
M
ona-Lena D

ordi N
orheim

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r
m

at
em

at
is

ke
 fa

g

M
as

te
ro

pp
ga

ve

Mona-Lena Dordi Norheim

Investigating iterative solvers of
Poisson-type equations discretized by
the Two-Point Flux-Approximation
scheme

Masteroppgave i MSMNFMA
Veileder: Knut-Andreas Lie, Olav Møyner

Juli 2019

Mona-Lena Dordi Norheim

Investigating iterative solvers of
Poisson-type equations discretized by
the Two-Point Flux-Approximation
scheme

Masteroppgave i MSMNFMA
Veileder: Knut-Andreas Lie, Olav Møyner
Juli 2019

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for matematiske fag

Summary

In this thesis we investigate alternative iterative solvers to MATLAB’s in-built direct solver
mldivide for Poisson-type problems. The solvers are tested on two models used for the
purpose of benchmark studies for field development optimization: Olympus and SPE10
[5] [6]. It is found that the iterative solvers, in general, perform better than mldivide
for large, computationaly heavy systems. It is evident that the use of algebraic multigrid
(AMG) as a preconditioner improves convergence dramatically. Among the tested iterative
solvers it is Krylov solvers BiCGstab and BiCGstab(l) combined with the smoother ILU(0)
and the coarsening strategy smoothed aggregation that performed overall best.

i

Acknowledgements

I would like to thank my supervisors, Knut-Andreas Lie and Olav Møyner, for present-
ing me with this assignment. You have guided me through all the stages of my research
and been patient with me along the way.

I would also like to thank Lars Sivertsen, who has been of invaluable help and stayed
by my side even when the times were tough. Without you I am not sure I would have
made it this far.

ii

Abbreviations

0.1 Shorthand notations

MRST : MATLAB Reservoir Simulation Toolbox
TPFA : Two-Point Flux-Approximation (scheme)
PDE : partial differential equation
LHS : left-hand side
RHS : right-hand side
FDM : finite difference methods
FVM : finite volume methods
FEM : finite element methods
SPD : symmetric and positive definite
BHP : bottom-hole pressure
STB : stock tank barrel
AMG : algebraic multigrid
NaN : computer shorthand for ”not a number”, f.ex. ”infinite” or imaginary numbers

0.2 Units

m : meter
kg : kilogram
s : second
D (or d) : darcy (1 D ≈ 9.869233 · 10−13m2)
Pa : Pascal (∼ kg/ms2)
stb/d : stock tank barrels a day (measure of oil volumes) (1 stb/d ≈ 1.84 · 10−6m3/s)
psi : pound-force per square inch (1 psi ≈ 6.895 kPa)

iii

iv

0.3 Variables and equations

Ω : the domain
∂Ω : the boundary of the domain
~v = Q

A : flux density / specific discharge / Darcy flux / Darcy velocity
v : velocity field
U : characteristic velocity of a fluid flow [m/s2]
p : pressure
ρ : density
µ : dynamic viscosity (fluid viscosity)
ϕ : porosity of the medium
κ = ρgK

µ : hydraulic conductivity
K : intrinsic permeability (either a constant or a tensor)
h = E

mg = −z + p
ρg : hydraulic head, relative to a fixed datum, z axis pointing downwards

Q : flow rate
q : source/sink term
Re = ρUL

µ : Reynold’s number
I : the identity matrix (might include a subscript indicating the dimensions of it)

v

vi

Contents

Summary i

Preface ii

Abbreviations iii
0.1 Shorthand notations . iii
0.2 Units . iii
0.3 Variables and equations . v

1 Introduction 5
1.1 Outline of thesis . 6

2 Important prerequisites 7
2.1 Concepts from linear algebra . 7

2.1.1 Connection to graph theory . 7
2.1.2 Matrix properties . 8

2.2 Grids . 10
2.2.1 Delaunay triangulations . 12
2.2.2 Voronoi diagram . 13

2.3 Physical properties of reservoirs . 14
2.4 Differential equations . 15

2.4.1 Advection equation . 16
2.4.2 Transport equation . 17
2.4.3 Fick’s laws of diffusion . 17
2.4.4 Darcy’s law . 17
2.4.5 The Poisson equation and the pressure equation 18

3 Discretizations and numerical methods 21
3.1 Discrete gradient and divergence . 22
3.2 Introduction to the finite volume method and the

finite element method . 22

1

CONTENTS

3.2.1 Finite element method on the Poisson equation in 2D 23
3.2.2 Finite volume method on the Poisson equation in 2D 25

3.3 Two-point flux approximation . 27
3.4 Iterative methods and preconditioning 30
3.5 Preconditioning . 31
3.6 Smoothers . 32

3.6.1 Jacobi method . 32
3.6.2 Gauss-Seidel method . 32
3.6.3 Incomplete LU factorization . 33

3.7 Krylov spaces and Krylov solvers . 33

4 Multigrid methods 37
4.1 Brief outline of the idea . 38
4.2 Ingredients in multigrid . 38

4.2.1 Coarser grids and interpolation 38
4.2.2 Multigrid cycles and computational cost 40

4.3 Types of multigrid . 41
4.3.1 Algebraic multigrid . 42

5 Preparation and experimental set-up 45
5.1 The iterative solvers . 45
5.2 The reservoir models . 47

5.2.1 Simple case . 47
5.2.2 SPE10 . 47
5.2.3 Olympus . 47

5.3 Experimental procedure . 48
5.4 Typical results from the different test models 49

5.4.1 Simple case . 49
5.4.2 SPE10 . 50
5.4.3 Olympus . 52

6 Experiments & Analysis Part 1:
Time as a function of the number of grid cells 57
6.1 SPE10 – Tarbert . 58
6.2 SPE10 – Upper Ness . 62
6.3 SPE10 – borderline area . 65

7 Experiments & Analysis Part 2:
Mean value and standard deviation 69
7.1 Olympus . 70

7.1.1 Case 1 . 70
7.1.2 Case 2 . 72
7.1.3 Case 3 . 73
7.1.4 Case 4 . 74
7.1.5 Case 5 . 75
7.1.6 Case 6 . 76

2

CONTENTS

7.1.7 Case 7 . 77
7.1.8 Case 8 . 78
7.1.9 Case 9 . 79
7.1.10 Case 10 . 80
7.1.11 Overall observations . 81

7.2 SPE10 . 82
7.2.1 Tarbert layers 1-35 with relaxation as preconditioner 82
7.2.2 Tarbert layers 1-35 with AMG as preconditioner 84
7.2.3 Upper Ness layers 41-75 with AMG as preconditioner 85
7.2.4 Borderline layers 21-50 with AMG as preconditioner 86
7.2.5 Overall observations . 87

8 Conclusions and outlook 89
8.1 Discussion and conclusion . 89
8.2 Future work . 90

Bibliography 93

A Theorems 95
A.1 Gershgorin circle theorem . 95
A.2 Divergence theorem . 95
A.3 Levy-Desplanques theorem . 95

B Function spaces 97
B.1 Spaces of continuous functions . 98
B.2 Lebesgue spaces . 98
B.3 Sobolov spaces . 98
B.4 Some rules for norms and inner products 99

3

CONTENTS

4

Chapter 1
Introduction

Most equations that model our physical world are not analytically solvable. The devel-
opment of numerical methods has enabled us to explore solutions (if only approximate)
that before have been unobtainable. Suddenly, solving complex equations is no longer a
question of how, but a matter of having enough available computational power to satisfy
reasonable tolerances.

The human mind is in reality very good at carrying out complex tasks, such as recog-
nizing faces, playing sports, reading handwriting, and so on. However, our performance is
restricted by several factors – limited memory, inter-human communication issues, the risk
of making mistakes/miscalculations, the need to rest, lack of motivation or concentration
difficulties, illness, etc. – but most of all by the time we require to accomplish these tasks.
One of the great advantages of computers is their ability to execute a multitude of simple
mindless tasks in the blink of an eye.

Some would say that modern numerical analysis began in 1947 [14] [2], with the work
of John von Neumann and Herman Goldstine in their paper ”Numerical Inverting of Ma-
trices of Higher Order”. Among other things this paper discussed what we today refer to
as scientific computing, which is the science of using computers to solve problems. That
is, instead of solving problems by hand we develop algorithms and methods that can effi-
ciently and/or accurately deal with such problems for us. In order to keep up with today’s
demands efficiency is key/essential.

Even though the efficiency of modern computers still increase exponentially fast, the
biggest bottleneck for solving complex systems is computational power – or, rather, the
lack of it. To increase the efficiency of existing algorithms, as well as find the domains on
which they work best, it is crucial to increase accuracy and save resources.

Linear solvers represent a cornerstone for most numerical simulations – from simple
systems, such as the motion of mass on a spring, to incredibly complex systems, such as
those used in weather forecasting or reservoir simulation. Due to this variety of applica-
tions linear solvers come in a variety of forms, but even though they are all developed with
special areas of application in mind the domain on which these solvers are most effective
is not universally known (still unclear).

5

Chapter 1. Introduction

This thesis explores and analyzes the performance of a wide range of different linear
iterative solvers when applied to a Poisson-type equation discretized using the two-point
flux-approximation (TPFA) scheme. In addition to looking for iterative methods that work
better than others on a particular problem, we also want them to be better than direct
methods, as this was the purpose for which iterative methods were introduced. For ref-
erence we are going to use the in-built MATLAB function mldivide, which analyzes
the properties of a given linear system and chooses an appropriate direct solver thereafter
– an approach that aims at minimizing computation time. On smaller (linear) problems
direct solvers tend to outperform iterative ones. For non-linear system of equations iter-
ative solvers are the common (and often the only) choice, but they can also be of great
use on larger linear systems, where direct methods would be expensive and even impos-
sible in some cases. The linear systems obtained by TPFA in the upcoming experiments
will be solved using the algebraic multigrid library AMGCL [11, p.461]. Among other
things, AMGCL can take in as input and combine Krylov subspace solvers, coarsening
strategies and smoothers, and it offers preconditioning with or without algebraic multigrid
methods. The objective of the thesis will be directed towards the modelling of fluid flow in
reservoirs, as the experiments are conducted on different reservoir models. Nevertheless,
it should be made clear that any results will be useful in other scientific fields as well.

1.1 Outline of thesis
In Chapter 2 we will begin by reviewing some basic theory on linear algebra and geometry,
as well as introducing central physical laws and concepts. In Chapter 3 we look at how
the simple Poisson equation can be discretized using finite element methods and finite
element methods, before going through the steps of discretizing the stationary pressure
equation using TPFA. Chapter 4 gives a brief review of multigrid methods, with particular
regard to algebraic multigrid. Chapter 5 introduces the experimental set-up, and takes a
peek at some of the general results. Chapters 6 explores how time may behave as a function
of the number of grid cells, based on the SPE10 model. Chapter 7 follows with another
experiment, this time involving mean values and corresponding standard deviations. The
thesis ends with a final discussion and conclusion in Chapter 8, followed by a quick note
on future work.

6

Chapter 2
Important prerequisites

Linear algebra is one of the fundamental building blocks needed when it comes to solving
differential equations. We will in this section go through the basic properties of matrices,
and how to define grids that allows us to discretize physical systems using basic geometry.
Then, we will look at some properties of reservoirs and the differential equations that
governs the realm of fluid dynamics. These are the equations that we later will use when
testing different types of iterative solvers.

2.1 Concepts from linear algebra
From linear programming (optimization) to quantum computing to error correcting codes
(coding theory) to facial recognition, one does not get far without linear algebra. A linear
system can arise from a number of places, often from the discretization of PDEs. The
TPFA method in Section 3.3 is an example of this. Typically, the more interesting a case
is, the more difficult and demanding it is to solve. Sometimes the system coefficient matrix
satisfies properties that lessen the workload significantly, by simplifying implementations
and reducing both time and memory requirements. This is especially helpful when the
system in question is large. Some properties are even necessary for the system to be
solvable.

Unless otherwise stated, linear systems of equations will be presented as Ax = b,
where A ∈ RN×N is the coefficient matrix, b ∈ RN is the RHS vector, and x ∈ RN
is the vector of unknowns. The exact solution will be denoted by x∗. In this section we
will go through some basic matrix properties that are useful to know when handling and
analyzing linear systems, but first a brief review of the relationship between matrices and
graphs.

2.1.1 Connection to graph theory
An N × N matrix, such as A, can be seen as a representation of the couplings between
N cells/nodes/objects (let us use the term ”cells”). The entry aij represents how cell i

7

Chapter 2. Important prerequisites

is connected to cell j, and aji represents how cell j is connected to cell i. The value of
an entry might signify some kind of ”power” or flow from the first cell to the other. For
instance, imagine the cells as pools in a water park: then the entries of A could represent
water flow between different pools (how much or how fast water flows, and from where
to where) and whether they are connected or not. The graph associated to a matrix is
an illustration of the connections represented by this matrix. A graph consists of a set
of nodes (alternatively called vertices) and a set of edges that connect the nodes. The
nodes can, for instance, represent the cells mentioned above. The edges might be directed,
meaning that each edge is accompanied by an indication of which direction the connection
it represents goes, typically illustrated as arrows instead of plain lines. Sometimes there
are contributions in both direction between two nodes. A graph with directed edges is
called a directed graph or a digraph. A weighted digraph has additional numbers, called
weights, associated with its edges that represent the strengths of the connections.

2.1.2 Matrix properties

Invertible
First of all, we want A to be invertible (non-singular), ensuring that the solution is unique
for every RHS vector b. For this, it is necessary and sufficient that the determinant of A
is non-zero, i.e., det(A) 6= 0.

Symmetric
A real matrix A is symmetric if it equals its own transpose (AT = A). This is often seen
in coefficient matrices that are derived from discretization of PDEs. Symmetric (real) ma-
trices form a subset of the set of Hermitian (complex) matrices, but as our scope is limited
to real matrices this will not be further explored.

Positive definite
Another useful property that must be mentioned is positive definiteness. For a symmetric1

matrix A ∈ RN×N , the following statements are equivalent:

• A is positive definite

• All eigenvalues of A are strictly positive: λi > 0

• yTAy > 0 for all non-zero vectors y ∈ RN

• All pivots2 of A are strictly positive (> 0)

1A matrix can be positive definite while not being symmetric, but SPD matrices are preferred because of the
nice properties they hold.

2The pivots of a matrix are central when doing elimination/reduction and obtained by scalar multiplication
strictly performed from top to bottom. For matrix A the first pivot is always the entry a1,1. The second pivot
is the value of entry a2,2 that remains after the entry a2,1 has been reduced to zero by adding a multiplum of
the first row. The third pivot is the value of entry a3,3 after entries a3,1 and a3,2 are reduced to zero by adding
multiplums of the first and second row. And so on.

8

2.1 Concepts from linear algebra

• All ”upper left determinants” of A, also called leading principal minors3, are strictly
positive (> 0)

• A = SST , for some real non-singular matrix S (i.e., with independent columns)

One way to determine the eigenvalues is with the Gershgorin circle theorem, which can
be found in the appendix, Section A.1. Since A is real-valued, the Gershgorin discs will
simply be intervals. By replacing > with ≥ we get positive semi-definiteness.

On the other hand, A is negative (semi-)definite if the inequalities above are flipped.
The following statements are equivalent:

• A is negative definite

• All eigenvalues of A are strictly negative: λi < 0.

• yTAy < 0 for all non-zero vectors y ∈ RN

• All odd principal minors of A are strictly negative (< 0) and all even principal
minors are strictly positive (> 0)

Symmetry and positive definiteness are useful properties for a linear system to possess.
Among other things, these properties also ensure uniqueness of the solution. To illustrate
this, turn the linear system Ax = b, with solution x∗, into a minimization problem

min
x∈RN

f(x) =
1

2
xTAx− xTb. (2.1)

Here, f(x) is called the quadratic test function, and x∗ is the minimum of f(x), i.e., the
point where∇f = 0. Assume that f has more than one minimum. Since x∗ is a minimum
of f , we know that f is locally convex around x∗, and it follows that the double deriva-
tive ∇2f(x∗)4 is positive definite. Since ∇2f(x) = A, it is independent of x and f must
be (globally) convex. So, if A is positive definite, then Ax = b has the unique solution x∗.

Irreducible
The graph consists of a set of nodes (also called vertices) and a set of edges that connect
the nodes. The nodes can represent the cells mentioned above. If the edges are directed,
the graph is called a directed graph, often abbreviated digraph. The directed edges are
equipped with arrow heads, pointing in the direction(s) that the connections go.

A is reducible if the indices 1, ..., N can be divided into two disjoint sets i1, ..., iα and
j1, ..., jβ , where N = α+ β, such that aiµjν = 0 for µ ∈ [1, α] and ν ∈ [1, β]. From this
definition it follows that A is reducible

• if and only if its associated digraph is not strongly connected5.
3A principal submatrix is obtained from a matrix by removing j of its rows and the corresponding columns.

The determinant of this submatrix is called a principal minor. By removing the last N − j rows and columns of
an N ×N matrix we obtain the leading principal submatrix of order j, and the determinant of such a submatrix
is called a leading principal minor

4The double-derivative operator∇2 is called the Hessian.
5A graph is strongly connected if there exists at least one path from every one node to any other node.

9

Chapter 2. Important prerequisites

• if and only if it can be transformed into upper triangular form by simultaneous per-
mutations of its rows/columns.

We call A irreducible if it is not reducible.

Diagonally dominant
A is said to be diagonally dominant if the absolute value of each diagonal entry outweighs
the absolute values of the other entries in that row combined:

|aii| ≥
∑

j∈[1,N]
j 6=i

|aij | ∀ i ∈ [1, N] (2.2)

A symmetric diagonally dominant matrix with non-negative diagonal entries is positive
semi-definite. If the inequality in Equation (2.2) is strict, then A is strictly diagonally
dominant. By the Levy–Desplanques theorem (see appendix, Section A.3), a strictly diag-
onally dominant matrix is non-singular. This can be proven by using the Gershgorin circle
theorem, which is found in Appendix A. Moreover, a symmetric and strictly or irreducibly6

diagonally dominant matrix with non-negative diagonal entries, is positive definite. If in-
stead the matrix is weakly diagonally dominant, or some of its diagonal entries are zero7,
it will be positive semi-definite.

Sparse
The sparsity of a matrix is connected to the number of non-zero entries. A matrix is called
sparse if most of its entries are zero. On the other hand, if most of its entries are non-zero,
the matrix is called dense. The sparsity pattern ofN×N matrix A is a set S ⊂ {1, ..., N}2
that satisfies the following condition:

{(i, j) ∈ N2|ai,j 6= 0} ⊂ S (2.3)

In words, the sparsity pattern consists of all index pairs (i, j) that correspond to non-zero
entries. As an example, take the 5× 5 matrix

B =


1 2 0 3 0
0 5 0 0 8
4 4 3 0 1
0 0 0 2 6
0 0 1 0 5


whose sparsity pattern can be seen in Figure 2.1.

2.2 Grids
A grid is a tessellation of a planar or volumetric object (or, objects), dividing it into con-
tiguous non-overlapping simple shapes called cells. The geometry of these cells is defined

6Irreducibly diagonally dominant simply means irreducible and diagonally dominant.
7Zero is defined as being both positive and negative. When speaking of non-negative numbers we therefore

exclude zero.

10

2.2 Grids

Figure 2.1: Plot showing the sparsity pattern of matrix B, where nz denotes the number of non-zero
entries.

by vertices, edges and faces. A vertex is simply a point. An edge is made up of two ver-
tices. A face is made up of a set of vertices and edges, the number of which depends on
the shape of the face (for example, a rectangular face is made up of four vertices and four
edges). Two vertices are neighbors if they are connected by an edge, two faces are neigh-
bors if they have an edge in common, and two cells are neighbors if they share a common
face. The connectivity of a grid is the total set of connections, and defines the topology of
that grid.

Before continuing further with the outline of grid theory, we will briefly review some
useful terminology from geometry.

One of the most basic 2D shapes in geometry is the triangle (the polygon with three
vertices). The circumcircle of a triangle is the unique circle that intersects the triangle in
exactly its three vertices. In other words, it is the smallest circle containing the triangle.
An illustration of this can be found in Figure 2.2 later in this section. The center of the
circumcircle is called the circumcenter. The incircle of a triangle is the largest circle
contained inside that triangle. Its center is called the incenter and is equidistant from
the sides of the triangle. The generalization of triangles in higher dimensions is called
simplices. A simplex in 3D is a tetrahedron. Triangles and tetrahedra are the only simplices
of current interest.

Quadrilaterals are polygons with four vertices. Squares and rectangles fall under this

11

Chapter 2. Important prerequisites

category. Cuboids are convex8 polyhedrons with eight vertices and bounded by six quadri-
lateral faces. Some define cuboids as having rectangular faces, so that all angles are 90
degrees.

The generic term for polygons (2D) and polyhedrons (3D) is polytopes.

In the field of grid implementation there is one central dilemma: generality or efficiency.
We want to be able to cover all sorts of possible cases, different shapes and structures, and
with varying complexity. At the same time we want a fast-working and accurate code.
One could draw parallels to Heisenberg’s uncertainty principle, in the way that the more
precisely we wish to measure the position of a particle, the more inaccurate the measure of
its momentum becomes, and vice versa. Exploiting geometrical regularity and topological
structures enables huge simplifications when it comes to efficiency. We classify grids by
two main types: structured and unstructured.

Structured grids have a regular repeating pattern consisting of only one basic cell shape,
where among other things the number of cells meeting at each vertex is constant. Such
grids can be represented by multi-index, (i, j, k), which makes it easier to keep track of
connectivities. Some examples are Cartesian, rectilinear and curvilinear grids, all with
quadrilateral cells (2D) or cuboid cells (3D) [9]. These grids will not be explored any
further.

Unstructured grids consist of simple shapes, often several different types, laid out in irreg-
ular patterns. Unstructured grids are often used in the modelling of reservoirs. However,
in this field it is even more common to begin with a structured grid and then impose certain
(unstructured) non-neighboring connections. This is an easier approach and, also, a way
to preserve some of the convenient properties of structured grids.

One advantage to unstructured grids is that they are highly flexible and, among other
things, can be adapted to complex domains and objects relatively easily. On the other hand,
unstructured grids require that we keep a list of the connectivities, in order to ”navigate”
the grid, e.g., to know the structure of the cells and the connections between them. This
requires a lot of memory, something that a multi-index (like in structured grids) does not.
Delaunay triangulation and Voronoi diagrams are well-known and widely used examples
of unstructured grids, and following is a quick overview of them.

Grids can also be hybrids, containing both structured and unstructured portions.

2.2.1 Delaunay triangulations

Delaunay triangulation is the most common of many methods that generate tessellations
based on sets of generating points, P = {xi ∈ RN}mi=1. Such a tessellation consists of a

8A geometrical shape is concave if there exists two points on/within it so that the straight line between them
exits the shape somewhere, i.e., that at least one point on this line is not contained within the shape. If not, the
object is called convex.

12

2.2 Grids

set of simplices that completely fills the convex hull of P:

H(P) =

{
n∑
i=1

λixi| xi ∈ P, 0 < λi ∈ R,
n∑
i=1

λi = 1, for 1 ≤ n ≤ m

}
. (2.4)

The Delaunay triangulation of P , denotedDT (P), contructs simplices (fromN+1 points
each) such that the hypersphere intersecting theN+1 vertices of a Delaunay simplex does
not contain any other points. In 2D, simplices and hyperspheres simplify to triangles and
circumcircles, respectively. In this case, DT (P) is constructed such that no points but the
three points defining a triangle in DT (P) can be contained on (or inside) the circumcircle
of this triangle. An example with four generating points is shown in Figure 2.2.

Figure 2.2: Delaunay triangulation of four two-dimensional generating points, consisting of two
triangles. The circumcircles are shown in dashed lines, with circumcenters represented by crosses.

2.2.2 Voronoi diagram

The Voronoi diagram of a set of points, P = {xi}mi=1, is the partitioning of Euclidean
space into convex polytopes, one for each generating point xi [11, p.71]. The polytopes
are called Voronoi regions or Voronoi cells – we will use the latter one. Each Voronoi cell
contains exactly the generating point xj that it corresponds to, and every point inside this
cell is strictly closer to xj than to any other xi. The Voronoi cell of xj can be defined as

V(xj) = {x such that ‖x− xj‖ < ‖x− xi‖ ∀i 6= j} . (2.5)

The Voronoi cells are not necessarily closed sets, since there might exist points that are
equally close to two (or more) generating points. These points will not belong to any
Voronoi cells, but they are said to lie on the Voronoi segments, which are the lines that
enfold the cells (see Figure 2.3).

A Delaunay triangulation of P corresponds to the dual graph9 of a Voronoi diagram of
P . Connecting the circumcenters in a Delaunay triangulation produces a Voronoi diagram.
The edges in the Voronoi diagram are perpendicular to the edges of the Delaunay triangles.

9The dual graph, H , of a planar graph, G, has a vertex for each cell in G, and for every two cells in G
separated by an edge, H has an edge connecting the two corresponding vertices.

13

Chapter 2. Important prerequisites

Figure 2.3: Voronoi diagram for the same four two-dimensional generating points as before. The
Delaunay triangulation is shown in dashed lines.

2.3 Physical properties of reservoirs

Fluid properties
For basic incompressible single-face flow equations, viscosity and density are deemed the
only necessary fluid properties for potential solvers. If the flow is compressible, fluid com-
pressibility is added as a requirement.

Compressibility is the measure of the relative volume change in a solid or a fluid as a
reaction to pressure change. A solid/fluid is incompressible if the effects of pressure on
the material density are zero or negligibly small. If the material density flowing is constant
within each infinitesimal fluid volume, the flow is called incompressible. Another indica-
tor of incompressible flow is that the flow velocity field satisfies ∇ · v = 0 in the absence
of source terms. The flow of a fluid might be incompressible, even if the fluid itself is not.

The viscosity of a fluid is a measure of its resistance to flow. High viscosity means that the
fluid is ”thicker”. Honey and syrup both have higher viscosity than water, for example.

The density of a substance is its mass per unit volume.

Reservoir rock properties
The porosity of a porous medium is a measure of the void spaces in that medium. Denoted
ϕ, the porosity is given as the fraction of the bulk volume that is occupied by void space.
We assume that ϕ ∈ [0, 1] is a continuous variable such that for ϕ = 1 the bulk volume
is void only, while for ϕ = 0 it is entirely occupied by solid material. In flow simulation,
we are only interested in void (pore) space that is interconnected and available to fluid
flow. The alternative is void space that is disconnected and cut off from flow, but this is in
practice as useful as solid rock.

The permeability of a porous medium measures its ability to transmit fluids, and while
it is usually equal in both lateral (x and y) directions, it will differ significantly from lat-
eral to vertical (z) direction. If the permeability is high, less force is needed to move the

14

2.4 Differential equations

fluid through the medium. Permeability is called isotropic if it can be represented by a
scalar function K(~x), and anisotropic when it needs representation by a full tensor

K(~x) =

[
Kxx Kxy

Kyx Kyy

]
, K(~x) =

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz.

 (2.6)

Here, illustrated in 2D and 3D, respectively. The matrix element Kij represents the de-
pendence between flow rate in i direction and pressure drop in j direction. When mod-
eling physical systems, we need K to be symmetric, i.e., Kij = Kji. The Two-Point
Flux-Approximation scheme will only work for cases with a diagonal permeability tensor,
where there are no mixed partial derivatives. The focus in this thesis will be on reservoirs
where the permeability lies between 0.001 and 1000 mD (milli-Darcy) for liquid flow and
down to 10 mD for gases. It should be mentioned that his is only an estimate, because
permeability can vary a lot.

2.4 Differential equations
Differential equations that include only one independent variable are called ordinary, ab-
breviated ODEs. Those that include more than one are called partial, abbreviated PDEs.
Independent variables are usually time (t) or spatial coordinates (x,y,z). Linear10 second-
order11 PDEs are often classified as hyperbolic, parabolic or elliptic. In two independent
variables (x and y), assuming uxy = uyx, such an equation will look like

auxx + buxy + xuyy + dux + euy + fu+ g = 0 (2.7)

where a, ..., g are the coefficients and functions of x and y. Equation (2.7) is

hyperbolic if b2 − 4ac > 0

parabolic if b2 − 4ac = 0

elliptic if b2 − 4ac < 0

Naturally, there are some PDEs that do not fit either one of these labels, or that change
from one type to another between different regions. An example of this is the Euler-
Tricomi equation [4], but this is not of interest in this thesis.

Another way to characterize the three classifications, taken from a lecture on partial
differential equations [17], is the following:

1. Hyperbolic PDEs describe time-dependent, conservative physical processes, such as
convection, that are not evolving toward a steady state.

10A differential equation is linear if none of its terms are of higher degree than 1.
11A differential equation is of second order if all its derivative terms are of second order (that is, twice differ-

entiated) or less.

15

http://people.maths.ox.ac.uk/chengq/outreach/The%20Tricomi%20Equation.pdf
http://people.maths.ox.ac.uk/chengq/outreach/The%20Tricomi%20Equation.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DN1213/numme06/utdelat/kap10.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DN1213/numme06/utdelat/kap10.pdf

Chapter 2. Important prerequisites

2. Parabolic PDEs descibe time-dependent, dissapative physical processes, such as
diffusion, that are evolving toward a steady state.

3. Elliptic PDEs describe systems that have already reached a steady state, or equilib-
rium, and hence are time-independent.

This is perhaps a more suitable explanation when the goal is to get a better understanding
of the physical meaning behind the notions above.

By both definitions, the Poisson equation and variants of it are elliptic PDEs.
Many basic principles and laws of science are represented as partial differential equa-

tions. Below are some examples.

2.4.1 Advection equation
Before introducing the advection equation, it is natural to begin by introducing the concept
of advection and, additionally, diffusion and convection.

Diffusion is molecular transport of mass, heat or momentum. It has to do with how a
substance in a fluid will dissolve and, eventually, try to ”mix” with the fluid – that is, mov-
ing from regions of higher concentration to regions of lower concentration. Picture adding
some powder into a glass of water. The powder particles may begin to move randomly
around in the water, until they become distributed uniformly. Diffusion is the movement
caused by this attempt to mix.

Advection is the bulk transport of mass, heat or momentum, like for instance in a pipe
flow, atmospheric flow or bouyant flow. Instead of particles moving randomly around,
they will move in bulk and follow the velocity field of the flow.

Convection is the flow that combines diffusion and advection.

Given a known velocity vector field v and an unknown scalar field ψ of some conserved
quantity, the advection equation is a partial differential continuity equation that governs
the motion of ψ due to advection by v

∂ψ

∂t
+∇ · (ψv) = 0. (2.8)

Recall that
∇ · (ψv) = v · ∇ψ + (∇ · v)ψ.

If the flow is incompressible, i.e., that ∇ · v = 0, then v is called solenoidal and (2.8)
reduces to

∂ψ

∂t
+ v · ∇ψ = 0. (2.9)

If we instead consider a vector quantity ψ, the advection equation becomes

∂ψ

∂t
+ (v · ∇)ψ = 0. (2.10)

In this thesis we will mainly consider instances where mass is conserved, in which case
we can replace ψ by ρ.

16

2.4 Differential equations

2.4.2 Transport equation
A transport equation is of the form

∂u

∂t
+∇ · j = S,

where u is the scalar field under evaluation, j = j(u) is the flux of u through ∂Ω and S is
the source/sink term inside Ω.

The transport equation is sometimes referred to as the convection-diffusion equation
and can, by dividing the flux into its diffusive and convective parts, be rewritten as

∂u

∂t
+∇ · (D∇u) +∇ · (uv) = S, (2.11)

where D is the diffusion coefficient and v is the velocity field.

2.4.3 Fick’s laws of diffusion
Fick’s two laws describe diffusion and can be used to find the diffusion coefficient D (also
called diffusivity). Fick’s first law states that

~j = −D∇u (2.12)

where ~j is the diffusion flux and u is the concentration (for ideal mixtures). This law
asserts that the flux moves from regions of high concentration to regions of low concen-
tration.

Assuming that D does not depend on u, Fick’s second law states that

∂u

∂t
= D∆u. (2.13)

The second law can be derived from the first law and predicts how diffusion causes the
concentration to change with respect to time. It is also equivalent to the diffusion equation.

2.4.4 Darcy’s law
Darcy’s law describes the flow of fluid through a porous medium. It is, however, only
valid for laminar (non-turbulent) flow, which we get for Reynold’s number Re < 1. The
original law [11, p.120] was derived by Henry Darcy in the mid-19th century and states
that

Q

A
= κ

ha − hb
L

. (2.14)

Here, Q is the flow rate (when inflow equals outflow), L = b− a is the flow length of the
vertical experimental tank and A is the cross-sectional area. The quantities ha and hb is
hydraulic head at the top (inlet) and bottom (outlet) of the tank, respectively, and κ is the
hydraulic viscosity. We denote the specific discharge, also called Darcy velocity or Darcy

17

Chapter 2. Important prerequisites

flux, by ~v = Q
A .

Using that κ = ρgK
µ , h = −z + p

ρg and ∇f = f(b)−f(a)
b−a , Equation (2.14) can be ex-

pressed as

~v = K
(pa − pb)− ρg(za − zb)

µL
= −K

µ
(∇p− gρ∇z) , (2.15)

which is Darcy’s law for a single-phase fluid. Recall that z is the vertical axis and has, for
convenience, been chosen to point downwards (indicating depth) instead of upwards.

Darcy’s law is easily modified to fit horizontal flow only – picture the mentioned ex-
perimental tank laid down horizontally instead of standing up vertically. In the absence of
gravitational forces the law takes the form

~v = −K

µ
∇p, (2.16)

where the depth term is cancelled out because za = zb.

2.4.5 The Poisson equation and the pressure equation

In porous media, the general formula for a so-called Poisson-type equation is

−∇ · a∇u = f, (2.17)

where a(x) is a variable coefficient, f(x) denotes the sink/source term and u(x) is the
quantity for which we want to solve the equation. Pressure, heat and magnetic field are
examples of such quantities.

If the medium is homogeneous, i.e., the rock properties are equal everywhere, Equation
(2.17) reduces to the standard Poisson equation:

−∆u = f. (2.18)

Here, ∆, alternatively written as ∇2, is the Laplace operator. In Euclidean space the
Laplace operator is the sum of the unmixed partial double derivatives with respect to Carte-
sian coordinates:

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3D).

If f ≡ 0, the Poisson equation becomes the Laplace equation:

∆u = 0. (2.19)

If there is no diffusion (i.e., D = 0) Equation (2.11), with u = ρ, reduces to the mass
conservation law

ρt +∇ · (ρv) = S, (2.20)

also known as the mass continuity equation. Poisson-type pressure equations are derived
from the mass conservation law (2.20) on problems with stationary incompressible flow,

18

2.4 Differential equations

i.e., where ut = 0 and the mass density ρ is constant, so that all its derivatives are zero.
Writing out the divergence term in Equation (2.20) yields

ρt + v · (∇ρ) + ρ(∇ · v) = S (2.21)
ρ(∇ · v) = S (2.22)

(∇ · v) =
S

ρ
= q. (2.23)

Substituting Darcy’s law in the xy-plane, ~v = −K
µ∇p, for the velocity field v, we obtain

the Poisson-type pressure equation

−∇ ·
(

K
µ
∇p
)

= q. (2.24)

Equation (2.24) is sometimes referred to as the stationary pressure equation.

19

Chapter 2. Important prerequisites

20

Chapter 3
Discretizations and numerical
methods

Discretization of PDEs typically leads to large, sparse linear systems of equations, for
instance when discretized using finite difference methods (FDM), finite volume methods
(FVM) or finite element methods (FEM). Such systems can be solved by either sparse di-
rect solvers or iterative solvers. In this thesis, the focus will be on the latter.

Sparsity of the coefficient matrix, A, can be useful in many ways:

• One only needs to store the non-zero elements, thus using less memory.

• The coefficient matrix is easier to invert.

• It is less expensive, since fewer (binary) operations are required in total for the terms
involving A.

• The assembly of stiffness and mass matrices (obtained from the discretizations men-
tioned above) becomes much faster and cheaper when one does not have to calculate
every single matrix entry.

Before we can apply direct or iterative methods in order to solve a linear system, this
system must be obtained from discretization of a given partial differential equation. In this
thesis, the PDE is the stationary pressure equation,

−∇ ·
(

K
µ
∇p
)

= q, (3.1)

and we will discretize it using the two-point flux approximation (TPFA) scheme. To under-
stand TPFA, we first need to understand finite volume methods. Finite element methods
are closely related as they are both integral schemes, and thus we will explore these as
well.

21

Chapter 3. Discretizations and numerical methods

We will now go though some important discretization methods, ending with the two-
point flux approximation scheme, which is a central part of the upcoming experiments. But
first, a quick review of how the concepts of gradients and divergence might be modified to
fit for grids instead of continuous domains.

3.1 Discrete gradient and divergence
Two basic properties of a vector field, which we may imagine model a fluid, is its curl and
divergence. The curl gives us a measure of how much the fluid ”swirls” around, while the
divergence tell us the net flow in or out of a volume. When dealing with systems of fluids,
it is thus of great importance to find a way to discretize these quantities on a grid.

Consider a grid consisting of a collection of cells C = {1, ..., nc} and a collection
of faces F = {1, ..., nf}, where nc denotes the total number of cells, and nf is the total
number faces. Now, let the functionsC1, C2 : F → C define a mapping from a given face
f to its two corresponding neighbor cells, depending on the direction of the flux across f :
from C1(f) to C2(f). Then, let F : C → {0, 1}nf be such that it maps a given cell, c,
to all of the faces delimiting it. The function returns either a set containing the number of
each of these faces or a vector of length nf with 1’s in the location of faces that delimit c
and 0’s on in the location of the faces that don’t. Introducing the flux v[f] evaluated at a
face f and the averaged cell pressure evaluated at c, p[c], we can express discrete versions
of gradients and divergences:

grad(p)[f] = p[C2(f)]− p[C1(f)], (3.2)

div(v)[c] =
∑

f∈F (c)

v[f]1c=C1(f) −
∑

f∈F (c)

v[f]1c=C2(f). (3.3)

Here, 1c=Ci(f) is a vector, where element cj equals 1 if cj = Ci(f) for a given interface
f , and 0 otherwise. It is usual convention to define the direction of v ∈ Rnf from C1(f)
to C2(f) [11].

3.2 Introduction to the finite volume method and the
finite element method

We begin by introducing two important approaches to finding numerical solutions of
PDEs: the finite element method and the finite volume method. We will try to keep
the reviews brief. For illustration, these will in turn be used to discretize the standard
two-dimensional Poisson equation

−∆u = f, in Ω, (3.4)
u = g, on ΓD, (3.5)

−∇u · n = h, on ΓN , (3.6)

where the domain is Ω ∈ R2 and its boundary ∂Ω = ΓD ∪ ΓN is divided into two dis-
joint parts: one with Dirichlet boundary conditions and the other with Neumann boundary

22

3.2 Introduction to the finite volume method and the
finite element method

conditions. The unit vector n is the outward normal to ∂Ω. As we might remember, the
Poisson equation is a simplified version of the pressure equation we are interested in.

3.2.1 Finite element method on the Poisson equation in 2D
First of all, note that the finite element method (FEM) is a very rigorous and extensive
method. To not get lost in all the details, the review will be rather superficial. More de-
tailed explanations can, for instance, be found in Yousef Saad’s book Iterative Methods
for Sparse Linear Systems [15].

Solving a PDE using finite element methods consists of four steps [12]:

1. Strong formulation

2. Weak (variational) formulation

3. Finite element method

4. Assembly and solution algorithm

Consider the Poisson problem (3.4)-(3.6). Equation (3.4) is called the strong formulation
of the Poisson problem. Now we need to find the weak formulation of Problem (3.4). First,
we multiply with an arbitrary test function w(x) ∈ V̂ , where V̂ is called the test space,
and integrate over the domain Ω,∫

Ω

−∆uw dx =

∫
Ω

fw dx. (3.7)

This has to hold for every w ∈ V̂ . We ”get rid of” the double derivative by integrating
by parts, using the divergence theorem (see appendix, Section A.2). The LHS of Equation
(3.7) becomes

−
∫

Ω

∆u w dx = −
∫
∂Ω

[
∇u · n

]
w ds +

∫
Ω

∇u · ∇w dx

= −
∫
∂Ω

∇u · wn ds +

∫
Ω

∇u · ∇w dx.

Inserting this into Equation (3.7) we get∫
Ω

∇u · ∇w dx =

∫
∂Ω

(∇u · n)w ds +

∫
Ω

fw dx. (3.8)

The boundary integral can be divided into a Dirichlet part and a Neumann part. We can
choose the test space to be such that all test functions are zero at the Dirichlet boundary.

V̂ = H1
0,ΓD (Ω) =

{
w ∈ H1| w(x) = 0 ∀x ∈ ΓD

}
.

Because of this (the support of w) the Dirichlet boundary integral disappears and the total
boundary integral simplifies to∫

∂Ω

(∇u · n)w ds =

∫
ΓN

(∇u · n)w ds =

∫
ΓN

−hw ds.

23

Chapter 3. Discretizations and numerical methods

Inserting this into Equation (3.8), we obtain the weak formulation: Find u ∈ V such that∫
Ω

∇u · ∇w dx =

∫
Ω

fw dx−
∫

ΓN

hw ds, ∀w ∈ V̂ . (3.9)

The space V is called the solution space and is chosen to be the same as V̂ , except for a
shift in the Dirichlet condition:

V = H1
g,ΓD (Ω) =

{
w ∈ H1| w(x) = g(x) ∀x ∈ ΓD

}
.

Both spaces must be chosen carefully, in order to get a good solution. Variants of H1
s (Ω)

are common choices, but it depends on what we need of u and w. Typically, f ∈ L2(Ω).

Define

a(u,w) =

∫
Ω

∇u · ∇w dx,

L(w) =

∫
Ω

fw dx−
∫

ΓN

hw ds.

Here, a(u,w) is a coercive continuous bilinear form and L(w) is a continuous linear form.

Now we move on to the next step, which is the finite element method. The approach
is to approximate the weak problem (3.9) by a finite-dimensional problem, which is ob-
tained by replacing both solution and test space (V and V̂) with discrete subspaces Vh and
V̂h, respectively. These subspaces consist of low-degree polynomial functions defined on
a version of Ω that is divided into small pieces, called ”elements”. A common choice for
elements is triangles, obtained by triangulating the original domain. We introduce a basis
φj : Ω→ R, for j = 1, ...,m, for Vh and V̂h, and assume that all uh and wh can be written
as

uh(x) =

m∑
j=1

Ujφj(x),

wh(x) =

m∑
i=1

Wi, φ̂i(x)

where Uj andWi are constants. The basis depends on the type of elements we choose. The
functions φj are often called shape functions, and for a tessellation of Ω with nodes/ver-
tices xi we need that

φj(xi) =

{
1, j = i

0, j 6= i.
(3.10)

However, in this review of FEM we will not go as far as to compute the solution, and will
thus not go any further into the possible choices of basis nor tessellation. The approximate
problem is: Find uh ∈ Vh ⊂ V such that

a(uh, wh) = L(wh), ∀wh ∈ V̂h.

24

3.2 Introduction to the finite volume method and the
finite element method

Inserting this into Equation (3.2.1) yields

∫
Ω

∇

 m∑
j=1

Ujφj

 · ∇(m∑
i=1

Wiφ̂i

)
dx =

∫
Ω

f

(
m∑
i=1

Wiφ̂i

)
dx−

∫
ΓN

h

(
m∑
i=1

Wiφ̂i

)
ds

⇐⇒
m∑
i=1

Wi

m∑
j=1

Uj

∫
Ω

∇φj · ∇φ̂i dx =

m∑
i=1

Wi

(∫
Ω

fφ̂i dx−
∫

ΓN

hφ̂i ds
)

⇐⇒
m∑
j=1

Uj

∫
Ω

∇φj · ∇φ̂i dx =

∫
Ω

fφ̂i dx−
∫

ΓN

hφ̂i ds, i = 1, ...,m. (3.11)

Since the equations must hold for all test functions, the Wi’s could be moved outside the
integrals and cancelled out. We see that Equation (3.11) can be simplified by substituting
in the bilinear and linear forms from above:

m∑
j=1

Uja(φj , φ̂i) = L(φ̂i), i = 1, ..., n, (3.12)

which is equivalent to expressing it as a linear system of equations, Au = b, where

ai,j =

∫
Ω

∇φj · ∇φ̂i dx,

bi =

∫
Ω

fφ̂i dx−
∫

ΓN

hφ̂i ds,

and A = (ai,j) ∈ Rm,m, u = [U1, ..., Um]T ∈ Rm and b = [b1, ..., bm]T ∈ Rm. By
solving this system we can recover the coefficientsUj and use them to find the approximate
solution uh.

3.2.2 Finite volume method on the Poisson equation in 2D

The finite volume method (FVM) is particularly popular for discretizing PDEs that arise
from physical conservation laws. These laws are of the form

∂u

∂t
+∇ · ~F = S, (3.13)

where S(x, t) is the source term and ~F (u, t) is called the flux vector [15, p.68]. Recall, for
instance, the transport equation in Section 2.4.2. The standard Poisson equation is derived
from Equation (3.13) by letting ∂u/∂t = 0 and ~F = −∇u. This review might leave out
certain detail and, generally, be very simplified compared to what could have been. Again,
more details can be found in Saad’s book [15].

We begin with the same strategy as when we found the weak formulation in the previ-
ous subsection: by multiplying the Poisson equation (3.4) with a test function w, taking

25

Chapter 3. Discretizations and numerical methods

the integral over Ω and using integration by parts. As we have already done this for the
finite element method, we skip to the resulting weak formulation∫

Ω

∇u · ∇w dx−
∫
∂Ω

(∇u · n)w ds =

∫
Ω

fw dx, (3.14)

but without dividing the boundary integral and enforcing any boundary conditions.

Now, we want to discretize the different components of Equation (3.14), just like with
the FEM. Consider some polygonal control volume Ωi (for example a triangle) and re-
place w with a function wi that is equal to 1 on Ωi and 0 elsewhere (thus ∇wi = 0). One
could also refer to Ωi as a (finite volume) cell, and we denote its area (or volume, in higher
dimensions) by |Ωi| and its boundary by Γi = ∂Ωi. Equation (3.14) becomes∫

Γi

(∇u · n) ds =

∫
Ωi

f dx. (3.15)

Equation (3.15) is the basis of the finite volume approximation. Note that we can consider
~F = ∇u as linear with respect to u, since ∇ = [∂∂x ,

∂
∂y]T . Furthermore, the right-hand

side of Equation (3.15) can be approximated as∫
Ωi

fwi dx ≈ fi|Ωi|, (3.16)

and the finite volume equation (3.15) itself becomes

∇ ·
∫

Γ

un ds = fi|Ωi|, (3.17)

where fi is some average value of f in Ωi. The integral in Equation (3.17) can be expressed
as the sum of all the integrals over all the m edges of Ωi. If Ωi is a triangle, the boundary
can be written as Γi = Γ1 ∪ Γ2 ∪ Γ3 and Ωi will have (up to) three neighboring cells, Ω1,
Ω2 and Ω3 (see Figure 3.1). Now, denote by ūij some average approximating u at edge Γj
(between Ωi and some adjacent cell Ωj), and let ~lj = lj~nj where lj is the length of edge
Γj . A simple approximation of the left-hand side in Equation (3.17) could be

∇ ·
∫

Γ

un ds ≈
m∑
j=1

ūij∇ · nj lj =

m∑
j=1

ūij∇ ·~lj . (3.18)

The unknown uj’s, for which we try to solve the system of equations, are the approxima-
tions of function u associated with each cell Ωj . They can be defined as the approximation
of u at the center of gravity of each Ωj (cell-centered approximation) or at the vertices of
each Ωj (cell-vertex approximation). With cell Ωi as reference cell, we let

ūij =
1

2
(uj + ui). (3.19)

This approximation of ūij is very simple and will, among other thing, struggle in cases
with large gradients of u. An alternative here could be to exploit upwind schemes, but such

26

3.3 Two-point flux approximation

Ω1
Ω2

Ω3

ΩiΓ1

Γ2

Γ3

n1

n2

n3

Figure 3.1: Triangular finite volume cell Ωi, with three neighboring cells Ω1-Ω3 and corresponding
normal vectors.

approximations would also have limitations and we will not explore this direction further.
Inserting (3.19) into Equation (3.17) yields

1

2

m∑
j=1

(uj + ui)∇ ·~lj = fi|Ωi|. (3.20)

Now, take into account that
∑m
j=1

~lj = 0, then

m∑
j=1

(uj + ui)∇ ·~lj =

m∑
j=1

uj∇ ·~lj +

m∑
j=1

ui∇ ·~lj

=

m∑
j=1

uj∇ ·~lj + ui∇ ·
m∑
j=1

~lj︸ ︷︷ ︸
=0

=

m∑
j=1

uj∇ ·~lj .

With this in mind, Equation (3.20) becomes finite volume approximation

1

2

m∑
j=1

uj∇ ·~lj = fi|Ωi|, (3.21)

where fi is the approximate value of the source function f in cell Ωi for i = 1, ..., Nc and
Nc is the number of cells in the grid.

3.3 Two-point flux approximation
The two-point flux-approximation (TPFA) is a simple finite volume discretization

vi,j = −Tij(pi − pj) (3.22)

linking the difference in cell averaged pressure between two neighbouring cells, Ωi and
Ωj , to the flux across the interface between them, Γij .

27

Chapter 3. Discretizations and numerical methods

Consider the simple single-phase flow equation [11, p.138]

−∇ ·
(
K

µ
∇p
)

= q, (3.23)

without loss of generality. Assume the domain Ω is partitioned into a finite set of cells.
We now choose some cell Ωi ⊂ Ω in the discrete grid to be our control volume (just like
in the FVM) and take the integral∫

Ωi

−∇ ·
(
K

µ
∇p
)

dx =

∫
Ωi

q dx. (3.24)

By using the divergence theorem (Section A.2) on the left-hand side, Equation (3.24)
becomes: ∫

∂Ωi

−
(
K

µ
∇p
)
· n ds =

∫
Ωi

q dx. (3.25)

Equation (3.25) guarantees mass conservation for every grid cell. Let Ωj be a cell adjacent
to Ωi and let Γi,j = ∂Ωi ∩ ∂Ωj be the interface (half-face) between them, with area Ai,j
and outward normal ni,j to ∂Ωi. As the name suggests, the two-point flux-approximation

Ωi Ωj

pi
pj

ci,j
ni,j

πi,j

Γi,j

n

Figure 3.2: Cell Ωi and one of its neighbors Ωj , where pi and pj are the respective cell averaged
pressures and πi,j is the pressure at the face centroid xi,j .

scheme uses two ”points” (one in each of two adjacent cells) to compute the flux across an
interface. We need to compute the flux across each face of cell Ωi

vi,j =

∫
Γi,j

−
(
K

µ
∇p
)
· n ds. (3.26)

Because the grid is assumed to match, we know that each pair of twin half-faces have
equal areas Ai,j = Aj,i but opposite-directed normals ni,j = nj,i. Using the midpoint
rule1 with one (sub)interval, the integral (3.26) can be approximated as

vi,j ≈ −Ai,j
(
K

µ
∇p
)

(xi,j) · ni,j . (3.27)

1The midpoint rule approximates an integral
∫ b
a f(x) dx as b−a

n

(
f(x∗

1) + ...+ f(x∗
n)
)
, where n is the

number of subintervals that the interval [a, b] is divided into and x∗
j are the midpoints of each subinterval.

28

3.3 Two-point flux approximation

We need to discretize the pressure gradient. A possible approach is to use a one-sided
finite difference that expresses the gradient by the difference between the pressure at the
face centroid and the cell averaged pressure inside Ωi. However, there is no particular point
value associated to the cell averaged pressure pi, so we must reconstruct it. By assuming
linear pressure inside each cell, the pressure calculated at the cell center must equal the
average pressure pi. Then

∇p(xi,j) ≈
(πi,j − pi)
|~ci,j |

~ci,j
|~ci,j |

=
(πi,j − pi)
|~ci,j |2

~ci,j ,

where ~ci,j is the vector pointing from the cell center of Ωi to the face centroid of Γi,j .
Thus, the flux can be approximated as follows

vi,j ≈ −Ai,j
Ki

µ

(πi,j − pi)
|~ci,j |2

~ci,j · ni,j (3.28)

= Ai,j
Ki

µ

(pi − πi,j)
|~ci,j |2

~ci,j · ni,j , (3.29)

where Ki is the permeability (tensor) in Ωi. We define the one-sided transmissibilies, or
half-transmissibilities, as

Ti,j = Ai,j
Ki

µ

~ci,j · ni,j
|~ci,j |2

associated with half-face Γi,j (3.30)

The two half-transmissibilities, Ti,j and Tj,i, each depend solely on the geometrical grid
properties and the permeability tensor of a single cell (Ωi and Ωj , respectively). To find
the two-sided transmissibility, we assume continuity of the pressures at all face centroids
and of the fluxes across all faces, i.e., πi,j = πj,i = πij and −vj,i = vi,j = vij . From
Equation (3.29) we have that vi,j = Ti,j(pi − πi,j) and vj,i = Tj,i(pj − πj,i), which
become

T−1
i,j vij = pi − πij and − T−1

j,i vij = pj − πij .
Subtracting one from the other yields(

T−1
i,j + T−1

j,i

)
vij = T−1

i,j vij + T−1
j,i vij

= (pi − πij)− (pj − πij)
= pi − pj .

Finally, we have arrived at the TPFA scheme

vij =
(
T−1
i,j + T−1

j,i

)−1
(pi − pj) = Tij(pi − pj), (3.31)

where Tij is the (two-sided) transmissibility associated with the connection between cells
Ωi and Ωj . Transmissibility is a measure of the connection strength between two neigh-
boring grid cells and contains information about permeability and the grid geometry. By
inserting this scheme (3.31) back into Equation (3.25) we get∑

j

vij =
∑
j

∫
Γij

−
(
K

µ
∇p
)
· n ds =

∫
∂Ωi

−
(
K

µ
∇p
)
· n ds =

∫
Ωi

q dx

⇒
∑
j

Tij(pi − pj) = qi, ∀ Ωi ⊂ Ω. (3.32)

29

Chapter 3. Discretizations and numerical methods

Let us write out Equation (3.32) for cell Ωi:

qi = vii1 + vii2 + ...+ viim

= Tii1(pi − pi1) + Tii2(pi − pi2) + ...+ Tiim(pi − pim)

=

 m∑
j=1

Tiij

 pi︸ ︷︷ ︸
diagonal

−Tii1pi1 − Tii2pi2 − ...− Tiimpim︸ ︷︷ ︸
off−diagonal

,

where Ωj for j = i1, ..., im are all the cells adjacent to Ωi. We see that the TPFA dis-
cretization of the pressure equation (3.23) can be represented as a linear system of equa-
tions, Ap = q, where the matrix entries are of the form

ai,k =


∑
j Tij , if k = i

−Tik, if k 6= i

0, otherwise.
(3.33)

For logically Cartesian2 grids in 1D, 2D and 3D the matrix A will be tridiagonal (three
diagonals), pentadiagonal (five diagonals) and heptadiagonal (seven diagonals), respec-
tively. We ensure positive definiteness of A by adding a positive constant to entry a1,1

such that p1 = 0

Advantages of the TPFA scheme:

• It is easy to implement

• It yields sparse linear systems that are relatively cheap to invert

• It produces monotone pressure approximations, thus robust

Disadvantages:

• If the grid does not satisfy K-orthogonality (i.e., conditionally consistent), TPFA
will fail in providing convergent solutions for increased grid resolutions

Linear systems arising from TPFA discretization of pressure equations, such as Equations
(2.24) and (3.23), are always symmetric positive definite (SPD). Many numerical methods
benefit greatly from the coefficient A, of linear system Ax = b, being SPD. Among other
things, if A is SPD we know that any local solution of the system is also a global solution.

3.4 Iterative methods and preconditioning
As the reader may know, iterative methods aim to solve mathematical problems by gener-
ating a sequence of improving approximate solutions until certain termination criteria are

2Grids that can be viewed as embedded in a Cartesian-like box are called logically cartesian, e.g. a circular
or L-shaped domain.

30

3.5 Preconditioning

met and convergence is achieved. However, convergence is rarely guaranteed, and even if
a method does converge, it can do so very slowly. This depends heavily on the nature of
the coefficient matrix. For a standard linear system, Ax = b, the approximate solution
at the n’th iteration is denoted xn. We want that lim

n→∞
xn = x∗, but it is sufficient that

the error between approximation and exact solution lies within some small tolerance, in
order to achieve convergence. However, the norm of the error, ‖en‖ = ‖x∗ − xn‖, is
often difficult to measure. A common alternative is to consider the norm of the residual,
‖rn‖ = ‖b−Axn‖. The error and the residual are related in the following way:

rn = b−Axn (3.34)
rn = Ax∗ −Axn (3.35)
rn = A(x∗ − xn) (3.36)
rn = Aen (3.37)

3.5 Preconditioning

Preconditioning is a way of transforming a linear system into one that is likely easier to
solve with an iterative method, without affecting the solution. A typical goal by precondi-
tioning is to reduce the condition number of the problem at hand. That is, if a matrix P is
a preconditioner of a matrix A, then P−1A has a smaller condition number than A. There
are many kinds of condition number, but one definition is that the condition number is a
measure of how much a slight change in the input argument of a function will affect the
output value. For a linear system Ax = b, the question is how much small perturbations
in the RHS vector b will affect the solution x. If, for instance, a row/column of A is close
to be a linear combination of the other rows/columns, then the condition number of A will
be large, and even tend towards infinity, as the matrix is nearly singular. A singular matrix
will have a condition number that tends to infinity. Convergence of the preconditioned
system should be much faster than that of the original system. Other requirements for
the preconditioning matrix P is that it itself is non-singular, that it is an easily invertible
approximation to A, and that operations with P−1 are inexpensive to perform.

A simple way of constructing a preconditioner is by performing an incomplete LU factor-
ization (ILU) on A, from which we obtain A = LU −R. For preconditioning purposes
we choose P = LU and use it as preconditioner in another iterative solver (for instance,
CG or GMRES). There are three different ways of applying a preconditioner to a system

From the left: P−1Ax = P−1b

From the right: AP−1y = b; x = P−1y

Centrally/split: (P = LU;) L−1AU−1y = L−1b; x = U−1y

31

Chapter 3. Discretizations and numerical methods

3.6 Smoothers
Relaxation processes are inexpensive, approximate iterative methods for solving systems
of equations (both linear and non-linear). Such methods are typically used for precon-
ditioning Krylov solvers, which we will get back to in Section 3.7. Smoothers is an-
other name for relaxation processes, and is the convention we will stick to in this thesis.
Smoothers are a central ingredient in multigrid theory. Smoothing n times means taking
n iterative steps (i.e., finding xn) in order to ”smooth out” the error in the solution at
each iteration. Typical examples of smoothers are the Jacobi method and the Gauss-Seidel
method, as well as variants of Incomplete LU factorization. These will be presented briefly
below.

One advantage to smoothers is that they are very efficient for high-oscillatory (and local)
error. On the other hand, convergence is slow when the error is a trend (i.e., repeating).

3.6.1 Jacobi method
Split A into its diagonal D and the remainder R, so that A = D+R. Note that D is easy
to invert and rewrite the linear system

Ax = b ⇒ (D + R)x = b ⇒ D−1(D + R)x = D−1b

⇒ x + D−1Rx = D−1b ⇒ x = D−1(b−Rx)

⇒ xn+1 = D−1(b−Rxn). (3.38)

where xn is the n’th iteration We denote by x∗ the exact solution of this fixed point
scheme. Equation (3.38) is the Jacobi method. From here one can obtain the weighted
Jacobi method, see Equation (3.39), by introducing a relaxation parameter ω,

xn+1 = ωD−1(b−Rxn) + (1− ω)xn. (3.39)

3.6.2 Gauss-Seidel method
Devide A into its upper triangular part U and its strictly lower triangular part L, so that
A = L + U. Triangular matrices are easily inverted using backward substitution. Again,
we rewrite the system to obtain the Gauss-Seidel method:

Ax = b ⇒ (L + U)x = b ⇒ L−1(L + U)x = L−1b

⇒ x + L−1Ux = L−1b ⇒ x = L−1(b−Ux)

⇒ xn+1 = L−1(b−Uxn). (3.40)

Gauss-Seidel performs better than Jacobi, but is also more expensive. An advantage to
Jacobi and Gauss-Seidel smoothers is that they are problem-independent and easy to im-
plement.

32

3.7 Krylov spaces and Krylov solvers

3.6.3 Incomplete LU factorization

Another popular choice for smoothing is incomplete LU factorization (ILU) [15, p.307-
319]. From this process we obtain A = LU − R, with matrices L and U being sparse
lower and upper triangular, respectively, and R being the residual of the factorization.
Standard LU factorization demands LU = A, but in incomplete LU factorization it is
enough that LU ≈ A. The system is then solved as follows

Ax = b ⇒ (LU)x = b ⇒ L(Ux) = b

⇒ Solve Ly = b (3.41)
⇒ Solve Ux = y (3.42)

There are many ”types” of ILU factorization. The simplest case is called zero fill-in ILU
factorization, abbreviated ILU(0), which requires L and U to have the same sparsity pat-
tern as A. If we choose the factorization such that L and U have the same non-zero struc-
ture as the lower and upper triangular parts of A, respectively [15]3, we will find that the
product LU typically ends up with more non-zero entries than A has. The phenomenon
where LU factors of a sparse matrix are less sparse (i.e., more dense) than said matrix
is referred to as fill-in. The extra entries come in the form of additional diagonals in the
lower and upper parts of LU and are called fill-in elements. ILU factorizations allowing
fill-in are called level-based and are abbreviated ILU(l), with l being the level of fill. That
is, ILU(l) allows L and U to have the same sparsity pattern as Al+1, which is denser than
A but still sparse. Consequently, level-based ILU factorizations are more accurate than
ILU(0), as they among other things converge in fewer iterations and are generally more
robust. However, they are also more expensive when it comes to computing the factors.
Despite this fact, the higher accuracy is still favorable. Standard LU factorization can be
thought of as ILU(∞).

3.7 Krylov spaces and Krylov solvers

The system in question may have been preconditioned beforehand, in which case we
can view A and b as the ”updated” versions of their original selves (A := P−1A,
b := P−1b). An iterative method is convergent if lim

n→∞
xn = x∗. Most likely x0 6= x∗,

so we look at the initial residual r0 = b − Ax0, which is the error in Ax0 = b. For
each iterate, xn, the corresponding residual is given by rn = b−Axn. Convergence can
therefore also be seen as lim

n→∞
||rn|| = 0.

Recall from Section 3.6 the Jacobi iteration

xn+1 = D−1(b−Rxn) or Dxn+1 = −Rxn + b, (3.43)

3If L is unit lower triangular or U is unit upper triangular (that is, only 1’s on the diagonal), the decomposition
is unique.

33

Chapter 3. Discretizations and numerical methods

where A = D + R. We may precondition our system by use of the Jacobi iteration, for
which a natural choice of preconditioner is P = D. Noting that −R = D−A, Equation
(3.43) can be reformulated as follows

Dxn+1 = (D−A)xn + b

⇐⇒ Pxn+1 = (P−A)xn + b (3.44)
⇐⇒ Pxn+1 = Pxn + b−Axn

⇐⇒ Pxn+1 = Pxn + rn

⇐⇒ xn+1 = xn + P−1rn (3.45)

The preconditioned iteration corrects the iterate xn by the vector P−1rn. Equation (3.45)
is a general ordinary preconditioned iteration and can also be obtained with different
choices of matrix decomposition, for instance the Gauss-Seidel method.
Krylov solvers are often preconditioned, as it is a way of decreasing the number of itera-
tions needed for convergence, but not always. For simplicity and without loss of generality,
let us begin by assuming the linear system Ax = b has been preconditioned beforehand
with P = I (the identity matrix) and setting the initial guess to be x0 = b. Notice the
pattern that unravels when we take a few steps of Equation (3.44)

x1 = (I −A)b + b = 2b−Ab

x2 = (I −A)[2b−Ab] + b = 3b− 3Ab + A2b

x3 = (I −A)[3b− 3Ab + A2b] + b = 4b− 6Ab + 4A2b−A3b

The approximate solutions xn can be written as linear combination of the vectors Aib,
for 0 ≤ i ≤ n. This leads to the definition of Krylov (sub)spaces.

Definition 3.7.1 (Krylov subspace). Given a non-singular matrix A ∈ CN×N and a vector
y 6= 0 ∈ CN , the m’th Krylov (sub)space generated by A from y is

Km := Km(A,y) := span(y,Ay, ...,Am−1y). (3.46)

Thus, in the case above, we could simply write xn ∈ Kn+1(A,b). However, another way
of writing this is xn ∈ b +Kn+1(A,b(I−A)), which will be explained shortly.

To illustrate the extension to the general case, consider again Ax = b preconditioned
by P = I, but this time let x0 be just some initial guess. Writing out the first three steps
of Equation (3.44) gives:

x1 = x0 + b−Ax0 = x0 + r0

x2 = x1 + b−Ax1 = [x0 + r0] + b−A[x0 + r0] = x0 + 2r0 −Ar0

x3 = [x0 + 2r0 −Ar0] + b−A[x0 + 2r0 −Ar0] = x0 + 3r0 − 3Ar0 + A2r0

From this we see that xn ∈ x0+Kn(A, r0). If nothing is assumed about the preconditioner
P then, strictly speaking, we get xn ∈ x0 + Kn(P−1A,P−1r0), but one can also define
A := P−1A as previously mentioned.

34

3.7 Krylov spaces and Krylov solvers

Lemma 3.7.1 (Grade of y). The grade of y is a non-negative integer ν := ν(y,A) such
that

1. dim Km(A,y) = min(m, ν),

2. ν = min{m |A−1y ∈ Km(A,y)}.

Corollary 3.7.1.1. Kν(A,y) is the smallest A-invariant subspace that contains y.

By A-invariant we mean that ∀ z ∈ Kν(A,y), the matrix-vector product Az ∈ Kν(A,y)
too.

Corollary 3.7.1.2. Let x∗ be the solution of Ax = b, x0 the initial approximation of x∗,
r0 = b−Ax0 the corresponding residual, and ν = ν(r0,A). Then

x∗ ∈ x0 +Kν(A, r0).

The following definition of Krylov space solvers is taken from one stated by Martin H.
Gutknecht [8] in a seminar on applied mathematics:

Definition 3.7.2 (Krylov space solvers). A standard Krylov space methods for solving a
linear system Ax = b, i.e., a Krylov space solver, is an iterative method starting from
some initial approximation, x0, and the corresponding residual, r0 = b − x0, and gener-
ating iterates xn for all, or at least most, n, until it possibly finds the exact solution, such
that

xn − x0 = qn−1(A)r0 ∈ Kn(A, r0).

Here, qn−1 is a polynomial in A of exact degree n − 1. For some n, xn may not exist or
qn−1 may have lower order.

Krylov space methods are among the most important classes of numerical methods to this
day. One of many reasons for this is the central role they play in the solving of sparse linear
systems. Some examples that we will present briefly below are the Conjugate Gradient
method (CG) and the Generalized Minimum Residual Method (GMRES).

CG is a numerical method for solving symmetric positive definite (SPD) matrices.This
method is a realization of an orthogonal projection technique onto Krylov subspaceKm(A, r0),
for initial residual r0. Further details can be found in Y. Saad’s book ”Iterative Methods
for Sparse Linear Systems” [15, p.196]. The BiConjugate Gradient stabilized method
(BiCGstab) is a variant of CG that can be seen as a combination of GMRES and the Bi-
Conjugate Gradient method (BiCG). BiCGstab(l) is a generalization of BiCGstab.

GMRES is an iterative method for the numerical solution of non-symmetric linear
systems. It is a projection method based on taking K = Km and L = AKm, where
v1 = r0

‖r0‖2
. This technique minimizes the residual norm over all vectors in x0 + Km.

Further details about GMRES can also be found in Y. Saad’s book [15, p.171]. Two
variants of GMRES are the flexible GMRES (FGMRES) and LGMRES(m, l), which uses
the last l error approximations in addition to a Krylov subspace of dimension m.

35

Chapter 3. Discretizations and numerical methods

36

Chapter 4
Multigrid methods

When applied to linear systems of increasing size arising from discretized PDEs, the con-
vergence of preconditioned Krylov subspace methods will tend to slow down considerably
[15]. As a result of this, as well as of the fact that the sheer problem size causes high in-
crease in the number of operations necessary at each step, the efficiency becomes severely
impaired. This is where multigrid (MG) methods come in. In theory, multigrid methods
can achieve convergence rates that are independent of the mesh size and are, in general,
superior performance-wise compared to standard preconditioned Krylov methods. How-
ever, where the latter type of methods attempts to be general-purpose, multigrid methods
may require implementations that are problem-specific, in which case they can prove both
complicated and time-consuming.

To understand some of the motivation for multigrid methods, we will briefly explain
about error modes. Error modes are the eigenvectors of an iteration matrix which corre-
spond to large eigenvalues. A (normal) mode is a standing wave state of excitation, in
which all the components of a system are oscillating at one common frequency (though
with different amplitude), giving the impression of a ”flip-flopping” sine wave. To illus-
trate, picture the string of a guitar being plucked and vibrating up and down – that is what
we call a (fundamental) normal mode. When analyzing multigrid for some system of equa-
tions, Ax = b, it is common to begin by considering the case Ax = 0, where we know
that the (trivial) solution is x = 0. Expressing the initial iterate, x0, using sine modes of
the form e(x) = sin(kπx), with different values for the wave number k, we will find that
the solution is equal to the error. That way, we can actually observe the error, not just the
residual error.

The different sine modes have the same norm but they become increasingly oscillatory
as k increases. Smoothing is effective for high-frequency errors (that is, large k), but
becomes less effective as the frequency decreases.

37

Chapter 4. Multigrid methods

4.1 Brief outline of the idea
Using relaxation techniques and exploiting discretizations with different grid sizes, multi-
grid methods aim to obtain optimal convergence for a given problem. Despite converging
slowly for certain problems, relaxation-type iterative processes can be quite effective at
damping error or residual components associated with oscillatory/high-frequency modes.
On the other hand, the same processes will struggle when attempting to dampen compo-
nents associated with smooth/low-frequency modes. This is the cause of the slow-down
that can be observed in basic iterative schemes such as relaxation methods. However,
many of these low-frequent modes can be mapped naturally into high-frequent modes on
a coarser grid, where relaxation once again can dampen them effectively. It is from here
the idea of moving from fine (original) grid to coarser grids comes, creating a hierarchy of
grids, in order to eliminate all error components. At a coarse enough grid, we are able to
solve the problem exactly and, moving back up, use this solution to find the solutions on
the finer grids. For more details, the reader is referred to Yousef Saad’s book [15].

In short, the multigrid idea can be summarized as follows [13]:

1. Generate a set of successively coarsened levels

2. Generate prolongation (interpolation) and restriction operators to map between lev-
els

3. Using some cycling strategy, move between levels while applying approximate solvers
at each level

4. Solve the coarsest level exactly

5. Check convergence and if necessary go back to step 3

4.2 Ingredients in multigrid
We will now go through some of the more important ingredients and aspects of multi-
grid. That includes coarse grids, interpolation and restriction, multigrid cycles and their
computational cost.

4.2.1 Coarser grids and interpolation
The idea behind multigrid is to deal with each component of error at a level where it ap-
pears high-frequent to the smoother. The approach is to recursively coarsen the grid until
the coarsest grid has only one single cell. E.g., for a 32× 32 grid, we coarsen to 16× 16,
then to 8× 8, 4× 4, 2× 2 and finally 1× 1 – a total of six grids (see Figure (4.1)). Often,
we skip the coarsest of these levels, because we have reached a sufficiently coarse level
(where the problem can be solved exactly). Typically we look at some multigrid level,
l = m, or perhaps at a series of multigrid levels, m,m − 1, ..., where coarser levels are
associated with lower numbering. When considering only two consecutive levels at a time,
it is customary to use indices h and H (instead of m and m − 1) to distinguish fine and

38

4.2 Ingredients in multigrid

relax relax

relax relax

relaxrelax

relax

restrict

pr
ol

on
grestrict

restrict

pr
ol

on
g

pr
ol

on
g

l = 1

l = 2

l = 3

l = 4

2 x 2

4 x 4

8 x 8

16 x 16

Figure 4.1: Grids of different levels of coarsening, excluding the finest (32 × 32) and the coarsest
(1 × 1) level.

coarse level quantities, respectively.

Interpolation techniques

In order to move up and down between different levels we define a prolongation operator
and a restriction operator. The prolongation operator IhH (also referred to as simply inter-
polator) moves from a coarse grid to a finer grid, while the restriction operator IHh moves
from a fine grid to a coarser grid. Let xh and xH denote the fine solution and the coarse
solution, respectively, with

xh = Ih
HxH, xH = IHh xh.

By default we assume that these operators are each other’s transpose, i.e., (IhH)T = IHh ,
unless otherwise noted. Furthermore, we require two things

1. The restriction operator from a fine grid with M cells to a coarse grid with N cells
(if the grid data is on column vector form) will be an M ×N matrix. The entry with
coordinates (i, j) corresponds to the relative weight that fine cell i receives from
coarse cell j.

2.
∑
j∈(1,N)(I

h
H)ij = 1, ∀ i ∈ (1,M) (partition of unity)

The coarse scale system will be constructed using the Galerkin principle

AH = IHh AhI
h
H = (IhH)TAhI

h
H ,

where AH and Ah are the coefficient matrices obtained from the coarse grid and the fine
grid, respectively.

39

Chapter 4. Multigrid methods

The term coarsening is used for this process of picking the coarse grid and defining inter-
polation [1].

4.2.2 Multigrid cycles and computational cost
Define:

• S(Ah,bh,xh): a single smoother cycle applied to initial guess xh

• dh = bh −Ahxh: the defect

Multigrid cycle algorithm

Denote the multigrid cycle function by ”mgc”. The multigrid cycle algorithm is as fol-
lows:

f u n c t i o n mgc (Ah,bh,xh, l, γ, νpre, νpost)
f o r i← 1, ..., , νpre

xh ← S(Ah,bh,xh)
end
dh ← bh −Ahxh
dH ← IHh dh
AH ← IHh AhI

h
H

cH ← 0
i f l = 0

cH ← A−1
H dH

e l s e
f o r i← 1, ..., γ

cH ← mgc (AH ,bH ,xH , l − 1, γ, νpre, νpost)
end

end
xh ← xh + IhHcH
f o r i← 1, ..., νpost

xh ← S(Ah,bh,xh)
end

end

The multigrid cycle algorithm begins by pre-smoothing the approximate solution. Then
the defect is calculated and restricted to the coarser scale. Now we can obtain the coarse
system. At the coarsest level the system is solved exactly. For the other levels we solve
the defect approximately and precede to the next level. Then the solution is updated using
correction, before it is post-smoothed as the last step of the algorithm.

The first and last for-loops are for pre- and post-smoothing, respectively. The cycle
index is denoted by γ and indicates the type of cycle. We will limit ourselves to V cycles
(γ = 1), W cycles (γ = 2) and F cycles (a hybrid between W and V cycles). The basic

40

4.3 Types of multigrid

structure of these cycles can be found in [1, p.21]. The choice of cycle can drastically
alter the convergence. A high cycle index tends to give faster convergence, but is more
expensive because of the cost of extra computational effort.

We assume that multigrid cycles are best treated recursively, and set up the cost for each
level:

Wl+1 = W l
l+1 + γlWl, with W1 = W 0

1 +W0 (4.1)

where

• γl: cycle index at level l (if the cycling strategy is constant, then γl = γ

• Wl: solution of the defect equation a level l

• W k
l+1: work done going from level l + 1 to level l (including smoothers at level

l + 1)

Recursively, we can rewrite this as

Wl+1 = W l
l+1 + γl(W

l−1
l + γl−1Wl−1) = W l

l+1 + γlW
l−1
l + γlγl−1Wl−1

Assuming constant cycling strategy, this becomes

Wl+1 = W l
l+1 + γW l−1

l + γ2Wl−1 (4.2)

= W l
l+1 + γW l−1

l + γ2(W l−2
l−1 + γWl−2) (4.3)

= W l
l+1 + γW l−1

l + γ2W l−2
l−1 + γ3Wl−2 (4.4)

The sum over all levels for a cycle with m levels in total is

Wm =

m∑
i=1

γm−iW i−1
i + γm−1W 0

1 (4.5)

Let Nl be the number of nodes at level l and d be the number of dimensions. Assuming
that the work is a (small) constant multiplied by a number of nodes (i.e., Wl ≤ cNl) and
letting the coarsening be done by a factor of 2 in each spatial direction (i.e.,Nl = Nm

2d(m−l)),
the cycle cost can be evaluated as

Wm = cNm

m∑
i=1

γm−i

2d(m−i) + γm−1W 0
1 . (4.6)

where the last term is negligible.

4.3 Types of multigrid
The basic types of multigrid include full multigrid (FMG), geometric multigrid (GMG) and
algebraic multigrid (AMG) Due to the fact that the codes for the upcoming experiments
only deploy AMG, we will not go into detail about the two other types. Nevertheless, a
short review of the ideas behind FMG and GMG will precede the introduction to AMG.

41

Chapter 4. Multigrid methods

Full multigrid

Using the multigrid cycle algorithm above in a nested setting, the algorithm begins at the
coarsest level in the grid hierarchy (where iterations are expensive) and works its way up
to the finest level.

Geometric multigrid

Geometric multigrid applies only to systems obtained from the discretization of PDEs.
Here, the grid hierarchy is defined based on the geometrical problem. Then the problem
is discretized on this series of grids. (GMG can be applied to both implicit and explicit
solvers.) When working with unstructured grids, this approach becomes very challenging.
In the presence of anisotropy, coarsening should be ”aligned” with the strongest interface
connnections, by which we mean the direction in which the permeability is largest. This
makes the multigrid converge better.

4.3.1 Algebraic multigrid

The approach in algebraic multigrid (AMG) is based on the algebraic system Ax = b,
rather than on the physical PDEs on a geometry where we have the notion of grids (such
as in GMG). AMG can be applied to any system of equations. This type of multigrid
was developed to solve matrix equations using the principles of usual multigrid methods,
but can be used in many kinds of problems where the application of standard multigrid
is difficult or impossible. In AMG the multilevel hierarchy is constructed without using
any information about the PDE or the geometrical problem. Instead of solving on coarser
and coarser grids, we generate a sequence of smaller and smaller systems of equations
which will essentially play the same role as coarse grid equations. Among other things,
AMG should therefore work better for complicated geometries (like unstructured grids)
and highly anisotropic problems than does GMG.

The AMG approach is to split the grid into two parts at each level: ”fine cells” (F) and
”coarse cells” (C), with F ∩ C = Ø. All cells start off as ”undecided” (U). Two require-
ments for the coarsening are:

1. The number of coarse cells at each level should be limited and decrease for ev-
ery coarser level, in order to reach the sufficiently coarse level (where all cells are
deemed ”fine”) as fast as possible.

2. The distribution of coarse cells should be relatively uniform, so that every fine cell
is close enough as to be associated with a coarse cells. The reason why will soon
become apparent.

A central idea of AMG coarsening is to split the matrix connections (from A) into strong
and weak couplings based on their connection strengths. This is to deal with problems with
varying coefficient matrix due to anisotropy and/or a complicated grid. Note that there can
be a coupling between two cells without these cells being neighbors in a physical sense.

42

4.3 Types of multigrid

Couplings have to do with how cells are connected to each other with respect to the non-
zero entries of A, which might be easier to see by looking at the graph of A. From now
on, the term ”neighbors” is used in a graph sense.

Connections

A strong connection from cell i to cell j (i.e., i strongly connected to j) is defined by

|aij | ≥ εstr max
k 6=i
|aik| (4.7)

for some fixed εstr ∈ (0, 1). A reasonable default value is εstr = 0.25, which is for
instance used for Ruge-Stüben coarsening (the ”standard” coarsening). A cell might be
strongly connected to another cell without this being true in return. Define:

• Ni: index set of all couplings for cell i

• Si = {j ∈ Ni | i strongly connected to j}: all neighbors, j, of a cell i that i is
strongly connected to

• STi = {i ∈ Sj}: all neighbors, j, of cell i that see i as a strong neighbor (i.e., are
strongly connected to i)

• λi = |STi ∩ U |+ 2|STi ∩ F |: measure of importance

The measure of importance for a particular cell increases for every undecided or (espe-
cially) fine neighbor that is strongly connected to that cell. At each step, this measure is
calculated for every cell, and the cell iwith largest λi is then added to coarse set C. Simul-
taneously, any cells that depend strongly (j ∈ STi) on this coarse cell, are added to the fine
set F . This process is repeated until all cells have measure of importance equal to zero.
The relation between the fine grid (FG) and the coarse grid (CG)1 satisfies the following:

• Each cell in FG belongs to one, and only one, block in CG

• Each block in CG consists of a connected subset of cells from FG

• CG is defined by a partition vector, π, where π(i) = j if cell i in FG belongs to
block j in CG

As mentioned above, the standard type of coarsening is the Ruge-Stüben coarsening [16,
p.131]. Other popular choices are aggregation, with or without smoothed iterates [7].

Interpolation

In geometric context smooth (or low-frequent) error modes are defined in terms of spatial
variations, whereas in algebraic context ”smooth error” is defined to be error where the
smoother has poor convergence properties. The latter generally has very small residual
compared to the magnitude of the error itself, i.e., ||Ae|| � ||e||, which is approximately

aiiei +
∑
j∈Ni

aijej ≈ 0 (4.8)

1CG in this setting must not be confused with the Conjugate Gradient method.

43

Chapter 4. Multigrid methods

for very smooth error. Our goal is to interpolate smooth error modes as exactly as possible
between levels, such that they can be efficiently dealt with at the level where they appear
non-smooth. To be able to interpolate correctly from coarse to finer grid it is important
that no additional errors are introduced in the process. By defining the following

• wij : interpolation weights

• Pi = C ∩Ni: interpolatory set

we can express the interpolation formula

ei =
∑
k∈Pi

wikek, i ∈ F. (4.9)

Direct interpolation accounts for strong connections to coarse cells only, and calculates
the interpolation values ei by splitting the sum in Equation (4.8) into coarse and non-
coarse variables and assuming the value over the weak connections to be the value at the
node itself. An improvement of this technique is standard interpolation, which accounts
for strong connections to both coarse and fine cells. It is derived similarly to direct inter-
polation, except for the elimination of all fine strong connections beforehand, using

ej = −
∑
k∈Nj

ajkek
ajj

, j ∈ F si . (4.10)

Aggregation-based algebraic multigrid

Also known as agglomeration-based algebraic multigrid, this is an alternative approach to
AMG that exploits the cheapness and simplicity of constant interpolation,

(IhH)ij =

{
1, if fine cell i is inside coarse cell j
0, otherwise,

in the normally expensive/slow setup phase. Instead of distinguishing between fine and
coarse unknowns, the unknowns are aggregated into categories so that a single coarse
unknown corresponds to a subset of fine cells. An example is AGMG, where the new
”measure of importance” is λi = |Si ∩ U | for i ∈ U , which is the number of undecided
neighbors that cell i is strongly connected to. For every step the algorithm selects the
cell with the smallest measure, finds the strongest connection from that cell and, if that
connection is deemed ”strong”, aggregates those two cells. Moreover, if the next strongest
connection is not deemed ”strong”, the cell in question is defined as a singleton.

44

Chapter 5
Preparation and experimental set-up

Having introduced the basics, we are now ready to take a look at what makes up the dif-
ferent iterative solvers we are going to test. Following this is a brief overview of the test
models on which the experiments will be conducted. Then we will explain the proce-
dure of selecting solvers (or, combinations) for further analysis. Lastly, we ”warm up” to
the upcoming experiments by looking at some of the results obtained from applying all
combinations on the different models.

5.1 The iterative solvers
For solving the linear systems that arise from the TPFA discretization of different model
problems, we use the AMG library called AMGCL. For the parallelized parts we have set
2 as the maximum number of computational threads. As mentioned in the introduction, we
will hand AMGCL four things in addition to the linear system: a preconditioner, a Krylov
subspace solver, a coarsening strategy and a smoother.

The solver outputs three things: the solution x, the residual err and the number of iter-
ations iter used to reach this solution. Essentially, each combination of one precondi-
tioner, one Krylov solver, one type of coarsening and one smoother is one linear iterative
solver. The choices are as follows:

45

Chapter 5. Preparation and experimental set-up

Preconditioners:

1. Relaxation

2. Algebraic multigrid

Krylov subspace solvers:

1. Conjugate gradient, CG [15, p.196]

2. Biconjugate gradient stabilized, BiCGstab [15, p.244]

3. BiCGstab(l)

4. Generalized minimal residual, GMRES, for solving large sparse non-symmetric lin-
ear systems [15, p.171]

5. A modified variant of GMRES, LGMRES(m, l) [3]

6. Flexible GMRES, FGMRES [15, p.287]

7. Induced dimension reduction method, IDR(s)

Coarsening strategies:

1. Ruge-Stüben coarsening (R-S) [16, p.131]

2. Aggregation (aggr.)

3. Aggregation with smoothed iterates (sm. aggr.) [7]

4. Smoothed aggregation with energy minimization (sm. aggr. emin.)

Smoothers:

1. SPAI0 [10]

2. SPAI1

3. Gauss-Seidel (G-S)

4. ILU(0) [15, p.307]

5. ILU(l), level-based [15, p.311]

6. ILUT, threshold-based [15, p.321]

7. Damped Jacobi (DJ)

8. Chebyshev

The maximum number of iterations was set to 5000. Any combinations that exceeded 5000
iterations were judged as ”not converging”. Likewise, if combinations reached a solution
in less than 5000 iterations, but the residual b − Axi was greater than or equal to 10−6

(which was the chosen tolerance), they were also judged as ”not converging”. Whenever
relaxation is chosen as preconditioner, no multigrid is used in the computations.

46

5.2 The reservoir models

5.2 The reservoir models
We are now almost ready to put our solvers to the test. In this section we will define and
explain the models we will base our experiments on.

5.2.1 Simple case
As a warm-up of sorts to the more interesting cases, we consider a regular grid that is
m×m in the horizontal xy-plane and has height h. The height is typically set to equal 1,
as m is the variable which this model is mainly being tested for. The rock consists of void
only (ϕ = 1) and is given a homogeneous permeability of 1 D. The model has an injection
well in one corner and a production well in the diagonally opposite corner, both vertical.
The injection well is rate-controlled, with an injection rate of 1 m3/s (signifying the volume
injected per second). The production well is controlled by bottom-hole pressure (BHP)
with a value set to 0 Pa.

5.2.2 SPE10
The SPE10 benchmark has a regular grid, with dimensions 60×220×85, that is, 85 layers
with 60 blocks in x-direction and 220 blocks in y-direction each. The challenging part is
the permeability. The SPE10 reservoir consists of two formations: Tarbert (layers 1-35)
and Upper Ness (layers 36-85). Both formations exhibit large permeability variations, but
in addition Upper Ness has much more heterogeneous structure. The porosity field shows
strong correlation to the permeability, with 2,5% of the blocks being considered inactive as
they have zero porosity and, thus, do not transmit any fluids. The model has four vertical
production wells, one in each corner, and one vertical injection well in the center. The
center well injects water at a rate of 5000 stb/d, and the reservoir is produced from the
corner wells with a BHP of 4000 psi.

5.2.3 Olympus
The Olympus model is a synthetic reservoir model developed as a benchmark study for
field development optimization, satisfying a number of complexity criteria. It is 9 × 3
km, bounded by a boundary fault on one of its sides, and 50 m thick. The model has
been divided into 16 horizontal layers and contains approximately 341 728 grid cells in
total, 192 750 of which are active. Further details can be found in this document[6]. A
collection of 50 different Olympus cases (so-called realizations) was generated as a part
of the optimization challenge, though only a selection of these will be tested in this thesis.
All realizations share the same grid, faults and oil-water contact. The difference from
realization to realization lies within the four uncertain properties

1. Porosity

2. Permeability

3. Net-to-gross (NTG)

4. Initial water saturation

47

http://www.isapp2.com/downloads/olympus-reservoir-model.pdf

Chapter 5. Preparation and experimental set-up

5.3 Experimental procedure
Most of the code, especially the heavy kind, was run on the NTNU computing cluster
called Markov. Markov is used by many people and has 28 processors with 28 threads
each (two per core), a total of 784 threads. If there are not enough threads for all assign-
ments to be executed, some of them will have to be set on hold until more threads are
available. This kind of delay might affect the time used to run a program, but also the
number of iterations.

In the upcoming chapters we will consider two ”experiments” on which discussion and
conclusions will be based:

1. Run-time as a function of the number of grid cells

2. Mean values and corresponding standard deviations

Note that results, analysis and discussion will not be kept entirely separate. As we observe
behaviour in the results, it follows naturally to comment on these observations and, per-
haps, attempt to reflect on what might explain such behaviour. However, another chapter
will follow that is dedicated to discussion and overview.

The experiments are based on results1 obtained from running the main code on differ-
ent models with different properties and variables for all combinations. In order to make
the combinations more visible in plots, lines are drawn between result points that corre-
spond to the same Krylov solver (represented by different colors) and coarsening (repre-
sented by different line styles). The smoothers are placed on the x-axis, as the variable
against which time or number of iterations is plotted. Each run uses only one precondi-
tioner.

For the first experiment, each code scenario of interest will be executed multiple times,
out of which the results from the ”best run” (i.e., with the overall shortest run-times and
fewest iterations) are selected for plotting and analysis. An improvement to this approach
would be to look at the average run-time and average number of iterations over a larger
number of runs. However, what is important to us is not to obtain the exact values produced
by each solution method, but that the combinations2 and mldivide perform similarly
relative to one another. Information on which combinations perform well, which do not,
in what cases, and if they are better or worse than direct methods, is what we are interested
in.

The performance of combinations (i.e., of the iterative linear solvers we are testing)
will be based on their respective run-times and iteration counts. We seek iterative solvers
with traits such as short run-time and a low iteration count (i.e., convergence in few it-
erations), preferably both – this is deemed good performance. Each combination will be
judged on this basis and compared to the other combinations.

When processing the results and looking for trends and interesting behaviour we will have

1The results from a run on some test case is a list consisting of run-time, number of iterations, residual and a
flag evaluating convergence for every iterative solver that has been applied to that case.

2Recall that ”combination” is shorthand for ”combination of one preconditioner, one Krylov solver, one
coarsening and one smoother”.

48

5.4 Typical results from the different test models

to limit ourselves to a smaller subset of combinations, since there are 224 combinations in
total for each of the two possible preconditioners. Since combinations that do not perform
well in any way are not of much interest, except for when discussing which combinations
were not preferable and why, we will pick out a selection of the best-performing combina-
tions for every test case where this is necessary.

The selections will consist of combinations that performed well with respect to both
run-time (preferably, better than mldivide3) and number of iterations. The selection
process begins by looking at the results plots for run-time and number of iterations to
see which combinations converged fastest and/or after fewest iterations. I make a list of
the possible candidates, ranking them by their relative performance both time-wise and
iteration-wise, before summing up the scores. The better the combination, the smaller the
score. Needless to say, only combinations that have reached convergence are selected.

5.4 Typical results from the different test models

The simple case will only be considered in this section. It is included for purely illustration
purposes and as a ”warm-up” to the SPE10 model and the Olympus model.

5.4.1 Simple case

This model was tested for a handful of values of m ranging from 10 to 1000. Some tests
were merely for observational purposes, since small values of m often make for uninter-
esting and unrealistic cases and many of the larger values had problems with convergence.
The latter, however, may have to do with lack of computer power, not necessarily the
problem size itself.

We will include results for the runs where m = 100 and m = 500. Preconditioning
with relaxation proved to be inferior to AMG, as expected. Only a small subset of the
combinations with relaxation converged, and those that did required large numbers of
iterations. Because of this, only results for AMG as preconditioner will be plotted.
Figures 5.1 and 5.2 show that for the different smoothers, there are many combinations
that gives simmilar run-times. However, when it comes to iterations, ILUT, ILU(l) and
Chebyschev gives the best results. We also note that the solvers BiCGstab and LGMRES
in many cases performs quite poorly, not even reaching convergence. Note that for this
small case, mldivide has better run-time than all of the combinations.

For the 500×500 simple case, we obtain simmilar results as evident in figures 5.3 and
5.4, except that the overall run time is increased. We now also see that for the smoothers
ILU0 and ILU(l) some of the combinations outperform mldivide. We thus suspect (and
expect) that as the number of grid cells increases, the iterative solvers will perform better
than standard direct solvers.

3It does not make sense to attempt comparison between direct and iterative solvers based on number of
iterations, since ”iterations” are not defined for direct solvers. Therefore, the iterative solvers we are testing will
only be compared to mldivide with respect to run-time.

49

Chapter 5. Preparation and experimental set-up

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

2

3

4

5

6

7

8

9

ln
(#

 i
te

ra
ti
o

n
s
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

Figure 5.1: Simple case for a 100×100 grid: Number of iterations for all combinations with AMG
as preconditioner

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

-5

-4

-3

-2

-1

0

1

2

3

ln
(t

im
e

)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

mldivide

Figure 5.2: Simple case for a 100×100 grid: Run-time for all combinations with AMG as precon-
ditioner

5.4.2 SPE10
For the SPE10 model, we will consider the results from layers 1-35 for both precondition-
ers. When it comes to the number of iterations (see Figure 5.6), notice that with relaxation

50

5.4 Typical results from the different test models

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

2

3

4

5

6

7

8

9

ln
(#

 i
te

ra
ti
o

n
s
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

Figure 5.3: Simple case for a 500×500 grid: Number of iterations for all combinations with AMG
as preconditioner

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

-1

0

1

2

3

4

5

6

ln
(t

im
e

)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

mldivide

Figure 5.4: Simple case for a 500×500 grid: Run-time for all combinations with AMG as precon-
ditioner.

as preconditioner the results for all four types of coarsening overlap, as opposed to the
results from when AMG is used as preconditioner. As was explained in Section 4, the
coarsening strategies have to do with the process of moving between different multigrid

51

Chapter 5. Preparation and experimental set-up

levels. Whenever relaxation is used as preconditioner, none of the multigrid concepts ap-
plies and thus the combinations will perform independent of the choice of coarsening. It is
therefore enough to consider only one (arbitrary) coarsening strategy. The only thing that
might vary is the run-time, but this kind of variation may very well be caused by random
factors, such as delay when running the calculations on Markov.

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

2

3

4

5

6

7

8

ln
(#

 i
te

ra
ti
o
n
s
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

Figure 5.5: Layers 1-35 of SPE10: Number of iterations for all combinations with AMG as precon-
ditioner.

It appears, from Figures 5.5 and 5.6, that preconditioning with AMG is superior to
preconditioning with relaxation, as it results in the majority of combinations reaching con-
vergence in less than 150 iterations, while with relaxation the majority require many more
than 150 iterations. Additionally, we see from Figures 5.7 and 5.8 that the combinations
with AMG are much faster then those with relaxation. Notice how almost none of the lat-
ter combinations converge faster than mldivide. On the other hand, it appears that most
of the combinations using AMG are faster than mldivide. A reason why some of the
combinations require more time to converge than mldivide might be that the problem
size is too small, or that these combinations simply do not work well on the given problem.

Letting the result speak for us, we can conclude with AMG being superior to relaxation
when it comes to preconditioning.

5.4.3 Olympus
For the Olympus model we will consider Case 1 (also known as Realization 1). Because
of unforeseen technical issues when attempting to run code in the final stage of writing this

52

5.4 Typical results from the different test models

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

5.5

6

6.5

7

7.5

8

8.5
ln

(#
 i
te

ra
ti
o
n
s
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

Figure 5.6: Layers 1-35 of SPE10: Number of iterations for all combinations with relaxation as
preconditioner.

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

1

2

3

4

5

6

ln
(t

im
e
) Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

mldivide

Figure 5.7: Layers 1-35 of SPE10: Run-time for all combinations with AMG as preconditioner.

53

Chapter 5. Preparation and experimental set-up

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
ln

(t
im

e
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

mldivide

Figure 5.8: Layers 1-35 of SPE10: Run-time for all combinations with relaxation as preconditioner.

thesis, we are not able to present reliable results for any Olympus cases with relaxation as
preconditioner. Therefore, the following plots for Case 1 involve AMG preconditioning
only.

From Figures 5.9 and 5.10 it is evident that most combinations are faster than mldivide.
It might appear that the best possible combinations are CG with SPAI0. However, the rea-
son why these combinations finished after only one iteration is because they did not have
any chance at converging. From Figure 5.10 one may also be led to believe that CG and
BiCGstab with smoothed aggregation emin is the fastest, but looking at the number of
iterations in Figure 5.9, these combinations reached the maximum number of iterations,
and did not converge.

Overall, the Figures show that ILU(l) and ILUT combined with Ruge-Stüben gives
the least number of iterations, while ILU0 combined with smoothed aggregation gives the
shortest run-time.

54

5.4 Typical results from the different test models

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

0

1

2

3

4

5

6

7

8

9
ln

(#
 i
te

ra
ti
o

n
s
)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

Figure 5.9: Olympus Case 1: Number of iterations for all combinations with AMG as precondi-
tioner.

SPAI0 SPAI1 G-S ILU0 ILU(k) ILUT D.Jac. Cheb.

Smoothers

-3

-2

-1

0

1

2

3

4

5

6

ln
(t

im
e

)

Ruge-Stuben

Smooth. aggr.

Aggregation

Sm. aggr. emin.

BiCGstab

CG

BiCGstabl

GMRES

LGMRES

FGMRES

IDR(s)

mldivide

Figure 5.10: Olympus Case 1: Run-time for all combinations with AMG as preconditioner.

55

Chapter 5. Preparation and experimental set-up

56

Chapter 6
Experiments & Analysis Part 1:
Time as a function of the number of
grid cells

In this section, the SPE10 model will be the only test model. Since all Olympus real-
izations have the same number of grid cells, it would be cumbersome to check how time
behaves as a function of the number of grid cells here. Because of this, Olympus will not
be among the models explored in this section. Furthermore, the simple case and the hy-
brid case were only intended to be ”warm-up”, and they will not be considered any further.

We will consider three main ”areas” of the SPE10 model: the Tarbert formation, the Up-
per Ness formation, and the borderline between them (and the layers surrounding it). The
borderline case can eventually be extended to include the entire model. It is expected that
Tarbert and Upper Ness might differ in which combinations converge faster, considering,
among other things, the difference in permeability.

In preparation for the tests we are about to conduct and, later, analyze, we will have
to cut down on the number of combinations involved. We can not test all 448 combina-
tions on every test case. Throughout this chapter the preconditioner will be AMG, as it
is superior to relaxation methods, which was illustrated earlier. Moreover, for each case
being considered, we will base a selection of combinations on the results from said case.
Out of all the combinations tested, a selection of the ones that perform best will be picked.
Of course, the combinations that performed well in Case 1 might not do so in the other
(and larger) cases. Since this section is only concerned with how run-time is affected by
the number of grid cells, it is primarily run-time results we are interested in. However,
one must not forget about the number of iterations, as they might have great impact on
performance as well. A combination might converge in a few second, but at the same time

57

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

take hundreds of iterations to get there. This must also be considered. Naturally, the same
goes for the opposite case.

Low run-time might usually seem more appealing than low iteration count, if one had
to choose. However, it is possible that the opposite might prove to be a better choice as
the problem size increases – that the combinations that, initially, score high on iteration
count and low on run-time eventually will ”catch up” time-wise. To explain, consider
some iteration scheme, based on the typical linear system Ax = b, of the form

Mxn+1 = Nxn + b.

Let Method A be an iterative method that is fast but requires many iterations before con-
vergence, and let Method B be an iterative method that is slow but requires few iterations.
The reason why Method B requires much time might be that it has a time-consuming setup
phase, which is the phase where the new ”iterative system” (6) is set up. The computation
of iterates might, in itself, be as fast as in the case of Method A, or faster even, but because
of the slow set-up phase we are left with the impression that the performance of Method
B is poor with respect to run-time.

6.1 SPE10 – Tarbert
Starting with the Tarbert formation, I chose five cases on which to evaluate different com-
binations of Krylov solvers, coarsening strategies and smoothers.

Tarbert cases:

1. Layer 1 (one layer in total: 13 200 grid cells)

2. Layers 1-5 (five layers in total: 66 000 grid cells)

3. Layers 1-10 (ten layers in total: 132 000 grid cells)

4. Layers 1-20 (20 layers in total: 264 000 grid cells)

5. Layers 1-35 (35 layers in total: 462 000 grid cells)

The first selection was taken from the results for Case 1:

Selection 1.

• BiCGstab + Ruge-Stüben + ILUT1

• BiCGstab + Ruge-Stüben + ILU(l)

• BiCGstab(l) + smoothed aggregation + ILUT

• BiCGstab(l) + Ruge-Stüben + ILUT

1X + Y + Z signifies the combination of Krylov solver X , coarsening Y and smoother Z.

58

6.1 SPE10 – Tarbert

• GMRES + smoothed aggregation + ILUT

I ran Selection 1 on all five cases and plotted the performance of the five combinations,
alongside mldivide. The number of grid cells is increased by increasing the number
of layers, each layer containing 220 × 60 = 13200 grid cells. To enhance the differ-
ences, the plots are log-log2 plots. In Figure 6.1 we see that mldivide starts out as the

9.5 10 10.5 11 11.5 12 12.5 13

ln(# grid cells)

-4

-3

-2

-1

0

1

2

3

4

ln
(t

im
e
)

BiCGstab + R-S + ILUT

BiCGstab + R-S + ILU(l)

BiCGstabl + sm. aggr. + ILUT

BiCGstabl + R-S + ILUT

GMRES + sm. aggr. + ILUT

mldivide

Figure 6.1: Selection 1 tested on all Tarbert cases (log-log plot). The red line is hidden behind the
blue line, and the orange dashed line is hidden behind the red dashed line.

fastest-converging solution method. This is as expected, since direct solvers often outper-
forms iterative solvers on smaller problems. One combination, BiCGstab + Ruge-Stüben
+ ILUK(k), is performing quite well, competing closely with mldivide during the first
three cases. Somewhere between Case 3 and Case 4 (for approximately 166 720 grid
cells), mldivide falls behind said combination, leaving it as the clear winner in the last
two cases. We see that the four remaining combinations seem to behave very similarly for
each number of grid cells. Between Case 1 and Case 2 they all exhibit a sharp increase in
run-time, before slowing down and appearing almost linear. mldivide beats them in all
cases. Notice how they all share the same smoother, ILUT, and how the only combination
to beat mldivide did not (as it used ILU(l)).

For comparison, another selection of combinations was chosen for Case 1:

Selection 2.

• BiCGstab + Ruge-Stüben + ILU(l)

• CG + Ruge-Stüben + ILU(l)

• BiCGstabl + Ruge-Stüben + ILUT
2In MATLAB, the in-built function log uses the natural logarithm (often called ”ln”), unless otherwise stated.

59

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

• BiCGstabl + Ruge-Stüben + ILU(l)

• IDR(s) + Ruge-Stüben + ILU(l)

9.5 10 10.5 11 11.5 12 12.5 13

ln(# grid cells)

-4

-3

-2

-1

0

1

2

3

4

ln
(t

im
e
)

BiCGstab + R-S + ILU(l)

CG + R-S + ILU(l)

BiCGstabl + R-S + ILUT

BiCGstabl + R-S + ILU(l)

IDR(s) + R-S + ILU(l)

mldivide

Figure 6.2: Selection 2 tested on all Tarbert cases (log-log plot). The orange line is hidden partly
behind the red line (left side) and partly behind the brown line (right side).

In Selection 1, four out of five combinations used ILUT as smoother and performed very
poorly, while the last one used ILU(l) as smoother and did very well. Notice that for Se-
lection 2, seen in Figure 6.2, the picture is turned upside down (so to speak): four out
of five perform quite well, eventually beating mldivide in the last two cases, while the
last combination performs badly and is converging much slower than mldivide in every
case. Now, notice the smoothers: Up until now, every combination that has performed
well has used ILU(l), while every combination that has performed poorly has used ILUT.
This will be discussed further in the next chapter.

Neither Selection 1 nor Selection 2 is representative for the entire Tarbert formation as
they are only based on one layer. Therefore, we need at least one more selection of com-
binations, this time based on larger cases. To avoid spending too much time scanning all
Tarbert results for the top combinations, I decided to base the new selection on the results
for Case 5 (all Tarbert layers).

Selection 3.

• BiCGstab + Ruge-Stüben + ILU(0)

• BiCGstab + Ruge-Stüben + ILU(l)

• BiCGstab + smoothed aggregation + ILU(0)

60

6.1 SPE10 – Tarbert

• CG + smoothed aggregation + ILU(0)

• BiCGstab(l) + smoothed aggregation + ILU(0)

• GMRES + smoothed aggregation + ILU(0)

• LGMRES + smoothed aggregation + ILU(0)

• FGMRES + smoothed aggregation + ILU(0)

• IDR(s) + smoothed aggregation + ILU(0)

This time I selected nine combinations, almost twice the previous number. The seven
bottom combinations were (almost) equally good and by far the best compared to the re-
maining combinations, as can be seen in Figure 6.3. Even more interesting is the fact that
all these have smoothed aggregation for coarsening and ILU(0) as smoother. A natural
assumption would be that smoothed aggregation and ILU(0) together, independent of the
choice of Krylov solver, is what we have been looking for. I included all seven combina-
tions because I wanted to see how each solver reacted to different numbers of grid cells,
when combined with said coarsening and smoother choices. The only solver that stands
out is LGMRES, which for Case 1 takes over 60 times longer to converge than the next
worst combination. For variation, I added two more combinations to the selection (the two
first on the list above). The best of these two also used ILU(0) as smoother, so for the
second I chose a combination with another smoother. Since ILU(l) performed so well in
the previous selections, it seemed fitting to include it now.

9.5 10 10.5 11 11.5 12 12.5 13

ln(# grid cells)

-4

-3

-2

-1

0

1

2

ln
(t

im
e
)

BiCGstab + R-S + ILU(0)

BiCGstab + R-S + ILU(l)

BiCGstab + sm. aggr. + ILU(0)

CG + sm. aggr. + ILU(0)

BiCGstabl + sm. aggr. + ILU(0)

GMRES + sm. aggr. + ILU(0)

LMGRES + sm. aggr. + ILU(0)

FGMRES + sm. aggr. + ILU(0)

IDR(s) + sm. aggr. + ILU(0)

mldivide

Figure 6.3: Selection 3 tested on all Tarbert cases (log-log plot). On the left side of the plot, the
orange line is hidden behind the red line.

61

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

Note that Selection 3 and Selection 1 only share one combination: BiCGstab + Ruge-
Stüben + ILU(l). As part of Selection 1 this combination was the fastest to converge, but
as part of Selection 3 it was actually the slowest in all cases but the first (see Figure 6.3).
As before, mldivide starts out in lead. Between Case 2 and Case 3, all combinations in-
cluding ILU(0) catch up with it and takes the lead, and by Case 4 the last combination also
passes it. Both selections seem to support that variants of incomplete LU factorization
(not threshold-based) work well as smoothers and that variants of the Conjugate Gradi-
ent method are good solvers, at least for the Tarbert formation. The standard coarsening,
Ruge-Stüben, was the only type of coarsening in Selection 1 (both new and old version),
but in Selection 3 aggregation with smoothed iterates took over the spotlight, both with
regard to number of combinations and, most importantly, performance.

6.2 SPE10 – Upper Ness
Since the Upper Ness formation spans a total of 50 layers, where the Tarbert formation
spans only 35, I decided to increase the number of cases from five to six.

Upper Ness cases:

1. Layer 45 (one layer in total: 13 200 grid cells)

2. Layers 41-45 (five layers in total: 66 000 grid cells)

3. Layers 41-50 (ten layers in total: 132 000 grid cells)

4. Layers 36-55 (20 layers in total: 264 000 grid cells)

5. Layers 41-75 (35 layers in total: 462 000 grid cells)

6. Layers 36-85 (50 layers in total: 660 000 grid cells)

This time I chose Case 3 and Case 63 to be the bases of two selections. From Case 3 the
following combinations were selected:

Selection 4.

• BiCGstab + smoothed aggregation + SPAI0

• BiCGstab + smoothed aggregation + Gauss-Seidel

• CG + smoothed aggregation + ILU(0)

• BiCGstab(l) + smoothed aggregation + ILU(0)

• BiCGstab(l) + smoothed aggregation + Gauss-Seidel

• BiCGstab(l) + Ruge-Stüben + ILU(l)

3These are the Upper Ness cases. Not to be confused with the Tarbert cases or the borderline cases.

62

6.2 SPE10 – Upper Ness

• GMRES + smoothed aggregation + ILU(0)

• FGMRES + smoothed aggregation + ILU(0)

• IDR(s) + smoothed aggregation + ILU(0)

My first observation was that smoothed aggregation coarsening together with ILU(0) smooth-
ing are included in five out of nine combinations. Overall, these are also the combinations
that has performed best on the Upper Ness formation so far (see Figure 6.4). Ruge-Stüben
and smoothed aggregation are still unchallenged as coarsening strategies, even though the
latter is now present in eight of the nine combinations. Furthermore, both SPAI0 and
Gauss-Seidel have entered the race as potentially good smoothers. However, we see in
Figure 6.4 that the three combinations containing these smoothers, as well as the one
combination with Ruge-Stüben coarsening, take longer to converge than the remaining
combinations in four of five cases. Between Case 2 and Case 3, mldivide goes from
being the fastest solver to being the slowest. This comes as less of a surprise considering
that the selection is based on Case 3.

9.5 10 10.5 11 11.5 12 12.5 13

ln(# grid cells)

-5

-4

-3

-2

-1

0

1

2

3

ln
(t

im
e

)

BiCGstab + sm. aggr. + SPAI0

BiCGstab + sm. aggr. + G-S

CG + sm. aggr. + ILU(0)

BiCGstabl + sm. aggr. + ILU(0)

BiCGstabl + sm. aggr. + G-S

BiCGstabl + R-S + ILU(l)

GMRES + sm. aggr. + ILU(0)

FGMRES + sm. aggr. + ILU(0)

IDR(s) + sm. aggr. + ILU(0)

mldivide

Figure 6.4: Selection 4 tested on all Upper Ness cases (log-log plot).

63

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

The second selection from Upper Ness was taken from Case 6 and contains ten combina-
tions:

Selection 5.

• BiCGstab + smoothed aggregation + SPAI0

• BiCGstab(l) + smoothed aggregation + damped Jacobi

• BiCGstab(l) + smoothed aggregation + Gauss-Seidel

• BiCGstab(l) + Ruge-Stüben + ILU(0)

• GMRES + smoothed aggregation + damped Jacobi

• LGMRES + smoothed aggregation + ILU(0)

• FGMRES + smoothed aggregation + SPAI0

• IDR(s) + smoothed aggregation + damped Jacobi

• IDR(s) + smoothed aggregation + Gauss-Seidel

• IDR(s) + smoothed aggregation + SPAI0

9.5 10 10.5 11 11.5 12 12.5 13 13.5

ln(# grid cells)

-5

-4

-3

-2

-1

0

1

2

3

ln
(t

im
e
)

BiCGstab + sm. aggr. + SPAI0

BiCGstabl + sm. aggr. + DJ

BiCGstabl + sm. aggr. + G-S

BiCGstabl + R-S + ILU(0)

GMRES + sm. aggr. + DJ

LGMRES + sm. aggr. + ILU(0)

FGMRES + sm. aggr. + SPAI0

IDR(s) + sm. aggr. + DJ

IDR(s) + sm. aggr. + G-S

IDR(s) + sm. aggr. + SPAI0

mldivide

Figure 6.5: Selection 5 tested on all Upper Ness cases (log-log plot).

This time most of the combinations (eight) have SPAI0 and Gauss-Seidel, along with
damped Jacobi, as smoothers. The two remaining combinations have ILU(0). This is a

64

6.3 SPE10 – borderline area

sudden change in direction. But, as we see in Figure 6.5, the latter two are still among the
best in several cases. GMRES + smoothed aggregation + damped Jacobi and FGMRES +
smoothed aggregation, however, are the slowest-converging combinations.

6.3 SPE10 – borderline area
Now we want to look at how different combinations behave when both Tarbert and Upper
Ness layers are in play. The cases we will consider therefore include layers from both for-
mations, and we will not limit this to only layers in close proximity of the border. These
are the chosen cases:

Borderline cases:

1. Layers 35-36 (two layers in total: 26 400 grid cells)

2. Layers 32-38 (seven layers in total: 92 400 grid cells)

3. Layers 30-45 (16 layers in total: 211 200 grid cells)

4. Layers 21-50 (30 layers in total: 396 000 grid cells)

5. Layers 1-85 (85 layers in total: 1 122 000 grid cells)

We will consider one selection of combinations based on the results of Case 2 and one
based on Case 5. The latter covers the entire SPE10 model and might be a bit heavy to run
tests on.

Case 2 was chosen because it is ”close” to the boundary between Tarbert and Upper Ness,
but not the smallest one. It is interesting to see how all combinations tackle this case, and
whether this selection will differ much from the one that follows.

Selection 6.

• BiCGstab + smoothed aggregation + ILU(0)

• BiCGstab + smoothed aggregation + ILU(l)

• BiCGstab + aggregation + ILU(l)

• BiCGstab + Ruge-Stüben + ILU(l)

• CG + smoothed aggregation + ILU(0)

• CG + aggregation + ILU(l)

• LGMRES + aggregation + ILU(l)

• LGMRES + Ruge-Stüben + ILU(k)

• FGMRES + smoothed aggregation + ILU(l)

65

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

10.5 11 11.5 12 12.5 13 13.5 14

ln(# grid cells)

-3

-2

-1

0

1

2

3

4

5

ln
(t

im
e

)

BiCGstab + sm. aggr. + ILU(0)

BiCGstab + sm. aggr. + ILU(l)

BiCGstab + aggr. + ILU(l)

BiCGstab + R-S + ILU(l)

CG + sm. aggr. + ILU(0)

CG + aggr. + ILU(l)

LGMRES + aggr. + ILU(l)

LGMRES + R-S + ILU(l)

FGMRES + sm. aggr. + ILU(l)

mldivide

Figure 6.6: Selection 6 tested on all borderline cases (log-log plot).

Figure 6.6 shows the resulting plot over time versus number of grid cells: The next
selection was, as mentioned, taken from Case 5

Selection 7.

• BiCGstab + smoothed aggregation + SPAI0

• BiCGstab + smoothed aggregation + Gauss-Seidel

• BiCGstab + smoothed aggregation + damped Jacobi

• CG + smoothed aggregation + damped Jacobi

• CG + smoothed aggregation + ILU(0)

• BiCGstab(l) + smoothed aggregation + SPAI0

• BiCGstab(l) + smoothed aggregation + Gauss-Seidel

• BiCGstab(l) + smoothed aggregation + damped Jacobi

• GMRES + smoothed aggregation + damped Jacobi

• IDR(s) + smoothed aggregation + Gauss-Seidel

The results can be seen in Figure 6.7

66

6.3 SPE10 – borderline area

10.5 11 11.5 12 12.5 13 13.5

ln(# grid cells)

-3

-2

-1

0

1

2

3

4

5

ln
(t

im
e
)

BiCGstab + sm. aggr. + SPAI0

BiCGstab + sm. aggr. + G-S

BiCGstab + sm. aggr. + DJ

CG + sm. aggr. + DJ

CG + sm. aggr. + ILU(0)

BiCGstabl + sm. aggr. + SPAI0

BiCGstabl + sm. aggr. + G-S

BiCGstabl + sm. aggr. + DJ

GMRES + sm. aggr. + DJ

IDR(s) + sm. aggr. + G-S

mldivide

Figure 6.7: Selection 7 tested on all borderline cases (log-log plot).

67

Chapter 6. Experiments & Analysis Part 1:
Time as a function of the number of grid cells

68

Chapter 7
Experiments & Analysis Part 2:
Mean value and standard deviation

For a population of real numbers {x1, ..., xm}, the mean value is given as

x̄ =
1

m

m∑
i=1

xi,

and the standard deviation as

s =

√√√√ 1

m

m∑
i=1

(xi − x̄)2.

where xi denotes the i’th number, not the number x to the power of i.

For a population of vectors {xi}mi=1 ∈ RN , we will simply calculate mean value and
standard deviation for each set of corresponding vector components. That is, for each case
we get a mean value vector x̄ and a standard deviation vector s with components

x̄j =
1

m

m∑
i=1

xij (7.1)

sj =

√√√√ 1

m

m∑
i=1

(xij − x̄j)2 (7.2)

for j = 1, ..., N . For every case, we will select a number of the combinations that
performed best and plot these using the MATLAB function errorbar. When using
errorbar it is important that all the combinations being plotted have mean values and
standard deviations of similar magnitude, to avoid a situation where some bad results
dominate the whole plot. Additionally, including too many combinations would result in
a chaotic plot.

69

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

7.1 Olympus

Each of the ten cases was run three times and a selection of well-performing combinations
was picked, the number of which varies from case to case. The selections will typically
include some combinations that perform better with respect to run-time than with respect
to number of iterations, and some in which the opposite case applies. All calculations of
mean values and corresponding standard deviation are based on these selections. Follow-
ing are the selections for Cases 1-10, as well as plots where mean values are represented
as circular points and standard deviations are represented by the error bars associated with
each point. Overall, we are limiting our ”explorations” to the Olympus result in which
AMG was used as preconditioner, the reason being the superiority of preconditioning with
AMG as opposed to with relaxation.

7.1.1 Case 1

Selection 8.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + Ruge-Stüben + ILU(l)

3. BiCGstab + smoothed aggregation + ILU(0)

4. CG + smoothed aggregation + ILU(0)

5. BiCGstabl + Ruge-Stüben + ILU(0)

6. BiCGstabl + Ruge-Stüben + ILU(l)

7. BiCGstabl + smoothed aggregation + ILU(0)

8. GMRES + Ruge-Stüben + ILU(0)

9. GMRES + Ruge-Stüben + ILU(l)

10. GMRES + smoothed aggregation + ILU(0)

11. LGMRES + Ruge-Stüben + ILU(0)

12. LGMRES + Ruge-Stüben + ILU(l)

13. FGMRES + Ruge-Stüben + ILU(0))

14. FGMRES + Ruge-Stüben + ILU(l)

15. FGMRES + smoothed aggregation + ILU(0)

70

7.1 Olympus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Combinations

8

10

12

14

16

18

20

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Combinations

0.6

0.8

1

1.2

1.4

1.6

1.8

ti
m

e
 (

s
)

Figure 7.1: Olympus Case 1: Mean values with corresponding standard deviations for number of
iterations (top) and time (bottom).

Observations

Looking at Figure 7.1, note that Combinations 2 and 6 reach convergence in fewest itera-
tions, but that they also use the most time. About half of the combinations from Selection
8 reach convergence in approximately the same short time, but it is difficult to determine
which are the fastest. Overall, Combinations 3 and 7 perform best when both number of
iterations and run-time are taken into account, both having smoothed aggregation coarsen-
ing and ILU(0) as smoother.

71

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

7.1.2 Case 2
Selection 9.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + smoothed aggregation + ILU(0)

3. CG + Ruge-Stüben + ILU(0)

4. CG + smoothed aggregation + ILU(0)

5. BiCGstabl + Ruge-Stüben + ILU(0)

6. BiCGstabl + smoothed aggregation + ILU(0)

7. GMRES + Ruge-Stüben + ILU(0)

8. GMRES + smoothed aggregation + ILU(0)

9. LGMRES + Ruge-Stüben + ILU(0)

10. FGMRES + Ruge-Stüben + ILU(0)

11. FGMRES + smoothed aggregation + ILU(0)

12. IDR(s) + Ruge-Stüben + ILU(0)

1 2 3 4 5 6 7 8 9 10 11 12

Combinations

10

12

14

16

18

20

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11 12

Combinations

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ti
m

e
 (

s
)

Figure 7.2: Olympus Case 2: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

Judging by Figure 7.2, Combinations 1, 2, 5 and 6 (that is, all combinations in which the
Krylov solver is BiCGstab or BiCGstabl) are by far the best when it comes to number of it-
erations. Moreover, Combinations 2 and 6 are among the fastest solvers too, together with
Combinations 8 and 11. Overall, Combinations 2 and 6 are performing best with respect
to both iteration count and run-time. Notice that both combinations include smoothed
aggregation as coarsening strategy and ILU(0) as smoother.

72

7.1 Olympus

7.1.3 Case 3

Selection 10.

1. BiCGstab + smoothed aggregation + ILU(0)

2. BiCGstabl + smoothed aggregation + ILU(0)

3. BiCGstabl + aggregation + ILU(0)

4. GMRES + Ruge-Stüben + ILU(0)

5. GMRES + smoothed aggregation + ILU(0)

6. LGMRES + smoothed aggregation + ILU(0)

7. FGMRES + Ruge-Stüben + ILU(0)

8. FGMRES + smoothed aggregation + ILU(0)

9. FMGRES + aggregation + ILU(0)

10. FGMRES + aggregation + ILU(l)

1 2 3 4 5 6 7 8 9 10

Combinations

10

12

14

16

18

20

22

24

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10

Combinations

0.5

1

1.5

2

2.5

3

3.5

ti
m

e
 (

s
)

Figure 7.3: Olympus Case 3: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

Combinations 1 and 2 are clearly converging in the least number of iterations (see Figure
7.3. Additionally, they are among the fastest combinations, from which we claim that
they are the two overall best solvers. Again, the best combinations consist of coarsening
strategy smoothed aggregation and smoother ILU(0).

73

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

7.1.4 Case 4
Selection 11.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + smoothed aggregation + ILU(0)

3. BiCGstab + aggregation + ILU(0)

4. BiCGstab + aggregation + ILU(l)

5. CG + Ruge-Stüben + ILU(0)

6. CG + smoothed aggregation + ILU(0)

7. BiCGstabl + smoothed aggregation + ILU(0)

8. GMRES + Ruge-Stüben + ILU(0)

9. GMRES + smoothed aggregation + ILU(0)

10. LGMRES + Ruge-Stüben + ILU(0)

11. FGMRES + smoothed aggregation + ILU(0)

12. IDR(s) + smoothed aggregation + ILU(0)

1 2 3 4 5 6 7 8 9 10 11 12

Combinations

12

14

16

18

20

22

24

#
 i
te

ra
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12

Combinations

0.5

1

1.5

2

2.5

ti
m

e
 (

s
)

Figure 7.4: Olympus Case 4: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

Observe, in the iteration plot to the left of Figure 7.4, that Combinations 1, 2 and 7 have the
lowest iteration counts. These combinations are also performing well with respect to run-
time, being among the fastest combinations to converge, and two of them are smoothed by
ILU(0) and have smoothed aggregation coarsening.

74

7.1 Olympus

7.1.5 Case 5
Selection 12.

1. BiCGstab + smoothed aggregation + ILU(0)

2. GMRES + Ruge-Stüben + ILU(0)

3. GMRES + Ruge-Stüben + ILU(l)

4. GMRES + smoothed aggregation + ILU(0)

5. LGMRES + smoothed aggregation + ILU(0)

6. LGMRES + aggregation + ILU(0)

7. LGMRES + aggregation + ILU(l)

8. FGMRES + smoothed aggregation + ILU(0)

9. FGMRES + aggregation + ILU(0)

10. FGMRES + aggregation + ILU(l)

11. IDR(s) + Ruge-Stüben + ILU(0)

1 2 3 4 5 6 7 8 9 10 11

Combinations

10

12

14

16

18

20

22

24

26

28

30

#
 i
te

ra
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11

Combinations

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ti
m

e
 (

s
)

Figure 7.5: Olympus Case 5: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

For this Olympus case, no. 5, BiCGstabl was not included as Krylov solver in any of the
selected combinations. The results for Selection 12, seen in Figure 7.5, were generally
scattered, with no combinations being especially good at both run-time and number of it-
erations. We observe that Combination 3 is the best when it comes to iteration count but
worst when it comes to run-time. It it important to keep in mind that we are looking at
selections of the combinations that performed best on the different cases and that, when
speaking of bad performance, this is all relative to the performance of the other combina-
tions.

75

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

7.1.6 Case 6

Selection 13.

1. BiCGstab + smoothed aggregation + ILU(0)

2. BiCGstab + aggregation + ILU(0)

3. BiCGstab + aggregation + ILU(l)

4. CG + smoothed aggregation + ILU(0)

5. BiCGstabl + aggregation + ILU(0)

6. BiCGstabl + aggregation + ILU(l)

7. LGMRES + Ruge-Stüben + ILU(0)

8. LGMRES + Ruge-Stüben + ILU(l)

9. FGMRES + Ruge-Stüben + ILU(0)

10. IDR(s) + smoothed aggregation + ILU(0)

1 2 3 4 5 6 7 8 9 10

Combinations

10

12

14

16

18

20

22

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10

Combinations

0.6

0.7

0.8

0.9

1

1.1

1.2

ti
m

e
 (

s
)

Figure 7.6: Olympus Case 6: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

From Figure 7.6 we observe that Combinations 3, 4, 8 and 10 clearly perform well for
either iteration count or run-time, and poorly for the other. This is particularly visible in
Combination 8, which uses fewest iterations but the most time to converge, and Combina-
tions 4 and 10, which are among the fastest to converge but require the most iterations to
do so. However, Combination 1 is both fast and requires few iterations.

76

7.1 Olympus

7.1.7 Case 7

Selection 14.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + smoothed aggregation + ILU(0)

3. BiCGstabl + Ruge-Stüben + ILU(0)

4. BiCGstabl + Ruge-Stüben + ILU(l)

5. BiCGstabl + smoothed aggregation + ILU(0)

6. GMRES + Ruge-Stüben + ILU(0)

7. GMRES + smoothed aggregation + ILU(0)

8. GMRES + aggregation + ILU(0)

9. GMRES + aggregation + ILU(l)

10. LGMRES + Ruge-Stüben + ILU(0)

11. LGMRES + smoothed aggregation + ILU(0)

12. FGMRES + Ruge-Stüben + ILU(0)

13. FGMRES + smoothed aggregation + ILU(0)

14. IDR(s) + Ruge-Stüben + ILU(0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations

5

10

15

20

25

30

#
 i
te

ra
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ti
m

e
 (

s
)

Figure 7.7: Olympus Case 7: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

77

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

Observations

All combinations with either BiCGstab or BiCGstabl as Krylov subspace solver, i.e., Com-
binations 1-5, are at the bottom of the iteration plot i Figure 7.7, requiring few iterations.
Out of these, Combination 4 is clearly the best. This combination is also among the very
best when it comes to run-time too. Combination 4 is BiCGstabl + Ruge-Stüben + ILU(0).
Combinations 2 and 5 are also both fast and require few iterations, and both of these con-
sist of smoothed aggregation coarsening and ILU(0) smoothing. Combinations 7, 11 and
13 are also converging fast. Another thing to notice is that the majority of the combina-
tions using variants for GMRES as Krylov solver has similar iteration count. However,
this might be simply a coincidence.

7.1.8 Case 8

Selection 15.

1. BiCGstab + smoothed aggregation + ILU(0)

2. CG + smoothed aggregation + ILU(0)

3. BiCGstabl + smoothed aggregation + ILU(0)

4. GMRES + Ruge-Stüben + ILU(0)

5. GMRES + Ruge-Stüben + ILU(l)

6. GMRES + smoothed aggregation + ILU(0)

7. LGMRES + Ruge-Stüben + ILU(0)

8. LGMRES + smoothed aggregation + ILU(0)

9. FGMRES + Ruge-Stüben + ILU(0)

10. FGMRES + smoothed aggregation + ILU(0)

11. IDR(s) + smoothed aggregation + ILU(0)

Observations

As is evident from Figure 7.8, Combinations 1, 3 and 5 have the lowest iteration count,
the latter combination being the best. Combinations 1 and 3 are also among the fastest
combinations, along with Combinations 2, 8 and 10. We can conclude that Combinations
1 and 3 are performing very well with respect to both iteration count and run-time, which
they have proved to be in several of the earlier cases too. Furthermore, observe that Com-
binations 2 and 11 converge fast but require the most iterations of all. The opposite goes
for Combination 5.

78

7.1 Olympus

1 2 3 4 5 6 7 8 9 10 11

Combinations

10

12

14

16

18

20

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11

Combinations

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ti
m

e
 (

s
)

Figure 7.8: Olympus case 8: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

7.1.9 Case 9

Selection 16.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + Ruge-Stüben + ILU(l)

3. BiCGstab + smoothed aggregation + ILU(0)

4. BiCGstabl + Ruge-Stüben + ILU(0)

5. BiCGstabl + Ruge-Stüben + ILU(l)

6. BiCGstabl + smoothed aggregation + ILU(0)

7. GMRES + Ruge-Stüben + ILU(0)

8. GMRES + smoothed aggregation + ILU(0)

9. LGMRES + Ruge-Stüben + ILU(0)

10. FGMRES + Ruge-Stüben + ILU(0)

11. FGMRES + smoothed aggregation + ILU(0)

12. FGMRES + smoothed aggregation + ILU(l)

13. FGMRES + aggregation + ILU(0)

14. FGMRES + aggregation + ILU(l)

79

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations

5

10

15

20

25

30
#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Combinations

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ti
m

e
 (

s
)

Figure 7.9: Olympus case 9: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

Studying Figure 7.9 we see that Combinations 1-6, all with variants of BiCGstab as Krylov
solver, require few iterations before converging. Out of these, Combinations 2 and 5 re-
quire fewest iterations, but they are also the combinations with the longest run-times. The
combinations converging fastest are Combinations 8 and 11. Combinations 3 and 6 appear
to be good at both run-time and number of iterations.

7.1.10 Case 10
Selection 17.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + Ruge-Stüben + ILU(l)

3. BiCGstab + smoothed aggregation + ILU(0)

4. BiCGstab + aggregation + ILU(0)

5. BiCGstab + aggregation + ILU(l)

6. CG + smoothed aggregation + ILU(0)

7. BiCGstabl + Ruge-Stüben + ILU(0)

8. BiCGstabl + Ruge-Stüben + ILU(l)

9. BiCGstabl + smoothed aggregation + ILU(0)

10. BiCGstabl + aggregation + ILU(0)

11. BiCGstabl + aggregation + ILU(l)

12. GMRES + Ruge-Stüben + ILU(0)

80

7.1 Olympus

13. GMRES + smoothed aggregation + ILU(0)

14. LGMRES + Ruge-Stüben + ILU(0)

15. LGMRES + smoothed aggregation + ILU(0)

16. FGMRES + Ruge-Stüben + ILU(0)

17. FGMRES + smoothed aggregation + ILU(0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Combinations

8

10

12

14

16

18

20

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Combinations

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ti
m

e
 (

s
)

Figure 7.10: Olympus case 10: Mean values with corresponding standard deviations for number of
iterations (left) and time (right).

Observations

By far, Combinations 2 and 8 are the combinations performing best with respect to number
of iterations, but they also have the longest run-times. The fastest-converging combina-
tions are Combinations 6, 13, 15 and 17, all having smoothed aggregation coarsening and
ILU(0) as smoother.

7.1.11 Overall observations
One might expect the number of iterations to stay fixed for each combination between
different runs. The iteration counts for the ten Olympus cases do not vary much between
runs, but the fact is that they do vary. This variation might be a result of random factors
affecting the parallelization of the code and, thus, the iteration count and run-time – for
instance, variations in the number of available threads or in how much ”work” each thread
is able to process at a time.

It seems to be some kind of inverse correlation between time and iteration count, at least
when it comes to the ”extreme” values. As is evident from the figures (i.e., Figure 7.10),
combinations that require particularly few iterations typically need much more time to
converge than other combinations, and combinations with iteration count above the aver-
age are typically among the fastest. Clear examples are combinations that use ILUT as

81

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

smoother, typically having the lowest iteration count but at the same time being among
the slowest-converging combinations (see Section 6). This is also often the case for the
Olympus model but, because of its bad performance with respect to run-time, none of the
selected combinations have included ILUT.

Another interesting trend is that each Krylov solver generally seems to achieve conver-
gence fastest (i.e., in shortest run-time) when combined with smoothed aggregation coars-
ening and ILU(0) as smoother. Likewise, Krylov solvers combined with Ruge-Stüben and
ILU(l) are typically the combinations that require fewest iterations in order to converge.

Moreover, it appears that variants of GMRES often have the same, or very similar,
mean values and standard deviations with respect to iteration count when combined with
the same coarsening strategy and smoother. This pattern can be recognized in all of the
figures. Consider, for instance, Figure 7.3. The mean values and standard deviations for
Combination 4 and 7 look very similar. These two combinations correspond to GMRES
+ Ruge-Stüben + ILU(0) and FGMRES + Ruge-Stüben + ILU(0), respectively – both the
same type of coarsening and the same smoother. Now, consider Combinations 5, 6 and
8, which also appear to share the same mean value and standard deviation for number
of iterations. Checking Selection 10 we see that all three combinations have the same
coarsening and the same smoother, namely smoothed aggregation and ILU(0).

7.2 SPE10
For the calculation of mean values and standard deviations I had originally decided to
look at the following three areas of the SPE10 model: layers 1-35 (Tarbert), layers 41-75
(Upper Ness) and layers 21-50 (borderline). For each of these areas, a selection of well-
performing combinations would be picked based on three runs. I had already run the three
areas once each and obtained results where nothing seemed out of the ordinary. However,
when I later ran the code two more times for layers 21-50 and layers 41-75, something
went wrong and none of the combinations converged. It appears that the code must have
crashed for almost every single combination, since the majority of them never reached the
result file, not even with a flag signifying divergence. Those that did not crash, for which
the results were written to the result file, did not converge. Despite having only one reliable
run of both layers 21-50 and layers 41-75, the results for both cases will also be presented,
however, only for AMG as preconditioner and without proper mean values or standard
deviations. Before this, we will begin by calculating mean values and standard deviations
for the one case that was not affected by any unforeseen technical issues, namely layers
1-35. Here, we will consider both the case where AMG is the preconditioner and the case
where relaxation is the preconditioner, and pick one selection for each case. Observations
will be made on behaviour and trends, along with attempts to analyze and discuss the
findings.

7.2.1 Tarbert layers 1-35 with relaxation as preconditioner
As we have seen before, with relaxation as preconditioner (and not AMG) coarsening
strategies are irrelevant and will all yield the same results. Thus, in the selection of com-

82

7.2 SPE10

binations below we have simply decided on using the standard Ruge-Stüben coarsening

Selection 18.

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + Ruge-Stüben + ILU(l)

3. CG + Ruge-Stüben + ILU(0)

4. CG + Ruge-Stüben + ILU(l)

5. BiCGstabl + Ruge-Stüben + ILU(0)

6. BiCGstabl + Ruge-Stüben + ILU(l)

7. IDR(s) + Ruge-Stüben + ILU(0)

8. IDR(s) + Ruge-Stüben + ILU(l)

1 2 3 4 5 6 7 8

Combinations

200

250

300

350

400

450

500

550

600

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8

Combinations

0

5

10

15

20

25

30

35

40

ti
m

e
 (

s
)

Figure 7.11: Layers 1-35 of SPE10, relaxation as preconditioner: Mean values with corresponding
standard deviations for number of iterations (left) and run-time (right).

Observations

As we see in Figure 7.11, Combinations 2 and 6 are the combinations that converge after
the lowest number of iterations. The majority of combinations are converging relatively
fast. Notice that Combinations 1, 2, 4 and 8 perform well with respect to both iteration
count and run-time, out of which Combinations 2 and 4 are the best. Furthermore, the
standard deviations of Combinations 5 and 6 with respect to time are very large compared
to the other combinations. Inspecting the results from the three runs used to compute mean
values and standard deviations, we can see that Combination 5 has converged in 27.58,
9.01 and 9.27 seconds, and Combination 6 has converged in 50.13, 7.48 and 7.69 seconds.
The longest run-time for both combinations belongs to the first run. Also, Combination
6 (BiCGstabl + Ruge-Stüben + ILU(0)) is next in line after the code has completed the
computations for Combinations 5 (BiCGstabl + Ruge-Stüben + ILU(l)). As mentioned,

83

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

all computations are executed on the Markov cluster and are therefore prone to delay due
to lack of available threads. Since Combinations 5 and 6 are consecutively executed, it is
likely that they both were affected by the same delay during the first run. A more reliable
approach to this issue would be to run the codes locally on a computer, rather than using
the Markov cluster.

7.2.2 Tarbert layers 1-35 with AMG as preconditioner

We use the same selection as in Section 6.1, namely Selection 3:

1. BiCGstab + Ruge-Stüben + ILU(0)

2. BiCGstab + Ruge-Stüben + ILU(l)

3. BiCGstab + smoothed aggregation + ILU(0)

4. CG + smoothed aggregation + ILU(0)

5. BiCGstabl + smoothed aggregation + ILU(0)

6. GMRES + smoothed aggregation + ILU(0)

7. LGMRES + smoothed aggregation + ILU(0)

8. FGMRES + smoothed aggregation + ILU(0)

9. IDR(s) + smoothed aggregation + ILU(0)

1 2 3 4 5 6 7 8 9

Combinations

7

8

9

10

11

12

13

14

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9

Combinations

0

2

4

6

8

10

12

14

16

18

20

ti
m

e
 (

s
)

Figure 7.12: Layers 1-35 of SPE10, AMG as preconditioner: Mean values with corresponding
standard deviations for number of iterations (left) and run-time (right).

84

7.2 SPE10

Observations

First of all, notice that the majority of combinations appears to converge fast but only
after relatively many iterations. Combinations 2, 3 and 5 converge in fewest iterations,
while Combinations 3, 4, 5, 7 and 9 converge in the shortest amount of time. Notice
how Combination 3 has the best performance with both regards. Another combination
that, overall, performs well is Combination 5. Both Combination 3 and 5 have the same
coarsening and the same smoother: smoothed aggregation and ILU(0).

7.2.3 Upper Ness layers 41-75 with AMG as preconditioner

Selection 19.

1. CG + smoothed aggregation + ILU(0)

2. CG + smoothed aggregation + damped Jacobi

3. BiCGstabl + Ruge-Stüben + ILU(0)

4. BiCGstabl + smoothed aggregation + ILU(l)

5. BiCGstabl + smoothed aggregation + damped Jacobi

6. GMRES + smoothed aggregation + damped Jacobi

7. FGMRES + Ruge-Stüben + ILU(0)

8. FGMRES + smoothed aggregation + ILU(0)

9. IDR(s) + smoothed aggregation + ILU(0)

1 2 3 4 5 6 7 8 9

Combinations

5

10

15

20

25

30

35

40

45

50

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9

Combinations

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

ti
m

e
 (

s
)

Figure 7.13: Layers 41-75 of SPE10, AMG as preconditioner: Number of iterations (left) and run-
time (right).

85

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

Observations

Inspecting Figure 7.13 we see that all combination, except for Combination 4, are close
to equally fast. Combination 4 requires much more time to converge, but it is also the
combination that needs fewest iterations. It might be coincidental, but notice that none of
the combinations in Selection 19 uses BiCGstab as Krylov solver, whereas three out of
nine combinations do so in Selection 3 (layers 1-35).

7.2.4 Borderline layers 21-50 with AMG as preconditioner

Selection 20.

1. BiCGstabl + Ruge-Stüben + ILU(0)

2. BiCGstabl + smoothed aggregation + ILU(0)

3. BiCGstabl + aggregation + ILU(l)

4. GMRES + smoothed aggregation + ILU(0)

5. LGMRES + smoothed aggregation + ILU(0)

6. LGMRES + aggregation + ILU(l)

7. FGMRES + Ruge-Stüben + ILU(0)

8. FGMRES + aggregation + ILU(l)

9. IDR(s) + smoothed aggregation + damped Jacobi

10. IDR(s) + aggregation + ILU(0)

1 2 3 4 5 6 7 8 9 10

Combinations

10

20

30

40

50

60

70

80

90

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10

Combinations

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

ti
m

e
 (

s
)

Figure 7.14: Layers 21-50 of SPE10, AMG as preconditioner: Number of iterations (left) and run-
time (right).

86

7.2 SPE10

Observations

As is evident in Figure 7.14, the two combinations having IDR(s) as Krylov solver are
requiring several times as many iterations to converge as the other combinations. Combi-
nation 3 is the combination that requires the fewest iterations. Combinations 4 and 5 are
the fastest and have relatively low iteration counts as well.

7.2.5 Overall observations
As for the Olympus cases in the previous section, there seems to be an inverse correlation
between the extreme values for iteration count and run-time, in which combinations often
perform well with respect to one and poorly with respect to the other.

Another observation that also applies for SPE10 is the pattern that variants of GMRES
appear to follow with regard to iteration count: that, for the same choice of coarsening and
smoother, they achieve the same, or very similar, mean values and standard deviations.

When it comes to number of iterations, we have seen that BiCGstab and BiCGstabl
combined with Ruge-Stüben coarsening and ILU(l) smoothing, or combined with smoothed
aggregation coarsening and ILU(0) smoothing, typically outperform the other combina-
tions. This behaviour has been observed for both the Olympus model and the SPE10
model. When the goal is short run-time, we observe that smoothed aggregation coarsening
and ILU(0) as smoother, together with almost any Krylov solver, make up the combina-
tions that are the best (i.e., fastest) by far.

87

Chapter 7. Experiments & Analysis Part 2:
Mean value and standard deviation

88

Chapter 8
Conclusions and outlook

In this thesis we have explored a variety of iterative solvers (i.e., combinations) applied to
different test models, the most important of which were the SPE10 model and the Olympus
model. In addition, we have compared two types of preconditioning, algebraic multigrid
(AMG) and relaxation. We have studied how time behaves as a function of the number
of grid cells, based on SPE10 results. Finally, we have evaluated mean values and corre-
sponding standard deviations for a selection of Olympus cases and different areas of the
SPE10 model. In this final chapter we will discuss all observations and trends noticed
during the experiments and, on this basis, attempt to draw conclusions.

8.1 Discussion and conclusion
We have seen a distinct superiority in the performance of combinations using AMG pre-
conditioning as opposed to combinations preconditioning with relaxation (see Section 5.4).
This is as expected, since multigrid exploits how relaxation on coarser versions of the
original grid can deal with low-frequent error modes which relaxation on the original grid
struggles to smoothen out (see Section 4).

In Chapter 6 we saw that the iterative solvers outperform mldivide when the number
of grid cells increases. This is as expected, being the main reason for inventing iterative
solvers in the first place. The reason why the run-time of iterative solvers does not in-
crease as fast as the run-time of mldivide when the system increases in size, is that
direct solvers require more memory due to, among other things, a large number of expen-
sive operations. The performance of mldivide typically behaves like O(N2), while the
performance of most of the iterative solvers we have considered appears to behave like
′(Na) for approximately 1 < a < 1.5.

In Chapter 7 we observed that when combined with the same coarsening and the same
smoother, Krylov solvers GMRES, LGMRES and FGMRES appear to behave similarly
with respect to number of iterations, yielding very similar mean values and standard devi-

89

Chapter 8. Conclusions and outlook

ations. When applied to the SPE10 model, the three variants of GMRES have, generally,
performed poorly for both choices of preconditioner. The majority of combinations using
variants of GMRES does not reach convergence, at least not within the limit of 5000 iter-
ations. Out of these, LGMRES leads to fewest convergences.

Except for in the simple case in Section 5.4, combinations involving ILUT as smoother
have repeatedly proved to perform very well with respect to iteration count but very poorly
with respect to run-time. Additionally, in none of the runs have SPAI1 or Chebyshev
performed well as smoothers. The iteration counts and run-times for combinations with
these smoothers are always among the highest. However, in most tests we recognize a
clear trend: the majority of combinations that converged fastest used ILU(0) as smoother.
Likewise, the majority of the combinations that achieved convergence in fewest iterations
used ILU(l) as smoother. Often, ILU(0) performed best (with respect to run-time) when
combined with smoothed aggregation coarsening. ILU(l) typically performed best (with
respect to iteration count) when combined with Ruge-Stüben coarsening, but did also per-
form well combined with smoothed aggregation. This is especially evident in the Olympus
cases, e.g., in Figures 5.9 and 5.10. Considering these two figures leads us to question two
things:

1. Coarsening with energy-minimizing smoothed aggregation appears to give faster
convergence than for ILU(0) with smoothed aggregation. Why is this combination
not the best?

2. Using CG as Krylov solver and SPAI0 as smoother appears to give both the fastest
run-time and the lowest iteration count. Why is this combination not among the
best?

The answers can be found in the result file, where we will notice that all combinations in-
volving energy-minimizing smoothed aggregation and all combinations involving CG and
SPAI0 have ”converged in 1 iteration”. What is actually happening is that these combi-
nations, when applied to Case 1, immediately diverge. We can see that the corresponding
residuals are logged as NaN (not a number), which often signifies that the number has
approached infinity.

8.2 Future work
Having found a handful of combinations of Krylov solvers, coarsenings and smoothers
that work well with our test cases, it would be interesting to experiment more thoroughly
with these. Especially in the Olympus cases, the standard deviations in the time-plots were
quite large, which could be improved with more measurements.

A natural extension of the tests conducted on the Olympus model, where we have only
considered one case at a time, would be to combine the results from all cases (1-10) into
one large comparison (i.e., as one plot for run-time and one plot for iteration count). This
would enable us to evaluate how combinations from a selection based on one case perform

90

8.2 Future work

with respect to the other cases, giving insight into which combinations perform better than
others in general.

Perhaps just as interesting is the experiment exploring time as a function a the number
of grid size for the SPE10 case. In particular, one could experiment with even finer grids
to see if different iterative solvers scale in different ways.

Further considerations should also be given to the combinations that performed poor in
this experiment. Perhaps there are other problems where for instance GMRES is an excel-
lent solver. Looking closer at this could also give us a clue as to why certain combinations
perform well on certain problems, while others don’t.

Though we in this thesis have focused much on run-time and number of iterations
needed before convergence is reached, it would also be of great interest to see how memory
usage scales with the size of the problem. Memory and time usage are somewhat related,
but most importantly, knowing how much memory is required to do a calculation can help
us set requirements for the equipment needed to solve a certain problem. The original plan
was to include the exploration of memory usage in the experiments, but we were not able
to produce dependable results, partly because memory usage is a somewhat vague concept
that is difficult to obtain reliable measures of.

91

Chapter 8. Conclusions and outlook

92

Bibliography

[1] R. Bank et al. Multigrid Methods. Society for Industrial and Applied Mathematics
(SIAM), 1987. ISBN: 9781611971880.

[2] Sophia Rare Books. ’Numerical Inverting of Matrices of High Order,’ pp. 1021-
1099 in Bulletin of the American Mathematical Society, Vol. 53, No. 11, November,
1947. [Offered with:] ’Numerical Inverting of Matrices of High Order II,’ pp. 188-
202 in Proceedings of the American Mathematical Society, Vol. 2, No. 2, April,
1951. This is from an online book store reviewing the paper ’Numerical Inverting
of Matrices of High Order’ by John von Neumann and Herman Goldstine. URL:
https://www.sophiararebooks.com/pages/books/4641/john-von-neumann-herman-
h-goldstine/numerical- inverting-of-matrices- of- high- order- pp- 1021- 1099- in-
bulletin-of-the-american.

[3] Juan Carlos Cabral F. and Christian E. Schaerer. On Adaptive Strategy For Over-
come Stagnation in LGMRES(m, l). 2017. URL: http://www.cimapy.org/images/
descargas/cabibeskry/CILAMCE2017 Juan Cabral.pdf.

[4] Gui-Qiang G. Chen. The Tricomi equation. URL: http: / /people.maths.ox.ac.uk/
chengq/outreach/The%20Tricomi%20Equation.pdf.

[5] Michael Christie and M.J. Blunt. “Tenth SPE Comparative Solution Project: A
Comparison of Upscaling Techniques”. In: SPE Reservoir Evaluation & Engineer-
ing 4 (Feb. 2001). DOI: 10.2118/66599-MS.

[6] R.M. Fonseca, C.R. Geel, and O. Leeuwenburgh. Description of OLYMPUS reser-
voir model for optimization challenge. 2017. URL: http : / / www . isapp2 . com /
downloads/olympus-reservoir-model.pdf.

[7] Rajesh Gandham, Kenneth Esler, and Yongpeng Zhang. “A GPU accelerated ag-
gregation algebraic multigrid method”. In: Computers & Mathematics with Appli-
cations 68.10 (2014), pp. 1151–1160. ISSN: 0898-1221. DOI: https://doi.org/10.
1016/j.camwa.2014.08.022. URL: http://www.sciencedirect.com/science/article/pii/
S0898122114004143.

93

https://www.sophiararebooks.com/pages/books/4641/john-von-neumann-herman-h-goldstine/numerical-inverting-of-matrices-of-high-order-pp-1021-1099-in-bulletin-of-the-american
https://www.sophiararebooks.com/pages/books/4641/john-von-neumann-herman-h-goldstine/numerical-inverting-of-matrices-of-high-order-pp-1021-1099-in-bulletin-of-the-american
https://www.sophiararebooks.com/pages/books/4641/john-von-neumann-herman-h-goldstine/numerical-inverting-of-matrices-of-high-order-pp-1021-1099-in-bulletin-of-the-american
http://www.cimapy.org/images/descargas/cabibeskry/CILAMCE2017_Juan_Cabral.pdf
http://www.cimapy.org/images/descargas/cabibeskry/CILAMCE2017_Juan_Cabral.pdf
http://people.maths.ox.ac.uk/chengq/outreach/The%20Tricomi%20Equation.pdf
http://people.maths.ox.ac.uk/chengq/outreach/The%20Tricomi%20Equation.pdf
https://doi.org/10.2118/66599-MS
http://www.isapp2.com/downloads/olympus-reservoir-model.pdf
http://www.isapp2.com/downloads/olympus-reservoir-model.pdf
https://doi.org/https://doi.org/10.1016/j.camwa.2014.08.022
https://doi.org/https://doi.org/10.1016/j.camwa.2014.08.022
http://www.sciencedirect.com/science/article/pii/S0898122114004143
http://www.sciencedirect.com/science/article/pii/S0898122114004143

[8] Martin H. Gutknecht. A Brief Introduction to Krylov Space Methods for Solving
Linear Systems. ETH Zurich, Seminar for Applied Mathematics. URL: http://www.
sam.math.ethz.ch/∼mhg/pub/biksm.pdf.

[9] Handbook of grid generation. eng. Boca Raton, Fla, 1999.

[10] Thomas Huckle and Matous Sedlacek. “SPAI (SParse Approximate Inverse)”. In:
Encyclopedia of Parallel Computing. Ed. by David Padua. Boston, MA: Springer
US, 2011, pp. 1867–1870. ISBN: 978-0-387-09766-4. DOI: 10.1007/978- 0- 387-
09766-4 144. URL: https://doi.org/10.1007/978-0-387-09766-4 144.

[11] Knut-Andreas Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU
Octave. Cambridge University Press, 2019. ISBN: 9781108492430.

[12] Anders Logg and Kent-Andre Mardal. Lectures on the Finite Element Method.
2017. URL: https://folk.uio.no/kent-and/sommerskole/material/book 20april.pdf.

[13] Olav Møyner. MA8001: Notes on the implementation of multigrid. 2017.

[14] John von Neumann and Herman Goldstine. “Numerical Inverting of Matrices of
High Order”. In: Bulletin of the AMS 1 (1947). URL: https://pdfs.semanticscholar.
org/503b/f08383134ce107d870982fc50f96b80881f7.pdf.

[15] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Other Titles in
Applied Mathematics. SIAM, 2003. ISBN: 978-0-89871-534-7. URL: https://www-
users.cs.umn.edu/∼saad/IterMethBook 2ndEd.pdf.

[16] Scientific Computing and Algorithms in Industrial Simulations: Projects and Prod-
ucts of Fraunhofer SCAI. eng. Cham: Springer International Publishing, 2017. ISBN:
9783319624570.

[17] Kungliga Tekniska Högskolan (SE). Partial Differential Equations: Time-Dependent
Problems. Notater fra forelesning i faget Numeriska metoder för mikroelektron-
ikprogrammet. URL: http : / / www. csc . kth . se / utbildning / kth / kurser / DN1213 /
numme06/utdelat/kap10.pdf.

94

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
https://doi.org/10.1007/978-0-387-09766-4_144
https://doi.org/10.1007/978-0-387-09766-4_144
https://doi.org/10.1007/978-0-387-09766-4_144
https://folk.uio.no/kent-and/sommerskole/material/book_20april.pdf
https://pdfs.semanticscholar.org/503b/f08383134ce107d870982fc50f96b80881f7.pdf
https://pdfs.semanticscholar.org/503b/f08383134ce107d870982fc50f96b80881f7.pdf
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DN1213/numme06/utdelat/kap10.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DN1213/numme06/utdelat/kap10.pdf

Appendix A
Theorems

A.1 Gershgorin circle theorem
Theorem A.1.1 (Gershgorin circle theorem). Let G be a complex N × N matrix with
entries gij . Let D(gii, Ri) be the closed disc centered at gii with radius Ri, where

Ri =
∑
j 6=i

|gij | (A.1)

for i = 1, ..., N and j = 1, ..., N . Then every eigenvalue of G lies within at least one of
the Gershgorin discs D(gii, Ri).

A.2 Divergence theorem
The Divergence theorem is also known as Gauss’ theorem or Gauss-Ostrogradsky’s theo-
rem.

Theorem A.2.1 (Divergence theorem). Suppose V ⊂ RN is compact and has piecewise
smooth boundary ∂V , and suppose F is a continuously differentiable vector field defined
on a neighborhood of V . Then:∫

V

(∇ · F) dV =

∫
∂V

(F · n) ds. (A.2)

The left-hand side of Equation (A.2) is a volume integral over V , while the right-hand side
is a surface integral over the boundary of V .

A.3 Levy-Desplanques theorem
Theorem A.3.1 (Levy-Desplanques theorem). If the matrix A = (ai,j) is strictly diago-
nally dominant, then A is invertible.

95

96

Appendix B
Function spaces

Keep in mind that we are working with real numbers only, not complex, which simplifies
many thing. It is assumed that the reader is familiar with the definition of vector spaces,
norms and other necessities in order to comprehend the following.

Definition B.0.1 (Cauchy sequence). If (E, ‖·‖E) is a normed vector space and (vm)m∈N
is a sequence of elements in E satisfying

∀ε > 0, ∃M such that ‖vp − vq‖E ≤ ε ∀p, q ≥M, (B.1)

then (vm)m∈N is a Cauchy sequence in E.

Definition B.0.2 (Banach space). A Banach space (E, ‖·‖E) is a normed vector space that
is complete with resect to the norm ‖·‖E , meaning that Cauchy sequences converge in E.

Definition B.0.3 (Hilbert space). If E is an R-vector space and 〈·, ·〉 is a bilinear form, i.e.
satisfying

〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉 (B.2)
〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉 (B.3)
〈λx, y〉 = λ〈x, y〉 (B.4)

〈x, λy〉 = λ〈x, y〉 (B.5)

and positive definite on E, i.e.

〈x, x〉 > 0 ∀x 6= 0E (B.6)

then (E, 〈·, ·〉) is a pre-Hilbertian space. If E is complete with respect to the norm defined
by 〈·, ·〉, then (E, 〈·, ·〉) is a Hilbert space.

Definition B.0.4 (Support of a function). The support of a function f on a domain Ω is
the subset of Ω containing the elements that f does not map to zero:

supp(f) := {x ∈ Ω| f(x) 6= 0} (B.7)

By the Heine-Borel theorem, for Ω ⊂ RN , the support is compact if and only if it is a
closed and bounded subset of Ω.

97

B.1 Spaces of continuous functions

Ck(Ω) =
{
f ∈ C0(Ω)| f ′ ∈ Ck−1(Ω)

}
(B.8)

C∞c (Ω) = {f ∈ C∞(Ω) with compact support in Ω} (B.9)

If f ∈ C0(Ω), then f is a continuous function. If f ∈ C1(Ω), then f and its first derivative
f ′ are continuous functions.

B.2 Lebesgue spaces

Lp(Ω) =

{
f such that

∫
Ω

|f(x)|p dx <∞
}
, 1 < o <∞ (B.10)

with the norm

‖·‖Lp(Ω) =

(∫
Ω

|u(x)|p
)1/p

(B.11)

There are three special cases: L1, L2 and L∞. Lebesgue spaces are Banach spaces. L2 is
also a Hilbert space, with the inner product

〈f, g〉L2(Ω) =

∫
Ω

f(x) g(x) dx, (B.12)

and is often referred to as the space of square-integrable functions.

B.3 Sobolov spaces
Sobolev spaces are Hilbert spaces. The general definition is:

W s,p(Ω) = {f ∈ Lp(Ω)|Dαf ∈ Lp(Ω), 1 ≤ α ≤ s} (B.13)

We will focus on the type obtained when setting p = 2, often referred to as Hilbert-Sobolev
spaces:

Hs(Ω) =
{
f ∈ L2(Ω)|Dαf ∈ L2(Ω), 1 ≤ α ≤ s

}
= W s,2 (B.14)

There are more than one possible norm, but a common choice is

‖f‖Hs(Ω) =

√∑
|α|≤s

‖Dαf‖L2(Ω) (norm) (B.15)

|f |Hs(Ω) =

√∑
|α|=s

‖Dαf‖L2(Ω) (semi-norm) (B.16)

where Dαf is the distributional derivative of f . It is the semi-norm we will see the most
of. For us, some central Sobolev spaces are:

H1(Ω) =
{
f : Ω→ R| f ∈ L2(Ω) and fx, fy ∈ L2(Ω)

}
(B.17)

H1
0 (Ω) =

{
f ∈ H1(Ω)| f = 0 on ∂Ω

}
. (B.18)

98

with inner product

〈f, g〉H1(Ω) =

∫
Ω

fg dx +

∫
Ω

∇f · ∇g dx (B.19)

B.4 Some rules for norms and inner products
From Equation (B.19) we can derive

‖f‖2H1(Ω) = ‖f‖2L2(Ω) + |f |2H1(Ω) (B.20)

Cauchy-Schwarz inequality:

〈f, g〉E ≤ ‖f‖E ‖g‖E , for inner product space E (B.21)

Generalized Hölder inequality:
For f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1 ≤ p ≤ ∞ and 1

r = 1
p + 1

q

‖fg‖Lr(Ω) ≤ ‖f‖Lq(Ω) ‖g‖Lp(Ω) , (B.22)

Minkowski inequality:

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω) (B.23)

99

M
ona-Lena D

ordi N
orheim

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r
m

at
em

at
is

ke
 fa

g

M
as

te
ro

pp
ga

ve

Mona-Lena Dordi Norheim

Investigating iterative solvers of
Poisson-type equations discretized by
the Two-Point Flux-Approximation
scheme

Masteroppgave i MSMNFMA
Veileder: Knut-Andreas Lie, Olav Møyner

Juli 2019

	Summary
	Preface
	Abbreviations
	Shorthand notations
	Units
	Variables and equations

	Introduction
	Outline of thesis

	Important prerequisites
	Concepts from linear algebra
	Connection to graph theory
	Matrix properties

	Grids
	Delaunay triangulations
	Voronoi diagram

	Physical properties of reservoirs
	Differential equations
	Advection equation
	Transport equation
	Fick's laws of diffusion
	Darcy's law
	The Poisson equation and the pressure equation

	Discretizations and numerical methods
	Discrete gradient and divergence
	Introduction to the finite volume method and the finite element method
	Finite element method on the Poisson equation in 2D
	Finite volume method on the Poisson equation in 2D

	Two-point flux approximation
	Iterative methods and preconditioning
	Preconditioning
	Smoothers
	Jacobi method
	Gauss-Seidel method
	Incomplete LU factorization

	Krylov spaces and Krylov solvers

	Multigrid methods
	Brief outline of the idea
	Ingredients in multigrid
	Coarser grids and interpolation
	Multigrid cycles and computational cost

	Types of multigrid
	Algebraic multigrid

	Preparation and experimental set-up
	The iterative solvers
	The reservoir models
	Simple case
	SPE10
	Olympus

	Experimental procedure
	Typical results from the different test models
	Simple case
	SPE10
	Olympus

	Experiments & Analysis Part 1: Time as a function of the number of grid cells
	SPE10 – Tarbert
	SPE10 – Upper Ness
	SPE10 – borderline area

	Experiments & Analysis Part 2: Mean value and standard deviation
	Olympus
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8
	Case 9
	Case 10
	Overall observations

	SPE10
	Tarbert layers 1-35 with relaxation as preconditioner
	Tarbert layers 1-35 with AMG as preconditioner
	Upper Ness layers 41-75 with AMG as preconditioner
	Borderline layers 21-50 with AMG as preconditioner
	Overall observations

	Conclusions and outlook
	Discussion and conclusion
	Future work

	Bibliography
	Theorems
	Gershgorin circle theorem
	Divergence theorem
	Levy-Desplanques theorem

	Function spaces
	Spaces of continuous functions
	Lebesgue spaces
	Sobolov spaces
	Some rules for norms and inner products

