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Abstract

We give, in full detail, two different proofs of Rickard’s Morita theorem
for derived categories. In the first proof we use a modified double chain
complex to construct an equivalence between the derived categories directly.
After that, we develop the theory of derived categories of differential graded
algebras, which we then use to give an alternate proof of the theorem.

Sammendrag

Vi gir, i full detalj, to ulike bevis for Rickards moritateorem for deriverte kat-
egorier. I det første beviset bruker vi et modifisert dobbeltkjedekompleks for
å konstruere en ekvivalens mellom de deriverte kategoriene direkte. Deretter
utleder vi teorien rundt deriverte kategorier for differensielt graderte alge-
braer, som vi s̊a bruker for å gi et alternativt bevis for teoremet.
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Introduction

After its introduction in 1958, the concept of Morita equivalence proved to
be a powerful addition to the ring theory toolbox. Following huge develop-
ments in the theory of derived categories during the seventies and eighties,
mathematicians wondered if there existed a similar result for derived cate-
gories. That is, one that related the derived categories of rings in the same
way Morita equivalence related their module categories. This question was
settled by Jeremy Rickard in [Ric89], who used the theory of tilting com-
plexes to give a condition for when the derived categories of two rings are
equivalent. Bernhard Keller later gave an alternate proof of the theorem,
using the theory of differential graded algebras.

Motivation

In the study of rings, many of the properties we are interested in for a
given ring are determined by its module category. Thus, if two rings have
equivalent module categories, we can learn things about one by studying the
other, which might be easier to work with. This is part of the reason why
Morita equivalence is so important, because it gives a necessary and sufficient
condition for when two rings have equivalent module categories. It even gives
an explicit description of the functors which produce the equivalence.

In a similar way, rings whose derived categories are equivalent share some
properties, so being able to determine when we have such equivalence could
be helpful. Rickard’s theorem states that the following is a necessary and
sufficient condition for two rings to have equivalent derived categories: That
there exists a tilting module over one of the rings, such that the other ring
is isomorphic to the endomorphism ring of that tilting module.

It is easy to show that equivalent derived categories implies the existence
of a tilting module, so the hard part is showing the other direction. In his
original proof, Rickard did it by constructing the equivalence directly. For
a given complex in the derived category of one ring, he used the tilting
complex to make a corresponding double complex of sorts, and by forming
the total complex he got a complex in the derived category of the other ring.
Here are two reasons why this is a good approach:

• It doesn’t require any additional theory. If you know enoguh homo-
logical algebra to understand the statement of the theorem, you don’t
need any more theory to be able to understand the proof.

• Every step in the proof is clearly motivated. The idea of the proof is
basically to try a natural way of constructing an equivalence between
the two derived categories, seeing where it breaks down, and then
modifying the construction until it does work.
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One problem with this approach is that the construction of the functor is
very specialized for this particular situation. Thus, the construction isn’t re-
ally that useful in a wider mathematical context. This is the reason Keller’s
alternate proof is interesting, because it employs a much more general tech-
nique to prove the theorem.

In his proof, Keller uses the theory of unbounded derived categories to
show that a slightly altered version of Rickard’s theorem holds if we have
a complex of bimodules over both rings. He then introduces the concept of
differential graded algebras, shows how to obtain derived categories in the
differential graded case, and defines total derived functors between those
categories. Finally, he uses these tools to construct a bimodule complex,
allowing him to apply the previous result to prove Rickard’s theorem.

Overview

The goal of this thesis is to present two different proofs of Rickard’s theorem
for derived Morita equivalence. In chapter 1 we define tilting complexes
and state Rickard’s theorem. The first proof is given in chapter 2, and it
is based on [Kö98]. Chapter 3 is used to define differental graded algebras,
as well as other related structures (like differential graded modules, and the
their homotopy category). We then use these constructions in chapter 4 to
give the other proof of Rickard’s theorem, which follows [Kel98]. Chapter
5 contains an example meant to illustrate how Rickard’s theorem can be
used in practice. Finally, the appendix contains some results we use, but
whose proofs we didn’t want to include in the main text.

Notation and conventions

Throughout this thesis, Λ and Γ are rings (associative, with 1). The cate-
gory of (left) Λ-modules is denoted Mod − Λ, with Proj − Λ denoting the
subcategory of projective Λ-modules. Lowercase first letter, i.e. mod − Λ
and proj − Λ, indicates their respective subcategories of finitely generated
objects. The category of free Γ-modules is denoted free − Γ. If T is a
complex, then Sum− T denotes the category of direct sums of copies of T ,
and Add − T is the category of arbitrary direct sums of direct summands
of T (finite direct sums give add − T ). If we let C be an abelian category,
then C(C) is the category of unbounded chain complexes of objects in C,
and K(C) is the homotopy category of C. In particular, we are interested in
the following subcategories of the homotopy category of Λ-modules (denoted
K(Λ) for simplicity):

• K(Proj − Λ) - unbounded complexes of projective Λ-modules.

• D(Λ) - the unbounded derived category of Mod− Λ.
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• K−(Proj−Λ) - right bounded complexes of projective Λ-modules, up
to homotopy.

• Db(Λ) - bounded complexes in the derived category, that is, complexes
with bounded homology.

• Kb(Proj − Λ) - bounded complexes of projective Λ-modules, up to
homotopy.

• per Λ - the category of perfect complexes, meaning bounded complexes
of finitely generated Λ-modules, up to homotopy. Could also be writ-
ten as Kb(proj − Λ).

Each of these categories is a full subcategory of the category above it, and
showing this is straight forward. The proof in chapter 2 relies heavily on
double complexes and similar constructions, and throughout we will use
the convention that our double complexes are defined with anticommutative
squares, instead of commutative squares. The reason for this is that it
removes the alternating sign from the differential we get when forming the
total complex, which will greatly simplify our constructions.

The intended reader

This thesis is written to be understandable to someone who has completed
an introductory course in homological algebra, to the point where they are
comfortable with triangulated and derived categories, left and right derived
functors, double complexes and total complexes, and the homotopy category
of a module category. They should also be familiar with some basic notions
of category theory, such as (co)limits, (co)products and adjoint functors.
Any necessary theory beyond this will be properly introduced. No prior
knowledge of differential graded algebras is required, nor any familiarity
with tilting complexes.
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Chapter 1

Rickard’s theorem for
derived Morita equivalence

Before we state Rickard’s celebrated theorem, we will present a prior theorem
due to Happel. This serves as motivation, because Happel’s theorem relies on
tilting modules, and Rickard’s theorem (which is a generalization of Happel’s
theorem) relies on tilting complexes (which is a generalization of tilting
modules).

1.1 Tilting modules and a prior theorem

A few years before Rickard published his proof, Happel [Hap87] presented
a theorem which was essentially a special case of Rickard’s derived Morita
theorem. He showed that derived equivalence of finite dimensional algebras
could be determined by looking at the endomorphism ring of a so-called
tilting module over one of the algebras.

Definition 1.1.1. Let Λ be a finite dimensional algebra. A tilting module
T over Λ is a finitely generated left Λ-module which satisfies the following
conditions:

1. The projective dimension of T is zero or one.

2. T has no self-extensions, meaning ExtiΛ(T, T ) = 0 for i 6= 0.

3. There is a natural number m such that there exists an exact sequence
0 → Λ → T1 → T2 → · · · → Tm → 0, where each Ti is a direct
summand of a finite direct sum of copies of T .

This definition allows us to state the previously mentioned theorem prop-
erly. We will omit the proof here.
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Theorem 1.1.2. Let Λ and Γ be two finitely generated algebras, and let T
be a tilting module over Λ. If Γ ' EndΛ(T ), then Db(Λ) and Db(Γ) are
equivalent as triangulated categories.

Proof. See [Hap87].

The main result in Rickard’s theorem is very similar to theorem 1.1.2,
with one important difference. Instead of relying on the existence of a tilting
module, it requires the existence of a tilting complex, which is a more general
kind of object. As a result of this, Rickard’s theorem gives a necessary and
sufficient condition for when two rings are derived equivalent (also notice
that we don’t require them to be finite dimensional).

1.2 Tilting complexes and Rickard’s theorem

We will now give the definition of a tilting complex, and then we will state
Rickard’s theorem. As mentioned above, tilting complexes are a generaliza-
tion of tilting modules.

Definition 1.2.1. For a given ring Λ, a tilting complex T over Λ is an object
in per Λ (bounded complexes of finitely generated modules up to homotopy)
which satisfies the following conditions:

1. for all i 6= 0, the set HomDb(Λ)(T, T [i]) of homomorphisms in Db(Λ)
vanishes,

2. the category add(T ) generates per Λ as a triangulated category. That
is, the smallest full triangulated subcategory of per Λ which contains
add(T ) and is closed under extensions, is the whole of per Λ.

A complex T ∈ per Λ satisfying condition (1), but not necessarily (2), is
sometimes called a partial tilting complex.

Rickard’s theorem for derived Morita equivalence

Theorem 1.2.2 (Rickard). Let Λ and Γ be two rings. Then the following
conditions are pairwise equivalent:

1. the triangulated categories K−(Proj−Λ) and K−(Proj−Γ) are equiv-
alent

2. the triangulated categories Db(Λ) and Db(Γ) are equivalent

3. the triangulated categories Kb(Proj−Λ) and Kb(Proj−Γ) are equiv-
alent

4. the triangulated categories per Λ and per Γ are equivalent
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5. there exists a tilting complex T over Λ such that Γ ' EndDb(Λ)(T )op,
the endomorphism ring of T .

Throughout this thesis, whenever we refer to Rickard’s theorem, or some-
hting to that effect, it is this theorem we are refering to. The proof of this
theorem is given in the next chapter, with an alternate proof being presented
in chapter 4.
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Chapter 2

Proof using a modified
double complex

This chapter follows the proof given in Steffen König’s paper Rickard’s Fun-
damental Theorem [Kö98], which is based on [Ric89]. Compared to the
other proof we will present, this is more conceptually straight forward, but
the method is not as useful as a general tool.

2.1 Strategy of the proof

Most of the work in this proof goes into showing that the existence of a tilting
complex over Λ with endomorphism ring isomorphic to Γ implies that we
have an equivalence K−(Proj − Λ) ' K−(Proj − Γ). To construct this
equivalence, we will use a sort of modified double complex. We then show
that such an equivalence restricts nicely down to each of the subcategories,
and finally, that an equivalence between per Λ and per Γ implies the existence
of the desired tilting complex.

Lemma 2.1.1. 1. The functor Hom(T,−) : K−(Proj −Λ)→Mod−Γ
restricts to an equivalence Sum− T → Free− Γ.

2. The inclusion K−(Free − Γ) → K−(Proj − Γ) is an equivalence of
triangulated categories.

Proof. 1) By assumption, we have that Γ ' Hom(T, T ). From this we get
that

⊕
i∈I Hom(T, T ) '

⊕
i∈I Γ ∈ Free − Γ, which means that we can

view elements of Free − Γ as direct sums of copies of Hom(T, T ). There
is a natural homomorphsim

⊕
i∈I Hom(T, T ) → Hom(T,

⊕
i∈I T ), given by

sending a tuple of endomorphisms (ϕi)i∈I to the map

(
t 7→

(
ϕi(t)

)
i∈I

)
.

Observe that if any ϕi is nonzero, then (ϕi)i∈I will not be sent to zero in
Hom(T,

⊕
i∈I T ), so the homomorphism is injective. To see that it is in
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fact an isomorphism, notice that since T is a bounded complex of finitely
generated Λ-modules, all elements of Hom(T,

⊕
i∈I T ) are fixed by the val-

ues they take on a finite number of elements of the terms of T . This
means that each element of Hom(T,

⊕
i∈I T ) is the image of some element

of
⊕

i∈I Hom(T, T ), which shows surjectivity. Thus, we have an isomor-
phism Hom(T,

⊕
i∈I T ) '

⊕
i∈I Hom(T, T ) '

⊕
i∈I Γ, which shows that

Hom(T,−) gives an equivalence Sum− T → Free− Γ.

2) For any complex in K−(Proj − Γ) we want to find an isomorphic
complex in K−(Free−Γ). Let X ∈ K−(Proj−Γ) be the following complex,
where i is the highest nonzero degree

· · · P i−2 P i−1 P i 0d d d 0

Since P i is projective, we know that there exists a Qi ∈ Proj − Γ such
that P i

⊕
Qi ' Γni for some ni ∈ N. By theorem A.1.1, we can now add the

trivial direct summand Qi
1−→ Qi to the complex X, and get the isomorphic

complex

· · · P i−2 P i−1
⊕
Qi P i

⊕
Qi 0

Γni

d

(
d
0

) (
d 0
0 1

)
0

Now, since P i−1
⊕
Qi is projective, we can again find a Qi−1 ∈ Proj−Γ

such that (P i−1
⊕
Qi)

⊕
Qi−1 ' Γni−1 for some ni−1 ∈ N. Then we add

the trivial direct summand Qi−1 1−→ Qi−1 to get the isomorphic complex

· · · P i−2
⊕
Qi−1 P i−1

⊕
Qi
⊕
Qi−1 Γni 0

Γni−1

d

(
d
0

) (
d 0
0 1

)
0

Because all terms in the complex X are projective, we can continue this
process indefinitely to the left, and by induction we get a complex that is
isomorphic to X, where all the terms are free Γ-modules. This shows that
K−(Free−Γ) and K−(Proj−Γ) are equivalent as triangulated categories.

By combining the two statements of lemma 2.1.1, we get an equivalence
between K−(Proj−Γ) and K−(Sum−T ). Our current goal is to construct a
functor from K−(Proj−Γ) to K−(Proj−Λ), so the next step will be to find
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a functor K−(Sum−T )→ K−(Proj−Λ). Notice that, since T ∈ per Λ, the
objects of Sum−T are built up of objects from per Λ ⊂ K−(Proj−Λ). This
means that the objects of K−(Sum−T ) can be viewed as double complexes
over Λ, that is, complexes of complexes Λ-modules. This gives us an idea
for how to create functors K−(Sum− T )↔ K−(Proj − Λ).

(→) : Let X ∈ K−(Sum − T ), so X is a complex with a direct sum of
copies of T in each degree. From this X we must construct a complex over
Λ. A natural candidate would be to view X as a double complex over Λ,
and form the total complex. But there is a problem with this solution. The
differential in the total complex is defined using both the differential d in
T and the differential δ in X (viewed as a complex over Sum − T ), and
relies on both of them squaring to zero. But since X is in the homotopy
category, we generally only have that δ2 is homotopic to zero, not equal.
This means that also the differential in the double complex will square to
something homotopic to zero, rather than to zero. So we need to modify our
double complex in such a way that we are able to form the total complex.
More precisely, we will define a construction which moves the error of our
differential to maps of higher and higher degrees. Because T is bounded,
this error term will eventually be zero. In order to do this, we will need the
assumption that HomDb(Λ)(T, T [i]) = 0 for i 6= 0, meaning that T has no
self-extensions. This will be used in the construction of the functor we call
F .

(←) : Given a complex L over Λ, we must find a corresponding complex
in K−(Sum − T ). As we have seen, complexes over Sum − T are double
complexes over Λ (up to homotopy). So our goal is to create a ’Sum − T -
resolution’ of the complex L in K−(Proj −Λ), a complex in K−(Sum− T )
which is homotopy equivalent to L. From this, we can define a functor G,
which is right adjoint to F . In order to prove that F and G are mutually
inverse equivalences, we will need the assumption that add(T ) generates
per Λ.

2.2 Construction of F

Our aim now is to construct a functor F : K−(Proj −Γ)→ K−(Proj −Λ).
Since we have already shown that K−(Proj − Γ) ' K−(Sum − T ), we
will focus on finding a functor K−(Sum − T ) → K−(Proj − Λ). Like
we said above, it doesn’t work to simply form the total complex of X ∈
K−(Sum−T ) as a double complex over Λ. Since the square of the differential
in K−(Sum − T ) is not equal (only homotopic) to zero, it’s not even a
double complex. So what we will do is to modify the construction to get
something similar to a double complex, for which we can actually form the
total complex. The following example shows the problem we run into when
trying to form the double complex with no modifications, and it illustrates
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how we will try to solve it.

Example 2.2.1. Let Q be the quiver

a b

c d,

α

γ β

δ

and let C = kQ/(βα − δγ), the algebra corresponding to a commutative
square. We want to find a tilting complex T over C, and then look at a
complex made of shifted copies of T . We start by finding the indecomposable
projective left modules of C, or more precisely, their composition series

Pa =
a

b c
d
, Pb = b

d , Pc = c
d , Pd = d.

We notice that the simple module Sa has no self-extensions, which means it
is a partial tilting complex. Since this is preserved by quasi-isomorphisms,
we can instead look at a projective resolution of Sa, for example:

0→ Pd

(
1
−1

)
−−−−→ Pb ⊕ Pc

( 1 1 )−−−→ Pa → 0.

Lets call this complex T . If we now look at an example of a complex in
K−(Sum − T ), and try to form the total complex of it, we will see where
the problem arises. Let T1 = T , T2 = T [1] and T3 = T [2], and take the
complex 0→ T1 → T2 → T3 → 0, given by:

T3 : Pd Pb ⊕ Pc Pa 0

T2 : 0 Pd Pb ⊕ Pc Pa 0

T1 : 0 Pd Pb ⊕ Pc Pa

(
1
−1

)
( 1 1 )

(
−1
1

)
(

1
−1

)
(−1 −1 )

( 1 1 )

(
1
−1

)
( 1

1 )

( 1 1 )

( 1 −1 )

Notice that all of the squares in this diagram anticommute (which is how
we define double complexes), and that the two vertical maps T1 → T2 and
T2 → T3 only differ in signs. So in order to see that this actually is a
complex in K−(Sum − T ), we must show that the differential squared is
null-homotopic. The composition of two vertical maps is obviously zero
everywhere, except for the composition

Pd
(1,1)−−−→ Pb ⊕ Pc

( 1
1 )
−−→ Pa,

which goes from T1 to T3. To see that this composition is null-homotopic,
we simply observe that it factors through Pb ⊕ Pc → Pa in T3 by the map
(1, 1). So T1 → T2 → T3 is in fact in K−(Sum− T ).

11



Now let’s try to form the total complex of this system, and see how its
differential d behaves. Recall that the components of the total complex are
given by taking the direct sum of diagonals in the double complex. If we
call the horizontal and vertical differentials in the double complex d0 and d1

respectively, then d0 + d1 is the differential in the total complex.1 We now
look at the bottom copy of Pd, which is a direct summand in degree 0 of the
total complex. Starting in this copy of Pd, the differential squared gives the
following diagram

Pa 0

Pb ⊕ Pc Pa 0

Pd Pb ⊕ Pc Pa

(−1 −1 )

( 1
1 )

(
1
−1

)( 1
1 )

( 1 1 )

( 1 −1 )

We see that there are 4 compositions Pd → Pa, so we can write d2 as the
sum (d0 + d1)2 = d2

0 + d1d0 + d0d1 + d2
1. The first term is 0, because d0

is actually a differential. The second and third term cancel each other by
anticommutativity. Thus, we are left with composition d2

1, which we clearly
see is not zero. What we have shown is that d2

1 is homotopic to zero, in other
words that there exists a map h : Pd ⊕ (Pb ⊕Pc)→ (Pb ⊕Pc)⊕Pa of degree
(−1, 2) such that −d2 = hd0 + d0h. We rename h to d2, and try to see if
redefining the differential to d = d0 + d1 + d2 will fix our problem. In this
case, we get that d2 = (d0+d1+d2)2 = d2

0+d0d1+d1d0+d2
1+d0d2+d2d0. As

before, the first term is zero, and the second and third cancel each other. By
construction, d2

1 is canceled by d0d2 + d2d0 = −d2
1. Note that we in general

could have nonzero terms d1d2, d2d1 and d2
2, but they are maps of vertical

degree 3 and 4, which in this example means that any nonzero component
in the diagram will be sent to zero by them. Thus, they are all zero in d2.

Adding this up, we get that d2 = 0 and hence d can work as a differential.
So we can form a sort of ’modified total complex’ of T1 → T2 → T3, where
the terms are the diagonals as usual, but with d = d0 + d1 + d2 as the
differential, instead of d0 + d1. The reason this works in our case is that the
complex in K−(Sum− T ) we are looking at only has three nonzero terms,
so the terms d1d2, d2d1 and d2

2 are actually zero. In general, however, that
may not be the case.

We see in this example what the problem with the differential is. When
we define the differential as a sum of maps, and square it, we end up with
some nonzero terms. We try to fix this by adding ’correction maps’ (given by

1This is why we use the anticommutative definition of double complexes. When double
complexes are defined with commutative squares, the differential in degree l of the total
complex is d0 + (−1)ld1, which would be harder to work with in our case.
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homotopy) to the differential, to ensure that the nonzero maps are cancelled
out in d2. This pushes the problem into another degree (higher vertical
degree and lower horizontal degree), where we generally can’t say which
maps become zero. However, we will now see that because T is assumed to
be a tilting complex, this method actually ends up working.

First of all, since HomDb(Λ)(T, T [i]) = 0 for all i 6= 0, we have that all

maps T → T [i] are null-homotopic. This means that no matter what the
degree of the maps are, we can always find homotopy maps to cancel them
out with. Secondly, since T is a bounded complex, shifting it far enough to
the left or right will ensure that no nonzero degrees of the shifted complex
will overlap with the nonzero degrees of T . This means that for n large
enough, any map T → T [i] will be zero for all i > n. Which in turn ensures
that the method outlined above will terminate at some point. Think of it like
this: we iteratively find correction maps to deal with the terms that don’t go
to zero, which pushes the problem ’up and to the left’ in the diagram. This
corresponds to finding maps T → T [i] for increasing values of i. Eventually,
it will be pushed so far to the left that the map must be zero. Then all terms
in the differential squared are either zero or they will cancel each other out
by construction, and we are done.

We will now formalize the idea. To do this, we create a new category,
which will be a modification of the category of double complexes over Λ. This
is essentially done by adding all the correction maps to each complex. After
defining the category, we will show how we can embed C−Sum− T into it,
and how it works with taking total complexes. Combining the embedding
with taking the total complex gives a functor C−Sum− T → K−(Proj−Λ),
which we will show factors through K−(Sum − T ). This induced functor
will be our F .

Before we define the intermideate category, let’s look closer at the struc-
ture of objects in C−(Sum−T ). A complex X ∈ C−(Sum−T ) is a double
complex, that is, a complex of complexes over per Λ. This means that X
is graded in two directions. It is graded as a complex over Sum − T , and
each degree of that has the grading given by T as a complex. So we have
two sets of differentials, one with degree (1, 0) and one with degree (0, 1).
Let’s call the differential in T for d, and say that d has degree (1, 0). Then
the differential in X as a complex in C−(Sum− T ), which we’ll call δ, has
degree (0, 1). Notice that since T really is a complex, we have that d2 = 0.
On the other hand, δ is given by maps between shifted copies of T , which
are only defined up to homotopy (since T is a tilting complex). This means
that δ2 is not equal to zero (although it is null-homotopic). Finally, mor-
phisms between complexes in C−(Sum − T ) are maps of degree zero with
respect to the grading of C−(Sum− T ), which corresponds to maps of de-
gree (0, 0) in the associated bigraded objects. We are now ready to modify
this construction and create the category we need, which we will call G(Λ).
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Definition 2.2.2. The category G(Λ) is defined as follows

• The objects of G(Λ) are bigraded projective Λ-modules X∗,∗, together
with a family (di)i∈N of graded endomorphisms of degree (1− i, i) such
that

∑
0≤i≤n didn−1 = 0 for each n ∈ N.

• A morphism from X∗,∗ to Y ∗,∗ in G(Λ) is a family (αi)i∈N of maps
of degree (−i, i) such that for each n ∈ N, we have the equality∑

0≤i≤n αidn−1 =
∑

0≤i≤n diαn−1.

The following is meant to help with visualizing what the definition is
saying. An object X ∈ G(Λ) is on this form

...
...

...
...

...

· · · X−2,2 X−1,2 X0,2 X1,2 X2,2 · · ·

· · · X−2,1 X−1,1 X0,1 X1,1 X2,1 · · ·

· · · X−2,0 X−1,0 X0,0 X1,0 X2,0 · · ·

· · · X−2,−1 X−1,−1 X0,−1 X1,−1 X2,−1 · · ·

· · · X−2,−2 X−1,−2 X0,−2 X1,−2 X2,−2 · · ·

...
...

...
...

...

Here, the horizontal maps belong to d0, the vertical maps belong to d1, the
red maps to d2, the blue maps to d3, the green maps to d4, and this pattern
continues. Be aware that maps of all degrees (1 − i, i) exist for all terms,
even though they are not shown above. The diagram is just meant to help
with visualization. Now let’s look at the condition

∑
0≤i≤n didn−1 = 0 for

all n ∈ N. Written out for each n, this becomes

d0d0 = 0 degree: (2, 0)

d0d1 + d1d0 = 0 degree: (1, 1)

d0d2 + d1d1 + d2d0 = 0 degree: (0, 2)

d0d3 + d1d2 + d2d1 + d3d0 = 0 degree: (−1, 3)

...
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All possible compositions of two arrows appear in this sum. Notice that if
we start in the component Xi,j and apply any composition of exactly two
maps, we end up somewhere on the diagonal with total degree i + j + 2.
In other words, we end in a component on the form Xi+2−k,j+k, for some
k ∈ N. Each of the sums above contain all compositions of two maps of the
given combined degree. So the statement is essentially that if we take the
sum of all possible paths from one component to a given component on the
diagonal which is two steps above it, we get zero.

Now let’s look at morphisms in G(Λ), and try to wrap our minds around
how they work. Again, a morphism from X∗,∗ to Y ∗,∗ in G(Λ) is given
by a family of maps (αi)i∈N of degree (−i, i), such that

∑
0≤i≤n αidn−1 =∑

0≤i≤n diαn−1 for all n ∈ N. Writing this out for each n, we get

α0d0 = d0α0 degree: (1, 0)

α0d1 + α1d0 = d0α1 + d1α0 degree: (0, 1)

α0d2 + α1d1 + α2d0 = d0α2 + d1α1 + d2α0 degree: (−1, 2)

...

To aid in visualizing what this means, here is a (sligthly horrifying) partial
diagram. It shows the maps from a (3×4)-section of X∗,∗ to a (3×3)-section
of Y ∗,∗. In reality, there would be way more arrows both into and out of
each component, but we tried to keep it simple. The black and red arrows
are as above, and the orange, cyan and violet arrows are α0, α1 and α2,
respectively.

X−1,1 X0,1 X1,1 X2,1

X−1,0 X0,0 X1,0 X2,0

X−1,−1 X0,−1 X1,−1 X2,−1

Y −1,1 Y 0,1 Y 1,1

Y −1,0 Y 0,0 Y 1,0

Y −1,−1 Y 0,−1 Y 1,−1

In the context of this diagram, the above equalities basically say this: When
you go from a component of X∗,∗ to one of Y ∗,∗, following arrows in X∗,∗ and
then passing to Y ∗,∗ is the same as first passing to Y ∗, ∗ and follow the arrows
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there. More precisely, this is true if you take the sum of all possible such
paths between the given components. For example, the first equality says
that following a horizontal arrow and then an orange arrow in the diagram,
is the same as first following an orange arrow and then a horizontal one.
The second equality says that (horizontal then blue)+(vertical then orange)
is the same as (orange then vertical)+(blue then horizontal). Likewise, the
third equality gives that (red then orange)+(vertical then blue)+(horizontal
then violet) is equal to (orange then red)+(blue then vertical)+(purple then
horizontal), and this pattern continues.

Observation 2.2.3. We can form the total complex of an object in G(Λ),
and in this case,

∑
i di really is a differential. To see that (

∑
i di)

2 = 0, we
observe that (

∑
i di)

2 is the sum of all possible combinations didj (where
i = j is allowed). If we sort these into groups where i + j is constant, the
construction of G(Λ) ensures that each of the groups will be zero, so the
entire sum is zero.

(
∑
i∈N

di)
2 =

=0︷︸︸︷
d0d0 +

=0︷ ︸︸ ︷
d0d1 + d1d0 +

=0︷ ︸︸ ︷
d0d2 + d1d1 + d2d0 + · · · = 0

Now that we (hopefully) have some idea of how the category G(Λ) works,
our next goal is to find an embedding C−(Sum − T ) ↪→ G(Λ). Remember
that we are trying to construct a functor K−(Sum−T )→ K−(Proj−Γ) by
passing through G(Λ). Embedding C−(Sum− T ) into G(Λ) is one step in
this construction, since we already have a functor from G(Λ) to K−(Proj−
Λ) (which is to form the total complex). Given an object X in C−(Λ),
we need to find a corresponding object in G(Λ), and the same is true for
morphisms. Notice that X is already bigraded as a Λ-module, it just doesn’t
have all the maps di. This means that we can send X to the object X∗,∗ in
G(Λ), given that we find maps that function as the di’s. What we do have, is
the horizontal map d : Xi,j → Xi+1,j and the vertical map δ : Xi,j → Xi,j+1.
We set d0 = d and d1 = (−1)i+jδ. The rest of the di’s correspond to the
correction maps from the example, and we define them inductively. To do
so we’ll need the following lemma:

Lemma 2.2.4. Let X and Y be objects in C−(Sum − T ), regarded as bi-
graded objects as above. For any graded map α : X → Y of degree (p, q),
where p 6= 0 and α commutes with d, there exists a graded map h of degree
(p− 1, q), such that α = d0h+ hd0.

Proof. If we fix the second degree, say we set it equal to i, then α gives a
graded map of degree p from one sum of copies of T to another. In each
summand, this is the same as a map of chain complexes from T to T [p]. Since
T is assumed to be a tilting complex, we know that HomDb(Λ)(T, T [p]) = 0
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for all p 6= 0, which is equivalent to all chain maps T → T [p] being null-
homotopic. This means we can find a homotopy map T → T [p] of degree
−1, which gives the map h that we are looking for.

Now we are ready to construct the di’s. The base case for the induc-
tion is covered by observing that d2

1 = dδ − δd = 0 by commutativity
of the squares. Let’s assume that for all i ∈ {0, . . . , k}, we have di such
that

∑
0≤i≤k didk−i = 0. What we want is to define a map dk+1 such that∑

0≤i≤k+1 didk+1−i = 0. Notice that this sum can be written as

k+1∑
i=0

didk+1−i = d0dk+1 + dk+1d0 +
k∑
i=1

didk+1−i.

We now define a map α to be equal to the negative of the last term above,
that is

α = −
k∑
i=1

didk+1−i.

Our goal now is to apply lemma 2.2.4 to this map α. All of the terms in the
sum are maps of degree (1 − k, k + 1), so for k ≥ 2 the degree condition is
satisfied. Thus, for α to satisfy the lemma we must show that it commutes
with d0. We calculate d0α and αd0, in order to show that they are equal:

d0α = d0(−
k∑
i=1

didk+1−i) = −
k∑
i=1

d0didk+1−i

= −
k∑
i=1

− i∑
j=1

djdi−j

 dk+1−i

=
k∑
i=1

i∑
j=1

djdi−jdk+1−i

αd0 = (−
k∑
i=1

didk+1−i)d0 = −
k∑
i=1

didk+1−id0

= −
k∑
i=1

di

− k+1−i∑
j=1

dk+1−i−jdj


=

k∑
i=1

k+1−i∑
j=1

didk+1−i−jdj
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The middle step in the first calculation comes from applying the equality
d0di = −

∑
1≤j≤i djdi−j , which is true by the induction hypothesis. Like-

wise, dk+1−id0 = −
∑

1≤j≤k+1−i dk+1−i−jdj gives the middle step in the
second calculation. The question now boils down to whether

k∑
i=1

i∑
j=1

djdi−jdk+1−i
?
=

k∑
i=1

k+1−i∑
j=i

didk+1−i−jdj .

To see that this equality holds, observe that we can arrange the first double
sum as a triangle-shaped list in the following way. The i-th row in the
triangle is equal to the sum

∑
1≤j≤i djdi−jdk+1−i, which is the i-th term of

the double sum. The trick now is to notice that the columns in the triangle
correspond exactly to the sums in each term of the other double sum, which
shows that the equality holds. This means that α commutes with d0.

d1d0dk

+ d1d1dk−1 +d2d0dk−1

+ d1d2dk−2 +d2d1dk−2 + d3d0dk−2

...

+ d1didk−i +d2di−1dk−i + d3di−2dk−i + · · ·+ di−1d0dk−i
...

+ d1dk−1d1 +d2dk−2d1 + d3dk−3d1 + · · ·+ di−1dk+1−id1 + · · ·+ dkd0d1

By the above discussion, we see that α satisfies the conditions in lemma 2.2.4.
Hence there is a map h such that α = d0h + hd0. We now simply define
dk+1 := h, so that

d0dk+1 + dk+1d0 = d0h+ hd0 = −
k∑
i=1

didk+1−i.

If we plug this back into the sum we started with, we get

k+1∑
i=0

didk+1−i = d0dk+1 + dk+1d0 +

k∑
i=1

didk+1−i

= −
k∑
i=1

didk+1−i +
k∑
i=1

didk+1−i = 0.

This concludes the induction, which shows that sending X ∈ C−(Sum−T )
to X∗,∗ in G(Λ) works.

Now let’s look at how to send morphisms in C−(Sum−T ) to morphisms
in G(Λ). The argument is fairly similar to that for objects. We start with
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a map α : X → Y which is graded of degree (0, 0), and we want a family
of maps (αi)i∈N of degree (−i, i) which satisfy the necessary commutativity
property. We start by setting α0 = α, and then we proceed by induction.
Assume that for i ∈ {0, . . . , k − 1} we have (αi) such that

k−1∑
i=0

αidk−1−i =

k−1∑
i=0

diαk−1−i.

We want to show that we then can define a map αk such that

k∑
i=0

αidk−i =
k∑
i=0

diαk−i.

By rearranging the terms, we get the equivalent equation

αkd0 − d0αk =

k∑
i=1

diαk−i −
k∑
i=1

αk−idi.

We will use lemma 2.2.4 to perform the induction, and in order to do so, we
define

γ =
k∑
i=1

diαk−i −
k∑
i=1

αk−idi =
k∑
i=1

(diαk−i − αk−idi).

We will not apply the lemma to γ directly, but to a slight modification. In
fact, we can’t apply the lemma to γ, since it doesn’t commute with d0. We
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actually have that d0γ = −γd0, as we will see now by explicit computation:

γd0 =
k∑
i=1

(diαk−i − αk−idi)d0 =
k∑
i=1

diαk−id0 − αk−idid0

∗
=

k∑
i=1

diαk−id0 − αk−i(−d0di −
i−1∑
j=1

djdi−j)

=

(
k∑
i=1

diαk−id0 + αk−id0di

)
+

k∑
i=1

i−1∑
j=1

αk−idjdi−j

∗∗
=

 k∑
i=1

(diαk−id0 +

(
d0αk−i +

k−i∑
j=1

djαk−i−j − αk−i−jdj
)
di

+
k∑
i=1

i−1∑
j=1

αk−idjdi−j

=

(
k∑
i=1

(diαk−id0 + d0αk−idi

)
+

 k∑
i=1

k−i∑
j=1

djαk−i−jdi − αk−i−jdjdi


+

k∑
i=1

i−1∑
j=1

αk−idjdi−j

=

(
k∑
i=1

(diαk−id0 + d0αk−idi

)
+

k∑
i=1

(
k−i∑
j=1

djαk−i−jdi −
k−i∑
j=1

αk−i−jdjdi

+

i−1∑
j=1

αk−idjdi−j

)

∗∗∗
=

(
k∑
i=1

(diαk−id0 + d0αk−idi

)
+

k∑
i=1

k−i∑
j=1

djαk−i−jdi
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d0γ = d0

k∑
i=1

(diαk−i − αk−idi) =
k∑
i=1

d0diαk−i − d0αk−idi

∗
=

k∑
i=1

(−did0 −
i−1∑
j=1

djdi−j)αk−i − d0αk−idi

= −

(
k∑
i=1

d0αk−idi + did0αk−i

)
−

k∑
i=1

i−1∑
j=1

djdi−jαk−i

∗∗
= −

 k∑
i=1

d0αk−idi + di

(
αk−id0 +

k−i∑
j=1

αk−i−jdj − djαk−i−j
)− k∑

i=1

i∑
j=0

djdi−jαk−i

= −

(
k∑
i=1

d0αk−idi + diαk−id0

)
−

 k∑
i=1

k−i∑
j=1

diαk−i−jdj − didjαk−i−j


−

k∑
i=1

i∑
j=0

djdi−jαk−i

= −

(
k∑
i=1

d0αk−idi + diαk−id0

)
−

k∑
i=1

(
k−i∑
j=1

diαk−i−jdj −
k−i∑
j=1

didjαk−i−j

+

i∑
j=0

djdi−jαk−i

)

∗∗∗
= −

(
k∑
i=1

d0αk−idi + diαk−id0

)
−

k∑
i=1

k−i∑
j=1

diαk−i−jdj


In both of the derivations above, the unmarked equals signs are simply re-
arranging the expressions, whil the marked equals signs mean the following:

* means we rearrange and apply the equality
∑i

j=0 djdi−j = 0.

** means we rearrange and apply the equality
∑k−i

j=0 αk−i−jdj =
∑k−i

j=0 djαk−i−j ,
which holds by the induction hypothesis, since i ≥ 1.

*** is given by the fact that when i and j run through all possible values,
the last two sums cancel each other out perfectly.

As we can see, the result is that d0γ = −γd0. Notice that γ is a graded
map of degree (1 − k, k), so we can define γ̃ = (−1)p+qγ for γ : Xp,q →
Y p+1−k,q+k. Then γ̃ is a graded map of degree (1 − k, k) which commutes
with d0, so we can apply lemma 2.2.4. Thus we can find a map h such that
γ̃ = hd0 + d0h. Finally, we set αk := (−1)p+q−1h when h is a map from
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Xp,q. This ensures that (−1)p+qγ = γ̃ = d0h + hd0 = (−1)p+q−1d0αk +
(−1)p+qαkd0, which in turn means that γ = αkd0 − d0αk. Thus we have
that

k∑
i=0

diαk−i = d0αk+

k∑
i=1

diαk−i = (αkd0−γ)+(γ+

k∑
i=1

αk−idi) =

k∑
i=0

αk−idi,

which is what we needed to finish the induction. Hence we conclude that a
map α in C−(Sum− T ) gives rise to a map (αi)i∈N in G(Λ).

The last thing we need to determine, is what happens when we have a
homotopy in C−(Sum− T ), and then go to G(Λ). Assume that α is a null-
homotopic map in C−(Sum−T ), so we know that we can find a map h0 such
that α = d0h0 + h0d0. We also know that α is sent to a family (αi) of maps
in G(Λ), with α0 = α. We can use α0 and h0 as the start of an induction
argument similar to the one above, in order to construct a homotopy in
G(Λ). Assume that we already have hi for i ∈ {0, . . . , k − 1} such that we
can write αn as

∑
0≤i≤n(dihn−i + hidn−i) for each n ∈ {0, . . . , k − 1}. We

then need to find hk such that αk =
∑

0≤i≤k(dihk−i + hidk−i). This is done

by checking that
(
αk −

∑
0≤i≤k(dihk−i + hidk−i)

)
commutes with d0, and

then applying lemma 2.2.4 to it. We skip the details here.
In total, we conclude that we can define a functor

Φ: C−(Sum− T )→ K−(Proj − Λ),

given by first going to G(Λ) and then taking total complexes. Again, what
we really want is a functor K−(Sum−T )→ K−(Proj−Λ), and to get that
we’ll factor Φ.

Proposition 2.2.5. The functor Φ factors through the natural functor

C−(Sum− T )→ K−(Sum− T ),

and the resulting functor

K−(Sum− T )→ K−(Proj − Λ)

is a triangle functor.

Proof. By construction, we know that every map α : X → Y in C−(Sum−
T ) gives rise to a distingusihed triangle

X
α−→ Y → Z → X[1]

in K−(Sum− T ), where Z is the mapping cone of α. To prove the proposi-
tion, we must show that for any map α, this triangle is sent to a distinguished
triangle in G(Λ) (which is the definition of functor between triangulated cat-
egories being a triangle functor). Since Z is the cone of α, we explicitly know
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what it looks like, and we can use that to compute its bigraded structure.
Let X be a complex given as · · · → Xn → Xn+1 → · · · , and Y a complex
given as · · · → Y n → Y n+1 → · · · . To keep things simple, we call both
differentials d. We then have that Z is

· · · → Y n ⊕Xn+1

(
d 0
α d

)
−−−−→ Y n+1 ⊕Xn → · · ·

Now we must find a corresponding object in G(Λ), and since we already
have a bigrading on Z, we just need to find the family of morphisms which
form the differential. It turns out that we can do this so that for Zi,j =
Y i,j ⊕Xi,j+1, the differerntial in Z∗,∗ is on the form(

dk 0
(−1)i+jαk−1 dk

)
: Zi,j → Zi+1−k,j+k (where α−1 = 0 by definition).

What we need to check now, is that applying Φ to Z gives the same complex
as applying Φ to α : X → Y and then taking the mapping cone (up to
isomorphism). Notice that the complexes Φ(Z) and the cone of Φ(α) have
the same terms, and that the difference only is in the differentials. If we
say that a =

∑
i αi, then the differential in the cone of Φ(α) is

(
d 0
a d

)
. From

the construction above, we see that Φ(Z) has
(

d 0
(−1)na d

)
as differential in

degree n. This means that we can define an isomorphism between the two
complexes quite easily. We simply fix the terms coming from Y , and multiply
the terms coming from X by powers of −1.

Combining this result with the equivalence K−(Proj−Γ)→ K−(Sum−
T ), we immediately get the following theorem:

Theorem 2.2.6. Let Λ be a ring, and let T be a bounded complex of finitely
generated projective Λ-modules. Suppose that HomKb(Proj−Λ)(T, T [n]) = 0

holds for all n < 0. Let Γ be the endomorphism ring of T in Kb(Proj −Λ).
Then there is a triangle functor F : K−(Proj − Γ)→ K−(Proj − Λ) which
sends Γ to T and bounded complexes to bounded complexes.

2.3 F is a full embedding

Now that we have defined the functor F , our next step will be to prove that
F is a full embedding. In other words, we will prove the theorem:

Theorem 2.3.1. The functor F : K−(Proj − Γ)→ K−(Proj − Λ) is fully
faithful.

Proof. First of all, F sends a free Γ-module first to a direct sum of copies of
T and then to the associated total complex. In other words, if X '

⊕
i∈I Γ

is some free Γ-module, then FX '
⊕

i∈I T . This means, in particular, that
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if X and Y are free Γ-modules of rank one (so X ' Γ ' Y ), then F induces
an isomorphism

HomΓ(X,Y ) HomΛ(T, T )

Γ Γ

F

∼ ∼

If we now keep X ' Γ, and let Y '
⊕

i∈I Γ be any free Γ-module, the fact
that the covariant hom-functor commutes with direct sums gives that

HomΓ(Γ,
⊕
i∈I

Γ) '
⊕
i∈I

HomΓ(Γ,Γ) '
⊕
i∈I

HomΛ(T, T ) ' Hom(T,
⊕
i∈I

T ).

The contravariant hom-functor turns coproducts into products, so if we now
let both X =

⊕
j∈J Γ and Y be arbitrary free Γ-modules, we get

HomΓ(
⊕
j∈J

Γ, Y ) '
∏
j∈J

HomΓ(Γ, Y ) '
∏
j∈J

HomΛ(T, FY ) ' Hom(
⊕
j∈J

T, FY ).

This shows that Hom(X,Y ) ' Hom(FX,FY ) holds for all free Γ-modules
X,Y . In addition, all complexes of projective modules that have only one
nonzero degree can be written as a direct summand of some shift of a free
Γ-module. And since F is a triangle functor, it preserves direct summands
and shifts. The only possible problem is that even if X is a complex that
is concentrated in one degree, FX will generally not be concentrated in one
degree. However, since T is a tilting complex, we know that shifted endo-
morphisms of T are zero. Thus, we get that Hom(X,Y ) ' Hom(FX,FY )
for all X,Y in K−(Proj − Γ) that are concentrated in one degree.

We will now extend this result, and show that it also holds for all bounded
complexes of projectives. In other words, we show that F is fully faithful
when it is restricted to Kb(Proj − Γ). To do so, we will use induction on
the number of nonzero terms in X and Y . Finally, we will use a colimit
argument to extend the statement to all of K−(Proj − Γ). We start by
showing that any complex X with n nonzero terms can be placed in a
distinguished triangle V → X → W  where V and W both have fewer
than n nonzero terms. If we have that X is the complex

X = (0→ X1 → X2 → · · · → Xn → 0),

and set
V = (0→ · · · → 0→ Xn → 0),

then the mapping cone of the inclusion V ↪→ X is the complex

(0→ X1 → · · · → Xn−1 ⊕Xn → Xn → 0).

By removing a trivial summand (theorem A.1.1), we see that this complex
is homotopy equivalent to the following complex, which will be our W :

W = (0→ X1 → X2 → · · · → Xn−1 → 0→ 0).
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We see that both V and W have fewer than n nonzero terms, and V →
X → W  is a distinguished triangle by construction, since W is the cone
of V → X. This, together with the 5-lemma, allows us to show by induction
that F is fully faithful on Kb(Proj −Γ). Assume that we have shown it for
complexes with n−1 or fewer nonzero terms. If we apply Hom(−, Y ) to the
triangle V → X →W  given above, we get a long exact sequence, and the
same is true for applying Hom(−, FY ) to the triangle FV → FX → FW  .
We then get the following diagram, where the squares commute and the rows
are exact:

Hom(W,Y ) Hom(X,Y ) Hom(V, Y ) Hom(W [1], Y )

Hom(FW,FY ) Hom(FX,FY ) Hom(FV, FY ) Hom(FW [1], FY )

∼ ∼ ∼

The isomorphisms come from the iduction hypothesis, since V and W both
have fewer than n nonzero terms. The 5-lemma now implies that the map
Hom(X,Y ) → Hom(FX,FY ) also is an isomorphism (the same is true for
all shifts). This concludes the induction argument.

We will now extend the result to all of K−(Proj − Γ), and to do so,
we will need the following construction. Note that we start by viewing X
as a regular right bound complex, not up to homotopy. A complex X in
C−(Proj − Γ) is given as

X = (· · · → X−n−1 → X−n → X−n+1 → · · · → XN → 0)

for some N ∈ Z. We define the truncated complex X(n) by removing all
values of X below degree −n, that is, we set Xi = 0 for all i < −n:

X(n) := (· · · → 0→ X−n → X−n+1 → · · · → XN → 0).

We can, without loss of generality, assume that N = 0. Now consider the
directed system

X(0) ↪→ X(1) ↪→ · · · ↪→ X(n) ↪→ X(n+ 1) ↪→ · · · ,

given by the obvious inclusions ιi,j : X(i) ↪→ X(j) for i ≤ j. Since each
X(n) contains the rightmost n + 1 nonzero terms of X, it is clear that
lim−→X(n) = X. Next, we form the direct sum

⊕
n∈NX(n), and look at

the endomorphism
⊕

n∈NX(n)→
⊕

n∈NX(n) generated by sending (xi) to
(xi − ιi,j(xi)). The cokernel of this map is lim−→X(n) (proposition 7.94 in
[Rot02, p 506]), which means that we can form the short exact sequence

0→
⊕
n∈N

X(n)→
⊕
n∈N

X(n)→ X → 0.
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This induces a distinguished triangle in K−(Proj − Γ)⊕
n∈N

X(n)→
⊕
n∈N

X(n)→ X →
⊕
n∈N

X(n)[1].

We now apply the functor HomK−(Proj−Γ)(−, Y ) to this triangle, to get a
long exact sequence. Recall that coproducts in the first coordinate of a
hom-set can be pulled out, but then they become products, so we have that
HomK−(Proj−Γ)(

⊕
n∈NX(n), Y ) '

∏
n∈N HomK−(Proj−Γ)(X(n), Y ). This

means we can write the long exact sequence as the following, where we
write HomK−(Proj−Γ)(A,B) as (A,B) to save space:

· · ·
∏
n∈N

(X(n), Y [−1])
∏
n∈N

(X(n), Y [−1])

(X,Y )
∏
n∈N

(X(n), Y )
∏
n∈N

(X(n), Y ) · · ·

Note that generally F (X(n)) 6= (FX)(n), because FX might have some-
thing nonzero in degree i, even though Xi = 0. We denote F (X(n)) as
FX(n). Since T is a bounded complex, the way F is constructed ensures
that FX(n) will be bounded. It also means that, for n large enough, the
rightmost part of X(n) and the rightmost part of X will be mapped to the
same thing by F . Hence we see that lim−→FX(n) = FX. Thus we can do a
similar construction as above for FX, and get the long exact sequence

· · ·
∏
n∈N

(FX(n), Y [−1])
∏
n∈N

(FX(n), Y [−1])

(FX,FY )
∏
n∈N

(FX(n), Y )
∏
n∈N

(FX(n), Y ) · · ·

The functorality of F ensures that we get a morphism of complexes from
the first long exact sequence to the second long exact sequence. Since
X(n) is bounded for each n, our previous result, together with the fact
that products preserve isomorphisms, shows that the maps between the
product terms must be isomorphisms. That is, we have an isomorphism∏

(X(n), F [i])
∼−→
∏

(FX(n), FY [i]) for all i ∈ Z. Now, let’s look at the sub-
diagram given by the five terms of each long exact sequence shown above,
together with the morphisms between them. This is a commutative diagram
with two exact rows of five terms each, where all the vertical morphisms
except the middle one are isomorphisms. Thus, by the five lemma, the mid-
dle morphism must also be an isomorphism. But the middle morphism is
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HomK−(Proj−Γ)(X,Y ) → HomK−(Proj−Λ)(FX,FY ), so this concludes our
proof that F is fully faithful.

2.4 Construction of G

Now that we have shown that we have a fully faithful functor F : K−(Proj−
Γ)→ K−(Proj−Λ), our next goal is to construct a functor G : K−(Proj−
Λ) → K−(Proj − Γ) which is right adjoint to F . Recall that we have an
equivalence between K−(Proj−Γ) and K−(Sum−T ), so what we actually
need is to find a way to send complexes in K−(Proj − Λ) to complexes of
sums of copies of T . In other words, we must find a way to construct some
kind of ’T -resolutions’ of complexes in K−(Proj − Λ).

We start by noting that, because T is a bounded complex, any complex
X in K−(Proj−Λ) can be shifted so far to the left that there are no nonzero
morphisms from T to the shifted X. This is because X is right bounded,
so for large enough n there will be no overlap of nonzero degrees in T and
X[n]. Now, let N be the smallest number such that

Hom(T,X[n]) = 0 for all n > N.

We define X(0) to be equal to X[N ]. This means that Hom(T,X(0)) 6= 0,
but for any positive shift i we have that Hom(T,X(0)[i]) = 0. We now
want an object S(0) in Sum−T , together with a morphism α : S(0) → X(0),
such that Hom(T, S(0)) is mapped surjectively onto Hom(T,X(0)) via α. For
example, we can take the object

⊕
f∈Hom(T,X(0)) T , which has one copy of T

for each map from T to X(0). Then α could be the map S(0) → X(0) where
the component map from the f -th summand is just f . This map clearly
gives a surjection from Hom(T, S(0)) to Hom(T,X(0)), given by taking the
inclusion morphisms into each summand of S(0). We take S(0) and α to be
the first term of our ’T -resolution’. To continue the construction, we find a
complex X(1) which completes α to a distinguished triangle:

X(−1) S(0) X(0) X(−1)[1].α

We now repeat the process for X(−1), i.e. find an object S(−1) in Sum− T
and a morphism β : S(−1) → X(−1) which maps Hom(T, S(−1)) surjectively
to Hom(T,X(−1)). Then we find a complex X(−2) that completes this mor-
phism to a distinguished triangle. The general process is

• Take the object X(i).

• Find an object S(i) ∈ Sum − T , and a map S(i) → X(i) that induces
a surjection on the hom-sets.
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• Complete the map to a distingusihed triangle:
X(i−1) → S(i) → X(i)  

• Repeat for X(i−1).

By continuing this process, we end up with a collection (S(i))i≤0 of objects in
Sum−T . We define d : S(i) → S(i+1) as the composition of the maps S(i) →
X(i) and X(i) → Si+1 coming from the triangles in the construction. Note
that d2 = 0, because it contains the composition of two consecutive maps
in a distinguished triangle, which in turn means that (Si, d) is a complex of
objects in Sum− T . We call (S(i), d) a T -resolution of X.

It is not obvious that this construction gives a functor, since it’s not clear
that it has a unique result. We will now prove that it does. Observe that
Hom(T,X(i)[n]) = 0 when i ≤ N and n > 0. We prove this by downward
induction on i. For i = 0, the assertion is true because X(0) = X[N ] and
we chose N such that Hom(T,X[j]) = 0 for all j > N . Now assuming the
assertion holds for i = k, we want to show that it holds for i = k − 1.
From the construction of the T -resolution we get the distingushed triangle
X(k−1) → S(k) → X(k)  , and by applying the functor Hom(T,−) to it
we get a long exact sequence. By the induction hypothesis we know that
Hom(T,X(k)[n]) = 0 for all n > 0. Because S(k) is in Sum− T and shifted
endomorphisms of T vanish (since T is a tilting complex), we also have that
Hom(T, S(k)[n]) = 0 for all n 6= 0. This means that for n ≥ 2 there will be
zeros on both sides of Hom(T,X(k−1)[n]) in the long exact sequence, which
means that it must itself be zero. For n = 1, we get this part of the long
exact sequence

Hom(T, S(k)) Hom(T,X(k))

Hom(T,X(k−1)[1]) Hom(T, S(k)[1]) = 0,

where the first arrow is a surjection because of how we constructed S(k). By
exactness, we get that Hom(T,X(k−1)[1]) = 0, and since we have already
shown it for all larger shifts, the induction is complete.

We will now state and prove a proposition which shows that taking T -
resolution gives a functor. In the following, R is the image of a T -resolution
of X under the natural quotient map C−(Sum− T )→ K−(Sum− T ).

Proposition 2.4.1. Let X be an object in K−(Proj −Λ) and R the image
in K−(Proj − Γ) of a T -resolution of X. Then there exists a homomor-
phism α : FR → X which induces, for any complex Q, an isomorphism
Hom(FQ,FR) ' Hom(FQ,X).

Proof. The idea here is to use induction on length to prove the proposition
for all bounded complexes, and the pass to limits to prove it for complexes
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that are unbounded to the left. In order to do so, we will use the octahedral
axiom for triangulated categories to create a distinguished triangle where
one of the maps satisfies the wanted conditions. To keep things simple, we
assume N = 0 in the following.

Claim: For each n > 0, there exists a distinguished triangle

X(−n)[n− 1] F (R(n− 1)) X X(−n)[n]
un−1 vn−1

satisfying the condition that the following diagrams commute:

FR−n[n− 1] X(−n)[n− 1]

F (R(n− 1))

fn−1

dn−1

un−1

F (R(n− 2)) F (R(n− 1))

X

gn−1

vn−2

vn−1

Here, dn−1 is the differential in FR, given as a map from FR−n[n−1] (the
complex with the −n-th term of FR in position (−n+ 1), and 0 everywhere
else) to F (R(n − 1)). The map fn−1 is taken from the n-th distinguished
triangle used in the construction of the T -resolution of X:

X(−n−1)[−n− 1] FR−n[n− 1] X(−n)[n− 1] X(−n−1)[−n].
fn−1

The map gn−1 is the obvious map from F (R(n− 2)) to F (R(n− 1)), given
by the inclusion R(n− 2) ↪→ R(n− 1).

We prove the claim by induction on n. For n = 1, we first notice that
R(0) is isomorphic to S(0) as a complex in K−(Sum − T ), which from the
way F is constructed means that F (R(0)) = S(0). The second diagram is
trivially satisfied, since R(−1) = 0, so we just need to check the first one. To
see that FR−1[0] → F (R(0)) factors through X(−1)[0] = X(−1), we use the
fact that FR−1[0] = FR−1 = S(−1). Actually, the factoring comes from the
construction of the T -resolution, and is given as FR−1 = S(−1) → X(−1) →
S(0) = F (R(0)). This takes care of the base case of the induction.

Now, assume that we have constructed a triangle satisfying the given
conditions for m < n. Then the solid part of the following diagram will
commute, with the two rows and the first column being distinguished trian-
gles.

FR−n[n− 1] X(−n)[n− 1] X(−n−1)[n] FR−n[n]

FR−n[n− 1] F (R(n− 1)) F (R(n)) FR−n[n]

X X X(−n)[n]

X(−n)[n] X(−n−1)[n+ 1]

fn−1

un−1 un

dn−1 gn

vn−1 vn fn−1[1]
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The octahedral axiom then implies that the dashed arrows form a dis-
tinguished triangle, and that they commute with the rest of the diagram.
This is the triangle we want, we just need to show that the maps fit in the
above diagrams. The bottom dashed arrow shows that vn−1 = vn ◦ gn, so
F (R(n− 1))→ X factors through F (R(n)) like it should.
To show that the composition

FR−n−1[n]
fn−→ X(−n−1)[n]

un−→ F (R(n))

is equal to the differential in FR, we look at the composition

FR−n−1[n]
fn−→ X(−n−1)[n]

un−→ F (R(n))→ FR−n[n].

From the octahedral diagram, this composition is equal to

FR−n−1[n]
fn−→ X(−n−1)[n]→ FR−n[n],

which by definition is the differential in a T -resolution of X. If we now apply
the functor Hom(FR−n−1[n],−) to the distinguished triangle

FR−n F (R(n− 1)) F (R(n))

we get a long exact sequence. We have that Hom(FR−n−1[n], F (R(n −
1))) = 0, there is no overlap between the degrees in which FR−n−1[n] and
F (R(n− 1)) are nonzero, so we know that the sequence

Hom(FR−n−1[n], F (R(n− 1)))

=

0 −→ Hom(FR−n−1[n], F (R(n))) −→ Hom(FR−n−1[n], FR−n[n])

is exact. In other words, the map

Hom(FR−n−1[n], F (R(n)))→ Hom(FR−n−1[n], FR−n[n])

is injective. We have already shown that the composition

un ◦ fn ∈ Hom(FR−n−1[n], F (R(n− 1)))

is sent to the differential in FR in Hom(FR−n−1[n], FR−n[n]). Now, since dn
simply is the differential in FR represented as a map in Hom(FR−n−1[n], F (R(n))),
it is also sent to the differential in FR. And thus, by injectivity, we have that
un ◦ fn = dn. This concludes the proof of the claim.

Now assume that we have a right bounded complex X. Notice that the
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claim implies that we get a map vn : FR(n) → X for all n. If we now
write FR as the colimit of bounded complexes FR = lim−→FR(n), the uni-

versal property of colimits gives us a map FR → X. Let X̃ be the cone
of this map. For any i, the complexes FR and FR(i) are identical in de-
grees higher than −i. This means that for any given p, all maps from T [p]
to FR factor uniquely through FR(i) when i is large enough. From the
observation immediately preceding the statement of the proposition, we see
that Hom(T [p], X(−i−1)[i]) = 0 for i sufficiently large. Then, the long exact
sequence given by applying Hom(T [p],−) to the distinguished triangle from
the preceding claim shows that

Hom(T [p], FR(i)) Hom(T [p], X)

is an isomorphism for sufficiently large i. In fact, since Hom is an additive
functor, we can replace T [p] by any element of add(T ) and still have isomor-
phism. By then applying the functor Hom(−, X(−i−1)[i]) to distinguished
triangles of the form A → B → C  , where A,B ∈ add(T ) and C is the
cone of the map A → B, we know that A and B will be sent to 0. So the
2-out-of-3-property tells us that Hom(C,X(−i−1)[i]) = 0, and consequently
that the isomorphism above holds for cones as well as for elements in add(T ).
This shows that the composition

Hom(∗, FR) Hom(∗, FR(i)) Hom(∗, X)

is an isomorphism for all ∗ in the triangulated category generated by add(T ),
provided that i is sufficiently large. Now, since X̃ is the cone of the map
FR → X, this isomorphism means that Hom(∗, X̃) = 0. If we take any
complex Q ∈ K−(Proj−Γ), then FQ(i) will be in the triangulated category
generated by add(T ), so Hom(FQ(i), X̃) = 0 for all i. By the Mittag-Leffler
condition, we have that the map Hom(FQ, X̃)→ lim←−Hom(FQ(i)), X̃) is an

isomorphism. Thus, we get that Hom(FQ, X̃) = 0, and consequently that

Hom(FQ,FR) Hom(FQ,X)

is an isomorphism. This concludes the proof of the proposition.

The above proposition implies that the image in K−(Proj − Γ) of a T -
resolution of X is unique (up to isomorphism). To see this, take two images
of T -resolutions of X, say R and R′. From the proposition we get maps
α : FR → X and β : FR′ → X such that Hom(FQ,FR) ' Hom(FQ,X)
and Hom(FQ,FR′) ' Hom(FQ,X) for any complex Q.
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By setting Q = R and Q = R′, we can find maps γ and δ such that the
following diagrams commute.

FR FR′

X

γ

α
β

FR′ FR

X

δ

β
α

From this we get that α = βγ = αδγ, which means that α(idFR − δγ) = 0.
By the proposition, we get in particular that α is sent to an isomorphism by
Hom(FR,−). This means that (idFR − δγ) must be zero, since it is sent to
zero by Hom(FR,α), and thus δγ = idFR. The same argument for β shows
that γδ = idFR′ , and consequently, FR ' FR′.

Corollary 2.4.2. The functor F has a right adjoint G. In particular, F
commutes with arbitrary direct sums.

Proof. The preceding argument shows that it is well-defined to send an
object X of K−(Proj − Λ) to the image in K−(Proj − Γ) of some T -
resolution of X. If we let Q be any object in K−(Proj − Γ), we get an
isomorphism

ϕ : Hom(FQ,X) Hom(FQ,FGX) Hom(Q,GX)∼ ∼

where the first isomorphism comes from the proposition, and the second
comes from F being fully faithful. This means that G is a right adjoint
to F , given that it actually is a functor. To check that it is, we must
show that it preserves identity and commutes with composition. We set
Q := GX, and thus get a morphism ηX : FGX → X, which is the unique
morphism that is sent by ϕ to the identity on GX. Then, for any morphism
α : Y → Z in K−(Proj − Λ), we can define G(α) to be ϕ(αηY ). By
the functorality of F we get that ϕ is natural in the first variable, which
implies that G(idY ) = ϕ(idY ηY ) = ϕ(ηY ) = idGY and G(βα) = ϕ(βαηY ) =
ϕ(βηZ)ϕ(αηY ) = G(β)G(α). This proves the functorality of G, so G is
indeed a right adjoint functor to F .

Remark 2.4.3. Because the construction of G only involves the hom-functor
and forming distinguished triangles, we see that G is a triangle functor.

2.5 Proof of theorem 1.2.2

Now we are almost ready to prove Rickard’s Morita theorem. We just need
to check three things first:

(1) If add(T ) generates per Λ as a triangulated category, then F is dense.
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(2) The categorical structure of the various subcategories can be used to
force an equivalence of K− to restrict to an equivalence of Db, and so
on.

(3) If F is an equivalence, then the image of Γ is a tilting complex.

Proof of (1)

If we assume that T is a tilting complex, then we know from theorem 2.3.1
that F is fully faithful. So showing that F is dense is all we need in order
to conclude that it is an equivalence. To do this, we must take an arbitrary
object Y ∈ K−(Proj −Λ) and find an object X ∈ K−(Proj − Γ) such that
Y = FX. Given an object Y we know that there always exists an adjunction
map FGY → Y (given by the counit of adjunction). We complete this map
to a distinguished triangle FGY → Y → Z  . By applying G, which is a
triangle functor, we get the distingusihed triangle GFGY → GY → GZ  .
A property of the counit is that the composition G → GFG → G is the
identity (see for example theorem A.6.2 in [Wei94]). This means that the
first map in the triangle is an isomorphism, which means that GZ is zero.
This is obvously true for all shifts as well, and it implies that FGZ[i] = 0
for all i. Which in turn means that Hom(T,Z[i]) = 0, by the following
isomorphisms

0 = Hom(T, FGZ[i]) ' Hom(FGT, FGZ[i])

' Hom(GT,GZ[i])

' Hom(FGT,Z[i])

' Hom(T,Z[i])

where the second isomorphism comes from F being fully faithful, and the
third one is given by F and G being an adjoint pair. We get the first and last
isomorphisms from the fact that, by the construction of the functors, FGT '
T (note that the T -resolution of T is itself). Thus there are no nonzero maps
from T to Z[i] for any i. The same is true for sums of summands of shifted
copies of T , which means there are no maps from the triangulated category
generated by add−T to Z. Now, because Λ and all shifted copies of it lie in
that category, this means that Z must be zero. Hence the map FGY → Y
in the triangle we started with is an isomorphism, and we see that Y , which
we chose arbitrarily, is isomorphic to F (GY ). This concludes the proof that
F is dense.

Proof of (2)

We will now show that an equivalence K−(Proj − Λ) → K−(Proj − Γ)
restricts to an equivalence Db(Λ) → Db(Γ), which itself restricts to an
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equivalence Kb(Proj − Λ) → Kb(Proj − Γ), which finally restricts to an
equivalence per Λ→ per Γ.

Proposition 2.5.1. An object X in K−(Proj −Λ) lies up to isomoprhism
in the subcategory Db(Λ) (meaning it has bounded homology) if and only if
for all objects Y in K−(Proj−Λ) there exists an integer N(X,Y ) such that
Hom(Y,X[n]) = 0 for all n < N(X,Y ).

Thus any equivalence of triangulated categories between K−(Proj − Λ)
and K−(Proj − Γ) induces an equivalence between Db(Λ) and Db(Γ).

Proof. An object X in Db(Λ) satisfies the condition. To see why, notice that
X is isomorphic in Db(Λ) to a complex X ′ with zero in all small enough
degrees. This means that the nonzero degrees of X ′ can be shifted away
from the nonzero degrees of Y , giving only zero maps.

Conversely, if X is not in Db(Λ) it has unbounded homology. If we set
Y = Λ, we have that

Hn(X) ' Hom(Λ,Hn(X)) ' HnHom(Λ, X) ' Hom(Λ, X[n]).

So if Hn(X) is nonzero for some n, then Hom(Λ, X[n]) is also nonzero.
But since X has unbound homology Hn(X) will be nonzero for arbitrar-
ily small n, which means there can’t exist a number N(X,Λ) such that
Hom(Λ, X[n]) = 0 for all n < N(X,Λ).

Now, to see that this implies that the equivalence restricts down to
Db(Λ)→ Db(Γ), assume that we have an equivalence G : K−(Proj − Λ)→
K−(Proj − Γ). Then we know that Hom(Y,X[n]) ' Hom(GY,GX[n]) for
all X,Y ∈ K−(Proj − Λ). So if there exists a number N(X,Y ) such
that Hom(Y,X[n]) = 0 for all n < N(X,Y ), there will exist a number
N(GX,GY ) such that Hom(GY, (GX)[n]) = 0 for all n < N(GX,GY ).
Thus, the equivalence sends the subcategory Db(Λ) to Db(Γ), so it restricts
as wanted.

Proposition 2.5.2. An object X in Db(Λ) lies in Kb(Proj−Λ) (meaning it
is a bounded complex) if and only if for all Y ∈ Db(Λ) the set Hom(X,Y [i])
is zero for large i.

Thus any equivalence of triangulated categories between Db(Λ) and Db(Γ)
induces an equivalence between Kb(Proj − Λ) and Kb(Proj − Γ).

Proof. Let X be a complex in Kb(Proj − Λ) and Y a complex in Db(Λ),
meaning X is a bounded complex and Y is a (right bounded) complex with
bounded homology. Then Hom(X,Y [i]) will be zero for large enough i, since
the highest nonzero degree of Y will be shifted past the lowest nonzero degree
of X. For the other direction, we will show the contrapositive statement,
namely that for an unbounded complex X ′ in Db(Λ) there exists some com-
plex Y such that there are nonzero morphisms from X ′ to all shifts of Y . We
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note that we can replace X ′ with an isomorphic complex X which has projec-
tive terms. Since X has bounded homology, we know that Im di−1 = Ker di
for sufficiently small i.

As a step in the proof, we will now show that if Ker di is projective for
some small i, then X must be bounded. To see this, notice that from degree
i− 1 in X, we get the short exact sequence

0→ Ker di−1 → Xi−1 → Im di−1 → 0.

For small i we know that Im di−1 = Ker di, so if Ker di is projective, the
short exact sequence ends in a projective module, which means it is split
exact. This implies thatXi−1 ' Ker di−1⊕Ker di, which means that Ker di−1

is a direct summand of the projective module Xi−1, and hence projective.
Repeating the same argument for Ker di−1 shows that Xi−2 ' Ker di−2 ⊕
Ker di−1, and if we keep going, we get that X is isomorphic to the complex

· · · → Ker di−3⊕Ker di−2 → Ker di−2⊕Ker di−1 → Ker di−1⊕Ker di → Xi → · · ·

We can now remove trivial summands (theorem A.1.1) from all terms below
degree i, and end up with the isomorphic complex

· · · → 0→ 0→ Ker di → Xi → Xi+1 → · · · .

So if Ker di is projective for some small i, then X is a bounded complex
(up to isomoprhism). This means that if X is not isomorphic to a bounded
complex, then there are infinitely many i for which Ker di is not projective.
We will now use this to find a complex Y such that Hom(X,Y [i]) 6= 0 for
all i.

First of all, notice that because X is right bounded, Ker di is trivially
projective for all i large enough. This means that for there to be infinitely
many i with Ker di not projective, such i must appear in arbitrarily small
degrees. We choose infinitely many such i from below where the homology
stops occuring inX (remember thatX has bounded homology), so Im di−1 =
Ker di for all i. Now we let Y be the direct sum of all these non-projective
kernels Ker di, viewed as a complex concentrated in degree zero. To see that
this choice of Y ensures that Hom(X,Y [i]) is nonzero for all i, observe the
following: For each i we have a map f : X → Y [i], given by

X = · · · Xi−2 Xi−1 Xi · · ·

Y [i] ⊃ · · · 0 Ker di 0 · · · ,

f =

di−2

0

di−1

di−1 0

since Im di−1 = Ker di. The only possible problem now is that f might be
null-homotopic. But if that is the case, then there exists an h : Xi → Ker di
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such that di−1 = hdi−1. Notice that di−1 is surjective on Im di−1 = Ker di,
and recall that Xi is projective. By the lifting property we then know there
exists a dashed map g such that h = di−1g, making the following diagram
commutative

Xi

Xi−1 Ker di.

g h

di−1

di−1

(2.1)

Combining the two expressions, we get that h = di−1g = hdi−1g. Now notice
that di−1 = hdi−1 being surjective on Ker di implies h is also surjective on
Ker di, so h restricted to Im di−1 = Ker di is an isomorphism. Thus, when
we restrict to Ker di we can remove h from both sides of h = hdi−1g, and
get that idKer di = di−1g. In other words, di−1 is a split epimorphism from
Xi−1 to Ker di. This means that the (canonical) short exact sequence

0→ Ker di−1 → Xi−1
di−1−−−→ Ker di → 0

is split exact. This implies that Ker di is projective, since it is the last term
in a split exact sequence. But Ker di is non-projective by assumption, so
this is a contradiction. Thus, f can’t be null-homotopic, which means that
there is a nonzero map X → Y [i]. This concludes the proof of the ”if and
only if” part. Now we easily see that this implies an equivalence between
Db(Λ) and Db(Γ) restricts to an equivalence between Kb(Proj − Λ) and
Kb(Proj − Γ). Simply notice that since Hom(X,Y [i]) ' Hom(GX,GY [i]),
one of them is zero for large i if and only if the other one is.

Proposition 2.5.3. An object X in Kb(Proj−Λ) lies in per Λ (has finitely
generated terms) if and only if the functor

Hom(X,−) : Kb(Proj − Λ)→ Ab

commutes with arbitrary direct sums. Thus any equivalence of triangulated
categories between Kb(Proj −Λ) and Kb(Proj − Γ) induces an equivalence
between per Λ and per Γ.

Proof. To see that Hom(X,−) commutes with arbitrary direct sums when
X lies in per Λ, we use the same argument as in the proof of lemma 2.1.1.
Let (Yi)i∈I be a collection of complexes in Kb(Proj − Λ) for some in-
dex set I. Then there is a natural homomorphsim

⊕
i∈I Hom(X,Yi) →

Hom(X,
⊕

i∈I Yi), given by sending a tuple of endomorphisms (ϕi)i∈I to the

map

(
x 7→

(
ϕi(x)

)
i∈I

)
. Observe that the only way

(
x 7→

(
ϕi(x)

)
i∈I

)
can be the zero map is if all ϕi are zero, so the morphism between them is
injective. To see that it actually is an isomorphism, we use the fact that
X is a bounded complex of finitely generated Λ-modules. This means that
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a map in Hom(X,
⊕

i∈I Yi) is fixed by where it sends a finite number of
elements from each of the finitely many terms of X. Consequently, for each
element of Hom(X,

⊕
i∈I Yi) we can find some element of

⊕
i∈I Hom(X,Yi)

which is mapped to that element. We conclude that the map is surjective,
and hence an isomorphism. This shows that Hom(X,−) commutes with
arbitrary direct sums when X ∈ per Λ.

For the other direction, let’s assume that Hom(X,−) commutes with
arbitrary direct sums for X ∈ Kb(Proj−Λ). We will show that all terms of
X are finitely generated, by induction on the number n of nonzero terms. If
n = 0 then X is the zero complex, which does have finitely generated terms,
so the assertion is true. Now we assume it is true for all complexes of length
less than or equal to n, and consider the complex X = X0 → X1 → · · · →
Xn. We denote by Y the n-term complex we get by cutting off X0 from
X, that is Y = X1 → · · · → Xn. Now we can form a distinguished triangle
Y → X → X0  , and for any Z we may apply Hom(−, Z) to this triangle
to get a long exact sequence. Then, the five lemma implies that if Y and
X0 have finitely generated terms, then so does X.

The only problem now is that we haven’t checked what happens when
X0 is not finitely generated. First of all, note that since X0 is projective we
can add some trivial summand to X (theorem A.1.1) to get an isomorphic
complex where X0 is replaced by a free object Λ(I), for some index set I.
Thus we get that

Hom(X,X0) ' Hom(X,Λ(I)) ' Hom(X,Λ(I)).

By definition, only finitely many of the maps in the last coproduct above are
nonzero. Now denote by α the natural map X → X0 which is the identity
on X0 and 0 everywhere else. The above implies that α ∈ Hom(X,X0) is
homotopic to a map, say β, with finitely generated image. If we call the
homotopy s, we can write this as a diagram

· · · 0 X0 X1 · · ·

· · · 0 X0 0 · · · .

d0

1 s

This means that we can decomposeX0 as Y⊕Y ′ where Y is finitely generated
and containing the image of β. Since 1X0 = sd0, we can write the projection

X0
p−→ Y ′ as X0

d0−→ X1
s−→ X0

p−→ Y ′. By restricting to Y ′, we see that this
implies that X contains a direct summand Y ′ → Y ′ in degree zero and one.
This is a trivial summand, so by theorem A.1.1, removing it from X yields
an isomorphic complex. In degree zero of the resulting complex we only
have Y , which is finitely generated. Thus, we can apply the induction as we
did above, which completes the proof.
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Now all we need to show is that the equivalence restricts as it should.
To see that it does, we must show that Hom(X,−) commutes with arbitrary
sums if and only if Hom(GX,−) does so. Note that we have the following

Hom(G,
⊕
i

GYi) ' Hom(GX,G(
⊕
i

Yi))

' Hom(X,
⊕
i

Yi)

'
⊕

Hom(X,Yi)

'
⊕

Hom(GX,GYi)

The first isomorphism holds because G is right adjoint, so it commutes with
colimits. The second and fourth isomorphism come from the fact that G
is fully faithful. The third isomorphism is given by the assumption that
Hom(X,−) commutes with arbitrary direct sums.

Proof of (3)

Proof. Assume that we have an equivalence F : K−(Proj−Γ)→ K−(Proj−
Λ). By (2), this restricts down to an equivalence F : per Γ → per Λ. We
will now show that F (Γ), the image of F under Γ, is a tilting complex
over Λ. First note that Γ is sent by F to an object in per Λ, since Γ is
contained in per Γ. Hence F (Γ) is a bounded complex of finitely generated
projective Λ-modules. Moreover, Γ generates per Γ (by definition), so F
being an equivalence implies that F (Γ) generates per Λ. Lastly, observe that
Hom(Γ,Γ[n]) = 0 when n 6= 0, since Γ is viewed as a complex concentrated
in degree 0. When F is an equivalence, this property is carried over to F (Γ).
Thus, F (Γ) satisfies all properties of being a tilting complex over Λ.

The proof of theorem 1.2.2 now follows from the construction of the
functors F and G, together with the results (1), (2) and (3).
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Chapter 3

Differential graded algebras

Differential graded algebras, or dg algebras, are graded algebras endowed
with a differential morphism. In this chapter we will give some central
definitions, and present some of the theory surrounding dg algebras. We
will apply this theory in chapter 4, where we give another proof of Rickard’s
Morita theorem.

3.1 Definitions and examples

Definition 3.1.1. This is how we define a graded structure on rings, alge-
bras and modules.

• A (Z-)graded ring is a ring which can be written as a direct sum of
abelian groups, R =

⊕
i∈ZR

i, such that RiRj ⊆ Ri+j for all i, j ∈ Z.

• A (Z-)graded algebra is an algebra which is graded as a ring.

• A (Z-)graded module is a right module M =
⊕

i∈ZM
i over a graded

ring R, such that M iRj ⊆M i+j .

• A morphism f : M → N between graded modules is called a graded
morphism of degree d, and it is a collection of morphisms between the
underlying modules such that f(M i) ⊆ N i+d.

Note: we also have what is called a bigraded module, which is a graded
module in which each degree is itself a graded module. In a bigraded module,
we refer to degrees by pairs of numbers, where (i, j) means the component
which is in degree i of the graded module in degree j of the bigraded module.
The degrees of maps are also given as pairs of numbers.

Definition 3.1.2 (dg algebra). Let k be a commutative ring. We define a
dg algebra (differential graded k-algebra) as a Z-graded associative k-algebra

Λ =
⊕
p∈Z

Λp
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with a differential d : Λ → Λ which is k-linear and graded of degree 1 (so
dΛp ⊂ Λp+1), and satisfies the graded Leibniz rule

d(ab) = (da)b+ (−1)padb, ∀a ∈ Λp, ∀b ∈ Λ.

We do not impose any finiteness conditions on Λ. We define dg modules
in a similar way as dg algebras.

Example 3.1.3. Any ’ordinary’ k-algebra Γ can be viewed as a dg algebra
Λ concentrated in one degree, that is

Λn =

{
Γ, n = 0

0, n 6= 0

The converse also holds, that any dg algebra which is concentrated in one
degree corresponds to an ’ordinary’ algebra.

Example 3.1.4. Let Γ be a k-algebra, and let M and X be chain complexes
of Γ-modules. We can define a new complex HomΓ(X,M), which is given
by the followng

HomΓ(X,M)n =
∏

−p+q=n
HomΓ(Xp,M q)

(df)(x) = d(f(x))− (−1)nf(dx), f ∈ HomΓ(X,M)n.

Then Λ = HomΓ(M,M) has a natural graded structure and a differential.
This means that Λ is a dg algebra. Be aware that there generally will be
non-vanishing components in arbitrarily small and arbitrarily large degrees
of Λ, even if M i = 0 for all i� 0.

Definition 3.1.5 (dg module). A dg Λ-module (differential graded module
over Λ) is a Z-graded right Λ-module

M =
⊕
p∈Z

Mp

with a differential d : M →M which is k-linear and graded of degree 1, and
satisfies the graded Leibniz rule

d(ma) = d(m)a+ (−1)pad(m), ∀m ∈Mp, ∀a ∈ Λ

A morphism f : M → N of dg Λ-modules is a graded morphism of degree 0
from M to N as graded Λ-modules which commutes with the differentials.

Example 3.1.6. For any dg algebra Λ which is concentrated in one degree
(so it is an ’ordinary’ algebra Γ in degree zero, and 0 in all other degrees),
the category of dg Λ-modules is equal to the category of chain complexes of
right Γ-modules.

Example 3.1.7. If Γ is a k-algebra, M is a complex of right Γ-modules
and Λ = HomΓ(M,M), then M becomes a left Λ-module by the action
(f i)(M j) = (f i(mi))
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3.2 The homotopy category

A morphism f : M → N of dg modules is called null-homotopic if there ex-
ists a graded morphism r : M → N of degree −1, such that f = dr+ rd. We
define the homotopy category K(Λ), whose objects are the dg Λ-modules,
and whose morphisms f̄ are equivalence classes of dg module morphisms
modulo null-homotopic morphisms. We will show that K(Λ) is a triangu-
lated category, and to do so we need two more definitions.

Definition 3.2.1. The suspension functor [1] : K(Λ)→ K(Λ) is defined by(
M [1]

⋂
)p = Mp+1

dM [1] = −dM
µM [1](m, a) = µM (m, a)

for m ∈ M,a ∈ Λ, where µM and µM [1] are the multiplication maps in the
respective modules.

Definition 3.2.2. A standard triangle of K(Λ) is a sequence

L
f̄−→M

ḡ−→ Cf
h̄−→ L[1],

where f : L → M is a morphism of DG modules, and Cf is the mapping
cone of f , in the sense that Cf = M ⊕ L[1] as a graded k-module, with

dCf =

[
dM f
0 dL[1]

]
, µCf

([
m
l

]
, a

)
=

[
ma
la

]
,

for m ∈ M and l ∈ Lp. The morphism g in the triangle is the inclusion of
M into Cf , and −h is the canonical projection Cf → L[1].

Endowed with these structures K(Λ) becomes a triangulated category,
but before we can prove that we will need the a few new definitions and a
lemma. An exact category (in the sense of Quillen, see [Qui73]) is a pair
(B,S ), where B is a full subcategory of an abelian category A , and S is
the set of exact sequences in A with terms in B. Also B must be closed
under extensions, that is, if the first and last term of a short exact sequence
is in B, then the middle term is also in B. A Frobenius category is an
exact category with enough projectives and injectives, where all injective
modules are projective and vice versa. The stable category B of a Frobenius
category B, is the category whose objects are the objects of B, and whose
morphisms are the morphisms of B modulo morphisms that factor through
projective-injective objects.

Lemma 3.2.3. The category of dg Λ-modules, together with the exact struc-
ture given by sequences that split as graded Λ-modules, is a Frobenius cate-
gory whose stable category is K(Λ).
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Proof. We start by proving that the category is Frobenius. First notice that
the given exact structure is equivalent to sequences of complexes that are
degree-wise split, but which don’t necessarily commute with the differentials.
We want to show that the category has enough projectives and injectives. To
do so, we will take an arbitrary differential graded Λ-module (A, d), where
A is a graded module and d is its differential, and find a monomorphism to
an injective, and an epimorphism from a projective. Given any dg Λ-module
(A, d), we have the canonical morphisms

A ↪→ A⊕A[1] and A⊕A[1]� A[1],

which are clearly a monomorphism and an epimorphism, respectively. So if
we can show that the DG module (A ⊕ A[1],

[
d 1
0 −d

]
) is both injective and

projective, we are done. We show that it is projective, injectivity is shown
with a dual argument. We look at the set of morphisms of dg modules
from A⊕ A[1], in other words, morphisms of graded Λ-modules starting in
A⊕A[1], which respect the grading.

HomdgΛ

(
(A⊕A[1],

[
d 1
0 −d

]
), (M, e)

)
=
{

[f g]
∣∣ [f g]

[
d 1
0 −d

]
= e[f g]

}
= {[f g] | [fd f − gd] = [ef eg]}
= {[f g] | fd = ef and f − gd = eg}

Notice that the second condition gives that f = gd + eg, which implies
that the first condition also is satisfied, since fd = (gd + eg)d = egd =
e(gd+eg) = ef . So for a given morphism of graded Λ-modules g : A[1]→M ,
we get a morphism of dg Λ-modules [f g] : (A⊕A[1],

[
d 1
0 −d

]
)→ (M, e) by

setting f = gd + eg. This means that for any DG Λ-module (M, e), we
have a bijection HomdgΛ

(
(A⊕A[1],

[
d 1
0 −d

]
), (M, e)

)
↔ HomgrΛ(A[1],M),

where HomgrΛ denotes morphisms of graded Λ-modules. Now, to see that
(A ⊕ A[1],

[
d 1
0 −d

]
) is projective, we show that given the solid part of this

diagram, the dashed arrow is induced

(A⊕A[1],
[
d 1
0 −d

]
)

(N, c) (M, e) 0.

[f g]

ϕ

To do so, we observe that the bijection of Hom-sets allows us to instead
look at the following diagram of graded Λ-modules

A[1]

N M 0.

ψg
g

ϕ

ψ
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By construction of the exact structure, all epimorphisms of graded mod-
ules are split. Thus we know that there exists a ψ : M → N such that
ϕψ = idM . Composing this with g gives a morphism A[1]→ N (the dashed
arrow above) such that the triangle commutes. But then using the bijec-
tion again, we get a morpism (A ⊕ A[1],

[
d 1
0 −d

]
) → (N, c) making the top

triangle commute, which is what we wanted. Thus we have shown that
(A⊕A[1],

[
d 1
0 −d

]
) is projective. The argument that it is injective is entirely

dual, and we will skip it.
Now, to conclude that the category is Frobenius, the only thing we need

to show is that any projective object is injective, and vice versa. To see this,
take a projective dg Λ-module (P, p) and an injective dg Λ-module (I, i).
We know that we have morphisms

(P ⊕ P [1],
[
p 1
0 −p

]
)� (P, p) (I, i) ↪→ (I ⊕ I[1],

[
i 1
0 −i

]
).

Any epimorphism to a projective is split, so (P, p) is a direct summand of

(P ⊕ P [1],
[
p 1
0 −p

]
, which as we know is injective. Thus (P, p) is injective,

since direct summands of injectives are injective. Similarly, monomorphisms
from injectives are split, so (I, i) is a direct summand of a projective, and is
thus projective.

The only thing left to show now is that the stable category is equal to
the homotopy category K(Λ). To do this, we will show that a morphism
factors through an injective module if and only if it is null-homotopic. Be-
cause assume that we have a morphism between two dg Λ-modules (A, d)
and (B, e) which factors through an injective module (I, i). We know that
(A, d) has an injective envelope (A ⊕ A[1],

[
d 1
0 −d

]
), which means that ι is

a monomorphism. Thus, since (I, i) is injective, we have the dashed arrow
such that the triangle in the following diagram commutes.

(A, d) (I, i) (B, e)

(A⊕A[1],
[
d 1
0 −d

]
).

This means that a morphism factors through an injective if and only if it
factors through a module on the form (A⊕A[1],

[
d 1
0 −d

]
). But this is equiv-

alent to, given the morphism f in the following diagram, finding a graded
morphism g : A[1]→ B such that [f g] makes the diagram commute.

(A, d) (B, e)

(A⊕A[1],
[
d 1
0 −d

]
)

f

[f g]
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Writing out what this actually means, we want g such that

e[f g] = [f g]
[
d 1
0 −d

]
⇔ [ef eg] = [fd f − gd]

⇔ ef = fd and f = eg + gd

The first condition is satisfied by definition, since f is a morphism of dg
Λ-modules. Notice that g can be viewed as a graded morphism of degree
−1 from (A, d) to (B, e). So the second condition is exactly the definition
of f being a null-homotopic morphism. So the morphism f factors through
A ⊕ A[1] if and only if it is null-homotopic. Combining this with the pre-
vious result, we see that a morphism of dg Λ-modules factoring through
an injective is equvalent with it being null-homotopic. So both conditions
define the same equivalence relation on the category of dg Λ-modules, and
we conclude that its stable category is K(Λ).

Proposition 3.2.4. The category K(Λ), with the functor [1] and triangles
isomorphic to standard triangles, is a triangulated category.

Proof. We refer to a theorem due to Happel in [Hap87], which states that
the stable category of a Frobenius category is triangulated. In lemma 3.2.3,
we showed that the category of dg Λ-modules, with the exact structure given
by sequences that split as graded Λ-modules, is a Frobenius category. We
also showed that the associated stable category is K(Λ). Thus, we conclude
that K(Λ) is a triangulated category.
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Chapter 4

Proof using differential
graded algebras

In this chapter we will present an alternate proof of Rickard’s theorem,
due to Bernhard Keller [Kel98]. It employs a different approach than the
previous proof, one based on the theory of differential graded algebras. The
techniques used in this proof are more general, in that they can be applied
to different problems as well. In fact, this is even explicitly shown in Keller’s
article. He spends most of the article developing theory, and then he presents
three different applications of that theory, one of them being a proof of
Rickard’s theorem. We will not present the other applications here, but
focus on the general theory and Rickard’s theorem.

4.1 Strategy of the proof

This proof is structured as follows:

• We define so-called homotopically projective and homotopically injec-
tive modules, and develop some theory surrounding them.

• Next, we present the principle of infinite dévissage, which gives a cri-
terion for when a triangulated subcategory of D(Λ) is equal to D(Λ).

• With the help of homotopically projective and injective modules we
define total left and right derived functors of tensor and hom. We then
use these to state and prove a theorem which essentially is Ricksrd’s
theorem with an extra assumption, namely the existence of a bimodule
complex.

• The rest of the chapter is devoted to showing how the assumptions
in Rickard’s theorem allows us to construct a bimodule complex. The
proof then follows from the previous theorem. This is where we need
the theory of differential graded algebras.
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Remark. In this proof we use a slightly different statement of Rickard’s theo-
rem than what we used in the previous proof. There are two main differences.
The first is that, because of how the bimodule complex is constructed, we
get an explicit description of the functor which acts as the triangle equiv-
alence in Rickard’s theorem. The second difference is that this statement
doesn’t require the derived categories to be bounded. See theorem 4.7.1 for
the actual statement we use in this chapter.

4.2 Unbounded resolutions

Definition 4.2.1. A complex K is homotopically projective if

HomK(Λ)(K,N) = 0

for all acyclic complexes N . Dually, the complex is homotopically injective
if

HomK(Λ)(N,K) = 0

for all acyclic complexes N .

We write Kp(Λ) for the category of homotopically projective complexes
as a full subcategory of K(Λ) (and similarly Ki(Λ) for the full subcategory
of homotopically injective complexes). If K is any complex with projective
components and vanishing differential, then K is homotopically projective.
To see this, observe that for a given degree n of a map f ∈ Hom(K,N), we
get the following commutative diagram

· · · Pn−1 Pn Pn+1 · · ·

· · · Nn−1 Nn Nn+1 · · ·

0 0

fn−1

0

fn

0

fn+1

d dn−1 dn d

where P i is projective for all i, and Im dn−1 = Ker dn. By commutativity
dnfn = 0, which implies that Im fn ⊆ Ker dn = Im dn−1. This means that
we have an epimorphism Nn−1 → Im fn, and since Pn is projective we thus
get a map hn : Pn → Nn−1 such that fn = dn−1hn. Because this is true for
all degrees of the chain map f , we have that f is null-homotopic, which is
the zero map in K(Λ). It is easy to see that direct sums of homotopically
projective complexes are homotopically projective, since Hom(−, N) takes
coproducts to products, and products of zeros are zero. Another important
observation regarding homotopically projective complexes is the following
proposition.

Proposition 4.2.2. The collection of all homotopically projective complexes
is a full triangulated subcategory of K(Λ)
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Proof. By simply taking the collection of all homotopically projective com-
plexes, and all morphisms between them, we get that Kp(Λ) forms a full
subcategory of K(Λ). To see that it is also triangulated, we must check that
both the shift functor and taking cones respect homotopical projectivity.
For the shift functor we have that Hom(K,N) = 0 implies Hom(K[n], N) '
Hom(K,N [−n]) = 0 for all n, since the shift of an acyclic complex is still
acyclic. To see that Kp(Λ) is closed under cones, take a morphism of com-
plexes f : X → Y , with X and Y homotopically projective. Because of the
triangulated structure on K(Λ), we can complete this to a triangle with the
cone of f :

X Y Cone(f) X[1]
f

.

By applying the functor Hom(−, N) with N acyclic, we get a long exact
sequence. Since X, X[1] and Y are homotopically projective, all terms
coming from them are zero, so Hom(Cone(f), N) must be zero too.

Now take the following directed system in the category of complexes

P0 P1 P2 · · · Pq Pq+1 · · ·

0

i0 i1 iq

(4.1)

where for all q ∈ N, the chain map iq has split monomorphisms in each
degree, and for each q the degreewise complex of quotients Pq+1/Pq has
vanishing differentials and is projective in each degree. As we have seen
above, this means that Pq+1/Pq is homotopically projective for all q. We
will now use induction to prove that Pq is homotopically projective for all
q. To do so, we will use lemma A.2.1, which states that any sequence of
complexes which is split exact in each degree, gives rise to a distinguished
triangle in K(Λ). We start by observing that P0 = 0, which is trivially
homotopically projective, thus proving the base case. Next, we assume
that Pq is homotopically projective, and look at the following sequence of
complexes

Pq Pq+1 Pq+1/Pq
iq

,

which looks like this in each degree

0 P jq P jq+1 P jq+1/P
j
q 0

ijq
.

It is split exact because ijq is a split monomorphism for all j. Thus, by
lemma A.2.1 we have the following distinguished triangle in K(Λ):

Pq Pq+1 Pq+1/Pq Pq[1]
iq

.
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If we apply the functor Hom(−, N) to the triangle, with N acyclic, we
get a long exact sequence. Now, if we assume that Pq is homotopically
projective, then the terms coming from Pq and Pq+1/Pq are all zero. This
means that Hom(Pq+1, N) = 0, and thus Pq+1 is homotopically projective.
Consequently, all terms of our directed system are homotopically projective.
Next, we want to show that this holds for K = lim−→Pq as well. In order to
do so, we will use the so-called Milnor’s Triangle, which is constructed as
follows: Define the morphism

Φ:
⊕
p∈N

Pp →
⊕
q∈N

Pq

whose components are the compositions

Pq Pp
⊕
Pp+1

⊕
q∈N

Pq

(
1
−ip

)
, (4.2)

where the last map is the canonical incusion. The map Φ gives the
following sequence

0
⊕
p∈N

Pp
⊕
q∈N

Pq lim−→Pq 0Φ Θ , (4.3)

where Θ consists of the canonical morphisms fq : Pq → lim−→Pq.

Proposition 4.2.3. The sequence in eq. (4.3) is split exact.

Proof. First, notice that the following is true for all q

P jq+1 ' Im ijq ⊕ P
j
q+1/Im ijq ' P jq ⊕ P

j
q+1/P

j
q ,

where the last isomorphism holds since iq is split mono in each degree j. This
means that we can write the directed sequence in each degree, excluding
zero, as the following (remember that since P j0 = 0 for all j, we have P j1 '
0⊕ P j1 /0 ' P

j
0 ⊕ P

j
1 /P

j
0 )

P j1 P j2 P3 · · ·

P0 ⊕ P j1 /P
j
0 P j1 ⊕ P

j
2 /P

j
1 P2 ⊕ P j3 /P

j
2 · · ·

P j1 /P
j
0 P j1 /P

j
0 ⊕ P

j
2 /P

j
1

3⊕
i=1

P ji /P
j
i−1 · · ·

ij1

∼

ij2

∼ ∼

∼ ∼ ∼

( 1
0 )

(
1 0
0 1
0 0

)
(4.4)
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By induction, we see that we can write P jq '
q⊕
i=1

P ji /P
j
i−1 for each q ∈ N.

Combining this with the map ijq, we get the following commutative diagram

P jq P jq+1

q⊕
i=1

P ji /P
j
i−1

q+1⊕
i=1

P ji /P
j
i−1

xq (xq, 0)

ijq

∼ ∼

∈ ∈

.

So up to isomorphism, we can view ijq as the canonical inclusion which

sends xq ∈
q⊕
i=1

P ji /P
j
i−1 to itself in

q+1⊕
i=1

P ji /P
j
i−1. We then see that we can

write the maps from eq. (4.2) (the component maps of Φ) as

P jp P jp
⊕
P jp+1

⊕
q∈N

P jq

p⊕
i=1

P ji /P
j
i−1

p⊕
i=1

P ji /P
j
i−1 ⊕

p+1⊕
i=1

P ji /P
j
i−1

⊕
q∈N

q⊕
i=1

P ji /P
j
i−1

(
1
−ijp

)

∼ ∼ ∼ .

For any given p ∈ N, each element xp ∈
p⊕
i=1

P ji /P
j
i−1 is sent to the same

element in the component sums corresponding to q = p and q = p+ 1. Now
notice that we can view Φ as a morphism⊕

p∈N

p⊕
i=1

P ji /P
j
i−1 −→

⊕
q∈N

q⊕
i=1

P ji /P
j
i−1.

We can rearrange this expression into⊕
i∈N

⊕
p≥i

P ji /P
j
i−1 −→

⊕
i∈N

⊕
q≥i

P ji /P
j
i−1,

which then can be written as

⊕
i∈N

⊕
p≥i

P ji /P
j
i−1 −→

⊕
q≥i

P ji /P
j
i−1

 .
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By lemma A.2.1, we see that the degreewise split exact sequence above
gives rise to the following distinguished triangle in K(Λ), which is the so-
called Milnor’s Triangle:

⊕
p∈N

Pp
⊕
q∈N

Pq lim−→Pq (
⊕
p∈N

Pp)[1]Φ Θ .

Remember that our goal is to prove that lim−→Pq is homotopically projec-
tive, and to do so we apply the functor HomK(Λ)(−, N) to the triangle, where
N is an acyclic complex. This is a cohomological functor, which means that
applying it to the distinguished triangle gives the long exact sequence

· · · Hom((
⊕
p∈N

Pp)[1], N) Hom(lim−→Pq, N) Hom(
⊕
q∈N

Pq, N) · · · .

We now use the fact that

Hom(
⊕
p∈N

Pp, N) '
∏
p∈N

Hom(Pp, N) ,

which is zero because Pp is homotopically projective for all p ∈ N. Thus,
the term HomK(Λ)(lim−→Pq, N) is between two zeros in the long exact se-
quence, so it must be zero. Since this is true for any acyclic complex N , we
conclude that lim−→Pq is homotopically projective.

Theorem 4.2.4. 1. A complex K is homotopically projective if and only
if it is the colimit of a directed, ascending system in the category of
complexes,

P0 P1 · · · Pj Pj+1 · · · , j ∈ Ni0 ij

where the chain maps ij are split mono in each degree and Pj+1/Pj
has projective components and vanishing differential for each j.

2. For any complex K, there exists a homotopically projective complex
pK and an acyclic complex aK which fit in a triangle

pK → K → aK → pK[1].

This triangle is unique in the sense that any triangle (P,K,A) with P
homotopically projective and A acyclic is isomorphic to (pK,K,aK)
and there is a unique such isomorphism extending the identity of K.

3. A complex K is homotopically injective if and only if it is the colimit
of a directed, descending system in the category of complexes,

I0 I1 · · · Ij Ij+1 · · · , j ∈ Np0 pj
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where the chain maps pj are split epi in each degree and Ker pj has
injective components and vanishing differential for each j.

4. For any complex K, there exists a homotopically injective complex iK
and an acyclic complex a′K which fit in a triangle

a′K → K → iK → aK[1].

This triangle is unique in the sense that any triangle (A′,K, I) with I
homotopically injective and A′ acyclic is isomorphic to (a′K,K, iK)
and there is a unique such isomorphism extending the identity of K.

We skip the proof here, because theorem 4.6.1 is a more general version
of this theorem, with a similar proof. An immediate corollary of the second
part of the theorem is the following

Corollary 4.2.5. Any complex is quasi-isomorphic to a homotopically pro-
jective complex.

Proof. Part 2 of the theorem states that for any complex K, the complex
aK is isomorphic to the cone of the map pK → K (since that is how
distinguished triangles are defined in K(Λ)). This shows that pK → K is a
quasi-isomorphism, by the fact that a chain map f is a quasi-isomorphism
if and only if Cone(f) is acyclic. Thus, any complex is quasi-isomorphic to
a homotopically projective complex.

We call pK a homotopically projective resolution of K. In fact, we get
that p defines a functor which is right adjoint to the inclusion ιp : Kp(Λ) ↪→
K(Λ). Likewise a defines a left adjoint to the inclusion ιa : Ka(Λ) ↪→ K(Λ),
where Ka(Λ) is the full triangulated subcategory of K(Λ) consisting of
acyclic complexes. The adjoint properties give us the these isomorphisms

HomK(Λ)(ιpX,Y ) ' HomKp(Λ)(X,pY )

HomK(Λ)(X
′, ιaY

′) ' HomKa(Λ)(aX
′, Y ′).

Notice that for any homotopically projective complex X, if Y is acyclic then
HomKp(Λ)(X,pY ) = 0. This means that pY = 0 in Kp(Λ). Similarly, for
any acyclic complex Y ′, we see that X ′ homotopically projective implies
HomKa(Λ)(aX

′, Y ) = 0. So aX ′ = 0 in Ka(Λ).

Proposition 4.2.6. The functors p and a commute with infinite direct
sums.

Proof. Assume that we have complexes Kq with corresponding triangles

pKq → Kq → aKq → pK[1], q ∈ N.
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By taking the direct sum of all these triangles, we get a new triangle⊕
q∈N

pKq →
⊕
q∈N

Kq →
⊕
q∈N

aKq →
⊕
q∈N

pK[1],

and since both Kp(Λ) and Ka(Λ) are closed under infinite direct sums, we
see that

⊕
q∈N pKq is homotopically projective and

⊕
q∈N aKq is acyclic.

So we have a triangle on the form (P,K,A) in part 2 of theorem 4.2.4, and
thus it is isomorphic to

p
⊕
q∈N

Kq →
⊕
q∈N

Kq → a
⊕
q∈N

Kq → p
⊕
q∈N

K[1],

the triangle given by applying p and a to
⊕

q∈NKq. The triangles being
isomorphic shows that both p and a must commute with infinite direct
sums.

A similar argument holds for the functor i.

4.3 Unbounded derived categories

Let S be the class of quasi-isomorphisms (up to homotopy) in K(Λ).

Definition 4.3.1. The derived category of Λ is the localization of the ho-
motopy category by the class of quasi-isomorphisms, that is

D(Λ) = S−1K(Λ)

The next theorem is analogus to a similar theorem for projective and
injective resolutions. Before we can prove it, we need the following two
lemmas

Lemma 4.3.2. If P is a homotopically projective complex, then any quasi-
isomorphism q : P̃ → P from any complex P̃ to P is a split epimorphism in
K(Λ).

Proof. First, recall that for any quasi-isomorphism q : P̃ → P , the com-
plex Cone(q) is exact. Since P is homotopically projective, this means that
Hom(P,Cone(q)) = 0. We then have the following diagram

P̃ P Cone(q) P̃ [1]

P P 0 P [1],

q 0

1

1

which commutes. By the ”2 out of 3”-property of triangulated categories,
we know that there exists q′ : P → P̃ such that qq′ = idP . In other words,
q is a split epimorphism.
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Lemma 4.3.3. Let P be a homotopically projective complex, and let X be
an arbitrary complex. Then the map

HomK(Λ)(P,X)→ HomD(Λ)(P,X),

given by the projection functor K(Λ)→ D(Λ), is an isomorphism.

Proof. For any roof f · q−1 ∈ HomD(Λ)(P,X), lemma 4.3.2 implies that
the quasi-isomorphism q is a split epimorphism. We then find q̃ such that
qq̃ = idP . By the commutativity of the following diagram

P

X̃ P

P X,

q̃ id

q

fid

fq̃

we have that f · q−1 = (f q̃) · id−1 in D(Λ). This means that f · q−1 lies
in the image of the projection functor K(Λ) → D(Λ), consisting of (roofs
equivalent to) roofs on the form ϕ · id−1. This shows surjectivity. To show
injectivity, we use the fact that a map f in K(Λ) vanishes in D(Λ) if and
only if there exists a quasi-isomorphism q : P̃ → P , from some complex P̃ ,
such that fq = 0. By lemma 4.3.2 this quasi-isomorphism is split epi, so
there exists a map q̃ such that f = fqq̃ = 0 ◦ q̃ = 0. So only the zero
map is sent to zero, which shows injectivity. This concludes the proof that
HomK(Λ)(P,X) ' HomD(Λ)(P,X)

Theorem 4.3.4. The projection functor K(Λ) → D(Λ) induces equiva-
lences Kp(Λ)

∼−→ D(Λ) and Ki(Λ)
∼−→ D(Λ). The quasi-inverse functors are

induced by p : D(Λ)
∼−→ Kp(Λ) and i : D(Λ)

∼−→ Ki(Λ). More precisely, p
induces a fully faithful left adjoint to the projection functor, and i induces
a fully faithful right adjoint.

Proof. To see that p and i induce well-defined functors D(Λ) → K(Λ), it
is sufficient to observe that both vanish on acyclic complexes. For p being
right adjoint to the projection functor, note that for complexes L and M ,

HomKL(pL,M) HomD(Λ)(pL,M) HomD(Λ)(L,M).∼ ∼ (4.5)

The first isomorphism is given by lemma 4.3.3. The second comes from
corollary 4.2.5, and the fact that quasi-isomorphisms give isomorphisms in
D(Λ).
A similar argument holds for i, which gives

HomKL(L, iM) HomD(Λ)(L, iM) HomD(Λ)(L,M).∼ ∼
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4.4 Infinite dévissage

The principle of infinite dévissage is a very useful tool, originally used in
algebraic geometry (see for example [Gro61]). For our use, we don’t really
need to know why it’s called infinite dévissage or how it’s motivated. Actu-
ally, whenever we mention infinite dévissage in this thesis, it is basically just
to have a name to refer to when applying the following theorem. Thorughout
this section, we keep the assumptions from section 4.2.

Proposition 4.4.1. A full triangulated subcategory of D(Λ) is equal to D(Λ)
if and only if it contains ΛΛ and is closed under forming infinite direct sums.

Instead of proving the proposition directly, we prove the corresponding
statement for Kp(Λ), which is sufficient because of the equivalence Kp(Λ) '
D(Λ). Before we give the proof of the proposition, we need the following
lemma:

Lemma 4.4.2. If U is the smallest full triangulated subcategory of Kp(Λ)
which contains ΛΛ and is closed under infinite direct sums, then U contains
all projective Λ-modules.

Proof. First, note that since U contains Λ and is closed under direct sums,
it contains all free Λ-modules. By induction on length, it can also be shown
that U contains all finite complexes of free Λ-modules. Any projective mod-
ule can be written as the image of an idempotent endomorphism on a free
module, by the following argument:

P projective ⇐⇒ P ⊕Q ∼−→ F

for some module Q and some free module F . So for a given projective
P , the following composition gives an endomorphism on F which is clearly
idempotent, and whose image is equal to P :

e : F
( 1

0 )
−−→ P ⊕Q ∼−→ F.

Now, let e be an idempotent endomorphism of a free module F , with e(F )
being the image of e. We can take a resolution of e(F ) with a copy of F in
each degree, given by the following exact complex

· · · F F F F e(F ) 0.
1−e e 1−e e

From this we see that e(F ) is homotopy equivalent to this complex

F • = · · · F F F F 0,
1−e e 1−e

in other words e(F ) is isomorphic to the complex F • in K(Λ). We now
need to show that F • is contained in U . Consider the sequence of truncated
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subcomplexes F •(p) with zero to the left of degree p for all p ∈ N. Then
F • is the colimit lim−→F •(p). Notice that all the assumptions we needed to
invoke Milnor’s triangle in section 4.2 are satisfied:

1. U is a full triangulated subcategory of K(Λ) closed under infinite direct
sums.

2. Each morphism ip : F •(p) → F •(p + 1) is an isomorphism in all de-
grees except p + 1, where it is zero. Consequently, each ip has split
monomorphisms in each degree.

3. For a given p, we have that F •(p+ 1)/F •(p) is isomorphic to a shifted
copy of F . Since it is zero in all degrees except one, where it is free, it
has vanishing differential and is projective in each degree.

Because the same assumptions are satisfied, we can use exactly the same
construction as in section 4.2 to make Milnor’s triangle in this case. So we
get that ⊕

p∈N
F •(p)

⊕
q∈N

F •(q) lim−→F •(q)
⊕
p∈N

F •(p)[1]

is a distinguished triangle in K(Λ). The two first terms are contained in U
since it is closed under infinite direct sum. And then lim−→F •(q) is contained
in U as well, because U is assumed to be a triangulated subcategory. Since
we know that lim−→F •(p) = F •, and that F • ' e(F ) in K(Λ), this shows that
e(F ) is contained in U . And as we have shown, all projective Λ-modules can
be written as e(F ) for some idempotent e and some free module F . Thus,
all projective modules are contained in U .

Proof of proposition 4.4.1. We need to show that the smallest full trian-
gulated subcategory of K(Λ) which contains all projective modules and is
closed under direct sums is Kp(Λ). Because then, by lemma 4.4.2, the sub-
category U is equal to Kp(Λ). By theorem 4.2.4 we know that a complex
is homotopically projective if and only if it is the limit of a directed system
satisfying some conditions. But these conditions are satisfied by U . Since
U contains all projective modules, and is closed under direct sum, we can
create all directed systems on the form eq. (4.1). We then apply Milnor’s
triangle, and use the fact that U is triangulated to conclude that all limits of
such systems also lie in U . In other words, we have shown that Kp(Λ) ⊆ U ,
and since U is minimal, we get equality. This concludes the proof of the
proposition.

4.5 Derived equivalences

Let X be a complex of Γ−Λ-bimodules, where Λ and Γ are rings. We can use
X to define two functors between complexes of Λ-modules and complexes
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of Γ-modules, namely the tensor product and the covariant Hom-functor.
Given L a complex of Λ-modules, we have that L ⊗Λ X is a complex of
Γ-modules defined by:

(L⊗Λ X)n =
⊕
p+q=n

Lp ⊗Xp

d(l ⊗ x) = (dl)⊗ x+ (−1)p, l ∈ Lp, x ∈ Xq.

Similarly, if M is a complex of Γ-modules, then HomΓ(X,M) is a complex
of Λ-modules defined by

HomΓ(X,M)n =
∏

−p+q=n
HomΓ(Xp,M q)

(df)(x) = d(f(x))− (−1)nf(dx), f ∈ HomΓ(X,M)n.

This gives the functors between complex categories F := −⊗Λ X and G :=
HomΓ(X,−), which in turn induce functors between K(Λ) and K(Γ). For
simplicity, we keep the same notation, and we have

K(Λ) K(Γ)

F=−⊗ΛX

G=HomΓ(X,−)

.

It is a known result that the functors F and G form an adjoint pair. Now
we can construct the total derived functors between D(Λ) and D(Γ). In
order to do so, we use the functors p(−) and i(−), as well as the following
diagram

Kp(Λ)

D(Λ) K(Λ)

Ki(Λ)

p

∼

i

∼

.

The total left derived functor LF : D(Λ) → D(Γ) is given as the following
composition

Kp(Λ) K(Γ)

D(Λ) D(Γ)

F

πΓp ,

where πΓ is the projection functor K(Γ) → D(Γ). In other words, LF =
p(−)⊗Λ X. Similarly, the total right derived functor RG : D(Γ)→ D(Λ) is
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given by the composition

Ki(Γ) K(Λ)

D(Γ) D(Λ)

G

πΛi ,

so we get that RG = HomΓ(X, i(−)). Now we will show that LF and RG
form an adjoint pair:

HomD(Γ)(LF L,M)
∼−→ HomK(Γ)(F (pL), iM)
∼−→ HomK(Λ)(pL,G(iM))

∼−→ HomD(Λ)(L,RGM)

The first and last isomorphisms are given by properties of morphisms in
derived categories, and the middle one comes from the fact that F and G
are adjoints. Now, recall that a prefect complex of Λ-modules is a bounded
complex of finitely generated projective Λ-modules, and per Λ is the full
subcategory of D(Λ) consisting of complexes that are quasi-isomorphic to
perfect complexes. In other words per Λ = Kb(proj − Λ). The next propo-
sition will be used in our proof for Rickard’s Morita theorem.

Theorem 4.5.1. The following are equivalent

i) The functor LF : D(Λ)→ D(Γ) is an equivalence.

ii) The functor LF induces an equivalence per Λ→ per Γ.

iii) The object T = LF A satisfies the following conditions

(a) The map
A→ HomD(Γ)(T, T )

is bijective and HomD(Γ)(T, T [n]) = 0 for n 6= 0.

(b) T ∈ per Γ.

(c) The smallest full triangulated subcategory of D(Γ) containing T
and closed under forming direct summands equals per Γ.

Proof. i) =⇒ ii)

Proposition 2.5.3 states that a complex K ∈ Kb(Proj − Λ) lies in per Λ
if and only if the functor HomD(Λ)(K,−) commutes with arbitrary direct

sums.1 This fact is then used to show that an equvalence in Kb restricts
down to an equivalence between perfect complexes. We will now prove that
the statement in proposition 2.5.3 holds for any complex K ∈ D(Λ), not

1Such a complex is called a compact object in Kb(Proj − Λ)
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just in Kb(Proj−Λ). Thus, an equivalence D(Λ) ' D(Γ) will restrict down
to per Λ ' per Γ in a similar way.

In other words, we want to prove that for any K ∈ D(Λ), we have that

K ∈ per Λ ⇐⇒ HomD(Λ)(K,−) commutes with arbitrary direct sums.

The =⇒ direction is easy. Since per Λ ⊆ Kb(Proj − Λ), we clearly still
have from proposition 2.5.3 that

K ∈ per Λ =⇒ HomD(Λ)(K,−) commutes with arbitrary direct sums.

To show the other direction, we take a complex K ∈ K(Proj − Λ)
instead of D(Λ) (by using the fact that any complex is quasi-isomorphic to a
complex of projectives). If we can show that this is homotopy equivalent to a
bounded complex, we are done, because then we can apply proposition 2.5.3.
We start by looking at the chain map ϕ ∈ Hom(K,

⊕
i∈Z

Cok di[−i−1]), which

corresponds to the following diagram:

· · · K−1 K0 K1 · · ·

· · · Cok d−2 Cok d−1 Cok d0 · · ·

d−2 d−1

ϕ−1

d0

ϕ0

d1

ϕ1

0 0 0 0

We now assume that Hom(K,−) commutes with arbitrary direct sums,
which in particular means that we have an isomorphism:

Hom(K,
⊕

i∈Z Cok di[−i− 1])
⊕

i∈Z Hom(K,Cok di[−i− 1])

ϕ (ϕi)i

∼

∈ ∈

From the definition of the direct sum, we see that only finitely many com-
ponents in the image of ϕ are nonzero, so we get that ϕi = 0 for i � 0
and i � 0. Since each ϕi is epi, this also implies that Cok di = 0 for all
sufficiently large and sufficiently small values of i, which means that di is
epi for those same i’s. recall that we want to show that the complex K is
bounded (up to homotopy), that is, both left bounded and right bounded.
We’ll consider the two cases separately:

Right bounded: Pick a sufficiently large i, such that dj is epi for all
j ≥ i. Since the map di : Ki → Ki+1 is epi, its image is equal to Ki+1.
But Im di ⊆ Ker di+1 ⊆ Ki+1, which means that Ki+1 = Ker di+1. So di+1

sends everything to zero, and since it is also epi, Ki+2 must be zero. Then,
di+2 : Ki+2 → Ki+3 is an epimorphism from Ki+2 = 0, so Ki+3 is zero as
well. The same argument shows that Kj = 0 for all j > i + 1. Thus, K is
right bounded.
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Left bounded: Pick a sufficiently small i, such that dj is epi for all
j ≤ i. The fact that di is an epimorphism implies that the sequence

0→ Ker di → Ki di−→ Ki+1 → 0

is exact. Since it ends in Ki+1, which is projective, it is in fact split exact,

which means that Ki ' Ker di ⊕ Ki+1. Thus, Ki+1 1−→ Ki+1 is a direct
summand in K, and by theorem A.1.1 we can remove it. That leaves us
with the following complex, which is equal to K up to homotopy:

· · · → Ki−3 di−3

−−−→ Ki−2 di−2

−−−→ Ki−1 f i−1

−−−→ Ker di → 0→ Ki+2 → · · ·

Note that this complex is equal to K in all degrees except i and i+ 1, and
that f i−1 is the component map to Ker di in di−1. Because di−1 is epi, f i−1

is also epi. Thus, we get a short exact sequence

0→ Ker f i−1 → Ki−1 → Ker di → 0,

which again is split since Ker di is a direct summand of a projective module,
and thus projective. So we have that Ki−1 ' Ker f i−1 ⊕Ker di, and we get

a direct summand Ker di
1−→ Ker di, which we can remove. This gives us the

following complex, which still is homotopy equivalent to K:

· · · → Ki−3 di−3

−−−→ Ki−2 f i−2

−−−→ Ker f i−1 → 0→ 0→ Ki+2 → · · ·

This process of showing that Kj splits, and then using a trivial summand
to remove whatever nonzero term is left in degree j + 1, works indefinitely,
since dj is epi for all j ≤ i. Thus, up to homotopy, Ki = 0 for i� 0, and K
is left bounded.

All in all, this means that for any complex K ∈ D(Λ), we have that
if Hom(K,−) commutes with arbitrary direct sums, then K is homotopy
equivalent to a complex in Kb(Proj − Λ). From proposition 2.5.3 we know
that if K ′ is a complex in Kb(Proj − Λ) such that Hom(K ′,−) commutes
with arbitrary direct sums, then K ′ ∈ per Λ. Thus, we see that K must
be in per Λ, which is what we wanted to show. This concludes the proof of
the if-and-only-if statement. That this statement implies that the equiva-
lence restricts as needed, is given by the exact same arument as in proposi-
tion 2.5.3.

ii) =⇒ iii)

For condition a), notice that LF is an equivalence, and therefore fully faith-
ful. This means that both arrows in this diagram are bijections

Λ→ HomD(Λ)(Λ,Λ)→ HomD(Γ)(T, T ).
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We also have the bijection HomD(Γ)(T, T [n]) ↔ HomD(Λ)(Λ,Λ[n]), and we
know that there are no nonzero maps from Λ to Λ[n] in D(Λ) for n 6= 0.
Thus, we get that HomD(Γ)(T, T [n]) = HomD(Λ)(Λ,Λ[n]) = 0 for n 6= 0.
Condition b) holds because LF K is perfect in D(Γ) if and only if K is perfect
in D(Λ), since equivalences preserve perfectness. For c), we observe that any
full triangulated subcategory of D(Λ) which contains Λ and is closed under
forming direct summands, must contain per Λ. Thus, per Λ is the smallest
such subcategory, and because each of the properties are preserved by the
equivalence, applying LF shows that the condition is satisfied.

iii) =⇒ i)

We start by showing that LF is fully faithful. Because RG is right adjoint
to LF , we have the isomorphism

HomD(Γ)(LF M,LF M) ' HomD(Λ)(M,RGLF M).

This means that we only need to show that we have a bijection

HomD(Λ)(M,M)↔ HomD(Λ)(M,RGLF M),

in other words that the adjunction morphism

ϕM : M → RGLF M

is invertible for each M ∈ D(Λ). To do this, we will define U to be the
smallest full subcategory of objects M in D(Λ) such that ϕM is invertible,
and then use infinite dévissage to show that U in fact is equal to D(Λ).
That is, we must show that U contains ΛΛ, is triangulated and commutes
with infinite direct sums. To see that U contains ΛΛ, notice that we have
the following

T = LF Λ = p(Λ)⊗Λ X = Λ⊗Λ X ' X,

where the first and second equality hold by definition, the third equality
is true since Λ is homotopically projective, and the last isomorphism is a
property of the tensor product. Thus, when we use the adjunction morphism
on Λ, we get

ϕΛ: Λ→ RHomΓ(X,Λ⊗L
Λ X) = RHomΓ(T, T ).

Now, by taking the n-th homology and using known properties of derived
functors, we see that

HnRHomΓ(T, T ) = Extn(T, T ) = HomD(Γ)(T, T [n]).

From condition c) we know that Λ → HomD(Γ)(T, T ) is bijective, and
that HomD(Γ)(T, T [n]) = 0 for n 6= 0, so we conclude that ϕΛ is bijective.
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This means that Λ ∈ U . Since both LF and RG are morphisms of triangu-
lated categories, and U consists of the objects for which RGLF is invertible,
we see that U is a triangulated subcategory. The only thing remaining to
show is that U is closed under infinite direct sums. In fact, we only need
to check that RG commutes with infinite direct sums, since LF is a left
adjoint, and thus commutes with all coproducts. For RG = RHomΓ(T,−)
it is enough to consider HnRG = HomD(Γ)(T,−[n]). If we prove that this
commutes with direct sums for all n, we’re done, since Hn is an additive
functor. But the fact that HomD(Γ)(T,−[n]) commutes with direct sums
follows the fact that T , by condition b) in the lemma, has projective and
finitely generated terms. This shows that RG commutes with infinite direct
sums, which means that RGLF does so too. Thus, U is closed under infinite
direct sums, so U = D(Λ). This means that LF is fully faithful. To show
that it is an equivalence, all we need now is to show that it is dense. But
that follows easily from infinite dévissage, so we are done.

Note that by proving theorem 4.5.1, we are very close to having a proof
of Rickard’s Morita theorem. Actually, the only difference between the the-
orems is the assumption that we have a complex X of Λ-Γ-bimodules. Such
a complex ensures that the tensor product gives Γ-modules and not just
abelian groups, thus making −⊗X a functor K(Λ)→ K(Γ). So we need to
find a way to construct a complex of Λ-Γ-bimodules, using the assumptions
in Rickard’s theorem. It will turn out that the existence of a tilting complex
T is precisely what we need, because we will see that applying a certain
functor to T will yield a complex of bimodules. But before we can do that,
we need to develop some concepts of homological algebra for dg modules.

4.6 Resolutions of dg modules

In chapter 3 we gave the main definitions surrounding differential graded
algebras, or dg albegras. In this section we will define some more concepts,
as well as present a little more of the theory we need. This includes ho-
motopically projective dg modules, the derived category of dg modules, dg
bimodules, and tensor products of dg modules. Our goal is to use the theory
we present here to make a functor which, when applied to a tilting complex,
gives a complex of bimodules. We will then use this complex, together with
theorem 4.5.1, to prove Rickard’s Morita theorem.

As defined in chapter 3, dg Λ-modules are graded Λ-modules equipped
with a differential, i.e. a graded map of degree 1 satisfying some commuta-
tivity properties. Note that chain complexes are one example of dg modules,
but there are others as well. Like for regular chain complexes, we defined
the homotopy category for dg Λ-modules K(Λ), and showed that it was
triangulated.
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Homotopically projective dg modules

We define homotopically projective dg modules similarly to chain complexes,
namely a dg Λ-module K is homotopically projective if

HomK(Λ)(K,N) = 0 ∀N acyclic.

Homotopically injective dg modules are defined in a similar way. We will
now show that Kp(Λ), the full subcategory of K(Λ) consisting of the homo-
topically projective dg Λ-modules, is triangulated and closed under arbitrary
direct sums, and contains ΛΛ. The same is true for Ki(Λ), homotopically
injective dg Λ-modules, by a similar proof.

We start by showing that ΛΛ is homotopically projective, when viewed
as a dg module over itself. First, observe that Homdg−Λ(ΛΛ,M) ' Z0M by
the canonical map f 7→ f(1), which is an isomorphism to Z0M (for graded
Λ-modules we have that Hom(ΛΛ,M) 'M , and since f must commute with
the differential we have Im f ⊆ Ker d0 = Z0M). Now, the null-homotopic
maps in HomK(Λ)(ΛΛ,M) are precisely the ones where f : Λ → M0 factors

through M−1, which means that Im f ⊆ Im d−1 = B0M . Since maps in
K(Λ) are precisely dg Λ-morphisms modulo null-homotopic maps, we have
that

HomK(Λ)(ΛΛ,M) ' Z0M
/

B0M ' H0M.

If we now let N be an acyclic dg Λ-module, then obviously

HomK(Λ)(ΛΛ, N) ' H0N = 0,

so ΛΛ is homotopically projective. We easily see that Kp(Λ) is closed under
arbitrary direct sums, because HomK(Λ)(−, N) takes coproducts to prod-
ucts, and products of zero are still zero. It remains to show that Kp(Λ) is
triangulated, and to do so we must check that it is closed under shift and
taking cones. Shift is straight forward, just notice that

HomK(Λ)(P [n], N) ' HomK(Λ)(P,N [−n]),

and since the shift of an acyclic dg module still is acyclic, we get that
P ∈ Kp(Λ) =⇒ P [n] ∈ Kp(Λ) for all n ∈ Z. Now assume that we have

two homotopically projective modules X and Y , and a map X
f−→ Y . Using

the triangulated structure on K(Λ), we can complete this to a distinguished
triangle as follows

X Y Cone(f) X[1].
f

By applying the functor HomK(Λ)(−, N) we get a long exact sequence. If
N is acyclic, the terms coming from both X and Y are zero, since they are
homotopically projective. This means that HomK(Λ)(Cone(f)) is between
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two zeros in a long exact sequence, and thus it must be zero (likewise for
all shifts). So Cone(f) is homotopically projective, and we conclude that
Kp(Λ) is a triangulated subcategory.

In our discussion of homotopically projective complexes we showed that
complexes with projective components and zero differential were homotopi-
cally projective. It is not immediately obvious what the corresponding state-
ment should be for dg Λ-modules. Notice that any chain complex with pro-
jective components and zero differential can be written as a direct sum of
direct summands of shifted copies of Λ, in other words they lie in the sub-
category Add(Λ[n] | n ∈ Z) (which from now on will be refered to simply as
Add(Λ[n])). This description is what we will apply to dg Λ-modules.

It is easy to see that Add(Λ[n]) is a full subcategory of Kp(Λ). We
have already seen that ΛΛ ∈ Kp(Λ), and we will now show that all direct
summands of Λ are in Kp(Λ). If Λ ' Λ1⊕Λ2, we can form the distinguished
triangle

Λ1 Λ Cone(ι) Λ1[1],ι

where by definition Cone(ι) = Λ ⊕ Λ1[1] ' Λ2 ⊕ Λ1 ⊕ Λ1[1] ' Λ2. The last
isomorphism follows because Λ1⊕Λ1[1] is a trivial summand up to homotopy,
and by theorem A.1.1 it can be removed. From this we can see that Kp(Λ)
contains the direct summands of Λ. From before we know that Kp(Λ) is
closed under shift and direct sums. Thus, we see that Add(Λ[n]), which
again consists of direct sums of direct summands of shifted copies of Λ, is
contained in Kp(Λ). The following theorem corresponds to theorem 4.2.4,
for homotopically projective dg Λ-modules.

Note: the statement for homotopically injective Λ-modules is also carried
over to the differential graded case. We will not state or prove the version of
the following theorem for homotopically injective dg Λ-modules. We will just
say that the proof is similar, with some slight adjustments since homology
in general doesn’t commute with limits (the way it does with colimits).

Theorem 4.6.1. For any dg Λ-module X ∈ K(Λ) there is a triangle

pX X aX pX[1], (4.6)

where pX is homotopically projective and aX is acyclic.

Proof. First, observe that aX is acyclic if Hn(aX) ' Hn(Hom(Λ,aX)) '
HomK(Λ)(Λ,aX[n]) = 0 for all n ∈ Z. If we know that eq. (4.6) is a dis-
tinguished triangle, applying the functor HomK(Λ)(Λ,−) gives a long exact
sequence. Then aX is acyclic if all terms in the sequence on the form
Hom(Λ,aX[n]) are zero, which is equivalent with having an isomorphism
HomK(Λ)(Λ,pX[n]) ' HomK(Λ)(Λ, X[n]) for each n ∈ Z. So if we can find a
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homotopically projective dg Λ-module pX with a map pX → X, such that

HomK(Λ)(Λ,pX) HomK(Λ)(Λ, X)

Hn(p) Hn(X),

∼

then setting aX to be the cone of that map will give us the triangle we
are looking for. We will find pX as the colimit of a certain directed system,
which we will construct inductively. More precisely, we will create a directed
system

P1 → P2 → · · · → Pi → Pi+1 → · · · (4.7)

where for all i ∈ Z, we choose Pi ∈ Add(Λ[n]) such that H∗(Pi)→ H∗(X) is
an epimorphism. We can always find a P1 which satisfies this, for example
take a basis for H i(X) and let P1 be a direct sum of as many copies of Λ[−i]
as there are elements in that basis. If we now let Xi be the cone of Pi → X,
so that we have a triangle

Pi → X
α−→ Xi → Pi[1],

then H∗(Pi) → H∗(X) being an epimorphism is equivalent to H∗(α) = 0.
Let’s assume that we have a Pi which satisfies the conditions. We must find
a Pi+1 ∈ Add(Λ[n]) and a map Pi → Pi+1, such that H∗(Pi+1)

∼−→ H∗(X).
To do so, we use the following diagram

Pi Pi+1 P ′i Pi[1]

Pi X Xi Pi[1]

Xi+1 Xi+1

Pi+1[1] Pi+1[1]

α

βα β (4.8)

We assume that we have the second row, where Xi is the cone of the map
Pi → X, so it is a distinguished triangle. We also assume that H∗(α) = 0,
to have that H∗(Pi) → H∗(X) is epi. By the same construction as above,
we can find P ′i → Xi such that the rightmost column is a distinguished
triangle with H∗(β) = 0. Because Add(Λ[n]) is triangulated, we can find a
Pi+1 ∈ Add(Λ[n]), as well as the dashed arrows, so that the top row in the
diagram becomes a distinguished triangle. We then use the octahedral axiom
to find the dotted maps which makes the first column into a distinguished
triangle. Notice that H∗(βα) = 0, since it is the composition of two zero
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maps, which means that H∗(Pi+1) → H∗(X) is epi. Also notice the square
we get in the top left corner being commutative ensures that we actually
get a directed system of Pi. Since all Pi have morphisms to X, we can write
the system as

P1 P2 · · · Pi Pi+1 · · ·

X X · · · X X · · ·

If we apply H∗ to the top two triangles in diagram 4.8, we get the solid
part of the following

H∗(P ′i [−1]) H∗(Pi) H∗(P2)

Im fi

H∗(Xi[−1]) H∗(P1) H∗(X),

fi

and the maps to and from Im fi are given since a map always factors through
its image. Composition gives the dotted map from Im fi to H∗(X). We will
now show that this map is an isomorphism. To see this, observe that we
have the following commutative diagram, where the rows are exact

Ker fi H∗(Pi) Im fi 0 0

H∗(Xi[−1]) H∗(Pi) H∗(X) 0 0.

Now, the second, fourth and fifth vertical maps are equalities, and the first
is an epimorphism. Thus, the five lemma states that the middle map is
an isomorphism. Note that this is true for all i ∈ Z, and since H∗(X) is
independent of i, this means that up to isomorphism, all fi have the same
image. This means that we can construct the following system

Ker f1 Ker f2 · · · Ker fi Ker fi+1 · · ·

H∗(P1) H∗(P2) · · · H∗(Pi) H∗(Pi+1) · · ·

H∗(X) H∗(X) · · · H∗(X) H∗(X) · · ·

k1

ι1

k2

ι2

ki

ιi

ki+1

ιi+1

f1 f2 fi fi+1

We will now show that ki = 0 for all i, that is all maps between the ker-
nels are zero. To see this, notice that because H∗(X) ' Im fi, we have
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that fi factors through H∗(X) for all i. This means that the composition
fiιi : Ker fi → H∗(Pi+1) factors through H∗(X), and is thus 0. By the com-
mutativity of the upper squares, we get that ιi+1ki = fiιi = 0, and since
ιi+1 is a monomorphism, this means that ki = 0 for all i. To finish the proof
we will now take the colimit of each of the directed systems in the previous
diagram, and look at the induced sequence of colimits.

We start with the system of kernels. By definition, the colimit is a pair
(C, {ϕi}), where ϕi : Ker fi → C satisfies ϕi = ϕj ◦ 0 = 0 for all j > i (since
all maps between the Ker fi’s are 0). The colimit satisfies the universal
property that for any other pair (Y, {ψi}) with ψi : Ker fi → Y such that
ψi = ψj ◦ 0 = 0 for all j > i, there exists a unique map u : C → Y such that
ψi = u ◦ ϕi for all i. In terms of diagrams, this statement becomes

Ker fi Ker fj

C

Y

0

ϕi

ψi

ϕj

ψj∃!u

As we have seen ϕi = ψi = 0 for all i, which means that any map u′ : C → Y
will satisfy ψi = u′ ◦ϕi. Thus, since u is the unique such map, there can be
only one map C → Y , which means that C must be 0. So we have showed
that lim−→Ker fi = 0.

Now, consider the colimit of H∗(Pi). Note that since lim−→ is an exact
functor, and thus commutes with homology, we have that lim−→H∗(Pi) =
H∗(lim−→Pi). We also obviously have that lim−→H∗(X) = H∗(X). So we end
up with the sequence

0 H∗(lim−→Pi) H∗(X),

which is exact, since lim−→ preserves exactness. Thus the map H∗(lim−→Pi) →
H∗(X) is an isomorphism. All we need now is to show that lim−→Pi is homo-
topically projective. An analogous result to proposition 4.2.3 is true for the
system (4.7) (the proof is similar). Recall that Pi ∈ Add(Λ[n]) for all i, and
that Add(Λ[n]) is closed under direct sums and taking cones. This means
that lim−→Pi ∈ Add(Λ[n]) ⊆ Kp(Λ), and we are done. Because then we can
set pX := lim−→Pi and set aX to be the cone of the induced map lim−→Pi → X,
and thus get the wanted triangle.

The derived category of a dg algebra

We define quasi-isomorphisms of dg Λ-modules similar to how we define
them for regular chain complexes, which is to say a map f : M → N is a
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quasi-isomorphism if it induces an isomorphism H∗(f) : H∗(M)
∼−→ H∗(N)

in homology. We also define the derived category of Λ like before, as

D(Λ) := S−1K(Λ).

In other words, D(Λ) is the localization of K(Λ) by S, the equivalence class
of all quasi-isomorphisms up to homotopy. Now we can take advantage of
the work we already have done. Corollary 4.2.5, lemma 4.3.2, lemma 4.3.3,
theorem 4.3.4, eq. (4.5), and the principle of infinite dévissage are all valid
in this setup as well, with the proofs transferring directly. In addition, we
have the following formula

HomD(Λ)(Λ,M) ' HomK(Λ)(pΛ,M) ' HomK(Λ)(Λ,M) ' H0M.

The first isomorphism is given by eq. (4.5), and the second comes from
corollary 4.2.5.

Derived equivalences

Total derived functors are defined by the same formulas for dg algebras as
for ordinary algebras (see section 4.5). Given two dg algebras Λ and Γ, we
define a new dg algebra Λop ⊗ Γ by

(Λop ⊗ Γ)n =
⊕
p+q=n

Λp ⊗ Γq

d(a⊗ b) = (da)⊗ b+ (−1)pa⊗ (db)

(a⊗ b)(a′ ⊗ b′) = (−1)pq
′
aa′ ⊗ bb′,

for all a ∈ Λp, b ∈ Γq, a′ ∈ Λp
′

and b′ ∈ Γq
′
. Now let ΛXΓ be a dg Λ-Γ-

bimodule, which means that it can be written as

X =
⊕
p∈Z

Xp,

being both a graded left Λ-module and a graded right Γ-module. The two
actions must commute and coincide on k, and X must have a k-linear dif-
ferential d, which is graded of degree 1 and satisfies

d(axb) = (da)xb+ (−1)pa(dx)b+ (−1)p+qax(db)

for all a ∈ Λ, x ∈ Xq and b ∈ Γ. We may view this X as a right dg
Λop ⊗ Γ-module by defining multiplication as

x(a⊗ b) = (−1)rpaxb
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for all x ∈ Xr, a ∈ Λp and b ∈ Γ. Now, given a dg Λ-module M , we can use
X to create a corresponding dg Γ-module. We define M ⊗k X to be the dg
Γ-module with multiplication given as

(m⊗ x)b = m⊗ (xb), m ∈M, x ∈ X, b ∈ Γ,

and with graded structure and differential given by

(M ⊗k X)n =
⊕
p+q=n

Mp ⊗k Xq

d(m⊗ x) = (dm)⊗ x+ (−1)pm⊗ (dx),

for all m ∈ Mp and x ∈ X. What we actually want here is the tensor
product over Λ, not just over k. To show this, we use the fact that M ⊗ΛX
is the quotient group (M ⊗k X)/S, where S is the k-submodule generated
by all differences ma ⊗ x −m ⊗ ax. If we can show that S is stable under
d and multiplication by elements of Γ, then we get that (M ⊗Λ X) is a well
defined dg Γ-module. This is straight forward to check. For s ∈ S, we have

d(s) = d(ma⊗ x−m⊗ ax)

= d(ma⊗ x)− d(m⊗ ax)

= d(ma)⊗ x+ (−1)p+qma⊗ dx− (dm⊗ ax− (−1)pm⊗ d(ax))

= ((dm)a+ (−1)pmda)⊗ x+ (−1)p+qma⊗ dx
− dm⊗ ax− ((−1)pm⊗ ((da)x+ (−1)qadx)

= ((dm)a⊗ x− dm⊗ ax) + ((−1)pmda⊗ x− (−1)pm⊗ dax)

+ ((−1)p+qma⊗ dx− (−1)pm⊗ (−1)qadx))

We see that d(s) is still on the form m′a′⊗x′−m′⊗ a′x′, for some m′ ∈M ,
a′ ∈ Λ and x′ ∈ X, since it is the sum of three terms on that form. As for
multiplication by elements of Γ, let s ∈ S and b ∈ Γ. Then

sb = (ma⊗ x−m⊗ ax)b

= (ma⊗ x)b− (m⊗ ax)b

= ma⊗ xb−m⊗ axb,

so sb ∈ S, which means that S is closed under multiplication by elements
of Γ. Thus we conclude that M ⊗Λ X = (M ⊗k X)/S is a dg Γ-module.
Furthermore, M ⊗ΛX is functorial in both M and X. Now let N be a dg Γ-
module. Like before, we define the dg Λ-moduleHomΓ(X,N). Respectively,
the graded structure, differential, and Λ-action are given by

HomΓ(X,N)n =
∏

−p+q=n
HomΓ(Xp, N q)

(df)(x) = d(f(x))− (−1)nf(dx)

(fa)(x) = f(ax) ,
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where x ∈ X, a ∈ Λ, and f is a graded map of degree n.
We now have the two functors F := − ⊗Λ X and G := HomΓ(X,−)

between the categories of dg Λ-modules and dg Γ-modules, which in turn
induce functors between K(Λ) and K(Γ). For simplicity, we keep the same
notation, and we have

K(Λ) K(Γ)

F=−⊗ΛX

G=HomΓ(X,−)

.

We now define the total left derived functor in the same way as for ordinary
algebras, by applying the functor F to homotopically projective resolutions.
That is, the total left derived functor LF : D(Λ) → D(Γ) is given as the
following composition:

Kp(Λ) K(Γ)

D(Λ) D(Γ)

F

πΓp

The total right derived functor RG : D(Γ) → D(Λ) is defined similarly,
but using G and homotopically injective resolutions, and is given by the
composition:

Ki(Γ) K(Λ)

D(Γ) D(Λ)

G

πΛi

4.7 Rickard’s Morita theorem

Now we use the theory we have developed so far to give an alternate proof
of Rickard’s Morita theorem.

Construction of bimodule complexes

In this section we assume that Γ is a flat k-algebra, that T is a homotopically
projective complex over Γ, and that Γ satisfies the so-called Toda condition

HomK(Γ)(T, T [n]) = 0

for all n < 0. Let
Λ := HomK(Γ)(T, T ).

What we want now is a functor K(Λ)→ K(Γ) which sends ΛΛ to T , much
like − ⊗L

Λ T does in theorem 4.5.1. The problem is that T isn’t a complex
of Λ-Γ-bimodules, and −⊗L

Λ T only gives a complex of abelian groups, not
of Γ-modules. So we need to find a complex X of Λ-Γ-bimodules, such that
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XΓ is quasi-isomorphic to T , and such that we can define up to homotopy
a left action of Λ on T given such the following diagram

T XΓ

T XΓ

ϕ

a λ(a)

ϕ

commutes for all a ∈ Λ, where ϕ is a quasi-isomorphism and λ(a) is left
multiplication by a. We will now construct such a complex of Λ-Γ-bimodules
X, as well as the quasi-isomorphism ϕ : T → XΓ. Let C = HomΓ(T, T ),
which is a differential graded k-algebra, as seen in example 3.1.7. We now
take the differential graded subalgebra of C whose underlying complex is

· · · → C−2 → C−1 → Z0C → 0→ 0→ · · · ,

and call this dg subalgebra C−. Notice that the 0-component of C− is
Z0C, which is canonically isomorphic to HomC(Λ)(T, T ), the group of chain
complex homomorphisms T → T (see lemma A.3.1 for details). Since we
can view Λ as a dg algebra concentrated in degree 0, this means that we
can view Λ as a quotient of C−. Specifically, we have that Λ is equal to C−
modulo the complex

· · · → C−2 → C−1 → B0C → 0→ 0→ · · · .

Thus, we have morphisms of dg algebras Λ← C− ⊆ C Since T is a complex
of right Γ-modules, it can be viewed as a right dg Γ-module, by viewing
Γ as a dg algebra concentrated in degree zero (see example 3.1.6). From
example 3.1.7, we get that T is also a left dg C-module, so T is a dg C-Γ-
bimodule. By restriction, T also becomes a dg C−-Γ-bimodule. We are now
ready to define the complex of Λ-Γ-bimodules we need. We set

X := Λ⊗C− pT,

where the homotopically projective resolution pT is taken by viewing T as
a C−⊗Γ-module. Note that X is indeed a complex of Λ-Γ-bimodules. Now
we must construct a quasi-isomorphism ϕ := T → X, and to do so we will
use the (still unused) conditions we placed on Γ and T . From the Toda
condititon we get that the map C− → Λ is a quasi-isomorphism. To see
this, note that Hn(C−) = HomK(Γ)(T, T [n]) for n ≥ 0 (and Hn(C−) = 0
for n > 0). Thus, the Toda condition means precisely that Hn(C−) = 0 for
all n 6= 0, and since H0(C−) = HomK(Γ)(T, T ) = Λ, the map C− → Λ is a
quasi-isomorphism. Next, we want to show that the map

C− ⊗C− pT → Λ⊗C− pT
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is still a quasi-isomorphism. By the long exact sequence of homology, we see
that an equivalent statement is that the mapping cone is acyclic, which is
what we will show. To do this we can use the principle of infinite dévissage,
much like we did in the proof of theorem 4.5.1. Let U be the full subcategory
in the category of dg C−-Γ-bimodules consisting of all M such that −⊗C−M
preserves acyclicity. To see that U is a triangulated subcategory, notice that
shifts don’t change acyclicity, so U is closed under shifts. Also, if M,N ∈ U
we can take the long exact sequence of cohomology of the triangle

M
f−→ N → Cone(f)→M [1]

and then apply −⊗C− −. Since tensor products commute with cohomology,
applying this to an acyclic module A gives the following sequence, where by
definition H∗(A⊗C− M) = H∗(A⊗C− N) = 0

· · · 0 0 Hn(A⊗C− Cone(f)) 0 · · ·

This sequence is still exact, so H∗(A ⊗C− Cone(f)) = 0, which means that
−⊗C−Cone(f) preserves acyclicity, and thus U is closed under taking cones.
This shows that U is a triangulated subcategory. Next, observe that U is
closed under direct sums, since tensor products commute with coproducts.
The final thing we need to check is that (C− ⊗ Γ) ∈ U , in other words that
−⊗C− (C−⊗k Γ) preserves acyclicity. But we have that −⊗C− (C−⊗k Γ) '
(−⊗C− C−)⊗k Γ ' −⊗k Γ, which preserves acyclicity by assumtion, since Γ
is assumed to be flat. So all the conditions for infinite dévissage are satisfied,
and we conclude that U is equal to the category of C−-Γ-bimodules. Thus,
the functor −⊗C− pT preserves quasi-isomorphisms. Now, using the natural
isomorphism

C− ⊗C− pT → pT,

we set ϕ to be the unique morphism in D(Γ) making the following diagram
commutative

C− ⊗C− pT pT

Λ⊗C− pT T

∼

ϕ

To see that we actually get a morphism of complexes, recall that we have
the isomorphism HomD(Γ)(T,Λ ⊗C− pT ) ' HomK(Γ)(pT,Λ ⊗C− pT ) '
HomK(Γ)(T,Λ⊗C− pT ). The last isomorphism comes from the fact that T is
assumed to be homotopically projective. Thus, we have constructed a com-
plex of Λ-Γ-bimodules X = Λ⊗C−pT , and a quasi-isomorphism ϕ : T → XΓ.
Now we are ready to prove Rickard’s Morita theorem.
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Rickard’s Morita theorem

Theorem 4.7.1. Let k be a commutative ring and Λ, Γ two k-algebras such
that Γ is flat over k. The following are equivalent.

i) There is a complex of Λ-Γ-bimodules such that the functor −⊗L
ΛX : D(Λ)→

D(Γ) is an equivalence.

ii) There is a triangle equivalence F : D(Λ)→ D(Γ).

iii) There is a triangle equivalence per Λ→ per Γ.

iv) There is an object T ∈ D(Γ) such that

(a) There is an isomorphism

Λ ' HomD(Γ)(T, T )

and HomD(Γ)(T, T [n]) = 0 for n 6= 0.

(b) T ∈ per Γ.

(c) The smallest full triangulated subcategory of D(Γ) which contains
T and is closed under direct summands is equal to perB

Proof. It is obvious that i) implies ii). Simply set F := − ⊗L
Λ X, which is

an equivalence by assumption, and a triangle functor since tensor products
preserve triangles. Observe that the implications from ii) to iii) and from
iii) to iv) are true by theorem 4.5.1. So all we need to prove is iv) implies
i). Since we have an equivalence D(Γ) ' Kp(Γ), we can assume that T
is homotopically projective. Then, all the assumptions of section 4.7 are
satisfied, so we can apply the construction to T . This gives us a complex of
Λ-Γ-bimodules X = Λ⊗C− pT , such that the functor −⊗L

Λ X sends ΛΛ to
T . The claim now follows from theorem 4.5.1.
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Chapter 5

An example

We will now look at a concrete example of Rickard’s Morita theorem being
used to show that two rings have equivalent derived categories.

Example 5.0.1. Let Q be the quiver 1
α−→ 2

β−→ 3. We define the path
algebras A1 = kQ and A2 = kQ/I, where I is the ideal generated by the
relation βα. Clearly, A1 and A2 are not isomorphic as rings, but they might
be derived equivalent. To find out, we try to find a tilting complex over
A1 such that A2 is isomorphic to the opposite endomorphism ring of that
tilting complex. The indecomposable modules over A1, up to isomorphism,
are

P1 = I3 = [k
1−→ k

1−→ k], P2 = [0→ k
1−→ k], P3 = [0→ 0→ k]

I2 = [k
1−→ k → 0], I1 = [k → 0→ 0], S2 = [0→ k → 0].

The Pi’s are the indecomposable projectives, and the Ii’s are indecomposable
injectives. Now consider the complex

T = · · · → 0→ P2

(
0
i
0

)
−−−→ P1 ⊕ P1 ⊕ P3 → 0→ · · ·

where all terms to the left and right of this are zero, and i is the inclusion
P2 → P1. We want to show that this is a tilting complex. First, we note that
T clearly is a bounded complex of finitely generated projective A1-modules,
so it is in perA1. What we must check now is that

1. for all i 6= 0, the set HomDb(A1)(T, T [i]) of shifted endomorphisms of

T in Db(A1) vanishes,

2. the category add(T ) generates perA1 as a triangulated category.

To show that condition 1 is satisfied, we notice that shifting in either direc-
tion by more that 1 makes all morphisms zero, since there will be no overlap
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in the nonzero degrees. So we just need to show that HomDb(A1)(T, T [i]) = 0

for i ∈ {−1, 1}. We start with the case i = 1. A map from T to T [1] will
only have one nonzero component, namely

P2

(
a
b
c

)
−−−→ P1 ⊕ P1 ⊕ P3.

So a chain map T → T [1] is completely determined by the maps a, b and c.
We note that c must be zero, because there are no nonzero maps from P2

to P3. Next, observe that we can find maps b′ and ϕ making the following
diagram commutative

· · · 0 P2 P1 ⊕ P1 ⊕ P3 · · ·

· · · P2 P1 ⊕ P1 ⊕ P3 0 · · ·

0

0

(
0
i
0

)

(
a
b
0

)
b′

0ϕ

(
0
i
0

) 0

More preciesly, we can choose b′ such that ib′ = b, and take ϕ =
(

0 a′ 0
0 0 0
0 0 0

)
,

with a′ such that a′i = a. This works for any a and b, and thus for any map
from T to T [1]. In other words, any map T → T [1] is null-homotopic, which
means that HomDb(A1)(T, T [1]) = 0.

For the case i = −1, we also get that a chain map from T to T [−1] has
only one possible nonzero component. Such a chain map is given by the
following diagram, where each square commutes:

· · · P2 P1 ⊕ P1 ⊕ P3 0 · · ·

· · · 0 P2 P1 ⊕ P1 ⊕ P3 · · ·

(
0
i
0

)

0

0

h 0

0 (
0
i
0

)

The fact that each square commutes means that ih = 0, and since i is
an inclusion (and thus mono), we see that h must be zero. This means
that HomDb(A1)(T, T [−1]) = 0, which concludes the proof that T has no
self-extensions.

Let’s consider the second condition. Notice that P1 and P3 appear as di-
rect summands of T , which means that they are contained in add(T ). If we
can find a distingusihed triangle consisting of P2 and two direct summands
of T , then P2 will be contained in the triangulated category generated by
add(T ). Thus, we will have a full, triangulated subcategory of perA1 which
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is closed under direct sums and summands, and which contains all indecom-
posable projective modules. Since any object in perA1 can be constructed
from the indecomposable projectives using direct sums, direct summands,
shifts and cones, this must generate all of perA1.

So we just need to find a distinguished triangle where one term is P2,
and the other terms are direct summands of T . In addition to P1 and P3,

the last direct summand of T is P2
i−→ P1. Note that the cokernel of i is I1,

and that the short exact sequence P2
i−→ P1

p−→ I1 defines a chain map

· · · 0 P2 P1 0 · · ·

· · · 0 0 I1 0 · · ·

i

p

This is a quasi-isomorphism, hence an isomorphism in Db(A1). So up to
isomorphism, I3 is a direct summand of T , which means that we get a
distinguished triangle on the form we want from the short exact sequence

above, namely P2
i−→ P3

p−→ I1  . We conclude that add(T ) generates perA1

as a triangulated category, which means that both conditions are satisfied.
Thus, T is a tilting complex over A1.

Now, let’s look at the endomorphism ring of T . Since the direct sum-
mand P2 → P1 is isomorphic to I1, we have that T ' I1 ⊕ P1 ⊕ P3, which
is easier to work with. Since Hom commutes with direct sums, it is enough
to consider the homomorphisms between the direct summands. Each of the
direct summands has endomorphism ring isomorphic to k (I1 and P3 are
simple. A map P1 → P1 consists of 3 scalar multiplications, but commuta-
tivity ensures that they must be equal). The only nonzero homomorphism

between different direct summands are P3
a−→ P1 and P1

b−→ I1, and they
compose to zero. Altogether we can look at this as a path algebra, and
write it as

End(P3)
a◦−−−→ End(P1)

b◦−−−→ End(I1), ba = 0

We observe that this is isomorphic as an algebra to Aop2 , so we get that A2 '
EndDb(A1)(T )op. This means that T satisfies the conditions in Rickard’s
Mortia theorem, and we conclude that A1 and A2 have equivalent derived
categories.

In this case, there are techniques we could use to calculate Db(A1) and
Db(A2) directly, and see that they are equivalent. But for more complicated
examples, this may not be possible. In that case, Rickard’s Morita theorem
is probably our best bet to check if two rings are derived equivalent.
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Appendix A

Some useful results

A.1 Trivial summands in complexes

Since we are working with right bound complexes of projective modules up
to chain homotopy, there are some useful techniques we can employ. The
first is called to add a trivial summand, and actually holds for any complex
in the homotopy category K(Λ). The idea is that if you take a chain complex

of modules and add a term of the form M
1−→M , then the resulting complex

will be homotopy equivalent to the one you started with (that is, isomorphic
in K(Λ)).

Theorem A.1.1. Let X be any complex in K(Λ), and let M be any Λ-
module. Denote by X ′ a complex which is equal to X, but where you have
added a copy of M to degree i and i+1, with the identity map between them.
Then X ′ is homotopy equivalent to X, hence isomorphic in K(Λ).

To prove this take a complex in K(Λ)

· · · Xi−1 Xi Xi+1 Xi+2 · · ·d d d d d

and by adding the summand in degrees i and i+ 1, we get

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·d

(
d
0

) (
d 0
0 1

)
( d 0 ) d

To show that they are homotopy equivalent, we need to find two maps
between them such that both compositions are homotopic to the identity.
Now consider the following diagram
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· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

· · · Xi−1 Xi Xi+1 Xi+2 · · ·

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

· · · Xi−1 Xi Xi+1 Xi+2 · · ·

d

(
d
0

)

1

(
d 0
0 1

)

( 1 0 )

( d 0 )

( 1 0 )

d

1

d d

1

d

( 1
0 )

d

( 1
0 )

d

1

d

(
d
0

)

1

(
d 0
0 1

)

( 1 0 )

( d 0 )

( 1 0 )

d

1

d d d d d

The last two vertical chain maps compose to the identity on each Xi, so
all we need is to show that the composition of the first two vertical chain
maps is homotopic to the identity. Composing the first two chain maps gives
the following chain map

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

d

(
d
0

)

1

(
d 0
0 1

)

( 1 0
0 0 )

( d 0 )

( 1 0
0 0 )

d

1

d

(
d
0

) (
d 0
0 1

)
( d 0 ) d

To see that this is homotopic to the identity, simply observe that in the
difference between the identity and the composition, the maps in degrees i
and i + 1 are ( 1 0

0 1 ) − ( 1 0
0 0 ) = ( 0 0

0 1 ), and in all other degrees the maps are
zero. It is then easy to see, by the following diagram, that this difference is
null-homotopic, since every vertical map factors as wanted.

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

· · · Xi−1 Xi
⊕
M Xi+1

⊕
M Xi+2 · · ·

d

(
d
0

)

0

(
d 0
0 1

)

( 0 0
0 1 )

0

(
d 0
0 0

)

( 0 0
0 1 )

( 0 0
0 1 )

d

0
0

d

(
d
0

) (
d 0
0 1

)
( d 0 ) d
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Thus we have shown that the two complexes are homotopy equivalent.

This means that if you take a complex and addM
1−→M as a direct summand

in some degree, then the the complex you end up with is isomorphic in the
homotopy category to the one you started with. In other words, adding a
trivial direct summand doesn’t change a complex in K(Λ).

A.2 Degreewise split exact sequences of complexes

Lemma A.2.1. Any degreewise split exact sequence of complexes induces a
distinguished triangle in the homotopy category.

Proof. Take a short exact sequence

0 A B C 0α β
,

where Bk ' Ak
⊕
Ck, with maps sk and πk for each k such that skαk = idAk

and βkπk = idCk . We then get a map δ : C → A[1], given by sk+1dkBπ
k : Ck →

Ak+1. This gives us a triangle

A B C A[1]α β δ ,

which is distinguished in the homotopy category because it is quasi-isomorphic
to the triangle

A B Cone(α) A[1]α .

A.3 Total complex of the Hom-functor

Let X be a complex of Γ-Λ-bimodules, and let M be a complex of Γ-modules.
We obtain a new complex by forming the double Hom complex given by X
and M , and then forming the product total complex of that. This will be
a complex of Λ-modules, which we will denote as HomΓ(X,M), and whose
components and differentials are given as follows

HomΓ(X,M)n =
∏
i∈Z

HomΓ(Xi,M i+n)

∂ : HomΓ(X,M)n HomΓ(X,M)n+1

(fi)i∈Z (dM ◦ fi − (−1)nfi+1 ◦ dX).

Notice that the elements of HomΓ(X,M)n are collections (fi)i∈Z of mor-
phisms in each degree from X to M [n], but these morphisms don’t neces-
sarily commute with the differentials. Now we have the following lemma
concerning the homologies of this complex
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Lemma A.3.1. If X is a complex of Γ-Λ-bimodules and M is a complex of
Γ-modules, then

HnHomΓ(X,M) = HomK(Λ)(X,M [n])

Proof. First, we see that the n-cycles are given by

ZnHomΓ(X,M) = Ker (∂n)

=
{

(fi)i∈Z ∈ HomΓ(X,M)n | dM ◦ fi = (−1)nfi+1 ◦ dX ,∀i ∈ Z
}
,

which is precisely the condition we require for (fi) to be a chain map from
X to M [n]. In other words, ZnHomΓ(X,M) = HomC(Λ)(X,M [n]). For the
n-boundaries we have

BnHomΓ(X,M) = Im (∂n−1)

=
{

(gi)i∈Z ∈ HomΓ(X,M)n | gi = dM ◦ fi + (−1)nfi+1 ◦ dX ,∀i ∈ Z
}
,

where (fi) are maps from Xi to M i+n−1. This is the definition of (gi) being
null-homotopic, which means that BnHomΓ(X,M) = {null-homotopic
maps in HomC(Λ)(X,M [n])}. So the n-th homology of the complex is

HnHomΓ(X,M) = Zn/Bn = HomC(Λ)(X,M [n])/{null-homotopic maps},

which is precisely how morphisms are defined in the homotopy category. So
HnHomΓ(X,M) = HomK(Λ)(X,M [n]), and in particular H0HomΓ(X,M) =
HomK(Λ)(X,M).
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