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Abstract

This thesis is about the cryptographic voting protocol Prêt à Voter. This
is a protocol that has been used in elections and could be applied to
more in the future, whether it be electronic or traditional elections. Some
variations that have been or could be attempted are described, and the
differences are discussed. Then two particular variations are described in
detail. Finally the security of the protocols is demonstrated, in terms of
privacy, coercion-resistance, and verifiability.
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Part I

Introduction
Democracy is one of the most important and valued aspects of our modern
society, and elections are the way in which we apply it. It is crucial that we
continue to work on improving our current practices worldwide to ensure voters
have security and privacy. Cryptography is often used for this purpose, and in
this paper we will discuss a recent suggestion for a secure voting protocol: Prêt
à Voter.

One important factor this protocol attempts to address, that other systems
do not, is complete privacy for the voter such that no one can find out how an
individual voted, even with access to their submitted ballot paper. This avoids
the problem of corrupt institutions, governments or coercers who may threaten
the voter’s liberty to vote for who they want.

Electronic voting, which has both positive and negative aspects, is another
topic to consider but the underlying protocols are important to address, what-
ever method of voting is used.Prêt à Voter is such a protocol, with many varia-
tions and applications, whether in electronic or traditional elections with phys-
ical ballot papers.

We will describe a few of these variations in Part I, and discuss the differences
between them. We will then outline some definitions, protocols and concepts
to be applied throughout the paper in Part II. In Part III, we will outline two
specific variations and look at these in more detail, discussing the choices for
subprotocols and describing the specific players and processes. Finally in Part
IV, we will define our security goals and prove that our variations are secure
and according to our definition, before demonstrating some possible attacks that
could be discussed in future papers.

First, we will describe the basic elements of some variations that have been
proposed and the differences between them, specifically the Prêt à Voter Classic,
Scratch & Vote and the vVote variations.

1 The Prêt à Voter Classic Variation

The original version of Prêt à Voter was created by Peter Ryan in 2005. It
is a cryptographic protocol that aims to guarantee privacy in election voting
systems. In this section I will go through the processes involved in voting in
Prêt à Voter Classic, describing the players and their roles, and then describe
the processes taking place in the rest of the protocol. The other variations
discussed below are all based on this protocol, so the basic principles remain
the same.
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Candidate List Your Vote
Karl
Rosa
Thomas
Helen X

F8A2kL
Destroy this side Keep this Side

Table 1: An example of a Prêt à Voter ballot.

1.1 The Voter’s Experience

We call our registered voter Alice. Alice chooses one ballot, as shown in Table
1, from a pile of sealed envelopes at random, and takes it to a private voting
booth. In the private booth, Alice makes her vote by putting a cross on the
right hand side, against her chosen candidate. The order of the candidates is
randomised for each ballot so it is crucial for privacy that the booth is private
and no one knows the order of her ballot except Alice herself.

Then, Alice detaches and discards the left hand side (with the order of
candidates on), and keeps the encrypted right hand side. Now Alice leaves the
booth, and may cast this right hand side as her vote, in the presence of an official.
The ballot is read by a device which records the cryptographic information at
the bottom; we can call this the ballot cipher, or ψ. We use τ as an indicator
for which cell Alice crossed. A digital signature is then computed for {τ, ψ},
and this is printed onto the receipt, which she may keep.

The device that stores the votes is often a Web Bulletin Board (WBB). This
is an authenticated public broadcast channel which publicly displays certain
information such as the submitted ballots, and proofs of correct decryption,
so that Alice may verify her vote was cast as intended, and public auditors
may verify the protocols were carried out correctly. Other players may include
Helper Organisations, which may assist in receipt verification or with the voting
process in general. It is preferable that they are independent from the Officials.
The only essential players are Alice, the Officials, and the WBB (or equivalent)
which stores and displays the encrypted votes and decrypts them for tallying.
[1]

1.2 Other processes

The first stage of any Prêt à Voter system is the Ballot Generation. The Ballot
consists of two halves which can be detached from each other after the voting
process. On the left hand side, LHS, is a detachable list of Candidates, placed
in random order for each ballot. On the RHS are the boxes the voter can choose
from, and some encrypted information, so that the system can later decipher
the candidate order.

Once created, each individual randomised ballot must be sealed in an en-
velope to ensure only Alice knows the order of the candidates on her ballot.
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Candidate List Your Vote
Karl
Rosa
Thomas
Helen X

Table 2: An example of a Scratch & Vote ballot.

An alternative method is for the randomised ballots to be printed as needed,
within the privacy of the booth, but this relies on an extra player, the printer,
not being manipulated or observed by outside sources. Other variations do use
this method of printing on demand.

After the vote has been cast, there is the Vote Processing stage, which
includes mixing, decrypting and tallying. The specifics of this stage vary de-
pending on the type of Prêt à Voter being used, however the crucial idea is that
no one can perform end-to-end matching.

The final stage is Auditing, in which we ensure end-to-end verifiability. In-
dividual voters are able to verify their votes were cast correctly, and public
auditors can check that the mixing, decrypting and tallying were performed
correctly, and the system is working as intended.[2]

2 The Scratch & Vote Variation

The Scratch & Vote variation was invented by Ben Adida in 2006. It takes the
concept of Prêt à Voter paper voting, but encodes the candidate order in a more
novel way, utilising barcodes and scratch surfaces.

2.1 The Voter’s Experience

The first stage of the Scratch & Vote system is similar. Alice obtains a ballot
with randomised candidate order on the left, which the officials should not see,
and scannable boxes on the right. As in Prêt à Voter, these two halves can be
detached. In this variation a 2D-barcode is embedded below the boxes, and a
scratch surface below that. The scratch surface should also be separable from
the right half. We demonstrate what this ballot looks like in Table 2.[3]

Once the vote has been made, the halves are separated and the left half is
discarded. As long as the scratch surface is intact, the Official detaches it and
discards it. The checkmark and barcode can then be scanned, and kept as a
receipt. As with Prêt à Voter Classic, the votes are verifiable by individual
voters and the processes are verifiable by public auditors.
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2.2 Other processes

An advantage of the 2D-barcode and scratch surface is that the auditing can
be done immediately and without election official intervention. The ciphertexts
required for the candidate order on one ballot are encrypted in the 2D-barcode,
whilst the randomisation values used to generate these ciphertexts are printed
under the scratch surface.

Before voting, the voter may scratch a random spare ballot, in order to
verify that the candidate order is as the randomisation value suggests. This
essentially is a way of verifying the correctness of the ballots ‘live’, so that the
voters feel more secure voting. Then they destroy this ballot as scratching the
surface compromises the secrecy, and they take a fresh ballot to vote with.

In this system a Help Organisation of some format would be useful in ex-
plaining the system fully to ensure voters do not vote with a spoiled ballot, and
that they may verify the correctness of the ballots by spoiling a spare one and
ensuring the randomisation values correspond to the encrypted candidate order.
The Officials also play an important role, in discarding the scratch surface part
of the ballot, unscratched, with plenty of observers, including the voter.

3 The vVote Variation

The vVote system is an electronic voting scheme based on the Prêt à Voter
system, which was actually used in the Victorian State Election in 2014. [4] As
such, it is specialised for the Australian voting system. It is a good example of
how Prêt à Voter protocols may be adapted for specific situations, and shows
they are considered secure enough to be used in large elections.

3.1 The Voter’s Experience

First, Alice is marked off the electoral roll and her ballot is printed with the
candidates in a random order, along with a QR code encrypting the candidate
order. At this stage, Alice may ask for the ballot to be audited to verify it
matches the encryption the system is committed to. In this case, a new Candi-
date List will be printed afterwards as an audited one cannot be used to vote.
Once Alice has verified the system is working, she takes her new Candidate List
into a private booth.

In the voting booth, an Electronic Ballot Marker, commonly a tablet, is used
by Alice to scan the QR code, which launches the vote capture application, on
which Alice can enter her vote. In the Australian system, candidates are or-
dered in preference, so this list is then printed as a Preferences Receipt. This
receipt doesn’t list the actual candidates, instead just the order, for example
{4, 1, 2, 5, 3} if there are 5 candidates, corresponding to Alice’s randomised can-
didate order. Then, Alice can verify that the preferences match the candidates
on the ballot she intended to vote for, and if it is incorrect, Alice may cancel
the vote at this point by supplying the Candidate List to an official. Once Alice
is content with her Preference Recipt, the Candidate List must be destroyed for
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secrecy. Alice may keep Preference Receipt, and can use it later for verification
by checking the WBB to ensure her vote was recorded.

3.2 Other processes

The system has many key components. First, the print-on-demand printer is a
computer and printer which generates randomised candidate orders along with
the QR code encrypting this order, and then prints them on demand. This
works in conjuction with some kind of Randomness Generation Service (RGS)
which provides the random element for the process. This ensures no one has
access to what any individual voters’ ballot will look like.

The Electronic Ballot Marker (EBM) is a computer that enables the voter
to fill in their ballot and sends the results to the WBB. This variation also sends
the votes through a series of Mixnet servers, in order to shuffle the votes and
ensure votes cannot be linked to individual voters, so that privacy is guaranteed.
We will discuss Mixnet shuffles in more detail for one of our variations that we
prove to be secure.
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Part II

Tools
In this section we will outline some tools which will be used or referred to
throughout the rest of the paper, as we describe our particular variations of
Prêt à Voter and prove they are secure. Specifically, we will outline how Paillier
Encryption, Cut-and-Choose and Mixnets work, define some properties related
to the security of cryptosystems and present some protocols which will be used
in the security proof.

4 Paillier Cryptosystem

In this section we will outline the Paillier cryptosystem, and describe some of
its properties and why they are useful when applying it to the Prêt à Voter
protocol.

Pascal Paillier invented the public key Paillier cryptosystem in 1999 [5], and
it is a probabilistic asymmetric algorithm. It is considered to be applicable to
various situations such as online voting, computation outsourcing and electronic
cash. It is also useful in the Prêt à Voter protocol due to some of its properties
that we will discuss soon.

4.1 Outline of the Paillier cryptosystem

We will now give a technical outline of the algorithms involved in key generation,
encryption and decryption within the Paillier cryptosystem. Note that in these
schemes the notation x

y denotes finding the quotient, i.e. the largest integer
z ≥ 0 s.t. x ≥ zy.

Key Generation

1. Choose two large, distinct primes p, q at random such that
gcd(pq, (p− 1)(q − 1)) = 1.

2. Compute n = pq and λ = lcm(p− 1, q − 1).

3. Select a random integer g ∈ Z∗n2

4. Check that n divides the order of g by ensuring µ = ((gλ mod n2)−1)−1
n

exists.

Now we have obtained the public encryption key, which is (n, g), and the private
decryption key, (λ, µ).

8



Encryption Assume we have a message m, to encrypt such that 0 ≤ m < n.

1. Select a random r such that gcd(r, n) = 1.

2. Compute the ciphertext with: c = gm · rn mod n2.

Decryption

1. Take as input the ciphertext c.

2. To decrypt compute m as m = cλ mod n2−1
n · µ mod n.

So this summarises the Paillier Encryption system. It is worth noting that
one way of ensuring that gcd(pq, (p − 1)(q − 1)) = 1 is making sure p, q are
of equal length. In this case, there is a simpler variant of the key generation,
described in ‘Introduction to Modern Cryptography: Principles and Protocols’
[6] that we can quickly outline. In this variant we set g = n + 1, λ = ϕn and
µ = ϕ(n)−1 mod n.

We will stick with the more general variant for our purposes. Also, there
is a further generalization of the cryptosystem, known as the ‘D̊amgard-Jurik
cryptosystem’, which uses computations modulo ns+1 instead of n2. Since our
list of messages needing to be encrypted (the list of candidates) is unlikely to
be very large in practice, we don’t need this generalization so we will use the
original.

We will prove the correctness of this cryptosystem to show it decrypts cor-
rectly. First we must define the n-th residuosity class of w

Definition 4.1. The n-th residuosity class of w with respect to g is the
unique integer x ∈ Zn such that ∃y ∈ Z∗n such that

w = gx · yn mod n2

and is denoted [[w]]g.

Theorem 4.2. The Paillier cryptosystem decrypts correctly.

Proof. We must show that

m =
cλ mod n2 − 1

n
· µ mod n =

cλ mod n2 − 1

n
· ((gλ mod n2)−1)− 1

n
mod n

First we define the L-function as L(u) = u−1
n for u s.t. {un2|u = 1 mod n}.

Then we notice that this can be rewritten as

m =
L(cλ mod n2)

L(gλ mod n2)
mod n

It can be shown that for any w ∈ Z∗n2 and g1, g2 ∈ Z∗n2 , the identity holds
such that

[[w]]g1 = [[w]]g2 [[g2]]g1 mod n.
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Using this identity we can apply it to our equation above to get

L(cλ mod n2)

L(gλ mod n2)
=
λ[[c]]1+n
λ[[g]]1+n

=
[[c]]1+n
[[g]]1+n

= [[c]]g mod n

From the definition we have [[c]]g mod n is such that c = g[[c]]g · rn mod n2,
hence [[c]]g = m mod n as required.

4.2 Useful Properties

There are two properties of Paillier Encryption we will discuss that are partic-
ularly revelant and helpful in creating a secure voting protocol. These are its
non-deterministic encryption and its homomorphic properties.

Non-deterministic Encryption The presence of the randomly chosen inte-
ger r in the encryption process is particularly useful in creating a secure cryp-
tosystem. This is because it creates a non-deterministic encryption, i.e. for a
given message and key, the system does not create the same ciphertext each
time.

This makes it much more difficult for an adversary to see repeated ciphertexts
or patterns and attempt to link them to messages (in our case candidates). This
means the voters have more privacy than if all voters who voted for a candidate
used exactly the same ciphertext.

Homomorphic Properties The encryption function for Paillier is additively
homomorphic which gives it useful features for the process of tabulating the final
votes without compromising voter privacy. We will go more into depth on this
later, but essentially this property allows the messages to be added together
without losing information, assuming the messages are chosen correctly.

Also multiple ciphertexts may be decrypted together as the product of two
ciphertexts will decrypt to the sum of their plaintexts, i.e.

D(E(m1, r1) · E(m2, r2) mod n2) = m1 +m2 mod n

We will now show that Paillier Encryption has the homomorphic property over
addition.

Theorem 4.3. Paillier Encryption is additively homomorphic

Proof.

E(m1, r1) · E(m2, r2) mod n2 = (gm1rn1 mod n2) · (gm2rn2 mod n2)

= gm1+m2(r1 · r2)n mod n2

= E(m1 +m2)

(1)

So this shows it has the homomorphic property over addition, and trivially,
applying the correct decryption to both sides we have also shown that multiple
ciphertexts can be decrypted together.
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A B

Public input: n, c

Private input for A: r

Commitment, α

Challenge, β

Response, γ

Figure 1: Σ-Protocol

5 Definitions

We now define some useful properties that will be referred to later, specifically
properties of proofs for use in showing that our cryptosystem is secure according
to our security goals. For the definitions of properties of a proof, we set up the
conversation that the proof takes place in. It is between a prover, P, and a
verifier, V. P claims something and they must prove to V that this is true, who
will then accept or reject the proof.

Definition 5.1. A proof has Completeness if, assuming P’s claim is correct
and that the verifier V is honest, V will accept the proof every time, i.e. with
probability 1.

Definition 5.2. A Σ-Protocol is a protocol in the form shown in Figure 1. It
is a conversation between A and B of the form (α, β, γ). There is a public input
which both receive, (n, c), and a private input for A, witness r. The public
input is tied to the private input in some way. The aim of the protocol is for A
to prove to B that they know the witness r without revealing it to B. A sends
a commitment α, receives a challenge β, then sends the response γ.

This format is used for A to prove to B, for example, that c encrypts m,
without revealing the witness w used in this encryption. We will use it later
in our protocols and apply Paillier encryption to a Σ-Protocol to prove correct
decryption.

Definition 5.3. A proof has Special Soundness if, given two accepting con-
versations from Σ-Protocols, (α, β, γ) and (α, β̃, γ̃) with the same input x and
β 6= β̃, it is easy to compute the witness r.

Definition 5.4. A Zero-Knowledge proof is such that, if P’s claim is true
then there is no V, even if it is cheating, that can learn anything except this fact
from the protocol. For a non-interactive protocol, Zero-Knowledge is known as
non-interactive ZK or NIZK.

Definition 5.5. A Special Honest Verifier Zero Knowledge proof, SHVZK,
is such that there exists a simulator S which with input c, β ouputs an accepting
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conversation (α, β, γ), with the same probability distribution as conversations
between (honest) P and V with input c and challenge β.

Note that we will use the simulator S in a protocol later.

6 Protocols

We now outline some protocols which will be used later to represent a simulation
of the Prêt à Voter Protocol, in order to prove security properties.

6.1 Protocol for n-th powers

This protocol between the prover, P, and the verifier, V, has the purpose of P
being able to prove to V that they have the private value r such that c0 = rn.
This also proves to the verifier that c0 is indeed an n’th power.

We will use this protocol later in the security proof of Prêt à Voter to show
that it correctly decrypts the ciphertexts.

Input: n, c0
Private Input for P: r such that c0 = rn

1. P chooses ρ, sends α← ρn to V.

2. V chooses a random challenge, β, and sends it to P.

3. P calculates γ ← ρrβ mod n and sends to V.
V verifies that γn = αc0

β mod n2.

If the verification is a success, and c0,α,γ are prime to n, it shows that c0 is an
n’th power. We refer to this protocol as Pn from now on.

Proof of Correct Decryption We examine the case where the voter would
like to verify their vote was correctly decrypted, without knowing or leaking
any additional information about the protocol, using an HVZK proof, (Honest
Verifier Zero-Knowledge). [9] Note that this is not a zero-knowledge proof, and
relies on an honest verifier, however we can obtain security in the random oracle
model as we will be using a non-interactive variant based on the Fiat-Shamir
heuristic.

Suppose prover P presents a voter V with ciphertext c, claiming it encodes
m. To prove this is equivalent to proving that c0 = c(1+n)−m mod n2 is an n’th
power, by a simple rearrangement of the encryption formula. In other words, we
must show there exists r such that rn = c0. The Protocol for n-th powers, Pn is
a Protocol which fulfills this purpose, and we now prove it is a Σ-Protocol with
Completeness, Special Soundness and SHVZK, and hence it decrypts correctly.

Theorem 6.1. Pn is a Σ-Protocol with Completeness, Special Soundness and
SHVZK.

12



Proposition 6.2. Pn is a Σ-Protocol.

Proof. It is trivial from comparing their forms that that the format of the con-
versation Pn is the same as that of a Σ-Protocol.

Proposition 6.3. Pn has Completeness.

Proof. From the definition, we require that if P and V are honest, then V should
accept the proof with overwhelming probability. For V to accept, we just require
that γn ≡ αc0β mod n2. So assuming P has ρ and is honest, this is clear, as we
have:

γn ≡ (ρrβ)n ≡ ρnrnβ ≡ αc0β mod n2

So the protocol has completeness.

Proposition 6.4. Pn has Special Soundness.

Proof. Suppose (α, β, γ) and (α, β̃, γ̃) are obtained from the Pn protocol, β 6= β̃.
This gives us

γn ≡ αxβ mod n2

γ̃n ≡ αxβ̃ mod n2

Which leads us to:
(
γ

γ̃
mod n)n = c0

β−β̃ mod n2

We have that gcd((β − β̃), n) = 1 and so there must exist a, b such that
an+ b(β − β̃) = 1. Recall that only P knows r such that c0 = rn mod n2.
Let c′0 = c0 mod n and r̃ = c′0

a
(γγ̃ )b mod n.

We want to show that r̃ = r, as this shows that the protocol has special sound-
ness. Note that:

c′0
n

= (c0 mod n)n = c0
n

Then, we can calculate

r̃n = (c′0
a γ

γ̃

b
)n = (c′0

a
)n(

γ

γ̃

b
)n = c0

anc0
b(β−β̃)

Since an+ b(β − β̃) = 1 this gives us

c0
anc0

b(β−β̃) = c0 mod n2

Hence, we have r̃n = c0 mod n2, so r̃ = r as required, and the protocol has
Special Soundness.

Proposition 6.5. Pn is SHVZK.
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Proof. Finally we need to prove the protocol is Special Honest Verifier Zero
Knowledge, such that there exists an adversary A with input {c0, β} that can
successfully output an accepting conversation {α, β, γ} with the same probabil-
ity distribution as between an honest P and V, with input c0 and V’s challenge
being β. So we let the input for S be c0 ∈ Z∗n2 , n and β. We choose a random
γ ∈ Z∗n and let

α = γnc−β0 mod n2

This gets us an accepting conversation as required.
In the case of a conversation between P and V, P chooses ρ uniformly at ran-

dom and computes α, γ. In this case, S chooses random γ in the same manner,
then computes α. Furthermore, both are chosen from the group modulo (and
relatively prime to) n. Therefore S will have the same probability distribution
as the real conversation between P and V, so Pn has the property SHVZK.

So we have proven our proposition, hence completing our proof of correct
decryption.

6.2 Protocol for 1-out-of-2

This Protocol is used for P to prove to V that a ciphertext c is either the
encryption of m0 or m1.

Input: cb, c1−b ∈ Z∗n2 , n
Private Input for P: r ∈ Z∗n such that cb = rn

1. P chooses ρb ∈ Z∗n at random and a random challenge β1−b.
Then P applies the S simulation described in the definition of
SHVZK, with input n, c1−b, β1−b. From S, P receives the conversation
(α1−b, β1−b, γ1−b).

P sends αb ← ρb
n2

and α1−b to V.

2. V chooses a random challenge β̃ and sends it to P.

3. P computes βb = β̃ − β1−b.
P computes γb = ρbr

βb mod n.
P sends βb, β1−b, γb, γ1−b to V.
V verifies that:
β̃ = βb + β1−b,
γb
n ≡ αbcbβb mod n2 and

γ1−b
n ≡ α1−bc1−b

β1−b mod n2.

If the verification is a success, and α0, α1, γ0, γ1 are relatively prime to n, then
this proves that either c0 or c1 is the correct encryption, without revealing which.
This protocol can be used as a method for verifying the ballots, however for our
variation we will not be using it.
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6.3 Cut-and-Choose Protocol

The Cut-and-Choose protocol is used for P to prove to V that, for example,
n ciphertexts are generated correctly with a very high probability. We assume
that P has the randomness, ri to decrypt the corresponding ciphertexts, ci such
that, if encrypted correctly, ci ← E(mi, ri). It goes as follows:

Input: ci for i = 1, . . . , n.
Private Input for P: ri s.t. D(ci, ri) = mi.

1. V chooses x ciphertexts at random, 0 < x ≤ n
2

2. P reveals ri and mi for all x ciphertexts.

3. V verifies that ci = E(mi, ri) for all selected i’s.

Depending on the size of x, this method is a simple way to confirm that the
n− x remaining ciphertexts are highly likely to be correctly encrypted as well,
because of the random nature V selects the ciphertexts for decryption. We will
use this protocol when verifying the correctness of the ballots, as it is a simple
and effective way to do so.

6.4 Mixnet Shuffle

We will now summarise the basics of a decrypting mixnet based on a public key
cryptosystem (K, E ,D).
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Players: Electoral commission EC, Mixnet servers Mi for i = 1, . . . , k.
Key generation:

1. EC chooses the public and secret keys (pki, ski)← K for i = 1, . . . , k + 1.

2. EC sets pk = (pk1, . . . , pkk+1).

Encryption: For randomness r = (r1, r2 . . . , rk+1), we encrypt m with:

EM (pk,m; r) = E(pk1, E(pk2, . . . , E(pkk+1,m; rk+1); . . . ; r2)r1)

Mixnet mixing For input c
(i−1)
1 , . . . , ci−1N , each mixnet server mixes as follows,

for l = 1, . . . , N :

1. c̃il ← D(skl, c
i−1
l )

2. Choose a random permutation π.

3. cil ← c̃π(l)(i)

4. Prove that c
(i−1)
1 , . . . , c

(i−1)
N decrypt to a permutation of c

(i)
1 , . . . , c

(1)
N

Decryption Finally, the EC decrypts with

vl ← D(skk+1, c
(k)
l ),

and outputs l proofs of correct decryption.

The zero-knowledge proofs of correct shuffles are not included here but for fur-
ther reading there is, for example, Bayer and Groth’s ‘Efficient Zero-Knowledge
Argument for Correctness of a Shuffle’. [11]

7 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic, coined in 1986 by Fiat and Shamir, is a technique
for replacing the interactive part of a proof of knowledge, with a non-interactive
random oracle. It is only applicable to public-coin interactive proofs, i.e. proofs
in which the Verifier’s random choice is made public, as it is in our protocols.
We will describe how the random oracle model works, in theory and in practice,
and then give an example of how this applies to a proof of knowledge.

7.1 Random Oracle Model

A random oracle is a theoretical oracle, used to prove a level of security in cryp-
tosystems. From any unique input they respond with a truly random response.
This response is taken uniformly from the output domain such that if the same
input is submitted again, the same response will be given from the random or-
acle. It can be seen as a map from all the possible inputs to their fixed random
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responses. This is a theoretical model as no function given by a finite algorithm
may implement such an oracle, according to the Church-Turing thesis.

However, for our purposes we can replace the random oracle model with a
cryptographic hash function, as this gives a sufficient level of security for our
security goals. Hash functions should act as much as possible like a random
oracle, whilst still being computable and deterministic. We will not define what
specific hash function for our proofs, but instead refer to a generic one, H.

7.2 Application to Pn

We will now apply the Fiat-Shamir Heuristic technique to the Protocol for n-th
powers we described in the previous section, Pn. Note that the non-interactive
version of Pn we demonstrate is the same except for step 2, where instead of the
verifier interacting and choosing β, the prover chooses it with a hash function.

Non-Interactive Version of the Protocol for n-th powers

1. P chooses ρ, sends α← ρn to V.

2. P chooses β ← H(α, . . .) from a hash function.

3. P calculates γ ← ρrβ mod n and sends to V.
V verifies that γn = αc0

β mod n2. If this is the case, and c0,α,γ are prime
to n, it shows that c0 is an n’th power.

So with the use of the Fiat-Shamir Heuristic we have converted an interactive
proof of knowledge to a non-interactive version. We can use this to convert a
SHVZK proof into a NIZK (Non-Interactive Zero Knowledge) proof. We apply
this method, as demonstrated, to our SHVZK proof of correct decryption to
obtain a NIZK proof of correct decryption, as the change in this step makes
no difference to the proof. As such, we now have a NIZK proof of correct
decryption, which applies to Paillier encryption. Since the protocol is now non-
interactive, we will refer to it as the (ZK) proof of decryption later on.
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Candidate List Your Vote Candidate List Your Vote
Karl Thomas
Rosa Helen X
Thomas Rosa
Helen X Karl

F8A2kL v5EA7M
Destroy this Side Keep this Side Destroy this Side Keep this Side

Table 3: Two examples of Prêt à Voter ballots, with randomised candidate
orders, both with votes for the same candidate.

Part III

Choices for subprotocols of two
Prêt à Voter Variations
In this section we will specify the two variations we are going to analyse and give
security proofs for in the final section. For each subprotocol in the variation, we
may mention a few options that could be implemented, then present which one
we will choose for our variants. We will refer to these two variants as Paillier
Prêt à Voter and Prêt à Voter with Mixnets.

8 Implementation of Paillier Prêt à Voter and
Prêt à Voter with Mixnets

8.1 Ballot Generation

Assume that there are R candidates in the election. The ballots in Prêt à Voter
Classic are created in the form shown in Table 3. A randomised candidate list
is generated on the left hand side, whilst the ballot boxes and an encryption
key which encrypts the candidate order is on the right hand side. There are
multiple ways to do this.

For our variants, we create a player known as the Electoral Commision, EC,
that generates the keys to be used in encrypting and decrypting the ballots.
They send the keys to a player Ballot Generator, BG, which creates the ballots.

Since we want to prove two simple variations, we simplify the ballot encryp-
tion slightly, so that the encryption doesn’t need to be combined with the mark
in a separate protocol. Instead, we generate ballots with a different ciphertext,
ci for each candidate, Ai for R candidates, i = 1, . . . , R, as demonstrated in
Table 4. Then the ballots are sealed in indistinguishable envelopes so that the
candidate list order for each ballot is kept a secret only known to the voter who
selects that ballot.
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Paillier Prêt à Voter For this variant, each ballot is encrypted using the
Paillier cryptosystem, such that ci = gAi · rni mod n2 for a public key (n, g) and
random elements ri for i = 1, 2, . . . , R, as described in the Tools section. We will
assign each candidate Ai to be Li in order to accomodate simple homomorphic
tabulation in the counting stage.

This is a useful cryptosystem for voting system purposes for a couple of
reasons. It is an additive homomorphic cryptosystem, so the counting stage is
simple to perform, as homomorphic tabulation can be used. Also, because of
the random element in the encryption, a candidate’s encryption looks different
for each ballot, so if an adversary can see multiple ballots they cannot easily see
which ciphertext belongs to which candidate.

Prêt à Voter with Mixnets Mixnets can be done with any public key cryp-
tosystem, (K, E ,D). To keep our security proof more general, we will not specify
this cryptosystem, and instead just assume it is secure and the secret keys do
not leak. The key generation and encryption is done as described in the Tools
section. We can assign each candidate Ai to be represented simply by i, giving
ci = EM (pk,Ai; ri) for i = 1, 2, . . . , R.

8.2 Verifying the correctness of the ballots

This is another area in which there are several methods to choose from. For
example in the vVote variation we briefly described earlier, the voter Alice
may verify the ballots ‘live’, and similarly in the Scratch & Vote variation the
voter may scratch a spare ballot to verify they are generated correctly. These
are based on inidvidual voters verifiying as they go however, so for a more
systematic verification process we will implement the Cut-and-Choose protocol.
We will use it in the same way for both the Paillier and Mixnet variations, and
assign the task to a player Ballot Verifier, BV.

Cut-and-Choose We use Cut-and-Choose, as described in the Tools section,
as it is a simple and effective method for verifying the ballots are generated cor-
rectly. The protocol goes as outlined in the Tools section, where each ciphertext
is checked for each ballot.

Assume there are < L voters. For this instance, we will check half the
ballots, so therefore, there must be at least twice as many ballots generated as
are needed, say 2L ballots in this case. Then, using a random process, this pile of
ballots is divided into two piles say pile A and pile B, of L ballots each. Then the
ballot verifiers can decrypt pile A, and confirm that the encrypted ciphertexts
printed on the right hand side corresponds correctly to the candidates on the
left hand side.

For the Paillier Prêt à Voter variant, verification involves receiving the ran-
domness used from the Ballot Generation, ri, and confirming that

ci = gAi · rni mod n2,
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for all L ballots. Similarly, for the Prêt à Voter with Mixnets variant, the
randomness ri is received and the verifiers check that

ci = EM (pk,Ai; ri)

for all L ballots.
If all L of these ballots are accurate, the ballots have been verified with a

high certainty. Of course, there is a chance the only faulty ballots are in pile B,
but this is extremely unlikely assuming there are multiple faulty ballots. For
example, if there are n faulty ballots, say F = fi : i = 1, ...n, then the chance
of at least one of these being in pile A increases exponentially with the number
of faulty ballots, n, at

Pr(F ∩A 6= 0) = 1− 1/2
n

since each faulty ballot fi is randomly allocated, so has a chance of 1
2 to be in

pile A.
So assuming pile A contains no faulty ballots, we can say with high certainty

that pile B also has no, or insignificant, faulty ballots. So finally we discard
pile A, as its security has been compromised, since the verifiers have seen the
candidate orders, and we use pile B as our verified ballots for use in the protocol.

We chose Cut-and-Choose to verify our ballots as it is very simple to im-
plement in any circumstance, and gives a high probability that the ballots were
generated correctly. In fact, Cut-and-Choose can be applied to any voting sys-
tem with printed ballots. The main problem is that when a very large number
of ballots are being produced, the number that must be checked to give us a
low chance of faults gets very large as well, and this may be time-consuming.

8.3 Vote Casting

The vote casting process is more of a practical choice than a cryptographic
choice, so we will be brief in our discussion. The most important aspect is voter
booth privacy, as the security of the protocol relies heavily on the order of each
voter’s candidate list being known only to that voter. As such, we require a
private voter booth and a system to destroy the left hand side of the ballot in
it. This is the cryptographic requirement, the practicalities of such a system can
be decided by the officials running the election, as long as the intact candidate
orders cannot be recovered and linked to particular voters. Once the left hand
side is destroyed, the right hand side is simply submitted to a ballot box.

8.4 Vote Processing and Counting

The vote processing and counting include any subprotocols that occur once
the votes have been marked, including any shuffling, decryption and tallying
of the votes. For the Paillier Prêt à Voter variant this just includes counting
and decryption, whilst the Paillier Prêt à Voter variant shuffles the votes, then
decrypts them and the counting is trivial.
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Figure 2: Mixnet Shuffle

Paillier Prêt à Voter The main advantage of the Paillier encryption method
is that it is an additive homomorphic cryptosystem, so homomorphic tabulation
can be used in counting the votes. Since we have encrypted votes ci for i =
1, . . . , L, the Electoral Commission computes c = Πci, and using the secret
keys, decrypts this to m =

∑
tjL

j where tj represents the coefficient of Lj , i.e.
the number of votes that candidate Aj received. So m is posted to the Bulletin
Board, BB, as the final result of the election.

Prêt à Voter with Mixnets The Mixnet shuffle is a method that was first
described in 1981 by David Chaum, and is used to take in messages, shuffle
them, and send them back out in a random order. The Mixnet shuffle process
is very useful for voting protocols, as the shuffling ensures that the voters keep
their privacy. Another relevant advantage of the Mixnet shuffle is that it can
take messages from several ‘players’. For example, several voting booths could
send their collected votes to a central Mixnet server.

There are many variations, for example reencrypting Mixnets which would
be suitable for Paillier, but these are complex. Instead for this variation we will
use a decrypting Mixnet for k Mixnet servers M1, . . . ,Mk. We described this
protocol in the Tools section so we will not repeat the details. In summary, the
Electoral Commission first sends the relevant secret keys to the Mixnet servers.
They take as input the encrypted ciphertexts, then they each shuffle the order of
the ciphertexts using random permutations, in order from 1 to k. At each step
they post the output along with a proof of correct mixing to the BB. Finally,

Mk sends c
(k)
1 , c

(k)
2 , . . . , c

(k)
N to the EC that decrypts it to v1, . . . , vN and posts

this, along with the proof of decryption to the BB. The shuffling method, for 3
ciphertexts, is demonstrated in Figure 2.

8.5 Auditing

Auditing is an important process that aims to ensure that individual voters can
check that their votes were cast as intended. Also, public auditors should be able
to check the various subprotocols, and verify the proofs for correct encryption,
mixing and decryption.
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BG VB V

BV BB EC

Figure 3: Player Interactions in Paillier Prêt à Voter

Paillier Prêt à Voter Since the submitted ballots are made public on the
BB, each player may check that their ballot was recorded correctly. As these
ballots are just the right hand side, and only the voters know their corresponding
candidate order, this is enough for voters to audit their personal vote. In addi-
tion, their privacy isn’t being threatened since the ballots posted are encrypted
and aren’t linked to the voter.

For public auditors, who aim to check the accuracy of the entire protocol,
a zero-knowledge proof of correct decryption is needed for the Paillier system.
We described this proof for the n-th power protocol in the Tools section, which
shows that a ciphertext is an n-th power, and hence correctly decrypts. We
also showed it was non-interactive zero-knowledge, by using the Fiat-Shamir
Heuristic. Therefore, public auditors should be able to verify the election was
carried out fairly.

Prêt à Voter with Mixnets Similar to the other variant, the submitted
ballots are made public on the BB, so each player may confirm their own ballot
was recorded correctly.

In order for public auditors to check each step, a zero-knowledge proof of
correct mixing is provided at each step of the Mixnet shuffle process, to show
that each set of ciphertexts is indeed a permutation of the last, without revealing
the permutation itself. Also, a zero-knowledge proof of decryption is provided
by the EC. These zero-knowledge proofs are out of the scope of this paper.

9 Player Interactions in Paillier Prêt à Voter
and Prêt à Voter with Mixnets

We can split these systems into several subprotocols, as we will list in our
description of the processes. We briefly explain which parts of the diagram
correspond to each part of the protocols.

Paillier Prêt à Voter In Figure 3 we demonstrate the interconnected players
in the Paillier Prêt à Voter protocol.
Ballot Generation uses keys generated by the Electoral Commission, EC, then
is carried out in BG. Ballot Correctness verification is an interaction between
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Figure 4: Player Interactions in Prêt à Voter with Mixnets

BG and some Ballot verifiers, BV, followed by BG sending the verified ballots to
the voting booth VB. Marking is an interaction between VB and V, the voter.
Submission is a one way interaction between V and BB, the Bulletin Board.
Decryption takes place in the EC, which sends the results and proofs to the BB.
Tallying and posting of results is an interaction within the BB. Finally, auditing
uses the results posted publicly on the BB.

Prêt à Voter with Mixnets In Figure 4 we demonstrate the interconnected
players in the Prêt à Voter with Mixnets protocol.

As you can see, the interactions are the same, with the addition of the
Mixnet Shuffle that takes place between the BB and the Mixnet servers M1 to
Mk, which post each step and proofs of correct mixing to the BB as well, for
the auditing stage.

Now that we have our different sections outlined, we briefly describe the
players and processes for reference in the security proof.

9.1 Players

The players in the Prêt à Voter protocols are as follows:

1. Electoral Commission, EC: The Electoral Commission generates the
public and secret keys for the Ballot Generator, and also performs the
Decryption stage.

2. Ballot Generator, BG: The Ballot Generator is allocated Ballot Gen-
eration, and is responsible for generating and printing 2L ballots.

3. Ballot Verifiers, BV: The Ballot Verifiers are in charge of Ballot Cor-
rectness verification.

4. Voters, V: The voters are allocated the tasks of Marking and Submission,
as well as the choice to be involved in auditing by checking their vote was
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Candidates Vote Encryption
A1 c1
A2 c2
... ...
Aj cj

Table 4: Encrypted Ballot

cast as expected. Only they can confirm this as only they have seen the
left hand side of their ballot, so can be sure their vote was cast correctly,
just from seeing the submitted right hand side.

5. Bulletin Board: The Bulletin Board is allocated the Tallying and Post-
ing of results, including the proofs for decryption and in the case of the
Mixnet variation, proofs of correct mixing.

6. Auditors: These independent observers perform Auditing, to ensure the
voting procedure was performed fairly and correctly, and votes are de-
crypted as expected. In the case of the Mixnet variant, they also check
that the Mixnets shuffle the ciphertexts correctly.

7. Mixnet Servers, M1, . . . ,Mk: The Mixnet servers are players only in
the variant with Mixnets, and are responsible for the Mixnet Shuffles, as
well as for posting each step of this to the Web Bulletin Board so the
accuracy of the shuffle can be checked in Auditing.

9.2 Description of the Processes

We will describe each stage for the two variants now, demonstrating the sub-
protocols we have described and summarising this part before we move onto the
security proofs.

Paillier Prêt à Voter

1. Ballot Generation The EC generates the public and secret keys, and
sends them to the BG. For< L voters, 2L ballots are generated as shown in
Table 4, where ci are encrypted with the Paillier cryptosystem as described
earlier. At random, L generated ballots are sent to the BV to be verified,
and the remaining L are sent to the VB.

2. Ballot Verification The relevant secret keys are sent from the EC to the
BV, and the ballots are verified, by checking that the candidates encrypt
to the corresponding ciphertexts on the ballots, as expected. Assuming
the ballots are correct, we discard this half of the ballots as their privacy
is corrupted, and confirm that the other L ballots are verifiably correct.
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3. Marking and Submission The voters V enter VB, each take a ballot
and mark their chosen candidate on the appropriate row. Then, in the
secrecy of the booth they tear the two halves apart and discard the LHS
with the candidate list, and leave the booth with the RHS. They submit
this vote, which is equivalent to ci, to the Bulletin Board. The BB then
submits the entire collection of submitted votes to the EC.

4. Decryption The EC, using the secret keys, decrypts and tallies the en-
crypted votes with homomorphic tabulation, to obtain the complete re-
sults of the election, and posts them to the BB, along with a proof of
correct decryption, which we described in the Tools section.

5. Tallying and posting of results The BB is made public and anyone may
audit the entire process, by checking the proof of decryption. Individual
voters may verify that their vote was counted by finding their submitted
ballot on the BB.

Prêt à Voter with Mixnets

1. Ballot Generation The EC generates the public and secret keys, and
sends them to the BG. For < L voters, 2L ballots are generated as shown
in Table 4, where ci are encrypted by a public key cryptosystem, (K, E ,D)
as described earlier. At random, L generated ballots are sent to the BV
to be verified, and the remaining L are sent to the VB.

2. Ballot Verification The relevant secret keys are sent from the EC to the
BV, and the ballots are verified, by checking that the candidates encrypt
to the corresponding ciphertexts on the ballots, as expected. Assuming
the ballots are correct, we discard this half of the ballots as their privacy
is corrupted, and confirm that the other L ballots are verifiably correct.

3. Marking and Submission The voters V enter VB, each take a ballot
and mark their chosen candidate on the appropriate row. Then, in the
secrecy of the booth they tear the two halves apart and discard the LHS
with the candidate list, and leave the booth with the RHS. They submit
this vote, which is equivalent to ci, to the Bulletin Board. The BB then
submits the entire collection of submitted votes to the first Mixnet server.

4. Mixnet Shuffle The Mixnet Shuffle, as described earlier, takes the votes,
shuffles them with a random permutation, then sends it to the next server
for all the Mixnet servers Mk, j = 1, ..., k. For each server there is a proof
of knowledge such that it can be verified later that the shuffle procedure
was done correctly. Finally, the fully shuffled votes, along with the proofs,
are sent to the BB.

5. Decryption The BB sends the encrypted messages to the EC. The EC
decrypts the encrypted votes using the secret keys for the public key cryp-
tosystem, to obtain the complete results of the election, and posts them
to the BB, along with a proof of correct decryption.
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6. Tallying and posting of results The BB is made public and anyone
may audit the entire process, by checking the proof of decryption and the
proofs of mixing. Individual voters may verify that their vote was counted
by finding their submitted ballot on the BB.

The exact calculations carried out by each player will be listed for each variant
in the Security Proof section.
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Sim A

v votes mb such that b ∈ {0, 1}
E(mb) = cb

cb

Choose and send m0,m1

Guess b′

Figure 5: Privacy

Part IV

Security Proofs for Paillier Prêt
à Voter and Prêt à Voter with
Mixnets
In this section we will prove that the two variations, Mixnet and Paillier Prêt à
Voter, are secure. First we set up what it means to be secure for our purposes by
defining privacy, coercion-resistance and verifiability. Then, we provide security
proofs for these. Since these proofs have similarities, there will be progressively
less detail in these proofs. Finally we will provide some remaining attacks that
have not been addressed, and could be considered in future papers.

10 Security Goals

First we must define what we mean by security, and in what context Prêt à
Voter is secure. We will define privacy, coercion-resistance and verifiability, and
say that a protocol is secure if it has all these properties.

Definition 10.1. A system has privacy if the information transmitted from
an individual sender is not accessible by attackers, i.e. if Alice votes for m,
submitting c as her ballot, an attacker cannot determine who she voted for
without access to the secret key.

Privacy can be demonstrated in Figure 5, in which the system has privacy
if the adversary’s advantage in guessing b is negligible, i.e.,

2AdvA = |Pr[b = b′]− 1

2
|

is negligible.
In our protocol, privacy is potentially under threat in the stages Ballot Gen-

eration, Voting and Ballot Submission. So to be convinced our protocol has
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Sim A

v0, v1 vote mb,m1−b such that b ∈ {0, 1}
E(mb) = cb, E(m1−b) = cb−1

cb, c1−b

Choose and send m0,m1

Guess b′

Figure 6: Coercion-Resistance

privacy, there cannot be leaks in any of these stages which would give the ad-
versary an advantage, for example if they obtain a secret key.

Definition 10.2. A system has Coercion-Resistance if, allowing the attacker
to demand coerced voters vote a certain way, the attacker still cannot determine
whether the voter complied. [7]

Coercion-Resistance is demonstrated in Figure 6. Since in the extreme case
that the adversary tells the voter to vote for someone who receives no votes,
coercion-resistance clearly fails, we must assume that each candidate gets at
least one vote, and form a diagram as above.

The adversary coerces a voter to vote m0, and the voter v0 either votes for
m0 or m1, with voter v1 voting the other way. If the system is such that the
adversary has negligible advantage in guessing which voter voted for m0, then
we say the system is coercion-resistant, i.e. if

2AdvA = |Pr[b = b′]− 1

2
|

is negligible then the system is coercion-resistant.

Definition 10.3. A system is verifiable if a player sending a message is able
to prove that their message was received, encrypted and decrypted correctly.

This definition is self-explanatory and we will apply it specifically to our
Paillier protocol in the verification proof.

So we will have defined the protocol as meeting our security goals if it proves
to have the properties of privacy, coercion-resistance and verifiability. We will
prove that Paillier Prêt à Voter and Prêt à Voter with Mixnets have privacy,
then show that Paillier Prêt à Voter has coercion-resistance and verifiability.
The proofs of coercion-resistance and verifiability for Prêt à Voter with Mixnets
are not included, as they are quite similar to the equivalent proofs for Paillier
Prêt à Voter.
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LHS RHS
πi(1) ci,πi(1)
πi(2) ci,πi(2)
. . . . . .
πi(R) ci,πi(R)

Table 5: Generated Prêt à Voter ballot with Paillier encryption.

11 Security Proofs for Privacy

In this section we will prove using the same method that both variations of Prêt
à Voter have privacy, with the assumption that the players are honest. We do
this by setting up several games, proving indistinguishability between them and
setting up Real or Random simulations to show that the adversary has negligible
advantage in their attack.

11.1 Paillier Prêt à Voter

In Figure 7 we demonstrate how this variant is run with the players and what
information is passed between them. We will now explain the specific steps in
the protocol.

Key Generation The Electoral Commission, EC, runs Paillier key genera-
tion, posts the public key (n, g), and keeps the secret key (λ, µ).

Ballot Generation BG Creates ballot #i for R candidates as follows:

ci,j = rni,jg
Lj forj = 1, 2, . . . , R,

where ri,j random elements ∈ Z∗n2 .
Also, choose a random permutation πi on {1, 2, . . . , R}.
The ballot is generated as shown in Table 5.
When ballot #i is chosen for audit by BV: BG gives ri,1, ri,2, . . . , ri,R to BV.

BV computes c̃i,j = rni,jg
Lj for j = 1, 2, . . . , R and checks that ci,j = c̃i,j for

j = 1, . . . , R.

Voting Booth The voter receives ballot #i, and marks #i in position vi.
The marked RHS is recorded on the bulletin board and let ci = ci,vi .

Counting The EC computes c = Πci and decrypts to get m =
∑
tjL

j . They
prove in Zero Knowledge that m is the correct decryption of c, i.e. that cg−m

is an n-th power. We demonstrated this proof in the Tools section.
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VB

BV
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random
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L ballots

L ballots L ballots
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Figure 7: Systems Perspective of the Protocol using Paillier encryption
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11.1.1 Privacy Game

We will now define a Privacy game, for use as the basis of our security proof.
In it, the Simulator plays all participants, whilst the Adversary sees everything
that is written to the bulletin board.

1. Simulator runs key generation. Flips a coin b.

2. Simulator runs ballot generation, then ballot verification.

3. Adversary specifies votes (vi,0, vi,1) for i = 1, 2, . . . , N , with
∑
Lvi,0 =∑

Lvi,1 .

4. Simulator has every voter mark their ballot with vi, b and submits it.

5. Simulator runs counting.

6. Adversary guesses b′.

Now let E represent the event that b = b′. We aim to prove, for privacy, that

2AdvA = |Pr[E]− 1

2
|

11.1.2 Security Proof

Let Ek be the event in Game k that b = b′.

Game 0 The Privacy game as we just described.

Pr(E0) = Pr(E)

Game 1 In this game we use the Zero Knowledge simulator to create the
decryption proof. The change cannot be observed by the adversary because
conversations ouput by the simulator are indistinguishable from real conversa-
tions.

Pr[E1] = Pr[E0]

Game 2 Stop decrypting c and instead use
∑
Lvi,b as the result. This works

because Paillier is additively homomorphic, so since the decryption of ci,vi is
Lvi,b, the decryption of c is

∑
Lvi,b. Again this is indistinguishable to the

adversary.
Pr[E2] = Pr[E1]

Game 3 Choose the ballots that will be verified before generating the ballots.
This changes nothing observable.

Pr[E3] = Pr[E2]
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A Simulator

Random β ∈ {0, 1}
Random r, t s.t. 0 < r, t < n.

Calculate cb = rngtβ

(n, g)

cb

Guess β′

Figure 8: Paillier RoR Simulator

Game 4 Create the ciphertexts for the non-verified ballots as ci,j = rni,jg
si,j ,

where si,j is random. If this changes anything, this is represented in a game of
the adversary against real-or-random for Paillier encryption.

In this game, the adversary no longer gets information about which votes
were actually encrypted, so no information about b. In order to determine
Pr[E4] and the overall advantage, we create a game with a Real-or-Random
adversary B, based on the interaction of a Reduction Simulation and a Paillier
RoR Simulator.

Paillier RoR Simulator This Paillier RoR Simulator, shown in Figure 8
takes as input the public key (n, g). Then it flips a coin to decide β. It either
outputs the correct value for cb to be used in the encryption (if β = 0) or one
that will eventually encrypt a random message instead (β = 1). The protocol
goes as follows:

1. The public key (n, g) is generated by the adversary A and sent to the
Simulation.

2. Generate β, t, r at random, such that β ← {0, 1} and 0 < r, t < n.

3. Calculate cb in the form cb = rngtβ mod n.

4. Outputs cb to the Adversary, A.

The Decisional composite residuosity assumption, DCRA, is that given n, z,
it is hard to determine if z is an n-residue modulo n2. In other words it is hard
to know whether y exists such that

z ≡ yn mod n2

By the Decisional Composite Residuosity assumption, it is hard to distinguish
whether c0 is an n-th power, so the advantage of the adversary in guessing
β′ = β correctly is negligible.

32



B Reduction Simulation

Receive n, cb

Calculate c = cbg
m mod n2

n

m

c

Guess b′

Figure 9: Reduction Simulation

Reduction Simulation This Simulation is known as the Reduction, shown
in Figure 9. It takes (n, g), cb and calculates the complete ciphertext from them,
then sends it to the adversary who guesses if it was the correct encryption or
not. The protocol goes as follows:

1. Public key (n, g), and cb are taken as input from the DCRA Simulation.

2. The public key, n, is sent to the adversary, B.

3. The adversary returns a message m

4. The reduction calculates c = cbg
m mod n2 and sends it to the adversary.

5. The adversary guesses b′ and outputs it.

So on its own this simulation does not tell us much, but if we use it with the RoR
simulation as input, we create a game in which our adversary receives either a
correctly encrypted ciphertext of a message m, or an encryption of a random
message. In this case the random message would be s = t + m such that t is
chosen randomly.

RoR Oracle The RoR Oracle is illustrated in Figure 10, where the dotted
outline shows where the RoR Simulator is used, and the filled outline shows
where the Reduction Simulation is used, both as described above with minor
differences. Specifically, the adversary in our specified RoR Simulator is played
by the Reduction Simulation, and instead of the Reduction Simulation starting
with (n, g), c0, it instead starts by generating (n, g), then sends it to the RoR
Simulator and receives c0 in return.

Now we have simplified this interaction to an RoR oracle, which either cor-
rectly encrypts the votes or encrypts random messages, depending on the flip of
a coin, we can demonstrate how it is used in the context of the wider protocol.
In Figure 11 the adversary B sees everything that is published to the bulletin

33



B

Reduction

Generate (n, g), receive c0

Calculate c = c0g
m mod n2

(n, g)

m

c

Guess b′

RoR

Random b ∈ {0, 1}
Random r, t s.t. 0 < r, t < n.

Calculate c0 = rngtb

(n, g) c0

b′

Reduction Simulation

Paillier RoR Simulator

Figure 10: How the simulations interact

board, BB. The Paillier RoR Simulator is as described before, whilst the adver-
sary A represents the adversary in the Reduction simulation, submitting votes
(vi,0, vi,1). Using the information from the bulletin board, they make a guess
b′ ← 0, 1 as to whether the votes (vi, 0) or (vi, 1) were encrypted. Then, the
RoR adversary B guesses β′ = 1 if b = b′ and β′ = 0 otherwise. This essentially
is to determine if the use of the RoR oracle gives any extra information to the
adversary.

We now have the required set-up to prove the security of this variant of the
protocol.

Theorem 11.1. Paillier Prêt à Voter has voter privacy
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Paillier RoR
simulator
β ← {0, 1} A

n, g

votes (vi,0, vi,1)

b′

Choose b

Write (n, g) to BB.

Create audited ballots.

Use RoR oracle to create

non-audited ballots.

Publish audited ballots

Run voting

Publish result as
∑
vi,b,

simulate decryption proof.

If b = b′, guess β′ = 1

Otherwise β = 0.

Figure 11: Paillier RoR, Adversary B

Proof. So with respect to this game, we can calculate the advantage of B as:

AdvPaillierB = |Pr[β′ = β]− 1

2
|

= |Pr[β′ = 1] ∩ Pr[β = 1] + Pr[β′ = 0] ∩ Pr[β = 0]− 1

2
|

= |Pr[β′ = 1] | β = 1] · Pr[β = 1] + Pr[β′ = 0 | β = 0] · Pr[β = 0]− 1

2
|

=
1

2
|Pr[b = b′] | β = 1] + Pr[b 6= b | β = 0]− 1|

=
1

2
|Pr[E4] + (1− Pr[E3])− 1|

=
1

2
|Pr[E4]− Pr[E3]|

(2)

Since when β = 0, the RoR simulation exactly runs Game 3, and when β = 1
it runs Game 4, this is how we get the identities

Pr[b = b′ | β = 1] = Pr[E4]

Pr[b 6= b|β = 0] = 1− Pr[E3]

So this gives us overall

|Pr[E4]− Pr[E3]| = 2AdvPaillierB
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LHS RHS
πi(1) ci,πi(1)
πi(2) ci,πi(2)
. . . . . .
πi(R) ci,πi(R)

Table 6: Generated Prêt à Voter with Mixnets ballot.

We have shown that the games are indistinguishable, giving us:

Pr[E3] = Pr[E2] = Pr[E1] = Pr[E0] = Pr[E]

Also, we learnt from the DCRA assumption when constructing the RoR simu-
lator that there is negligible advantage in guessing whether β = β′. Since this
is equivalent to running game 4, this gives us that Pr[E4] = 1

2 . Therefore we
have, as required for privacy,

Pr[E]− 1

2
≤ 2AdvPaillierB

11.2 Prêt à Voter with Mixnet

In this section we will use a very similar proof to show that the variation of Prêt
à Voter using Mixnet shuffles is also secure in terms of privacy. In Figure 12 we
demonstrate how this variant is run with the players and what information is
passed between them.

Key Generation The Electoral Commission, EC, runs key generation and
posts the public key pk, and keeps the secret keys sk.

Ballot Generation BG Creates ballot #i for R candidates as follows:

ci,j = EM (pk, j; ri,j)forj = 1, 2, . . . , R,

where ri,j is randomness. Also choose a random permutation πi on {1, 2, . . . , R}.
The ballot is generated as shown in Table 6.

When ballot #i is chosen for audit by BV, BG gives ri,1, ri,2, . . . , ri,R to BV.
BV computes c̃i,j = EM (pk, j; ri,j for j = 1, 2, . . . , R and checks that ci,j = c̃i,j
for j = 1, . . . , R.

Voting Booth The voter receives ballot #i, and marks #i in position vi.
The marked RHS is recorded on the bulletin board and let ci = ci,v1 .
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2L ballots
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L ballots L ballots
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Figure 12: Systems Perspective of the Protocol using Mixnet
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Counting The EC sends relevant secret keys to the mix servers M1, . . . ,Mk.

Mi runs its Mixnet shuffle on c
(i−1)
1 , . . . , c

(i−1)
N and produces c

(i)
1 , . . . , c

(i)
N + the

proof of mixing, for i = 1, 2, . . . , k. The output is posted on the BB.

Then, the EC decrypts c
(k)
1 , . . . , c

(k)
N to v1, . . . , vN and posts this + proof of

decryption to the BB.

11.2.1 Privacy Game

We will now define a Privacy game, for use as the basis of our security proof.
In it, the Simulator plays all participants, whilst the Adversary sees everything
that is written to the bulletin board.

1. Simulator runs key generation. Flips a coin b.

2. Simulator runs ballot generation, then ballot verification.

3. Adversary specifies votes (vi,0, vi,1) for i = 1, 2, . . . , N , with
∑
Lvi,0 =∑

Lvi,1 .

4. Simulator has every voter mark their ballot with vi, b and submits it.

5. Simulator runs counting.

6. Adversary guesses b′.

Now let E represent the event that b = b′. We aim to prove, for privacy, that

2AdvA = |Pr[E]− 1

2
|

11.2.2 Security Proof

Let Ek be the event in Game k that b = b′.

Game 0 The Privacy game as we just described.

Pr(E0) = Pr(E)

Game 1 In this game we use the Zero Knowledge simulator to create the
decryption proof. The change cannot be observed by the adversary because
conversations ouput by the simulator are indistinguishable from real conversa-
tions.

Pr[E1] = Pr[E0]

Game 2 Stop decrypting c and instead use vπi as the result, since we know
π. Since (K, E ,D) is a public key cryptosystem, we know that the decryption
of ci is vπ(i),b, because the correct decryption of ci,vi is vi,b. Therefore this is
indistinguishable to the previous game.

Pr[E2] = Pr[E1]
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Game 3 Choose the ballots that will be verified before generating the ballots.
This changes nothing observable.

Pr[E3] = Pr[E2]

Game 4 Create the ciphertexts for the non-verified ballots as ci,j = EM (pk, si,j),
where si,j is random. If this changes anything, this is represented in a game of
the adversary against real-or-random for (K, E ,D).

In this game, the adversary no longer gets information about which votes
were actually encrypted, so there is no information about b. In order to de-
termine Pr[E4] and the overall advantage, we create a game with a Real-or-
Random adversary B, based on the interaction of a Reduction Simulation and
a (K, E ,D) RoR Simulator.

RoR Simulator and RoR Oracle for (K, E ,D) The RoR simulator for a
public key cryptosystem is set up in the same way as for Paillier encryption, with
equivalent simulations. Specifically, the messages are encrypted with the public
key cryptosystem rather than with Paillier encryption. In the RoR simulator,
c0 is calculated as m1−b · tb so that the correct message m is sent when b = 0
and a random message t is sent when b = 1. The reduction simulation encrypts
with the randomness r to give c = EM (pk, c0; r). We demonstrate in Figure 13
how this RoR simulator interacts with the adversary. Again the RoR oracle is
the interaction of the RoR and Reduction simulation as described in Figure 10.
Note that we only use the RoR oracle on the inner layer of the Mixnet shuffle.

We now have the required set-up to prove the security of this variant of the
protocol.

Theorem 11.2. Prêt à Voter with Mixnet has voter privacy

Proof. So with respect to this game, we can calculate the advantage of B as:

AdvMixnet
B = |Pr[β′ = β]− 1

2
|

= |Pr[β′ = 1] ∩ Pr[β = 1] + Pr[β′ = 0] ∩ Pr[β = 0]− 1

2
|

= |Pr[β′ = 1] | β = 1] · Pr[β = 1] + Pr[β′ = 0 | β = 0] · Pr[β = 0]− 1

2
|

=
1

2
|Pr[b = b′] | β = 1] + Pr[b 6= b | β = 0]− 1|

=
1

2
|Pr[E4] + (1− Pr[E3])− 1|

=
1

2
|Pr[E4]− Pr[E3]|

(3)

Since when β = 0, the RoR simulation exactly runs Game 3, and when β = 1
it runs Game 4, this is how we get the identities

Pr[b = b′ | β = 1] = Pr[E4]
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Mixnet RoR
simulator
β ← {0, 1} A

pkk+1

votes (vi,0, vi,1)

b′

Choose b

Generate pk1, . . . , pkk

Write pk to BB.

Create audited ballots.

Use RoR oracle to create
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Publish audited ballots

Run voting

Publish result as vπ(i),b,

simulate decryption proof.

If b = b′, guess β′ = 1

Otherwise β = 0.

Figure 13: Mixnets RoR, Adversary B

Pr[b 6= b|β = 0] = 1− Pr[E3]

So this gives us overall

|Pr[E4]− Pr[E3]| = 2AdvMixnet
B

We have shown that the games are indistinguishable, giving us:

Pr[E3] = Pr[E2] = Pr[E1] = Pr[E0] = Pr[E]

Also, we learnt when constructing the RoR simulator that there is negligible
advantage in guessing whether β = β′. Since this is equivalent to running game
4, this gives us that Pr[E4] = 1

2 . Therefore we have, as required for privacy,

Pr[E]− 1

2
≤ 2AdvMixnet

B

12 Proof of Coercion-Resistance

We now want to prove that our systems are secure against coercion. We simulate
coercion as follows:

The adversary, A chooses a voter Vi and wants them to vote v0, but the
voter wants to vote v1. The adversary must decide which one their coerced
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voter voted for in the end. To avoid the trivial case where there would be zero
votes for v0 without the coerced voter, we introduced a balancing voter. Also
we add that A can coerce everyone or no one.

12.1 Paillier

Coercion Game We will now define a game for coercion, for use as the basis
of our security proof. In it, the Simulator plays all participants, whilst the
Adversary sees everything that is written to the bulletin board.

1. Simulator runs key generation. Flips a coin b.

2. Simulator runs ballot generation, then ballot verification.

3. Adversary specifies votes (vi,0, vi,1) for i = 1, 2, . . . , N , with
∑
Lvi,0 =∑

Lvi,1 .

4. Simulator has every voter mark their ballot with vi, b and submits it.

5. Adversary learns which voter submitted which ballot on the bulletin board.

6. Simulator runs counting.

7. Adversary guesses b′.

We represent this game in Figure 14 Now let E represent the event that
b = b′. We aim to prove, for coercion-resistance, that:

2AdvA = |Pr[E]− 1

2
|

This is a similar game to previous proofs, demonstrated in Figure 14. The
difference is the extra information the adversary is able to see, specifically which
ballot belongs to which voter.

Theorem 12.1. Paillier Prêt à Voter has coercion-resistance

Proof. We can use the same games as in the security proof for privacy, ex-
cept with the addition that the adversary is able to see which voter submit-
ted which ballot on the bulletin board. We call these versions of the games
G′0, G

′
1, G

′
2, G

′
3, G

′
4. As this is the only difference, and every game has changed

in exactly the same way, games 0 to 3 remain indistinguishable such that
Pr[E′] = Pr[E′0] = Pr[E′1] = Pr[E′2] = Pr[E′3].

We need to examine G′4 slighty closer as the ciphertexts are created differ-
ently. Since in this game the ciphertexts are random encryptions, they contain
no information about anything as they are independent to the permutation πi
and to the intended vote mi. Therefore, since this ciphertext is the only extra
information that the adversary can see in this game, the advantage remains the
same as in the privacy proof, i.e. Pr[E′4] = Pr[E4] = 1

2 . So since the conditions
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Figure 14: Coercion RoR, Adversary B

for the security proof of privacy still hold, we can do the calculations as before
and find that

2AdvA = |Pr[E]− 1

2
|,

as required.

12.2 Mixnet

The proof for Mixnet coercion resistance is very similar, so we will not include
it in this paper.

13 Verification Proof

Using the definition of a verifiable system given at the beginning of this section,
we apply it to the scenario of our Prêt à Voter protocols, and then prove that
they are indeeed verifiable.

13.1 Paillier

Suppose that k voters verify the bulletin board, i.e. all the proofs are correct
and they can see their right-hand-sides published on the bulletin board.
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Say the voters submitted ballots m1,m2, . . . ,mk. Then, it is verifiable if the
results posted by the bulletin board satisfy

result ≥
∑

Lmi

for i = 1, . . . , k.

Theorem 13.1. Paillier Prêt à Voter is verifiable.

Proof. Since we have verified the ballots with cut and choose, we know that the
ciphertext corresponding to mi on the i’th voter’s RHS decrypts successfully to
Lmi .

Similarly, from cut and choose, we know that every ciphertext from a ballot
decrypts to Lj , 0 ≤ j < R. Therefore, if µi = D(ci), then D(πci) =

∑
µi,

considered over the integers. As the voters have verified the RHS of their ballots
were posted, this confirms that their ciphertexts were among the c1, c2, . . . , cN
submitted ciphertexts. The claim follows as, if we re-label the remaining N − i
ciphertexts such that they are mj for j = i+ 1, . . . , N , we have

result =
∑

Lmi +
∑

Lmj

.

13.2 Mixnet

The proof for verification for Mixnet is basically the same, as the Mixnet vari-
ation also uses Cut-and-Choose, so we will not include it in this paper.

14 Remaining Attacks

In this section we suggest some remaining attacks which we have not addressed,
and cannot be resolved in the particular security model we have defined, high-
lighting the limitations of it. Defense against these attacks for the Prêt à Voter
protocol is a possible subject for a future paper, and will require a more in-depth
security model.

Randomization attack: In this context, since our candidate order is ran-
domised, a randomization attack could be a version of coercion in which the
adversary demands the voter marks the top box of the ballot, hence randomis-
ing their vote, and this is easy for the adversary to verify the voter complied,
since the right hand side is posted on the bulletin board.

A method of defending against this attack is to ensure that the voters can
choose from a selection of ballots, so that if they are forced to mark the top
box, they can simply choose a ballot which has their preferred candidate at the
top. This requires further analysis to solve however, and does not fit into our
security model.
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Chain Voting: This attack involves the adversary obtaining a blank ballot,
possibly by coercing a voter to retrieve one, which the adversary then marks
with their chosen candidate. Then they coerce a voter to sneak the pre-marked
ballot in, obtain a new blank ballot, then vote with the pre-marked ballot. The
voter then sneaks the blank ballot out and gives it to the adversary, with which
the adversary can continue coercing voters, creating a chain of falsified votes.
[8]

One method that could be discussed to avoid this is adding another player.
Known as a Trusted Third Party, their job is to facilitate the voter and either
do the marking for them, or observe them marking the ballot in the booth.

Corrupted players In our security proof we have assumed that the players
are honest, but it is worth considering the changes in security if one or more of
them is corrupted. For example, if the Mixnet servers are corrupt, how would
this affect the security proofs? More careful analysis is required to examine this
situation, and likewise for versions where different players are cheating.

15 Concluding Remarks

In conclusion, Prêt à Voter is a relatively new voter-verifiable voting system,
with a focus on transparency of the process and privacy for the voters. In this
modern age where our democratic institutions are becoming less trusted, it is
an important time to rethink the underlying protocols involved in our voting
systems and how we can make them universally fair and more secure.

There are a multitude of options to choose between within the Prêt à Voter
protocol, and we have discussed some of them here. The basic concept of a
randomised candidate order ensuring that the submitted ballot does not reveal
to an adversary how each voter voted is an important concept that can be built
upon in various ways, depending on the needs of the specific election.

The variations we went into in detail used Paillier encryption and Mixnets
respectively, and we provided security proofs to show that they ensured privacy,
coercion-resistance and verifiability to the voters. We have only scratched the
surface on this topic though, as there is a lot more to consider.

For future papers, there are several remaining attacks to examine for these
variations, including those listed. In addition, there are many more potential
variations of Prêt à Voter to develop and analyse. Finally, more practical im-
plementations could be carried out in real or test elections, to ensure the voting
system works just as well in practice as it does in theory.
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