝐺𝑡
2𝑑𝑡. 

Inserting this into the Bellman equation, and noting that 𝐸[𝑑𝑧] = 0, results in an ODE on 

the form 

 𝑟𝑉(𝐺) = 𝐺𝑡 + (𝛼 − 𝛾)𝐺𝑡
𝜕𝑉

𝜕𝐺
+
1

2
𝜎2𝐺𝑡

2
𝜕2𝑉

𝜕𝐺2
 

=> 
1

2
𝜎2𝐺𝑡

2𝑉′′(𝐺) + (𝛼 − 𝛾)𝐺𝑡𝑉
′(𝐺) − 𝑟𝑉(𝐺) = −𝐺𝑡 

 

This differential equation can be solved by guessing a functional form of the solution to 

the homogeneous and the inhomogeneous equation. Consider first the homogeneous 

equation  
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1

2
𝜎2𝐺𝑡

2𝑉′′(𝐺) + (𝛼 − 𝛾)𝐺𝑡𝑉
′(𝐺) − 𝑟𝑉(𝐺) = 0, 

and guess the functional form 

𝑉ℎ(𝐺) = 𝐴𝐺
𝛽 => 𝑉ℎ

′(𝐺) = 𝛽𝐴𝐺𝛽−1 => 𝑉ℎ
′′(𝐺) = 𝛽(𝛽 − 1)𝐴𝐺𝛽−2 

Inserting this into the homogeneous equation yields  

1

2
𝜎2𝐺𝑡

2(𝛽(𝛽 − 1)𝐴𝐺𝛽−2) + (𝛼 − 𝛾)𝐺𝑡(𝛽𝐴𝐺
𝛽−1) − 𝜌𝐴𝐺𝛽 = 0 

=> 𝐺𝛽𝐴(
1

2
𝜎2𝛽(𝛽 − 1) + (𝛼 − 𝛾)𝛽 − 𝑟) = 0 

=> 
1

2
𝜎2𝛽(𝛽 − 1) + (𝛼 − 𝛾)𝛽 − 𝑟 = 0 => 𝛽2 + (

2(𝛼 − 𝛾)

𝜎2
− 1)𝛽 −

2𝑟

𝜎2
= 0  

=> 𝛽1,2 = (
1

2
−
(𝛼 − 𝛾)

𝜎2
) ± √(

(𝛼 − 𝛾)

𝜎2
−
1

2
)
2

+ 
2𝑟

𝜎2
 

𝑉ℎ(𝐺) = 𝐴1𝐺
𝛽1 + 𝐴2𝐺

𝛽2 is therefore a homogeneous solution. From this expression, it can 

be observed that 𝛽1 > 1 𝑎𝑛𝑑 𝛽2 < 0. 

Making a practical observation, one can infer that the option to repower is worthless if the 

operational profit flow is zero, hence 𝑉𝑅 → 0 for 𝑔𝑡 → 0. This is simply a property of the 

GBM of 𝐺𝑡. Because 𝑑𝐺𝑡 depends on 𝐺𝑡, 𝐺𝑡 will stay at zero if it reaches zero, hence the 

option would be worthless at this point.  

Since 𝛽2 < 0, 𝐴2 will have to be zero. If this was not the case, the option value function 

would become very large as 𝐺𝑡 went to zero. Hence,  

𝑉ℎ(𝐺) = 𝐴1𝐺
𝛽1 = 𝐴𝐺𝛽 , 

where 

𝛽 = (
1

2
−
(𝛼 − 𝛾)

𝜎2
) + √(

(𝛼 − 𝛾)

𝜎2
−
1

2
)
2

+ 
2𝑟

𝜎2
 

Next, a particular solution is needed. Considering the inhomogeneous equation 

1

2
𝜎2𝐺𝑡

2𝑉′′(𝐺) + (𝛼 − 𝛾)𝐺𝑡𝑉
′(𝐺) − 𝑟𝑉(𝐺) = −𝐺𝑡,                                        (∗) 

guessing the functional form 

𝑉𝑝(𝐺) = 𝑏𝐺 => 𝑉𝑝
′(𝐺) = 𝑏 => 𝑉𝑝

′′(𝐺) = 0, 
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and inserting into (∗) yields  

 (𝛼 − 𝛾)𝐺𝑡𝑏 − 𝜌𝑏𝐺𝑡 = −𝐺𝑡 => (𝛼 − 𝛾)𝑏 − 𝑟𝑏 = −1  

=> 𝑏(𝛼 − 𝛾 − 𝑟) = −1 => 𝑏 =
1

𝑟 − (𝛼 − 𝛾)
 

Hence,   

𝑉𝑝(𝐺) =
𝐺

𝑟 − (𝛼 − 𝛾)
 

Finally, by combining the particular solution with the homogeneous solution the total 

solution can be expressed as  

𝑉𝑅
𝑡𝑜𝑡(𝐺) = 𝑉ℎ(𝐺) + 𝑉𝑝(𝐺) = 𝐴𝐺

𝛽 +
𝐺

𝑟 − (𝛼 − 𝛾)
  

where 𝛽 is given by 

𝛽 = (
1

2
−
(𝛼 − 𝛾)

𝜎2
) + √(

(𝛼 − 𝛾)

𝜎2
−
1

2
)
2

+ 
2𝑟

𝜎2
 

To determine the optimal investment threshold, 𝐺𝑅, and the option value parameter, 𝐴, 

boundary conditions must be applied. By using the stopping value, the boundary conditions 

for this second order differential equation can be expressed as  

𝑉𝑅
𝑡𝑜𝑡(𝐺𝑅) =  Ω𝑅 

⇒ 𝐴𝐺𝛽 + 
𝐺

𝑟−(𝛼−𝛾)
= 

𝐾𝑅𝐺

𝑟−(𝛼−𝛾)
− 𝐼𝑅                                         (Value-matching) 

and 

𝜕𝑉𝑅
𝑡𝑜𝑡

𝜕𝐺
=
𝜕Ω𝑅
𝜕𝐺

 

⇒ 𝛽𝐴𝐺𝛽−1 +
1

𝑟−(𝛼−𝛾)
= 

𝐾𝑅

𝑟−(𝛼−𝛾)
                             (Smooth-pasting)                                   

Note that the value-matching condition and the smooth-pasting condition are found by 

using the fact that the value of continuation and stopping, and their derivates, are equal 

at the boundary between the continuation and stopping region, that is at 𝐺 = 𝐺𝑅.   

Applying the first boundary condition results in 

𝑉(𝐺𝑅) =  𝐴𝐺𝑅
𝛽
+

𝐺𝑅
𝑟 − (𝛼 − 𝛾)

=  
𝐾𝑅𝐺𝑅

𝑟 − (𝛼 − 𝛾)
− 𝐼𝑅 
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=>  𝐴 = 𝐺𝑅
−𝛽
(

𝐺𝑅

𝑟−(𝛼−𝛾)
(𝐾𝑅 − 1) − 𝐼𝑅) or 𝐴𝐺𝑅

𝛽−1
= 

𝐾𝑅−1

𝑟−(𝛼−𝛾)
−
𝐼𝑅

𝐺𝑅
 

 

Applying the third boundary condition results in 

𝑉′(𝐺𝑅) =  𝛽𝐴𝐺𝑅
𝛽−1

+
1

𝑟 − (𝛼 − 𝛾)
=  

𝐾𝑅
𝑟 − (𝛼 − 𝛾)

 

=>  𝛽 (
𝐾𝑅 − 1

𝑟 − (𝛼 − 𝛾)
−
𝐼𝑅
𝐺𝑅
) +

1

𝑟 − (𝛼 − 𝛾)
=  

𝐾𝑅
𝑟 − (𝛼 − 𝛾)

=> −
𝛽𝐼𝑅
𝐺𝑅

=
𝐾𝑅 − 1

𝑟 − (𝛼 − 𝛾)
−
𝛽(𝐾𝑅 − 1)

𝑟 − (𝛼 − 𝛾)
  

=> 𝐺𝑅 = 
𝛽

(𝛽 − 1)
∗ 
𝐼𝑅(𝑟 − (𝛼 − 𝛾))

𝐾𝑅 − 1
  

For simplicity define the adjusted discount rate 𝑟∗ = 𝑟 − (𝛼 − 𝛾), and the threshold can 

then be expressed as 

𝐺𝑅 = 
𝛽

(𝛽 − 1)
∗ 

𝐼𝑅𝑟
∗

𝐾𝑅 − 1
∎ 

 

The option value can then be expressed with respect to the threshold value by inserting 

the expression for A into the option value function to find 

𝑉𝑅
𝑡𝑜𝑡(𝐺) = 𝐴𝐺𝛽 +

𝐺

𝑟∗
= 𝐺𝑅

−𝛽
(
𝐺𝑅
𝑟∗
(𝐾𝑅 − 1) − 𝐼𝑅)𝐺

𝛽 + 
𝐺

𝑟∗
 

= (
𝐺

𝐺𝑅
)
𝛽

 (
𝐺𝑅(𝐾𝑅 − 1)

𝑟∗
− 𝐼𝑅) + 

𝐺

𝑟∗
  

This expression is however the expected value of the wind farm including the repowering 

option. To isolate the value of the repowering option, one can subtract the term 
𝐺

𝑟∗
, which 

is the expected value of operating the current wind farm in perpetuity. In doing so, the 

option value is expressed as 

𝑉𝑅 = (
𝐺

𝐺𝑅
)
𝛽

 (
𝐺𝑅(𝐾𝑅 − 1)

𝑟∗
− 𝐼𝑅)∎ 

Note that this option value only holds for the continuation region. As soon as the threshold 

is hit, the option value will be equal to the stopping value.  

 

A2.3 – The life-extension option value 

For the lifetime-extension option we can define the optimal stopping problem  
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𝑉L = max⏟
𝜏

{
 
 
 

 
 
 𝐸 [∫ 𝐺𝑡𝑒

−𝑟𝑡
𝜏

𝑡=0

𝑑𝑡]
⏟          
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

+ 𝐸 [∫ 𝐺𝑡𝑒
𝛾τ𝐾𝐿𝑒

−𝑟(𝑡−𝜏)𝑑𝑡
τ+∆t

𝑡=τ

− 𝐼𝐿𝑒
−𝑟τ]

⏟                        
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

+ 𝐸

[
 
 
 
∫ 𝐺𝑡𝑒

𝛾∆t𝐾𝑅𝑒
−𝑟t𝑑𝑡

∞

𝑡=τ+∆t

− 𝐼𝑅𝑒
−𝑟(τ+∆t)

⏟                        
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑔 𝑎𝑓𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 

]
 
 
 

}
 
 
 

 
 
 

 

 

The value of instantaneous investment, i.e. the stopping value, for 𝑉𝐿 is then 

Ω𝐿 = 𝐸 [∫ 𝐺𝑡𝐾𝐿𝑒
−𝑟𝑡𝑑𝑡

∆𝑡

0

− 𝐼𝐿  | 𝐺0 = 𝐺] + 𝐸 [∫ 𝐺𝑡𝑒
𝛾∆𝑡𝐾𝑅𝑒

−𝑟𝑡𝑑𝑡
∞

∆𝑡

− 𝐼𝑅𝑒
−𝑟∆𝑡  | 𝐺0 = 𝐺] 

= 𝐾𝐿𝐺 ∫ 𝑒−(𝑟−(𝛼−𝛾))𝑡𝑑𝑡
∆𝑡

0
− 𝐼𝐿 + 𝐾𝑅𝐺𝑒

𝛾∆𝑡 ∫ 𝑒−(𝑟−(𝛼−𝛾))𝑡𝑑𝑡 − 𝐼𝑅𝑒
−𝑟∆𝑡∞

∆𝑡
, 

let 𝑟∗ = 𝑟 − (𝛼 − 𝛾), which gives 

 Ω𝐿 = 𝐾𝐿𝐺∫ 𝑒−𝑟
∗𝑡𝑑𝑡

∆𝑡

0

− 𝐼𝐿 +𝐾𝑅𝐺𝑒
𝛾∆𝑡∫ 𝑒−𝑟

∗𝑡𝑑𝑡 − 𝐼𝑅𝑒
−𝑟∆𝑡

∞

∆𝑡

 

= 𝐾𝐿𝐺 [−
1

𝑟∗
𝑒−𝑟

∗𝑡]
0

∆𝑡

− 𝐼𝐿 + 𝐾𝑅𝐺𝑒
𝛾∆𝑡 [−

1

𝑟∗
𝑒−𝑟

∗𝑡]
∆𝑡

∞

− 𝐼𝑅𝑒
−𝑟∆𝑡 

= 
𝐾𝐿𝐺

𝑟∗
(1 − 𝑒−𝑟

∗∆𝑡) − 𝐼𝐿 +
𝐾𝑅𝐺𝑒

𝛾∆𝑡

𝑟∗
𝑒−𝑟

∗∆𝑡 − 𝐼𝑅𝑒
−𝑟∆𝑡 

=
𝐺

𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡) − (𝐼𝐿 + 𝐼𝑅𝑒

−𝑟∆𝑡) 

 

In the continuation region, the situation is the same as for the repowering option. Hence, 

the general solution to the partial differential equation still holds. Combining this with the 

new stopping value, the boundary conditions for the lifetime-extension option canbe 

expressed as 

𝐴𝐺𝛽 + 
𝐺

𝑟∗
=
𝐺

𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡) − (𝐼𝐿 + 𝐼𝑅𝑒

−𝑟∆𝑡)              
 

(Value-matching) 

𝛽𝐴𝐺𝛽−1 +
1

𝑟∗
=
1

𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡) 

 

(Smooth pasting) 
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Applying the value-matching condition gives 

𝐴𝐺𝐿
𝛽 + 

𝐺𝐿
𝑟∗
= 
𝐾𝐿𝐺𝐿
𝑟∗

(1 − 𝑒−𝑟
∗∆𝑡) − 𝐼𝐿 +

𝐾𝑅𝐺𝑒
(𝛾−𝑟∗)∆𝑡

𝑟∗
− 𝐼𝑅𝑒

−𝑟∆𝑡 

=> 𝐴𝐺𝐿
𝛽−1

= 
𝐾𝐿
𝑟∗
(1 − 𝑒−𝑟

∗∆𝑡) −
𝐼𝐿
𝐺𝐿
+
𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡

𝑟∗
𝑒−𝑟

∗∆𝑡 −
𝐼𝑅𝑒

−𝑟∆𝑡

𝐺𝐿
−
1

𝑟∗
  (∗∗) 

Applying the smooth-pasting condition then gives 

𝛽𝐴𝐺𝐿
𝛽−1

+ 
1

𝑟∗
= 
𝐾𝐿
𝑟∗
(1 − 𝑒−𝑟

∗∆𝑡) +
𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡

𝑟∗
 

=>⏞
(∗∗)

 𝛽 (
𝐾𝐿
𝑟∗
(1 − 𝑒−𝑟

∗∆𝑡) −
𝐼𝐿
𝐺𝐿
+
𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡

𝑟∗
−
𝐼𝑅𝑒

−𝑟∆𝑡

𝐺𝐿
−
1

𝑟∗
  ) +

1

𝑟∗
= 
𝐾𝐿
𝑟∗
(1 − 𝑒−𝑟

∗∆𝑡) 

+
𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡

𝑟∗
 

=>
(𝛽 − 1)

𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡 − 1) =

𝛽

𝐺𝐿
(𝐼𝐿+𝐼𝑅𝑒

−𝑟∆𝑡) 

=> 𝐺∗ = 
𝛽

(𝛽 − 1)

𝑟∗(𝐼𝐿+𝐼𝑅𝑒
−𝑟∆𝑡)

(𝐾𝐿(1 − 𝑒
−𝑟∗∆𝑡) + 𝐾𝑅𝑒

(𝛾−𝑟∗)∆𝑡 − 1) 
 

=> 𝑉𝐿
𝑡𝑜𝑡(𝐺) = (

𝐺

𝐺𝐿
)
𝛽

(
𝐺𝐿
𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡 − 1) − (𝐼𝐿 + 𝐼𝑅𝑒

−𝑟∆𝑡)) +
𝐺

𝑟∗
, 

which is the total value of the wind farm. By subtracting the term 
𝐺

𝑟∗
, which is the expected 

value of operating the current turbine in perpetuity, the life-extension option value can be 

isolated as  

𝑉𝐿(𝐺) = (
𝐺

𝐺𝐿
)
𝛽

(
𝐺𝐿
𝑟∗
(𝐾𝐿(1 − 𝑒

−𝑟∗∆𝑡) + 𝐾𝑅𝑒
(𝛾−𝑟∗)∆𝑡 − 1) − (𝐼𝐿 + 𝐼𝑅𝑒

−𝑟∆𝑡))∎ 
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Appendix A3 – Derivations for the multi-factor model 

 

A3.1 – Expected value of wind power production 

The expected value of the wind farm power output can be expressed as 

𝐸[ℎ(𝑓(𝑈𝑡)) | 𝑈0]  

Recall that the weather factor 𝑈𝑡 follows an Ornstein-Uhlenbeck process on the form 

𝑑𝑈𝑡 = −𝜅𝑈𝑈𝑡𝑑𝑡 + √2𝜅𝑈𝑑𝑍𝑈, 

hence the first two moments can be expressed as 

𝐸[𝑈𝑡  |𝑈0] = 𝑈0𝑒
−𝜅𝑈𝑡 

𝑉𝑎𝑟[𝑈𝑡  | 𝑈0] = 1 − 𝑒
−2𝜅𝑈𝑡. 

Utilizing lemma 4.B.1 from Ernstsen and Boomsma (2018), and defining a general function 

for ℎ on the interval (𝑢0, 𝑢1) on the form 

ℎ(𝑢) = (𝑎𝑢 + 𝑏)|𝑢 𝜖 (𝑢0,𝑢1), 

we can then express 

𝐸[ℎ(𝑈)] = (𝑎𝜉 + 𝑏)(Φ(
𝑢1 − 𝜉

𝜎𝑢
) − Φ(

𝑢0 − 𝜉

𝜎𝑢
)) + 

𝑎𝜎𝑢

√2𝜋
(𝑒

−
(𝑢0−𝜉)

2

2𝜎𝑢
2
− 𝑒

−
(𝑢1−𝜉)

2

2𝜎𝑢
2
) , 

where 𝜉 = 𝜇𝑢. 

 

Recall that the turbine power output follows the process 

ℎ(𝑓(𝑢)) = {

0                                                      𝑖𝑓 𝑢 < 𝑢0 𝑜𝑟 𝑢 > 𝑢2
ℎ12(𝑢 − 𝑢0)/(𝑢1 − 𝑢0)                      𝑖𝑓 𝑢0 < 𝑢 < 𝑢1
ℎ12                                                           𝑖𝑓 𝑢1 < 𝑢 < 𝑢2

,                

 

We must therefore use the process described above to determine 𝐸[ℎ(𝑈)] for each of the 

four intervals (𝑢 < 𝑢0), (𝑢0, 𝑢1), (𝑢1, 𝑢2) and (𝑢 > 𝑢2). However, as ℎ(𝑓(𝑢)) = 0 on (𝑢 < 𝑢0) and 

(𝑢 > 𝑢2), the expected value of 𝐸[ℎ(𝑈)] on these intervals can immediately be observed to 

be zero. Combining the expressions for 𝐸[ℎ(𝑈)] on each interval by utilizing lemma 4.B.3 

from Ernstsen and Boomsma, we find that  
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𝐸[ℎ(𝑓(𝑈))] = ℎ12 (Φ(
𝑢2 − 𝜉

𝜎𝑢
) − Φ(

𝑢1 − 𝜉

𝜎𝑢
)) + 

𝜎𝑢ℎ12

√2𝜋(𝑢1 − 𝑢0)
(𝑒

−
(𝑢0−𝜉)

2

2𝜎𝑢
2
− 𝑒

−
(𝑢1−𝜉)

2

2𝜎𝑢
2
)

+
(𝜉 − 𝑢0)ℎ12
𝑢1 − 𝑢0

(Φ(
𝑢1 − 𝜉

𝜎𝑢
) − Φ(

𝑢0 − 𝜉

𝜎𝑢
)) , 

where 𝜉 = 𝑈0𝑒
−𝜅𝑈𝑡 and 𝜎𝑈 = √1 − 𝑒

−2𝜅𝑈𝑡. 
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