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Abstract

The in-game betting market for FA English Premier League matches is rapidly increasing in
value. As in all financial markets, the ability to generate positive returns on investments in such
a market is to a large extent dependent upon the quality of information about future events and
a proper wealth allocation strategy. This thesis is written in collaboration with Sportradar AG,
a provider of prediction services to suppliers of odds in the sports betting market. With the
aim of improving these predictions, the performance of a set of generated prediction models is
compared.

Models for the scoreline distribution and the 1X2 distribution are generated for two different
architectures. The first architecture is based on a long short-term memory network, while the
other relies on the Weibull count distribution (McShane et al., 2008) where the Frank copula
is used to model dependence between the goal processes of the opposing teams. The models
are trained by minimization of the cross entropy, which coincides with a maximum likelihood
approach. The comparisons are conducted in an attempt to determine the relative performance of
a parametric count distribution and a complex black box algorithm motivated by the hypothesis
that the former is overly restrictive for the purpose at hand. Furthermore, comparisons are made
between the scoreline models and their 1X2 equivalents to test the hypothesis that knowledge of
the scoreline distribution is of the essence when modelling the 1X2 distribution.

The results suggest that all models perform similarly on the 1X2 distribution according to both
the accuracy score and cross entropy, with the best scores obtained by any model on these metrics
being 0.5783 and 0.9423 respectively. The models based on the Weibull count distribution per-
form slightly better than the long short-term memory networks with respect to both the accuracy
score and the cross entropy when considering the overall performance during an entire match.
The ranked probability score strongly indicates the opposite and the long short-term memory
models have significantly better predictive performance when taking the ordinal structure of
scorelines into account.

The betting performance of the generated models is also evaluated subject to theoretically sound
wealth allocation strategies. One of these is a dynamic Kelly betting strategy proposed by the
authors, while the other is used as a means to test the static predictive performance of the
models and to serve as a benchmark for the dynamic strategy. The results from the static
strategy indicate that all models are able to generate positive returns for certain partial Kelly
parameters in some stages of a football match. The best model combined with the most risk-
averse partial Kelly strategy frequently generate returns of up to 15%, indicating good potential
in the estimated probabilities. The dynamic strategy provides higher and more volatile results
than comparable results from the static strategy, where a Kelly fraction of 0.05 combined with one
of the Weibull count distribution models provides a return of 30%. However, neither combination
of strategy and predictive model is able to consistently generate positive returns.
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Sammendrag

Den samlede verdien på markedet for live-betting på kamper i FA English Premier League øker
raskt. For å kunne tjene penger i et slikt marked trenger man, som i alle finansielle markeder,
pålitelig informasjon on fremtidige hendelser og gode investeringsstrategier. Denne oppgaven er
skrevet i samarbeid med Sportradar AG, som tilbyr prediksjonstjenester til tilbydere av odds i
sportsmarkeder. Med et mål om å forbedre disse prediksjonene blir et sett av prediksjonmodeller
generert og evaluert.

Modeller av den bivariate scoringsdistribusjonen og HUB-distribusjonen er generert fra to ulike
arkitekturer. Den første arkitekturen er basert på et long short-term memory-nettverk og den
andre bygger på Weibull count-distribusjonen (McShane et al., 2008). I denne arkitekturen
brukes Frank copula for å modellere avhengigheten mellom scoringsprosessene til to motstandere.
Alle modellene er trent ved å minimere cross entropy, som er sammenfallende med maximum
likelihood-estimering. Sammenligninger mellom modellene er gjort for å avgjøre om det er best å
benytte en parametrisk distribusjon eller en kompleks black-box-metode. Dette er motivert av en
hypotese om at det første alternativet medfører unødvendige restriktjoner på læringsprosessen. I
tillegg sammenlignes ytelsen til scoringsmodellene og HUB-modellene for å teste om informasjon
om scoringsdistribusjonen er essensiell for å modellere HUB-distribusjonen nøyaktig.

Resultatene tyder på at alle modellene har nesten lik prediksjonsevne basert på både cross entropy
og accuracy score når de måles på HUB-distribusjonen. De beste resultatene som observeres er
henholdsvis 0.9423 og 0.5783. Modellene som er basert på Weibull count-distribusjonen har gjen-
nom hele kampen generelt litt bedre ytelse enn de andre modellene, når ytelsen måles ut fra cross
entropy og accuracy score. Ranked probability score sier at long short-term memory-modellene
er signifikant best hvis man tar hensyn til den ordinale strukturen i scoringsdistribusjonen.

Betting-resultatene for de ulike modellene er basert på gode, teoretiske investeringsstrategier.
En av disse er en dynamisk Kelly-strategi foreslått av forfatterene. Den andre er en strategi
som brukes for å teste den statiske ytelsen til modellene og for å være en referanse for den
dynamiske strategien. De statiske resultatene indikerer at alle prediksjonsmodellene genererer
positiv avkastning i enkelte tidspunkt av kampene ved bruk av partial-Kelly strategier. Den beste
modellen kombinert med en risiko-avers partial-Kelly strategi genererer ofte avkastning opp mot
15% og indikerer dermed at potensialet i prediksjonene er godt. Den dynamiske strategien gir
høyere og mer volatil avkastning enn den statiske. Ved å bruke en partiell Kelly-parameter på
0.05 og sannsynligheter fra en av Weibull distribusjons-modellene ga den 30% avkastning med
en akseptabelt lav volatilitet. Det er likevel ingen kombinasjon av prediksjonmodell og strategi
som konsekvent gir positiv avkastning.
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Terminology

Term Description

Class, label Dependent variable, response variable, possible outcomes
Features Covariates, independent variables, explanatory variables

Training Estimation of parameters in a distribution - learning, fitting
Validation Estimation of the test performance of candidate models
Evaluation Estimation of the general inductive power of the final models

Training set/sample Data set/sample used to train candidate models
Validation set/sample Data set/sample used for model selection
Test set/sample Data set/sample used to evaluate the final models
Hold-out data Data independent from that in the training set;

hold-out= valid
⋃
test

Match A single football game between two opposing teams
Scoreline The joint number of goals scored in a match
1X2 The winner of a match (1 = home, X = draw, 2 = away)
Kick-off The moment at which a match begins
Pre-game The moment right before kick-off
Full-time The moment at which the match ends
In-game The open time interval between kick-off and full-time
Live-odds Odds available in-game
Lineup The 11 players starting for a team in a football match

ANN Artificial neural networks
RNN Recurrent artificial neural networks
LSTM Long short-term memory

First set of terms frequently used in this thesis.
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Term Description

i.i.d. Independent and identically distributed
Univariate One-dimensional random variable
Multivariate Multi-dimensional random variable
pdf Probability density function
cdf Cumulative probability density function
Count distribution Probability distribution for the number of arrivals

in some time interval
Maximum likelihood Paradigm for statistical parameter estimation
Likelihood function Loss function in maximum likelihood paradigm with

respect to some pdf
Log-likelihood Logarithm of the likelihood-function
Architecture Framework, idea used for generating models
Model Estimator based on architecture, data and scientific process

Binary classification Classification with only two possible outcomes
Multiclass classification Classification with more than two possible outcome
Ordinal Inherent structure in the classes - not pairwise equidistant
Nominal Complement of ordinal - all classes are equally similar
Multinomial classification Multiclass nominal classification

Prediction model, classifier Regression model for some probability distribution
Football prediction model Prediction model for some type of outcome of football matches

Second set of terms frequently used in this thesis.
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Chapter 1

Introduction

"The gambling known as business looks with austere disfavor upon the business known
as gambling." - Ambrose Bierce

This statement (Bierce and Ford, 2010) refers to the statistical advantage held by suppliers of
money games in the case of perfect information about probabilities, as well as the lure of these
games to the human mind. In this scenario, gamblers know of their negative expected return
at the time of wagering. Nevertheless, they happily place their money in such games. Ever
since Bernoulli introduced the St.Petersburg Paradox in 1738, investors are often assumed to
be risk averse (Hayden and Platt, 2009). The course of action mentioned above breaks with
this assumption if one ignores the utility of the act of gambling itself. Thus, despite the no fun
in gambling axiom (von Neumann and Morgenstern, 1944), there must be at least some fun in
gambling (Kusyszyn, 1984; Griffiths, 1990; Wood and Griffiths, 2008).

When no party holds perfect information about the probabilities of the game, the expected value
of a wager is not defined. As sports betting contracts fall into this category, it introduces the
requirement of accurate probability estimates. Additionally, the value of the global betting mar-
ket is expected to reach USD 253 bn by 2020 (BusinessWire, 2016). Due to the considerable
technological advances in recent years, the accessibility and thus the revenue of online betting
platforms is rapidly increasing. In the European betting market, online sports betting accounts
for 37% of the revenue, a figure increasing by the minute (Killick and Griffiths, 2018). When
combining this with the altered broadcasting technology and mobile internet access, the propor-
tion of in-game betting is also increasing. As an example, 45% of sports bets are estimated to be
placed through mobile phone applications by the end of 2019 (SportsBettingDime.com, 2018).

The FA English Premier League (EPL) is estimated to entertain 4.7 bn people by live televi-
sion coverage. This is unmatched by any other sports competition when ignoring single events
such as the Super Bowl, UEFA Champions League final and the FIFA World Cup final (British
Council, 2015). Thus, the in-game betting market for the outcome of EPL matches can validly
be assumed to be of significant interest to a vast number of parties. The focus of the research
presented in this thesis is the task of generating accurate estimates of the unbiased probabil-
ity distributions in association football (football), as well as choosing proper wealth allocation
strategies for generating positive returns in the in-game football betting markets.
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1.1 Motivation and Research Questions

Due to its low scoring nature, the inherent randomness in the game of football is substantial.
This is perfectly reflected by Diego Simeone, the manager of Atletico Madrid - “Today was not
meant to be for us. There is no such thing as justice in football. ...” (Corrigan, 2019). Suppliers
of financial products in the football betting market are also subject to this randomness. With
an estimated market value of USD 2.4 bn, Sportradar AG (Sportradar) has claimed a position
as an important provider of prediction services to these suppliers (Ozanian, 2018). The research
presented in this thesis is a product of a collaboration between Sportradar and the Department
of Industrial Economics and Technology Management at NTNU. The topic of research is thus
partly motivated by the possibility of aiding the former in their quest to improve their prediction
services for in-game football betting.

Predicting the optimal odds at different times during a football match requires accurate estimates
of the true probability distributions in the game, as well as reliable market information. However,
for a bettor in this market, the former requirement may be sufficient to generate positive financial
returns. This research project rests on the hypothesis that accurate estimates of the unbiased
probability distributions in football are sufficient for generating positive financial returns in this
market when combined with a proper wealth allocation strategy.

The literature review conducted during their project thesis suggested to the authors that predic-
tion models for the outcome of football matches often rely on a parametric count distribution.
Despite the Poisson distribution being a popular choice in this regard, the work of Boshnakov
et al. (2017) and the author’s project thesis indicate that a generalization of this distribution
proposed by (McShane et al., 2008) is the preferred choice. This distribution is hereby denoted
the Weibull count distribution.

In recent years, extensive research on probabilistic artificial intelligence has resulted in a wide
array of advanced black box statistical algorithms. An interesting topic is the comparison of
these algorithms to models restricted by an assumed probability distribution. This is based
on a hypothesis that there exist complex relationships in football that cannot be sufficiently
captured by most of these distributions, and that parameter inference is thus redundant to some
extent. In addition, black box approaches are hypothesized to decrease the risk of introducing
human bias in the probability estimates. The presence of such bias in sports betting markets is
widely supported in existing research, as presented by Daunhawer et al. (2017). Artificial neural
networks constitute a general framework for statistical prediction models able to approximate any
continuous function (Hornik, 1991). This motivates the use of these networks as a representation
of black box algorithms in the comparison.

The winner of a football match is completely determined by the number of goals scored by the
opposing teams. Hence, information about the goal distribution is hypothesized to be important
for predicting the match winner. Since 1X2 markets constitute a large portion of the football
betting market, an interesting aspect is the relative prediction power of scoreline predictors and
explicit 1X2 predictors in these markets.

Furthermore, wealth allocation strategies are assumed to be of the essence for generating positive
returns in the in-game betting market, as well as for evaluating the relative ability of prediction
models to contribute to these returns. The research conducted in this project is to a large degree
motivated by these assumptions, and an important topic is therefore to develop a theoretically
founded betting strategy.
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Based on this discussion, the topics of interest in this thesis can explicitly be represented by the
following research questions:

RQ1 How does the performance of an artificial neural network compare to that of a Weibull count
distribution model, when considered with respect to both pre-game and in-game prediction
of the outcome of EPL matches?

RQ2 How do models of the scoreline distribution in EPL matches compare to otherwise equivalent
models of the 1X2 distribution on the same set of matches, when their performance is
measured on the latter distribution, and the prediction task is the one stated in the previous
question?

RQ3 How do the generated prediction models perform in the in-game betting market when subject
to a theoretically sound betting strategy, and when the live-odds estimated by Sportradar are
taken as the supply in the market?

1.2 Outline

This report presents the conducted research and its basis in the following manner: The theoretical
foundation of the research is presented in Chapter 2, and Chapter 3 presents the existing academic
literature deemed relevant to the research. Then, Chapter 4 is dedicated to a presentation of
the data, as well as a discussion of its reliability and relevant descriptive statistics. Chapter 5
describes the methodology utilized to generate prediction models for the outcome of football
matches and for developing betting strategies, while Chapter 6 and Chapter 7 presents the results
and corresponding discussions regarding the research questions. Based on the aforementioned
discussion, a conclusion is stated in Chapter 8, before Chapter 9 concludes the report with some
recommendations for further research.

As an introduction, the entire overview of the entire scientific procedure for generating prediction
models is presented in Figure 1.1. An important note is that this is a very brief and abstract
representation of the procedure and that the implementation of it varies somewhat throughout
the report due to the different model architectures chosen for the research.
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Figure 1.1: Abstract view of the scientific process.
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Chapter 2

Theoretical Foundation

The theory deemed necessary for understanding the remainder of the thesis is presented in
this chapter. Due to the mathematical nature of the research, a conventional notation is first
presented in Section 2.1. Among the theory to be presented, the emphasis is first placed on
metrics for evaluating probabilistic classifiers in Section 2.2, before Section 2.3 presents theory
concerning the model selection process. Then, some parametric probability distributions and
copula functions are presented in Section 2.4 and Section 2.5 respectively, before the focus turns
to artificial neural networks in Section 2.6. The chapter ends with a presentation of theory
relevant for the application of football prediction models in the in-game betting market. As a
final note, this chapter presents the general strengths and weaknesses of the different methods and
tools, along with their most relevant applications, while their explicit relevance to the research
tasks is discussed more thoroughly in Chapter 5.

2.1 Mathematical Notation

Firstly, some mathematical notation is defined to avoid extensive use of definitions. This no-
tation, which is presented in Table 2.1, constitute the convention throughout the thesis and
variations of the convention are explained explicitly when deemed necessary. In general, the
time index t is omitted for ease of notation when explaining general concepts that do not require
the use of this index.
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Notation Description

A Random variable or upper bound on index
A Matrix (A ∈M(n,m)(R))
a Vector (a ∈M(n,1)(R) = Rn)
a Scalar (a ∈ R)

i index - frequently used for football matches; i ∈ {1, .., N}
j index - frequently used for features; j ∈ {1, .., J}
t index - frequently used for time; t ∈ {1, ..., T}

xijt Observation for feature j at time t in match i
xit Observation of multiple features at time t in match i: xit = (xijt)

J
j=1

Xi Matrix of observations for game i: Xi = (xit)
T
t=1

X Matrix or 3D array of observations representing an entire data set

Yi Random variable for the outcome of game i
yi True classification for game i
y Vector of true classifications: y = (yi)

N
i=1

θ Parameters in a probabilistic function to be estimated by a model
θ̂ Estimate of θ
ΩZ Range of outcomes for the random variable Z

fZ(z) Probability of outcome z for the random variable Z
FZ(z) Cumulative probability of outcome z for the random variable Z
f(W,Z)(w, z) Joint probability of W = w and Z = z

fY (k|x, θ̂) Estimated probability of class k: fk(k|x, θ̂) = Pr(Y = k|x, θ̂)

fY (ΩY |x, θ̂) Estimated pdf over all classes ΩY : fY (ΩY |x, θ̂) = (fY (k|x, θ̂))k∈ΩY

I(P ) Indicator variable for the proposition P
RfY (θ|X,y) Loss function - Function to be minimized during training

Table 2.1: Convention for mathematical notation used in this thesis.

2.2 Metrics - Evaluation of Probabilistic Classifiers

All candidate hypotheses in a scientific experiment must be tested, and some criteria must be
defined to choose the proper candidate. Similarly, some criteria must be defined to test the chosen
hypothesis on independent data. This section presents some of the most recognized criteria, or
metrics, in this regard, as well as two important properties of statistical models.

2.2.1 Calibration and Discrimination

A necessity for a proper selection of metrics is a thorough understanding of the objective of
the application of a model. A natural starting point in this regard are the terms calibration
and discrimination. The calibration ability of a prediction model is defined as its ability to
accurately estimate the entire probability distribution on independent data given some predefined
classes, and when observed frequencies are taken as an estimate of the true distribution. The
discriminatory ability of such a model refers to its ability to assign higher probabilities to the
true classes than all the other classes (Steyerberg et al., 2010).
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Good performance on one of these tasks does not imply good performance on the other. To
see this, consider a hypothetical model that assigns the sample proportion of each class in the
training set as the estimated probabilities for all future observations. Then, the calibration
ability of this model should be decent, but its discriminatory ability is likely to be horrible. The
opposite scenario is nicely illustrated by Daniel Kahneman, which states that by assigning a
probability p > 0.5 to all outcomes that do happen, you would have a perfect discriminatory
ability, but miserable calibration ability (Tetlock, 2015). Thus, a useful model should have a
sufficient ability to both calibrate and discriminate (Alba et al., 2017).

2.2.2 Accuracy Score

A natural metric to consider for classification problems is the accuracy score, which is given by
the proportion of correctly classified observations, as seen in the following equation:

Acc(θ̂|fY ,X,y) =
1

N

N∑
i=1

I(yi = argmaxk{fY (k|xi, θ̂)}) (2.1)

Note that this metric does not give any indication of the calibration ability of the classifier.
It merely yields an estimate of the classifier’s performance on the task of predicting the most
probable class, thus giving an indication of its discriminatory ability. Note also that this metric
may be misleading as it assigns equal weight to each observation regardless of the distribution
of classes in the sample (Tibshirani et al., 2017, p. 37-38).

2.2.3 Information Theory and Cross Entropy

Another widely used metric for classification problems is the cross entropy. This metric is
proposed by Shannon (1948), who defines a mathematical theory of communication based on
the notion of entropy in thermodynamics. This work is considered the basis for information
theory, a field from which several quantities used in this thesis originate. Thus, some concepts
are presented here based on Commenges (2015).

The entropy H(Z) of a discrete random variable Z with true pdf f = fZ(z) is the expected value
of ln

(
1

fZ(ΩZ)

)
, that is

H(Z) =
∑
z∈ΩZ

fZ(z)ln
( 1

fZ(z)

)
= −

∑
z∈ΩZ

fZ(z)ln(fZ(z)) (2.2)

where 1
fZ(z) measures the degree of surprise in the observation that Z = z. Thus H(Z) can

be understood as a measure of the amount of information contained in Z. Now, given another
distribution g = gZ(z), the cross entropy of g with respect to f is defined as the expected surprise
E
[
ln
(

1
gZ(ΩZ)

)]
given that f is true. In other words, it is a measure of the amount of information

about Z contained in g given that f is true. Formally, the cross entropy is given by

CEZ(g|f) =
∑
z∈ΩZ

fZ(z)ln
( 1

gZ(z)

)
= −

∑
z∈ΩZ

fZ(z)ln(gZ(z)) (2.3)

Now, in a supervised learning scenario, one usually holds imperfect information about both of
the distributions f and g. Thus, the sample distribution I(y) = I(yik)i∈{1,..,N};k∈ΩY

and the
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estimator fY (k|xi,θ) of the distribution takes the roles of f, g respectively, as seen in Equa-
tion (2.4).

CE(θ|fY ,X,y) = − 1

N

N∑
i=1

∑
k∈ΩY

I(yi = k)ln
(
fY (k|xi,θ)

)
(2.4)

Here, the notation CE(θ|fY ,X,y) is used to represent CEY
(
fY (k|xi,θ)|I(y),X

)
for simplicity,

as well as for indicating that θ is the only variable given an assumed probability distribution fY
and data X. This notation is hereafter used for the cross entropy. In the maximum likelihood
paradigm, the loss function is the negative of the log-likelihood function. This function coincides
with the cross entropy with respect to the sample distribution (Tibshirani et al., 2009, p.32).
The maximum likelihood approach is assumed known and thus not discussed in detail in this
thesis.

Note from Equation (2.4) that given a sample distribution I(y), the performance of models
based on different parametric distributions can be validly compared with the cross entropy,
as it evaluates the combined choice of probability distribution and trained parameters with
respect to I(y). Furthermore, the cross entropy is a strictly proper metric, which means that its
expected value is minimized by the true odds (Merkle and Steyvers, 2013). In other terms, it is a
proper metric for evaluating the combined calibration and discrimination ability of a statistical
model. Finally, the cross entropy can accurately capture uncertainty for nominal discrete random
variables where the variance has no inherent meaning. However, this does not hold for ordinal
random variables, as variance may be important in these scenarios (Commenges, 2015).

2.2.4 Ranked Probability Score

In order to measure the predictive performance of a model where the true classes follow an ordinal
structure, one should also use a metric able to determine the quality of a prediction based on the
similarity between classes. In this regard, Epstein (1969) proposed the ranked probability score
(RPS), which is also a strictly proper metric (Murphy, 1970). Given a discrete random variable
Y , the RPS is given by

RPS(θ̂|fY ,X,y) =
1

N(|ΩY | − 1)

N∑
i=1

∑
k∈ΩY

(
FY (k|xi, θ̂)− I(yi ≥ k)

)2
(2.5)

where I(yi ≥ k) ∈ {0, 1} is an indicator variable for the fact that yi is considered larger than k
with respect to an ordinal structure of the classes. Note that the RPS is a mean squared distance
between the estimated cumulative distribution and a cumulative indicator variable. Thus, for two
classes k1, k2 satisfying k1 < k2 < yi, the penalty given to a prediction of k1 is larger than if k2 is
predicted. This is due to the fact that the ordinal structure implies FY (k1|xi, θ̂) < FY (k2|xi, θ̂).

2.3 Model Selection

Based on the chosen evaluation metrics, one must specify a proper procedure for choosing among
all the candidate models. Furthermore, all models of reality depend on both hyperparameters
and features, where the former is a set of model-specific parameters, and the latter is used to
represent the true distribution of the population that the model is meant to estimate. Thus,
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the selection procedure should rely on a reasonable validation process of the model performance
conditional on all proposed hyperparameters and features.

2.3.1 Validation Methods

Validation is the process of estimating L = E[RfY (θ|X,y)] on hold-out data, that is, the expected
loss on an independent data sample when the estimator fY (ΩY |X,θ) is applied. The motivation
for doing this is that L is underestimated if the estimates are solely based on the training set.
A popular set of approaches for this task is the set of cross validation (CV) methods. These
methods are often used when the sample at hand is too small to hold out a separate validation
set, an approach conventionally denoted the validation set approach. Referring to the bias-
variance trade-off, the validation set approach yields a low variance in the estimates of L due to
a large validation set, but a high bias since a large proportion of the training data is removed
for validation. On the other hand, leave-one-out CV, which implies training N − 1 models and
holding out one observation for validation in each model, yields low bias and high variance by the
same arguments. K-Fold CV, which is a generalization of leave-one-out CV due to the possibility
of choosing K 6= 1, is a trade-off between the two former approaches and aims to obtain both
low bias and low variance in the estimates of L (Tibshirani et al., 2017, p.176-184).

2.3.2 Feature and Hyperparameter Selection

Based on the chosen validation approach, a set of hyperparameters and features must be chosen.
Regarding the hyperparameters, a widely used approach for choosing these parameters is to per-
form a grid search, which simply entails training and validating the model for every combination
of some suggested hyperparameter values. Then, the chosen combination is the one with the
best validation score, as measured by a chosen metric. Considering the feature selection process,
the best approach usually differs depending on the chosen model framework and the amount of
available data. The most relevant approaches for this research project are presented here.

Subset selection algorithms

One of these approaches is to utilize a subset selection algorithm, which is a grid search for
selecting the best subset of data features. Due to the O(2d) complexity of an exhaustive search
given d candidate features, greedy variations of this approach such as stepwise selection algorithms
are most commonly used. These algorithms work by either greedily adding or removing features
based on a criterion. This approach is usually performed by using a metric that penalizes complex
models when the amount of available data is very limited, but may also be performed within a
validation loop (Tibshirani et al., 2017, p.206-209).

Regularizers

Another approach for selecting or partly ignoring features is to use a regularization technique.
A regularizer is a function incorporating a penalty term in the loss function to automatically
shrink or nullify irrelevant features. Thus, a penalty is given during the training procedure by
introducing some bias rather than being imposed during evaluation. The main argument for
this approach is that it may prevent overfitting. It is therefore often chosen in combination

9



with complex model architectures, as the risk of overfitting imposed by such architectures is
substantial.

The penalty terms are usually chosen to be Lq norms ‖θ‖q = (
∑J

j=1 θ
q
j )

1
q of the vector of

parameters to be estimated. The most widely used penalty terms are the L1 and squared
L2 norms, usually referred to as lasso and ridge penalties respectively. A common approach
in recent years is to combine the lasso and ridge penalties to obtain all the benefits of their
respective properties. This penalty term is usually called an elastic net and is given by

ElasticNet(θ) = λ1‖θ‖1 + λ2‖θ‖22 (2.6)

where λ1 and λ2 are parameters to be chosen and θ are other model parameters. A common
approach is to determine λ1 and λ2 in a grid search. By incorporating the lasso penalty in
the loss function, the learning algorithm is able to automatically perform model selection during
training by fixing parameters to zero given that λ1 is large enough, which is due to the properties
of the L1 norm. This property is not held by the ridge penalty unless λ2 →∞, since the squared
penalty terms imply a penalty proportional to the size of θj for all features j (Tibshirani et al.,
2009, p.61-73).

Mutual Information

A completely different approach for feature selection is to consider a measure of dependency
between the true classes and the features of the training set. This is a typical approach in
scenarios where the entire data set is required for training due to limited data access. The
most commonly used measure in this regard is the correlation coefficient. A problem with this
coefficient is that it can only capture linear dependencies, and may thus be misleading if the true
dependencies are nonlinear. The mutual information is based on a different idea than correlation
and accounts for nonlinear dependence. This measure is closely related to the notion of entropy
presented in Section 2.2.3. Specifically, it is a measure of the amount of information obtained
about a random variable by observing another random variable. Another important property of
the mutual information is that it can capture dependencies between discrete random variables,
in contrast to the correlation coefficient (Commenges, 2015).

Formally, let (Z,W ) be a pair of random variables, MI(Z,W ) be their mutual information and
H(Z), H(W ) denote the entropy of Z,W respectively. Then

MI(Z,W ) ∈ [0,max{H(Z), H(W )}]

determines the similarity between the joint distribution f(Z,W )(z, w) and the same distribution
under the assumption of statistical independence, that is f(Z,W )(z, w) = fZ(z)fW (w). Further-
more, MI(Z,W ) = 0 ⇐⇒ Z,W are independent, and MI(Z,W ) = H(Z) = H(W ) ⇐⇒ X,Y
are deterministic functions of each other (Church and Hanks, 1990). The mutual information is
given in Equation (2.7) for the case where Z and W are discrete.

MI(Z,W ) =
∑
z∈ΩZ

∑
w∈ΩW

f(Z,W )(z, w)ln

(
f(Z,W )(z, w)

fZ(z)fW (w)

)
(2.7)
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2.4 Probability Distributions for Count Processes

The Poisson distribution is widely used to model the number of events occurring during a given
time interval. It is the count distribution equivalent of the exponential distribution, meaning
that the times between two pairs of events in disjoint time intervals in a Poisson process are
i.i.d. exponentially distributed random variables. These distributions are assumed known and
no further elaboration is therefore made about them.

The Weibull distribution is closely related to the exponential distribution. Its pdf is given by

P (T = t) = fT (t) = λctc−1 exp(−λtc), for t ≥ 0, (2.8)

where c and λ are the shape and scale parameters respectively. Consider its hazard function,
h(t) = λctc−1, which represent the development of the occurrence rate over time. This function
is monotonically increasing for c > 1 and monotonically decreasing for c < 1. When fixing c = 1,
the Weibull distribution coincides with the exponential distribution and the hazard function
reduces to h(t) = λ. Thus, it becomes clear that the Weibull distribution is a generalization of
the exponential distribution.

The corresponding count distribution of the Weibull distribution, hereby referred to as the
Weibull count distribution, is thus a generalization of the Poisson distribution (McShane et al.,
2008). Specifically, the Weibull count distribution relaxes the assumption of equidispersion im-
plicit in the Poisson distribution, meaning that it allows the mean and the variance of the
distribution to differ. According to (McShane et al., 2008), the pdf and the cdf of the Weibull
count distribution are given by

fWt(w|c, λ) =
∞∑
i=w

(−1)w+i(λtc)iαwi
Γ(ci+ 1)

;w ∈ N. (2.9)

αwi =

{
Γ(ci+1)
Γ(i+1) ; w = 0; i ∈ {w,w + 1, ..}∑i−1
j=w−1 α

w−1
j

Γ(ci−cj+1)
Γ(i−j+1) , w ∈ N+; i ∈ {w,w + 1, ..}

(2.10)

FWt(w|c, λ) = P (Wt ≤ w|c, λ) =
w∑
i=1

fWt(i|c, λ) (2.11)

2.5 Copula Functions

Copula functions are multivariate probability distributions used to describe the dependence
between uniformly distributed random variables (Haugh, 2016). Formally, the joint cdf of
two random variables can be expressed by a copula and their marginal cdfs FZ(z), FW (w) ∼
Uniform(0, 1) in the following manner (Sklar, 1959):

F(Z,W )(z, w) = C(FZ(z), FW (w)). (2.12)

A special family of copulas are the Archimedean copulas, which can be defined by C(u, v) =
φ−1(φ(u)+φ(v)) in the bivariate case, where φ : [0, 1]→ [0,∞] is a continuous, strictly increasing
and convex generating function (Fischer and Köck, 2012). A subset of this family is particularly
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popular due to their ability to model dependence in arbitrarily high dimensions by estimating a
single parameter. One such copula is the Frank copula, defined by

C(u, v) = −1

κ
ln

(
1 +

(e−κu − 1)(e−κv − 1)

e−κ − 1

)
(2.13)

where κ is the parameter representing the dependence between the marginal cumulative distri-
butions. It is worth noting that the copula is a cumulative distribution, but the pdf for discrete
random variables can easily be obtained by the relation (Nelsen, 2006)

f(z, w) = F (z, w)− F (z − 1, w)− F (z, w − 1) + F (z − 1, w − 1) (2.14)

where the subscripts are omitted for simplicity.

2.6 Artificial Neural Networks

Artificial neural networks (ANNs) constitute a computational framework inspired by biological
neural networks and mimics the computational mechanisms of the animal brain. As for their
biological equivalents, the core elements of ANNs are neurons connected in a structure for the
purpose of propagating information (van Gerven and Bohte, 2017). From a mathematical per-
spective, ANNs are, in simple terms, nonlinear statistical models (Tibshirani et al., 2009, p.392).
To explain the concept, a simple ANN architecture is presented here. This architecture repre-
sents a two-stage regression procedure and is usually referred to as a feed-forward network with a
single hidden layer. An example of such a network and its functionality is presented by a network
diagram in Figure 2.1, where Θ0

(5,3),Θ
1
(4,1) are parameter matrices to be estimated. The extra

dimension accounts for the bias in the linear transformation, which is not shown in the figure.

xi1

xi2

xi3

xi4

Output

Θ0
(5,3)

Θ1
(4,1)

Hidden
layer

Input
layer

Output
layer

Figure 2.1: Architecture of a feed-forward network with one hidden layer.

Now, some terminology is required. Figure 2.1 contains a directed acyclic graph consisting of edges
and nodes. These represent the information flow from input to output and neurons respectively.
All the neurons are structured in layers with respect to this information flow. That is, a layer
may be defined as a set of neurons L that all receive information from the same set of neurons,
S = parents(L). All layers which are neither input layers nor output layers are called hidden
layers, as the features derived from these layers are not directly observable.

The special case of one hidden layer and a general classification problem with K > 2 classes is
considered here, in accordance with Figure 2.1. In this case, the output layer of the network
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consists of one node calculating the entire distribution fY (ΩY |xi, θ̂). The dynamics of this
network is presented below (Tibshirani et al., 2009, p.392-397).

Each neuron m ∈ {1, ..,M} in the hidden layer performs a linear transformation lm( · ) of the
input observation x, before an activation function hm = σ(lm( · )) is applied and taken as the
output fromm. A typical activation function in the hidden layers is the hyperbolic tangent σ( · ) =
tanh( · ), while the output activation function is usually the softmax function for multinomial
models. This function is a generalization of the sigmoid function σ( · ) = 1/(1 + e−( · )) utilized
in binary logistic regression. Hence, an ANN trained with the softmax as the output activation
function and cross entropy as the loss function is simply a multinomial logistic regression of the
features derived in its hidden layer. The softmax is given by

softmaxY (ΩY |z) =

(
ezk∑
l=ΩY

ezl

)
k∈ΩY

(2.15)

The output layer takes the combined output from the hidden layer as an input vector, but a linear
transformation is not conducted on this vector. Formally, let h = (h1, ..., hM ), and consider the
case where we have one node in the output layer. Then, the procedure can be stated as follows:

lm = θ0,m + θTmx,m ∈ {1, ...,M}; (2.16)

hm = σ(lm),m ∈ {1, ...,M}; (2.17)

fY (ΩY |X, θ̂) = softmaxY (ΩY |h) (2.18)

Here, θ0 = (θ0m)Mm=1 represent the bias introduced in the hidden layers. Note that in this special
case we require that M = |ΩY |. A presentation of the two-stage transformation conducted by
each hidden neuron m can also be seen in Figure 2.2.

x1 θm1

x2 θm2 Σ σ( · )

Activation
function

hm

Output

x3 θm3

Parameters

Bias
θ0m

Inputs

Artificial neuron

Figure 2.2: Dynamics of a hidden artificial neuron (Taskjelle, 2017).

The procedure presented here can be generalized to include several hidden layers. In this case,
the ANNs are called deep neural networks and are usually used in complex learning tasks such as
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logical games (Mnih et al., 2013; Silver et al., 2016). By the Universal Approximation Theorem,
an ANN with at least one hidden layer and a finite number of nodes has the ability to approximate
any continuous function (Hornik, 1991).

Artificial neural networks are usually trained using a variant of the backpropagation algorithm,
which is a gradient descent approach based on the chain rule of mathematical differentiation.
Training is therefore conducted by loops of forward propagation of information through the
network and parameter adjustments are made by propagating information about the loss function
back through the network (Tibshirani et al., 2009, p.397). One such information loop is called an
epoch, and the number of epochs is usually chosen as a hyperparameter. An advanced variation of
the backpropagation algorithm is the adaptive moment estimation (ADAM) algorithm, a first-
order gradient-based stochastic optimization algorithm, which generates and utilizes adaptive
estimates of the lower-order moments of the stochastic loss function (Kingma and Ba, 2014).

2.6.1 Recurrent Neural Networks

A significant limitation of ordinary feed-forward neural networks is that they are amnesiacs,
meaning that they cannot store previously learned information. This implies that they are not
capable of learning sequences or processes, such as time series. To address this issue, Jordan
(1986) proposed the recurrent neural network (RNN). This network contains loops of information
such that previously learned information can be utilized when a new set of data is encountered.
Due to this ability, RNNs have been widely used in complex learning tasks, like sequence learning
(Sutskever et al., 2014) and natural language processing (Bahdanau et al., 2014; Cho et al., 2014).
The information loops can be understood as a copy of the entire network and its state at a given
step in time or space. An illustration of this concept can be seen in Figure 2.3, where the
observation index i is omitted.

h1,t−2

hm,t−2

hM,t−2

ft−2

xt−2

h1,t−1

hm,t−1

hM,t−1

ft−1

xt−1

h1,t

hm,t

hM,t

ft

xt

. . .

Figure 2.3: Illustration of a many-to-many RNN architecture.

Note that the network in Figure 2.3 only has recurrent connections in the hidden layer and that
it outputs a prediction at every step of the sequence. The latter aspect is conventionally called
a many-to-many approach, in contrast to a many-to-one approach, in which the network only
outputs a prediction at the last step. In the former approach, the loss function is the average loss
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over all steps, a function that may be very misleading if the output at all nodes is not equally
important. On the contrary, a many-to-one RNN is trained using an ordinary loss function on
the output at the last step.

Now, consider the dynamics of RNNs. Let ht = (h1t, ..., hMt) be the output of the hidden layer
at step t ∈ {1, .., T}. The equivalent of Equation (2.17) for an RNN is then given by

hm,t =

{
σ(lm,t) t = 0

σ(lm,t + θTm,thm,t−1) t ∈ {1, .., T}
(2.19)

where m ∈ {1, . . . ,M}, lm,t is defined equivalently to Equation (2.16) and θm,t are the parame-
ters in the recurrent connections from step t− 1 to t in node m. A well-known issue for RNNs is
that they are usually unable to learn long sequences. This is due to the problem of vanishing or
exploding gradients in the loss function of the backpropagation procedure. The reason for this
problem is that stored information is subject to the multiplication implied by the chain rule,
which entails a high risk of numerical instability. Thus, the loss signal may increase or decrease
with an exponential rate, inhibiting a proper propagation of the signal and thus also the learning
process (Hochreiter et al., 2001).

2.6.2 Long Short-Term Memory Networks

One widely recognized approach for avoiding the problem of vanishing or exploding gradients is
the use of long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997). These
networks contain designated LSTM cells that themselves learn how long to store information.
The significant difference between LSTM networks and RNNs is that stored information is not
subject to the chain rule due to these designated cells. LSTM networks are therefore often
used on complex sequential learning problems such as machine translation (Graves, 2013), music
composition (Eck and Schmidhuber, 2019; Agrawal et al., 2018), image generation (Vinyals et al.,
2015) and general question answering (Wang and Nyberg, 2015). Also note that each layer in
an LSTM network is represented by a single LSTM cell. The architecture of such a cell can be
seen in Figure 2.4.

gt

zt

ft

ot

xt

ht−1 × + σt × ht

×

memory

ct−1

ct

LSTM cell

Figure 2.4: The internal architecture of an LSTM cell (Veličković, 2017).

Note that the observation index i is omitted in Figure 2.4. Now, consider the process from input
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(hl,t−1,xit) to output hl,t in a such a cell l. The presentation of this process follows that of
Hochreiter and Schmidhuber (1997). Let σ( · ) denote the sigmoid function, and let Wq,Uq and
bq denote parameter matrices and a bias vector for gate q ∈ {f, g, o, z}.

The first step of the process is to choose the proportion of information to be ignored among that
stored in the previous cell state cl,t−1. This task is performed by the forget gate fl,t in the
following manner:

fl,t = σ(Wl,fxl,it +Ul,fhl,t−1 + bl,f ) (2.20)

Here, σ( · ) operations are to be understood element-wise. Also, fl,jt = 0 indicate that no
information should be stored about feature j, while fl,jt = 1 indicate the opposite. The amount
of new information to be carried forward and stored in the new cell state must now be chosen.
This is done in the input gate zl,t in a equivalent manner as to that for fl,t, while a separate
procedure in the candidate gate gl,t construct a vector of candidate values to be stored

zl,t = σ(Wl,zxl,it +Ul,zhl,t−1 + bl,z) (2.21)

gl,t = tanh(Wl,gxl,it +Ul,ghl,t−1 + bl,g) (2.22)

Here, the interpretation of zl,t is equivalent to that of fl,t. The next step is to use fl,t and
zl,t to construct the new cell state by weighting the old and new information cl,t−1 and gl,t
respectively

cl,t = fl,t � cl,t−1 + zl,t � gl,t (2.23)

Here, � is the Hadamard product, which represents element-wise multiplication. Finally, the new
output must be chosen. First, the output gate ol,t performs an equivalent calculation to that in
the forget gate and the input gates. Then, this value is multiplied by a transformed version of
the new cell state cl,t to determine the weights assigned to the transformed features.

ol,t = σ(Wl,oxl,t +Ul,ohl,t−1 + bl,o) (2.24)

hl,t = ol,t � tanh(cl,t) (2.25)

As stated, LSTM cells are used to build the entire network architecture of an LSTM network.
An example of such a network consisting of three cells is shown in Figure 2.5, where the notation
follows that from Figure 2.4.
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Figure 2.5: Illustation of an LSTM network with three layers.

2.6.3 Estimation Procedures

In addition to the problems discussed regarding ANNs thus far, the complexity of such model
architectures entails some typical problems in the estimation procedure. These problems and
some recognized methods for avoiding them are presented here.

Standardization

Unlike most statistical methods, ANNs are not scale invariant, meaning that the numerical scale
of the data may considerably alter the learning ability. Thus, processing of the data prior to
training is often a necessary part of the learning process. The most widely used approach in this
regard is to standardize the data by performing the transformations given in Equation (2.26)-
Equation (2.28).

Xtrain =
Xtrain − µ̂train

σ̂train
(2.26)

Xvalid =
Xvalid − µ̂train

σ̂train
(2.27)

Xtest =
Xtest − µ̂train

σ̂train
(2.28)
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Where µ̂train and σ̂train are unbiased estimates of the mean and the standard deviation of the
training data, and the operations are to be understood element-wise. Note that these estimates
are not based on information from the validation and test sets, as no information about this data
should be used for training.

Dropout

Methods for avoiding overfitting is of the essence for neural networks. The most frequently
used approach to reduce this risk is to use a dropout technique. This approach is based on
the idea that by randomly ignoring signals, one reduces the risk of learning relationships only
present in the training data. A dropout layer has a simple function: For every propagation
of information through the network, drop any node in the previous layer by a user-specified
probability p (Srivastava et al., 2014). An illustration of this approach can be seen in Figure 2.6

x1

x3

x2

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.6: Illustration of the dropout technique.

Regularization revisited

Another aid against overfitting is to use regularization, which may be used as a substitute or a
complement to dropout. The strongest argument for the use of regularizers when training ANNs
is to avoid the problem of choosing the size of the network. This is done by choosing a network
assumed to be at least large enough, then determining proper hyperparameters for the regularizer
and thus the amount of information to ignore (Zaremba et al., 2014). The chosen regularizer in
this context is an elastic net, as seen in Equation (2.6).

Batch normalization

Recall that every layer l∗ in an ANN is responsible for performing a two-stage transformation
of its input. Thus, for each round of backpropagation and every layer l∗, small changes in the
output of the preceding layer may shift the distribution of inputs to the layer to a range subject
to vanishing gradients, halting the learning process in layers {1, .., l∗}. This is called internal
covariate shift. It has been shown in several studies that normalizing the input to every layer by
introducing normalization layers can alleviate this problem (Ioffe and Szegedy, 2015; Cooijmans
et al., 2016; Laurent et al., 2016). ANNs are usually trained in batches, or subsets, of training
data, meaning that each loop of information propagation is performed on a single subset. Thus,
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the approach of normalizing the input is called batch normalization. According to Cooijmans
et al. (2016), ordinary batch normalization can be conducted in the following manner in a deep
ANN

BN(h|γ, β) = β + γ
h− Ê[h]√

ˆV ar[h] + ε

(2.29)

where γ and β are vectors of size ‖h‖ with each element being equal to γ and β respectively,
ε ∈ R is a regularization parameter, and the transformation is to be understood element-wise.
They also propose a methodology for performing batch normalization for LSTM networks. The
dynamics of a LSTM cell subject to this approach is shown in Equation (2.30) to Equation (2.32).


f̃t
T

ĩt
T

õt
T

g̃t
T

 = BN(Wht−1|γh, βh) +BN(Uxt|γx, βx) + b (2.30)

ct = σ(f̃t)� ct−1 + σ(ĩt)� tanh(g̃t) (2.31)

ht = σ(õt)� tanh(ct) (2.32)

Note that the cell index l and the gate subscript is omitted in these equations for simplicity.
In textual terms, Cooijmans et al. (2016) propose to perform the transform BN( · ) on both
the recurrent term Wht−1 and the new input Uxt separately, aiding the model in the task of
controlling the relative contribution of these terms. They also propose to set βh = βx = 0 to
avoid redundancy, as well as not performing the BN( · ) transform in the cell update in order to
preserve the gradient flow through ct. Otherwise, they found γh = γx = 0.1 to be a good choice
over a large set of problems.

2.7 Betting Strategies

A core part of the research presented in this thesis is the application of prediction models in the
in-game football betting market. In this regard, some prerequisites are presented in this section.

2.7.1 Odds

First, with the aim of explaining the financial products supplied in the football betting market,
the fundamental quantity representing the price of these products is defined. This quantity is
the odds, which represents the payment in the case of a successful bet from the perspective of the
bettor. There exist several conventions for quoting this price, but the only convention considered
in detail here is that explicitly following the mathematical definition of odds.

Formally, let p be the true probability of a given outcome of an event. Then, the odds of this
outcome is given by

s(p) =
p

1− p
(2.33)
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Next, let p be the probability of a favourable outcome for the bettor. Then s(p)−1 is denoted
the fractional odds and is the supplied odds in the betting market (Nakharutai et al., 2019).
Thus, in a betting contract where both the supplier and bettor have the same belief or estimate
p̂s = p̂b = p̂ of p, the fair supplied odds is given by

s(p̂, α) =
1− p̂
αp̂

=
s(p̂)−1

α
(2.34)

where the risk premium 1
α − 1 = 0. This reflects the fact that the expected return E

[
R(p̂)

]
=

s(p̂, 1)p̂− (1− p̂) = 0 for both parties. Due to both the underlying risk in p and the uncertainty
in the estimate p̂, the odds is supplied incorporating a risk premium 1

α − 1 > 0 ⇐⇒ α > 1.
Note that a rational bettor would never enter a betting contract with such odds given the same
belief as the supplier. This is because the expected return of the bettor is given by

E
[
R(p̂b)

]
= s(p̂s, α)p̂b − (1− p̂b) (2.35)

which is negative if p̂b = p̂s and α > 1. In fact, a rational bettor would only agree on the bet
if and only if p̂g > (s(p̂s, α) + 1)−1. Note that s(p̂s, α) is the predefined return in the case of a
successful bet.

2.7.2 Convexity Theory

This section presents aspects of convexity theory deemed useful for understanding the theoretical
foundation of betting strategies considered in this thesis.

First, the definitions of a concave function and a convex set are given by (Lundgren et al., 2012,
p. 30-31)

Definition 1. The function g(x) is a concave function on the feasible region X if for all choices of
points x(1),x(2) ∈ X and 0 ≤ λ ≤ 1 we have that f(λx(1)+(1−λ)x(2)) ≥ λf(x(1))+(1−λ)f(x(2)).

Definition 2. A set X ⊆ Rn is a convex set if for any pair of points x(1),x(2) ∈ X and
0 ≤ λ ≤ 1 we have

x = λx(1) + (1− λ)x(2) ∈ X

If g(x) satisfies a strict inequality in Definition 1, it is a strictly concave function. Next, if a
function g(x) is concave, then the function f(x) = −g(x) is convex (Lundgren et al., 2012,
p. 30). Furthermore, the following theorem states that a linear combination of convex functions
is a convex function (Lundgren et al., 2012, p. 248).

Theorem 1. If f1(x), f2(x), . . . , fp(x) are convex functions and we have λk ≥ 0, k = 1, . . . , p,
then the function f(x) =

∑p
k=1 λkfk(x) is convex.

Based on the two latter results, if fk(x) = −gk(x); k ∈ {1, ..,K}, g1(x), . . . , gK(x) are concave
and f(x) is defined as in Theorem 1, the following holds:

g(x) =

p∑
k=1

λk
(
gk(x)

)
=

p∑
k=1

λk
(
− fk(x)

)
= −

p∑
k=1

λkfk(x) = −f(x) concave (2.36)
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Now, the definition of a convex maximization problem is given by (Lundgren et al., 2012, p. 29)

Definition 3. A maximization problem P

max g(x) subject to x ∈ X

is convex if X is a convex set and g(x) in concave on X.

If a problem P is convex, than each local maximum is also a global maximum. If g(x) is strictly
concave, then the a maximum is also unique (Lundgren et al., 2012, p. 245). Lastly, note that
the following holds (Conway, 1985, p. 8)

Theorem 2. An intersection of convex sets is itself a convex set.

2.7.3 Portfolio Optimization and The Kelly Criterion

The task of choosing the optimal wealth allocation amongst a set of candidate securities in
financial markets is usually referred to as portfolio optimization. This term was first discussed by
(Markowitz, 1952), a paper considered to be the foundation of modern portfolio theory (MPT).
The core of MPT is the Mean-variance model, which rests on the assumption that an optimal
portfolio can be constructed in such a way that the financial return is maximized for a given risk
level or vice-versa. The portfolio return is here defined as a linear combination of the returns
on the individual investments and the risk coincides with the covariance matrix of these returns.
However, it can be proved that the optimal expected return of a portfolio of investments is not
a linear combination of the proportion of wealth placed in the individual investments (Peterson,
2018).

Another approach to portfolio optimization is proposed by Kelly (1956) based on a completely
different problem in information theory. This approach is, in simple terms, to allocate fractions
of wealth such that these fractions maximize the expected logarithmic return on investments. In
fact, this allocation also maximizes the expected utility for investors with a logarithmic utility
function with respect to their wealth (Mossin, 1968; Bellman and Kalaba, 1957). An important
note is that this allocation does not necessarily lie on the efficient frontier of the mean-variance
model (Thorp, 1975).

Following Moffitt (2017), let Y = (Yi ∈ {0, 1})Ni=1 denote a sequence of i.i.d. random variables
for event i ∈ {1, ..., N}. Let also p be the known probability of the reference outcome Yi = 1.
Now, assume that a bettor successively bets a fixed proportion f ∈ [0, 1] of its initial wealth
W0 on the events, with the supplied odds s > 0 fixed. Note that this implies that leveraging is
not allowed. Then the expected compounded wealth after wagering the same fraction on all N
events is given by

WN (f,Y ) = W0(1 + fS)
∑N

i=1 Yi(1− f)N−
∑N

i=1 Yi (2.37)

The asymptotic logarithmic return of the fixed fractional betting scheme can then be defined as

Gf = lim
N→∞

1

N
ln
(WN (f,Y )

W0

)
(2.38)
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which, by substitution from Equation (2.37) becomes

Gf = lim
N→∞

1

N
ln
(

(1 + fS)
∑N

i=1 Yi(1− f)N−
∑N

i=1 Yi
)

(2.39)

Now, the derivation of the Kelly criterion rests on the following result (Loève, 1977):

Theorem 3 (Strong Law of Large Numbers). Suppose X1, . . . , XN are i.i.d random variables
and that E[|X|] is finite. Define X̄N = 1

N

∑N
i=1Xi. Then X̄N converges almost surely to E[X],

that is
P ( lim

N→∞
X̄N = E[X]) = 1 (2.40)

Since the random variables in Equation (2.37) are given by Xi = (1 + fS)Yi(1 − f)1−Yi with
corresponding expected value E[|X|] = p(1+fs)+(1−p)(1−f) ∈ [1−f, 1+fs], Equation (2.39)
converges almost surely to

Gfk = ln
(

(1 + fS)p(1− f)1−p
)

(2.41)

by Theorem 3, as shown by Kelly (1956). Maximization of this function with respect to f
provides the following rule:

f∗ =

{
p(S+1)−1

S ; p(S+1)−1
S > 0

0 ; p(S+1)−1
S ≤ 0

This is the Kelly criterion for the stated scenario. Note that if short positions f < 0 are allowed,
then one would bet 1−p(S+1)

S in the case where this quantity is positive (Moffitt, 2017).
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Chapter 3

Literature Review

This chapter presents the existing academic literature deemed relevant to this thesis. First,
Section 3.1 considers research relevant to the prediction of the outcome of football matches,
before Section 3.2 presents research considering investment strategies based on the Kelly criterion.
The emphasis in both sections is placed on the relevance to in-game prediction models and the
corresponding live-betting market. To conclude the chapter, Section 3.3 presents the academic
contribution of this thesis with respect to the relevant research stated in the first two sections.

3.1 Relevant Prediction Models

This section presents existing research that considers the prediction of the outcome of football
matches or other relevant sports events. Since existing research on in-game prediction models is
limited, most of the presented work consider pre-game prediction models, which means that they
only utilize the information available before the event starts. The research papers are presented
categorically according to their most interesting aspect for this thesis, although multiple papers
fall into several of these categories.

3.1.1 The Poisson Assumption and Generalizations

Maher (1982) makes the assumption that goals scored by each team in a football match follow
independent time-homogeneous Poisson processes. He then employs a parametric regression
model to estimate scoring rates as a function of offensive and defensive team strengths in the
marginal Poisson distributions using a maximum likelihood approach. Since then, an abundance
of research has been conducted based on this work. Dixon and Coles (1997) extend the model
proposed by Maher (1982) by using a copula function to allow for dependence between the scoring
processes of opposing teams. In addition, they modify the likelihood function by using a time
decay factor. This is done in order to assign most relevance to observations from recent matches
and is motivated by the assumption that team strengths vary over time. Another approach
to account for this is proposed by Rue and Salvesen (2000). They develop a Bayesian linear
dynamic model and employ a Markov Chain Monte Carlo approach for inference. Koopman
and Lit (2012) also account for time-varying team strengths by developing a stochastic process
for modelling the strengths, while otherwise following the same approach as Dixon and Coles
(1997). Regarding the dependence between goals scored by opposing teams, Dixon and Robinson
(1998) account for this by modelling a two-dimensional goal process rather than fitting a copula
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function around two independent distributions. McHale and Scarf (2007) examine the hypothesis
that such dependence exists by developing a model for FIFA World Cup matches based on FIFA
ratings. They find that there is a statistically significant negative dependence and that the
magnitude of this dependence grows as a function of the difference in the FIFA ratings. They
also suggest that there exist a small positive dependence between goals scored by opposing teams
in domestic football competitions such as the EPL.

In addition to Rue and Salvesen (2000), several researchers have utilized a Bayesian network
to account for conditional probability. Joseph et al. (2006) develop a Bayesian network for
prediction of the matches of Tottenham Hotspur in the 2005− 2007 seasons of the EPL. Based
on this, Constantinou et al. (2013) subsequently modify the Bayesian network for prediction of
all matches in the EPL season 2011-2012, reporting superior performance in the betting market.
Owramipur et al. (2013) developed a model for predicting the matches of Barcelona FC during
one season, using features such as weather conditions, psychological state of players and injuries.
Yet another approach is taken by Schauberger and Groll (2018), who consider the use of random
forests for predicting the outcome of international football matches based on data from the
four FIFA World Cups between 2002 and 2014. They develop one random forest for the entire
scoreline distribution and one for the 1X2 outcome, reporting decent results for both models.

With respect to choosing a model architecture, research comparing different approaches to do so
are particularly interesting. A good example in this regard is the work of Goddard (2005). He
develops a bivariate Poisson model for the scoreline distribution as well as an ordered probit model
for the 1X2 distribution to compare their performance on the task of predicting outcomes from the
latter. He found that the two approaches provide fairly similar results and that a hybrid model
performs slightly better. He also suggests that information about the importance of a match for
the opposing teams hold some predictive power on the outcome of football matches. Another
interesting paper is that of Hvattum (2017), who compares an ordinal and a multinomial logit
model. This is motivated by the fact that many researchers, including most of those presented
above, choose an ordinal regression for modelling 1X2 outcomes in football matches due to the
inherent ordinal structure of goals. He finds, despite this ordinal nature, that the multinomial
model performs slightly better than its ordinal equivalent. He suggests that this is due to the
challenge of correctly predicting draws implied by the proportional odds assumption inherent in
ordinal models. The proportional odds assumption is that independent variables influence the
logarithm of the odds of each outcome is the same manner.

The assumption that scoring processes follow time-homogeneous Poisson distributions, which is
made in all the models mentioned thus far, may be overly restrictive. The extensive use of this
assumption may be motivated by the fact that few other realistic options were available at their
time of publishing. Based on the observation that Poisson models tend to underestimate the
probability of a draw, Karlis and Ntzoufras (2003) incorporate an inflation factor to their model.
Albeit not specifically intended for goal processes in football, McShane et al. (2008) derive the
Weibull count distribution, as presented in Section 2.4. Boshnakov et al. (2017) subsequently
develop a model for the scoreline distribution of EPL matches based on the assumption that the
goal scoring processes follow this distribution and use the Frank copula to model dependence.
They otherwise follow a similar approach to that of Dixon and Coles (1997). In addition, they
conduct a Chi-squared hypothesis test for comparing the fit of the Poisson and Weibull count
distributions to the goal distribution observed during the 2011/2012-2014/2015 seasons of the
EPL. They find that a null hypothesis stating that the goals follow a Weibull Count distribution
cannot be rejected at significance level α = 0.1 for either average home or away goals, while an
equivalent null hypothesis for the homogeneous Poisson distribution is rejected even at α = 0.005
in both cases.
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Note that all the models mentioned above construct some form of team ratings with respect
to a parametric probability distribution. Another approach considered in several papers is to
create a rating independent from the choice of a parametric probability distribution. Some also
consider the predictive power of existing rating systems. Elo (1978) develop a rating system
for assessing chess players based on exchanges of rating points between the winner and loser.
Hvattum and Arntzen (2010) examine the predictive power of this rating on football matches
by using it for feature selection. They then employ these features in an ordered logit regression
model for prediction. Constantinou et al. (2012) propose the Performance index (Pi) rating
system and suggest that their model outperforms that of Hvattum and Arntzen (2010) in the
betting market, where it yields statistically significant positive returns. This rating system is
constructed by utilizing a Bayesian network to incorporate information about the conditions
under which a match is played, thus capturing some information not available from historical
data. Silver (2009) develops the Soccer Power. In 2014, they updated the system to account
for international football matches. Silver and Boice (2018) subsequently use the SPI rating in
their model of expected goals in football matches. The expected goals estimates are then used as
the scoring rate in two independent Poisson distributions. Their model also utilizes information
about the importance of matches from the perspective of the opposing teams and market values
of players from Transfermarkt.com (2018) as estimates of their ability at the beginning of each
season. These market prices are determined by votes from a large number of people, thus
representing common knowledge about the ability of a player. In a similar fashion to Karlis and
Ntzoufras (2003), they use an inflation factor to increase the predicted proportion of draws.

The predictive power of common knowledge on the outcome of football matches is also examined
by several others. Peeters (2018) utilize market prices from Transfermarkt.com (2018) to predict
the outcome of football matches. He suggests that the predictions are more accurate than those
based on the FIFA rating and the Elo rating. Godin et al. (2014) develop a prediction model for
the 1X2 outcome of football matches by extracting and aggregating information in Twitter posts.
They suggest that common knowledge can beat predictions made by bookmakers and betting
experts based on the performance of their model. Schumaker et al. (2016) test a somewhat
similar approach based on sentiment analysis from Twitter posts and find that it performs better
than wagering on the match favourite.

Lastly, Nevo and Ritov (2012) consider the explanation power of the time of the first goal in a
football match on the number of goals scored in the remainder of the match. They find that
this time has a statistically significant effect in this regard, but that this effect might be both
impeding and expediting. Furthermore, they suggest that scoring rates increase given that a
goal is scored and that this effect is the same regardless of whether it was scored or conceded.

3.1.2 In-game Prediction Methods

Asif and McHale (2016) develop a dynamic logistic regression model for in-game prediction of
one-day cricket matches. They do this by training independent logistic regression models for
every inning in the match and then applying a smoothing scheme on the parameters of each of
these models so that they vary continuously throughout the match and reflect time decay. Volf
(2009) develop a prediction model for football matches based on two dependent random point
processes, each of which is a product of a non-parametric baseline scoring rate and dynamic
regression model represented by a stochastic differential equation. Feng et al. (2016) employ a
Skellam process to represent real-time betting odds for EPL matches. They estimate the expected
scoring rates for each team based on a matrix of market odds on all possible scorelines. They then
use these rates as an estimate of the implied volatility of the match. As the match evolves they
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re-estimate the expected scoring rates and thus the implied volatility measure. This provides a
dynamic representation of the expected outcome of the match. Nyquist and Pettersson (2017)
investigate the use of artificial neural networks for predicting the outcome of football matches.
In particular, they develop a long short-term memory network for learning sequences of states
present in matches by utilizing the information only available during the match. An interesting
aspect of this research is that they use features to model the quality of a team on the time of
prediction rather than inferring it directly from historical team performance.

3.1.3 Artificial Neural Networks and Machine Learning

Although research on applications of artificial neural networks for predictions of football matches
is rather sparse, there exists relevant research where ANNs are applied in other areas.

Bunker and Thabtah (2019) present a critical analysis of the existing literature on the use of
ANNs for predicting the outcome of different sports events. Based on this analysis, they and
suggest a scientific framework for creating such models. Baboota and Kaur (2019) consider the
prediction of football matches and place emphasis on feature engineering based on an extensive
review of football prediction models. They suggest that features such as EA SPORTSTM FIFA
ratings and indicators of the quality of recent performances of a team have decent predictive
power. They then use a gradient boosting algorithm to obtain their predictions. Ulmer and
Fernandez (2014) also focus their work on feature engineering and develop several models based
on machine learning methods and use a feature set consisting of match day data and recent team
performances. They are not able to beat the accuracy of betting experts with any of their models.
Arabzad et al. (2014) construct a rather simple ANN for prediction of football matches in the
2013-2014 season of the Iranian Pro League and suggest that the decent predictive power of their
simplistic network implies that ANNs should be able to accurately predict the outcome of football
matches. McCabe and Trevathan (2008) construct an ANN for general team sports predictions
in a similar manner to Arabzad et al. (2014), but by using a much more complex network. They
otherwise choose a team independent representation similar to Nyquist and Pettersson (2017)
in order to enable modelling of team qualities across different sports and environments. They
report that the network compares favourably with predictions made by betting experts in several
of these environments.

There is extensive coverage of racing events among the research on sports prediction, especially
of horse races and greyhound races. There are some relevant aspects of the research conducted on
the former, despite its completely different nature to football as a sport. Davoodi and Khantey-
moori (2010) develop a model for horse race predictions based on data collected from Aqueduct
Race Track in New York across January 2010. They use an RNN to be able to hold information
about the most recent runs in a given race, thus trying to learn sequences of performances by a
given horse on a given day of racing. Pudaruth et al. (2015) develop an ordinary feed-forward
ANN for the same task, but report low prediction performance from their model. Except for the
difference in architecture, the two approaches are very similar. Thus, there seems to be some
extra information to obtain from learning sequences of events. This proposition is also supported
to some extent by the results mentioned in the previous paragraph.

3.2 Investment Strategies Under Fixed Conditional Returns

This section presents existing research related to strategies for generating profits in betting
markets for the outcome of football matches. Although the degree of information efficiency in
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these markets is in itself a heavily researched topic (Paton et al., 2006; Franck et al., 2009; Stekler
et al., 2010; Croxson and Reade, 2013; Hvattum, 2013), the markets in question are assumed to
offer no arbitrage opportunities during this project. Thus, the degree of information efficiency
and strategies for exploiting such opportunities are not discussed further.

The emphasis is placed on the Kelly criterion based on the assumptions that bettors act according
to a logarithmic utility function. Furthermore, the application of this criterion in betting markets
is the topic of interest. Note that conditional returns are fixed by the odds in these markets,
a property not shared by most financial markets. Due to this considerable difference in nature,
research considering applications of the Kelly criterion in markets with uncertain conditional
returns is omitted.

The Kelly’s criterion is widely used among bettors and especially in high-frequency games since
the optimal logarithmic growth property of this strategy only holds in the limit N →∞ for the
number of placed bets N (Peterson, 2018). Recall that the formulas presented in Section 2.7.3
rests on the assumptions that the events corresponding to successive bets are i.i.d. binary random
variables and that the bettor has perfect information about the probabilities in each game. The
former assumption is very restrictive and does not guarantee for optimal betting on several
mutually exclusive events such as 1X2 outcomes of football matches. Furthermore, each side
of a betting contract only hold estimates of the true probabilities of the outcomes. Thus, some
adjustments to Kelly’s criterion should be used for portfolio optimization in the football betting
market, some of which are presented here.

Maclean et al. (2011) present a thorough examination of the existing literature on the properties
of the Kelly criterion. An important property is that the Kelly criterion is an optimal myopic
strategy, meaning that the strategy is constant regardless of prior and subsequent bets under the
presented assumptions. Hakansson (1971) proves that this property extends to investments on
dependent events given the logarithmic utility function, while Algoet and Cover (1988) show that
past outcomes can be accounted for by maximizing the expected logarithmic return conditional
on these outcomes. Note, however, that none of these papers considers the task of allowing
multiple bets at different times on a single outcome of a single event.

Based on their review, Maclean et al. (2011) also state that the main disadvantage with the Kelly
criterion is that its suggested wagers are consistently larger than implied by rational behaviour
according to a logarithmic utility function for short investments horizons. The reason is that the
mean is much more important for determining the optimal fractions than the variance (Kallberg
and Ziemba, 1984). This is also indicated by Hsieh et al. (2018), who consider the optimal
frequency for updating the Kelly fractions in the case where the sequence of games corresponds
to i.i.d. random variables. They suggest that, in the absence of transaction costs, the highest
possible frequency is optimal. Another issue is presented by Griffin (1984) who suggests that,
since the Kelly fractions are fixed as a function of total wealth, the Kelly criterion may yield a
lower return than expected. This is because the unweighted geometric return rate converges to
half the arithmetic return rate.

As stated, the Kelly criterion only holds when there exists perfect knowledge of the winning
probability p. This has motivated the considerable amount of research conducted on the topic
of partial Kelly strategies, which imply shrinking the Kelly fractions f∗ to γf∗ where γ ∈ (0, 1).
MacLean et al. (1992) consider the use of these strategies for analysis of dynamic portfolio
optimization in discrete time, while Thorp (2008) tests the strategies for sports betting as well
as for Blackjack and in the stock market. Furthermore, Kadane (2011) shows that half-Kelly
strategies, which simply mean choosing γ = 1

2 , do not optimize any utility function exactly, but
that partial Kelly strategies approximately maximizes the constant relative risk aversion utility
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function U(f) = 1−f1−w

w−1 by choosing f = f∗ and w = γ. Baker and McHale (2013) find that,
although the Kelly fraction f∗ maximize the expected logarithmic utility when p is known, there
always exist an optimal solution for γ ∈ (0, 1), while γ > 1 implies terminal ruin for the bettor.
They also show that the optimal γ is a monotonically decreasing function of the variance in the
estimates of p. Yet another approach to account for uncertainty in p is presented by Wu et al.
(2016), who suggest to use the historical winning rate p̂N = number of wins

N as the estimate of p
after N bets in the betting sequences. They show that this approach yields similar returns to
the perfect information scenario for sufficiently large N .

The extension of the Kelly criterion to multivariate portfolios is also a topic often considered
in existing research. Nekrasov (2014) presents a Kelly strategy for multivariate portfolios in
the stock market based on estimates of the first and second order moments of excess returns.
Cao et al. (2017) follow a similar approach, but also propose a partial Kelly strategy based
on volatility regulation to account for uncertainty. The performance of these approaches relies
to a large extent on an accurate estimate of the correlation matrix of the assets in question.
Several others consider the use of the Kelly criterion for betting on sports events with more than
two mutually exclusive outcomes. O’Shaughnessy (2012) derives an adjusted Kelly criterion for
betting on 1X2 outcomes of football matches on a betting exchange. This criterion accounts for
taxes to be paid in the case of a winning bet and the possibility of engaging in short positions.
In a similar manner, Noon (2014) propose a strategy for sports betting markets where outcomes
are mutually exclusive and where both short and long positions are allowed, showing that this
strategy maximizes the logarithmic utility. Chapman (2006) evaluates the use of the Kelly
criterion for spread betting, that is, distributing bets over the range of outcomes for a continuous
random variable. This topic is also considered by Fitt (2008) for the time of arrival of events in
football matches, albeit using the approach suggested by Markowitz (1952) rather than the Kelly
criterion. Smoczynski and Tomkins (2010) develop an algorithm based on the Kelly criterion
for placing bets on the winner of horse races and proves that it asymptotically maximizes the
logarithmic return rate. However, all the mentioned approaches only consider pre-game betting.

3.3 Contribution to the Existing Literature

The continuation of this report is devoted to a presentation of the data and methodology utilized
and results generated to answer the research questions.

The data utilized in this research project data is to a large extent motivated by ideas and
results from existing literature. Both Goddard (2005) and Silver and Boice (2018) indicate
that information about the importance of football matches from the perspective of the opposing
teams has some ability to explain the outcome. Furthermore, Constantinou et al. (2012) and
Hvattum and Arntzen (2010) suggest that team rating systems have a large prediction power
on the outcome of football matches, and the same is suggested by Baboota and Kaur (2019) for
information about recent performances and the EA SPORTSTM FIFA player ratings.

Regarding the generation of prediction models, the choice of ANNs as a model architecture is
fixed by the initial hypotheses. Nevertheless, this choice is supported by the poor results of
Ulmer and Fernandez (2014) for other machine learning architectures. The work of Hvattum
(2017) inspires the use of a multinomial rather ordinal logistic regression approach in the ANNs.
Among the ANN architectures encountered, the results of McCabe and Trevathan (2008) suggest
that the quality of a team should be represented implicitly rather than a time series connected to
its name. Furthermore, a comparison between Davoodi and Khanteymoori (2010) and Pudaruth
et al. (2015) indicate that a recurrent ANN architecture should be utilized to generate in-game
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predictions of the outcome of sports events. The most novel approach encountered regarding the
use of ANNs for prediction of football matches is that of Nyquist and Pettersson (2017) and their
use of an LSTM network. Although the former model does not perform particularly well, the
contrast in methodology to that of Asif and McHale (2016) indicate that this poor performance
is due to the scientific process rather than the LSTM architecture itself. This is due to the
similarity in how dynamics are represented in these models. The scientific process suggested by
Bunker and Thabtah (2019) is also interesting in this regard.

The contribution of this research project to the existing literature lies first and foremost in com-
bining the presented ideas, as well as extending the application of these to the in-game prediction
of football matches. Explicitly, a considerably altered LSTM architecture to that of Nyquist and
Pettersson (2017) is chosen, and aspects of the scientific procedures of Asif and McHale (2016)
and Bunker and Thabtah (2019) are combined to propose a proper scientific process for pre-
diction of football matches. The LSTM architecture is compared to an architecture based on
the Weibull count distribution and the Frank Copula, inspired by Boshnakov et al. (2017), with
respect to the equivalent scientific procedure in order to answer RQ1. The proposition of God-
dard (2005) that the prediction power of otherwise equivalent models of the scoreline and 1X2
distributions is rather similar is also evaluated. This is done by constructing a model for each of
the mentioned distributions for both model architectures.

Regarding betting strategies, the approach of Smoczynski and Tomkins (2010) is chosen to eval-
uate the static betting performance of the generated models at distinct points in time during
football matches. Based on this approach, a dynamic betting strategy is proposed as a theoretical
contribution to the literature, along with a proof of its optimality under a set of stated assump-
tions. Both of these strategies assume perfect information about probabilities, and different
scaling strategies are therefore tested based on the results of MacLean et al. (1992).
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Chapter 4

Data

This chapter gives a presentation and an analysis of the data utilized in this research project.
First, Section 4.1 presents the origin of the data, before Section 4.2 explains the chosen represen-
tation of matches as time intervals. A presentation of the Elo and EA SPORTSTM FIFA rating
systems as well as the available in-game event data can be found in Section 4.3. The chapter
ends with a discussion of the descriptive statistics of the mentioned features in Section 4.4. To
evaluate the choice of the Weibull count distribution over the Poisson distribution as a model for
goal distributions in the EPL, a chi-square hypothesis test is conducted. The results of this test
strong support the choice, as can be seen in Appendix A, along with plots indicating the same.

4.1 Origin of the Data

Most of the data used in this research is provided by Sportradar. This data includes pre-
game, in-game and full-time event information from all matches during the seasons 2008/2009
- 2017/2018 of the EPL, as well as odds data for the 2016/2017 and 2017/2018 seasons of the
same competition. The event data is very thorough and includes all directly observable in-game
events. The odds data includes both pre-game and in-game odds for a variety of markets. These
odds are generated by Sportradar’s own prediction model, which relies on market information
as well as a model of the true scoreline distribution in EPL. The reason for the use of market
information to generate these odds is motivated by the objective of providing optimal odds to
their customers.

Although Sportradar is a large corporation with a significant role in the betting markets, its
data is collected mostly manually and is therefore subject to human error. For this reason, the
provided data has undergone simple error processing as well as deletion of misplaced events.
The total number of events deleted or changed is less than 1% and is assumed not to be of
major significance for the analyses and model results. Due to Sportradar’s size and reputation,
no general fact-checking of the live events has been conducted apart from the mentioned error
checking. The full-time scorelines have however been verified through comparison with data from
Football-Data.co.uk (2019), which is an online site providing free historical odds and event data.

In addition to the data from Sportradar, the Elo and EA SPORTSTM FIFA ratings are used
as potential model features. Historical Elo ratings are downloaded from clubelo.com (Schiefler,
2019) and contains ratings for all the mentioned seasons of the EPL. These ratings are a modifi-
cation of those proposed by Elo (1978) suitable for football due to the inclusion of a home field
advantage and a goal difference dependence in the rating exchange formula. EA SPORTSTM
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FIFA ratings are obtained from fifaindex.com (2019) by modifying an information scraper pro-
vided by Grantham (2018). The same scraper is also utilized to acquire team line-ups from
BetStudy.com (2019) required to generate combined player ratings for a given match.

4.2 Time Intervals

The analyses, figures and tables of the data throughout this thesis have a specific time format.
The overall aim is to accurately predict the outcome at all times t ∈ [pre-game, full-time], which
implies accurate predictions of the goals scored in the time intervals It = [t, full-time]. Thus, the
relevant event occurrences are first and foremost those in It and the notion time = t, therefore,
refers to these occurrences throughout the thesis. Furthermore, It is divided into a varying
number of subsets based on the granularity required to give a good presentation of the relevant
statistics. Regarding the first half stoppage time, the chosen format is, due to practical purposes,
that all events occurring during this stoppage time are registered at the next time index. Thus,
estimates of the performance of a prediction model at t = 45 are pessimistic estimates of its
performance at half-time.

4.3 Description of the Data

This section presents the mentioned data in detail. Some information about a match is available
prior to kick-off, while other data is only made available as the game progresses. The following
discussion is structured similarly - The mentioned rating systems are presented first, followed by
the in-game event data.

4.3.1 Pre-game Rating Systems

As mentioned in Section 3.1.1, Constantinou et al. (2012) suggested that the Pi rating outper-
forms the Elo rating. However, the former is no longer made available, and the latter is therefore
chosen here. The EA SPORTSTM FIFA ratings are produced by Electronic Arts Inc. for their
annually released FIFA games. The formulas and algorithms behind the ratings are not publicly
known, but the ratings are assumed to be sufficiently reliable, both due to the reputation of the
producer and the decent predictive power suggested by Baboota and Kaur (2019). Since there
are considerable difficulties in obtaining all player ratings due to transfers and name formatting,
the mean of all available player ratings in a lineup is used as an estimate of the missing ratings.

For the 2008/2009 - 2010/2011 seasons of the EPL, only one EA SPORTSTM FIFA rating was
published along with the video game, approximately one month after the start of the season.
Although far more frequent rating updates are available for more recent seasons, the time required
to collect these rating is considerable. Thus, the chosen methodology is to obtain ratings for
each season at three different time points - right before the first game week, after the January
transfer window and in the last game week, all of which are assumed to be fixed for intermediate
matches. For the 2008/2009 - 2010/2011 seasons, the ratings are dated back to the first game
week based on the assumption that the expected ratings in this game week coincide with these
ratings.
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4.3.2 In-game Events

The data provided by Sportradar contains varying levels of detail. The 2008/2009-2010/2011
and parts of the 2011/2012 seasons of the EPL does not contain live events for goal kicks, throw-
ins and free kicks, while these are included for more recent seasons. This means that there is a
trade-off between a larger sample and a larger set of potential in-game features. The sample size
is already somewhat limited for the purpose at hand, as there are only 380 matches in one season
of the EPL. Consequently, the latter is chosen to ensure a robust scientific process. Furthermore,
the mentioned features are hypothesized to have very little predictive power, implying that little
information is lost by excluding them from the set of candidate features. Table 4.1 lists the
available live events and the seasons for which they are included.

Event type Available seasons Chosen

Corner kick 08/09 - 17/18 Yes
Goal 08/09 - 17/18 Yes
Offside 08/09 - 17/18 Yes
Red card 08/09 - 17/18 Yes
Shot off goal 08/09 - 17/18 Yes
Shot on goal 08/09 - 17/18 Yes
Yellow card 08/09 - 17/18 Yes
Free kick 11/12 - 17/18 No
Goal kick 11/12 - 17/18 No
Throw-in 11/12 - 17/18 No

Table 4.1: In-game events and the seasons for which they are available.

4.4 Descriptive Statics

The descriptive statistics of the candidate features should be evaluated to allow for the generation
of hypotheses about the processes to be modelled, as well as to enable a proper posterior analysis
of the model performance. The following sections consider estimates of the mean, standard
deviation and correlation coefficient of events from Table 4.1 in different intervals throughout
the matches. Note that the data sets used for model selection and evaluation are excluded to
avoid drawing biased inferences.

4.4.1 Mean and Standard Deviation

The sample mean and sample standard deviation, hereafter denoted by µ̂ and σ̂, are unbiased
estimators of the arguably most important properties of a probability distribution. Table 4.2
presents µ̂ and σ̂ for all the chosen event types, where the interpretation of time follows that
explained in Section 4.2.
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Time = 0 Time = 30 Time = 60 Time = 90
µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

Home corner kick 5.692 3.205 4.009 2.583 2.080 1.761 0.270 0.562
Away corner kick 4.510 2.749 3.211 2.257 1.694 1.555 0.232 0.529
Home goal 1.550 1.314 1.139 1.119 0.613 0.796 0.085 0.287
Away goal 1.166 1.159 0.857 0.977 0.475 0.719 0.066 0.252

Home offside 1.846 1.644 1.252 1.283 0.627 0.855 0.081 0.289
Away offside 1.673 1.566 1.132 1.217 0.577 0.812 0.082 0.284
Home red card 0.060 0.245 0.053 0.229 0.032 0.183 0.008 0.089
Away red card 0.087 0.295 0.077 0.277 0.054 0.233 0.012 0.110

Home shot off goal 4.998 2.683 3.536 2.153 1.866 1.460 0.233 0.484
Away shot off goal 3.983 2.304 2.845 1.893 1.510 1.314 0.203 0.459
Home shot on goal 3.502 2.293 2.499 1.904 1.333 1.319 0.178 0.441
Away shot on goal 2.848 1.991 2.054 1.650 1.083 1.144 0.150 0.405

Home yellow card 1.445 1.189 1.227 1.109 0.733 0.869 0.123 0.358
Away yellow card 1.782 1.290 1.499 1.191 0.874 0.930 0.151 0.389

Table 4.2: Mean and standard deviation for events at different time intervals in the match.

Two interesting aspects from these results is that σ̂ is lower than the corresponding µ̂ at time = 0
for all events except red cards and that the value of σ̂ increases relative to µ̂ over time. One
can also observe that both µ̂ and σ̂ decreases as the matches progress, which is as expected.
It is also worth noting that µ̂RC is very small relative to σ̂RC , indicating that there may be a
large uncertainty in the importance assigned to information about red cards. As red cards are
assumed to affect the outcome of football matches, this further supports the choice of a large
samples size in contrast to more potential in-game features.

A considerable difference in µ̂ between home and away teams can be seen, indicating that a home-
field advantage exists. Table 4.3 give an explicit presentation of this advantage as ˆAdvantage =
µ̂Home goal
µ̂Away goal

, where its estimated presence throughout the match indicate that a model should be
able to capture it.

Time ˆAdvantage

0 1.330
15 1.320
30 1.329
45 1.317
60 1.290
75 1.282
90 1.281

Table 4.3: Home field advantage throughout the matches as measured by goals scored.

4.4.2 Correlation Coefficient

The correlation coefficient φ between two random variables is a measure of their linear depen-
dence. Despite its limitations, φ is easily interpreted, and can be used as a simple means of
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generating initial hypotheses about the data. The estimated correlation coefficients φ̂ can be
seen in Table 4.4 for different times t, where φ̂ indicate the linear dependence between the value
or number of occurrences of a given event on the interval [kick-off,t] and the number of goals
scored in [t,full-time]. Note that since the Elo and EA SPORTSTM FIFA ratings are constant
throughout the match, these take the role of the former random variable in the calculation.

Time = 0 Time = 30 Time = 60 Time = 90
Home Away Home Away Home Away Home Away

Home FIFA 0.270 -0.183 0.243 -0.153 0.161 -0.122 0.084 -0.059
Away FIFA -0.194 0.256 -0.169 0.210 -0.134 0.179 -0.039 0.072
Home Elo 0.291 -0.187 0.258 -0.157 0.174 -0.117 0.077 -0.049
Away Elo -0.207 0.260 -0.188 0.215 -0.146 0.181 -0.052 0.079

Home corner kick 0.125 -0.071 0.112 -0.052 0.047 -0.035
Away corner kick -0.078 0.087 -0.074 0.090 -0.035 0.027
Home goal 0.042 -0.032 0.068 -0.040 0.034 -0.030
Away goal -0.017 0.073 0.008 0.079 0.014 0.072

Home offside 0.059 -0.001 0.040 -0.032 0.012 -0.015
Away offside -0.007 0.050 0.006 0.049 0.005 0.014
Home red card -0.045 0.009 -0.049 0.066 -0.006 0.047
Away red card 0.023 -0.044 0.098 -0.062 0.068 -0.007

Home shot off goal 0.133 -0.042 0.124 -0.047 0.073 -0.041
Away shot off goal -0.073 0.105 -0.076 0.123 -0.072 0.036
Home shot on goal 0.074 -0.083 0.083 -0.071 0.045 -0.037
Away shot on goal -0.090 0.091 -0.074 0.085 -0.034 0.044

Home yellow card -0.044 0.019 -0.004 0.032 -0.001 0.032
Away yellow card 0.009 0.002 0.015 -0.020 0.038 0.000

Table 4.4: Correlation between goals scored after a given time and the other events up to that
time.

The absolute values of φ̂ seen here indicate a small linear dependence with the expected number
of goals. However, both of the rating systems seem to have decent predictive power. Another
interesting aspect from this table is that φ̂ decreases as the match progresses, either indicating
that the goal processes become subject to a larger amount of uncertainty, or that there are
considerable nonlinear dependencies between the goal processes and the presented features. Note
also that if the events were sorted by their absolute value of φ̂, the order would change throughout
the match. This implies that a predictive model should be able to utilize different sets of features
during a match, as well as assign varying importance to them. Although Table 4.4 indicate a
small φ between most in-game event types and the expected goals scored, it also indicates that
the linear dependence varies throughout the match. In addition, it may be the case that some
subsets of these features have a strong combined predictive power in regards to the goal processes.
Thus, it is worth considering them as candidates for model selection.

A final aspect to consider is the dependence between goals scored by opposing teams. Although
such dependence is often modelled using nonlinear functions, for instance copulas, φ may yield
some information about the importance of modelling it. Table 4.5, which presents φ̂ between
goals scored by the home and away teams in EPL, indicate that the linear dependence is small,
negative and varying throughout the match. Although these values do not indicate the presence
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of dependence, it should not be deemed completely absent due to the possible existence of non-
linear dependencies, as indicated by Boshnakov et al. (2017), Dixon and Coles (1997) and McHale
and Scarf (2007) among others. As a final note, allowing for a varying dependence during football
matches seems like a necessity based on these results.

Time Correlation

0 -0.071
15 -0.076
30 -0.063
45 -0.038
60 -0.039
75 -0.047
90 -0.023

Table 4.5: Correlation between goals scored by the home team and the away team for different
time intervals.
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Chapter 5

Methodology

This chapter presents the methodology used to answer the research questions. Section 5.1 and
Section 5.2 together give a detailed presentation of the scientific procedure that was briefly
presented in Section 1.2. This procedure is designed to ensure that the models are generated using
a sound statistical procedure, as well as to enable valid comparison of their performance. Then,
Section 5.4 and Section 5.5 present model architectures based on a Weibull count distribution and
an LSTM network respectively, where both of these architectures are used to generate models
of the scoreline and 1X2 distributions. These sections also present the corresponding estimation
procedures used to obtain the final models. Section 5.6 concludes this chapter with a presentation
of the investment strategies chosen for application of prediction models in the in-game football
betting market, as well as the mathematical foundation behind these strategies.

5.1 Feature Engineering

The raw data available in a scientific experiment is often inappropriate for generating statistical
models. Thus, the process of structuring, generating and removing information from the raw
data is often regarded as an integral part of statistical model generation processes. This process is
usually referred to as feature engineering, a term also used here. An abstract view of this phase
is presented in Figure 5.1, where feature extraction is the process of generating new features
hypothesized to be of relevance, and feature selection is the subsequent removal of redundant or
misleading features. The methodology used for these tasks is presented in this section.
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Figure 5.1: Abstract view of the feature engineering step in the scientific process.

5.1.1 Feature Extraction

Advanced model architectures such as ANNs are able to generate features during the training
procedure. Nevertheless, the training task is considerably harder if no feature extraction is
conducted as a preliminary step (Guyon et al., 2006). Furthermore, architectures based on the
Weibull count distribution do not share this ability. Feature extraction is therefore deemed
necessary in this project as a means of simplifying the training process, as well as enabling valid
comparison of model performance across the mentioned architectures. The chosen approach is
to generate new features based on ideas and results encountered during the literature review and
data analysis, as well as from intuition about the game of football.

Features Motivated by Data Analysis and the Rules of Football

A subset of the extracted features are based on knowledge about the game of football or motivated
by hypotheses generated from the results in Chapter 4. Based on the rules of football, features
are extracted from a replication of the EPL table generated from the full-time results present
in the available data. This feature set includes, amongst others, the number of wins, points
accumulated and goals scored during the current season. It also includes the average of these
quantities taken over all matches in a season and the difference in feature value between two
opposing teams. Based on intuition, a home-field advantage is likely to exist in football, a
hypothesis supported by the results in Section 4.4.1. Hence, indicator variables are included in
the set of candidate features to separate the home team from the away team in a given match.
An overview of the features discussed here is given in Table 5.1.
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Feature Description

Away indicator Equals 1 for the away team and 0 for the home team
Home indicator Equals 1 for the home team and 0 for the away team

Draws Number of draws
Losses Number of losses
Wins Number of wins
Goals conceded Number of goals conceded
Goals scored Number of goals scored
Goal difference Difference between goals scored and goals conceded
Goals conceded/match Average number of goals conceded per match
Goals scored/match Average number of goals scored per match
Goal difference/match Average goal difference per match
Matches Number of matches played
Matches left Number of matches not yet played
Points Number of points accumulated
Points/match Average number of points gained per match
Position Position in the EPL table, ranked from most to least points

Table 5.1: Features motivated by intuition, the rules of football and the data analysis.

Features Inspired by the Existing Literature

Another set of features are motivated by the work of Silver and Boice (2018), Scarf and Shi
(2008) and Goddard (2005) on modelling of the importance of matches from the perspective of
the opposing teams, as well as the research conducted on feature importance by Baboota and
Kaur (2019).

Inspired by Baboota and Kaur (2019), a feature denoted form is constructed. This feature is
a measure of the strength of a team relative to its most recent opponents. It is constructed by
successive exchanges between teams based on the outcome of matches, much in the same manner
as the Elo rating. The exchanges are conducted based on a weighting scheme, and where every
team is assigned the value form = 1 at the beginning of each season. Explicitly, the form feature
is calculated as follows:

Formwinner(w) = Formwinner + w ∗ Formloser

Formloser(w) = (1− w) ∗ Formloser

The weight w determines the amount of form exchanged in a given match. A form feature is
created for all values w ∈ {0.05, 0.1, ..., 0.5}, where these values are chosen based on Baboota
and Kaur (2019). It is worth noting that lower values of w imply a large degree of similarity
between the form feature and the Elo rating, which also utilizes a low exchange rate, indicating
slow updates in the performance measure.

Another feature inspired by Baboota and Kaur (2019) is denoted streak and is a measure of
the recent performance of a team. In its most basic form, the streak is defined as the average
number of points obtained during a given number l of preceding matches. Based on this idea,
a set of features are created by introducing different weighting schemes in order to assign more
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importance to recent performances (tw), to account for the Elo rating of the opposition (ew), or
both (ew tw). As the intention is that these features should represent short-term performance,
and thus complement the information inherent in the Elo rating, the maximum lag length l̄ = 10
is chosen. In addition, all the extracted streak features are initialized to 0 at the beginning of
each season. Consequently, for a given l ≤ l̄, the lag is chosen to be m = max{l,ms}, where ms

is the number of matches played by a given team in a given season. Formally, the mentioned
extensions of the streak feature are defined as

Streak(l) =
1

3m

i=m∑
i=1

pi

Streak tw(l) =
1

3m

i=m∑
i=1

(1− i

20
)pi

Streak ew(l) =
1

3m

i=m∑
i=1

ei
2000

pi

Streak ew tw(l) =
1

3m

i=m∑
i=1

ei
2000

(1− i

20
)pi

where i represents the i′thmost recent match, and pi and ei denote the number of points obtained
by the team in question and the Elo rating of its opponent in match i. As the maximum number
of points in a given match is 3 and the Elo ratings for the best teams are close to 2000, the
features are scaled by these quantities to obtain values approximately ∈ [0, 1].

Motivated by the work of Silver and Boice (2018) and Goddard (2005), a set of features repre-
senting the importance of a match for the opposing teams is generated. Although these features
may be derived from simulations and a prediction model, as proposed by Scarf and Shi (2008),
the chosen approach is to construct simplifying deterministic equations based on discussions in
Goddard (2005).

The rules of the EPL imply that several table positions have bearing on the next season. In
addition to the fact that the three lowest positioned teams are relegated and that the best
positioned team wins the league, teams finishing in the four highest positions are directly qualified
for the UEFA Champions League. Furthermore, the fifth position implies qualification for the
UEFA Europa League. Based on this, the given positions are used as a reference to construct
four different importance features. Formally, for the fifth position, the importance feature is
defined as

Importance 5(w) = |100− |Points− Points5||(1−
m

38
)wI(|Points− Points5| ≤ 3m),

where Points denotes the number of points already obtained in a given season for the team in
question, Points5 is the number of points obtained by the team in the fifth position, m is the
number of matches left in the given season, and w ∈ {0.25, 0.5, 1, 2, 3}. If the team in question is
the fifth highest positioned team, Points5 is replaced by the number of points obtained by the
closest team. In a similar manner to the form and streak features, the importance is defined as
a non-negative quantity and where a high value indicates high importance. Since 100 points are
the maximum ever obtained by a single team in an EPL season, this is taken as a measure of the

39



maximum point difference. The time weighting scheme is introduced to give higher importance
to matches late in the season. Equations for Importance 1, Importance 4 and Importance 18
are defined in a similar manner, where 4 and 18 represents the limit for Champions League
qualification and relegation respectively. It is also worth noting that by the given definition, the
importance is 0 if the point difference exceeds the limit for obtainable points in the remaining
matches.

The last set of generated features is also motivated by match importance and is based on the
hypothesis that matches late in the season are considered more important from a psychological
perspective. It is also generated based on another hypothesis that the outcome of matches at the
beginning of a season is more random than at later stages. These features are simply constructed
as indicator variables for differentiating between different phases of a season. Explicitly, given a
lower and upper bound l and u, these indicators are defined as

Match num[l, u] =

{
1; matches played ∈ [l, u]

0; otherwise

Table of Features

All the subsets of features discussed here are presented in Table B.1 along with some of their
properties. The interpretation of these properties is as follows: The difference property indicates
that there exists an additional feature which represents the difference of the feature in question
for opposing teams. Features marked in-game are only available during a match and those with
the seasonal property are reset for each new season and depend only on the current season. The
variations property is stated along with a set of parameters for which there exist variations of the
feature. Note that all features, except for the indicators for home and away teams, are available
for both teams in a match. This implies a large set of 335 candidate features.

5.1.2 Feature Selection

After completion of the feature extraction, the next step in the process is the removal of redundant
or misleading features. In addition to complicating the training task, the inclusion of such features
also increases the risk of overfitting. It is important to note that the term feature selection here
refers to the task of selecting features solely based on information contained in the training
sample.

The first step of this selection procedure entails dividing some of the features into categories
based on their similarities. Then, for each category, only the feature with the highest mutual
information score with the univariate goal distribution is retained in the feature set. This step
is only conducted on the extracted features which are inspired by existing literature, as these
are already grouped in subsets of very similar features. After this step is conducted, the initial
feature set (IFS) is obtained. This set constitutes the candidate features considered in the model
selection phase, and also includes the event types and rating systems discussed in Table 4.1 and
Section 4.3.1 respectively.

The second step of the procedure is not conducted in the feature engineering phase of the scientific
process, but rather in the model selection phase, where the number of features d is considered
as a hyperparameter of the candidate models. However, this step is explained here due to its
connection to the feature engineering process.
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Formally, given a fixed d ≥ 1, it can be seen as a univariate selection algorithm FS(IFS), where
features are chosen greedily based on their mutual information with the class labels. For every d
considered in the model selection procedure, FS chooses d features that are subsequently used
for training. The optimal combination of parameters is thus the combination chosen by FS given
the optimal number of features d∗ found in the model selection procedure. For a given time t
during the matches, the feature values taken as input to FS are those representing the state of
a match at t. Regarding the class labels, these are taken as the number of goals scored in the
interval [t, full-time] for the scoreline models, and the full-time 1X2 outcome for the 1X2 models.
Note that a univariate selection procedure may propose suboptimal feature sets, since the chosen
features may hold a large amount of mutual information.

5.2 Evaluation

A sound procedure for validating, choosing and evaluating models heavily depends on the quality
and relevance of the chosen metrics, as stated in Section 2.2. Thus, the process of defining metrics
is a core part of any model generation procedure. The presentation of the chosen metrics and
the reasoning behind these choices is structured in two sections, one for the metrics used on the
scoreline distribution and one for the 1X2 distribution.

5.2.1 Metrics - Scoreline

An important reason for creating models of the full scoreline distribution in football matches
is that it may be used to derive a large set of odds and thus financial portfolios in the in-
game betting market. To be used for the mentioned purpose, the entire distribution should be
estimated with decent precision, while the model should also understand the ordinal structure of
scorelines. This is especially the case if one allows bets on multiple outcomes of a given match.
However, metrics that only indicate the discrimination power of a model is also of importance,
as they indicate the ability of the model to predict the actual outcome.

For the purpose at hand, RPS is considered important due to its theoretical properties as a strictly
proper metric, as well as its ability to accurately measure performance on ordinal probability
distributions. A requirement for the RPS to accurately measure performance on the scoreline
distribution, is that its ordinal structure must be represented in a reasonable manner. This
is done by using Equation (2.14) to derive the cumulative distribution. Due to the mentioned
properties, the RPS is assigned the most importance in the evaluation of the scoreline models.
The cross entropy has equivalent theoretical properties to the RPS except for its inability to
accurately measure performance on ordinal distributions. As the cross entropy considers the
pdf and RPS the cdf, the former is a stronger indicator of the discrimination ability on small
samples. Hence, it is also deemed of relevance for a proper performance evaluation. Although
the accuracy score is not a strictly proper metric, its presence in existing literature suggests that
it should at least be given some attention during evaluation.

5.2.2 Metrics - 1X2

The quality of the estimates over the entire distribution is of most interest in general, so the
same arguments regarding the cross entropy and RPS apply here. Note that although there is
an inherent ordinal structure in the 1X2 distribution, defining a cumulative distribution over
these classes seems unnatural. Thus, RPS is not used to evaluate model performance on this
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distribution. The accuracy score of a model is arguably more important in the 1X2 scenario
since it is a stronger indicator of the total model performance when there are fewer classes. As a
final remark, note that the 1X2 distribution can easily be derived from the scoreline distribution.
Thus, the metrics presented here are also means of measuring the performance of a scoreline
model on the task of predicting the latter distribution, the topic of RQ2.

5.3 Validation and Model Selection

As mentioned in Chapter 2, the model selection procedure has considerable implications on the
ability of the entire scientific process to generate good statistical models. Since validation and
model selection are tightly interlinked, the two processes and the dependence between them are
presented together in this section under the term selection procedure. Two selection procedures
are presented in this section, where the first is chosen for this project due to time limitations
and the second is a recommended approach for similar research.

5.3.1 Chosen Selection Procedure

The validation set approach simply implies holding out a separate validation set for model
selection purposes, in addition to the designated training and test sets. The validation set,
which is independent of the training sample, is used for model selection by evaluating the cross
entropy for the candidate models on this sample. As discussed regarding the bias-variance trade-
off in Section 2.3.1, a significant disadvantage by this approach is a large bias in the estimate of
the generalization power in the case of a limited amount of available data. A more robust option
would be to use a cross-validation approach, but this is deemed infeasible due to time limitations
and the considerable time required to train LSTM networks. The chosen approach is therefore
to use the validation set approach, but in a manner that aims to lower the bias by accepting a
somewhat larger variance. Explicitly, the approach chosen here is to first designate 20% of the
observation for the test set. Then, only 20% of the remaining observations are designated for
the validation set, leaving most of the original sample for training.

Based on a consideration regarding reproducibility and comparison with existing literature, these
data sets are constructed based on the order of observations in a time series and are not chosen
at random. The explicit date ranges corresponding to these sets are presented in Table 5.2.
However, such an assignment of observations does not alleviate the problem of biased estimates
due to the possibility of considerable variations in the distribution of outcomes of football matches
between seasons. As an example, the designated validation set used in this thesis includes the
2015/2016 season of the EPL, in which Leicester City was crowned champions at a record low
81 points despite a pre-season odds of 5000 : 1 (Rayner and Brown, 2019) and usual big hitters
Chelsea and Liverpool finished 10. and 8. respectively. This may cause a biased estimate of the
predictive performance of the candidate models.

Data set Start date End date

Training set 16/08/2008 20/12/2014
Validation set 21/12/2014 15/05/2016
Test set 14/08/2016 13/05/2018

Table 5.2: Date ranges for the training, validation and test sets.
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The constructed validation set is utilized for model selection by performing a grid search for
selecting the hyperparameters of a model. Recall from Section 2.3.2 that the time complexity of
an exhaustive grid search is O(2P ), and that greedy variations are often chosen due to feasibility.
A greedy approach is also taken here.

In explicit terms, the chosen approach consists of two steps, in which the first is to perform a
grid search on model-specific hyperparameters and every fifth value of d, the number of features.
For every proposed value, the d features are chosen as described in Section 5.1.2. The chosen
model specific hyperparameters from this search are then taken as fixed and a second search
is conducted for d ∈ {d∗ − 5, d∗ − 4, . . . , d∗ + 5}, where d∗ is the chosen value from the first
search. Note that this procedure is only guaranteed to find the optimal number of features in
the case where the loss function is convex as a function d. This is not necessarily the case and
this approach is therefore not recommended in general. Also note that this procedure is very
time-consuming, even though it was chosen due to time limitations. As a consequence, one grid
search is performed for pre-game predictions and another is performed at time = 45 for the in-
game models based on the assumption that, although a different set of features may be optimal
at different times during a match, the number of features required to obtain sufficient estimates
is constant.

5.3.2 Recommended Selection Procedure

An entirely different selection procedure is planned and implemented for the project. However,
the estimated running time based on initial testing suggested that the approach was infeasible
within the time frame. Nevertheless, it is presented here as a suggestion for further research as
well as an integral part of the suggested scientific framework.

Explicitly, the suggested approach is to perform a single grid search based on k-fold cross valida-
tion, where every proposed combination of hyperparameters is tested in the search. Inside this
loop, an algorithm should perform feature selection for every proposed d based on multivariate
mutual information rather than the chosen univariate selection procedure.

By choosing this approach one alleviates the problem of potentially heavily biased estimates of
the generalization ability, as well as reduces the risk of choosing suboptimal combinations of
hyperparameters and features. This is especially the case for in-game predictions of football
matches, as reliable in-game data is hard to obtain. In short, the authors deem this to be a more
robust approach, and it should be considered when the research does not rely on the generation
of several prediction models, as is implied by the research questions in this project.

5.4 Architecture 1: Weibull Count Distribution

This section presents an architecture based on the Weibull count distribution (WCD) and the
Frank copula. This model architecture is based on previous research conducted by the authors.
The emphasis in the presentation is first placed on the architecture, before the chosen estimation
procedure for obtaining the two models based on this architecture is discussed in detail. To
conclude this section, a summary of the entire model generation process is given.

43



5.4.1 Architecture

The pdf of the WCD can incorporate a regression model for its hazard function. Explicitly, this
can be done by assuming that a linear combination of some features is the logarithm of the scale
parameter λ. As proposed by McShane et al. (2008), the hazard function of the WCD can then
be represented as

h(t) = λctc−1 = ex
T
i θctc−1 (5.1)

where xi and θ follow the conventional notation and xi includes a bias feature bi = 1 representing
the intercept in the regression.

The procedure used for generating estimates of the scoreline distribution is therefore to calculate
a univariate WCD for each team in a match and then combine these using the Frank copula.
A copula is chosen to allow for non-linear dependence between the goal distributions based
to the discussion in Section 4.4.2. The use of the Frank copula is motivated by the work of
Boshnakov et al. (2017) and the previous work of the authors, as well as the properties of
Archimedean copulas. Parameter estimation is performed by minimizing the cross entropy, which
coincides with the maximum likelihood approach. This procedure is conducted for all times
t ∈ {0, 5, . . . , 90}, where the parameter estimates obtained at t are valid for all times t∗ ≤ t.
The described approach is used to create two distinct models, where the only difference between
them is the distribution for which the cross entropy is calculated. The first model is obtained by
minimizing the cross entropy of the scoreline distribution, and the other of the 1X2-distribution.
These models are hereafter referred to as WCDscore and WCD1X2 respectively.

Formally, let Yit = Yi − git be the random variable representing the difference between the goals
scored by a given team at full-time, Yi, and at time t, git, in a given match i. Also, let h denote
the home team and a the away team. The scoreline outcomes for the remainder of the match
and the full-time 1X2 outcomes are then represented by

Sit = (Y h
it , Y

a
it )

and
Wit =

[
I(Y h

i > Y a
i ), I(Y h

i = Y a
i ), I(Y h

i < Y a
i )
]
.

respectively. Furthermore, let FYit(k|xit,θ, c) represent the cumulative probability of class k for
Yit according to the WCD. Let also C( · , · ) denote the Frank copula, and θ and c be parameters
subject to estimation. The bivariate cumulative scoreline distribution for the remainder of the
match is then given by

FSit(ΩSit |xit,θ, c) =
(
C
(
FY h

it
(m|xit,θ, ch), FY a

it
(n|xit,θ, ca)

))
(m,n)∈ΩSit

(5.2)

where ΩSit = ΩY h
it
×ΩY a

it
and the copula parameter κ is included in θ. The corresponding bivariate

pdf, defined as fSit(ΩSit |xit,θ, c), is constructed by utilizing Equation (2.14). Obtaining the
full-time 1X2 distribution given information up until time t entails summing over all scoreline
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probabilities that result in a given 1X2 outcome. This yields the following equation

fWit(ΩWit |ΩSit , git,xit,θ, c) =

 ∑
(m,n)∈ΩSit

I
(
k = WI(m,n, git)

)
fSit(ΩSit |xit,θ, c)


k∈ΩWit

(5.3)

where the 1X2 indicator WI is given by

WI(m,n, g) = [I(m+ gh > n+ ga), I(m+ gh = n+ ga), I(m+ gh < n+ ga)].

5.4.2 Estimation Procedure

Following the above definitions, the estimation procedure for WCDscore and WCD1X2 is pre-
sented here. These models both represent estimates of the bivariate scoreline distributions at all
times t ∈ {0, 5, . . . , 90}, but the procedures for obtaining estimates of θ and c differ, as stated
above. The estimates of these parameters in WCDscore, denoted θ̂s and ĉs, are obtained by
minimizing the cross entropy given by

CE(θs, cs|fSt ,Xt, st) = − 1

N

N∑
i=1

∑
k∈ΩSit

I(sit = k)ln
(
fSit(k|xit,θs, cs)

)
(5.4)

where st = (yhit, y
a
it)i∈{0,1,...,N} and yit is the true value of the corresponding random variable.

Similarly, the parameters for WCD1X2 are obtained by minimizing

CE(θw, cw|fWt ,Xt,wt,ΩSit , git) = − 1

N

N∑
i=1

∑
k∈ΩWit

I(wit = k)ln
(
fWit(k|ΩSit , git,xit,θw, cw)

)
(5.5)

where wt = ([I(yhi > yai ), I(yhi = yai ), I(yhi < yai )])i∈{0,1,...,N}. The optimal solution for the
minimiziation problems corresponding to Equation (5.4) and Equation (5.5) are obtained using
the Constrained optimization by linear approximation (COBYLA) algorithm (Jones et al., 2001),
which is not discussed further.

A simple graphic representation of the entire estimation procedure can be seen in Figure 5.2 for
WCDscore, and the necessary extension for obtaining WCD1X2 is presented in Figure 5.3.

Feature
obervations

Xt

Univariate WCD
fYt

(ΩYt
|Xt,θ, c)

. . . Bivariate WCD
fSt

(ΩSt
|Xt,θ, c)

minimize

True
labels
yt

Cross entropy
CE( · )

Frank copula

Fitted WCDscore

fSt(ΩSt |Xt, θ̂, ĉ)

Figure 5.2: Illustration of the estimation procedure for WCDscore.
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Bivariate WCD
fSt

(ΩSt
|Xt,θ, c)

1X2 distribution
fWt

(ΩWt
|ΩSt

, gt,xt,θ, c)
minimize

Figure 5.3: Illustration of the extension required by WCD1X2.

5.4.3 Summary - Model Generation Procedure

Now that the scientific framework and the individual components of the model generation process
have been extensively discussed, the time is due to present the entire process. A natural way to
do this is by presenting it in a step by step manner, as can be seen in Table 5.3. Note that the
term WCDmodel is to be replaced by either WCDscore or WCD1X2, and that f̂St represents the
trained models. Furthermore, the scaling of the input data is conducted to ease the computational
burden placed on the optimization algorithm by ensuring that all feature values lie in the interval
[−1, 1].

Model Generation Process WCD

1: Initial Selection and Scaling

All features feature selection−−−−−−−−−−→ Initial feature set(IFS)
X[IFS] −→X

X
split−−−→Xtrain,Xvalid,Xtest

y
split−−−→ ytrain,yvalid,ytest

ρ = (max{|Xtrain,f |})f∈features

Xtrain,Xvalid,Xtest

Scaling:X
ρ−−−−−−→Xtrain,Xvalid,Xtest

2: Model Selection
hyperparameters=[dpre, din]

d∗pre
Grid search←−−−−−−−WCDmodel,Xtrain,Xvalid,ytrain,yvalid, {dpre}

d∗in
Grid search←−−−−−−−WCDmodel,Xtrain,Xvalid,ytrain,yvalid, {din}, d∗pre

3: Estimation
Select d∗pre best pre-game features −→X0

f̂S0

t=0←−− Estimation procedure from Figure 5.2 and Figure 5.3
for all time steps t ∈ {5, 10, . . . , 90} do:

Select d∗in best features at time t −→Xt

f̂St ←− Estimation procedure from Figure 5.2 and Figure 5.3
end for

Table 5.3: Model generation process for the WCD models.

5.5 Architecture 2: Long Short-Term Memory Network

The emphasis is now moved to the LSTM architecture. As in the previous sections, the focus is
first placed on the architecture itself along with the corresponding hyperparameters. Then, the
chosen estimation procedure and three different models are presented. The section ends with a
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summary of the entire model generation process with respect to the special requirements of this
architecture.

5.5.1 Architecture and Hyperparameters

This section introduces the chosen LSTM architecture and the corresponding hyperparameters.
The core component of this architecture is a simple form of LSTM networks, as seen in Sec-
tion 2.6.2. However, a series of alterations are made to this architecture to enhance the model
generation procedure. These alterations impose a new set of hyperparameters on the models, in
addition to the ones inherent in ANNs. The entire set of hyperparameters is presented below,
before the focus shifts to the model architecture.

A subset of the hyperparameters determines the size of the network. As discussed in Section 2.6.3,
the convention for choosing this size is to ensure that the network is large enough and then use
a regularizer to avoid overfitting. This convention is also chosen here, where the regularizer is
the elastic net and the parameter values for the norm penalties in Equation (2.6) are taken as
hyperparameters. Regarding the term large enough, initial testing suggested that three hidden
layers are sufficient to not restrict the training procedure. This is supported by the Universal
approximation theorem. The dimensions of the LSTM cells Ml in each layer l must also be
sufficiently large. These are chosen as Ml > max{Number of features,Number of classes}; l ∈
{1, 2, 3} to ensure that the degrees of freedom is not restricted.

The output layer and all hidden layers in the network require activation functions. Prior to
choosing these for the task of modelling football matches, one must decide whether to create an
ordinal or a nominal model. Motivated by the work of Hvattum (2017), the softmax function is
used as the output activation function. The network also requires an optimization algorithm that
utilizes the output from the network to ensure proper training. Initial testing suggested that the
ADAM optimizer is the one indicating the best ability to converge to an optimal solution among
the options available in Keras (Chollet et al., 2015), the environment used for training the LSTM
networks. Consequently, it is the chosen optimization algorithm used for this architecture.

Furthermore, two additional types of layers are introduced to provide specific benefits. Recall
from Section 2.6.3 that dropout layers can prevent overfitting by randomly ignoring signals during
training. These layers are therefore included after each LSTM layer in the network, where the
drop probability p is chosen as a hyperparameter. In addition, the batch normalization approach
and its layers are presented as an aid against internal covariate shift. These layers are included
according to the approach suggested by Cooijmans et al. (2016). The choice of the hyperbolic
tangent and sigmoid functions as activation functions in all hidden layers follows from this
approach.

Another aspect to consider is the problem of defining the optimal number of epochs e. This
parameter must be chosen such that convergence is ensured without a large risk of overfitting. A
simple and time-consuming approach is to let e be chosen as a hyperparameter in a grid search.
The chosen approach here as a means of decreasing the risk of overfitting is to define a set of
early stopping criteria based on the cross entropy of the model on the validation set. This halts
the training process when the metric does not improve by a sufficient amount within a given
number of epochs. Thus, the only requirement of e is that it is large enough for convergence.

In addition to the presented alterations, there is a set of other hyperparameters to be chosen, such
as the initial values of the bias vectors b. However, these are chosen to be their default values in
Keras and no further elaboration is made regarding these parameters, except for the fact that
the default b = 1 follows the convention for regression tasks. Recall that the optimal number of
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features, dpre and din, are also taken as hyperparameters, and are chosen by the general selection
procedure presented in Section 5.3.1. A summary of all the mentioned hyperparameters and
their values can be seen in Table 5.4.

Hyperparameter Value

Hidden activation function Hyperbolic tangent
Output activation function Softmax
Number of epochs 1000
Number of hidden layers 3
Number of dimension in a cell Ml > max{Number of features,Number of classes};

layer l ∈ {1, 2, 3}
Elastic net weights; λ1, λ2 Found by grid search
Dropout rate; p Found by grid search
Number of in-game features; din Found by grid search
Number of pre-game features; dpre Found by grid search
Learning rate Keras default value
Initial bias vector Keras default value
Other ANN parameters Keras default values

Table 5.4: Hyperparameters for the LSTM models.

A visualization of the described architecture can be seen in Figure 5.4, where W and U are
parameter matrices, x is the input data and f is the output. In accordance with the conventional
notation, W and U are subsets of θ. Furthermore, D( · ) and BN( · ) represent dropout and
batch normalization layers respectively. Note that the information propagation differs somewhat
from that represented in the figure. The cell outputs h are propagated through the batch
normalization layer, before one copy is forwarded through the recurrent connections and another
through a dropout layer and taken as input in the LSTM layer above. The batch normalization
parameters, dropout rate and the regularization operations are omitted for simplicity. Also note
that this is a many-to-one approach, in contrast to that presented in Figure 2.5. The reasoning
for this choice is based on the results presented by Nyquist and Pettersson (2017), which indicates
that many-to-many networks do not perform well over the entire course of football matches.
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Figure 5.4: The architecture of the LSTM networks.

5.5.2 Estimation Procedure

The presented architecture is used as a foundation for three different models, all of which are
generated by minimization of the cross entropy. In a similar manner to the WCD models, versions
of all three models are estimated at all times t ∈ {0, 5, . . . , 90} during the match. This is due to
the chosen many-to-one approach, which only outputs predictions at one time t in the sequence.
Based on this, all three models and their variations are presented below.

Two of the models are entirely based on the LSTM architecture and only differ in the probability
distribution they are meant to estimate. The first model, hereafter referred to as LSTMscore,
is an estimate of the bivariate scoreline distribution, for which the set of possible outcomes are
ΩS = {0, . . . , 9} × {0, . . . , 9}. The second model, referred to as LSTM1X2, is an estimate of the
1X2 distribution. This model is consequently obtained by minimizing the cross entropy over this
distribution rather than over ΩS .

The estimation procedure for obtaining both of these models is visualized in Figure 5.5, where
θ represents all parameters to be trained and Zt is the distribution to be estimated. The class
labels for both distributions are defined equivalently to those used for the WCD architecture.
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Feature
observations
X[0:t]

LSTM network
fZt(ΩZt |X[0:t],θ) minimize

True
labels
yt

Cross entropy
CE( · )

Fitted LSTM network
fZt(ΩZt |X[0:t], θ̂)

Figure 5.5: Visualization of the estimation procedure for LSTM models.

The third model, LSTMcopula, is also an estimate the scoreline distribution, but this estimate
is obtained by a two-stage process. First, an LSTM network is trained on the univariate goal
distribution, before the estimated probability distributions for opposing teams are combined and
a Frank copula is fitted to these distributions. The former stage is equivalent to that used to
train LSTMscore except for the difference in distribution, while the latter stage is similar to that
used to fit Frank copula forWCDscore. As for the previous two models, the estimation procedure
is visualized in Figure 5.6, where all notation follows the previous definitions.

Figure 5.5
Fitted network
fYt(ΩYt |X[0:t], θ̂)

. . . Bivariate dist.
fSt(ΩSt |X[0:t], θ̂, c)

minimize

True
labels
yt

Cross entropy
CE( · )

Frank copula

Fitted LSTMcopula

fSt(ΩSt |X[0:t], θ̂, ĉ)

Figure 5.6: Visualization of the estimation procedure for LSTMcopula.

5.5.3 Summary - Model Generation Procedure

In a similar fashion to the Weibull count architecture, the entire model generation process is
presented in Table 5.5, where Zt is replaced by the respective probability distributions and f̂Zt

and f̂St represents the trained models. Note that the input data is standardized for numerical
stability, as discussed in Section 2.6.3. Another important note is that the selection procedure
used to construct the LSTMcopula is entirely independent of Frank Copula. This approach is
chosen due to practical purposes, but should ideally be conducted based on the loss function
over the entire scoreline distribution.
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Model Generation Process LSTM

1: Initial Selection and Scaling

All features feature selection−−−−−−−−−−→ Initial feature set(IFS)
X[IFS] −→X

X
split−−−→Xtrain,Xvalid,Xtest

y
split−−−→ ytrain,yvalid,ytest

µ =
(
mean(Xtrain,f )

)
f∈features

σ =
(
standard deviation(Xtrain,f )

)
f∈features

Xtrain,Xvalid,Xtest

Standardization:X−µ
σ−−−−−−−−−−−−−−→Xtrain,Xvalid,Xtest

2: Model Selection
hyperparameters := hp = [λ1, λ2, p, dpre, din]

λ∗1, λ
∗
2, p
∗, d∗pre

Grid search←−−−−−−− LSTMZt ,Xtrain,Xvalid,ytrain,yvalid,hp

d∗in
Grid search←−−−−−−− LSTMZt ,Xtrain,Xvalid,ytrain,yvalid, kin, λ

∗
1, λ
∗
2, p
∗, d∗pre

3a: Estimation LSTMscore and LSTM1X2

Select d∗pre best pre-game features −→X0

f̂Z0

t=0←−− Estimation procedure from Figure 5.5
for all time steps t ∈ {5, 10, . . . , 90} do:

Select d∗in best features at time t −→Xt

f̂Zt ←− Estimation procedure from Figure 5.5
end for

3b: Estimation LSTMcopula

Select d∗pre best pre-game features −→X0

f̂Y0
t=0←−− Estimation procedure from Figure 5.5

f̂S0

t=0←−− Estimation procedure from Figure 5.6
for all time steps t ∈ {5, 10, . . . , 90} do:

Select d∗in best features at time t −→Xt

f̂Yt∗ ←− Estimation procedure from Figure 5.5
f̂St∗ ←− Estimation procedure from Figure 5.6

end for

Table 5.5: Model generation process for the LSTM models.

5.6 Betting Strategies

This section presents two betting strategies based on the Kelly criterion for use in the football
betting market. First, the strategy proposed by Smoczynski and Tomkins (2010) is discussed
in detail in order to introduce some ideas and mathematical notation. Then, a strategy for
in-game betting on mutually exclusive outcomes of fixed odds games is proposed along with its
mathematical foundation. The former strategy is used as a benchmark to the latter on in-game
betting, as well as a means of testing the betting performance of the predictive models in a static
scenario. The term static here refers to the fact that bets are only allowed to be placed at a
fixed point in time during the lifetime of the odds. The section ends with a presentation of the
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methodology used to apply these strategies based on the probabilities from the WCD and LSTM
models, as well as a means of accounting for imperfect information about the probabilities.

First, some assumptions are required. A fundamental requirement for the Kelly criterion to be
optimal for a bettor is that the bettor acts rationally and according to a logarithmic utility
function with respect to its wealth (A1). Furthermore, the Kelly criterion only maximizes the
logarithmic growth rate asymptotically. Thus, assume in the following that for any given match
m, a bettor encounters a sufficiently large amount of matches Nm with i.i.d. outcomes to that
of m (A2). In addition, assume that this holds for every interval It = [t, full − time] for all
t during any match (A3). Assume further that the bettor can only bet on mutually exclusive
outcomes in every match (A4), that there are no transaction costs (A5), and that there exists
no lower limit on bet sizes (A6). For now, also suppose that the bettor has perfect information
regarding the probabilities (A7).

5.6.1 Mutually Exclusive Static Kelly

Smoczynski and Tomkins (2010) proposed an algorithm for optimal wealth allocation in a static
betting scenario when the outcomes are mutually exclusive and no events occur simultaneously.
This approach is presented in detail here.

Formally, take the perspective of a bettor considering the optimal wealth allocation on a given
matchm. Them notation is omitted in the following for simplicity. Then, by otherwise following
the notation in Section 2.7.3, let ΩY denote the set of possible outcomes for i.i.d. Yi ; i ∈ {1, .., N},
and let pk ∈ (0, 1) be the known probability of outcome k ∈ ΩY . Now, assume that a bettor
successively makes a wager on a subset of the supplied odds s = {sk ∈ (0,∞)}k∈ΩY

, which is
fixed over all these events, by placing a fixed proportion f = (fk)kΩY

of their initial wealth W0.
Furthermore, assume that no leveraging (A8) nor short positions (A9) are allowed. The two
latter assumptions can be formally stated as

∑
k∈ΩY

fk < 1 and fk ∈ [0, 1) ; k ∈ ΩY respectively.
Then, the combined expected compounded wealth of the bettor after wagering on N matches is
given by

WN (f ,Y ) = W0

∑
k∈ΩY

(
1 + fk(sk + 1)−

∑
j∈ΩY

fj
)∑N

i=1 I(Yi=k) (5.6)

This follows from the fact that the bettor pays the fraction
∑

j∈ΩY
fj regardless of the outcome

of Yi, and receives the payment fk(sk + 1) if yi = k. Now, this yields an asymptotic logarithmic
growth rate

Gf = lim
N→∞

1

N
ln
( ∑
k∈ΩY

(
1 + fk(sk + 1)−

∑
j∈ΩY

fj
)∑N

i=1 I(Yi=k)
)

(5.7)

In a similar manner to the binary equivalent in Equation (2.39), this converges almost surely to

Gf =
∑
k∈ΩY

ln
(

(1 + fk(sk + 1)−
∑
j∈ΩY

fj)
pk
)

=
∑
k∈ΩY

pkln
(

1 + fk(sk + 1)−
∑
j∈ΩY

fj

)
(5.8)

by the strong law of large numbers. The corresponding optimization problem can be formally
stated as
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(P ) maximize
f

G(f)

subject to fk ≥ 0; k ∈ Ωy (1)∑
k∈ΩY

fk ≤ 1, (2)

1 + fk(sk + 1)−
∑
j∈ΩY

fj > 0 ; k ∈ ΩY (3)

Smoczynski and Tomkins (2010) show that P is a convex optimization problem. Then, they
prove that Algorithm 1 maximizes Equation (5.8).

Algorithm 1 - MutexKelly(s, p̂)

for all outcomes k ∈ ΩY do
Calculate expected revenue: µ̂k = p̂k(1 + sk)

end for
Sort the outcomes k based on µ̂k in non-increasing order

Let S = {}, R(S) = 1, k∗ = argmaxk{µ̂k}
while µ̂k∗ > R(S) do

S = S
⋃
{k∗}

p̂sum =
∑

k∈S p̂k; ssum = 1∑
k∈S Sk

R(S) = 1−p̂sum
1−ssum

k∗ = argmaxΩY \S{µ̂k}
end while

Soptimal = S

f∗k =
µ̂k−R(Soptimal)

Sk
, k ∈ Soptimal

f∗k = 0; k /∈ Soptimal
f∗ = (f∗k )k∈ΩY

return f∗

5.6.2 Extending the Kelly Criterion

This section presents a strategy based on the ideas presented above. The strategy is applicable
for the case where subsequent bets can be placed on mutually exclusive outcomes and the return
is fixed conditional upon the outcome. The Kelly criterion is an optimal myopic betting strategy
given A1 when at most one bet is allowed for a single outcome of a given event. However,
for in-game betting, a bettor is not subject to this restriction. Thus, one should account for
the expected return of the previously placed bets in the investment decisions at any given time
during the lifetime of the odds. Although the investment decision should ideally incorporate
information about the expected path of probabilities until maturity, it is outside the scope of
this thesis. Thus, the bettor is only allowed to take into account the amount already wagered
when making this decision (A10).

Now, assume that assumptions A1-A10 hold, and consider a given time t in a hypothetical
sequence of N identical matches. By A2 and A3, the optimization problem is equal for all these
N matches. Thus, the sequence of optimal bets made before time t in all matches are also equal
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and, by applying A2 once more, the optimization problem at t is similar in all these matches. In
other words, the optimal strategy is myopic across all N matches at a given time t.

Before considering the mathematics of this problem, some further notation and restrictions are
required. First, let

rkt =

∫ t−δ

l=0

(
fkl(skl + 1)−

∑
j∈ΩY

fjl

)
dl (5.9)

denote the fixed return of bets placed at all times 0 ≤ l ≤ t − δ for small δ > 0 in a match
conditional on the outcome y = k. Note that l can also be defined over discrete points in time.
Furthermore, let

φt =

∫ t−δ

l=0

( ∑
j∈ΩY

fjl

)
dl (5.10)

be the total fraction of the bettor’s initial wealth W0 wagered up until time t − δ during the
match. Then, the no leveraging assumption A8 implies that

∑
j∈ΩY

fjt < 1− φt (5.11)

must hold. Now, consider the optimization problem in the stated scenario. After wagering on N
identical matches, the wealth of the bettor is

WN,t(f ,Y ) = W0

∑
k∈ΩY

(
1 + rkt + fkt(skt + 1)−

∑
j∈ΩY

fjt

)∑N
i=1 I(Yi=k)

(5.12)

Then, as in the static scenario, the asymptotic logarithmic growth G(ft) is

lim
N→∞

1

N
ln
( ∑
k∈ΩY

(
1 + rkt + fkt(skt + 1)−

∑
j∈ΩY

fjt
)∑N

i=1 I(Yi=k)
)

:= lim
N→∞

1

N
GN (ft) (5.13)

To proceed in the same manner as earlier, it must be shown that Theorem 3 applies for Equa-
tion (5.13). But first, by the assumption of no allowed short positions A9, note that

1 + rkt + fkt(skt + 1)−
∑
j∈ΩY

fjt > 0 ; k ∈ ΩY (5.14)

must hold. In fact, this is necessary to validly state the following:

Proposition 1. G(f) converges almost surely to
∑

k∈ΩY
pktln

(
1+rkt+fkt(skt+1)−

∑
j∈ΩY

fjt

)
by Theorem 3.
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Proof. Let Xi(ft) = ln
(∑

k∈ΩY

(
1 + rkt + fkt(skt + 1)−

∑
j∈ΩY

fjt
)I(Yi=k)

)
.

Then, since ln(a
∑N

i=1 Yi) =
∑N

i=1 Yiln(a) for a ∈ R\{0}, we have GN (ft) =
∑N

i=1Xi(ft).

Now, E[|Xi(ft)|] = pkt|ln
(∑

k∈ΩY

(
1+rkt+fkt(skt+1)−

∑
j∈ΩY

fjt
))
|, since pkt ∈ (0, 1) ; k ∈ ΩY .

By Equation (5.14) and the fact that the odds are finite and positive,
E[|Xi(ft)|] < ∞ since |ln(a)| < ∞ for a > 0 ∈ R. Thus, 1

NGN (ft) converges almost surely to∑
k∈ΩY

pktln
(

1 + rkt + fkt(skt + 1)−
∑

j∈ΩY
fjt

)
by Theorem 3.

From this result, the asymptotic logarithmic growth rate is given by

G(ft) =
∑
k∈ΩY

pktln
(

1 + rkt + fkt(skt + 1)−
∑
j∈ΩY

fjt

)
(5.15)

Given the stated assumptions and Equation (5.15), the optimization problem in question can be
defined formally as

(∗) maximize
ft

G(ft)

subject to fkt ≥ 0; k ∈ Ωy (4)∑
k∈ΩY

fkt < 1− φt, (5)

1 + rkt + fkt(skt + 1)−
∑
j∈ΩY

fjt > 0; k ∈ ΩY (6)

Note that the stated constraints are renumbered to (4) − (6) for simplicity. Now, if (∗) is a
convex problem, then a unique solution exists on the feasible region R∗(ft), and an optimization
algorithm should be able to solve the problem reasonably fast if ΩY is not too large. To show
that (∗) is convex, it suffices to show that R∗(ft) is convex and that G(ft) is concave on R∗(ft)
by Definition 3. This is shown below.

Proposition 2. The feasible region R∗(ft) defined by (4)− (6) is a convex set.

Proof. First, let R6(ft) = {f ∈ R|ΩY | : ft satisfies (6)}. Since R6(ft) is the intersection of
the sets

R6(fkt) = {fkt ∈ R : 1 + rkt+fkt(skt+ 1)−
∑

j∈ΩY
fjt > 0}, then it suffices to show that R6(fkt)

is convex for an arbitrary k ∈ ΩY to validly claim that R6(ft) is convex by Theorem 2.

Thus, let f1
kt, f

2
kt ∈ R6(fkt) for some arbitrary k ∈ ΩY , and let λ ∈ [0, 1], where f1

kt, f
2
kt, λ is

chosen arbitrarily. Then

1 + rkt + (λf1
kt + (1− λ)f2

kt)(skt + 1)− λ
∑

j∈ΩY
f1
jt − (1− λ)

∑
j∈ΩY

f2
jt =

λ(1+rkt+f
1
kt(skt+1)−

∑
j∈ΩY

f1
jt)+(1−λ)(1+rkt+f

2
kt(skt+1)−

∑
j∈ΩY

f2
jt) > λ0+(1−λ)0 = 0,

so λf1
kt + (1− λ)f2

kt ∈ R6(fkt).

Thus, by Definition 2, R6(fkt) is convex, and R6(ft) =
⋂
k∈ΩY

R6(fkt) is convex, since k was
chosen arbitrarily. Now,

λ
∑

k∈ΩY
f1
kt+(1−λ)

∑
k∈ΩY

f2
kt < λ(1−φt)+(1−λ)(1−φt) = 1−φt, so λf1

t +(1−λ)f2
t ∈ R5(ft)

for any f1
kt, f

2
kt ∈ R5(fkt) and λ ∈ [0, 1]. Thus R5(ft) is also convex by Definition 2.
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By the same argument, the set of fractions R4(ft) of ft satisfying (4) is also convex, since
λ
∑

k∈ΩY
f1
kt + (1− λ)

∑
k∈ΩY

f2
kt ≥ λ0 + (1− λ)0 = 0 for any f1

kt, f
2
kt ∈ R4(ft) and λ ∈ [0, 1].

Now, since R∗(ft) is the intersection of the convex sets R4(ft),R5(ft),R6(ft), then it is also
convex by Theorem 2.

Proposition 3. The function G(ft) is convex on R∗(ft).

Proof. To show that this proposition holds, define gk(ft) = ln
(
1+rkt+fkt(skt+1)−

∑
j∈ΩY

fjt
)
.

Consider R6(ft) defined above. A basis of the proof is that gk(ft) is concave on R6(ft) for any
k ∈ ΩY . This follows directly from the fact that ln(a) is strictly concave on its entire domain
R\{0}, and that 1 + rkt + f1

kt(skt + 1)−
∑

j∈ΩY
f1
jt > 0 for any k ∈ ΩY and any ft ∈ R6(ft).

Thus, by Theorem 1, G(ft) =
∑

k∈ΩY
pktgk(ft) is also concave on R6(ft), as pkt > 0 ; k ∈ ΩY .

Now, it suffices to show that this implies that G(ft) is concave on R∗(ft). Note that since R∗(ft)
is the intersection of R4(ft),R5(ft),R6(ft), then R∗(ft) ⊆ R6(ft). Hence, since R∗(ft) is itself
convex, we have that

f̃t = λf1
t + (1 − λ)f2

t ∈ R∗(ft) for any f1
t ,f

2
t ∈ R∗(ft) ⊆ R6(ft) and any λ ∈ [0, 1] by

Definition 2.

But then, since G(ft) is strictly concave on R6(ft), and f̃t = λf1
t +(1−λ)f2

t ∈ R∗(ft) ⊆ R6(ft)
for any f1

t ,f
2
t ∈ R∗(ft) and any λ ∈ [0, 1], it is also strictly concave on R∗(ft).

As stated, since (∗) is a convex problem with G(ft) strictly convex, then a unique maximum
of G(ft) exists on R∗(ft). Thus, the problem can be solved in a reasonable time for in-game
betting purposes by an optimization algorithm, or by solving ∇G(f) = 0 by some variation of the
Newton-Raphson algorithm. As a final note, no matches are assumed to be played simultaneously
in this approach. The proposed framework can be further extended to account for bets on E
simultaneous events given that A2 and A3 hold for all such sets of simultaneous events. This
can be done by altering Equation (5.6) to

WE
N,t((fe,Ye)e∈Ωe) = W0

∑
e∈Ωe

∑
k∈ΩY

(
1 + rkte + fkte(skte + 1)−

∑
j∈ΩY

fjte

)∑N
i=1 I(Yie=k)

(5.16)

where Ωe = {1, 2, . . . , E}. However, the approach is deemed out of scope for this thesis.

5.6.3 Application of the Betting Strategies

Now that both the static benchmark strategy and the proposed dynamic in-game strategy are
discussed, the methodology used for applying the generated prediction models in these strategies
is presented here.

First, note that the optimality of the two approaches rests on the assumption of perfect infor-
mation in the probabilities. As discussed in Section 3.2, Baker and McHale (2013) show that
a shrinkage f∗ → γf∗ for γ ∈ (0, 1) of the Kelly fractions f∗ is always optimal in the case of
imperfect information about the probabilities. Since the historical live odds available for this
research project only covers the matches in the chosen test set, and due to the time complexity
of generating accurate sample variances of the estimated probabilities, optimizing the value of γ
is not considered worthwhile for the purpose of this research. Instead, the chosen approach is to
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test the proposed strategies for several values of γ. Ideally, the optimal γ should be a decreasing
function of the uncertainty in the probabilities, as suggested by Baker and McHale (2013).

Static Kelly betting

The static MutexKelly algorithm is used to consider the problem of betting at a single time t
during the lifetime of the odds. This is conducted to evaluate the betting performance of the
predictive models at every time step, in a similar fashion to the evaluation of their predictive
performance. This approach is presented in Table 5.6. Note that k is the correct outcome for a
given match, St are odds provided by Sportradar and Pt constitutes the estimated probabilities
from a prediction model.

Static Kelly Betting

1: Initialization
Sort all matches according to start time so they occur sequentially
t←−Time in match at which bets are placed
γ ←−Maximum fraction of wealth to bet on a single match
Pt ←−1X2 predictions for all matches
St ←−1X2 fractional odds all matches
wealth←− 1.0

2: Find Optimal Fractions and Update Wealth
for i ∈ {1, . . . ,number of matches}

f∗ ←−MutexKelly(pi,t, si,t)
profit =

(
f∗k (si,kt + 1)−

∑
j∈ΩY

f∗j
)
× γ × wealth

wealth = wealth+ profit
end for

Table 5.6: Overview of the static Kelly betting procedure.

When evaluated over multiple points in time, the static strategy represents a hypothetical sce-
nario where a bettor splits its wealth among several agents at ; t ∈ {1, . . . , T}, each of which is
responsible for placing bets according to the static betting scenario at a unique time t during all
matches. At the end of the investment horizon, the return of the bettor is a linear combination of
the returns generated by the agents. Thus, since

∑T
t=1 ln(rt) 6= ln(

∑T
t=1 rt) in general, the bettor

does not satisfy A1, although all these agents do. Consequently, assume that this hypothetical
bettor (irrational log bettor) represents an investor acting irrationally according to its assumed
logarithmic utility function. As stated, this bettor is used to evaluate the performance of the
WCD and LSTM models for different time intervals as well as serving the role of a benchmark
for the dynamic strategy.

Dynamic Kelly Betting

Now, consider the proposed dynamic strategy, which is shown to act as a rational investor
according to a logarithmic utility function. The explicit approach entails solving (∗) for every time
step t ∈ {0, 10, . . . , 90} in every match i by updating the coefficients rkt and φt in Equation (5.9)
and in Equation (5.10) based on bets placed prior to t in the same match. The intervals of t
are chosen to allow for relatively frequent bets and at the same time ensure that the bets are
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spread throughout the match. Furthermore, the odds S are provided by Sportradar and the
probabilities P are estimated by the WCD and LSTM models. An overview of this functionality
can be seen in Table 5.7, where k is the correct outcome of a given match.

Dynamic Kelly Betting

1: Initialization
Sort all matches according to start time so they occur sequentially
γ ←−Maximum fraction of wealth to bet on a single match
P ←−1X2 predictions for all matches and time intervals
S ←−1X2 fractional odds all matches and time intervals
wealth←− 1.0
Ωt = {0, 10, . . . , 90}

2: Find Optimal Fractions and Update Wealth
for i ∈ {1, . . . ,number of matches}

for t ∈ Ωt

f∗t
maximize←−−−−−− (∗)

end for
profit =

∑
t∈Ωt

(
f∗kt(si,kt + 1)−

∑
j∈ΩY

f∗jt
)
× γ × wealth

wealth = wealth+ profit
end for

Table 5.7: Overview of the dynamic Kelly betting procedure.
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Chapter 6

Results - Predictive Performance

This chapter is dedicated to a presentation of the results from the model selection and model
evaluation processes, as well as a corresponding discussion with a special emphasis on the research
questions RQ1 and RQ2. The chosen hyperparameters and features for each model are put
forward in Section 6.1, before a comparison of the generated models based on the chosen metrics
follows in Section 6.2. The chapter is concluded with a discussion regarding RQ1 and RQ2 in
Section 6.3.

6.1 Model Selection

The results from the model selection procedure is presented in this section. The presentation
is structured based on the scientific procedure, where hyperparameters are chosen before the
explicit subset of features.

6.1.1 Chosen Hyperparameters

The only hyperparameter of the WCD architecture is the number of features d, while the LSTM
architecture also depends on several others. Among these, the dropout rate and the parameters
of the elastic net are chosen by grid search. Their optimal values are presented and discussed
here.

Regarding the dropout rate p and the parameters λ1 and λ2 in the elastic net, they are chosen
separately for each LSTM model. However, the same values are chosen in the grid search for all
these models, indicating that this combination is optimal for the task of predicting the outcome of
football matches. Explicitly, the chosen values for these models are p = 0.3 and (λ1, λ2) = (0, 0.1).
These results imply that 30% of the input signals to all three layers in the LSTM network are
ignored. Furthermore, no automatic model selection is conducted by the regularizer due to the
absence of the lasso penalty in the loss function. However, the ridge penalty does to some
extent penalize high parameter values and ensures that no single parameter is assigned too much
predictive power. Based on this, the loss function to be minimized to obtain the LSTM models
is given by

CE(θ|fY ,X,y) = − 1

N

N∑
i=1

∑
k∈ΩY

[
I(yi = k)ln

(
fY (k|xi,θ)

)]
+ 0.1‖θ‖22 (6.1)
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where the cross entropy is taken over the relevant probability distribution.

Next, consider the number of features d. The optimal values of d for each model according to the
grid search are presented in Table 6.1. Although these values are fairly similar across models and
lie within the range [10, 17] in the pre-game scenario, this is not the case in-game. Furthermore,
the top five suggestions from the grid search, as can be seen in Appendix C, show that the
optimal number of features seem rather random. This can to some extent be attributed to the
chosen univariate selection procedure, since its ignorance of the combined explaining power of
features entails a high risk of choosing suboptimal feature sets for each proposed d. This again
implies a large degree of randomness in the manner of which d itself is chosen. Additionally,
the two-stage grid search procedure implies that d is not chosen simultaneously with the other
hyperparameters in the models based on the LSTM architecture, imposing more randomness in
the choice. This randomness may also be partly due to biased estimates of the generalization
ability or the assumption that the cross entropy is a convex function of d in the grid search.
A combination of all these moments largely supports the use of the recommended selection
procedure.

Model Pre-game d In-game d

WCDscore 15 37
WCD1X2 10 10
LSTMscore 14 24
LSTMcopula 14 24
LSTM1X2 17 45

Table 6.1: The chosen number of features for all models.

6.1.2 Chosen Features

Now that d is chosen, consider the importance assigned to the features based on mutual infor-
mation with the class labels. Note that the corresponding parameter estimates for the models
are not presented nor discussed, as the focus of this research is valid model comparison based on
a fixed scientific process rather than conducting parameter inference.

Although the importance assigned to most features varies considerably between the different
models, some features are strongly indicated to have predictive power on the outcomes of football
matches. The latter can be observed in Table 6.2, which presents the eight highest ranking
features for some of the models at different times in the matches. The ranking represents the
ordinality of mutual information scores with the class labels.
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Time 0 Time 45 Time 90
Feature M1 M2 M3 M1 M2 M3 M1 M2 M3

Diff Importance 1 pw0.25 8 7 7 3 3 3 1 1 1
Diff Importance 18 pw0.25 3 3 3 2 2 2 2 3 2
Diff Points 9 8 6 9 3 2 3
Diff Elo 1 2 2 1 1 1
Diff Avg player strength 2 1 1 7 7
Diff Goals scored 9 8 9 6 5
Diff Goals scored/Match 10 10 4 4 4
Diff Points/Match 5 5 5 10 7

Table 6.2: The features that are most often in the top 10 based on mutual information. M1 =
WCDscore, M2 = WCD1X2, M3 = LSTMcopula.

Among the top ranking features, the importance of a match from the perspective of the opposing
teams is heavily represented, indicating that they are useful for predicting the outcome of football
matches. This aligns with the results of Silver and Boice (2018) and Goddard (2005). The same
can also be seen for both the Elo and FIFA ratings, except at Time = 90. This coincides with the
observed correlation presented in Section 4.4.2. The presence of the number of points and goals
scored during a season among the top ranking features is supported by their inherent meaning
in the game of football. An important note considering all these features, however, is that they
all represent very similar information.

A more detailed overview of feature rankings based on mutual information is presented in Ap-
pendix D. Here, all features deemed to be among the ten top ranking features for at least one
model is included along with their ranking. From this, one can see that very few in-game features
are included, and a presentation of these in-game features are also found in Appendix D. They
are for the most part poorly ranked, except for the score features in LSTM1X2 and LSTMscore.
This can be attributed to the selection procedure, in which the mutual information is calculated
directly with the 1X2 and scoreline distributions respectively, while the class labels for the other
models is the univariate goal distribution. Although the suggested limited explanatory power of
the number of goals scored in the rest of the match may seem counterintuitive, the estimated
correlation coefficients in Table 4.5 support this claim. The opposite is suggested by Nevo and
Ritov (2012) considering the total amount of goals scored in a match, where the first goal is
proposed to have an expediting effect of the scoring rate of both teams. This is in line with the
higher importance assigned to the goal features for the explicit 1X2 and scoreline distributions,
as represented in LSTM1X2 and LSTMscore.

The low presence of in-game features in the models indicates that pre-game information and the
current scoreline can be used to generate reasonably sound in-game predictions. As this claim is
also supported by the estimated correlation coefficients, there seems to be a small dependence
between these in-game events and the goal processes in the EPL.

6.2 Model Evaluation

As a means of answering RQ1 and RQ2, a comparison of the performance of all the generated
models is presented here. First, some reference models are introduced to give perspective to the
discussion, before all models are compared based on each of the chosen metrics and the reference
models.
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6.2.1 Benchmark Models

To put the predictive ability of the generated models in perspective, a set of benchmarks is
presented. This set includes a pre-game prediction model for the 1X2 distribution, a naïve in-
game reporter, and implied probabilities from the estimated 1X2 odds supplied by Sportradar
as well as from average odds in the pre-game 1X2 betting market.

In order for the probabilities from the mentioned sources to serve as valid benchmarks, the
quantities in question should be generated on the defined test set. These benchmark values are
here generated from the prediction model of Silver and Boice (2018) and the implied probabilities
from the Sportradar odds model. The choice is based on Sportradars position as an important
supplier of sports predictions and the reputation of Nate Silver, both suggesting that beating the
prediction power of these models requires very good estimates of the probability distribution.
In addition, the implied probabilities from the average odds in the market, as gathered from
Football-Data.co.uk (2019), is considered a reasonable estimate of the predictive power inherent
in the pre-game betting market. The pre-game metrics for Silver and Boice (2018) and Football-
Data.co.uk (2019) is presented in Table 6.3, while the performance of the implied probabilities
from Sportradar are presented along with the metrics from the WCD and LSTM models.

Name Acc. 1X2 CE 1X2

Silver and Boice 0.5663 0.9327
Football-Data.co.uk 0.5776 0.9163

Table 6.3: Metrics calculated based on the predictions from Silver and Boice (2018) and the odds
from Football-Data.co.uk.

Furthermore, a predictive model should have at least some inductive ability. Thus, an algorithm
only reporting the most frequent outcome according to the sample average in the test set is
constructed to serve as an expected lower bound on the 1X2 and scoreline accuracy. This
algorithm is hereafter referred to as the naïve reporter, and states results in the following manner:
The class reported at time t for the 1X2 and scoreline distributions are given by

k∗1X2(t) = argmaxk∈{1,X,2,current}{p̄k} (6.2)

k∗score(t) = argmaxscore∈{0,1,...,9}×{0,1,...,9}{p̄score} (6.3)

respectively, where p̄1, p̄X , p̄2 refers to the average proportion of 1X2 outcomes, p̄current is the
average proportion of matches with unchanged 1X2 outcome on the interval [t, full− time], and
p̄(i,j) has the same interpretation for a scoreline (i, j) in the remainder of a match. The ex-post
accuracy scores generated by the naïve reporter can be seen in Table 6.4 and are considerably
lower than those stated above for pre-game predictions. One should expect to see a convergence
to these ex-post scores in late stages of the matches for all models, as the current state becomes
an increasingly likely outcome as full-time approaches.
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Time 1X2 Scoreline

0 0.4735 0.1074
10 0.4735 0.1233
20 0.4735 0.1419
30 0.4973 0.1552
40 0.5637 0.1844
50 0.6406 0.2427
60 0.7095 0.3302
70 0.7666 0.4443
80 0.8302 0.6207
90 0.9324 0.8488

Table 6.4: Accuracy scores for the naïve reporter.

Now, the emphasis is moved to the generated models and a comparison between them, as well
as with the presented benchmarks. The comparisons are conducted for each metric, where the
predictive power of the models on the 1X2 distribution is evaluated first.

6.2.2 Cross entropy - 1X2

A comparison of the models based on cross entropy on the 1X2 distribution is presented here. An
overview of the values of this metric is presented in Table 6.5. For perspective on the quantities
presented, the difference CE2 − CE1 in cross entropy between two models m1 and m2 can be
interpreted as eCE2−CE1 = p1

p2
, where p1 and p2 are the probabilities of the true class of an average

match for m1 and m2 respectively. See Appendix E for the derivation behind this statement.
Thus, this difference indicates the average ratio of the probabilities of the true class for model m1

as a fraction of those for model m2. As an example, CE2 − CE1 = 0.05 =⇒ p1
p2

= e0.05 ≈ 1.05.

Time WCDscore WCD1X2 LSTMcopula LSTMscore LSTM1X2 Sportradar

0 0.9755 0.9437 0.9524 0.9486 0.9423 0.9234
10 0.9237 0.9226 0.9327 0.9339 0.9359 0.9022
20 0.8913 0.8913 0.8939 0.9036 0.9051 0.8654
30 0.8352 0.8462 0.8788 0.8518 0.8766 0.8280
40 0.7852 0.7853 0.7991 0.7956 0.8096 0.7777

50 0.7202 0.7181 0.7239 0.7317 0.7281 0.7116
60 0.6413 0.6434 0.6589 0.6558 0.6700 0.6346
70 0.5700 0.5688 0.5744 0.5831 0.6213 0.5714
80 0.4359 0.4402 0.4454 0.4467 0.4844 0.4385
90 0.2338 0.2379 0.2319 0.2411 0.2626 0.2725

Table 6.5: Cross entropy of all models with respect to the 1X2 sample distribution.

First, consider the pre-game predictions. While four of the models are indicated to have similar
predictive power, WCDscore is outperformed by all the other models. Furthermore, the cross
entropy of all models are higher than those of the implied probabilities from Sportradar, Silver
and Boice (2018) and Football-Data.co.uk (2019). This also holds throughout most of the match
when using Sportradar as a benchmark, a proposition that becomes even more apparent in
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Figure 6.1, where the difference between the generated models and the Sportradar probabilities
are plotted. An interesting result is that all the models are indicated to have a considerably
better fit to the distribution at t = 90 than the Sportradar probabilities, except for LSTM1X2

which performs approximately on par with these probabilities. This seems reasonable, since
Sportradar takes market information into account for generating these probabilities. Due to the
large uncertainty relative to the mean as matches approach full-time, as indicated in Section 4.4.2,
it seems reasonable to assume that the probabilities from Sportradar are heavily based on market
information in these stages. It may also be the case that the Sportradar odds data have a delay
compared to their event data, causing a change in scoreline close to the 90th minute to be
registered only in the latter data set.
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Figure 6.1: Plot of difference in cross entropy between each model and implied probabilities from
Sportradar.

Now, consider only the generated models. To ease the comparison between the models, the cross
entropy is plotted as a function of elapsed time during matches in Figure 6.2. From this, one can
see that the cross entropy is approximately monotonically decreasing as the matches progress.
This is as expected due to less uncertainty in the outcome, but still indicates that the predictions
improve as time decreases. Furthermore, when taking WCDscore as a reference, the differences
in performance become more apparent. WCDscore is indicated to perform worse than the other
models pre-game, and the LSTM1X2 model seems to struggle at later stages in comparison to the
other models. This is an interesting aspect, as this is the only model generated for predicting the
1X2 distribution directly. Another interesting aspect is that the general performance of models
based on the WCD architecture seems to be slightly better than the LSTM models.
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(a) Cross entropy value.
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(b) Difference between WCDscore and the other models.

Figure 6.2: Plot of cross entropy of all models with respect to the 1X2 sample distribution.

6.2.3 Accuracy - 1X2

The accuracy score is the second metric chosen for evaluating the performance with respect to
the 1X2 distribution. The values of this metric is presented in Table 6.6.

Time WCDscore WCD1X2 LSTMcopula LSTMscore LSTM1X2 Sportradar

0 0.5442 0.5751 0.5670 0.5770 0.5783 0.5790
10 0.5818 0.5764 0.5751 0.5770 0.5676 0.5790
20 0.5952 0.5925 0.5912 0.5850 0.5770 0.6042
30 0.6206 0.6139 0.5831 0.6118 0.5957 0.6242
40 0.6314 0.6394 0.6220 0.6064 0.6238 0.6494

50 0.6716 0.6783 0.6743 0.6653 0.6586 0.6826
60 0.7198 0.7145 0.7105 0.7135 0.7229 0.7251
70 0.7668 0.7641 0.7668 0.7671 0.7470 0.7530
80 0.8311 0.8311 0.8324 0.8286 0.8166 0.8287
90 0.9316 0.9316 0.9316 0.9317 0.9331 0.9150

Table 6.6: Accuracy score of all models with respect to the 1X2 sample distribution.

The first thing to note is that the accuracy score suggests that all models perform better than the
naïve reporter until late stages of the matches, where the performance is indicated to converge
to that of the latter. Furthermore, these results support the claims made based on the cross
entropy, where the pre-game performance of WCDscore also here is indicated to be worse than
for the other models, and the Sportradar probabilities seem to have the better prediction power
up until 90 minutes. However, the accuracy scores indicate that all the generated models, except
for LSTM1X2, performs slightly better than the Sportradar model at 70 and 80 minutes. These
aspects should become clear when considering Figure 6.3. It is also worth noting that, in addition
toWCDscore, the pre-game accuracy score of LSTMcopula and Silver and Boice (2018) are slightly
lower than the rest of the models, including that of Football-Data.co.uk (2019).

65



0 10 20 30 40 50 60 70 80 90
Time

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

M
et
ric

 v
al
ue

Accuracy 1X2 with Sp rtradar as reference

Sp rtradar
WCD-score
WCD-1X2
LSTM-copula
LSTM-score
LSTM-1X2

Figure 6.3: Plot of difference in accuracy between each model and implied probabilities from
Sportradar.

Figure 6.4 shows the same as for the cross entropy, where the performance improves over time in
general and the models based on the WCD architecture seems to slightly outperform the LSTM
models. Sudden decreases in the accuracy, as can be seen for LSTMcopula at time = 30 can most
likely be attributed to the varying feature sets. Furthermore, LSTM1X2 again seems to have
the worst performance based on the 1X2 accuracy score. Next, note that WCDscore improves
greatly from pregame to time = 5 with respect to both cross entropy and accuracy, possibly
indicating that it either overfits the scoreline distribution or that it relies on an unfavourable set
of pregame features.
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(a) Accuracy score.
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Figure 6.4: Plot of accuracy of all models with respect to the 1X2 sample distribution.

6.2.4 Cross Entropy - Scoreline

The emphasis is now shifted to the scoreline distribution. Since the odds data supplied by
Sportradar does not include odds for the scoreline, and LSTM1X2 directly estimates the 1X2
distribution, their performance cannot be considered with respect to the former distribution. A
presentation of the cross entropy of the other models is given Table 6.7.
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Time WCDscore WCD1X2 LSTMcopula LSTMscore

0 2.9383 2.9970 2.9272 2.9393
10 2.8139 2.8921 2.8226 2.8417
20 2.6881 2.7587 2.6809 2.6530
30 2.5358 2.5869 2.5896 2.5590
40 2.3979 2.4088 2.4133 2.4132

50 2.1969 2.1917 2.1908 2.2240
60 1.9245 1.9459 1.9395 1.9486
70 1.6091 1.6335 1.6198 1.6410
80 1.1911 1.2011 1.2042 1.2179
90 0.5637 0.5735 0.5649 0.5777

Table 6.7: Cross entropy of all models with respect to the scoreline sample distribution.

Based on these results, the performance of all four models seems quite similar, although with a
few exceptions. First, the in-game performance of WCDscore is, as for the previous two metrics,
slightly higher than for the other models. However, it has improved considerably with respect
to its pre-game metric scores, with the cross entropy being on par with the two LSTM models.
Secondly, WCD1X2 has a considerably higher cross entropy than the other models during the
first 30 minutes, which seems intuitive as the loss function minimized to obtain WCD1X2 is the
cross entropy over the 1X2 distribution. Figure 6.5 presents the same type of plot as seen for the
1X2 metrics, and a rather strange result can also be seen at time ∈ [15, 25]. The cross entropy
scores of both LSTM models are considerably lower than that ofWCDscore on this interval. This
may be a sign that the optimal sequence length for the networks lie between 3 and 5, implying
that one should rely on an nth order Markov assumption with n ∈ [3, 5].
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Figure 6.5: Plot of cross entropy of all models with respect to the scoreline sample distribution.

6.2.5 Accuracy - Scoreline

Although the accuracy score may be a rather weak indicator of the overall prediction performance
for the scoreline distribution, it is briefly discussed here based on Table 6.8.
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Time WCDscore WCD1X2 LSTMcopula LSTMscore

0 0.1247 0.1180 0.1273 0.1138
10 0.1273 0.1180 0.1273 0.1098
20 0.1448 0.1314 0.1662 0.1539
30 0.1877 0.1649 0.1609 0.1620
40 0.2051 0.2024 0.2158 0.1941

50 0.2560 0.2480 0.2614 0.2597
60 0.3244 0.3271 0.3311 0.3253
70 0.4424 0.4410 0.4450 0.4444
80 0.6193 0.6193 0.6206 0.6185
90 0.8472 0.8472 0.8472 0.8474

Table 6.8: Accuracy score of all models with respect to the scoreline sample distribution.

These values indicate that all models perform considerably better than the naïve reporter
throughout the first half, while converging to its performance after 50 minutes. Due to a large
number of classes, and thus a large uncertainty in the true class, it seems intuitive that this con-
vergence occurs earlier than in the 1X2 scenario. Furthermore, the convergence indicates that
all four models are likely to assign the highest probability to the current scoreline as the matches
approach full-time. Regarding the comparison between the generated models, the performance
ranking is rather random as a function of time elapsed, which is made even more apparent in Fig-
ure 6.6. No inferences should thus be drawn from these results regarding the relative performance
of the models.
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Figure 6.6: Plot of accuracy of all models with respect to the scoreline sample distribution.

6.2.6 Ranked Probability Score - Scoreline

An important topic of the discussion surrounding the scoreline distribution, in addition to RQ1
and RQ2, is the ability of the models to capture information about the ordinal structure of
scorelines. Consequently, the discussion ends with an emphasis on the ranked probability score,
where the values of this metric are presented in Table 6.9.
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Time WCDscore WCD1X2 LSTMcopula LSTMscore

0 0.1075 0.1078 0.1060 0.1057
10 0.1022 0.1039 0.1012 0.1013
20 0.0969 0.0996 0.0940 0.0927
30 0.0906 0.0920 0.0895 0.0878
40 0.0854 0.0854 0.0815 0.0813

50 0.0786 0.0778 0.0725 0.0735
60 0.0672 0.0678 0.0622 0.0624
70 0.0545 0.0555 0.0495 0.0500
80 0.0378 0.0380 0.0341 0.0342
90 0.0149 0.0150 0.0130 0.0131

Table 6.9: Ranked probability score of all models with respect to the scoreline sample distribu-
tion.

Here, an interesting pattern occurs. The models based on the LSTM architecture have a lower
ranked probability score than the models based on the WCD architecture. Note that although
the total difference is small, the proportional difference is quite large. This is an interesting
result, as the WCD architecture implies an inherent ordinal structure due to WCD being a
count distribution. This implies that, although the WCD is indicated to be a better model of
the univariate scorelines in EPL than the Poisson distribution, the combination of the WCD
and Frank copula does not seem to sufficiently model the ordinality in the bivariate scoreline.
Furthermore, these results do to some extent coincide with the findings of Hvattum (2017). A
visualization of the stated results is given in Figure 6.7 below, showing a consistently better RPS
score for the LSTM models. The difference is made even more apparent by pairwise Welch’s
t-tests of the RPS values for the WCD and LSTM models, as can be seen in Appendix F.
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Figure 6.7: Plot of ranked probability score of all models with respect to the scoreline sample
distribution.

6.3 Discussion

A summary and an extension of the discussion in the previous section is presented here, with a
special emphasis on RQ1 and RQ2. First, some general aspects from this discussion are pointed

69



out, before an explicit summary surrounding each of the research questions is given. As a
reminder, RQ1 and RQ2 are restated here.

RQ1 How does the performance of an artificial neural network compare to that of a Weibull count
distribution model, when considered with respect to both pre-game and in-game prediction
of the outcome of EPL matches?

RQ2 How do models of the scoreline distribution in EPL matches compare to otherwise equivalent
models of the 1X2 distribution on the same set of matches, when their performance is
measured on the latter distribution, and the prediction task is the one stated in the previous
question?

As shown, the implied probabilities of the average odds collected from Football-Data.co.uk (2019)
is indicated to have the best pre-game predictive ability on the 1X2 distribution. In addition,
the implied probabilities from the Sportradar odds seems to have the best overall performance
throughout the match. A common property of both models is that they utilize market infor-
mation, a property not held by any of the generated models. This indicates that the wisdom
of crowds should be taken into account when creating football prediction models. This is sup-
ported by the claims of Peeters (2018) regarding market prices from Transfermarkt.com (2018),
the findings of Godin et al. (2014) and Schumaker et al. (2016) regarding information in Twitter
posts and the performance of Forza Football user votes (Nyquist and Pettersson, 2017).

The aspect of market information is also likely to explain some of the degraded performance seen
by the Sportradar probabilities at time = 90. Sportradar has stated that their main interest is
to estimate the optimal odds, which at time = 90 is likely to deviate from the fair probabilities
due to the supply and demand in the betting market. This approach may generate optimal odds,
but it seems to decrease the predictive performance of the implied probabilities compared to the
generated models. However, this decrease in performance may also be attributed to a potential
difference in the time stamps for the provided odds and event data, as previously stated.

Next, the copula functions are chosen to allow for a potential dependency between the goal
processes. The estimated dependence parameter κ̂ can be seen in Table 6.10, where the value
is approximately zero for LSTMcopula and also low for WCDscore. However, the variance in κ̂
for WCD1X2 is larger, indicating a stronger dependency in some stages of the matches. This
indicates that a dependency is likely to exist, supporting the findings from Section 4.4.2. Fur-
thermore, the change in the magnitude of κ̂ is likely a result of the rather small feature set used
byWCD1X2, implying that certain features indirectly model the dependence. This also supports
the low values in the two other models, and it can be validly stated that a bivariate scoreline
model should allow for dependence or utilize features that capture such a dependence.
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Time WBscore WB1X2 LSTMcopula

0 0.0223 0.4142 -0.0008
10 0.0766 0.3241 -0.0024
20 0.0444 0.0545 0.0029
30 -0.0079 -0.0082 0.0001
40 0.0166 0.2956 0.0020
50 -0.0183 -0.0385 0.0001
60 -0.0525 0.1157 -0.0001
70 -0.0127 0.0495 -0.0005
80 -0.0931 0.0811 0.0000
90 -0.0779 -0.0496 0.0000

Table 6.10: Chosen values of the copula dependency parameter κ.

6.3.1 Research Question 1

Now, based on the relative performance of the models based on two model architectures, a
discussion surrounding RQ1 is presented here. As the general predictive ability of the models
is the topic of interest, all metrics are taken into consideration. As a note, the performance of
all models can be deemed acceptable with respect to the benchmarks, but their properties vary
slightly.

The accuracy score on the 1X2 distribution indicates that both WCD models, and especially
WCDscore, is able to more frequently assign the highest probability to the correct outcome,
although WCDscore seems to be the worst performing model pre-game. This superiority is to
some degree supported by the cross entropy with respect to both distributions. However, due to
the inability of the cross entropy to accurately measure performance for ordinal random variables,
as well as the somewhat varying ranking of the models based on this metric, few inferences can
be drawn based on this alone. Now, consider the RPS on the scoreline distribution. This metric
strongly suggests that the LSTM models have the best performance, which implies that the
probability distribution generated by the LSTM networks better approximates the ordinality of
the scoreline distribution than the Weibull count distribution.

Based on this discussion, the following general proposition can be stated regarding RQ1: The
WCD architecture seems to be the superior architecture if the objective is solely to predict the
true class, while the LSTM networks generate probabilities that better fit the scoreline distribu-
tion when accounting for its inherent ordinal structure. Therefore, the choice of architecture is
dependent upon the purpose of the model.

6.3.2 Research Question 2

The focus of the discussion turns to the ability of the models to accurately estimate the 1X2
distribution. Note that, although WCD1X2 provides an estimate of the scoreline distribution, it
is evaluated as a 1X2 model due to the loss function on which it is trained.

First, consider the models created based on the WCD architecture. Apart from the strong indi-
cation that the pre-game performance of WCDscore is inferior to WCD1X2, few clear inferences
can be drawn regarding the comparison of their performance. There is a slight indication that
the former model is superior in the first half based on both accuracy score and cross entropy,
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but the difference is not substantial. The almost identical performance of these models is in
line with the result of Goddard (2005) for logistic regression models. In addition, as the 1X2
distribution is derived directly from the scoreline distribution based on the WCD distribution,
it seems reasonable that the difference in loss function does not imply considerable differences
between the trained models.

The performance of the LSTM models can be considered for two separate time intervals, the
first being time ∈ [0, 60) minutes. On this interval, LSTM1X2 has comparable performance
to the two other LSTM models and all three models score similarly for both the cross entropy
and the accuracy score. The same is not indicated for time ∈ [60, 90] minutes, where the 1X2
model seems to perform poorly. Except for a few points in time, it is indicated to be the most
inferior among all models, including the WCD models. This may be attributed to LSTM1X2

being an explicit 1X2 model without knowledge of the fact that the scoreline determines the 1X2
outcome. Thus, it is hypothesised that this lack of knowledge complicates the classification task.
Furthermore, this effect is likely to be amplified by the fact that features are chosen based on
mutual information with the 1X2 outcome instead of the scorelines.

Explicitly, the following statement summarizes the discussion regarding RQ2: The WCD models
perform similarly, with the scoreline model slightly outperforming the 1X2 model on in-game
prediction tasks, while the opposite is indicated pre-game. Thus, no statement can be made
regarding an overall superior model, but a 1X2 model may be preferred to ensure acceptable pre-
game performance. For LSTM models, the metrics indicate that the scoreline models are superior
as the matches approach full-time, thus making them the preferable choices for estimating the
1X2 distribution.
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Chapter 7

Results - Betting Performance

This chapter is devoted to a presentation of the results from applying the betting strategies
presented in Section 5.6.1 and Section 5.6.2 in a hypothetical in-game betting market. First,
this market is presented in Section 7.1, before Section 7.2 presents an evaluation of the ability of
the prediction models to contribute to financial returns in a static scenario. Section 7.3 follows
with a comparison of the performance of the two betting strategies, before section 7.4 concludes
the chapter with a summary of the presented results and a corresponding discussion surrounding
RQ3.

7.1 Fundamentals

The betting market is in this thesis represented by the odds provided by Sportradar. As these
odds do not have an inherent risk premium, such a premium must be chosen. An analysis of pre-
game odds obtained from Football-Data.co.uk (2019) shows that most standalone bookmakers
supply odds with an incorporated premium of about 5%, while the premium is approximately
zero for combinations of maximum odds present in the market. Based on the assumption that
such odds combinations can be obtained reasonably fast, a risk premium of 0.001% is used when
evaluating the betting performance. Although this choice may imply overly optimistic results, it
is supported by the vast amount of odds comparison sites making these combinations accessible
if they exist (BetStudy.com, 2019; BetBrain.com, 2019; Oddschecker.com, 2019; Easyodds.com,
2019).

Furthermore, bookmakers are likely to place an upper bound on the odds as well as significantly
increase their premium as matches progress and certain outcomes become highly unlikely. All
odds s > 35 are therefore shifted to 1.0 in order to remove the risk of allowing for bets corre-
sponding to odds not supplied in the real market. This is also based on the hypothesis that the
uncertainty in the probability estimates increases as outcomes become more unlikely.

Although Sportradar provided odds for several markets, the only odds considered here are those
present in the 1X2 market. Two main arguments support this decision. First, the estimated
probabilities of the 1X2 outcome can either be derived or used directly from all the generated
models. Secondly, and most importantly, the performance of prediction models in this market
is extensively covered in existing research. Hence, the decision is made based on a consideration
regarding further research on the topic, as it eases the process of comparing the methods chosen
here with those presented in the academic literature. As a final note, the matches used for
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evaluating the betting performance correspond to the original test set, and the performance can
therefore also be compared to the presented metric scores on the 1X2 distribution.

7.2 Static Betting Performance of Prediction Models

This section presents an evaluation of the betting performance of all the generated prediction
models at distinct times t ∈ {0, 5, . . . , 90} during matches. As a means of evaluating this perfor-
mance, the static Kelly strategy is used to determine the bet sizes. But first, the irrational log
bettor presented in Section 5.6.3 is considered in order to measure results over different intervals
during the matches.

The performance of the irrational log bettor is evaluated with respect to partial Kelly strategies
corresponding to γ ∈ {0.02, 0.05, 0.1, 0.25, 0.5} as well as the full Kelly strategy. The proportion
of total wealth obtained by this bettor over the investment horizon is presented in Figure 7.1.
These results are based on probabilities from LSTMscore. From this plot, it becomes clear that
high values of γ are not appropriate, suggesting that the uncertainty in the generated probabilities
is substantial. Specifically, a high γ implies higher volatility in returns and seems to imply certain
terminal ruin for the bettor in the case where its probability estimates are inferior to those of
the odds suppliers. Especially is this the case for the full Kelly strategy γ = 1.0. This tendency
supports the claim of Baker and McHale (2013) that the optimal γ ∈ (0, 1) under uncertainty in
probabilities. The same aspect can be seen for the other models in Section G.2. These results
suggest that a high γ is beneficial for models generating superior estimates to those of the odds
supplier, but again generally suggests certain terminal ruin for γ = 1.
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Figure 7.1: Proportion of wealth for LSTMscore and different values of γ over the investment
horizon. The wealth is the average over all time intervals.

It can be seen that the overall best and most stable performance is obtained with γ = 0.02.
Based on all these results, γ = 0.02 is chosen when further evaluating the performance of the
models.

Now, consider the relative performance of all predictive models. The terminal wealth obtained
by the static Kelly strategy for all five predictive models and all t ∈ {0, 5, . . . , 90} over the entire
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test set can be seen in Table 7.1. These results indicate that this strategy is unable to generate
a positive return based on probabilities from any of the models for most t. Also note that the
terminal wealth lies in the range 90 − 110% of the initial wealth in most cases, indicating that
the volatility in returns is rather low. Similar tables for each model and different values of γ and
t can be seen in Section G.1. The behaviour seen in these tables is generally as expected, with
higher values of γ increasing the volatility in returns. Note that certain combinations of model,
γ and t are able to generate very high returns in excess of 100%. Apart from these observations,
some interesting findings are worth mentioned based on Table 7.1.

Time WCDscore WCD1X2 LSTMcopula LSTMscore LSTM1X2

0 0.6923 0.8811 0.9054 0.8536 0.9412
5 0.8279 0.8945 0.8958 0.8824 1.0798
10 0.9253 0.9410 0.8642 0.9691 0.9339
15 0.9223 0.8748 0.8415 0.8888 1.1547
20 0.8530 0.8729 0.9022 0.8648 0.9077
25 0.9982 0.8682 0.8788 0.7740 0.9471
30 1.1505 1.0811 1.0263 0.9172 0.9042
35 1.0551 0.8933 0.8929 1.0108 0.9903
40 1.1460 1.0861 1.0630 1.0678 1.0040
45 0.9438 0.9184 0.8778 0.8732 1.1696
50 0.9737 1.0209 1.0135 1.0152 1.2605
55 1.0453 1.0366 0.8473 1.0425 1.1960
60 1.0731 1.1222 0.9667 0.9902 1.0849
65 0.9657 1.0520 1.0482 0.9573 0.8989
70 1.0814 1.1065 0.9829 1.0846 0.9934
75 1.0709 1.0466 1.0404 0.9375 1.0164
80 1.0171 0.9846 0.9447 0.9014 0.8890
85 0.9923 0.9886 0.9955 0.9651 0.9073
90 1.0223 1.1192 1.0052 1.0363 0.9870

Table 7.1: Wealth at the end of the investment horizon for different models and in-game time
points.

The poor pre-game betting performance of WCDscore, with a loss of over 30%, is far below that
of the other models at the same point in time. This aligns with the poor pre-game predictive
performance of this model relative to the other models as well as the Sportradar odds. The sub-
stantial improvement on the interval time ∈ [0, 10] is also in line with the predictive performance
of this model. This indicates that the betting performance relies to a high degree on the quality
of the probability estimates of the bettor relative to those of the supplier. This proposition is sup-
ported by an evaluation of the performance of LSTM1X2, which indicates slight improvements
in prediction metrics as well as a great betting performance at times t ∈ {15, 45, 50, 55}.

Certain trends seem to be present regarding the time intervals during which the irrational log
bettor generates positive returns based on probabilities from the different models. These trends
become more apparent in Figure 7.2, which shows the progression of wealth over a set of intervals.
First, neither model is able to contribute to a positive return for the irrational log bettor at
time = 0, although LSTM1X2 achieves this at approximately half the interval corresponding
to the investment horizon. Similar behaviour can be seen for the next time interval, except for
WCDscore which improves greatly. Observations for both of these intervals coincide with the
value of the prediction metrics, during which Sportradar has a considerably better score.
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The results during the last two time intervals show considerable improvements for all models,
as presented in Figure 7.2. Especially is this the case for the WCD models, as they contribute
to a positive return during both intervals. Another important finding is the results based on
LSTM1X2 on the interval time ∈ [35, 60] with a return exceeding 10%. However, the returns
generated based on the latter model are poor as the matches approach full-time, which again
coincides with the analysis of its prediction ability. As a general trend, all models perform better
for later stages of the game, except for LSTM1X2, again supporting the proposition that the
predictive ability of all models increases relative to the Sportradar odds as matches approach
full-time.
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Figure 7.2: Proportion of wealth for different models and time intervals over the investment
horizon. The wealth is the average over the specified time intervals.

7.3 Dynamic Strategy

The proposed dynamic betting strategy is meant as a theoretical contribution to existing litera-
ture. However, its performance in the in-game betting market is considered with respect to the
generated predictive models as a means of evaluating its practical potential. In the continuation,
denote this strategy the dynamic bettor.

The terminal wealth of the dynamic bettor conditional on probabilities from all models and
proposed values of γ can be seen in Table 7.2. Note that WCDscore contributes to considerable
positive returns for γ ≤ 0.10, and that returns conditional on probabilities from all other models
are negative for all γ.
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Gamma WCDscore WCD1X2 LSTMcopula LSTMscore LSTM1X2

0.02 1.1321 0.9734 0.9533 0.9276 0.9805
0.05 1.3053 0.8973 0.8322 0.7773 0.8906
0.10 1.4805 0.7049 0.5663 0.4926 0.6406
0.25 1.0010 0.1631 0.0624 0.0418 0.0747
0.50 0.0522 0.0015 0.0001 0.0000 0.0001
1.00 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7.2: Wealth at the end of the investment horizon for different models and values of γ.

The observations also coincide with the returns of the static strategy, indicating that a low γ is
generally most suitable, while higher values have the potential to generate higher returns due
to increased volatility. This is further supported by Figure 7.3, which shows the development of
wealth for the dynamic bettor given different γ based on probabilities fromWCDscore. Since the
strategy seems to perform well, some of the higher values of γ are able to increase the return per
bet and thus obtain a higher overall return. As previously, note that high γ causes rapid change
and sudden jumps in wealth. Similar plots for the four other models can be seen in Section G.3,
all of which indicate behaviour similar to what has been discussed.
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Figure 7.3: Proportion of wealth for WCDscore and different values of γ over the investment
horizon..

A comparison between the dynamic and irrational log bettor is also appropriate. The wealth
development of both can be seen Figure 7.4. Among the two, the dynamic bettor appears to
accept investments with more inherent risk. In line with the arguments based on Figure 7.3, it is
able to generate higher return based on WCDscore. However, the terminal wealth based on the
other models indicates approximately equal returns for both bettors. The increased volatility can
be attributed to the ability of the dynamic bettor to place multiple bets on the same outcome
of each match, implying that it is more likely to allocate a higher total fraction of wealth during
each match. Overall, the dynamic strategy indicates higher uncertainty in returns and higher
expected return given properly estimated probabilities.
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Figure 7.4: Proportion of wealth for the two betting strategies over the investment horizon. The
wealth of the static strategy is the average over all time intervals.

Now, consider the timing of the investments made by the dynamic bettor. This can be observed
in Table 7.3, which shows the proportion of placed fractions per time t conditional on each
model. Note that for all models, the majority of fractions are placed before the half-time break.
As discussed regarding both the irrational log bettor and the prediction metrics, the second half
is indicated to be the preferable interval for placing bets. The observed wealth allocation pattern
is likely attributed to the fact that no restrictions are placed on the chosen fractions except for
the constraints than no leveraging nor short positions are allowed during a single match. Thus,
the dynamic bettor is likely to invest all the assigned wealth γW0 during the early stages of the
matches.

Based on this result, a scaling γt of the fractions placed at each time t seems appropriate, ensuring
that bets can be placed throughout the match. Furthermore, comparing the performance of the
dynamic and irrational log bettor during the first half of the match indicates that the dynamic
strategy outperforms the static one. This supports the argument that the dynamic strategy has
the highest potential and is likely to converge to higher growth than the static strategy.

Time WCDscore WCD1X2 LSTMcopula LSTMscore LSTM1X2

0 0.1964 0.1453 0.1731 0.1682 0.1681
10 0.2576 0.1849 0.1448 0.1151 0.1876
20 0.1546 0.1947 0.2267 0.1839 0.1917
30 0.1309 0.1379 0.1523 0.1434 0.1440
40 0.1020 0.1446 0.1033 0.1818 0.1560
50 0.0894 0.0771 0.0784 0.0844 0.0933
60 0.0315 0.0624 0.0581 0.0551 0.0272
70 0.0238 0.0275 0.0284 0.0330 0.0184
80 0.0094 0.0189 0.0273 0.0262 0.0104
90 0.0043 0.0066 0.0076 0.0089 0.0034

Table 7.3: Proportion of the total amount of fractions placed at different time steps for each
model.

As a final note, the high volatility in terminal returns observed in these results is likely to decrease
over longer investment horizons. This is because the Kelly criterion consistently chooses more
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risky positions than a logarithmic utility function entails given that the number of bets is not
sufficiently large for Theorem 3 to apply (Maclean et al., 2011).

7.4 Discussion

A brief summary of the findings from the two previous sections is presented here. The emphasis
is placed on the aspects deemed relevant for a discussion surrounding RQ3, which is restated
below.

RQ3 How do the generated prediction models perform in the in-game betting market when subject
to a theoretically sound betting strategy, and when the live-odds estimated by Sportradar are
taken as the supply in the market?

For the purpose of this discussion, the assumed great standard of Sportradar’s estimates suggests
that exiting the market on par at the end of the investment horizon is deemed acceptable. The
general trend for both the static and dynamic betting strategy is a small negative return, although
predictions by all models can be used to generate positive returns for at least some combinations
of t and γ. The times at which these positive returns occur seem to coincide well with those
at which the predictive ability of the generated probability estimates compare favourably to
that of Sportradar’s implied probabilities. Furthermore, the proposed dynamic strategy yields
more volatile returns than its static counterpart due to the allowance of multiple bets on a
single outcome. This aspect may also explain the superior returns generated by the dynamic
strategy when the probability estimates are sufficiently accurate. Among the generated models,
WCDscore is strongly suggested to be most applicable for use in the in-game betting market
when subject to the dynamic strategy.

The hypothesis that the generated models are sufficient for generating a positive return in the in-
game betting market when subject to a proper wealth allocation strategy should not be rejected.
As the returns are indicated to be highly dependent on the predictive ability of the models, it
seems reasonable to train the models without knowledge of the betting market.
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Chapter 8

Conclusion

An important topic of this thesis was the relative performance of statistical models on the task
of predicting the outcome of football matches in the FA English Premier League. A comparison
between these models was conducted to evaluate a set of initial hypotheses represented by three
posed research questions. The hypothesis that parametric count distributions impose some un-
wanted limitations on the task of modelling relationships in football was represented by RQ1.
The motivation for posing RQ2 was the hypothesis that information about the entire scoreline
distribution is essential for obtaining accurate estimates of the 1X2 distribution. To answer
these research questions, five prediction models were generated based on an LSTM network and
a Weibull count distribution.

The third hypothesis, represented by RQ3, was motivated by the assumption that predictive
models can generate positive returns in the in-game betting market without using market in-
formation in the estimation procedure. To accurately assess the hypothesis, two theoretically
founded wealth allocation strategies were utilized. One of these strategies is proposed by the
authors as a theoretical contribution to the existing literature. It was shown to be an optimal
dynamic strategy for an investor acting rationally according to its logarithmic utility function un-
der a large set of simplifying assumptions, and where the investment problem concerns wagering
on mutually exclusive outcomes of a single event.

Regarding RQ1, the architecture based on the Weibull count distribution was indicated to gen-
erate the best predictors of the true class. However, the results strongly suggest that the LSTM
architecture can generate models that better capture the inherent ordinal structure of the score-
lines in football matches in the EPL. The latter result indicates that the hypothesis represented
by RQ1 hold, although the effect of this is not reflected in the relative predictive ability. As for
RQ2, the scoreline models were indicated as slightly better models of the 1X2 distribution than
their 1X2 equivalents, supporting the hypothesis that information about the scoreline distribu-
tion is of the essence for predicting the winner of a football match.

The probabilities generated by the prediction models indicated an ability to occasionally gen-
erate positive returns in the market when subject to a static betting strategy. The dynamic
strategy proposed by the authors was able to achieve higher returns in comparable situations
but was subject to higher volatility. The results also indicated that positive returns mostly
coincided with good predictive ability of the generated models compared to the implied proba-
bilities of Sportradar. However, neither combination of strategy and predictive model was able
to consistently generate positive returns.
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Chapter 9

Recommendations for Further Research

A foundation for a valid comparison of the predictive ability of the generated models is that
they originate from the same scientific setup. A significant drawback of this setup is the chosen
selection and validation approach. A recommended approach was presented in Section 5.3.2, and
it is highly recommended that this approach is chosen for future work on the topic given that a
sufficient amount of time and computational resources are available to the researcher. Another
potential weakness of the generated models is that they do not utilize the information available
in the betting market nor common knowledge, such as twitter post and prediction polls. Since
the wisdom of crowds is suggested to have a great prediction power in existing research, such
information should ideally be included in the feature set. Furthermore, the results indicated that
the choice of sequence length can considerably alter the performance of LSTM networks. Based
on this, it is suggested to include the sequence length as a hyperparameter in the model selection
procedure.

Although most of the generated models estimate the entire scoreline distribution, the only market
used to test the betting performance in this thesis was the 1X2 market. An interesting topic for
further research is to extend the analysis presented here to other markets for mutually exclusive
outcomes. Regarding the proposed betting strategy, relaxation of the requirement of mutually
exclusive outcomes is considered an important extension, as one should allow for bets on multiple
markets in the same match. Allowing for bets in simultaneous matches is also of interest. An
approach in this regard is presented in Section 5.6.2. Another restriction inherent in the betting
results is the fixed set of values for the partial Kelly parameter γ. Ideally, γ should be optimized
for different intervals during the course of a match. This proposal is based on the observation
that the dynamic strategy invested all or most of its wealth in the early stages of the match,
even though the estimated probabilities were shown to be superior for later stages.

As a concluding remark, both of the evaluated model architectures were indicated to generate
models with a similar predictive performance to that observed for implied probabilities from
Sportradar. This indicates that these architectures should be viable options for further research
on the task of predicting the outcome of football matches.
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Appendix A

Evaluating the Choice of Count
Distribution

A.1 Chi-squared Hypothesis Test - Weibull Count vs. Poisson

Home Team Away Team
Time Poisson Weibull Poisson Weibull

0.0 0.003 0.336 0.000 0.726
5.0 0.017 0.489 0.000 0.613
10.0 0.012 0.268 0.000 0.579
15.0 0.000 0.075 0.000 0.677
20.0 0.004 0.222 0.000 0.640
25.0 0.001 0.163 0.000 0.926
30.0 0.004 0.453 0.000 0.910
35.0 0.015 0.487 0.000 0.745
40.0 0.002 0.017 0.000 0.698
45.0 0.072 0.219 0.000 0.828
50.0 0.244 0.365 0.000 0.969
55.0 0.524 0.826 0.002 0.907
60.0 0.662 0.903 0.001 0.636
65.0 0.691 0.800 0.013 0.743
70.0 0.430 0.487 0.269 0.632
75.0 0.398 0.205 0.681 0.411

Table A.1: p-values from chi-squared hypothesis tests with H0: Fitted distribution = data.
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A.2 Distribution Plots
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Figure A.1: Probability for the number of goals scored by the home team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Figure A.2: Probability for the number of goals scored by the away team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Figure A.3: Probability for the number of goals scored by the home team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Figure A.4: Probability for the number of goals scored by the away team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Figure A.5: Probability for the number of goals scored by the home team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Figure A.6: Probability for the number of goals scored by the away team based on empirical
data, a fitted Poisson distribution and a fitted Weibull distribution.
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Appendix B

Table with all Features

Feature Difference Seasonal In-game Variations Num. features

Away indicator 1
Corner kicks X X 3
Draws X X 3
Elo rating X 3
FIFA rating X 3
Form(w) X X w ∈ {0.05, 0.1, . . . , 0.5} 30
Goal difference X X 3
Goal difference/match X X 3
Goals conceded X X 3
Goals conceded/match X X 3
Goals scored X X 3
Goals scored/match X X 3
Home indicator 1
Importance 1(w) X X w ∈ {0, 0.25, 0.5, 1, 2, 3} 18
Importance 18(w) X X w ∈ {0, 0.25, 0.5, 1, 2, 3} 18
Importance 4(w) X X w ∈ {0, 0.25, 0.5, 1, 2, 3} 18
Importance 5(w) X X w ∈ {0, 0.25, 0.5, 1, 2, 3} 18
Losses X X 3
Match num 0-19 X X 3
Match num 0-4 X X 3
Match num 0-9 X X 3
Match num 10-14 X X 3
Match num 10-19 X X 3
Match num 15-19 X X 3
Match num 20-24 X X 3
Match num 20-29 X X 3
Match num 20-38 X X 3
Match num 25-29 X X 3
Match num 30-34 X X 3
Match num 30-38 X X 3
Match num 35-38 X X 3
Match num 5-9 X X 3
Matches X X 3
Matches left X X 3
Offsides X X 3
Points X X 3
Points/match X X 3
Position X X 3
Red cards X X 3
Score X X 3
Shots off goal X X 3
Shots on goal X X 3
Streak ew tw(l) X X l ∈ {1, 2, . . . , 10} 30
Streak ew(l) X X l ∈ {1, 2, . . . , 10} 30
Streak tw(l) X X l ∈ {1, 2, . . . , 10} 30
Streak(l) X X l ∈ {1, 2, . . . , 10} 30
Wins X X 3
Yellow cards X X 3

Total 335

Table B.1: All available features and their properties.
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Appendix C

Grid Search

Scoreline 1X2
Pre-game In-game Pre-game In-game
d Loss d Loss d Loss d Loss

15 2.8947 37 2.2615 10 1.0172 10 0.8478
16 2.8952 48 2.2618 11 1.0176 11 0.8504
32 2.8953 17 2.2621 12 1.0214 12 0.8505
42 2.8959 43 2.2625 8 1.0217 13 0.8539
50 2.8960 10 2.2631 20 1.0228 16 0.8540

Table C.1: Optimal values of d from grid search for the WCD models.

Scoreline Copula 1X2
Pre-game In-game Pre-game In-game Pre-game In-game
d Loss d Loss d Loss d Loss d Loss d Loss

14 2.9164 24 2.4210 14 1.4483 24 1.1734 17 1.0160 17 0.8443
8 2.9200 20 2.4213 11 1.4486 18 1.1762 18 1.0179 45 0.8452
13 2.9203 22 2.4241 20 1.4492 26 1.1779 16 1.0187 41 0.8481
9 2.9212 18 2.4273 17 1.4493 40 1.1803 19 1.0204 19 0.8505
15 2.9213 38 2.4292 18 1.4495 30 1.1804 20 1.0213 39 0.8523

Table C.2: Optimal values of d from grid search for the LSTM models.
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Appendix D

Feature Selection

Feature

Diff Form 0.45
Diff Importance 1 pw0.25
Diff Importance 4 pw0.25
Diff Importance 5 pw0.25
Diff Importance 18 pw0.25
Diff Match num 30-34
Diff Match num 35-39
Diff Streak Tw Ew 4

Table D.1: Features chosen during the initial feature selection process.
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Time 0 Time 45 Time 90
Feature M1 M2 M3 M1 M2 M3 M1 M2 M3

Diff Importance 1 pw0.25 8 7 7 3 3 3 1 1 1
Diff Importance 18 pw0.25 3 3 3 2 2 2 2 3 2
Diff Points 9 8 6 9 3 2 3
Diff Elo 1 2 2 1 1 1
Diff Avg player strength 2 1 1 7 7
Diff Goals scored 9 8 9 6 5
Diff Goals scored/match 10 10 4 4 4

Diff Points/Match 5 5 5 10 7
Elo 4 4 4 8
Diff Goal difference 7 8 10
Diff Goal difference/match 6 6 6
Diff Importance 4 pw0.25 5 5 6
Diff Wins 10 8 10
Opp Avg player strength 4 4 5

Avg player strength 9 8
Diff Corner kick 7 5
Diff Goals conceded/match 10 8
Diff Shot off goal 6 7
Home 5 4
Opp Goals conceded/match 9 9
Position 9 8

Diff Losses 6
Diff Matches left 7
Draws 9
Opp Matches 10
Opp Goal 6
Shot on goal 10

Table D.2: The top 10 features based on mutual information. M1 =WCDscore, M2 =WCD1X2,
M3 = LSTMcopula.
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Time 30 Time 60 Time 90
Feature M1 M2 M3 M1 M2 M3 M1 M2 M3

Corner kick 29 34 20 25
Diff Corner kick 24 16 7 5
Diff Shot off goal 28 6 7
Diff Shot on goal 33 13 12
Diff Red card 24 21
Offside 35 10
Opp Corner kick 30 8

Opp Offside 19 18
Opp Goal 24 6
Shot on goal 33 10
Diff Goal 34
Diff Yellow card 26
Opp Red card 35

Opp Yellow card 33
Opp Shot off goal 14
Opp Shot on goal 31
Goal 15
Yellow card 35
Shot off goal 18

Table D.3: Ranking of the in-game features based on mutual information. M1 = WCDscore, M2
= WCD1X2, M3 = LSTMcopula.
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Time 0 Time 45 Time 90
Feature M4 M5 M4 M5 M4 M5

Diff Goal difference 5 3 9 6 3 6
Diff Avg player strength 2 2 2 5 5
Diff Elo 1 1 1 2 4
Diff Wins 7 7 10 10 10
Diff Goals scored 4 6 8 8
Diff Goals scored/match 8 9 10 8

Diff Points 10 5 7 7
Diff Points/match 3 6 9 9
Away Goal 4 2 3
Diff Goal difference/match 4 10 5
Diff Importance 1 pw0.25 8 8 4
Home Goal 3 1 2
Away Avg player strength 6 9

Diff Score 1 1
Away Elo 3
Diff Importance 4 pw0.25 6
Diff Position 4
Home Avg player strength 9
Home Elo 7
Home Points/match 7

Table D.4: The top 10 features based on mutual information. M4 = LSTMscore, M5 =
LSTM1X2.
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Time 30 Time 60 Time 90
Feature M4 M5 M4 M5 M4 M5

Away Goal 12 3 2 3
Diff Corner kick 17 40 15 43
Home Goal 11 2 1 2
Diff Goal 1 1 1
Away Shot on goal 43 41
Diff Yellow card 44 40
Diff Shot off goal 41 21

Diff Shot on goal 39 41
Home Shot on goal 21 17
Away Corner kick 21
Away Offside 24
Away Red card 42
Away Yellow card 45
Away Shot off goal 19

Diff Offside 24
Diff Red card 19
Home Corner kick 42
Home Offside 20
Home Red card 20
Home Yellow card 45
Home Shot off goal 22

Table D.5: Ranking of the in-game features based on mutual information. M4 = LSTMscore,
M5 = LSTM1X2.
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Appendix E

Difference in Cross Entropy

CE = CE(θ|fY ,X,y) = − 1

N

N∑
i=1

∑
k∈ΩY

I(yi = k)ln
(
fY (k|xi,θ)

)

CE = − 1

N

N∑
i=1

ln(pk,i),

where pk,i = fY (k|xi,θ) and k is the correct class. Looking at the average probabilities gives
pk,1 = pk,2 = · · · = pk,N = p̄k.

CE1 − CE2 = − 1

M

M∑
i=1

ln(pk,i)− (−1)
1

N

N∑
j=1

ln(pl,j)

=
1

N

N∑
j=1

ln(pl,j)−
1

M

M∑
i=1

ln(pk,i)

=
1

N
ln(p̄Nl )− 1

M
ln(p̄Mk )

= ln(p̄l)− ln(p̄k)

= ln(
p̄l
p̄k

)

CE2 − CE1 = ln(
p̄k
p̄l

) ⇐⇒ eCE2−CE1 =
p̄k
p̄l
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Appendix F

Hypothesis Tests for RPS - WCD vs
LSTM

WCDscore-LSTMscore WCDscore-LSTMcopula WCD1X2-LSTMscore WCD1X2-LSTMcopula

Time Statistic p-value Statistic p-value Statistic p-value Statistic p-value

0 -3.71 0.0002 -3.43 0.0006 -3.55 0.0004 -3.28 0.0011
5 -5.25 0.0000 -4.81 0.0000 -4.59 0.0000 -4.17 0.0000
10 -5.67 0.0000 -5.04 0.0000 -5.03 0.0000 -4.42 0.0000
15 -7.13 0.0000 -5.34 0.0000 -7.09 0.0000 -5.34 0.0000
20 -8.26 0.0000 -7.20 0.0000 -7.37 0.0000 -6.30 0.0000
25 -7.58 0.0000 -7.23 0.0000 -8.29 0.0000 -7.92 0.0000
30 -9.92 0.0000 -8.98 0.0000 -9.40 0.0000 -8.48 0.0000
35 -11.16 0.0000 -10.25 0.0000 -11.08 0.0000 -10.18 0.0000
40 -12.97 0.0000 -12.73 0.0000 -12.71 0.0000 -12.47 0.0000
45 -13.85 0.0000 -13.26 0.0000 -14.53 0.0000 -13.90 0.0000
50 -15.99 0.0000 -16.90 0.0000 -16.78 0.0000 -17.70 0.0000
55 -19.47 0.0000 -19.80 0.0000 -19.27 0.0000 -19.61 0.0000
60 -21.89 0.0000 -22.48 0.0000 -21.90 0.0000 -22.50 0.0000
65 -23.69 0.0000 -24.17 0.0000 -24.00 0.0000 -24.48 0.0000
70 -26.14 0.0000 -27.89 0.0000 -26.29 0.0000 -28.07 0.0000
75 -29.18 0.0000 -30.27 0.0000 -29.34 0.0000 -30.44 0.0000
80 -33.16 0.0000 -32.98 0.0000 -32.98 0.0000 -32.80 0.0000
85 -37.26 0.0000 -37.17 0.0000 -37.12 0.0000 -37.02 0.0000
90 -41.91 0.0000 -41.60 0.0000 -41.89 0.0000 -41.58 0.0000

Table F.1: Test statistics and p-values for pairwise Welch’s t-test for the difference in RPS.
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Appendix G

Betting Performance - Tables and
Figures

G.1 Tables Based on the Static Strategy

Time 0.02 0.05 0.1 0.25 0.5 1.0

0 0.6923 0.3845 0.1312 0.0026 0.0000 0.0000
5 0.8279 0.6101 0.3464 0.0418 0.0003 0.0000
10 0.9253 0.8025 0.5919 0.1470 0.0033 0.0000
15 0.9223 0.7932 0.5719 0.1253 0.0019 0.0000
20 0.8530 0.6565 0.3989 0.0573 0.0005 0.0000
25 0.9982 0.9714 0.8705 0.3892 0.0213 0.0000
30 1.1505 1.3868 1.7804 2.4262 1.0243 0.0013
35 1.0551 1.1159 1.1495 0.7936 0.1004 0.0000
40 1.1460 1.3766 1.7688 2.5343 1.3509 0.0045
45 0.9438 0.8460 0.6640 0.2064 0.0068 0.0000

50 0.9737 0.9132 0.7700 0.2889 0.0120 0.0000
55 1.0453 1.0986 1.1429 0.9421 0.2559 0.0005
60 1.0731 1.1741 1.3076 1.3235 0.4775 0.0005
65 0.9657 0.8987 0.7571 0.3114 0.0210 0.0000
70 1.0814 1.1961 1.3567 1.4751 0.6903 0.0057
75 1.0709 1.1736 1.3276 1.5480 0.9837 0.0226
80 1.0171 1.0328 1.0324 0.8544 0.3407 0.0049
85 0.9923 0.9745 0.9292 0.7053 0.2777 0.0041
90 1.0223 1.0523 1.0919 1.1270 0.9216 0.2077

Table G.1: Wealth at the end of the investment horizon with WCDscore and for different values
of γ and in-game time points.
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Time 0.02 0.05 0.1 0.25 0.5 1.0

0 0.8811 0.7160 0.4839 0.1069 0.0030 0.0000
5 0.8945 0.7402 0.5094 0.1089 0.0022 0.0000
10 0.9410 0.8388 0.6511 0.1956 0.0066 0.0000
15 0.8748 0.7000 0.4557 0.0826 0.0013 0.0000
20 0.8729 0.6969 0.4525 0.0820 0.0012 0.0000
25 0.8682 0.6907 0.4513 0.0904 0.0021 0.0000
30 1.0811 1.1808 1.2693 0.9262 0.1046 0.0000
35 0.8933 0.7412 0.5184 0.1256 0.0037 0.0000
40 1.0861 1.2076 1.3750 1.4430 0.5211 0.0010
45 0.9184 0.7911 0.5824 0.1522 0.0040 0.0000

50 1.0209 1.0294 0.9832 0.5578 0.0553 0.0000
55 1.0366 1.0755 1.0931 0.8266 0.1799 0.0001
60 1.1222 1.3088 1.6091 2.0828 1.0029 0.0025
65 1.0520 1.1160 1.1783 1.0091 0.2820 0.0004
70 1.1065 1.2587 1.4716 1.5746 0.5332 0.0009
75 1.0466 1.1095 1.1915 1.2241 0.7080 0.0263
80 0.9846 0.9495 0.8630 0.4993 0.0810 0.0000
85 0.9886 0.9623 0.8960 0.5901 0.1394 0.0001
90 1.1192 1.3073 1.6387 2.6396 3.5223 1.1944

Table G.2: Wealth at the end of the investment horizon with WCD1X2 and for different values
of γ and in-game time points.

Time 0.02 0.05 0.1 0.25 0.5 1.0

0 0.9054 0.7600 0.5304 0.1100 0.0017 0.0000
5 0.8958 0.7430 0.5134 0.1105 0.0021 0.0000
10 0.8642 0.6722 0.4064 0.0492 0.0002 0.0000
15 0.8415 0.6355 0.3756 0.0505 0.0004 0.0000
20 0.9022 0.7481 0.5024 0.0817 0.0005 0.0000
25 0.8788 0.7050 0.4556 0.0742 0.0007 0.0000
30 1.0263 1.0371 0.9801 0.4871 0.0289 0.0000
35 0.8929 0.7314 0.4856 0.0815 0.0007 0.0000
40 1.0630 1.1317 1.1651 0.7403 0.0628 0.0000
45 0.8778 0.7041 0.4565 0.0769 0.0008 0.0000

50 1.0135 1.0027 0.9085 0.3767 0.0132 0.0000
55 0.8473 0.6453 0.3854 0.0524 0.0004 0.0000
60 0.9667 0.8993 0.7538 0.2930 0.0152 0.0000
65 1.0482 1.0994 1.1216 0.7787 0.1100 0.0000
70 0.9829 0.9330 0.8003 0.3184 0.0167 0.0000
75 1.0404 1.0889 1.1330 0.9815 0.3292 0.0011
80 0.9447 0.8526 0.6866 0.2552 0.0150 0.0000
85 0.9955 0.9786 0.9256 0.6416 0.1778 0.0005
90 1.0052 1.0071 0.9946 0.8556 0.4562 0.0177

Table G.3: Wealth at the end of the investment horizon with LSTMscore and for different values
of γ and in-game time points.
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Time 0.02 0.05 0.1 0.25 0.5 1.0

0 0.8536 0.6565 0.3970 0.0550 0.0005 0.0000
5 0.8824 0.7144 0.4723 0.0875 0.0013 0.0000
10 0.9691 0.8909 0.7046 0.1833 0.0030 0.0000
15 0.8888 0.7222 0.4714 0.0740 0.0006 0.0000
20 0.8648 0.6809 0.4323 0.0738 0.0011 0.0000
25 0.7740 0.5066 0.2257 0.0097 0.0000 0.0000
30 0.9172 0.7728 0.5219 0.0759 0.0003 0.0000
35 1.0108 1.0028 0.9290 0.4681 0.0352 0.0000
40 1.0678 1.1380 1.1578 0.6549 0.0386 0.0000
45 0.8732 0.6876 0.4209 0.0498 0.0002 0.0000

50 1.0152 1.0159 0.9605 0.5380 0.0559 0.0000
55 1.0425 1.0899 1.1192 0.8556 0.1761 0.0001
60 0.9902 0.9522 0.8370 0.3582 0.0195 0.0000
65 0.9573 0.8749 0.7053 0.2275 0.0067 0.0000
70 1.0846 1.1916 1.3022 1.0859 0.2219 0.0001
75 0.9375 0.8351 0.6547 0.2147 0.0085 0.0000
80 0.9014 0.7601 0.5497 0.1526 0.0058 0.0000
85 0.9651 0.9081 0.8038 0.4738 0.1062 0.0002
90 1.0363 1.0908 1.1813 1.4390 1.7504 1.5607

Table G.4: Wealth at the end of the investment horizon with LSTMcopula and for different values
of γ and in-game time points.

Time 0.02 0.05 0.1 0.25 0.5 1.0

0 0.9412 0.8389 0.6500 0.1900 0.0054 0.0000
5 1.0798 1.1623 1.1799 0.5756 0.0164 0.0000
10 0.9339 0.8117 0.5830 0.1084 0.0008 0.0000
15 1.1547 1.3838 1.7110 1.7276 0.2633 0.0000
20 0.9077 0.7576 0.5115 0.0822 0.0005 0.0000
25 0.9471 0.8406 0.6247 0.1282 0.0011 0.0000
30 0.9042 0.7476 0.4929 0.0707 0.0003 0.0000
35 0.9903 0.9444 0.8014 0.2674 0.0066 0.0000
40 1.0040 0.9814 0.8761 0.3596 0.0138 0.0000
45 1.1696 1.4300 1.8314 2.0608 0.3599 0.0000

50 1.2605 1.7228 2.6494 5.0417 1.9133 0.0001
55 1.1960 1.5132 2.0545 2.7832 0.6900 0.0000
60 1.0849 1.1830 1.2467 0.7655 0.0475 0.0000
65 0.8989 0.7396 0.4883 0.0749 0.0005 0.0000
70 0.9934 0.9288 0.7234 0.1420 0.0008 0.0000
75 1.0164 1.0087 0.9175 0.3895 0.0163 0.0000
80 0.8890 0.7195 0.4625 0.0655 0.0003 0.0000
85 0.9073 0.7647 0.5403 0.1255 0.0032 0.0000
90 0.9870 0.9502 0.8538 0.4755 0.0941 0.0007

Table G.5: Wealth at the end of the investment horizon with LSTMcopula and for different values
of γ and in-game time points.
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G.2 Plots Based on the Static Strategy
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Figure G.1: Proportion of wealth for WCDscore and different values of γ over the investment
horizon. The wealth is the average over all time intervals.
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Figure G.2: Proportion of wealth for WCD1X2 and different values of γ over the investment
horizon. The wealth is the average over all time intervals.
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Figure G.3: Proportion of wealth for LSTM1X2 and different values of γ over the investment
horizon. The wealth is the average over all time intervals.
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Figure G.4: Proportion of wealth for LSTMcopula and different values of γ over the investment
horizon. The wealth is the average over all time intervals.
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G.3 Plots Based on the Dynamic Strategy
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Figure G.5: Proportion of wealth for WCD1X2 and different values of γ over the investment
horizon.
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Figure G.6: Proportion of wealth for LSTMscore and different values of γ over the investment
horizon.
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Figure G.7: Proportion of wealth for LSTMcopula and different values of γ over the investment
horizon.

0 100 200 300 400 500 600 700
Number of matche 

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 
of
 in

iti
al
 w

ea
lth

Fraction of wealth over time for LSTM-1X2

γ=0.02
γ=0.05
γ=0.1
γ=0.25

Figure G.8: Proportion of wealth for LSTM1X2 and different values of γ over the investment
horizon.

110



R
obin A

ndersen, Vegard H
assel

In-gam
e B

etting and the FA
 English P

rem
ier League: The C

ontribution of P
rediction M

odels

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
co

no
m

ic
s 

an
d 

M
an

ag
em

en
t 

D
ep

ar
tm

en
t o

f I
nd

us
tr

ia
l E

co
no

m
ic

s 
an

d 
Te

ch
no

lo
gy

M
an

ag
em

en
t

M
as

te
r’

s 
th

es
is

Robin Andersen
Vegard Hassel

In-game Betting and the FA English
Premier League: The Contribution of
Prediction Models

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Magnus Stålhane, Lars Magnus Hvattum

June 2019


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Terminology
	Introduction
	Motivation and Research Questions
	Outline

	Theoretical Foundation
	Mathematical Notation
	Metrics - Evaluation of Probabilistic Classifiers
	Calibration and Discrimination
	Accuracy Score
	Information Theory and Cross Entropy
	Ranked Probability Score

	Model Selection
	Validation Methods
	Feature and Hyperparameter Selection

	Probability Distributions for Count Processes
	Copula Functions
	Artificial Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Estimation Procedures

	Betting Strategies
	Odds
	Convexity Theory
	Portfolio Optimization and The Kelly Criterion


	Literature Review
	Relevant Prediction Models 
	The Poisson Assumption and Generalizations
	In-game Prediction Methods
	Artificial Neural Networks and Machine Learning

	Investment Strategies Under Fixed Conditional Returns
	Contribution to the Existing Literature

	Data
	Origin of the Data
	Time Intervals
	Description of the Data
	Pre-game Rating Systems
	In-game Events

	Descriptive Statics
	Mean and Standard Deviation
	Correlation Coefficient


	Methodology
	Feature Engineering
	Feature Extraction
	Feature Selection

	Evaluation
	Metrics - Scoreline
	Metrics - 1X2

	Validation and Model Selection
	Chosen Selection Procedure
	Recommended Selection Procedure

	Architecture 1: Weibull Count Distribution
	Architecture
	Estimation Procedure
	Summary - Model Generation Procedure

	Architecture 2: Long Short-Term Memory Network
	Architecture and Hyperparameters
	Estimation Procedure
	Summary - Model Generation Procedure

	Betting Strategies
	Mutually Exclusive Static Kelly
	Extending the Kelly Criterion
	Application of the Betting Strategies


	Results - Predictive Performance
	Model Selection
	Chosen Hyperparameters
	Chosen Features

	Model Evaluation
	Benchmark Models
	Cross entropy - 1X2
	Accuracy - 1X2
	Cross Entropy - Scoreline
	Accuracy - Scoreline
	Ranked Probability Score - Scoreline

	Discussion
	Research Question 1
	Research Question 2


	Results - Betting Performance
	Fundamentals
	Static Betting Performance of Prediction Models
	Dynamic Strategy
	Discussion

	Conclusion
	Recommendations for Further Research
	References
	Appendices
	Evaluating the Choice of Count Distribution
	Chi-squared Hypothesis Test - Weibull Count vs. Poisson
	Distribution Plots

	Table with all Features
	Grid Search
	Feature Selection
	Difference in Cross Entropy
	Hypothesis Tests for RPS - WCD vs LSTM
	Betting Performance - Tables and Figures
	Tables Based on the Static Strategy
	Plots Based on the Static Strategy
	Plots Based on the Dynamic Strategy


