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Abstract

We perform an empirical analysis of the convertible bond model proposed by Ayache-

Forsyth-Vetzal, calibrated with the method proposed by Andersen & Buffum, with the

intent of testing the model’s applicability to convertible arbitrage strategies. We backtest

the model for two publicly traded convertible bonds between 2018-02-01 and 2019-04-23

and analyze the effectiveness of the model delta by comparing quantile correlations of the

convertible bond with the underlying stock to those of a delta-hedged portfolio with the

underlying stock. An effective delta hedge should result in a substantial reduction in the

correlation for quantiles covering small stock returns, and ideally this correlation should

be zero. We find that whereas the model is able to fit closely to market prices, the deltas

from the model do not match those of the market. We observe that for the two bonds in

our sample, the deltas from the model are about twice as large as the deltas that would

give the best delta hedge in the selected trading period, and by multiplying the model

deltas by a constant tuning factor we are able to obtain mid 80% quantile correlations

much closer to zero.
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Sammendrag

Vi utfører en empirisk analyse av prisingsmodellen for konvertible obligasjoner foresl̊att av

Ayache-Forsyth-Vetzal, kalibrert med metoden beskrevet av Andersen & Buffum, med m̊al

om å teste modellens anvendelighet i convertible arbitrage-strategier. Vi tester modellen

for to børsnoterte konvertible obligasjoner i perioden 01.02.2018-23.04.2019 og analyserer

hvor effektiv modellen er ved å sammenligne kvantilkorrelasjoner mellom obligasjonen

og den underliggende aksjen med kvantilkorrelasjoner mellom en hedget portefølje og

den underliggende aksjen. En effektiv delta-hedge bør resultere i en betydelig reduk-

sjon i korrelasjon for kvantiler som dekker små kursendringer i aksjen, og ideelt sett

bør denne korrelasjonen være null. Vi finner at modellen produserer priser som avviker

lite fra markedspriser, men at modellens deltaer avviker betydelig fra deltaer observert i

markedet. For de to obligasjonene i v̊art utvalg finner vi at modellens deltaer er omtrent

dobbelt s̊a store som de deltaer som ville gitt den beste delta-hedgen i den utvalgte tidspe-

rioden, og ved å multiplisere modelldeltaene med en konstant endringsfaktor oppn̊ar vi

kvantilkorrelasjoner for den midterste 80%-kvantilen svært nær null.
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Chapter 1

Introduction

When firms need to raise capital they can choose among equity, debt or hybrid securities,

which combine equity and debt components. In this thesis we focus on convertible bonds,

a type of hybrid instrument which displays both equity- and bond-like features.

Convertible bonds (CB) have been around for the past 150 years, and started as a source

of capital for U.S. railroad companies. Today, however, 32.5% of all convertibles are

issued by the tech sector (Gabelli, 2018), followed by consumer discretionary, financial

companies and the health care sector. The full sector exposure of the CB market as well

as the CB market size is shown in Table 1.1. The investors in CBs can be divided into

two types: long-only and hedged. As of 2Q18 65% of US CBs and 70% of European CBs

are owned by long-only investors, meaning that the rest is owned by hedge funds. There

have, however, been periods in which hedge funds dominated the CB market (Gabelli,

2018).

A common strategy used by hedge funds is convertible bond arbitrage. The strategy

consists of a long position in the convertible bond and a short position of delta shares in

the underlying stock, resulting in a delta neutral position. The delta is the first derivative

of the CB price with respect to stock price, i.e. the change in CB price per change in the

underlying stock, and gamma is the second-derivative with respect to stock price, i.e. the

change in delta per change in the underlying stock. For small changes in the stock price,

the net payoff of the position will be unchanged. However, if the gamma is positive, the

1



Chapter 1 Introduction

Table 1.1: Convertible Market Sector Exposure. Source: Barclay’s June 30, 2018

Equity Sector Market Cap. (USDb) Percentage of Market

Consumer Discretionary 41.7 18.7 %

Consumer Staples 3.5 1.5%

Energy 14.0 6.3%

Financials 33.4 15.0%

Health Care 33.2 14.8%

Industrials 10.2 4.6%

Information Technology 72.6 32.5%

Materials 3.9 1.8%

Telecommunication Services 2.0 0.9%

Utilities 9.0 4.0%

Total 223.5 100%

position will yield a positive return for large price jumps in the underlying stock no matter

the direction. A positive gamma means that as the stock price increases, the CB increases

more in value than the short position loses. If the stock price falls, then the CB falls less

in value than is gained from the short position. Convertible arbitrageurs generally look

for equity-like convertible bonds. The underlying shares have a higher volatility, which

translates into a higher value for the equity option, a lower conversion premium, and a

higher gamma. Moreover, convertible arbitrageurs prefer underlying stocks that (1) pay

low or no dividends, (2) are undervalued, (3) are liquid, and (4) can easily be sold short

(Loncarski et al., 2009). In the 1990’s CB arbitrage-indices had annual returns between

10-20% (Loncarski et al., 2009).

Another interesting feature of CBs is that they tend to perform well during periods of

rising interest rates (Gabelli, 2018). This feature can be observed in Figure 1.1, where

the performance of different asset classes in periods with rising interest rates is presented.

A reason for these performances may be that the sectors that dominate the CB market

are typical growth markets, which are likely to perform well during periods of economic

expansion, which often experience rising interest rates. Another reason may be that the

duration of CBs are typically lower than on non-convertible bonds, which lowers the

exposure to credit risk.

2



Chapter 1 Introduction

Figure 1.1: Historical performance of different asset classes in a rising rate environment.

Source: (Gabelli, 2018, p. 7)

The typical shape of the price curve of a convertible is depicted in Figure 1.2. For low

stock prices the debt is distressed and trades at a steep discount to investment value.

When the debt is no longer distressed the CB moves into the out-of-the-money area,

where the CB is more sensitive to the bond component due to low option value. For

increasing stock prices the convertible bond moves into the at-the-money area where the

embedded option influence the CB more and more, and in the in-the-money area the price

of the convertible converges to parity where it will be exercised immediately. Parity is

simply the stock price multiplied by the conversion ratio, and constitutes the value of the

convertible bond after conversion.

Figure 1.2: Convertible bond price curve

3



Chapter 1 Introduction

The literature on convertibles begins with valuation of CBs based on valuation of non-

convertible debt (e.g. Merton (1974), combined with Black and Cox (1976)) and Black

and Scholes (1973) framework for valuing options. Ingersoll Jr (1977) and Brennan and

Schwartz (1980) were among the first to derive valuation models for CBs. Later, models

were derived to take different features into account. Such features are for example that

the issuing company can call back the bond at a certain price at a particular time in

the future, or that the investor can choose to put the bond (sell it back to the issuer)

at a predetermined price. Brennan and Schwartz (1977) derived a valuation model and

optimal strategies for call and conversion, while GoldmanSachs (1994) takes both call and

put features into account in their model.

One aspect of the different components of convertible bonds is that they are subject to

different credit risks. Tsiveriotis and Fernandes (1998) argued that the equity part of

the CB is not subject to credit risk, because the company can always provide its own

stock, whereas the bond part in nature is subject to credit risk. Splitting the CB into two

parts, leads to a pair of coupled partial differential equations, which can be solved using

finite differences. The research note by GoldmanSachs (1994) takes the same problem

into account by estimating the probability of conversion at some point, and then setting

the discount rate to the weighted average of risk free rate and the risk free rate plus

credit spread, where the probability of conversion is the weighting factor. Ammann et al.

(2008) proposed a method for pricing convertible bonds using Monte Carlo simulation.

This allows for better modeling of a rich set of real-world specifications that are hard to

specify in a binomial tree or a closed form model.

In recent literature Ayache et al. (2003) expanded Tsiveriotis-Fernandes’ model (”TF

model”) to take default risk into account and see what happens to the price of the CB

in the event of default by the issuing firm. Ayache et al. (2003) claims that Tsiveriotis-

Fernandes’ model is internally inconsistent, and that ”Tsiveriotis and Fernandes (1998)

provide no discussion of the actual events in the case of default, and how this would affect

the hedging portfolio. There is no clear statement in their paper as to what happens to

the stock price in the event of default”(Ayache et al., 2003, p. 10). Because the TF-model

does not specify what happens in case of default, one cannot generate a self-financing and

risk-free hedging portfolio. By taking the probability of default and what happens in case

4



Chapter 1 Introduction

of default into account, Ayache et al. (2003) develop a new pricing model (”AFV model”)

that can be used to generate a zero risk and self-financing hedging portfolio. To use this

model on a real case one has to use market data on options and default probability, such as

zero coupon bonds or CDS-contracts, to calibrate the input parameters. The calibration

process is described by Andersen and Buffum (2002), who suggest that applying the

calibration theory in practice is a ”challenging and interesting avenue for future research”.

There is some literature empirically testing pricing, but with many different pricing models

there is not extensive literature testing each model. We also find the literature lacking in

assessing the hedging capability of different models. Zabolotnyuk et al. (2010) empirically

test the pricing capability of the Ayache-Forsyth-Vetzal model, the same model as in this

thesis, but do not test hedging. They find a very small model overpricing of 0.35%

on 64 convertible bonds on the Toronto Exchange. However, they do not calibrate the

model using the Andersen and Buffum (2002) methodology, but instead use the Marquardt

algorithm to select model parameters that closely fit model prices to historical convertible

bond prices. This methodology could lead to overfitting, which would yield low pricing

errors. We notice that their estimated mean recovery rate is a mere 1%, which we find

unrealistic. They also let the p-parameter in Equation 2.6, which governs the stock price

dependent behavior of the credit spread, vary from 5.91 to −4.81. Letting p be negative

implies that an increase in stock price yields an increase in credit spread, which is also

unrealistic. Such a low recovery rate will, in combination with an unconstrained p, give

the algorithm more freedom to tune other parameters to get the desired price range, but

will affect the delta and gamma.

Ammann and Seiz (2006) do an empirical assessment of both pricing and hedging manda-

tory convertible bonds, but they assess a different model than the AFV model. Mandatory

convertibles are mandatorily converted into common stock at maturity, unlike regular con-

vertible bonds. Ammann and Seiz (2006) find low pricing and hedging errors, however,

due to the inherent differences between mandatory convertibles and regular convertibles

the papers results are not comparable to our study.

This thesis adds to the literature on convertible bonds by assessing the hedging perfor-

mance of the Ayache-Forsyth-Vetzal model (Ayache et al., 2003), calibrated with the

method presented by Andersen and Buffum (2002). This is the model outlined in the

5
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Bloomberg OVCV model description (David Frank, 2018), a widely used financial soft-

ware program.

Ideally we would like to do an empirical study of all the greeks in the AFV model.

However, the greeks will be practically unobservable as the convertible bond is less liquid

than the underlying stock, and there could be a change in several of the relevant input

parameters such as volatility and credit spread for every observed price change of the

convertible bond. Hence it is logical to focus the empirical assessment on delta, the greek

that is most commonly hedged.

To do this we backtest a delta hedged portfolio of two convertible bonds to analyze

the performance. To assess the effectiveness of the delta hedge we compare the level of

correlation of the convertible bond with the underlying stock to the correlation between a

delta hedged portfolio and the underlying stock. By quantifying the decrease in correlation

we can evaluate the effectiveness of the hedge. We further do an analysis of the correlations

in different quantiles of stock returns to better capture the delta hedging effect, which only

works for small changes in the underlying stock. We also fit a second degree polynomial

to the absolute value of the hedging error on stock returns to check whether the gamma

effect, which is not hedged in delta-hedging, has some explanatory power in the hedging

error. Hence, we test whether the AFV model is suitable to hedging the risk associated

with small price changes in the underlying stock, and test whether residual stock price

risk is due to the convexity of the convertible bond. Confirmation of this would imply

that the AFV model is suitable as a model for delta hedging and engaging in convertible

arbitrage strategies.

The remaining chapters are organized as follows: Chapter 2 presents the model and cali-

bration method, Chapter 3 presents the data sources and sample selection and Chapter 4

presents each bond case and contains the pricing and hedging results. Chapter 5 discusses

the results obtained in Chapter 4 and presents possible explanations of the deviations from

the market. Lastly, Chapter 6 concludes the analysis of the delta hedging performance

and suggests possible avenues for further research.

6



Chapter 2

Model

The model analyzed in this thesis is the Hedging Model proposed by Ayache et al. (2003)

(”AFV model”). This model extends and improves the model proposed by Tsiveriotis and

Fernandes (1998)(”TF model”) by including default risk and describing what happens in

the case of default. The AFV model does not split the CB in the same way as TF, thus it

manages to avoid some of the numerical problems around the point of conversion. Ayache

et al. (2003) show that the TF framework can result in a situation where a call by the

issuer just before expiry renders the CB independent of credit risk, and situations where

the risk-neutral hedged portfolio is not self-financing, and hence is not suitable for pricing

or hedging convertible bonds.

We implement the AFV model with the calibration procedure proposed by Andersen and

Buffum (2002) because this is the model used by Bloomberg (David Frank, 2018), a widely

used financial software. Due to Bloomberg’s popularity we assume that quoted market

prices for convertible bonds should be close to those produced by Bloomberg’s OVCV

tool.

7



2.1 The AFV Model Chapter 2 Model

2.1 The AFV Model

The Hedging Model proposed by Ayache et al. (2003) assumes that stock prices follow a

risk-neutral jump-diffusion process:

dS = (r + λη − δ)Sdt+ σSdz − ηSdq (2.1)

where r is the risk-free rate, δ is the dividend rate and η denotes the loss rate for equity

owners in case of default which we assume to be absolute, i.e. η = 1. dz is a Wiener

process and dq is a Poisson process given by:

dq =

1, probability λdt

0 probability (1− λdt)
(2.2)

The term λη is a term added to the drift in Equation 2.1 to compensate for the expected

downward drift from the jump term, Er[−dq] = −ληdt, and makes the stock price dynamic

risk-neutral. The drift compensation makes the process satisfy the arbitrage restriction

that S(t)e−
∫ t
0 [r(u)−δ(u)]du be a martingale under the risk-neutral probability measure (An-

dersen and Buffum, 2002), i.e. a stochastic process for which the conditional expectation

of the next value is equal to the present value.

The inclusion of the Poisson process enables the modeling of default risk and incorporation

of time-varying volatility effects, which is not possible in earlier models such as Tsiveriotis

and Fernandes (1998) and GoldmanSachs (1994). Under this price dynamic, the system

of SPDEs to be solved is the following:

Ct = −
(
σ2

2
S2CSS + (r + λη − δ)SCS − (r + λ)C

)
− λmax[κS(1− η)−RF, 0] (2.3)

Bt = −
(
σ2

2
S2BSS + (r + λη − δ

)
SBS − (r + λ)B)− λRF (2.4)

Vt = Ct +Bt (2.5)

where Vt is the model price of the CB, Ct is the option component at time t, Bt is the

bond component at time t, κ denotes the conversion ratio, R is the recovery rate and F is

8
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the face value. These equations are then discretized and solved for using finite difference

methods, more specifically the Crank-Nicolson numerical scheme. The derivation and

discretization of these equations, the boundary conditions, and the final Crank-Nicolson

scheme are found in the Appendix. Solving the scheme over all timesteps and stock prices

yields the price surface shown in Figure 2.1.

Figure 2.1: Convertible bond price surface. Maturity is at last timestep. As seen the

price drops to the assumed recovery rate when stock prices go to zero

2.2 Calibration

Both implied option volatility and credit spreads depend in a complicated way on maturity

and the joint parameterization of λ(t, S) and σ(t, S). A straight-forward parameterization

with constant volatility and time-invariant intensity λ(S) = c(S(0)
S

)p can create highly

non-flat, non-monotonic and unrealistic term structures of implied volatility and credit

spreads. Using time-dependent functions for both λ(t, S) and σ(t, S) as given in Equation

2.6 and Equation 2.7 allows the modeling of a realistic volatility term structure similar

9
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to the structure observed in the market (Andersen and Buffum, 2002).

λ(t, S) = a(t)(
S(0)

S
)p (2.6)

σ(t, S) = b(t) (2.7)

Note that the p in Equation 2.6 is not the same as p(s, y) in the Fokker-Planck equation.

This p is the ratio between the credit spread volatility and equity volatility, and has been

found to be between 1.2 and 2 for Japanese bonds rated BB+ and below (Muromachi,

1999). As presented in Andersen and Buffum (2002) we solve the Fokker-Planck equation,

also known as the forward Kolmogorov equation, for a diffusion process with jumps.

The Fokker-Planck equation describes the time-evolution of the discounted probability

distribution, p(s, y), of log stock prices for a jump-diffusion process is as follows:

− ∂p

∂s
− ∂

∂y
(r − q + λ− 1

2
σ2)p+

1

2

∂2

∂y2
σ2p = (r + λ)p (2.8)

where s is the timestep and y the is natural logarithm of the stock price. Solving the

equation yields the shape shown in Figure 2.2.

Figure 2.2: Time-evolution of probability distribution of stock prices. y is the natural log

of the stock price.

As initial condition we use the dirac delta function, which is 1
dy

at today’s stock price

and zero for all other stock prices, and hence the initial probability distribution sums

10
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to 1. Note that the right-hand side of Equation 2.8 is non-zero, which means that the

probability space is discounted in each time step, i.e. the probability density will no longer

sum to one. This is also done by Andersen and Buffum (2002) and is to avoid discounting

when computing call and zero-coupon bond prices, which is done with the following two

equations:

C(Ti, Ki) ≈ ∆y
∑

y0+j∆y>ln(Ki)

p(Ti, y0 + j∆y)(ey0+j∆y −Ki) (2.9)

B(0, Ti) ≈ ∆y
∑
j>=0

p(Ti, y0 + j∆y) (2.10)

Here p(Ti, y0 + jδy) is the discounted probability of a given log stock price at timestep Ti

and K is the strike price of the call option to be matched. With the above equations we

can find the value of a call option or of a zero-coupon bond of a stock with the given price

dynamics at any maturity, which enables us to match the implied volatility and credit

spread of the model to the implied volatility and credit spread of traded derivatives in the

market place at different maturities. We are hence able to capture the term structures of

volatility and risk assessed by the market.

As zero-coupon corporate debt is rarely, if ever, issued, we imply the credit spread using

credit default swaps (CDS) instead, as suggested by Andersen and Buffum (2002). CDS’

are bought as insurance against default events of a company, so the price (which is in basis

points on 100$ of bond value) should on average equal the credit spread of the bond to

eliminate arbitrage opportunities. Differences between the price of the CDS and the credit

spread of a bond is called basis, and can arise due to differences in the documentation of

the bond and the CDS, debt buybacks, restructurings and changes in credit ratings. For

instance could a bond with an investor’s put provision trade at a lower credit spread than

that implied by the CDS, i.e. there is positive basis, due to the insurance inherent in the

bond that is not covered in the CDS documentation. Due to data limitations we assume

zero basis and use CDS prices as a direct measure of credit spread.

In order to properly calibrate the model to capture the volatility term structure and time-

dependent credit spread we solve the Fokker-Planck equation and compute at-the-money

11
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call values and zero-coupon bond values with Equation 2.9 and Equation 2.10 for different

values of a(t) and b(t) until they match market prices for selected maturities. To do this

efficiently we employ a Newton-Raphson iterative method in the manner presented by

Andersen and Buffum (2002). First we freeze a(t) and solve for b(t) by matching option

values to market. Then we freeze b(t) and solve for a(t) by matching the zero-coupon

bond value with the one implied from the CDS spread in the market. We repeat this

process until both call options and zero-coupon bonds deviate less than 1% from their

respective market prices.

This calibration gives the forward outlook of the market on volatility and credit risk and

will only be valid to compute the present day convertible bond price. In this thesis we

seek to compute CB values over a range of times going backward, which would require

that we have both historical option and CDS data. As this data is very difficult to obtain

without purchasing it, we assume a constant volatility term structure that we vertically

shift when volatility level changes. Hence, when backtesting on historical data we assume

that the volatility outlook is the same at any point in time except for a vertical shift

according to the volatility computed with the GARCH model. As for the credit spread

we assume the term structure of risk to be constant over the whole period rather than

vertically shift it when CDS rates change. The reason is that the CDS data collected from

DataGrapple is very volatile and is from low trading volumes. Also, the data is only free

to view, but has to be purchased in order to download it.

The GARCH model we use is a simple GARCH(1,1) model, which estimates the current

conditional variance by a weighted average of the conditional variance and squared return

one day earlier.

σ2
t = ω + αε2t−1 + βσ2

t−1, ε|It−1 N(0, σ2
t ) (2.11)

The GARCH parameters ω, α and β are found by maximizing the log likelihood function

in Equation 2.12 over the desired range of returns.

lnL(θ) =
−1

2
ΣT
t=1

(
ln(σ2

t ) + (
εt
σt

)2

)
(2.12)

Combining GARCH and Fokker-Planck we are thus able to compute volatility and credit

spread estimates over the remaining time to maturity of the convertible bond, for any

point in time during the selected trading period.
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2.3 Numerical considerations

Both the stochastic PDEs of the AFV model and the Fokker-Planck equation are parabolic

PDEs, which means that both convergence and stability are necessary properties of the

solution method. In order for explicit finite difference methods to be stable, it is necessary

that r = dt
dy2

<= 1
2
. Since Crank-Nicolson averages both implicit and explicit methods, it

is not restricted by this time to spacial resolution ratio, and it is unconditionally stable

for many common parabolic PDEs (Kreyszig, 2010). We find, however, that we need r to

be 1 or less to avoid oscillations in the solution.

When performing the calibration we experience that a regular discretization of the Fokker-

Planck, as described in Appendix C, results in a loss of probability (before probabilities

are discounted) at each timestep so that the sum under the probability distribution is

no longer 1. For high values of p such as 2 in the exponent in Equation 2.6 the loss

over a 5 year period can be as large as 30%! The result is a significant underestimation

of the discount rate a(t) which in turn yields an overestimation in the CB prices. We

find that using upwind discretization as explained in Appendix D, which is a conservative

method used for convection-diffusion problems in computational fluid dynamics, this loss

of probability is virtually eliminated.
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Chapter 3

Data

Based on the requirements of the AFV model we need the underlying companies to have

a liquid market for both options and CDS-contracts, and the CBs in themselves need to

be frequently traded. Obtaining trading data for these instruments is difficult and is best

done with paid-subscription services such as Bloomberg. Lacking access to such services,

our analysis is limited to data that is publicly available.

3.1 Data sources

Wharton Reasearch Data Services (WRDS) provides researchers with access to over 350

terabytes of data across multiple disciplines including accounting, banking, economics,

ESG, finance, healthcare, insurance, marketing, and statistics. From WRDS we gather

an overview of issued convertible bonds as well as bond trading data up until 2018-12-31,

which lays the basis for the analysis. We further retrieve trading data up until 2019-04-23

from markets.businessinsider.com for the selected bonds.

DataGrapple is a database of daily CDS data for maturities 1, 3, 5, 7, and 10 years from

2006-01-03 until the present time from the credit derivatives database of Hellebore Capital.

In the U.S. market it has data for 132 high yield companies and 127 investment grade

companies from basic materials, communications, consumer, energy, financial, industrial,

technology and utilities sectors.
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3.2 Bond selection Chapter 3 Data

We compute volatility estimates by running a GARCH model on stock returns from 2015-

01-01 to 2019-04-23 with the stock prices scraped from Yahoo Finance. The option data

is scraped from option chains on nasdaq.com, while the terms of the convertible bonds

are from the U.S. Securities and Exchange Commission(SEC).

3.2 Bond selection

In order to be able to perform the analysis we need stock closing prices, call option

data, CDS data and historical convertible bond prices. The lack of historical option data

excludes all convertible bonds that are not currently traded from the sample.

From WRDS we obtain a dataset of historical trading data on 1,018 different convertible

securities with maturities later than 2019-04-23. Further, we remove all securities that

are not characterized as ”FXPV”, meaning ”fixed coupon plain vanilla”, leaving 746

potential convertible bonds. Filtering for convertible bonds issued by companies included

in the DataGrapple CDS dataset leaves 29 possible convertible bonds for analysis. Closer

scrutiny of the bond sample reveals that 5 have been redeemed and are no longer trading,

2 were never actually issued, 3 are issued by private companies, 13 have put and/or call

features or special conversion criteria. Also, we could not find documentation for 3 of the

convertible notes, leaving 3 convertible bonds suitable for analysis. These three bonds

are the TSLA2022 2.375%, RIG2023 0.5% and STAR2022 3.125%. As there has been

a change in conversion ratio in Nov 2018 of the STAR2022 3.125%, and since we lack

convertible bond trading data after 12/12/2018, we omit it from the sample, leaving just

two convertible bonds: TSLA2022 2.375% and RIG2023 0.5%.

Table 3.1: Convertible Bond Sample

Company name Ticker Coupon Issue date Maturity Issuer vol.1 ISIN

Tesla Inc. TSLA 2.375% 03/16/’17 03/15/’22 977,500 US88160RAD35

Transocean Inc. RIG 0.5% 01/30/’18 01/30/’23 561,440 US893830BJ77

1In $1000.
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Chapter 4

Results

The first part of this chapter presents the features of each convertible bond and explains

how we obtain the price, delta and gamma results. We then calculate the price surface for

each bond at each of the 305 trading days between 2018-02-01 and 2019-04-23. We choose

this period because RIG2022 was issued 2018-01-30, hence it was not traded before this

date. The last date in the selected period, 2018-04-23, was the last trading day before

we scraped the data. Note that the price we find at every trading day is the dirty price,

whereas the prices we compare to are clean prices. The difference is that dirty prices

include accrued coupons whereas clean prices have subtracted accrued coupons to remove

the sawtooth effect on prices. Thus, some deviation will be caused by accrued coupons,

but will at most be 0.25% for RIG and 1.1875% for TSLA as the coupons are paid

semiannually. To extract the delta and gamma from the price surfaces at a specific time

we use the central differences method, as shown in Equation 4.1 and 4.2:

∆i =
Pi+1 − Pi−1

2 · cr ·∆S
(4.1)

γi =
Pi+1 − 2Pi + Pi−1

cr · (∆S)2
(4.2)

where i refers to stock price i, Pi is the price of the CB at stock price i, cr the conversion

ratio of the CB, and ∆S the step between stock prices on the time-stock price grid.

In section 4.1 and 4.2 we present the bonds selected in this paper and the resulting prices,

deltas and gammas over the backtesting period. In Section 4.3 we present the analysis of

the delta hedging performance of the model.
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4.1 Bond Case 1: TSLA

Tesla, Inc.[ticker: TSLA] is an American automotive and energy company based in Palo

Alto, California. The company specializes in electric car manufacturing and, through its

SolarCity subsidiary, solar panel manufacturing.

The first bond we analyze is the $977.50m convertible bond by Tesla Inc. maturing in

2022 with the features described in Table 4.1.

Table 4.1: CB features TSLA2022

CUSIP 88160RAD3

ISIN US88160RAD35

Issue date 16 March 2017

Maturity 15 March 2022

Coupon 2.375% p.a. semiannual payment

Conversion ratio 3.0534 per $1,000

Face Value $977,500,000

Call feature No

Put feature No

We run the aforementioned GARCH-model on adjusted close prices scraped from Yahoo

Finance to obtain time-dependent volatility estimates, as seen in Figure 4.1.

Figure 4.1: TSLA Volatility
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We also collect European call option prices on TSLA with maturities from 3 days forward

to 633 days forward by scraping from NASDAQ, these are shown in Table 4.2

Table 4.2: European call option prices for TSLA as of market closing 2019-04-23, s=263.9

Date\Strike 260 262.5 265 267.5 270 272.5 275 277.5 280

2019-04-26 13.19 11.75 10.30 9.05 8.00 6.90 5.90 5.07 4.23

2019-05-03 15.50 13.35 12.80 11.20 10.10 8.80 8.30 7.45 6.60

2019-05-10 16.82 16.02 14.70 13.09 12.29 11.18 10.15 8.82 8.00

2019-05-17 18.91 16.91 16.25 15.00 13.77 13.15 11.55 10.32 9.77

2019-05-24 20.40 18.50 17.50 15.55 15.10 14.80 12.81 12.60 11.30

2019-05-31 21.45 20.21 18.36 17.80 16.27 15.46 14.05 13.25 11.50

2019-06-21 24.70 22.20 19.90 17.73 15.40

2019-07-19 28.98 26.38 24.43 21.65 19.90

2019-08-16 34.50 31.85 29.25 27.20 24.22

2019-09-20 38.00 35.20 32.73 30.20 27.72

2019-11-15 43.70 41.94 39.90 36.85 34.86

2019-12-20 46.70 44.82 43.01

2020-01-17 48.99 46.48 43.94 42.00 40.30

2020-06-19 60.50 56.25 52.30

2021-01-15 72.30 70.00 66.65 65.25 63.65

The CDS data is gathered from DataGrapple and shown in Table 4.3.

We estimate the p from Equation 2.6 to be approx. 6. This is very high and would

implicate that a 50% decline in share price would yield a 64 times increase in credit

spread. We find this to unrealistic and note that a p of 2 is the highest value found by

Muromachi (1999). This would implicate that a 50% drop in the share price would yield a

4 times increase in credit spread, which we find to be a more reasonable number. To find

the optimal value of p we run the complete pricing model over a range of 305 trading days

and select the p that yields the lowest average error to the observed market prices. For

TSLA we find p = 2.5 to yield reasonable results. A higher value of p would be preferable

but oscillations start to occur already at 2.5 for some dates, on which we use extrapolation
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Table 4.3: CDS spreads for TSLA as of market closing 2019-04-23

Date Spread (bps)

2020-04-23 439

2021-04-23

2022-04-23 529

2023-04-23

2024-04-23 531

2025-04-23

2026-04-23 511

2027-04-23

2028-04-23

2029-04-23 434

from lower values of p. The stability can be increased by reducing the resolution in stock

prices, but this introduces inaccuracy due to larger price steps.

By solving the Fokker-Planck equation described in Section 2.2, and adjusting the input

parameters a(t) and b(t) such that the model’s zero-coupon bond values and call option

values match market CDS and option data, we get a(t) and b(t) as shown in Figure 4.2

and Figure 4.3, respectively. The calibrated b(t) fits closely to the implied volatility, and

one can clearly observe that the shape is well captured. The distance between the two

curves is dependent on p from Equation 2.6. The higher the p, the higher will the curve for

b(t) lie. To understand how a(t) and b(t) interact, we refer to Figure E.3 in the Appendix,

which is from Andersen and Buffum (2002). Note that the figure is made to fit constant

term structures whereas our calibration is fit to real, non-linear term structures.

20



Chapter 4 Results 4.1 Bond Case 1: TSLA

Figure 4.2: TSLA calibrated a(t)

Figure 4.3: TSLA Volatility termstructure, b(t)

We infer the recovery rate in case of default, R, from CDS spreads and the probability

of default (PD) from DataGrapple through Equation 4.3 which yields R to be 0.451 with

the spread being 439 bps and the PD being 8%. As the CDS spread is likely to include a

small profit premium we use R = 0.5.

SpreadCDS = PD ·[Loss|Default] =⇒ R = 1−[Loss|Default] = 1−SpreadCDS
PD

(4.3)

Finally, we run the AFV model to compute a price surface of the convertible bond price

at all stock prices and times from 2019-04-23 until maturity. We obtain a price of 108.01

from the price surface, whereas the market price on 2019-04-23 was 107.11. The model

thus overestimates the market price by 0.8% at this stock price and point in time. The

delta is 0.6464, compared to 0.5907 in the Tsiveriotis-Fernandes model (”TF model”)

(Tsiveriotis and Fernandes, 1998) and 0.5730 in the Goldman Sachs model (”GS model”)
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(GoldmanSachs, 1994). The delta from AFV is slightly higher due to the modeling of

default dynamics with R = 0.5 and p = 2.5, but all models indicate that a delta around

0.6 is reasonable.

We further run the model over the 305 trading days between 2018-02-01 and 2019-04-23,

creating 305 price surfaces and get prices, deltas and gammas on each trading day. The

price comparison is presented in Figure 4.4 and shows that the market prices lag the

model prices by 1 day. Correcting for this the prices have a correlation of 0.920 and an

average error of 3.025%, i.e. an overpricing compared to the market.

Figure 4.4: TSLA Price Comparison

We observe that there is a structural change in the error around 2018-10-25. Between this

date and 2019-04-23, the most recent date in our sample, the average error is only 0.93%,

indicating little to no mispricing. This increases to 4.35% over the rest of the sample.

The reason is a change in the complete yield curve which our model does not capture. We

only calibrate 633 days forward, which is when we have option data, and hence do not
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capture changes in the 3, 5, 7 and 10 year CDS-spreads. Also, we do not take into account

historical changes in the credit spreads, but only calibrate the risk structure with data

from 2019-04-23, as explained in Section 2.2. The rates of all maturities, and especially

longer rates, decrease significantly between 2018-10-23 and 2018-11-08, which means that

the discount rates used in the market were higher prior to 2018-10-23 than what we have

calibrated in this time period. Hence, we get higher prices than the market in this time

period.

Figure 4.5: The delta for TSLA for p = 1.5, 2 and 2.5

Figure 4.6: The gamma for TSLA for p = 1.5, 2 and 2.5

As seen in Figure 4.4 the value of p has little effect on prices. The differences are much

more pronounced in the delta and gamma, as shown in Figure 4.5 and Figure 4.6 respec-

tively. From a convertible arbitrage standpoint it is interesting to assess the robustness of

a convertible arbitrage strategy to the value of different model parameters to gauge how

the strategy is affected by estimation error.
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4.2 Bond Case 2: RIG

Transocean Ltd.[ticker: RIG] is the world’s 2nd largest offshore drilling contractor and is

based in Vernier, Switzerland. The company has offices in 20 countries, including Switzer-

land, Canada, United States, Norway, Scotland, India, Brazil, Singapore, Indonesia and

Malaysia.

The second bond is the $561.44m convertible bond by Transocean Inc. maturing in 2023

with the features described in Table 4.4:

Table 4.4: CB features RIG2023

CUSIP 893830BJ7

ISIN US893830BJ77

Issue date 30 January 2018

Maturity 30 January 2023

Coupon 0.5% p.a. semiannual payment

Conversion ratio 97.29756 per $1,000

Face Value $561,440,000

Call feature No

Put feature No

We run the GARCH-model and compute the time-dependent volatility estimates shown

in Figure 4.7.

Figure 4.7: RIG Volatility
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Table 4.5 displays the retrieved European call option prices on RIG with maturities from

3 days forward to 633 days forward from NASDAQ.

Table 4.5: European call option prices for RIG as of market closing 2019-04-23, s=9.65

Date\Strike 10 10.5 9 9.5

2019-04-26 0.06 0.01 0.67 0.25

2019-05-03 0.20 0.08 0.77 0.40

2019-05-10 0.26 0.13 0.88 0.54

2019-05-17 0.34 0.21 0.89 0.56

2019-05-24 0.41 0.21 0.91 0.65

2019-05-31 0.45 0.27 0.88 0.66

2019-06-21 0.55 1.06

2019-08-16 0.87 1.36

2019-11-15 1.16 1.77

2020-01-17 1.44 1.82

2021-01-15 2.47

The CDS data is gathered from DataGrapple and shown in Table 4.6.

Table 4.6: CDS spreads for RIG as of market closing 2019-04-23

Date Spread (bps)

2020-04-23 78

2021-04-23

2022-04-23 258

2023-04-23

2024-04-23 425

2025-04-23

2026-04-23 588

2027-04-23

2028-04-23

2029-04-23 613
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We estimate the p from Equation 2.6 to be approx. 12, or almost double what we found

p to be for TSLA. We find this to be unrealistically high and is caused by too high

estimated volatility for the CDS price, which in turn is a result of low trading volume

in the instrument. Nonetheless, the theoretical calculated p indicates that the p should

be higher than 2. To find the optimal value of p we run the complete pricing model

over the range of the 305 trading days and select the value that yields the lowest average

error to the observed market prices. For RIG we find p = 3.5 to yield reasonable results.

This is the highest p we could run without having any computational disturbances and

instability. As for TSLA the stability can be increased by reducing the resolution in stock

prices, but this introduces inaccuracy due to larger price steps.

By calibration with the Fokker-Planck equation, we get the following a(t) and b(t), shown

in Figure 4.8 and Figure 4.9:

Figure 4.8: RIG calibrated a(t)

Figure 4.9: RIG Volatility term structure, b(t)
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In the same manner as for TSLA, we obtain an estimate of recovery rate in case of

default, R, using Equation 4.3. With the SpreadCDS being 78 bps and the PD being 2%

we estimate R to be 0.6.

Finally, we run the AFV model to compute a price surface of the convertible bond price

at all stock prices and times from 2019-04-23 until maturity. From the price surface we

obtain a theoretical price of 119.51, whereas the market price was 110.60. At this point

in time the model overestimates the market price by 8.1%. The delta theoretical delta

is found to be 0.7496, whereas the delta in the TF model and GS model is 0.7203 and

0.6889 respectively, which indicates that the delta should lie around 0.7-0.75.

We further run the model backwards over the 305 trading days from 2018-02-01 to 2019-

04-23, creating 305 price surfaces and get the corresponding price, delta and gamma to

the stock price at each trading day. The prices obtained, as well as the deviations from

the market price, are shown in Figure 4.10. The deltas and the gammas are shown in

Figure 4.11 and 4.12. As for TSLA the market price lags the model price by 1 day.
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Figure 4.10: RIG Price Comparison, with the period 2018-04-11 to 2018-11-08 within the

dashed markers.

Correcting for the one day lag, the prices have a correlation of 0.662 and an average error

of 5.6%. However, if we look at the period from 2018-04-11 to 2018-11-09 the correlation

increases to 0.931 and the average error falls to 3.4%. In this period the CB trades in-the-

money, where the implied credit spread and volatility are low and the stock price is high.

When the stock price drops, volatility rises and the credit spread increases, the error also

increases. This implies that the model performs better when the CB is in-the-money than

at- or out-of-the-money.
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Figure 4.11: The delta for RIG with p = 1.5, 2.5 and 3.5

Figure 4.12: The gamma for RIG with p = 1.5, 2.5 and 3.5

RIG displays the same pattern as TSLA, Figure 4.10 shows that p has little effect on

prices. The differences are more pronounced in the delta and gamma, as shown in Figure

4.11 and Figure 4.12 respectively. We observe that the biggest differences in delta and

gamma is where the price is lowest, which is where delta is lowest and the gamma is

highest. This is where the CB trades at- or out-of-the-money. The observed effect is

shown in Figure E.1a and E.2a, where p has the most influence where the CB trades

out-of-the-money .
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4.3 Delta hedging with the AFV model

As explained in Section 1 a convertible arbitrage strategy consists of a long position in

the convertible bond and a short position in the underlying stock. To determine the size

of the short position one must assess the delta of the convertible bond. As shown in the

previous section the delta is more sensitive to p than the price is, and is thus a risk factor

to convertible bond arbitrageurs. We also find that the delta is most sensitive to the

assumed recovery rate, R, as illustrated in Figure E.2b, and to the volatility, as can be

seen in Figure E.2c.

In Section 4.1 and Section 4.2 we mentioned that there is a 1 day time lag between the

market prices and those obtained from the model. The reason is that the stocks are listed

in the US whereas the bonds trade in Europe, hence the market prices for the convertible

will lag behind the stock prices. This presents an issue for daily hedging, and will expose

the arbitrageur to intraday risk. However, assessment of this risk is beyond the scope

of this thesis, and in order to evaluate the effectiveness of the delta hedge we simply lag

the stock returns to match the returns of the convertible bonds as if they were traded

simultaneously.

We define hedging error, εt, in the same manner as Ammann and Seiz (2006), but with

lagged stock returns, as shown in Equation 4.4:

εt =
(Vt − Vt−1)− δt−1(St−1 − St−2)

Vt
(4.4)

In Figure 4.13 we demonstrate that although the AFV model fits closely on price, the

delta does not work for delta hedging the TSLA CB. A linear regression of CB returns on

lagged stock returns yields a slope of 0.4248, which should indicate the level of the average

delta. The AFV model, however, yields an average delta of 0.6790, which is substantially

higher and implies that the market prices of the CB are less sensitive to changes in

the underlying stock price than the AFV model suggests, suggestions which were in line

with both the TF and GS models. We find that a tuning factor, which we define as

fε = ∆market

∆model
= 0.51507, minimizes the squared correlation of the mid 80% quantile of
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stock returns, which consists of daily stock returns in the range [−3.577%, 3.431%]. The

quantile correlations with the underlying stock returns of the CB, original delta hedged

portfolio and modified delta hedged portfolio, respectively, are shown in Table 4.7. From

the negative correlations for the delta hedged portfolio in the table we clearly see that the

short position, which is negatively correlated with the stock, and hence the delta, is too

large. We also see that by modifying the delta by fε the correlation is virtually zero on

80% of the trading days, indicating a good delta hedge. The positive correlations in the

tails are to be expected in a delta hedged portfolio and should be due to the convexity of

the CB.

Table 4.7: TSLA quantile correlations

Quantile Bottom 10% Mid 80% Top 10% Total correlation

Unhedged 0.5497 0.4721 0.6144 0.6961

Model delta -0.0884 -0.4369 -0.1703 -0.5201

Modified delta 0.2525 1.07 ·10−16 0.2701 0.1392

As seen in Figure 4.13a the hedging error is reduced on most days, and especially on

December 25th 2018. 4.13b and 4.13c illustrate that the hedging error is much more

centered around zero, and there are more trading days with lower errors. 4.13d and 4.13e

show that a second order polynomial provides a much better fit to explain the residual

risk after delta hedging when the modified deltas are employed. This demonstrates that

a substantial part of the tail correlation from Table 4.7 is indeed due to the convexity, or

gamma, of the CB.
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(a)

(b) (c)

(d) (e)

Figure 4.13: Hedging performance for TSLA. (a) Hedging error over time. (b) Hedge error

histogram before correction, N(µ = 2.731e − 05,σ = 0.0163) superimposed. (c) Hedge error

histogram after correction, N(µ = −3.984e − 05,σ = 0.0149) superimposed. (d) Hedge error

in absolute value on stock returns. (e) Hedge error in absolute value on stock returns after

correction factor
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For RIG the mid 80% quantile is the range [−3.66%, 3.55%]. Minimizing the squared

correlation between the hedged portfolio and stock returns in the mid 80% quantile, we

obtain a tuning factor, fε, of 0.746841. In Table 4.8 we see the effect the tuning factor has

on the hedged portfolio, particularly that the correlation in the mid 80% quantile goes

from -0.2444 with the original delta to 7.4 ·10−8 after applying the tuning factor. The

total correlation is -0.0960 using the tuning factor, compared to -0.3812 using the original

model delta.

Table 4.8: RIG quantile correlations

Quantile Bottom 10% Mid 80% Top 10% Total correlation

Unhedged 0.2885 0.6158 -0.0723 0.6621

Model delta -0.1860 -0.2444 -0.3775 -0.3812

Modified delta -0.0686 7.4 ·10−8 -0.3109 -0.0960

Figure 4.14 displays how the tuning factor affects the hedging error for RIG. Figure 4.14a

shows how the tuning factor dampens the error where the model is least accurate, but

increases the error where the model delta is most accurate. 4.14d and 4.14e exhibit that

when applying the modifying factor, fε, to the delta, the second degree polynomial has

more explaining power than just using the model delta, increasing the R2 from 0.2479

to 0.3329. Looking at the histograms in 4.14b and 4.14c the effect of a modifying factor

seems to not have as good effect for RIG as it had for TSLA. This is due to RIG having

different structural periods, the period from 2018-04-23 to 2018-11-08, where the CB

traded in-the-money and the rest of the period where the CB traded either at- or out-

of-the-money. As seen in 4.14a the model delta performs well in the period where the

CB trades in-the-money and poorly where the CB trades out-of-the-money. This makes

it hard to find a modifying factor that fits the whole backtesting period. However, if we

find a modifying factor for each of the periods the picture changes. When the CB trades

in-the-money, the model delta proves to match the market delta and we do not need to

use a modifying factor. In this period the hedged portfolio has a correlation with stock

returns of -0.0842 and an average hedge error of -0.0001. Looking at where the CB trades

at- or out-of-the-money the modifying factor is found to be 0.49, close to the modifying

factor of 0.51 for TSLA.
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(a)

(b) (c)

(d) (e)

Figure 4.14: Hedging performance for RIG. (a) Hedging error over time. (b) Hedge error

histogram, gaussian distribution n(µ = −2.027e−4, σ = 0.0161) superimposed. (c) Hedge error

histogram, gaussian distribution n(µ = −2.293e−4, σ = 0.0152) superimposed. (d) Hedge error

in absolute value on stock returns. (e) Hedge error in absolute value on stock returns.
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Discussion

The evidence from Section 4.3 clearly shows that the TSLA and RIG CBs are less sensitive

to changes in the underlying stock price than the models suggest, i.e. the market delta

is lower than the model delta. We suspect that the most likely factors affecting this

deviation are:

• Illiquidity and transaction cost

• Moneyness

• Multiple day averages as input to valuation models

• Estimation error in model parameters

As CBs are less liquid and more costly to trade than the underlying stock, the price of the

CB will be less sensitive to small stock price changes than if the CB had been perfectly

liquid with zero transaction cost.

The second factor we suspect will affect the deviation between market and model deltas,

fε, is moneyness. We define that the CB trades at-the-money if conversion would roughly

give the same payoff as the face value of the bond, thus setting the strike price, K, where

S · cr = F =⇒ K = F
cr

. A convertible bond that is at- or in-the-money will be more

weighted towards its option component, and as shown in Figure E.2, the delta is more

similar for different configurations of input parameters when the CB is more in-the-money.

Also, as the delta here is high, the change in CB price as response to a price change in the

underlying will be larger compared with transaction cost than for lower deltas associated

with out-of-the-money bonds, which in turn should lessen the impact of transaction costs

35



Chapter 5 Discussion

on the sensitivity. For RIG this hypothesis is indeed supported by the data, as seen in

Figure 5.1. In the period from 2018-04-11 to 2018-11-08 the RIG stock traded at prices

such that the CB was in-the-money. In this period we observe from Figure 5.1b that the

hedge error was significantly lower and more consistent than the rest of the period. The

effect is really observable from 2018-05-14 to 2018-11-08, suggesting that it might take

some time to adjust to the regime.

(a)

(b)

Figure 5.1: RIG: (a) Moneyness. (b) Hedge error. With the period 2018-04-11 to 2018-

11-08 between the dashed lines.

Figure 5.2a shows that TSLA is mostly out-of-the-money in the period from 2018-02-01

to 2019-04-23, and only for short periods of time is the CB at- or slightly in-the-money.

Hence the relationship found for RIG is not as evident for TSLA. As seen for RIG, there

was a lag from when the stock started to trade above the strike price until the hedge error

dampened. Thus, the fact that there are no prolonged in-the-money periods for TSLA

may explain why we do not observe any correlation between moneyness and hedge error

for TSLA in Figure 5.2.
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(a)

(b)

Figure 5.2: TSLA: (a) Moneyness. (b) Hedge error

When pricing CBs on a volatile stock as TSLA, it is likely that investors use a multiple

day average stock price as input to their models. This would mean that while the model

delta may be suitable to a multiple day average, it will be too high for daily stock prices.

As mentioned, when running a regression of CB returns on stock returns we get a slope of

0.4248. Doing the same regression of the returns of 3-day average stock prices will however

yield a slope of 0.6067, which is much closer to the average model delta of 0.6790, although

at a reduction in R-squared from 0.3808 to 0.2688. As for RIG we do not find higher slopes

on multiple day averages, so the hypothesis that market participants trade on multiple

day averages, which in turn causes lower market deltas, does not hold in this case.

The last factor is estimation error of model parameters. Figure E.1 and E.2 in the Ap-

pendix show how the different model parameters affect both level and shape of the price

curve. We see that the delta is most sensitive to p of Equation 2.6, recovery rate and

equity volatility, all of which are unobservable and subject to great uncertainty.

37



Chapter 5 Discussion

As mentioned, p is the ratio between the credit spread volatility and equity volatility, both

of which are unobservable and change frequently. The estimates of p that we obtained

were unreasonably high, so we selected p to minimize pricing error. Also, this p was kept

constant, which may not be a reasonable assumption.

The recovery rates were estimated from CDS spreads and the probability of default in the

DataGrapple database, but we suspect that the probability of default is computed from

the CDS spreads using an assumed recovery rate rather than from a traded instrument.

Hence, the recovery rate we use is the average recovery rate of all outstanding bonds from

the issuing company, assumed by Hellebore Capital. This may deviate from recovery

rates of the CBs assumed by other market participants. Also, the assumption of constant

recovery rates over the time period we analyze may be unreasonable. As noted earlier,

the effect of R on delta diminishes as the CB increases in moneyness.

The equity volatility is estimated using a GARCH(1,1) model over a substantially longer

time period than the one selected for analysis in this thesis and could deviate from the

volatility assumed by investors at each point in time. Investors will use a combination of

historical returns and future expectations in their volatility assumptions and unless their

future expectations actually materialized their estimates will deviate from the GARCH

estimate. We have also not accounted for any potential structural shifts in volatility which

would require different GARCH models for different time periods.

Lastly, due to the lack of historical option prices, we assume constant term structures for

the volatility and credit spread over the whole period. As the outlook for the future tends

to vary, this assumption affects our results and is a factor of uncertainty. We try to adjust

for this by parallel shifting the volatility term structure, but the shape of the structure is

still the same. Assuming that the market expects the long-term volatility to remain the

same, the implied volatility of the options close to maturity will rise more than the ones

with maturity further away when the volatility increases, resulting in an altered shape

of the curve. When simply parallel shifting the term structure we might introduce an

overestimation of the long-term volatility used in the model in times with high volatility,

leading to an overestimation of the price and delta. This effect can be observed for RIG

around 2019-01, by looking at the volatility in Figure 4.7 and the price error in Figure

4.10.
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Chapter 6

Conclusion

This thesis adds to the existing literature by empirically testing the applicability of the

AFV model in convertible arbitrage strategies, with particular focus on delta hedging. We

find that while the model is able to compute prices in accordance with market prices, the

delta is generally too high. More specifically, the model delta is about twice the market

delta for both TSLA and RIG, when the CB is at- or out-the-money. We also show

that by applying a suitable tuning factor fε we are able to obtain good delta estimates

that virtually eliminate equity risk from small stock returns. We further demonstrate

that between a quarter (TSLA) and a third (RIG) of the residual hedging risk can be

explained by the convexity of the CB, gamma, a known issue from the theory of delta

hedging.

We propose that illiquidity and transaction costs, moneyness, the use of multiple day

averages in valuation models and estimation error in model parameters are the main

sources of the difference between the model delta and the market delta. However, our

bond sample is not sufficiently large to draw any general conclusions in this regard.

Further research should use a larger bond sample for analysis, which would average out

company specific effects to better analyze the delta hedging capabilities of the AFV model.

The model could quite easily be extended to incorporate put and call provisions, which

would widen the scope of potential convertible bonds for analysis. We were also limited

to publicly available data sources which affects both the sample size and the accuracy of
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Chapter 6 Conclusion

the price and delta estimates. Access to more CDS data would significantly increase the

size of the sample. Also, the lack of historical call option prices made us assume constant

shape of the term structure of volatility, which may be an unreasonable assumption.

Accompanied by a larger bond sample future research should investigate how different

factors affect the discrepancy between the deltas from the model and those of the market.

With extensive historical trading data one can easily estimate the appropriate delta with

regressions or minimization of squared correlations, but for newly listed bonds it will

be difficult to determine the appropriate reducing factor without any general predictive

models.
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Appendix A

Derivation of SDE

dx = a(x, t)dt+ b(x, t)dz + g(x, t)dq, dz ∼ N(0, 1), dq =


1, p= λdt

0 p= (1− λdt)
(A.1)

For a stochastic jump-diffusion process as described in Equation A.1, a special version of

Ito’s Lemma is used for the valuation of a contingent claim, H(x, t). The expected value

of this Ito expansion is as given in Equation A.2 (Dixit & Pindyck, 1994).

E[dH] =

[
∂H

∂t
+ a(x, t)

∂H

∂x
+

1

2
b(x, t)2∂

2H

∂x2

]
dt+ λdt [H(x+ g(x, t), t)−H(x, t)] (A.2)

In this case x = S, and a(S, t) = (r + λη − δ)S, b(S, t) = σS and g(S, t) = −ηS.

Let the bond component be denoted B(S, t). In the case of default we have that

B(S(1− η), t) = RX and using Equation A.2 we obtain:

E[dB] =

[
∂B

∂t
+ (r + λη − δ)S∂B

∂S
+

1

2
σ2S2∂

2B

∂S2

]
dt+ λdt [RX −B(S, t)] (A.3)

Given that default risk is diversifiable we have that rBdt = E[dB], and Equation A.4

becomes:

rBdt =

[
∂B

∂t
+ (r + λη − δ)S∂B

∂S
+

1

2
σ2S2∂

2B

∂S2

]
dt+ λdtRX − λdtB (A.4)
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Dividing by dt, letting X = F and rewriting using subscript to denote partial derivatives

we obtain the following:

Bt = −(
σ2

2
S2BSS + (r + λη − δ)SBS − (r + λ)B)− λRF (A.5)

Defining τ = T − t, the equation changes to:

Bτ = (
σ2

2
S2BSS + (r + λη − δ)SBS − (r + λ)B) + λRF (A.6)

The derivation for the option component C is the same except that

λdt [H(x+ g(x, t), t)−H(x, t)], the expected change in the case of a jump from Equation

A.2, becomes λdt ·max[κ · S(1− η)−RF, 0]. Hence we get the following:

Ct = −(
σ2

2
S2CSS + (r + λη − δ)SCS − (r + λ)C)− λmax[κS(1− η)−RF, 0] (A.7)

Defining τ = T − t, the equation changes to:

Cτ = (
σ2

2
S2CSS + (r + λη − δ)SCS − (r + λ)C) + λmax[κS(1− η)−RF, 0] (A.8)

This system is solved looping backwards from maturity with the following boundary

conditions:

At maturity:

BT = (F + F · cpn
2

)

(
1− λT

1 + λT

)
+RF

λT
1 + λT

(A.9)

CT =

κS −BT BT < κS

0 otherwise

(A.10)

At stock price equal to zero, i.e. default, we use Equation A.8 and Equation A.6 with

S = 0 inserted as BC.
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Appendix B

Derivation of the Crank-Nicolson

scheme

As mentioned, the Crank-Nicolson scheme is the average of the forward and backward

Euler method. In the derivation of the Crank-Nicolson scheme we use θ as the degree

of forward Euler. By setting θ = 1
2

one obtains the Crank- Nicolson method we use to

solve the equations derived in App. A. Note that i denotes stockprice i, while k denotes

timestep τ = T − t on the time-stockprice grid. First we introduce:

Time derivative:
∂C

∂τ
=
Ck+1
i − Cki

∆τ
(B.1)

Delta:
∂C

∂S
= θ

Ck+1
i+1 − C

k+1
i−1

2∆S
+ (1− θ)

Cki+1 − Cki−1

2∆S
(B.2)

Gamma:
∂2C

∂S2
= θ

Ck+1
i+1 − 2Ck+1

i + Ck+1
i−1

(∆S)2
+ (1− θ)

Cki+1 − 2Cki + Cki−1

(∆S)2
(B.3)

Discretizing Equation A.6 on the time-stock price grid we get:

Bk+1
i −Bk

i

∆τ
=
σ2

2
S2
i

[
θ
Bk+1
i+1 − 2Bk+1

i +Bk+1
i−1

(∆S)2
+ (1− θ)

Bk
i+1 − 2Bk

i +Bk
i−1

(∆S)2

]

+(r + λη −∆)Si

[
θ
Bk+1
i+1 −B

k+1
i−1

2∆S
+ (1− θ)

Bk
i+1 −Bk

i−1

2∆S

]
−θ[(r + λ)Bk+1

i − λRF ]− (1− θ)[(r + λ)Bk
i − λRF ]

(B.4)
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We rearrange:

Bk+1
i −Bk

i

∆τ
=

θ

[
σ2

2
S2
i

Bk+1
i+1 − 2Bk+1

i +Bk+1
i−1

(∆S)2
+ (r + λη −∆)Si

Bk+1
i+1 −B

k+1
i−1

2∆S
− (r + λ)Bk+1

i + λRF

]

+ (1− θ)

[
σ2

2
S2
i

Bk
i+1 − 2Bk

i +Bk
i−1

(∆S)2
+ (r + λη −∆)Si

Bk
i+1 −Bk

i−1

2∆S
− (r + λ)Bk

i + λRF

]
(B.5)

As for C we discretize Equation A.8, where we assume that we recover a fraction of the

face value of the bond, i.e X = F and get:

Ck+1
i − Cki

∆τ
= θ

[
σ2

2
S2C

k+1
i+1 − 2Ck+1

i + Ck+1
i−1

(∆S)2
+ (r + λη −∆)Si

Ck+1
i+1 − C

k+1
i−1

2∆S

−(r + λ)Ck+1
i + λmax(κSi(1− η)−RF, 0)

]
+(1− θ)

[
σ2

2
S2
i

Cki+1 − 2Cki + Cki−1

(∆S)2
+ (r + λη −∆)Si

Cki+1 − Cki−1

2∆S

−(r + λ)Cki + λmax(κSi(1− η)−RF, 0)
]

(B.6)

By varying θ we get different methods. Some common methods are:

θ = 1 Forward Euler Method

θ = 0 Backward Euler Method

θ = 1
2

Crank-Nicolson Method

Setting θ = 1
2

we obtain the Crank-Nicolson method:

Bk+1
i −Bk

i

∆τ
=[

σ2

4
S2
i

Bk+1
i+1 − 2Bk+1

i +Bk+1
i−1

(∆S)2
+ (r + λη −∆)Si

Bk+1
i+1 −B

k+1
i−1

4∆S
− 1

2
(r + λ)Bk+1

i

]

+

[
σ2

4
S2
i

Bk
i+1 − 2Bk

i +Bk
i−1

(∆S)2
+ (r + λη −∆)Si

Bk
i+1 −Bk

i−1

4∆S
− 1

2
(r + λ)Bk

i

]
+ λRF

(B.7)
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Ck+1
i − Cki

∆τ
=[

σ2

4
S2
i

Ck+1
i+1 − 2Ck+1

i + Ck+1
i−1

(∆S)2
+ (r + λη −∆)Si

Ck+1
i+1 − C

k+1
i−1

4∆S
− 1

2
(r + λ)Ck+1

i

]

+

[
σ2

4
S2
i

Cki+1 − 2Cki + Cki−1

(∆S)2
+ (r + λη −∆)Si

Cki+1 − Cki−1

4∆S
− 1

2
(r + λ)Cki

]
+ λmax[κSi(1− η)−RF, 0]

(B.8)

Rearranging, we obtain some common coefficients:

Bk+1
i

[
1 +

σ2S2
i ∆τ

2(∆S)2
+

∆τ

2
(r + λ)

]
= Bk+1

i+1

[
σ2S2

i ∆τ

4(∆S)2
+

(r + λη −∆)Si∆τ

4∆S

]
+Bk

i+1

[
σ2S2

i ∆τ

4(∆S)2
+

(r + λη −∆)Si∆τ

4∆S

]
+Bk+1

i−1

[
σ2S2

i ∆τ

4(∆S)2
− (r + λη −∆)Si∆τ

4∆S

]
+Bk

i−1

[
σ2S2

i ∆τ

4(∆S)2
− (r + λη −∆)Si∆τ

4∆S

]
+Bk

i

[
1− σ2S2

i ∆τ

2(∆S)2
− ∆τ

2
(r + λ)

]
+ ∆τλRF

(B.9)

Ck+1
i

[
1

∆τ
+

σ2S2
i

2(∆S)2
+

1

2
(r + λ)

]
= Ck+1

i+1

[
σ2S2

i

4(∆S)2
+

(r + λη −∆)Si
4

]
+Ck+1

i−1

[
σ2S2

i

4(∆S)2
− (r + λη −∆)Si

4

]
+ Cki+1

[
σ2S2

i

4(∆S)2
+

(r + λη −∆)Si
4

]
+Cki

[
1

∆τ
− σ2S2

i

2(∆S)2
− 1

2
(r + λ)

]
+ Cki−1

[
σ2S2

4(∆S)2
− (r + λη −∆)Si

4

]
+λmax[κSi(1− η)−RF, 0]

(B.10)

Solving for Bk+1
i and Ck+1

i we obtain the following expressions:

Bk+1
i =

αi(B
k+1
i+1 +Bk

i+1) + βi(B
k+1
i−1 +Bk

i−1) +Bk
i (2− (αi + βi)− (r + λ)∆τ) + 2∆τλRF

2 + αi + βi + (r + λ)∆τ
(B.11)

Ck+1
i =

αi(C
k+1
i+1 + Ck

i+1) + βi(C
k+1
i−1 + Ck

i−1) + Ck
i (2− (αi + βi)− (r + λ)∆τ) + 2λ∆τ max[κSi(1− η)−RF, 0]

2 + αi + βi + (r + λ)∆τ
(B.12)

Where: αi =
σ2S2

i ∆t

2∆S2 + Si(r+λη−∆)∆t
2∆S

and βi =
σ2S2

i ∆t

2∆S2 − Si(r+λη−∆)∆t
2∆S

47



Chapter B Derivation of the Crank-Nicolson scheme

48



Appendix C

Fokker-Planck equation

The Fokker-Planck equation for a convection-diffusion process, such as Merton’s jump-

diffusion process, describes the time-evolution of the probability density of the stock

price. As in Andersen and Buffum (2002), we use the equation for the log-stock price

space instead of the regular stock price space, and discount the probabilities with the

rates on the RHS of the equation. The equation becomes the following:

− ∂p

∂s
− ∂

∂y
(r − q + λ− 1

2
σ2)p+

1

2

∂2

∂y2
σ2p = (r + λ)p (C.1)

This can be rewritten as:

− ∂p

∂s
−H(s, y)

∂p

∂y
+

1

2
σ(s, ey)2 ∂

2p

∂y2
= G(s, y)p (C.2)

where:

H(s, y) = r(s)− q(s) + λ(s, ey)− 1

2
σ(s, ey)2 − 2eyσ(s, ey)

∂σ

∂S
(C.3)

G(s, y) = r(s)+λ(s, ey)+eyλ′(s, ey)−ey(σ(s, ey)
[
2σ′(s, ey) + eyσ′′(s, ey)

]
+eyσ′(s, ey)2) (C.4)

where λ′, σ′ and σ′′ is the partial derivatives with respect to S. By setting σ(t, S) = b(t)

and λ(t, S) = a(t)(S(0)
S

)p, the terms ∂σ
∂S

and ∂2σ
∂S2 vanish:
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H(s, y) = r − q + a(s)(
ez

ey
)p − 1

2
b(s)2 (C.5)

G(s, y) = r + a(s)(
ez

ey
)p − pa(s)epz(

1

ey(p+1)
) (C.6)

We then discretize the equations and use subscripts, where i denotes the timestep, y is the

natural logarithm of the stock price and z is the natural logarithm of the current stock

price:

Giy = r + ai(
ez

ey
)p − paiepz 1

ey(p+1)
(C.7)

H i
y = r − q + ai(

ez

ey
)p − 1

2
(bi)2 (C.8)

By setting

D = −Hδy +
1

2
σ2δyy −G (C.9)

where δy and δyy are the first and second difference operators with regard to y, δyp
i
y =

piy+1−piy−1

2∆y
and δyyp

i
y =

piy+1−2piy+piy−1

(∆y)2
.

we can further simplify the Equation C.2 to:

(∆T−1
i − θD)p(Ti+1, y) = (∆T−1

i + (1− θ)D)p(Ti, y) (C.10)

pi+1
y − piy

∆T
= θDpi+1

y + (1− θ)Dpiy (C.11)

pi+1
y − piy

∆T
= θ

[
−H i+1

y δy +
1

2
σ2δyy −Gi+1

y

]
pi+1
y + (1− θ)

[
−H i

yδy +
1

2
σ2δyy −Giy

]
piy (C.12)

Setting θ = 1
2

and inserting for the first and second difference operators, eq. C.12 will

discretize to:

pi+1
y − piy

∆T
=

1

2

[
−H i+1

y

pi+1
y+1 − p

i+1
y−1

2∆y
+

1

2
σ2
pi+1
y+1 − 2pi+1

y + pi+1
y−1

(∆y)2
−Gi+1

y pi+1
y

]

+
1

2

[
−H i

y

piy+1 − piy−1

2∆y
+

1

2
σ2
piy+1 − 2piy + piy−1

(∆y)2
−Giypiy

] (C.13)

Furthermore, solving for pi+1
y yields:
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pi+1
y

[
1 +

σ2∆T

2(∆y)2
+
Gi+1
y ∆T

2

]
= pi+1

y+1

[
−H i+1

y ∆T

4∆y
+

σ2∆T

4(∆y)2

]

+piy+1

[
−H i

y∆T

4∆y
+

σ2∆T

4(∆y)2

]
+ pi+1

y−1

[
H i+1
y ∆T

4∆y
+

σ2∆T

4(∆y)2

]

+piy−1

[
H i
y∆T

4∆y
+

σ2∆T

4(∆y)2

]
+ piy

[
1− σ2∆T

2(∆y)2
−
Giy∆T

2

] (C.14)

pi+1
y =

pi+1
y+1α

i+1
y + piy+1α

i
y + pi+1

y−1β
i+1
y + piy−1β

i
y + piy[2− (αiy + βiy)−Giy∆T ]

2 + αi+1
y + βi+1

y +Gi+1
y ∆T

(C.15)

Where αiy =
−Hi

y∆T

2∆y
+ σ2∆T

2(∆y)2
and βiy =

Hi
y∆T

2∆y
+ σ2∆T

2(∆y)2
.
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Appendix D

Upwind Discretization

To deal with the loss of probability experienced using the regular discretization scheme

we instead implement upwind discretization to the Fokker-Planck equation:

− ∂p

∂s
− ∂

∂y
(r − q + λ− 1

2
σ2)p+

1

2

∂2

∂y2
σ2p = (r + λ)p (D.1)

First we set σ(s, ey) = σ(s). By using the upwind discretization scheme we approximate

∂
∂y

(r− q+λ− 1
2
σ2)p ∼ Dh((r− q+λ− 1

2
σ2)p), where Dh is the difference approximation.

Then the Fokker-Plank equation can be discretized as:

−
pi+1
y − piy

∆s
= (1− θ)

[
(r − q + λiy+1 − 1

2σ
2)piy+1 − (r − q + λiy−1 − 1

2σ
2)piy−1

2∆y

−1

2
σ2(

piy+1 − 2piy + piy−1

∆y2
) + (r + λiy)p

i
y

]

+θ

[
(r − q + λi+1

y+1 − 1
2σ

2)pi+1
y+1 − (r − q + λi+1

y−1 − 1
2σ

2)pi+1
y−1

2∆y

−1

2
σ2(

pi+1
y+1 − 2pi+1

y + pi+1
y−1

∆y2
) + (r + λi+1

y )pi+1
y

]
(D.2)

We then set c = r − q − 1
2
σ2 and get:

pi+1
y − piy

∆s
=

−(1− θ)

[
(c+ λiy+1)piy+1 − (c+ λiy−1)piy−1

2∆y
− 1

2
σ2(

piy+1 − 2piy + piy−1

∆y2
) + (r + λiy)p

i
y

]

−θ

[
(c+ λi+1

y+1)pi+1
y+1 − (c+ λi+1

y−1)pi+1
y−1

2∆y
− 1

2
σ2(

pi+1
y+1 − 2pi+1

y + pi+1
y−1

∆y2
) + (r + λi+1

y )pi+1
y

] (D.3)
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pi+1
y

[
1 + θ

(
σ2∆s

(∆y)2
+ (r + λi+1

y )∆s

)]
= pi+1

y+1

[
−θ

(
(c+ λi+1

y+1)∆s

2∆y
− σ2∆s

2∆y2

)]

+piy+1

[
−(1− θ)

(
(c+ λiy+1)∆s

2∆y
− σ2∆s

2∆y2

)]
+ pi+1

y−1

[
θ

(
(c+ λi+1

y−1)∆s

2∆y
+
σ2∆s

2∆y2

)]

+piy−1

[
(1− θ)

(
(c+ λiy−1)∆s

2∆y
+
σ2∆s

2∆y2

)]
+ piy

[
1− (1− θ)

(
σ2∆s

(∆y)2
+ (r + λiy)∆s

)]
(D.4)

pi+1
y =

pi+1
y+1α

i+1
y+1 + piy+1α

i
y+1 + pi+1

y−1β
i+1
y−1 + piy−1β

i
y−1 + piy

[
2− σ2∆s

(∆y)2
− (r + λiy)∆s

]
2 + σ2∆s

(∆y)2
+ (r + λi+1

y )∆s
(D.5)

Where αi+1
y+1 = σ2∆s

2∆y2
− (c+λi+1

y+1)∆s

2∆y
, βi+1

y−1 = σ2∆s
2∆y2

+
(c+λi+1

y−1)∆s

2∆y
, αiy+1 = σ2∆s

2∆y2
− (c+λiy+1)∆s

2∆y
,

βiy−1 = σ2∆s
2∆y2

+
(c+λiy−1)∆s

2∆y

Note that this discretization has two different α and β values that captures more closely

the changes in λ = a(t)( e
z

ey
)p, which changes rapidly with y, especially for high values of

p.
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Appendix E

Sensitivity plots

In this chapter we present the price and delta sensitivity of the AFV model to the different

input parameters, p, R, volatility, credit spread, η and risk free rate. We see that the

parameter with the biggest impact on price and delta is the recovery rate, R. We also

observe that all but one parameter, volatility, mostly affect the distressed and out-of-the-

money area. This is because all the parameters except volatility have influence on the

bond component, whereas volatility affects the equity component.

We also show the sensitivity of a(t) and b(t) to p, as presented by Andersen and Buffum

(2002). Note that the time horizon in Figure E.3 is significantly longer than the ones

evaluated in this thesis, with 15 years compared to 5 years. Also bear in mind that

Figure E.3 is created using constant implied volatility and credit spread structure, unlike

the calibration in our model.
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(a) p
(b) R

(c) Vol (d) Cs

(e) η (f) r

Figure E.1: Prce sensitivity to the different parameters; 1 yr to maturity, risk free

rate=2.34%, volatility=55%, cs=0.045, R=0.8, dirty price per $1000
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(a) p (b) R

(c) Vol (d) Cs

(e) η (f) r

Figure E.2: Delta sensitivity to the different parameters; 1 yr to maturity, risk free

rate=2.34%, volatility=55%, cs=0.045, R=0.8
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Chapter E Sensitivity plots

Figure E.3: Calibrated a(t) and b(t) for constant volatility and credit spread term struc-

tures equal to 40% and 5%, respectively (Andersen and Buffum, 2002, p. 36).
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