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Sammendrag. Det finnes en kanonisk modellstruktur pa Cat som bruker ekvi-
valenser av kategorier, og vi forsgker & forsta fibrasjonene involvert. Fgrste kapit-
tel gir en detaljert utledning av at yonedaimbeddingen r : C — Setc er en fri
kokomplettering av kategorien C. Ut av dette springer et paradigme av “nerve
og realisering”-adjunksjoner, som generaliserer en rekke klassiske konstruksjoner. I
kapittel 2 motiveres forst diskrete fibrasjoner via topologiske overdekningsrom, og
disse fibrasjonene klassifiseres som funktorer C — Set. Dette er intimt knyttet til
den frie kokompletteringen og ulike linjer trekkes. Deretter gar vi detaljert gjen-
nom konstruksjonen av nevnt kanoniske modellstruktur. Til slutt gis en versjon av
Quillen sitt “small object argument” for presenterbare kategorier.

Abstract. There is a canonical model structure on Cat whose weak equivalences
are the categorical ones, and we attempt to develop an intrinsic understanding of
the fibrations involved. In Chapter 1 we work out the category theory required
to prove that the Yoneda embedding r : C — Setc is the free cocompletion of
C. This gives rise to a paradigm of “nerve-realization” adjunctions which subsume
various classical constructions. Chapter 2 motivates discrete fibrations of categories
through topological covering spaces, and the relation to Chapter 1 is made explicit
by classifying discrete fibrations E — C as functors C — Set. Observing this in the
context of the free cocompletion proves fruitful. Finally, we explicitely construct
the canonical model structure on Cat and we prove its uniqueness with respect to
the set of weak equivalences. We conclude with an account of Quillen’s small object
argument for presentable categories.



PREFACE

Quillen introduced model structures in his seminal monograph Homotopical Algebra [Qui67]
where he distilled out the properties of the category Top of topological spaces that are
required to carry out arguments of homotopical nature. This has birthed a branch of
“categorical” homotopy theory and made it worthwhile to search for model structures
on the categories in which we work. Such structures consist of a selection of morphisms
deemed weak equivalences and a selection of morphisms deemed fibrations (or equivalently,
a selection of cofibrations), that interplay nicely. The modern axioms of a model struc-
ture are stronger than those initially posed by Quillen; today it is customary to work with
Quillen’s closed model categories in which the choice of either fibrations or cofibrations
determines the other through left- and right-lifting properties.

A model structure on a category C associates a homotopy category to C by localizing C
at the weak equivalences. The role of the fibrations (or cofibrations) is then seen as solely
computational, and in general there are many possible choices of fibrations for a given set
of weak equivalences. The weak equivalences in the canonical model structure on Cat are
the equivalences of categories. A little-known fact is that this leaves no room for personal
preference concerning the fibrations; the set of isofibrations (and isocofibrations) is the only
valid choice. Perhaps less surprisingly, the same holds for the canonical model structure on
Set where the weak equivalences are the bijections. Analogous model structures on higher
categories have been constructed, but uniqueness of the set of fibrations (or cofibrations)
with respect to the weak equivalences appears to be an open question. These higher
analogues go by many names in the literature, e.g. “folk”, “natural”, “categorical”, but
also “canonical”. Since the term “canonical” carries a connotation of being “uniquely
determined”, we suggest the idea of defining a canonical model structure as being such
(Definition 2.30). In Section 2.2 these matters are discussed in more detail.

Discrete fibrations are the immediate generalization of topological covering maps to
categories, and this can be seen by passing through the fundamental groupoids. This is
done in Section 2.1. Classically, (connected) covering spaces are classified as (transitive)
actions of the fundamental group. The categorical version classifies discrete fibrations
E — C as functors C — Set, and this suggests a geometric view of functors C — Set as
“generalized covers” of the category C. While the first chapter develops “sterile” category
theory, the author was guided and motivated by geometrical intuition while writing it.
The end of Section 2.1 is an attempt at rendering some of the underlying ideas explicit.

Some authors (e.g. [Rielda], [Hov07]) go as far as to require functorial factorizations
of morphisms in their model categories. Quillen on the other hand obtained functorial
factorizations for some of his model categories through his so-called small object argument.

While powerful, Quillen’s small object argument is quite technical and may be a step
out of the comfort zone for most homotopy theorists: It consists of a transfinite induction
that doesn’t “converge”, but is halted at a sufficiently large cardinal. From a categorical
perspective, the arbitrary stopping point feels very unnatural. Luckily, this was recently
remedied in [Gar08] by Garner’s algebraic small object argument.

The precise class of categories permitting the small object argument eludes the author,
but a subset are the so-called presentable! categories—and we prove this is in Theorem
2.47. A feature of the small object argument is that it produces factorization systems on

1Some authors call these locally presentable, however we choose to follow [Lur09][A.1.1.2]



a category that satisfy the model structure axioms, and the model categories obtained
in this way are cofibrantly generated. This gives a direct way to equip a presentable
category with a cofibrantly generated model structure, these are called combinatorial
model categories. These feature prominently in Dugger’s theorem, which intuitively states
that a combinatorial model category is the localization of a presentable (oo, 1)-category
(see e.g. [Lur09][A.3.7.6, A.3.7.8]).

Finally, some words about the contents of this thesis are in order. The author claims no
originality concerning any of the results herein, though for some statements no reference
has been found. However, due to its classical nature everything stated here is surely
well-known to experts. Moreover, the author has made efforts to formulate and develop
the theory for himself, and for this reason proofs are included even if they lack novelty.

PRELIMINARIES

This text is intended to be read by other students at NTNU interested in topology and cat-
egory theory. However, some familiarity with basic category theory is needed. Specifically,
we assume familiarity with universal properties, (full, faithful, dense, (co)representable,
categories of) functors, the Yoneda embedding, and basic simplicial methods. Adjunc-
tions play an important role and are briefly introduced in Chapter 1.1, but the uninitiated
reader will likely need to consult e.g. [Lan10][Ch.4] for more details. After a concept has
been introduced, we will assume its dual as well and refer to the dual concept with a
prefix “co-”, e.g. limits and colimits.

Appreciation for most examples requires some knowledge of algebraic topology and
category theory. If an example identifies a “new” construction as a known classical con-
cept, the familiar reader may appreciate the ‘new” approach, whereas the unfamiliar
reader may consider it to be a definition.

In Chapter 2.3 familiarity with cardinal arithmetic is needed for a rigorous under-
standing.

NOTATION AND CONVENTION

Letters in boldface, e.g. C, denote categories throughout, and C(—, —) is the associated
hom-bifunctor. By Cy and C; we mean the objects and morphisms of C, respectively. In
general C(a,b) is a “hom-class”, or a “hom-set” whenever C is locally small (see “Size
concerns” below). For short we will write f* := C(f,C) and f, := C(C, f) for the pre-
and post-composition with f. Presheaf categories will be denoted by Setc = Set®”
(only Set-valued presheaves will be treated rigorously). For morphisms, a whole quiver of
arrows (—, —, <>, ...) will be defined and used; L : C < D : R will denote an adjunction
where L - R (i.e. L is left adjoint to R), whereas < is reserved for isomorphisms. Natural
transformations (resp. isomorphisms) will be denoted using double arrows = (resp. =),
except for natural transformations in the image of A (defined below), called constant
natural transformations, for which we will also sometimes use single arrows—notably in

diagrams.
Since Cat is cartesian closed, a bifunctor B : CxD — E corresponds to a functor
C — EP which we will denote B(—, =) to signify that the second parameter is curried. For

example, the Yoneda embedding r : C — Setc may be written C(=, —). One application
then removes one bar from each of the parameters, giving r(c) = C(—, ¢).



Some more categories deserve their own notation:

1. 1,2, 3... are the ordinal categories, so that n is the linear order on n objects.
2. A is the full subcategory of Cat spanned by the objects {n},-o.

3. A : C — Setc is also the diagonal functor sending an object a € Cy to the constant
functor A(a) defined as A(a)(f) = id, for all f € C; and A(a)(¢c) = a for ¢ € Cy.

4. T is the category containing two objects 0 and 1 and an isomorphism 0 <> 1.

SIZE CONCERNS

A small category has a set of objects and morphisms. By Cat we mean (2)-category of
small categories (and similarly for Set, Top, and Ab). A category C is locally small
if all its hom-sets C(a,b) are sets. For example, Set is locally small. When discussing
presheaf categories Setc, the domain C will often be small. This ensures that Setc is
locally small, since Setc(F, ) < [].cc, Set(F(c),G(c)) are sets.

In Chapter 2.3 more care is required and we follow [Lur09][1.2.15]: A category is k-
small for some cardinal x when the cardinalities of Cy and C; are smaller than . If
K is a regular cardinal, this ensures (as above) that Setc is locally k-small, i.e. that
|C(a,b)| < k Ya,b e Cy. More details are given in the reference.
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1 NERVES AND REALIZATIONS

1. NERVES AND REALIZATIONS

We start by introducing colimits, hoping to convey the idea that these are general ways of
constructing objects in a category. Especially important is their formulation in terms of an
adjunction, which is how they feature in proofs by “abstract nonsense”. Next up are limits
(the dual of colimits) in Set, whose explicit descriptions will illuminate proofs in later
chapters. Treating the Set-valued case first is useful, because it applies to any category
through the Yoneda embedding. Ends are different formulations of limits, introduced to
answer Question 1.48 (answered by Proposition 1.51) in a concise manner.

Comma categories are ubiquitous, and occur naturally as slice categories and categories
of elements, both of which feature prominently throughout this text. When writing a
presheaf as a canonical colimit of representable presheaves (see e.g. [Lanl0][3.7]), the
diagram category is the category of elements. Additionally, categories of elements give
fibrations of categories which are studied in Chapter 2.

Finally, we argue that the presheaf category Setc is the free cocompletion of the
category C, and show that this gives rise to a paradigm of “nerve-realization” adjunctions
that subsumes various familiar constructions. The approach taken here details that of
[Dug99].

Everything stated here is classical, but some statements are perhaps not widely known
or appreciated. All of [Lan10], [Riel4a], [Dug99], [Lur09] and the nLab have been put to
use. Specific pages of the latter are cited in place.

1.1. COLIMITS AND ADJUNCTIONS

We discuss colimits, developing intuition from the cases of Set and Top.
A colimit can be seen as a unique (or well-defined) way of assembling an object in a
category from others. In order to formalize this, some definitions are needed.

Definition 1.1. Let D : D — C be a functor. We will call D a diagram to stress that
it’s domain D is small. A cocone under a diagram D is an object ¢ € Cy along with a
natural transformation n: D = Ac.

Example 1.2. Let D := (b < a — ¢) be the category consisting of three objects Dy =
{a,b,c} and two morphisms Dy := {a — b,a — ¢}. A diagram D : D — C is called a
span (in C). Dually, a diagram D’ : D’ — C is called a cospan (in C).

Any set D gives rise to a discrete? category D whose only morphisms are the identities.
In this case a diagram D : D — Set is a collection of objects (Sg)den,, and a cocone under
D is a set S € Set along with functions (Sg — S)4ep, into S. Intuitively, we could think
of S as “housing” the various Sg’s. In particular, S could be the disjoint union [ [, Sy
along with inclusions (S; € S)4ep,. More interesting situations occur when D isn’t
discrete:

Example 1.3. Let D := (ig,4; : * =3 I) be the subcategory of Top whose objects are
the singleton * and the interval I, and non-identity morphisms are the inclusions 7, 7; of
the point * into the interval I at either 0 or 1. A cocone under the inclusion D — Top
is a space X along with two maps x : * — X and p: I — X. The map x corresponds to

2A discrete category is one where the only morphisms are the identities.
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a point z(x) of X, and p is a path. Naturality of x and p means that pip = z(x) = pi;.
This asserts that p is not just a path, but a loop based at z(*) in X.

The set of loops in a topological space X is the set Top(S?, X) of continuous functions
from the circle ST into X. The previous example could then be stated as: Any cocone
under D < Top (of Example 1.3) defines a (unique) loop S* — X. Said differently, S*
is the colimit of D:

Definition 1.4. Let D : D — C be a diagram. When it exists, a colimit of D is an object
colimD € C, giving rise to a cocone 1 : D = A(colimD) under D. Moreover, this cocone
is universal, meaning that any other cocone v : D = AC' factors uniquely through a map
4 colimD — C, ie. v = A(Y)n.

When they exist, colimits are unique up to isomorphism. This justifies referring to
the colimit of a diagram.

One way of intuiting Example 1.3 is to see the inclusions ig,7; : * — [ as points of [
that should be glued together to form the colimit. “Gluing” is to form a quotient, and
indeed 7/(0 ~1) =~ S'.

Example 1.5. Let S be the discrete category arising from a set S. The colimit of a
diagram S : S — Set is the disjoint union [ [, g S(s); the colimit of A : S — Ab is the
direct products of abelian groups @, 4 A(s), and the colimit of G': S — Gp is the free
products of groups kg, G(S).

Example 1.6. Let {U,V'} be an open cover of a topological space X. The colimit of the
span D = {» « « > «} - {U DU nV < V} in Top is X, and we think of this as the
result from gluing U and V' together along their intersection inside X.

The colimit of a span is called a pushout:

Definition 1.7. Let D : D — C be a span admitting a colimit. The colimit colimp D is
called the pushout of D, depicted as:

Ne

r

D(a) —— D(c)

v

D(b) -~ colimpD

The dashed arrows are the components of the cocone n : D = A(colimD). The small
angle “"” signifies that this is a pushout square. Dualizing gives the notion of pullbacks
and pullback squares (for which the angle “” is used).

d

Definition 1.8. Let D be a small category. A category C is D-cocomplete if all diagrams
D : D — C admit colimits. When C is D-cocomplete for all small categories D, we say
that C is (small) cocomplete.

Proposition 1.9. Let C be a cocomplete category. Then for any small category D,
forming colimits of diagrams defines a functor colim : CP — C.
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The proof is a good exercice in working with universal properties.

The universal property of the colimit with respect to a diagram D is more concisely
given as a natural isomorphism CP(D,A—~) = C(colimpD, —) : C — Set of functors,
which associates a cocone D = Ac to the unique induced morphism colimpD — ¢. In
particular, the colimit cocone D = A(colimpD) is found as the preimage of idcolimpp
under this isomorphism.

When C is cocomplete, we also get naturality in D € COD:

C(colim—, =) = CP(—,A-) : D” x C — Set

If we denote such a natural isomorphism by ©, this means that the following diagrams
commute for all f:¢c— ¢ € Ciandn: D= D' e (CP);:

C(colimD', ¢) % CP(D', Ac)

(Colimn)*f*l lﬁ*(Af)*
. / eD,c/ D /
C(colimD, ) —— C~(D,Ac)

This is an important example of an adjunction:

Definition 1.10. An adjunction between two categories C and D consists of two functors
L:C < D: R and anatural isomorphism D(L—, —) =~ C(—, R—) : C” x D — Set. The
functor L (resp. R) is then left (resp. right) adjoint to R (resp. L), written L - R.

One way of intuiting adjunctions is in terms of representability. Recall that a presheaf
P : C — Set is representable if it is isomorphic to C(—, ¢) for some ¢ € Cy. An adjunction
L:C < D : R gives a functorial choice of representative R(d) of the presheaf D(L—,d)
for any d € Dy.

Adjunctions have many characterizations (see e.g. [Lanl0][Ch.4]). In Example 1.3,
the set of loops in a space X was identified as Top(S*, X'). This may also be stated as
S1 being the corepresenting object for the “set of loops”-functor. Identifying a functor
as representable is useful; we will shortly recall the notion of a continuous functor, and
representable functors are examples of such. Moreover, morphisms leaving representable
functors are entirely determined by the Yoneda lemma: for all c € Cy and F': C — Set
we have Set®(C(—,¢), F) = F(c).

Similarly, we may look for a “set of adjunctions”-functor and seek a corepresenting
object. In fact, such an object exists and is given by a 2-category we will call Adj.
The precise axioms of 2-categories are discussed in e.g. [Lanl0][Ch.12]—for our present
purposes it suffices to understand that a 2-diagram in Cat is a diagram that may also
specify natural transformations between functors.

Definition 1.11. Let Adj be the (2—)category consisting of two objects a, b, two mor-
phisms L : @ — b and R : b — a along with two natural transformations n : id, = RL
and € : LR = id,. We call Adj the free adjunction, drawn as follows:

a

\

IS
4\
™~ U,mm
E—

S
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A 2-diagram D : Adj — Cat specifies exactly an adjunction between the two cat-
egories D(a) and D(b), this is quite immediate to see from the characterization of an
adjunction in terms of the unit n and counit € and the triangular identities:

L2 rRL RLR <" R

\ % R(e)}l% /

A special case arises when 7 and € are isomorphisms. Then this gives an adjoint equivalence
of categories, i.e. an equivalence of categories that also satisfies the triangular identities. A
natural question to ask is what happens for other “orientations” of 7 and ¢; let Adj’ denote
the category resulting from reversing the direction of n in Adj, so that n: RL = id,.

Question 1.12. What are 2-diagrams from Adj’ into Cat?

After a definition, we will immediately answer this question.
Definition 1.13. An adjunction of contravariant functors is a Galois correspondance.

Given D : Adj’ — Cat, if we perform — on D(a), the functors D(R) and D(L)
become contravariant and n switches direction to give a Galois correspondance. The
same would result from e being flipped. The terminology originates from the classical
correspondance between intermediate fields of an (infinite) Galois extension L/K and
(closed) subgroups of the associated Galois group Gal(L/K). Here’s another example:

Example 1.14. Let k be a field, and denote k its algebraic closure. The functor P :
Set — Cat sends a set to its poset of subsets. For a family of polynomials {f,}aeca €
P(k[X,...,X,]), denote the spanned ideal by (fa)aca-

There are two contravariant functors:

[:P(E") s P[X1,...,X,]): V
B {aﬁ}geB'—){fEk?[Xl,...,Xn]‘f(ag)ZOVﬁEB}
{ack™| fala) =0Vae A} — {folaca

The functor I sends a subset of points of £ to the set of polynomials vanishing upon it;
V sends a familiy of polynomials to its zero locus.

Hilbert’s Nullstellensatz states that I and V' define a Galois correspondance. On one
side we have a : idpx,,..x,)) = IV as the inclusion of a family {f.}aea S \/(fa)aca
into the radical of it’s spanned ideal. On the other side we have 3 : idp(n) = VI as the
inclusion S < S of a set of points into its closure in the Zariski topology on k™.

The last part of this section is dedicated to functors preserving colimits:

Definition 1.15. A functor L : B — C is cocontinuous if for any diagram D : D — B, a
colimit cone § : D = A(colimpD) produces a colimit cone L, () : LD = A(colimpLD)
by applying L,. In particular, colimp LD =~ L(colimpD).

It is well-known that left adjoints are cocontinuous and right adjoints are continuous?,
and these facts will prove useful. Another important class of continuous functors are
representable functors.

3These theorems go by “RAPL” (Right Adjoints Preserve Limits) and “LAPC”, see e.g. [Riel4b].

9



1.2 Ends and Limits in Set 1 NERVES AND REALIZATIONS

The definition (1.15) of (co)continuity could be stated as “L, preserves colimit co-
cones” as a functor L, : B? — CP. Since we in Proposition 1.9 formulated a colimit
functor whose domain are such diagram categories, we could hope that cocontinuous
functors also preserve general natural transformations of diagrams. In fact, they do:

Proposition 1.16. Let D be a small category, and B, C two D-complete categories. For
any cocontinuous functor L : B — C, the following diagram commutes:

BP L CcP

lcolimD lcolimp ( L. 17)

B, C

Proof. By definition of cocontinuity of L, the diagram commutes object-wise. Let « :
D = D’ e BP, and denote 6 : X = A(colimpD) and ¢ : D' = A(colimpD’) the colimit
cocones. By definition of colimp on morphisms, colimpa is the unique morphism making
the diagram on the left commute:

B . D —% 5 A(colimpD) LD 9 colimp(LD) . CP
la lA(colimDa) P—€i} lL*(a) lA(L(ColimDa))
D'~ A(colimpD’) Lo 2% colimp (LDY)

Applying L, gives the diagram on the right, where we have used that L,A = AL. Since
L(colimpa) makes the rightmost diagram commute, and this is the universal property of
colimp L, (), they are equal. We conclude that Diagram 1.17 commutes. O

In summary, a cocomplete category C carries an adjunction colimp — A associated
with any small indexing category D. It is a good exercice to obtain the dual notion of a
limit as the right adjoint A (- lim whenever C is complete.

1.2. ENDS AND LIMITS IN Set

Computing (co)limits is difficult in a general category C. However, if C = Set the right
perspective makes things easy. We start by computing limits in Set and then turn to how
this may be leveraged for general C through the Yoneda embedding r : C — Set. Recall
that = € Sety denotes the singleton set, i.e. the terminal object.

Proposition 1.18. Let D : D — Set be a diagram. Then the limit of D 1is the set

Set?(Ax, D) = { (za)ien,

D(6)(2q) = xd/,é:d—wl’eDl} <[] pw (1.19)

de Do

In particular, Set is complete. Moreover, Set”(Ax, —) = lim : Set? — Set is the limit
functor dual to colim of Proposition 1.9.

Proof. Denote S := Set®(Ax, D). Consider the map a +— ag4: S — D(d) for all d € D,.
The property that D(d)(x4) = z¢ for any z € S and 6 : d — d' € Dy is exactly the
naturality required for S to be a cone on D.

10



1.2 Ends and Limits in Set 1 NERVES AND REALIZATIONS

Let v : AT = D be another cone. Then the map t — (74(t))sen, : T — S is the
desired factorization. Uniqueness is immediately seen from the definitions.

We now turn to see that lim = Set®(Ax, —). For any 7 : D = D’ in Set® and d € Dy,
lim#n : lim D — lim D’ is the unique morphism making the square on the right commute:

SetP (Ax, D) limp D —%~ D(d)

b e

SetP(Ax, D) limp D' —% D'(d)

This means that for all x : A+ = D, (limn); = ng(zq) = (n«(x))q. But this means
lim 7 = 7,, so lim = Set®(Ax, —) on both objects and morphisms. O

In order to apply the above to an arbitrary category, we need two notions of how limits
transfer through functors:

Definition 1.20. A functor ' : C — C' reflects limits if for any diagram D : D — C,
F(¢)=lmFDeCy, = c¢=1lmD e C,

whenever lim F'D exists. Reversing the implication gives the notion of a functor preserving
limits. A functor that both reflects and preserves limits such that the limit exists in the
domain whenever it does in the codomain, is said to create limits.

An important class of functors that reflect limits are fully faithful ones. Our proof of
this uses the following lemma:

Lemma 1.21. Let F' : C — B be a fully faithful functor and D a category. Then the
functor Fy : CP? — BP defined by post-composition of F is also fully faithful.

Proof. Let D, D' : D — Candn,n' : D = D'. If Fy(n) = Fy(n') then F(ny) = F(ne) Vd €
Dy. Since F is fully faithful, this gives 7y = 1), Vd € Dy. But this is exactly what n = 7/
means, so F is faithful. Now let o : FD = F'D’. The preimage of each component of «
defines a family (F~'(aqg))4ep,. To see that this defines a natural transformation D — D',
let f:d— d € D;. We then have

D(f)F~(a) => FD(f)aq = au FD'(f) <= F~ () D'(f)
Since F' is faithful, the two preimages (on the sides) of the middle are equal. O

Proposition 1.22. A fully faithful functor reflects limits.

Proof. Let F': C — B be fully faithful, and D : D — C a diagram. Suppose that
F(c) =lim F'D for some ¢ € Cy. We need to show that ¢ is the limit of D. Let x € Cy:

C(z,¢) L

f. Fy 1.

B(F(z), F(c)) = BP(FA(z2), FD) =" CP(A(x), D)
Note that we have used that A(F(z)) = FA(z). O
Corollary 1.23. Let D : D — C be a diagram. Whenever lim D exists in C, we have:

Set?(Ax, C(—, D)) = C(—,lim D) : C — Set

11



1.2 Ends and Limits in Set 1 NERVES AND REALIZATIONS

Proof. The Yoneda embedding r : C — Set¢ is fully faithful. By Proposition 1.22, r
reflects limits and r(lim D) is therefore the limit of D = C(—, D) whenever lim D exists.
On the other hand, limits in a presheaf category may be computed pointwise. Any ¢ € C
defines a diagram rD(c¢) = C(¢,D—) : D — Set whose limit by Proposition 1.18 is
Set®(Ax, C(c, D—)). In conclusion, Set®(Ax, C(—, D)) = C(—,lim D). O

The construction (1.19) of limits in Set goes more generally as “small limits through
finite products and equalizers” [Lan10][Ch.5.2]:

Construction 1.24. Let D : D — C be a diagram where C admits products indexed by
the objects and arrows of D, as well as (pairwise) equalizers. The limit of D is then the
following equalizer:

Hd D(f)ﬂ'd
limD --*» [] D) [[ D@ (1.25)
f:d—d'eDq [Tama deDyg

where 7, : Hf:dﬂd’eDl D(d) — D(e) is the projection. The equalizing property of u :
IimD — Hf:dﬁd,eDl D(d) unpacks to being a cone on D, and the universal property
translates to being a universal such.

Comparing Equation 1.19 to 1.25, in the case of Set we identify in the lim D as a
subset of | [,.p, containing collections satisfying exactly the relations of the equalizer
1.25, and w is in this case the set-inclusion.

Even if Construction 1.24 dualizes to make “small colimits by finite coproducts and
coequalizers”, there is a certain asymmetry to it: On one side D is being applied and
the other side is simply the projection. Another diagram D’ : D — C (contravariant
this time) could be applied on the other side. The equalizer in this case is the end of the
bifunctor D' x D : D?xD — C,

Hd(idD’(d’) XD((;))T('(;

D'(d)xD(d) --*» [] D'(d)xD(d) [ [ D'(d)xD(d)

deDo seD(d,d") [14(D'(8)xidp(ay)ms deDy

Vv ¥

(1.26)
to be rigorously defined in 1.28. In this case, the property of the equalizer unpacks to the
following universal diagram commuting for every ¢ : d — d’ in D:

D'(d)xD(d) —— D'(d)xD(d)
o l lide(&) (1.27)

D'éxid
E—

D'(d)x D(d") D'(d)x D(d")

This is the assertion that SdeDO D(d)xD'(d) is a universal wedge on D’x D, and the maps
leaving the wedge are components of a dinatural transformation from the constant bifunc-
tor given by the end, to the bifunctor D'x D.

Definition 1.28. Let F,G : D’ x D — C be two bifunctors, and ¢ an object of C.

12



1.2 Ends and Limits in Set 1 NERVES AND REALIZATIONS

1. A dinatural transformation n : F — G is a family {n, : F(d,d) — G(d,d)}4ep, such
that the following hexagon commutes for all f : d — d' in Dy:

F(f,id) F(d,d) =% G(d,d) G(id,f)
7/ \ El
Fd.d) o G@) (1.29)
\ ’ . /
F(d,d) ™ G, d)

2. A dinatural transformation w : A(c) — G is called a wedge on G; dually a dinatural
transformation v : F© — A(c) is called a cowedge on F. This means the following
squares commute for all f :d — d in Dy:

c—“1 y G(d,d) Fd,d) XY g, a)
l“)d’ lG(id, ) lF(id,f) lw
ad,dy Y G, ) F(d,d) —2% ¢

3. The end of the bifunctor F' is an object §, ., F(d,d) € Cy (often §, F' for short),
along with a universal wedge ¢ : A (SD F) — F. This is the situation of diagram
1.27 above (replacing D'x D by F'); universality means that any other wedge = :
A(c) — F factors uniquely through a morphism f: ¢ — {J F, ie. v = dA(f).

4. Dually, the coend of the bifunctor F'is an object SD F of C along with a universal
cowedge F — A({P F).

Remark 1.30. Construction (1.26) shows that ends can be computed as limits. However,
for any diagram D : D — C the limit can also be found as the end of the bifunctor
(d',d) — D(d) forgetting the contravariant parameter. As such, ends and limits are
equally expressive and continuous functors preserve both.

A question immediately springs to mind:
Question 1.31. What is the end of C(—, —)?

The answer follows immediately by proceeding as in 1.19. First consider singleton
wedges; a singleton wedge 1 : Ax — C(—, —) satisfies fi(ns) = f*(n.) i.e. fnu(x) =
nef(x), for any f : ¢ — ¢ in C;: This is what it means for n to be in the center of C,
i.e. the endomorphism monoid C€(id¢,id¢) of the identity functor on C. The universal
wedge is then the set of all such wedges, which is exactly the set (monoid) C€(id¢, id¢).

The answer generalizes to the following useful example:

Example 1.32. Consider two functors F,G : C — C’. The end of the bifunctor
C'(F—,G—) : €' x C' — Set is the set C'°(F,G) of natural transformations from
F to G. Indeed, for any d : ¢ — ¢ the desired diagram on the left commutes:

C°(F,G) —— C/'(Fe,Ge) Fe — Ge
l—cx lG(S* leS laa
C'(Fd,Gd) 25 C'(Fe,G) Fd 5 G

13



1.3 Comma categories 1 NERVES AND REALIZATIONS

The diagram on the right is the pointwise computation for any n : F' = G, which com-
mutes by naturality. Given any other wedge w : AW — C'(F—,G—), any point w € W
defines a unique natural transformation w_(w) : F' = G, factoring w through C'C(F Q)
as desired.

Ends will be central to the proofs appearing in the next sections. Their utility will
not be to create new constructions, but in expressing familiar ones. By identifying a con-
struction as an end, Remark 1.26 implies that this construction is preserved by continuous
functors. An important class of continuous functors are the representable ones:

1.3. COMMA CATEGORIES

We introduce comma categories and a perspective on limits generalizing Prop. 1.9.

Definition 1.33. Consider a cospan of categories A Lc&EB

1. The comma category (F'|G) consists of objects:
(FlG)o:={c:F(a) > G(b) |ae Ay, be By} = C;

A morphism (F(a) > G(b)) — (F(d') <, G(V')) is a couple (f:a — d’,g:b - V) €
A, xBj such that d'F(f) = G(g)d, i.e. a commutative square in C:

2. For an object ¢ € Cy, the category F' over ¢ (resp. G under c) is defined as (F'|c) :=
(F|Ac) (resp. (c|@) := (Acl@)).

3. When F' = id¢ (resp. G = id¢) we will simply write C/c (resp. ¢/C) for (F'lc)
(resp. (c|G)) and call it the category over (resp. under) c or simply refer to it as an
over (resp. under) category. Morphisms are referred to as morphisms over (resp.
under) c.

4. For any a € Ay, there is a slice-functor a/F : (a/A) — (F(a)/C) by applying F' to
the objects and morphisms of a/A.

Example 1.34. Many familiar constructions arise as over and under categories:

1. The over category =/ Top consists of pointed topological spaces along with basepoint-
preserving maps—in the litterature this is often denoted Top,. This category is the
domain of the fundamental group functor m : */Top — Gp.

2. For a topological space X, the objects of the category Top/X are referred to as
“spaces over X”. Two important subcategories of Top/X are bundles over X,
covers of X, and the (open) subsets of X.

3. For a commutative ring R, the category of commutative R-algebras may be identified
as R/CRing.

14



1.3 Comma categories 1 NERVES AND REALIZATIONS

4. Let C be a category. The category Cat/C is the category of diagrams in C.

5. Let C be a category and ¢ € Cy. In ¢/C (resp. C/c), the object id, is initial (resp.
terminal). If ¢ is initial (resp. terminal) in C, then C is isomorphic to ¢/C (resp.
C/c). This characterizes categories with initial (resp. terminal) objects as exactly
over (resp. under) categories.

Remark 1.35. Equality on morphisms in comma categories is inherited from the domain
categories A and B (of Def. 1.33). It would be a mistake to equate two commuting
squares by only considering them in C. To illustrate this, consider a functor F': A — C.
The following two parallel morphisms in (F'|c) are equal if and only if f = ¢ in A;:

—>Fd’

Fld) —2 p(a)
\ / (f#9) X /
# p

Even if F(f) = F(g), which makes these triangles indistinguishable in C.

The following is a first step in generalizing (the dual of ) Proposition 1.9 to the category
Cat/C of all diagrams in a category C. See the subsequent remark (1.37) for a sketch of
the full-fledged generalization.

Proposition 1.36 ([Lanl0][Ex.5b, p.115]). If C is a complete category, there is a con-
travariant limit functor lim : Cat/C — C sending any diagram to its limit in C.

Proof. An object of Cat/C is a diagram D : D — C. Completeness of C gives a limit
lim D € Cy for any such diagram D. If D’ : D’ — C is another diagram, and ' : D — D’
is a morphism from D to D’ over C, then the limit cone ¢’ : A(lim D’) = D’ restricts to
a cone 0%_ : A(lim D') = D'F = D by precomposing with F'. Universality of lim D gives
a unique morphism lim F' : lim D" — lim D, making lim : Cat/C — C well-defined on
objects and morphisms—it remains to check functoriality.

D A(lim D)
l \ A \
Fl b Alim F) |
Y ) Y B . Op
D -p->C A(limD") == D' Koo A(limD') = D'F =D
% ~
! " A(lim F’) | ” A(lim F’ #
Fl /D (lim F )| 5, (lim F° )T 5,
D” A(lim D") A(lim D")

Consider two composable morphisms F' and F’ as on the left above. In the middle,
lim F” is induced by the universal property of the limit cone ¢’ : lim D’ = D’. The middle
diagram transfers through F* into the bottom triangle of the diagram on the right. Since
everything commutes on the right, the composition A(lim F")A(lim F') = A(lim F'lim F")
is the unique morphism in the image of A making the outer diagram commute, hence
lim F"lim F' = lim F'F. O

Dualizing the proposition (1.36) gives a covariant functor colim : Cat/C — C when-
ever C is a cocomplete category.

15
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Remark 1.37. The reason the limit functor of the previous proposition (1.36) isn’t a proper
generalization of the limit functor of (the dual of) Proposition 1.9 is that the morphisms
involved in the latter (i.e. natural transformations of diagrams) are not present in the
over category Cat/C. The remedy is to define a weaker version of our over categories,
where a morphism F' : D — D’ over C (drawn below) is allowed to commute up to a
natural transformation n: D — D'F.

D \D)
F C
M/
D~ Y
A natural transformation of diagrams o € CP is then given by the above morphism
when F' = idp and = a. The generalization for colimits requires the direction of 7 to
be reversed, since colim : Cat/C — C is then covariant.
The generality of the above will not be strictly needed for our purposes, but it is the

formal justification for why we may speak of the limit and colimit functors while applying
them to morphisms of both CP and (Cat/C);.

Having now changed (or, in view of the preivous remark (1.37), expanded) the domain
of our limit functor, we are confronted with the question of whether a continuous functor
R : B — C between complete categories respects lim : Cat/B — B on morphisms as well
as objects. Luckily it does:

Proposition 1.38. Let B and C be complete categories. If R : B — C'is a continuous
functor, the following diagram commutes:

Cat/B % cat/C

llim llim

B— ¢
Proof. By definition of continuity of R, the diagram commutes object-wise. Consider a
morphism F': D — D’ in Cat/B; between two diagrams D : D — B and D’ : D’ — B.

Write § and ¢’ for the respective limit cones of D and D’. On the left below (Cat/R)(F)
is drawn, whereas on the right we see the diagram inducing lim F' by universality of .

D A(lim RD) =% Rp A(lim D) == D

P . ,
. l l
F C Jm ! !

|

|

|

zr ' Ra(8y) Rk
D’ A(lim RD') == RD A(lim D) == D'F

The middle diagram is both the one inducing lim(Cat/C)(R), and the image of the
rightmost diagram. This means lim(Cat/C)(R) = R(lim F'), as desired. O

For a fixed diagram category D and a D-complete category C, the limit functor
lim : CP — C is right adjoint to the diagonal A : C — CP. How does this generalize?

16



1.4 Categories of Elements 1 NERVES AND REALIZATIONS

Question 1.39. When C is complete, does lim : (Cat/C)® — C admit a left adjoint?

The answer to this question is likely hidden somewhere in the literature. It is a natural
question to ask at this point, but in order to give a well motivated answer, we shall return
to it in Proposition 2.25 at the end of Section 2.1.

One may check that forming comma categories defines a functor (—|—) : Cat/C x
C/Cat — Cat, though we will not need this construction. However, we will need the
following related fact:

Proposition 1.40. Let C be a small category. There is an over (or slice) functor C/— :
C — Cat associating any object ¢ in Cy to its over category CJc.

Proof. Let f : ¢ — ¢ be a morphism in C. We define a functor C/f : C/c — C/c’ by
postcomposition on objects and “doing nothing” on morphisms:

a
C / c lu> c C/f C / J
b
This is functorial since C/f acts as the identity on u € C;. m

1.4. CATEGORIES OF ELEMENTS

An important occurrance of comma categories are so-called categories of elements:

Definition 1.41. Let C be a small category, and P : C — Set a presheaf. The category
of elements of P is the under category (x| P). An object z : » — P(c) will rather be
denoted z € P(c), and a morphism P(f) : P(c) — P(¢) from z € P(c) to 2’ € P(¢) will
be written P(f)(x) = a’. There is a forgetful functor Up : (x| P)°®? — C defined by:

x € P(c) c
(x| P) : lP(f) RN Tf : C
' € P(d) d

Proposition 1.42. Let C be a small category. Forming categories of elements gives rise
to a faithful functor (+|—) : Setc — Cat.

Proof. Let n : P = P’ be a natural transformation of presheaves over C. The functor
(xln) sends an object x € P(c) to n.(x) € P'(¢), and a morphism z' = P(f)(z) with
f:d — ce Cyissent to nu(a) = P (f)(n.(z)) in (x| P’). This is well-defined since
naturality of n makes the following commute:

z € P(c) —£— ne(z) € P'(c)

lP(f) lp’(f)

7' € P(¢) —< nu(z') € P()

17



1.4 Categories of Elements 1 NERVES AND REALIZATIONS

As such, (x|n) is functorial by stacking diagrams such as the above and applying natural-
ity. Functoriality of (| —) is also clear; natural transformations are composed component-
wise, and (x|n) is just n acting component-wise.

Claim: (x|—) is faithful. Let n,n' : P = P'. If n # 1/, then n, # 0. for some ¢ € C,.
As these are morphisms in Set, this means there is an x € P(c) such that n.(z) # n.(z).
But this means exactly (|n)(z € P(c)) # («|{n')(x € P(c)), so (x|n) # (x|n). O

Remark 1.43. The failure of (x| —) to be full stems from the fact for a natural transfor-
mation 7 : P = P’ the induced functor (x|n) : (x| P) — (*| P’) sends an object = € P(c)
to n.(x) € P'(c) whilst respecting the object ¢. By this we mean that (x|n) gives rise to
a morphism from Up to Ups in Cat/C, since

Up(z € P(c)) = ¢ = Up/(ne(x) € P'(c))

A general functor F' : (x| P) — (x| P") does not satisfy this constraint.

In Theorem 2.18 a refined picture is given: The image of (x|—) : Setc — Cat is
identified as the category of “covers” of C, and Up : (x|P) — C is then seen as a
“categorical covering space” over C.

Categories of elements arise prominently as the diagram categories in the following:

Theorem 1.44. Let C be a small category. Any presheaf P . C — Set is a colimit of
representable presheaves in a canonical way:

P = colim [(*lp)op Y, o SetC] (1.45)

zeP(c)
Proof. See e.g. [Lanl0][Ch. 3.7]. O

The above colimit (1.45) can be written in many ways; e.g. P = colimep)C(—, ¢) or
even P = colimg(— - pC(—, ¢). In the latter case, the diagram category is (r|P), i.e. the
category of representable presheaves over P. Using the Yoneda lemma, one immediately
sees that (r|P) = (x| P)°. The colimit cocone p : rUp = AP is indexed by (+|P), and
the components are given by & : C(—,c¢) = P for x € P(c), where x — I : F(c) <
Set®(C(—,¢), P) is the Yoneda lemma.

We will need a slight improvement on Theorem 1.44 which allows us to also obtain
the morphisms of Setc through colimits:

Corollary 1.46. Let C be a small category, and n: P = P’ a natural transformation of
presheaves over C. Then colim : Cat/Setc — Setc (dual to Prop. 1.56) gives:

colim(x|n) =n

Proof. Write the canonical cocones of P and P’ as p: rUp = AP and p' : rUp = AP'.
By definition, colim(x|n) is induced as the unique morphism factoring the restriction
p’(*w)f :rUp = AP’ through the colimit cocone p.

Claim: p(,,, - = A(n)p. For x € P(c) denote & : C(—,¢) = P the natural transfor-
mation given by the Yoneda lemma. Note that by definition, #.(id.) = z, and in this
notation pyep() = <. Consequently, for any x € P(c):

—

(A(U)P)xeP(c) =nT = n.(v) = p’(*m)(;pep(c))
Showing that 1 satisfies the universal property of colim(=|n). O
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Remark 1.47. Theorem 1.44 and Corollary 1.46 assert the fact that objects and morphisms
of Setc are obtained as colimits of diagrams passing through C. The bigger picture is
that Setc is the free cocompletion of C. This will be proven in Theorem 1.55 of the next
section (1.5).

Upon pondering Theorem 1.44 and the functor (x| —), the author arrived at the fol-
lowing question®:

Question 1.48. For a presheaf P : C — Set, do we have that («|P) = collji(rr)l(*lC(—, ))?
xTre (&

That is, do we get any category of elements the colimit of “representable” categories
of elements? We now address this question, whose answer is given by Corollary 1.52.

Our first step will be to see that the category of elements of a representable presheaf
C(—, ¢) is the over category C/c.

Lemma 1.49. Let C be a small category and c € Cy. Then (| C(—,c)) = C/c.

Proof. An object of (x|C(—,c)) is a morphism f € C(a,c) for some a € Cgy, which is
exactly an object f : a — ¢ in C/ec. Likewise, a morphism f = h*(g) as on the left below,
corresponds exactly to the triangle over ¢ on the right:

; C(a,c)
(+lC(=,¢)) : * — h{ lh c : C/e

C(d,c) a O

In view of the lemma (1.49), if (x| —) preserves colimits, the category of elements of
any presheaf would be obtained as a colimit of over categories by applying (x| —) to the
colimit 1.45. One way of proving cocontinuity is to construct a right adjoint. To do so,
we will require the following reformulation:

Proposition 1.50. Let C be a small category, and denote d : Set — Cat the functor
sending a set D to its discrete category D = d(D). The category of elements of a presheaf

P : C” — Set may be computed as the coend SCGCO dP(c)x Cle.

The proof relies on the fact that Cat is cartesian closed, meaning that Cx — - —€ is
an adjunction in Cat. The counit is the evaluation ev : C x —€ = idgas for all categories
C, which will be useful in the following.

Proof. The goal is to see (x| ) as a universal cowedge on dP x C/—: C” x C — Cat.
The presheaf P defines a family of functors P. : (C/c)” — P(c)/P for any ¢ € Cy by
applying P to any triangle over ¢ (the directions flip because P is contravariant):

Cle:

4The answer is likely obvious to experts, though the author hasn’t found it in the litterature.
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Moreover, evaluation defines a family of functors ev, : d(P(c)) x P(c)/P — (x| P).
The diagramattical description of this is simplest by writing an element z € P(c) as a
function x : * — P(c). “Evaluation at z” is then restriction along x:

d(P(e)xP(e)/P: . Pla) % a) |P)
o) T

Claim.: the family {ev.(idyp( XPC)}CECO defines a cowedge dPx C/— — A(x|P). We
want the following square to commute forall f:c— e Cy:

AP()x C e T dP(f)de dP(c)xC/c
lidxc/f ? Ve (idx Pe)
ev s ( 1d><P/

dP(d)xC/d Vo) (x| P)

On objects, the equation underlying the diagram is P(fg)(x) Z P(g)(P(f)(x)) for all
xz € dP(d') and g € (C/c)o, which holds true by functoriality of P. Verifying that the square
commutes for morphisms in C/c follows immediately from expanding the definitions and
applying functoriality. We needn’t consider non-identity morphisms in dP(c’) since it is
a discrete category.

Claim: The cowedge ¢ := év_(idxP_) : dPx C/— — A(+|P) is universal. Consider
another cowedge 0 : dPxC/— — D. We now define a functor F' : (x| P) — D such that
A(F)e =4, and argue that F' is uniquely determined.

Let f : ¢ — ¢ € Cyq, and consider a morphism (z/'=P(f)(z)) in (x|P);. De-
fine F(z'=P(f)(x)) := d.(x, f) on morphisms. This induces a definition on objects by
F(zeP(c)) = 0.(x,id.). In order for this to give a well-defined functor, parallel morphisms
must be sent to parallel morphisms. This is indeed the case, since if (z'=P(f)(x)) and
(z’=P(g)(x)) are two parallel morphisms in (x| P), then d.(z, f) and d.(x, g) are parallel
in D since ¢, is a functor.

We will appeal to §’s dinaturality in order to show functoriality of F'. Consider two
composable morphisms f : ¢ — cand f' : ¢ — ¢ in C, giving rise to two composable
morphisms (z'=P(f)(x)) and (z"=P(f')(«’)) in (+]P), for any x € P(c). Then F is
functorial if and only if the following holds:

Fa"=P(f)(@)F(a'=P(f)(@)) “ 5u(a’, f)0c( £) © 0o, ££) < F(a"=P(f'f)(@))
The following diagram commutes by dinaturality of §.

dP(c)xC/d T ap(yxC /e

lidxC/f 5,

dP(c)xCJlc —= D

Choosing (z, f') € (dP(c)xC/c)y shows that the equation (7) above holds.
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It is clear that A(F)e = § from the definition. To see universality of F', suppose
G : (x| P) — D is another functor such that A(G)e = §. Remark that a general morphism
(' = P(f:d — ¢)(x)) in (x| P); is in the image of €. by the following:

L, P P, PLE) A o
/{ eve idXPc
* P(f) T, P(c) TP(f) « z,c Tf
2> A f’\ /
P(c) P(c) ¢

Denote the preimage on the right by (z, f=foid.). We then have:
G(2'=P(f)(z)) = G(ec(z, f=foid.)) = b.(z, foid,) = F(z'=P(f)(x))
giving G = F' on morphisms, which implies equality on objects as well. O]

The hard work of identifying (x| —) as a coend pays off immediately in our first proof
by “abstract nonsense”:

Proposition 1.51.° Let C be a small category. There is an adjunction
(x|—): Setc < Cat: Cat(C/=,—)

Before the proof, recall that the inclusion d : Set — Cat is left adjoint to the functor
—o sending a category C to its set of objects C,.

Proof. For any presheaf P : C — Set and small category X, (co)end calculus gives:

Cat((+] P), X) = cm(fgco dP(c) x C/e,X) (Proposition 1.50)
~ J . Cat(dP(c) x C/c,X) (Remark 1.30, Cat(—, X) continuous)
ceCo
~ J . Cat(dP(c), Cat(C/c, X)) (Cat is cartesian closed)
ceCo
~ J Set(P(c), Cat(C/c, X),) (d 4 —o)
~ Si:fé(P, Cat(C/—, X)) (Example 1.32)0

Identifying (+]—) as a left adjoint grants us the desired cocontinuity. We conclude:
Corollary 1.52. Any category of elements is a canonical colimit of over categories.

Proof. Let P : C — Set be a presheaf, written canonically as P = colimgep()C(—, ¢).
Cocontinuity of (x| —) gives (+]|P) = colimzep() (*| C(—, ¢)) = colimgep()C/c. O

This settles Question 1.48 in the positive.

It is not hard to see that any small category C arises as the category of elements of the
terminal object A= in Setc; the forgetful functor Ua, : (x| Ax) — C is fully faithful and
bijective on objects. The following proposition is the analogous statement to Theorem
1.44 giving any category as a canonical colimit of its slices, a curiosity the author hasn’t
seen elsewhere.

5This is Thm. 3.2 of nLab’s Category of elements, added in rev. 26 by an anonymous contributor.
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Proposition 1.53. Any small category C' is the colimit of its slices C/— : C — Cat.

In the proof a morphism in a slice C/c, as on the left in diagram 1.54 below, will be
denoted by ¢ = ¢’ o1 and referred to as a “triangle over ¢”’. Explicitely, ¢ is the domain
and ¢’ the codomain of the morphism ¢ in C/c. The placement of the o carries meaning,
reflecting the equality of triangles (morphisms) over ¢. For example, (gf = go f) # (gf =
id o gf) in general—the actual sides of the triangle matter.

Proof. To see that C is a cone on C/—, consider the projections U, : C/c — C.

¢
Cle: ¥ \ c ey lzﬁ :C (1.54)
c

The collection (U,)e.c defines a natural tranformation C/c = AC: For any morphism
f:c—  of C, the slice functor sends f to its post-composition C/f = f*: C/c — C/c.
Post-composition doesn’t change the domain of a morphism, so U. = U, f* on objects.
Now let ¢ = ¢’ o1 be a triangle over ¢ as on the left in the diagram above. Then f*
sends this to the triangle f¢ = f¢' o1 over ¢/, which projects to Uy (fo = f¢' otp) = =
U.(¢p = ¢' o). Consequently, for any morphism f : ¢ — ¢’ of C we have that U, = Uy f*
as functors. In other words, U_ : C/— = AC is a cocone.

It remains to show universality of the cocone U_. Let a : C/— = AD be another
cocone, for which we seek to define a factorization & : C — D. A concise approach is
to define & on morphisms, and verify well-definedness on objects afterwards. To do this,
the fact that id. is terminal in C/c will be useful. That is, any morphism ¢ : b — ¢ of C
defines an object of C/c, and ¢ = id. o ¢ is the (unique) terminal triangle to id.. Posing
a(p:b— c) = a.(¢ =id. o @) is therefore well-defined as a function (a map of sets); we
need to verify that this is well-defined on objects and respects composition.

The definition of & on morphisms induces one on objects by looking at the identities.
Explicitely, &(c) must be the (co)domain of &(id.) = a.(id. = id. o id.), i.e. a.(id.). In
order for this to be well-defined as the object-function of a functor, we need that any
morphism ¢ : b — ¢ in C is sent to &(¢) : ap(idy) — ac(id.). The case of the codomain is
immediate from the definition,

a(¢) = ac(¢ = idc 0 @) : (@) — ac(id)

As for the domain, notice that ¢ = ¢*(id,) in C/c. Naturality of o then applies to give
(@) = ac(9*(idy)) = ap(idy). We conclude that & is well-defined on objects.

To prove functoriality, consider a composition a Lp% einC.

C/b: a—15b a—15b—25¢ . CJe
N e N
b c

On the left above is the terminal triangle f = id, o f. On the right, the terminal
triangle gf = id o gf is written as the composition of ¢*(f =id, o f) = (9f = go f) and
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the terminal triangle g = id. o g. Naturality of a implies that the image of a triangle is
invariant under post-composition. Therefore:

a(gf) = aclgf =idcogf) (definition of @)
= ac((9 =1dcog)g*(f =idy 0 f)) (composition in C/c)
= a.(g =id. o g)a. (g*(f = idy o f)) (functoriality of «.)
= a.(g =id. o g)ap(f = idy o f) (naturality of )
= a(g)a(f) O

1.5. THE FREE COCOMPLETION

Being familiar now with the category of elements of a presheaf P : C — Set, and how to
recover P as a colimit indexed by (=] P), it is perhaps intuitive that any functor F': C — D
lets us “redirect” this colimit into D as FUp : (x| P)? — D, and that if D is cocomplete
this is actually sufficient to induce a functor R : Setc — D satisfying:

Setc
P
C IR
\ +
"D
The next proposition confirms this intuition, and in fact gives even more: the induced
functor is a left adjoint.

Theorem 1.55. Let C and D be small categories with D cocomplete, and consider a
functor F': C— D. The Yoneda embedding r:C — Setc is the free cocompletion:

1. There exists a unique cocontinuous functor R : Setc — D such that Rr = F.
2. Let N:= D(F =,—). Then R - N.

Proof. 1) Consider a functor ' : C — D with D cocomplete. A presheaf P € Set is the
colimit of the diagram rUp : (x| P)®? — Setc, where Up is the forgetful functor seen on
the left below. On objects, define R : Setc — D by P — colim,ep() F'(c).

Setc (*lP)Op U
o |

D (-LP)

c 5D

For a natural transformation 7 : P = P’, the functor (x|n)° is part of a triangle in the
over category Cat/D, seen on the right. The dual of Proposition 1.36 gives a colimit
functor which we may use to define R(n) := colim(x|n) on morphisms. This is clearly
functorial, since both colim and (x| —) are.

That R is cocontinuous will follow from being a left adjoint, which is proven in (2).
Supposing cocontinuity of R for a moment, arguing unicity is easy: if G : Setg — D is
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1.5 The Free Cocompletion 1 NERVES AND REALIZATIONS

another cocontinuous functor factoring F', then for any n: P = P,

G(n) = G(colim(x|n)) (Corollary 1.46)
= colim [(Cat/G)(x|n) : GrUp — GrUp/|  (Prop. 1.38, G cocontinuous)
= colim|(«|n) : FUp — FUp/| (Gr = F)
= R(n)

Equality of R and G on morphisms implies equality on objects.
2) We verify that N := D(F=,—) : D — Setc is indeed right adjoint to R. Let
P e Setc and d € D. We then have:

D(R(P),d) = D(collji(n)1 [RrUp(x)],d) (def. of R(P))
e C
~ h}l;r(l) D(Rr(c),d) (continuity of D(F'—,d), def. of Up)
xTre C
~ lim D(F(c),d) (Rr=F)
zeP(c)
~ lim N(d)(c) (def. of N)
z€P(c)
~ lilgr(l)SetC(r(c),N(d)) (Yoneda lemma)
xe C
~ Setc(P,N(d)) (continuity of Setc(—,N(d)))
Where we have also used that P = colim,, p(c)r(c) on the last line. O

The functors R and N of the theorem (1.55) are called realization and nerve functors;
together they make up a “realization-nerve”-adjunction. The following examples motivate
the choice of terminology.

Example 1.56. The category Top is cocomplete (Construction 1.24). Consider the
functor n — A" : A — Top mapping the poset n to the geometric n-simplex A" :=
{peR"|p;=0,>",pi <0 }. Theinduced adjunction consists of the classical geometric
realization |—|: Seta — Top of a simplicial set. The right adjoint is therefore X +—
Top(A~, X), which is the classical singular functor.

Example 1.57. The category Cat is cocomplete (Construction 1.24), and the inclusion
A < Cat induces an adjunction h 4 N, where the left adjoint h : Seta — Cat is the
functor associating a simplicial set to its homotopy category. For a Kan simplicial set S,
this category can be explicitely described as:

(objects) h(S)o := Sy
(morphisms) h(S)(z,y):={ feS1|di(f) =xand do(f) =y }/ ~
where dy(s) ~ do(s)da(s) Vse Sy

and =~ is the equivalence relation spanned by ~.

However, for a general simplicial set the relations are difficult to write down explicitely.
A simplicial set S = N(C) arising as the nerve of some category C is in particular Kan.
By definition Sy = Cat(A?, C) is the set of commuting triangles in C.
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di(f)

We then have that the 2-simplex s : A2 — C pictured above exists in S if and only if
di(s) = dy(s)da(s) as morphisms in C;. This means that hN(C) = C, i.e. the counit of
the adjunction h 4 N is an isomorphism.

Remark 1.58. In the literature, the functor h of Example 1.57 is also written 7 (or t;)
and called the fundamental functor or the 1-truncation. Our terminology here mirrors
that of [Rielda] and [Lur09]. In the latter, Lurie defines a localization functor as a left
adjoint to a fully faithful functor. Since the nerve N : Cat — Set, is fully faithful, A
gives an example of such.

Identifying (+]—) as a left adjoint is much easier given Theorem 1.55:

Example 1.59. Let C be a category. The slice functor C/— : C — Cat sending an
object ¢ € Cy to its over category C/c must factor through Setc since Cat is cocomplete.
In Lemma 1.49, the category of elements of a representable presheaf was identified as the
category over the representing object, giving that C/— =~ (x| —)r. Since (x| —) is cocon-
tinuous, this implies that the induced adjunction is (x| —) - Cat(C/=, —), of Proposition
1.51.

Example 1.60 (The Dold-Kan correspondance). Consider the category Chy(Ab) of
bounded chain complexes of abelian groups, denote Z : Set <5 Ab : U the free-forgetful
adjunction. The functor NaZr : A — Chy(Ab) sends an object n to the Moore complex
of A", constructed from the linearization

CZ.(A") := (.- — Z®%% PN Z0%-1 ... Z980)
by “normalizing”: Na(CZ.(A™)x := )iy ker d¥ for 0 < k < n and differential (the re-
striction of ) d¥. Now, Chy(Ab) has coproducts computed pointwise, and the coequalizer
of , 8 : Cy =3 C is just the cokernel of & — f. This means Chy(Ab) is cocomplete
(Construction 1.24), and we obtain an adjunction L : Seta < Chy(Ab) : T

Remark 1.61. The category of presheaves being the free cocompletion generalizes to en-
riched categories, where Set is replaced by a suitably nice® symmetric monoidal category,

e.g. Ab and Cat.

In view of the previous remark, Example 1.59 is begging to be enriched:

wo”

Example 1.62. The fact that Cat is a 2-category is the reason for the postfix “y
in the right adjoint Cat(C/=,—)q of Example 1.59. By considering the whole functor
categories (not just their objects) we obtain a a functor Cat(C/=,—) : Cat — Cata
into the category of simplicial objects in Cat. The left adjoint is the enriched category
of elements, called the Grothendieck construction SA : Catp — Cat sends a Cat-valued
presheaf to weak version of the under category (| P) (see Remark 1.37).

6Mimicking the properties of Set, specifically we need a complete, cocomplete, symmetric monoidal
closed category.
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2 MODEL CATEGORIES

2. MoODEL CATEGORIES

This chapter aims to motivate and introduce canonical model categories, specifically the
most “categorical” model structure on Cat. We will start by defining a cover of groupoids
by translating the notion of a topological covering space to the fundamental groupoids.
The immediate generalization of this gives discrete fibrations of categories E — C, which
we will see are intimately related to functors C — Set. This observatoin will shine a new
light on the contents of the previous chapter.

2.0.1. NOTATION

Let B be a groupoid. For an object b € By, we will denote B(b) the automorphism group
B(b,b). Other authors use e.g. Autg(b) or m(B,b). The full subgroupoid spanned by an
object b will be written b, it can also be thought of as the one-object groupoid given by
the group C(c). More generally, if G is a group we will write G when we think of G as a
one-object groupoid.

2.1. COVERS OF GROUPOIDS
We start by recalling the definiton of a cover of topological spaces:

Definition 2.1. A continuous surjection p : X — Y of topological spaces is a cover-
img map if for every y € Y there exists an open neighbourhood V' of y along with a
homeomorphism @ : p~1(V) < [ | () V making the following commute:

zep—1

pil(v) < 2 ’ Hmep—l(y)v

Vv

When p: X — Y is a covering map, X is a covering space of Y.

When studying covering spaces most authors (e.g. [May99][Ch.3]) prefer to work
in a convenient subcategory of Top, usually comprised of connected and locally path-
connected spaces. In this case we have the following fundamental lifting property:

Proposition 2.2. Let p: X — Y be a cover of connected, locally path-connected topolog-
ical spaces. Any path f: 1 —Y has a unique lift f, : [ — X to any point x € p~1(f(0))
such that pf, = f. Moreover, the lifts respect homotopy classes of paths.

Proof. See e.g. [May99][Ch.3.2]. O

Recall that the fundamental groupoid functor m : Top — Cat carries a (connected,
locally path-connected) topological space X to its fundamental groupoid m X whose ob-
jects are the points of X and a morphism between two points xg,z; € X is a homotopy
class of paths f : I — X starting at o and ending at x;.

Proposition 2.2 translates well to the fundamental groupoids: The cover p : X — Y
gives a functor mp : m X — mY that is surjective on objects, and any morphism f : yo —
y1 in mY induces a unique lift f,, : ©o — 1 for any z¢ € m X such that mp(xg) = vo.
This could be differently stated as 7;p inducing a bijection

(zo/mip)o & (wo/m1X)o <> (p(20)/mY )o
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for any xg € X. This leads us to the following:
Definition 2.3. Let P : E — B be a functor between two groupoids.
1. The groupoid B (or E) is connected if none of its hom-sets are empty.
2. If B and E are connected, then P is a cover of groupoids if there is a bijection
e/P: (¢e/E) < (P(e)/B)y

for all e € Eg, referred to as the slice-map induced by P at e. In this case we denote
P : E — B using the arrow “—".

3. When P is a cover, the fiber over b € By is the set Ey, := {e € Eq | P(e) = b}.

4. The category of covers over B is the full subcategory Covg < (Gpd|B) spanned
by covers of groupoids.

Note that when P : E — B is a cover, the cardinality of the fibers E, is invariant of
b e By. We call a cover finite if all it’s fibers E; are finite for b € By.

For groupoids, the “pointwise” bijection induced by covering maps is actually an
isomorphism of categories:

Proposition 2.4. For any groupoid cover P : E — B, the slice-maps are isomorphisms:
e/P:e/E <~ P(e)/B VYee E,

Proof. Let e € Eg, then any morphism on the right has a unique preimage on the left:

6 f b/
/ P ¢/P /
R ——  Ple)
I g
\ ;;/ \) b
Functoriality follows immediately from the unicity of the above construction. O

Definition 2.5. Let B be a groupoid. A B-action is a functor B — Set, and Set®? is
the category of B-actions (also called B-sets). The action of B is transitive (resp. finite)
if B(b) is transitive (resp. finite) as a group action for any b € By.

By considering a group G as a single-object groupoid, one recovers the notion of G-set
as a functor G — Set. The previous definition is the generalization to groupoids.

Remark 2.6. Given a B-action A : B — Set, the restriction of A to any object b € By
gives a B(b)-set A(b). The terminology “B-set”, while useful, is therefore a bit misleading;
the action of a proper groupoid B involves many sets, not a single one as in the classical
case. Indeed, a B-set is a collection of B(b)-sets for b € By, along with morphisms between
these.

Covers of groupoids support the following fundamental lifting property.
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Theorem 2.7. Let X be a connected groupoid, and P : E — B a cover. In the diagram
below, a lift Q exists if and only if there are b € B and v € X,, ¢ € E, satisfying
Q(X(x)) = P(E(e)) = B(b). In this case, Q is uniquely determined by the choice of
mmage of x in Ey,.

&

P

«_

Q 7
X —

&

Proof. =) Any lift Q and z € X give Q(X(z)) € E(Q(x)), and therefore Q(X(z)) =
PQ(X(z)) = P(E(e)), with e = Q(x).

<) Pick a basepoint € X and let e € Eg(,) be such that Q( (x)) < P(E(e)).
Consider the slice z/X. Connectivity of X means that any point 2’ of X is obtained as

the codomain of a path X, : © — 2 € 2/X. First we define Q(z’) := cod Q/(:X;) where

m) is the lift into e/E. This independent of choice of path X, since if X!, : x — a’
is another path, then X;lX;, :x — x is a loop at z and:

' a! o, | Q) )/ Q)
T lxzf -5 Q(x) JQ(XIM (/b
i

}2
Q(Xz/)‘lQ(X;,)\" Q(x) QX)) \

In general, the rightmost triangle needn’t have the bottom-right vertex as e, but this is
what Q(X(z)) < P(E(e)) buys us. As such, Q becomes well-defined on objects. Now,

for any f : x — 2’ € x/X let Q(f) Q(f) which is clearly compatlble with Q on
objects. This induces a total defintion of Q, since for any morphism ¢ : 2/ — z” in X
there is a unique lift of Q(g) into Q(z’)/E. Functoriality is immediately seen through the
isomorphism Q(z')/B =~ Q(2')/E. O

Definition 2.8. A cover of groupoids @ : X — B is universal if Q(X(x)) is the trivial
subgroup {idg(z)} € B(Q(x)) for all x € X,.

Corollary 2.9. Let Q) : X - B be a universal cover. For any other cover P: E — B,
Covp(Q,P)=E, Ybe B (2.10)

Proof. Let b € By, and = € X;,. By definition of being a universal cover Q(X(x)) is trivial
for all z € Xg. This means that for any e € E,, we automatically have Q(X(z)) € P(E(e)),
satisfying the hypotheses of Theorem 2.7. Therefore any map in Covg(Q, P) corresponds
uniquely to a choice of basepoint e € Ey. O

Corollary 2.9 is actually a shadow of the Yoneda lemma for groupoids, something the
next theorem (2.18) will render precise. It will be most interesting for us to state and
prove Theorem 2.18 for categories; the groupoid case then follows immediately. In order
to do this, we require a notion of a “cover of categories”:

Definition 2.11. Let C, C’ be categories. A functor F': C — C' is a discrete fibration
if the slice-maps ¢/F : (¢/C)g — (F(c)/C')o are bijections for all ¢ € Cy. The full
subcategory of Cat/C’ spanned by discrete fibrations is denoted Fibg» and we denote
the objects using the arrow “—".
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Remark 2.12. Covers of groupoids are discrete fibrations of categories. The latter is a
significantly weaker notion since there is no appeal to “connectedness” of the domain and
codomain categories.

Example 2.13. Let C be a category. Two familiar constructions give discrete fibrations:

1. Let c € Cqy. There is a forgetful functor P, : ¢/C — C defined by:
e
c/C: c lf ey lf :C

To see that P, is a discrete fibration, consider an object g : ¢ — ¢ € (¢/C)o. Then
P.(9) = ¢, and we need to find a unique lift of any h : ¢ — ¢’ € (¢/C), into
(9/(c/C))o. An object of the latter is just a morphism leaving ¢g in ¢/C. But h is
exactly that, and is the only such satisfying:

(9/(c/C))o : ¢ /hglh LN lh - (d)C)o

Consequently, g/P. is a bijection, as desired.

2. Consider a functor P : C — Set. There is a forgetful functor Up : (+|P) — C
sending a morphism (2’ = P(f)(x)) € (x| P); to f € C;. This is a discrete fibration:
for any object y € P(c) of (x| P), any object g € (¢/C)o has a unique preimage in
(y/(+1P))o given by:

y e P(c) c
(y/(+LP))o : lp@ L lg :(¢/C)o
P(f)(y) € P() ¢

This is just expressing the fact that any morphism g : ¢ — ¢ gives a function P(g)
and an element y € P(c) has a unique image P(g)(y) through P(g). The forgetful
functor Up : (x| P) — C is called a Grothendieck fibration.

Remark 2.14. The attentive reader may have noticed that in the previous chapter we
mostly encountered over categories, whereas Definition 2.11 and Example 2.13 employ
under categories. For groupoids the choice is irrelevant since b/B =~ B/b for any groupoid
B and b € By. However for categories the choice matters, and the under categories
were chosen because they are the categorical model of paths starting at a point xy in a
topological space X, which is where we began this chapter.

Remark 2.15. In Example 2.13[2] we may instead wish to consider a presheaf P € Setc.
In this case we get a contravariant forgetful functor Up : (x| P)®? — C, and we see that for
an object x € P(c) the slice-map 2/Up must map into the (objects of the) over category
C/c since P flips the direction of arrows. This extra complication is another reason we
prefer contravariant functors when developing this section.
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Example 2.13 implicitely defines two functors P_ : C — Fibc and U_ : Set® — Fibg
which will be needed. We only verify that U_ is well-defined since both are very similiar.

Lemma 2.16. Let C be a small category. The association P — Up : Set? — Fib¢ of a
functor to its Grothendieck fibration defines a functor denoted U_.

Proof. In Example 2.13 we argued that Up is indeed a discrete fibration for P € Set®, so
Up is well-defined on objects. We need to define U_ on morphisms:

Let P,P' : C — Set be two functors and let n : P = P’ € Set®. We define
U, := (*|n). Functoriality is then given by functoriality of (#]—); we need only verify
that this defines a morphism in Fibg, i.e. that U, = (#]n) makes the following commute:

(x\P) o
(*ln)J UP’/ C
(=L P")

On objects it is clear that Up = (+|n)Up since Up(z € P(c)) = Up/(n.(x) € P'(c)). Now
consider [ : ¢ — ¢ € Cy giving rise to a morphism (' = P(f)(z)) € (*| P);.

c x € P(c) ne(z) € P'(c) c
lf & lP(f) SLDR lP/(f) A lf
d x' e P(d) ne(z') € P'() d

Above we see that P(f) as a morphism in (x| P) maps to f € C; under both Up and
Up/ (x| P). In conclusion, (x|n) : Up — Ups is a morphism in Fibc. O

In the previous chapter, we determined a right adjoint to (x|—) : Setc — Cat in
Proposition 1.51. Dualizing gives the adjunction (x|—)  Cat(=/C,—)¢ for (x|—) :
Set® — C, i.e. the covariant case. The previous lemma refines our understanding of
the category of elements: It is a discrete fibration Up : (x| P) — C. There is an obvious
forgetful functor Fibc — C and the current picture is then as follows:

(%)
Set® y > Cat

Cat(:/C,—V
Ny

Fibc

The composition Cat(=/C, —)oF : Fibe — Set® features in the upcoming Theorem
2.18 and has a nice description:

Lemma 2.17. Let C be a small category. There is a fiber functor (—)— : Fibe — Set®.

Proof. Let F : E — C be a discrete fibration. The functor F_ : C — Set is defined as
sending an object ¢ € Cy to the fiber F, = E. € Cy. Any object f : ¢ — ¢ in (¢/C)y
has a unique lift f. into (e/E), for any e € Fy,. Define Fy(e) to be the codomain of f,.
Using unicity of lifts, it is not hard to see that this is functorial, and therefore that F_ is
a functor.
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Now let G : D — C be another discrete fibration, and H : E — D a morphism of the
fibrations F, G drawn on the left. Let f: b — b € Cj.

E A > D Fb i) Gb
X % lFf . le
C Fb/ —b> Gb/

We need to define a natural transformation H_ : F. = G_. Luckily Hy(c) := H(c) :
F, — G is well-defined for all b € Cy, since if F(¢) = b then G(H(c)) = b, so H(c) € G,.
Naturality amounts to ensuring that the codomain of the lift fp, () of f into Hy(c)/D
is equal to Hy(c’), where f.: ¢ — ¢ is the lift into ¢/C. But this must be the case, since
[ =F(f.) =GH(f.),so fu,e) = H(f:): Hy(c) — Hy(c) by unicity of lifts. O

When B is a groupoid, this means that any cover P : E — B defines an action
P_: B — Set of B on the fibers.

Theorem 2.18. Let C be a small category. We have an equivalence of categories:
U_: Set’ ~ Fibe: (—)
A short proof of the corresponding theorem for presheaves is found in [LR19][2.1.2].

Proof. We start by constructing € : idgyc = (U-)-. Let F' : C — Set. By definition,
(Ur)e = Up'(c) = F(c) for all ¢ € Cy. As such, we define €. = idp(, and check naturality:
Let f: ¢ — ¢ € Cy and z € F(c). The definition of (Ur)s says that (Ur)s(z) is the
codomain of the unique lift of f € C; to the fiber (z € F(c)) € (x| F)o. But the unique lift
is the morphism F'(f) € (x| F); on the left below, whose codomain is F'(f)(x). In other
words, (Fp)s(z) = F(f)(x) and the diagram on the right commutes:

x € Flc) (Up). == F(c)
lF(f) lUf F(f)
F(f)(x) € F(c) (Up)e == F()

In other words, € : idgyc = (U-)= is a natural isomorphism.
Now we construct 7 : idpjpe = U)_. For I’ : E — C, we need the following to
commute:

E < i y (x| F_)

\FJ /F_ (2.19)

C

Define np(e) := (e € Fp(e)) on objects, this is well-defined since e is tautologically in
the fiber of F'(e) € Cy. For a morphism f : e — €', applying F' gives F(f) : F(e) — F(¢€)
and the unique lift Fp(p) of F(f) to e is again f. In other words, the following defines a
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fully faithful functor:

(& € € Fp(e)
E: ! UL Fr(s) C(x|F)
e e e FF(e/)

Moreover, ng is surjective on objects since any (x € F,.) € (x| F_)q is the image of = €
Eq. It is clear that the definition of nr respects Diagram 2.19. Consequently, ng is an
isomorphism of discrete fibrations over C.

Checking naturality of n is a bit tedious but straightforward. m

Corollary 2.20. Let B be a connected groupoid. Under Theorem 2.18:
1. Unwversal covers of B correspond to representable functors B — Set.
2. Connected covers correspond to transitive B-actions.
3. Finite covers correspond to finite B-actions.

Proof. We only prove (1), as (3) isn’t too difficult to see and (2) can be found in
[Bro06][10.4.2(c)]. The category of elements of a representable functor B(b,—) is the
slice b/B (dual of Prop. 1.49), which is connected whenever B is. Moreover, the auto-
morphism groups are trivial since for any f : b — b € By the identity id. is the only
morphism making the following commute:

b/B : b

The cover U, : b/B — B is therefore universal. By Corollary 2.9, the isomorphism class of
representable functors must correspond to the isomorphism class of universal covers. []

In [May99][Ch.3], May prefers to construct universal covers in the topological case
and leaves the details of the groupoid case to the reader. The construction through repre-
sentable functors given here is presumably not the one May had in mind; but supposing
Theorem 2.18 we find the construction to be quite direct with few details to verify—though
it may have drawbacks that escape the present author.

Remark 2.21. Revisiting Corollary 2.9 we now see the relation to the Yoneda lemma: A
universal cover () : X — B corresponds to a representable functor (J_, and the fiber E,
is exactly the value of the functor E_ : B — Set on the object b € By.

By considering a group G as one-object groupoid G, Corollary 2.20 associates a uni-
versal cover to the single representable functor G(x, —) : G — Set.
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Example 2.22. The additive group of the integers defines a one-point groupoid which we
will denote Z in this example. By Corollary 2.20, the universal covering space of Z is the
slice (*/Z) whose objects are the integers, and there is a single morphism n — m € (x/2)
given by m —n. Any such morphism factors as a sequence of 1’s, which is just the trivial
statement m —n = >, " 1. We may draw this as:

1

(+/2)=(-D>-150515...)»2Z
This can be seen as a categorical analogue of the infamous topological result that the

real line R is the universal covering space of the circle S*.

Example 2.23. Consider the cyclic groups C5 and C'5. The universal covers of Co and
Cj3 corresponds to their respective slices which we may draw as follows:

1

R
/1\1 /z \X
wo) 0 022 (4/C)
! |
(Ca) £ D1 22 x D1 (Cs)

Specifically, the objects of Cq are the elements of Cy; and for any two objects x,y € C5
there is exactly one morphism y — z : * — y in C,. Similarly for Cs.

Another interesting corollary of Theorem 2.18 is the following:

Corollary 2.24. Let B be a connected groupoid. For all b e By, the automorphism group
of b is naturally isomorphic to the automorphism group of the universal cover given by

the slice under b, i.e. Covg(b/B) =~ B(b).
Proof. For any b € By, the Yoneda embedding and Theorem 2.18 combine to give:
B(b) =~ Set®(B(b, —)) = Covg(h/B) O

We conclude this section with a new perspective on the contents previous chapter. If
the reader is allergic to philosophy, they should skip directly ahead to Proposition 2.25.

In Proposition 1.53 we reconstructed a category C as the colimit of its slice functor C =
colimg [C/— : C — Cat], and the colimit cocone was the collection of discrete fibrations
(P.: C/c = C)eec,- We may now see this more geometrically as reconstructing C from
the “universal covers C/c¢” at each “point” c € Cj.

The free cocompletion (Theorem 1.55) relates to Theorem 2.18 as well. As in the
previous chapter we consider presheaves again, but we will reuse the notation of Theorem
2.18—a short proof for preshaves is found in [LR19][2.1.2].

With our newfound insight that a slice C/c is not simply a category, but a discrete
fibration P, : C/c — C, the free cocompletion (Theorem 1.55) applied to the diagram on
the left

U_: Setc < > Flbc . (—)= Setc —>( Cat

S~ N

C T) Flbc
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gives us that U_ : Setc ~ Fibg : (—)- is actually an adjoint equivalence, drawn as the
center arrows in the diagram to the right. The topmost adjunction in the right diagram
is Proposition 1.51’s (x|—) - Cat(C/=, —)o, whereas U : Fibc — Cat is the obvious
forgetful functor.

Adjoint equivalences are symmatric in the sense that (—)= - U_ as well. By composing
left adjoints in the diagram on the right, we find a left adjoint to U given by L :=
U_oCat(C/ =,—),: Cat — Fibc.

Enlarging the codomain of C/— to be all of Cat/C (and not just the full subcategory
Fibc) gives in general an adjunction that is not an equivalence through the free cocom-
pletion. Denote this adjunction U_ : Setc < Cat/C : F (reusing then the symbol U_).
Since F is then not in general also a left adjoint, it is unclear if £ : Cat < Fibg : U
“expands” to some adjunction £ : Cat < Cat/C : U.

We now finally return to answer Question 1.39. Leaving aside size concerns for a
moment, consider the following three diagrams:

Setg «<lm Cat/Setc Setg <im Cat/Setc Setc
r]\ TCat/r N TCat/ r TT XJ
C+—— Cat/C Cat/C Cc -~ cat/C

The left diagram commutes if and only if C is cocomplete (so colim : Cat/C — C
is well-defined) and the Yoneda embedding r is cocontinuous (dual of Proposition 1.38).
This is far from the case in general, but seeing this diagram alongside the others will
inspire an idea.

The middle diagram commutes starting from the top left corner, and this is in fact
Theorem 1.44 manifested in a diagram: U_ sends a presheaf P to its category of elements
as a cover Up : (x| P)® — C, which is then sent by Cat/r to the natural diagram
rUp : (x| P)? — Setc admitting P as a colimit.

The right diagram commutes and is the one inducing U_  F just mentioned. Juxta-
posing the middle and right diagrams over the left diagram proposes C/— as a candidate
for a right adjoint to colim:

Proposition 2.25. Let C be a cocomplete category. There is an adjunction:
colim: Cat/C < C: C/—
Proof. We will construct a natural isomorphism ©:
O : C(colim—, —) =~ Cat/C(—,C/—) : Cat/C x C — Set

Let D : D — C and ¢ € Cy. Denote by § : D = A(colimpD) the colimit cocone of D.
To a morphism f : colimpD — ¢ € C; we associate a morphism O(f) € (Cat/C);:

DY ¢l
R A
C

This is defined by ©(f)(d) := fd4 : D(d) — ¢ on objects and any morphism e : d —
d € Dy is sent to O(f)(e) = D(e) as a morphism over c. This is well-defined by naturality
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of §:
—>D (d)

m A,

Moreover, it is clear that O(f) is a Well—deﬁned as a functor by functoriality of D, and
also as a morphism over C.

Claim: © s injective. If ©(f) = O(g), then fo, = gd, for all d € Dy, giving A(f)d =
A(g)d as natural transformations D = Ac. But such natural transformations are in
bijective correspondance with arrows colimpD — ¢, so f = g.

Claim: © is surjective. Any morphism F' : D — P, over C gives rise to a natural
transformation (F(d))4ep, : D — Ac. To see that this is natural, remark that since P, is
faithful, F'(e) = D(e) for any morphism e € D;. The preimage of F under © induced by
universal property of colimp D:

D d A(colimp D)
(F(d))dEDO\ k’////a_l(F)
Ac
Verifying naturality of © is straightforward. m

Dualizing Proposition 2.25 settles Question 1.39 in the positive.

2.2. CANONICAL MODEL STRUCTURES

A model structure equips a category with a notion of weak equivalence, a version of
homotopy equivalence abstracted from classical topology. Localizing a model category
at the weak equivalences yields a homotopy category where maps are defined “up-to-
homotopy”. Moreover, a model structure carries sets of “nice surjections” (fibrations)
and “nice injections” (cofibrations) that allow lifting maps in certain diagrams. After a
precise definition of model structures, we turn to a notion of canonicity and two examples.

Notation. Objects of the functor category C? will be written as arrows f : ¢ — ¢ € Cj.
A morphism f = g € (C?); is a commutative diagram:

c ——d

b

!
d 2L d

The above morphism is denoted (a,a’) : f = g. If we write u : f = g, then this implicitely
defines u = (u!,u?) : f = g. We may also denote morphisms in C? with single arrows, to
avoid confusing them with natural transformations.

Definition 2.26. Let C be a category and a,b € Cy. If 71 = id,,
id,:a ——sb—"1aq

then we call 7 a section of r and r a retraction of i. When such a diagram exists, a is a
section of b and b is a retraction of a.
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Definition 2.27. A model structure on a category C consists of three sets of maps: the
weak equivalences W, the fibrations &, and the cofibrations €, all of which contain the
identities and are closed under composition. Maps which are both a fibration (resp. cofi-
bration) and a weak equivalence are called acyclic fibrations (resp. acyclic cofibrations).
These are subject to the following axioms:

(i) “Finite limits & colimits™: C is finitely complete and finitely cocomplete.
(i1) “8-for-27: Let f,g € C. If two of f,g,gf are weak equivalences, so is the third.

(iii) “Retracts preserve” If a map f is a retract in C? of another map g (as in the
diagram on the left below), then f is a weak equivalence, fibration, or cofibration
whenever g is.

)

> A A——C AT A
[ B AW
A S A B——D B - B

(iv) “Lifting”: In the middle diagram above, p is a fibration and ¢ is a cofibration. If
either of them is acyclic, then the lift h exists.

(v) “2 factorizations” Any map f € C can be factored f = pi with p a fibration and i
a cofibration and either p of i can be chosen acyclic (as in the diagram on the right
above).

When the category C is equipped with a model structure, C becomes a model category.
In this case we denote the fibrations using the arrow “—”, cofibrations using “—” and
weak equivalences by “—7.

The above axioms are those of [DS95]. Quillen first introduced model categories in
[Qui67] with greater generality; the axioms above correspond to Quillen’s “closed” model
categories in which either set of fibrations or cofibrations determines the other:

Proposition 2.28. The fibrations F are exactly the maps with the right-lifting property
with respect to acyclic cofibrations, i.e. F = rip(W n €). Dually, € = llp(W n F), and
furthermore W n & = rip(€C) and W n C = lip(F).

Proof. Proving F = rlp(W n @) suffices—the other statements follow by duality or anal-
ogous arguments.

Let f : A — B have the right-lifting property with respect to acyclic cofibrations.
Factor f = pi with ¢ acyclic. The lift h exists in the diagram on the left, exhibiting f as
a retract of the fibration p on the right:

A A A A N
[l [l
A L% B B B B ]
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Proposition 2.28 justifies forgetting about either fibrations or cofibrations, since we
may retrieve one or the other. We may therefore specify a model structure as simply
(W, F). In general there are many choices of fibrations for a fixed set of weak equivalences,
however these choices don’t affect the notion of homotopy in the category, and one may
chose the fibrations which are most convenient for a given problem. Before discussing
matters further, a lemma:

Proposition 2.29. Let C be a model category. Then pullbacks preserve fibrations and
pushouts preserve cofibrations.

Proof. The statement for fibrations is proved, as the proof for cofibrations is similar.
Consider the pullback square on the left where p is a fibration and f is our candidate:

EFE— A C > F — A
lfj lp jl P hh’/ i lf/ - lp
A —— B oA » B

The rectangle on the right is a lifting problem with f on the left, glued with the
pullback square on the right. The outer rectangle admits a lift A’ since p is a fibration,
and this induces the desired h by virtue of being a pullback square. O]

We now turn to canonical model structures. This term is not well-established in the
literature, but it is used for the “categorical” model structures on the category of (higher)
categories. A little-known fact is that these are unique (in the sense of the following
definition) in the 0- and 1-categorical cases of Set and Cat, respectively. This will be
proved after the precise definition:

Definition 2.30. A model structure (W, F) on a category C is canonical if F is the only
set of fibrations such that this is a model structure; i.e. if (W, J’) is also a model structure
on C, then ¥ = F.

Example 2.31 (The canonical model structure on Set). Taking W as bijections and all
maps fibrant and cofibrant defines a canonical model structure on Set.

“Finite limits & colimits”: Set is both complete and cocomplete by Construction 1.24
and its dual.

“3-for-27: Bijections are closed under composition.

“Retracts preserve”™ Let (a,d’) : g — f be a retraction with right-inverse (b,b’). There
is nothing to verify if g is a fibration or cofibration, so let g be a bijection. Then ag~ ¥’
is right- and left-inverse to f:

flag™V') = (d'g)(g™ V) =id  (ag™'V')f = (ag~")(gb) = id

“Lifting”: If either side in a commutative square is a bijection, lifting is trivial.

“2 factorizations™ Given a map f: S — T, the two factorizations are id o f (cofibra-
tion, then weak equivalence and fibration) and f oid (weak equivalence and cofibration,
then fibration).

Finally, the model structure is canonical since all maps have both the left- and right-
lifting property with respect to bijections.
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The category Cat supports a variety of model structures. The most “categorical” one,
in which the weak equivalences are equivalences of categories, is the one we will consider
here. It will turn out that this model structure is also canonical, and the fibrations are
so-called isofibrations:

Definition 2.32. Let ' : E — C be a functor between small categories and ¢ € C.

1. The full category of ¢/C spanned by isomorphisms is called the iso-over category,
denoted ¢~ C.

2. The iso-comma category (F ! C) is the full subcategory of (F'|C) spanned by iso-
morphisms.

3. If the (iso-)slice-maps e/ F : (e” E)y — (F(e) 2 C)y are surjections for all e € Eg
then F'is an isofibration.

4. If F' is injective on objects, we will call F' an isocofibration.

Remark 2.33. Any discrete fibration is an isofibration; as is often the case in category
theory, restrictions are relaxed when notions are generalized. For groupoids, isofibra-
tions and discrete fibrations coincide. Moreover, isofibrations regain the symmetry of the
groupoidal situation that was lost for discrete fibrations, in that ¢/ C =~ C ¢ ¢ (defining
the iso-under category dually) and could have used iso-under categories in the definition.

The relaxation that the slice-maps are merely surjective means isofibrations lack
uniqueness of lifts compared to discrete fibrations.

Example 2.34 (The canonical model structure on Cat).” Let W be equivalences of
categories, F isofibrations and € isocofibrations. We claim that (W, F, €) defines a model
structure on Cat:

Finite limits & colimits: Cat is both complete and cocomplete by Construction 1.24
and its dual.

“3-for-27: Equivalences of categories are closed under composition.

“Retracts preserve”™ Let (a,a’) : G — F be a retraction in Cat? with right-inverse
(b,b"), drawn on the left:

C——D—"=C c/C——blc)r)D——¢cC
ool b | | |
(LN » [Ny ¢ F(c)¢eC'—— Gb(c) D' —— F(c)» C'

To start off, suppose G is an isofibration and ¢ : F(c) <> ¢ € (F(c)2C")y. To show that
F is an isofibration, we need to find a lift in ¢~ C of ¢. This will be done through a chase
in the diagram above on the right. Since G is an isofibration, the middle map on the
right is surjective on objects and we obtain a preimage ¢ : b(c) < d € (b(c) # D)o of b'(¢).
Applying a gives the desired lift a(quS) :c— alc).

Next, consider the case of GG being an isocofibration. Then Gb = b'F is an isocofibra-
tion as well, but then F' must be as well by left-cancellation of monomorphisms (injections)

in Set.

"This construction details nLab’s Canonical model structure on Cat, parts written by Todd Trimble
in revision 17.
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Lastly, suppose G is a weak equivalence and denote by 8 : idg = G7'G one of the
natural isomorphisms. Then aG~'b is an inverse equivalence to F:

a

=

(aG)F = (oG )W) "L

lle

ab = idc

The other side of the equivalence can be equivalently verified.
“Lifting”: First, consider the case of an acyclic cofibration I and a fibration P. The
goal is then to define a lifting H : B — C"

F
A——C
A
r .7 P
G

s

—— D

Weak equivalences are fully faithful dense functors, so for any object b € By we may
pick an isomorphism ¢, : I(ay) = b (using the axiom of choice) such that the codomain is
in the image of I (by density), and with ¢;) = id;q) for a € Ay. Applying G, we obtain
an isomorphism G(¢,) in D which lifts to C since P is an isofibration. Denote this lift
by ¥y : F(ap) <> ¢,. Now define H(b) := ¢, and

H(f:b—b) =y FT7 (¢, fon)iby

where 7! : B(I(ap), I(ay)) < A(ay, ay) is given by full faithfulness of I. This is well-
defined on objects since I is an isocofibration, so that the correspondance a — cy(,) is
well-defined. Functoriality of H is straightforward to check.

Then HI = F, since for any a € Ay, HI(a) = F(a) since in this case vy is the
identity. Moreover, for any morphism f : a — a’ in A; we have by definition:

HI(f) = idy(a) I (idg@) I ()idi(a) idi@) = F(f)

Last we need to verify that PH = (. This holds on objects since for any b € By,
H(b) = ¢ is sent to G(b) by P. Now let g : b — b’ be any morphism in B;. Then

PH(g) = p(by FI (¢, gde)tb, ') = G(ow)G (o, 90)G(9y, ') = G(g)

where we have used that e.g. P(¢,) = G(¢). In conclusion, H : B — C is the desired
lift.

When [ is only an isocofibration and P is an acyclic isofibration, the argument is
similar. The fundamental insight is that the property of being an acyclic isofibration
means that P surjective on objects: Since a weak equivalence is dense, any object d € Dy
is the codomain of an isomorphism P(c) < d for some ¢ € Cy. The existance of a lift
gives that d is in the image of P as well.

“2 factorizations”: Let F': C — D be a functor. We start by factoring F' as an acyclic
isocofibration followed by an isofibration as on the left where F” is the obvious forgetful

functor:
F(f)

C o F(e) F(c)
e
D Fle) — 29 pre)
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The functor F’ gives the morphism in (F ! C)(idp(),idp()) on the right above for a
morphism f : ¢ — ¢’ € C;. The objects are drawn vertically, so in particular F'(c) = idp(c).
This is clearly a faithful isocofibration, but it is also full: A general morphism by replacing
the bottom “F'(f)” above by a general isomorphism ¢ : F/(¢) — F(c) € Dy. But since the
diagram commutes, ¢ = F(f). Moreover F” is dense, because for any object ¢ : F'(¢c) — d
in (F D)y we have an isomorphism:

idF(c)

F(e) F(e)

ol

d—"— d
In conclusion F” is an acyclic isocofibration.
Now we argue that F” is an isofibration: Let ¢ : F'(¢) — d be an arbitrary object of
F ¢D, which is sent to d by F”. We need to give a lift to (¢~ (F1D)), for any isomorphism
¢:d— d,ie. object of d’D. The lift is defined as:

F(e) -2 &
o

l ¢

d —— d

which is indeed a lift, since it sent to ¢ by F”. In conclusion, F” is an isofibration. Writing
out the definitions one sees that F' = F”F”’ giving the desired factorization.
The interested reader may consult the given reference for the other factorization.

Proposition 2.35.% The model structure of Example 2.3 on Cat is canonicall.

Before the proof, recall that the forgetful functor A — Ay : Cat — Set is left adjoint to
the K : Set — Cat sending a set S to the category K(S) where all objects are connected
by a single isomorphism. An example is the free isomorphism category I :== K(2y) (or
the “categorical interval”) consisting of two objects and an isomorphism.

Proof. Consider a model structure (W, F, €) on Cat with weak equivalences being equiv-
alences of categories. We will see that the cofibrations are exactly the isocofibrations C,
and conclude by Proposition 2.28. The proof is divided in steps.

Step 1: The unique morphism U : 0 — 1 is a cofibration. Factor it as U = PI with
P : K — 1 an acyclic fibration and I : 0 — K a fibration. Picking any object k € K,
induces a section of P which we denote P~!. Consequently, P is a retraction in Cat.
We may exhibit U as a retract of I as in the diagram on the left, which commutes since
U : 0 — 1 is the unique morphism between these categories.

0 0 0 0 —— C
A

lU j] lU U\[ B~ P

12 K-y 1-2,D

8This construction details nLab’s Canonical model structure on Cat, parts written by Todd Trimble
in revision 17.
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Step 2: The isocofibrations are cofibrations, i.e. €. < €. Let P : C — D be an acyclic
fibration. If P isn’t surjective on objects, we may pick a d € Dq that isn’t hit by P. Since
U is a cofibration, the lift H should exist in the diagram above on the right—but this
is absurd, so P must be surjective on objects. The upshot is that the acyclic fibrations
are necessarily acyclic isofibrations, and we deduce that isocofibrations are cofibrations:

WAFcWnT, =% . cC

Step 3: If there is a cofibration identifying two objects, then the unique morphism
I — 1 is a cofibration. Suppose there is a cofibration / : A — B that isn’t injective on
objects, so that I(a) = b = I(a’) for two a,a’ € Ag. Let i : [y — Ag send 0,1 € I to
a,a’ € Ag respectively. Pick any retraction r : Ag — Iy of 4, i.e. so that r(a) = 0 and
r(a’) = 1.

Under the adjunction —y o K, the map r € Set(Ay, Iy) corresponds to R: A — 1 =
K(Iy), and R notably doesn’t identify a and d’, i.e. R(a) # R(a’) because R equals r
on objects. On the left below we form the pushout of I and R, producing a cofibration
I — U by Proposition 2.29. Moreover, the natural map U — K (Ug) given by the unit
of the adjunction —y +— K is also a cofibration since it is injective on objects, thus an
isocofibration which by Step 2 is a cofibration. The composition J below is then also a
cofibration:

A 21 I I I
J

jf I\ l [s l

B > U —— K(Uy) 1 Y5 K(U) — 1

Since I identifies a and o’ while R does not, the pushout of I must identify R(a) and R(a’),
and J as well. Denote U : 1 — K(Uy) the unique morphism hitting JR(a) = JR(a') in
K (Up)g. Then the squares above on the right commute, exhibiting I < 1 as a retract of
the cofibration J.

Step 4: If I — 1 is a cofibration, any isomorphism in a category is an identity.
Remark that I — 1 is an equivalence of categories, hence an acyclic cofibration under the
hypothesis. Consider any isomorphism ¢ in a category A. Factor the unique morphism
Us:A—>lasU:ADSA 1 (doesn’t matter which one is acyclic), then I(¢) is in
particular also an isomorphism. The existance of the lift in the following diagram asserts
that ¢ is in fact an identity:

I I(¢) A
[
1 - 1

Conclusion: If there is a cofibration that isn’t an isocofibration, Step 3 and Step 4
give that all isomorphisms in categories are identities. This is of course absurd; consider
any non-trivial group as a single object category (groupoid). Therefore, ¢ = €. and

consequently Wn € =W n C, RN F.=7F. ]

In the literature, the previous canonical model structures (Examples 2.31 and 2.34)
go by many names: “folk”, “categorical”, and “natural” are all used alongside “canon-
ical”. These terms also refer to model structures on (models of) the category nCat of
n-categories. For higher categories there are several notions of equivalence of varying
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strictness, but one could hope for canonicity in the sense of Def. 2.30 for any, or some,
such choices.

Constructing the analogous model structures on nCat is more involved: In [Lac04] and
[Lac10] Lack constructs appropriate model structures for (models of) 2- and 3-categories
respectively. These are colloquially referred to as “canonical” on e.g. the nLab—however
canonicity in the precise sense of Def. 2.30 appears to remain unknown. A promising
approach is taken by [LMW10], where a model structure on wCat is constructed, which
restricts along the inclusions of Set, Cat, 2Cat into wCat to give the ones seen here, as
well as Lack’s model structure on 2-categories.

In short, the author is left with the follwing question: Are the “natural” model struc-
tures on nCat canonical in the sense of Def. 2.30—and if so, why?

2.3. THE SMALL OBJECT ARGUMENT

The factorizations of morphisms in Examples 2.31 and 2.34 are in fact functorial, and
shortly define what that means. This is a stronger property that facilitates working with
a model category. Some authors (e.g. [Rielda], [Hov07]) go as far as to require the
factorization of morphisms to be functorial when posing their model structure axioms.
However, as we will see, functorial factorizations are often obtainable through Quillen’s
so-called small object argument.

The approach taken here follows both [Lur09][A.1.2.5] and [Riel4a]. The former proves
the small object argument for presentable’ categories, and we do the work required to
define these. For the rest of this section, let k be a regular cardinal.

Defining functorial factorizations in a category C is nicest done under a “simplicial”
perspective on C. By this we mean that a morphism f : ¢ — ¢ € C; defines a unique
1-simplex o; € N(C); = C?. Similarly, a pair of composable morphisms f, g defines a
unique 2-simplex o, € N(C)y = C?, drawn as:

c/
f g
Ofg
o
c o7 s

From the 2-simplex oy, we recover f and g using the simplicial maps: f = da(o,f) and
g = do(ogr). We may even compose: gf = di(oy,).

Definition 2.36. Let C be a category. A functorial factorization on C is a functor
T : C? - C® such that d,T(f) = f for any morphism f of C.

Functorial factorizations will be created using transfinite compositions of morphisms.
For this we introduce some notation:

Notation. For an ordinal «, we will also denote by « the underlying poset of o, thought
of as a category. The morphisms of o are denoted § < 3. If d : « — C is a diagram,
we will write dg := d(f) on objects, and also denote the colimit of d (when it exists)
by colimg.,dz. Moreover, for any o/ < a we may restrict d to the full subcategory of «
spanned by o/. The colimit in this case will be written colimg.,dg.

9Some authors refer to these as locally presentable, but we follow [Lur09] by writing simply presentable.
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Definition 2.37. Let a be an ordinal. An a-composite in a category C is a diagram
d : o — C such that the colimit d, := colimg.,dg exists, and for any limit ordinal 8 < «
we have dg = colim.,.gd,. When the colimit of d exists, we will denote it d, := colimg.,dg
and refer to the unique induced morphism dy — d, as an a-composition.

Note that for an a-composite d : o — C, we always have dg = colim,.gd, for a
non-limit (i.e. successor) ordinal 8. The condition on limit ordinals thus asserts a certain
“continuity” of the sequence of colimits in C. a-composites are important examples of
filtered colimits:

Definition 2.38. A k-filtered category F admits a cocone for any x-small diagram D :
D — F. A cocone f of two objects fy, f1 € Fo will be called an upper bound of fy and fi,

displayed as: 5
0

~

/
fi

When F is k-filtered, we call the colimit of a diagram F': F — C a k-filtered colimit.

f

The “small objects” referred to in this sections heading are objects that interact nicely
with filtered colimits:

Definition 2.39. Let C be a cocomplete category. An object ¢ € Cy is k-compact if for
any ordinal o > k, the functor corepresented by ¢ is cocontinuous, i.e.:

Cgth(C, dg) = Clc,dy)

for all d : @ — C. We say an object is small when such a regular cardinal x exists.
The small object argument will be proved for the following class of categories:

Definition 2.40. A locally small, cocomplete category C is presentable if there is a set
S < Cy of small objects generating C through colimits, i.e. such that for any object
c € Cy there exists a diagram D : D — C taking values in S such that ¢ = colimp D.

Our first goal is to prove that a k-small colimit of k-compact objects is also k-compact.
As a corollary, all objects of a presentable category are small. This is asserted by Lurie
between parentheses in his definition of presentable categories[Lur09][A.1.1.2]. The result
will follow as a corollary of Proposition 2.43 saying that filtered colimits and limits of
appropriate sizes commute. Before the proof, a remark:

Remark 2.41. The dual of Proposition 1.18 identifies a colimit in Set as the quotient of
a disjoint union. In the case of Definition (2.39), we see that

colimC(c, dg) = H C(e,dp))/ (2.42)

B<a B2

where for 3 < ', (f : ¢ —dg) ~ (f': ¢ = dg) if and only if f* = d(8 < §')f. Denote
the equivalence associated class by f.
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An object ¢ € Cy being small then means that any arrow ¢ — d, from ¢ into a a-

(0%
transfinite composition, defines a unique equivalence class in 2.42, and therefore factors
through some dg with 5 < a:

c
I
13 v

+

s ds d(B<p’)

dﬂl 7 da

The following proposition is proved for finite limits and finitely-filtered colimits in
[Lan10][Ch.9.2]. Here we give a more explicit generalized proof

Proposition 2.43. In Set, k-filtered colimits commute with k-small limits

Gl PUD = T egin P

for all diagrams D : F x L — Set with |Ly| < k and F a k-filtered category

The proof relies heavily on the equivalence relation on

CohmhmD (f, ) HSetL A=, D(f,=)))/ ~

feF

Here (n : A« = D(f,;,—)) ~ (' : A+ = D(f,y,—)) if and only if there exists an upper
bound f of f,, f,; (on the left) inducing the commuting square on the right

f

é SetL(A*aD(fm_)) D(én,—)
n n — ns )%
\J f 1ir:1£e_L_?£:$l) /

, ;= SetL(A*’D<f7_))
d’n/r \7] D(¢n ) )*/>
fu SetL(A*vD(fn” -))

(2.44)
We denote the equivalence class by a bar, so that 7 = 1/ above
Proof. Let D : F x

L — Set be a diagram where F is s-filtered and L is xk-small. We
have the following morphisms:

D(

,—) = A(colimD(f, =) (colimit)
1llIIIJ1 D(—,l) = A(hm cohmD(f ) (post-compose with lim)
€

D C(Jggm llgIr} D(f,1) — IZIEIII} c?llgnD(f, ) (colimit)
Consider an arbitrary element a : Ax = D(f,,

—) € limyer,,D(—,1). Then « defines an
equivalence class @ that we may apply ® to. Inspecting the construction of ® reveals that
d(a) = (m i

(@7)1eL, independent of choice of representative. Moreover, ®(@) is an element of

L
lim colim D(f,1) = Set™ (A=, [ [ D(f

feF

=)/ ~)
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where two natural transformations 3,7 : Ax = colimD(f, —) coincide if the pointwise
equivalence classes 5, = 7, do for all [ € L. This is witnessed by a common representative
r € D(f;,1) for some f; € Fy.

We start by proving injectivity of ®: Suppose (a7) = () for a : A+ = D(f,,—) and
B A= D(fs,—). This means (oy € D(fa,l)) ~ (B € D(f3,1)) Vl € Ly. Diagram 2.44
portrays this as:

fa D(fa,1)) \D(qﬁal,l)

Bay o
o Aol /5 D(fi,1))
1 D R ’
%/ T Wl
fs D(fs,1))

Since F is s-filtered and L is k-small, an upper bound f’ of {f;},r exists; denote 1), :
fi — [’ the induced maps. An upper bound f of the following diagram exists:

Ja %%lm
fr-ta f
fs (Y19p; )ieL

Denote ¢,, @3 the unique induced arrows from f, and fg into f respectively, i.e. the
compositions in the diagram above. Then D(¢,,1)(cy) = D(¢s,1)(5;) VI € Ly since both
¢o and ¢z factor through f;. But this means D(¢n, —)«(a) = D(¢g, —)«(5), which is
exactly:

fo Set"(As, D(fa: )
N Set(Ax,D(—,—)) %
%/ F i \,8 D(¢ﬁ,—)*/>

fs Set™(Ax, D(f3,—))

The diagram asserts that a ~ (3, as desired for injectivity of ®.

To show surjectivity, let v € limy, colimg D(f,1), and pick representatives ¢; € D(f;,1)
of the equivalence classes ;. Naturality of v means that for any L : [ — I’ € L, we have
() D(fi,L)(c;) ~ cp. Pick for any L € Ly an upper bound ¢F : f; — fr < fr : ¢ of ()
inducing a commutative diagram like 2.44. Again, since F is k-filtered we may pick an
upper bound f’ of {fr}iern, with maps ¢y : f — f’, and find an upper bound f for the
following diagram consisting of all triangles:

D(d)a,—)*
Set™(Ax, D(f,—))

Lol YL

fi » <

Denote ¢ : f/ — f and ¢; := ¢vpoF : f; — f the induced maps (independent of L).
Then (D(¢,1)(¢1))ier, : A% = D(f, —) is a natural transformation: For any L : [ — ',

J o D(f,1") D(¢1.l")
T e

Jv VL:l—>1l'ely

¢ D(ppr,l
;L/ e D(f1. 1) "4 D(£.1)
l/
/ Cl/ T
fu ’ DU, 1) e
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The right diagram commuting means exactly that (D(¢;,1)(¢;))er, forms a natural tran-
formation. Since D(¢y,1)(¢;) ~ ¢, these are both representatives of 7;. It is then clear
that ®((D(¢y,1)(¢;));) = 7, meaning P is surjective. O

Corollary 2.45. Let C be cocomplete and ¢ : D — C a k-small diagram such that
cq := c(d) 1s k-compact for all d € Dy. Then ¢ := colimgep,cq is also k-compact.

Proof. Let y : a — C be an a-composite for an ordinal o« > . Then:

Cle,ya) = dleiglo C(cd; Ya) (C(—,ya) continuous)
~ dléglo cgl;crynC(cd, e (cq compact)
~ cg1<1£n dléglo C(ca, yp) (Proposition 2.43)
= C(ﬁ)limC(c, e (C(—, yg) continuous Y/ < «) O
<o

Definition 2.46. Let C be a cocomplete category. A set S © C; is weakly saturated if
it contains all isomorphisms, and is closed under transfinite composition, pushouts and
retracts.

For a more detailed definition, see e.g. [Lur09][A.1.2.2] )
A general subset A € C; generates a weakly saturated set which we denote A, given
as the intersection of all weakly saturated sets containing A.

Theorem 2.47 (“Small object argument”). Let C be a presentable category. Any set of
morphisms A € Cy induces a functorial factorization T : C* — C% into (A, rip(A)).

The proof will be faciliated by some remarks and two lemmas. First of all, a “lifting
problem” between two morphisms a, f € C; is an element (u,us) of C?(a, f) displayed

on the left:
y/
7]
h/
c——y c Y|
A A
27 27
7 ug
z

d 2 d—2 7
A solution to the lifting problem is an h as on the left above. One class of squares that
admit such lifts are the ones where y arises as the pushout of a by some f’ such that
u; = B f’, and f as the unique arrow out of this pushout induced by uy and f” above.
Then uy above will factor through h, computed as the pushout of f’ by a.

When ¢ is small, u; will factor through an f’ whenever y is given by a transfinite
composition. The small object argument consists in constructing such a transfinite com-
position which also gives rise to the desired pushout squares at each level. We start with
two lemmas:

Lemma 2.48. If C is a-cocomplete for an ordinal o, then so is C*.

Proof. This is a consequence of the well-known fact that colimits in functor categories
may be computed pointwise. O

46



2.3 The Small Object Argument 2 MODEL CATEGORIES

Working with diagrams in the functor category C? gets unwieldy without good nota-
tion. We will write an a-composite in C? as (f_ : X_ — Y_) : @ — C? to be understood
as:

Xg =25 X, N y X,
lfo lfl l lcggglfﬁfa (2.49)
Yo 25 v b s Y,

By Lemma 2.48,; this also defines two a-composites X Y. : @ — C and a natural
transformation f_ : X_ = Y_. Such that f, = colimg., f3.

Lemma 2.50. Let C, D € Cj be k-compact objects in a cocomplete category C. Then any
morphism a : C — D is k-compact in C%.

Proof. Consider an a-composite (f_ : X_ — Y_) : @ — C2? for @ > x and a morphism
a:C — D e C;. We have an injection of colimg.,C?(a, f5) into C?(a, f,) that we now
explain:
colimC?( C3( ~ < C%a,fa, 2.51
olim = [[ [ C*a. fo))/ (a, fa) (2.51)

B<a
The injection is given by post-composition with the universal arrow (ig,jg) : fz = fa-
This is independent of choice of representative: If (ug,vg) : @ = fg is equivalent to fjs,
then (supposing § < f'):

C—— 5 X, i > X,
, x6<5/
P |
ﬁ’ fa
) 4 ; S
D Ly, —=2 l s Y,
’UB/ yﬂw\ /

YIB /

If p = (' then fs = fs since the only endomorphism of 3 in « is ids.
Now we argue surjectivity of (2.51). Let (uq,vq) : @ = f,. Since C' and D are small,
we obtain factorizations ug and vg (for big enough 5, but smaller than «):

Uy = C N X3 2, X,
bl L
Va1 D —— Y, L5y,

The question is whether the left square commutes, i.e. if (ug,vg) is the desired factor-
ization of (uq,v,) in C2. Now, C is small and Y, is a comlimit in C. Since both faug
and vga post-composed with jg produces f,u,C — Y, they are both representatives of
the same equivalence class under the isomorphism colimgz.,C(C,Ys) = C(C,Y,) given
by smallness of C'. But there is at most one such representative of any equivalence class
at any 3, so fgus = vga. Hence the left square commutes and (ig, jz)(ug, v5) = (Ua, Va),
meaning Equation 2.51 is also a surjection. [
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Proof of Theorem 2.47. Let A < C; be a set of morphisms, and denote x a regular
cardinal such the domans and codomains of morphisms in A are all k-compact. For short,
we will denote u := (u',u?) for a morphism in C?. Let f : X — Z be a morphism in C
that we seek to factorize into (A, lp(A)).

Define X, := X, fo := fo, and for a successor ordinal 3+1 < & define fgy1 : Xg11 — Z
through the pushout on the left:

wl ? <K
I Codau—>X5 > X >---(ﬁ)5>XN
aeA,ueC2(a,fg)
e N lfl
I1 doma —2 Xg41 Rlasyt Z
acA,ueC2(a,fg) \—]_[u2/
(2.52)

Let (fa @ Xo — Z) 1= colimp.o(fs : Xg — Z) be the colimit in C? for any limit
ordinal o < k. This defines a x-composite whose colimit is f. : X, — Z, defining the
k-composition f : Xo — X,. By construction f.iop = f is a factorization as seen on the
right above.

Claim: io € A. First we verify that [ [, a above is a transfinite composition. Since
A'is a set and C is locally small, the union | J,., C?(a, f3) is also a set. We may order
this set and for sake of simplicity index it by s, producing (ax)x<,. Define z : Kk — C on
successor ordinals as follows:

Where the morphism displayed is induced by (ax ) <x+1 and identities. For a limit ordinal
K < K, let zg := colimj g2, in order to make z a xk-composite. Then we obtain [ [, , @
as the induced k-composition zy — 2.

Since A is closed under pushouts, each s pictured above (left part of 2.52) is in A.
But this means that the transfinite composition i : Xy — X, is in A as well.

Claim: f, € rlp(A). Consider a lifting problem u : a = f, pictured as the outer square
on the right below. Since a is small, this factors through an ug : @ = f3 on the left (where

ig :doma = [],cs 402, s,) doma):

up

coda — Xp coda Xy

1ﬁ+1

X < %\X Y ¢

a a a

yoiy X1 | s i b5 Ao fﬁﬂ
\ u

doma ————— 7 doma Z

U —UB

The important thing to notice is that the bijection colimg_.C?(a, f3) = C?(a, f,) leaves
the bottom component u? untouched, since all the (ig, jg) : fs = f. are just the identity
on the “bottom” (js = idz). The diagram on the left here is obtained from the left of
Diagram 2.52 by including a into the coproduct. On the right, we obtain the desired lift
as ig41Ypig : doma — X,
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Claim: We have a functor T : C* — C®. On objects T(f) = 0. in the notation
introduced before Def. 2.36. For a morphism u : f = ¢ in C*, we must find a v : X, — Y,
making the following commute:

X — “ »Y
\fJ y

f O-fvfn Xn "'v"> Yn Ugvgn 9

A ) &
Z u

We will do this in the simple case of when f € A. The general case of A follows by
extending this argument through the relevant constructions of Definition 2.46.

Finding v can be formulated as the lifting problem (gu', u*f,) : f = ¢, in C2. But
this does indeed have a solution when f € A since g, was proven to be in rlp(A). Using
universality of X, as a colimit, it is straightforward to check functoriality of 7. n
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