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Abstract
The main purpose of this thesis is to study the WalnutDSA digital signature scheme pro-
posed for the American National Institute of Standards and Technology’s (NIST) Post-
Quantum Cryptography Standardization process. In order to understand the scheme, one
chapter is devoted to develop the necessary theory for braid groups. We then briefly look
into some of the older schemes involving braid groups, and why they are insecure. After
presenting the Walnut scheme, we study attacks designed to break it, before giving com-
ments which may explain why NIST chose not to include the scheme in the second round
of the standardization process.

Sammendrag
Hovedformålet med denne oppgaven er å studere det digitale signatursystemet WalnutDSA,
som ble foreslått til det amerikanske National Institute of Standards and Technology (NIST)
sin “Post-Quantum Cryptography Standardization” prosess. For å forstå systemet er ett
kapittel satt av til å utlede den nødvendige teorien for flettegrupper. Vi ser raskt på noen
eldre kryptosystemer som involverer flettegrupper, og hvorfor de er usikre. Etter å ha pre-
sentert Walnut-systemet ser vi på forskjellige angrep konstruert for å knekke det, før vi
gir noen kommentarer som kan forklare hvorfor NIST valgte å ikke inkludere systemet i
runde to av standardiseringsprosessen.

i



ii



Preface
This thesis was written under the supervision of Professor Kristian Gjøsteen, and marks
the end of my time as a student for the degree of Master of Science in Mathematics at
NTNU.
I thank Gjøsteen for his suggestions of different topics, and for guiding me after the topic
was chosen. Without the weekly meetings pushing me forward, I am quite sure that writ-
ing this thesis would not have been as enjoyable as it has been. I found the topic at hand
remarkably elegant, and I am glad I got the opportunity to study it.

I want to thank Linjeforeningen Delta and it’s members, for giving me a place to grow, and
making these past five years the best years of my life. Special thanks to my friends Didrik,
Eiolf, Filip, Morten and Peter for being my mathematical sparring partners. Gratitudes
to Eiolf Kaspersen and Ole Martin Kringlebotn for proofreading and feedback. Finally, I
want to thank my family for always supporting me.

There is nothing groundbreaking in this thesis, but rather a compilation of the works of
many researchers. When the topic was chosen, the system of study was still highly rele-
vant, but since it did not make it to the second round of the NIST standardization process,
few relevant papers were written after January 2019. Thus the ending might seem some-
what abrupt, and while some earlier sections could have been fleshed out in more detail, I
felt that adding more content would only serve to add the sake of adding, and not improve
the thesis in a meaningful way. Therefore I am quite satisfied with the end product.

Magnus Ringerud
Trondheim, May 2019

iii



iv



Table of Contents

Abstract i

Preface iii

Table of Contents v

1 Introduction 1

2 Digital signatures 3
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Properties of digital signatures . . . . . . . . . . . . . . . . . . . 4
2.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Description of attacks . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Security notions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Braid groups 7
3.1 Description and properties . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Normal form of braids . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Positive braids . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Permutation braids . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Decomposition into normal form . . . . . . . . . . . . . . . . . . 15

4 Cryptographic protocols based on braid groups 19
4.1 Mathematical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 The word problem . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Conjugacy search problems . . . . . . . . . . . . . . . . . . . . 20

4.2 Commutator based key exchange . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Diffie-Hellman key agreement . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 A braid group public key encryption scheme . . . . . . . . . . . . . . . . 22

5 WalnutDSA 25
5.1 Colored Burau representation . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 E-multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Cloaking elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Cryptographic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



5.5 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.1 Public system wide parameters: . . . . . . . . . . . . . . . . . . 32
5.5.2 Private key: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.3 Public key: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.1 Encoding algorithm: . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7 Signature generation and verification . . . . . . . . . . . . . . . . . . . . 33
5.7.1 Signature generation: . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7.2 Signature verification: . . . . . . . . . . . . . . . . . . . . . . . 34

5.8 Security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8.1 Strong existential forgery . . . . . . . . . . . . . . . . . . . . . . 37

6 Attacks on Walnut 39
6.1 Factorization attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Collision search attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Encoder issues and collision search . . . . . . . . . . . . . . . . . . . . . 41
6.4 Subgroup chain attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Removing cloaking elements . . . . . . . . . . . . . . . . . . . . . . . . 42
6.6 Decomposition of products in braid groups . . . . . . . . . . . . . . . . . 43

6.6.1 Normal form of products . . . . . . . . . . . . . . . . . . . . . . 44
6.6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6.3 Cracking Walnut . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusion 51
7.1 Poor design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Flaws in security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

vi



Chapter 1

Introduction

The security of most of the public key cryptosystems being used today is based on discrete
logarithm problems, or the problem of factoring large integers. These problems can be
solved using Peter Shor’s quantum algorithm [32] on a large enough quantum computer.
People worry that such a quantum computer may one day be built.

To establish a standard for post-quantum cryptography, the National Institute of Stan-
dards and Technology (NIST) launched the “Post-Quantum Cryptography Standardiza-
tion”, and the call for proposals ended on November 30, 2017. The first round of testing
ended January 30, 2019, and the second round is still in progress at the time of writing.

In Chapter 2 we give a short introduction to digital signature schemes, their various
properties, different attacks against them, and various notions of security.

The main purpose of this thesis is to study the WalnutDSA digital signature scheme,
proposed to NIST by SecureRF [4]. The scheme is based on braid groups - non-abelian
groups which was first proposed for cryptography two decades ago - and we will study it
in Chapter 5.

While braid groups are non-abelian, they possess a remarkable amount of structure.
In order to understand and appreciate the mathematics of the scheme, we will study braid
groups in Chapter 3. We then quickly look at some of the previous braids group construc-
tions in Chapter 4. These systems have elegant descriptions and properties, but have all
been proven insecure.

In Chapter 6 we study different attacks made against Walnut, and the consequences
they had for the implementation and security of the scheme, before we give concluding
remarks in Chapter 7.
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Chapter 2

Digital signatures

2.1 Description
Suppose Alice wants to send a message to Bob, via some channel. An eavesdropper Eve
has access to the channel, and can edit any message she sees, even to the extent of changing
the message for one of her own. Alice wants her message to arrive without modification,
and if it has been tampered, Bob should notice. Since many people might want to send
messages to each other, a symmetric key approach is not favourable due to the need for
storing keys for each correspondent. There are multiple solutions for this problem, but we
will only give a description of digital signatures.

Definition 2.1 (Digital signature scheme). A digital signature scheme is a public key cryp-
tosystem, which consists of three algorithms K,S,V:

• The key generation algorithm K, which takes as input a security parameter k, and
returns a signing key sk and a verification key vk. For every key pair there is an
associated message set denotedMsk andMvk. Note that K must be a probabilistic
algorithm.

• The signing algorithm S, which takes as input a signing key sk and a message
m ∈Msk, and outputs a signature σ. This algorithm may be probabilistic.

• The verification algorithm, which takes as input a verification key vk, a message
m ∈ Mvk and a signature σ, and outputs either 0 or 1. The algorithm need in
general not be probabilistic.

We require that for any key pair (vk, sk) output by K and any message m, we have

Pr[V(vk,m,S(sk,m)) = 1] = 1. (2.1)

When the output of V is 1, we have a valid signature. Otherwise, the signature is invalid.

We often call the signing key sk for the private key, and the verification key vk for the
public key. We define a forgery as a valid signature created without using the private key.

3



When using a digital signature scheme to authenticate a message, one sends both m and σ
across the channel, and as such anyone with access to said channel will be able to see both.
From the equations above, it is clear that anyone with access to the channel who knows
the parameters of the scheme and the public key of the signer, can verify a signature.

2.1.1 Properties of digital signatures
Following the motivational part at the beginning of this chapter, there are additional bene-
fits to gain from using digital signatures. Apart from being able to move away from paper
documents, applying a digital signature to communications has the following benefits:

• Authenticity: A valid signature on a message sent by Alice shows that the message
was in fact sent by Alice. This is important for example when asking a bank to
transfer funds; you do not want anyone other than yourself to be able to withdraw
money from your account.

• Integrity: Integrity means confidence in that the message has not been tampered
with. While encryption might hide the content of a message, it could be possible to
change an encrypted message without knowing the contents or understanding what
change you made. If a message is digitally signed, any change to the message after
the signature is generated will make the signature invalid, and hence any tampering
will be noticed.

• Non-repudiation: If someone has signed a document, they cannot at a later time
deny having signed it.

2.2 Security
To specify what it means for a signature scheme to be secure, we follow the description
given in [20]. We describe different kinds of attacks and notions of security.

2.2.1 Description of attacks
We first and foremost distinguish between two kinds of attacks:

• Key-only attacks, where the adversary knows nothing but the public key of the
signer.

• Message attacks, where the adversary can examine signatures of either known or
specified messages before attempting to break the scheme.

We can specify four different message attacks, which are characterized by how the list of
messages the adversary can see are chosen. Let A denote the honest signer whose scheme
the adversary is trying to break.

• Known-message attack: The adversary is given access to signatures of a known set
of messages m1, . . . ,ml. The messages are known to the adversary, but not chosen
by him.
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• Generic chosen-message attack: The adversary can obtain valid signatures from A
for a chosen list of messagesm1, . . . ,ml. The messages are chosen by the adversary
before he can see A’s public key. Hence this attack is independent of the public key,
and is generic. The attack is non-adaptive, as the entire list of messages is created
before any signature is seen.

• Directed chosen-message attack: Like in the generic attack, the adversary can obtain
valid signatures from A for a chosen list of messages m1, . . . ,ml, but this time he
can create the list of messages after seeing the public key. The attack is thus directed
against a particular A. The attack is still non-adaptive, as the list is created before
any signatures are seen.

• Adaptive chosen-message attack: The adversary can use A as an “oracle”, not only
can he request signatures of chosen messages that depend on A’s public key, he
may also request signatures of messages that depend on the previously obtained
signatures.

The above attacks are listed in order of increasing severity. To see that the adaptive chosen-
message attack is a natural one, consider a bank who must sign more or less random
documents created by someone else.

Since the adaptive chosen-message attack is the most powerful attack, it is this attack
we want to make sure our scheme can withstand. When speaking of it we often drop the
“adaptive” part, and only refer to it as the chosen-message attack, or CMA for short.

2.2.2 Security notions
To “break” a scheme could mean different things for different schemes. In general, we
might say that an adversary has broken our scheme if he is able to do any of the following
with non-negligible probability.

• A total break: Recover A’s signing key.

• Universal forgery: Forge a signature for any message.

• Selective forgery: Forge a signature for a message of the adversary’s choice.

• Existential forgery: Forge a signature for at least one message.

Note that a forgery has to be a new signature, simply claiming that a signature received
from A is a forgery is not the same as being able to create a new one. Note also that the
above list is not exhaustive, there are other ways of “breaking” a signature scheme. The
severity of the “breaks” are listed in decreasing severity, and the easiest task the adversary
can undertake is to find an existential forgery. We say that a scheme is totally breakable,
universally forgeable, selectively forgeable or existentially forgeable if it is breakable in
one of the above senses.

To summarize, we say that the strongest notion of security for a digital signature
scheme is security against existential forgery under an adaptive chosen-message attack,
which we will refer to as EUF-CMA (existentially unforgeable under chosen-message at-
tack) security. To formalize, we play a game which is illustrated in Figure 2.1.

For any polynomial time adversary A and a signer S, the process proceeds as follows:

5



Adversary

choose m1

choose m2

...
choose ml

Signer

(vk, sk)← K

σ1 = S(sk,m1)

σ2 = S(sk,m2)
...

σl = S(sk,ml)

vk

m1

m2

σ1

σ2
...
ml

σl

(m′, σ′) 6= (m1, σ1), . . . , (ml, σl)

The adversary wins if V (vk,m′, σ′) = 1.

Figure 2.1: Illustration of CMA-game.

1. The signer provides his public key vk to the adversary.

2. The adversary chooses a message m1 to receive a valid signature for, and sends a
signature query.

3. The signer computes the signature σ1, and sends it back.

4. After receiving σ1, the adversary chooses a message m2 and queries it.

5. The process continues until the adversary has obtained l signatures, for some poly-
nomial time bound l.

6. The adversary now attempts to create a forgery, and outputs (m′, σ′) where

(m′, σ′) 6= (m1, σ1), . . . , (ml, σl).

He wins if
V(vk,m′, σ′) = 1. (2.2)

In some cases, we may also require that m′ 6= m1, . . . ,ml.
We denote the probability of the adversary A winning the game by Pr[A], and a

scheme is considered broken if this probability is not negligible.
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Chapter 3

Braid groups

3.1 Description and properties
An N -braid can be viewed geometrically as a collection of N strands crossing each other
a finite number of times. The braid group on N strands BN is the collection of all such
N -braids, with the group operation being composition of braids. The identity element is
the trivial braid e with no crossings, and the group itself is infinite and non-abelian for
N ≥ 2. We can visualize the braids in three dimensions as follows: consider a braid b and
let every strand have a starting point (x, y, z) = (i, 0, 1) for 1 ≤ i ≤ N , and an end point
(λ(i), 0, 0).

There are several ways to formalize this, one of them being through the concept of
homotopy from topology. With this idea, we can view the braid group as the set of equiva-
lence classes of N -braids, in which we can think of two braids as being equivalent if they
become the same braid when we “pull” the strands.

More suited for our purpose is the algebraic representation of the group given by Emil
Artin [6]. He showed that the braid group BN , and the free group on N − 1 generators
with two given relations, are isomorphic. We will work in the Artin-representation, but it
is useful to think of the elements as elements of the braid group. The representation uses
the generators bi for 1 ≤ i ≤ N − 1, which represents the braids where strand i crosses
over strand i+ 1. We refer to these as the Artin generators, and the inverse of a generator
braid is the braid b−1i where strand i crosses under strand i+ 1. To be precise, an N -braid

(a) b1 (b) b2 (c) b3

Figure 3.1: The three generators of B4.

is an equivalence class w ∈ BN , while a representation of the braid in the generators is
called a braid word. The terminology is often clear from the context, and we will freely
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=

(a) b1b3 = b3b1.

=

(b) b2b3b2 = b3b2b3.

Figure 3.2: Illustration of the braid relations.

interchange the two terms.

Theorem 3.1 (Artin). The braid group on N strands can be written as

BN = 〈b1, b2, . . . , bN−1〉 , (3.1)

with relations

bibj = bjbi for |i− j| > 1 (3.2)
bibjbi = bjbibj for |i− j| = 1. (3.3)

Thus every N -braid can be written as a word in these generators and their inverses.

The first relation has a simple geometric interpretation: it says that braids where no
common strands cross are commutative. The second, while more troublesome to imagine,
can be seen from an illustration of the resulting braids. Notice that in Figure 3.2b, all the
crossings in the two braids are the same, they just happen at different heights.

3.2 Normal form of braids
As in many areas of mathematics, we would like to uniquely decompose our group el-
ements into factors. It turns out that there are multiple such decompositions for braid
groups, and we call them normal forms. The best known examples are the Garside nor-
mal form and the Birman-Ko-Lee normal form (the latter will be abbreviated as the BKL
normal form). While the BKL normal form is the representation used for braids in the
WalnutDSA cryptosystem which we will study later (Chapter 5), we will not go into de-
tails here. For the full description of the BKL normal form, see the description given by
Birman, Ko and Lee in [9].

An interesting difference between the two is the use of a different set of generators in
the BKL normal form. Given that a braid has infinitely many representations (w = wbib

−1
i

for all braids w), it is not surprising that there exists multiple generating sets, but they are
still worth studying. Like Artin’s generators bi, which swap strand i and i + 1, the new
generators swap one pair of strands, but they need not be adjacent. With the notation we

8



(a) a31

(b) a41

(c) a42

Figure 3.3: Examples of band generators.

have used so far, where bi swaps strand i over strand i + 1, we define the band generator
ats for 1 ≤ s < t ≤ N as

ats := (b−1t−1b
−1
t−2 · · · b

−1
s+1)b−1s (bs+1bs+2 · · · bt−1). (3.4)

This is slightly different from the presentation given in [9], as their generator bi passes
strand i under strand i + 1. The braid ats swaps strand t and s, with the convention that
the strands being crossed pass in front of the others. Note that the Artin generators form a
subset of the band generators, as b−11 = a21, b

−1
2 = a32 and so forth (we could change the

inverses here by letting the crossings happen “behind” all the other strands).
Many of the properties are analogous to the Garside normal form, and since Garside

presented the first treatment of the subject, we will start by following his presentation [17].
Garside’s results was later improved by Thurston [16], and E. A. Elrifai and H. R. Morton
[15].

3.2.1 Positive braids

We start off by introducing positive braids. We say that a crossing is positive if strand i
crosses over strand i + 1. In particular, all the generators bi are positive. We generalize
this to braids by defining a positive braid as one that can be written as a product of the
generators bi, and we denote the set of positive braids as B+N . This has the structure of a
monoid, since we inherit all the properties except the existence of inverses from the group.

We can use the positive braids to define a partial order on the braid group: for A,B ∈
BN we say that A ≤ B ⇔ B = AC for some C ∈ B+N . We thus have the equivalent
statements

e ≤ B ⇔ B ∈ B+N .

One particularly useful positive braid is the fundamental braid:

9



Figure 3.4: The fundamental braid ∆4 = (b1b2b3)(b1b2)b1.

Definition 3.2. The fundamental braid ∆N of BN is the braid

∆N = (b1b2 . . . bN−1)(b1 . . . bN−2) · · · (b1b2)b1. (3.5)

Geometrically, the fundamental braid is the braid where every pair of strands cross
exactly once, and every crossing is positive. If we let

Πr = b1b2 . . . br, (3.6)

then we can write the fundamental braid as

∆N = ΠN−1ΠN−2 · · ·Π1 = ΠN−1∆N−1. (3.7)

In particular we have ∆1 = Π0 = e, the trivial braid, represented as an empty string which
we call the nullstring. Where there is no ambiguity, we will often write ∆ = ∆N .

The fundamental braid has a number of properties, and we will derive some of them in
the following pages.

Lemma 3.3. For 1 < s ≤ t < N we have

bsΠt = Πtbs−1. (3.8)

Proof. We use the braid relations

bsΠt = bs(b1b2 . . . bt)

= (b1 . . . bs−2)bsbs−1bs(bs+1 . . . bt)

= (b1 . . . bs−2)bs−1bsbs−1(bs+1 . . . bt)

= (b1 . . . bs−2)bs−1bs(bs+1 . . . bt)bs−1

= Πtbs−1.

10



Lemma 3.4. In BN we have

(i) b1∆t = ∆tbt−1 for t = 2, . . . , N .

For j = 1, 2 . . . , N − 1 we have

(ii) bj∆ = ∆bN−j

(iii) b−1j ∆−1 = ∆−1(bN−j)
−1

(iv) b−1j ∆ = ∆(bN−j)
−1

(v) bj∆−1 = ∆−1bN−j .

Proof.

(i) For t = 2,
b1∆2 = b1b1 = ∆2b1 as required.

For 2 < t ≤ N ,

b1∆t = b1Πt−1(b1 · · · bt−2)∆t−2

= b1(b2 · · · bt−1)Πt−1∆t−2 by Lemma 3.3
= Πt−1(Πt−2bt−1)∆t−2

= Πt−1Πt−2∆t−2bt−1 by (3.2)
= ∆tbt−1.

Notice that the direct proof for t = 2 is necessary, as we cannot apply Lemma 3.3
in this situation.

(ii) For j = 1 we get
b1∆ = ∆bN−1 by (i).

For 1 < j ≤ N − 1 we compute

bj∆ = bjΠN−1ΠN−2 · · ·ΠN−j+1∆N−j+1

= ΠN−1ΠN−2 · · ·ΠN−j+1b1∆N−j+1 by Lemma 3.3
= ΠN−1ΠN−2 · · ·ΠN−j+1∆N−j+1bN−j by (i)
= ∆bN−j .

(iii)
b−1j ∆−1 = (∆bj)

−1 = (bN−j∆)−1 = ∆−1(bN−j)
−1 by (ii).

(iv) Starting from the point above we have b−1k ∆−1 = ∆−1(bN−k)−1. We multiply
with ∆ from the left and the right to get

∆b−1k = (bN−k)−1∆.

Setting j = N − k gives the desired result.

11



(v)
bj∆

−1 = (∆b−1j )−1 = ((bN−j)
−1∆)−1 = ∆−1bN−j by (iv).

In BN , let τ be the map τ(bi) = bN−i. We call this the reflection map, and we can
extend it to an automorphism of the group. We can also write this as conjugation by ∆;

τ(bi) = ∆bi∆
−1 = ∆∆−1bN−i = bN−i

τ(b−1i ) = ∆b−1i ∆−1 = ∆∆−1b−1N−i = b−1N−i
(3.9)

by Lemma 3.4. Notice that

τ2(bi) = τ(τ(bi)) = τ(bN−i) = bN−(N−i) = bi

τ2(b−1i ) = τ(τ(b−1i )) = τ(b−1N−i) = b−1N−(N−i) = b−1i ,

which means that τ2(B) = B for any word B. This also means that ∆2 is in the centre
of the group, and we often call this the full-twist braid, because we can visualize it as
grabbing the ends of the identity braid e and rotating them 360◦, see Figure 3.5.

(a) The representation b1b2b3b1b2b1b1b2b3b1b2b1.

(b) The more visually pleasing representation b1b2b3b1b2b3b1b2b3b1b2b3.

Figure 3.5: The full-twist braid ∆2.

We get the following result.

Theorem 3.5. For any word B ∈ BN and m ∈ Z we have

B∆2m = ∆2mB, B∆2m+1 = ∆2m+1τ(B).
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Proof. Repeated use of Lemma 3.4 imply that for any word B we have

B∆ = ∆τ(B)

B∆−1 = ∆−1τ(B),

which combined with the observation above gives the result.

Let revB denote the reverse of the word B, meaning that if B = x1x2 . . . xm is a
word where xi is either a generator or its inverse, revB = xmxm−1 . . . x1.

Lemma 3.6. In BN ,
τ(∆) = ∆, and rev ∆ = ∆.

Proof. By Theorem 3.5 we have

τ(∆)∆ = ∆τ(τ(∆)) = ∆2 =⇒ τ(∆) = ∆.

For the second point we proceed by induction. Obviously we have

rev ∆2 = rev b1 = b1 = ∆2,

so the statement is true for N = 2. Assume now that it holds for some r. Then

rev ∆r+1 = rev((b1 . . . , br)∆r)

= rev ∆r rev(b1 . . . , br)

= ∆r(br, . . . , b1) by the induction hypothesis
= Πr−1Πr−2 · · ·Π1(br, . . . , b1).

Now br commutes with Πr−2,Πr−3, . . . , br−1 commutes with Πr−3,Πr−4, . . . and so
forth. Thus we have

rev ∆r+1 = Πr−1brΠr−2br−1 · · ·Π1b2b1

= ΠrΠr−1 · · ·Π2b1

= ∆r+1.

We require one more lemma before we can start working towards the normal form we
sought out to obtain.

Lemma 3.7. There exists positive words Xt, Yt such that for 1 ≤ t < N we have

btXt = ∆ = Ytbt. (3.10)

Proof. To start off, note that since

∆ = ΠN−1 · · ·Π1 = Y1b1,

13



the first case is trivial. If we let f(b2, . . . , bt) denote any positive word in the generators
b2, . . . , bt, by Lemma 3.3 we get that

Πtf(b1, . . . , bt−1) = f(b2, . . . , bt)Πt.

Let bt ∈ {b2, . . . , bN−1}. If we let Πt−1Πt−2 · · ·Π1 = f(b1, . . . , bt−1), we have

∆ = ΠN−1 · · ·Πt+1Πtf(b1, . . . , bt−1)

= ΠN−1 · · ·Πt+1f(b2, . . . , bt)Πt

= ΠN−1 · · ·Πt+1f(b2, . . . , bt)(b1 · · · bt−1)bt

= Ytbt.

This shows that Yt exists for t = 1, 2, . . . , N − 1. To finish the proof, let Xt = rev Yt and
see that

∆ = rev ∆ = rev(Ytbt) = rev(bt) rev(Yt) = btXt.

3.2.2 Permutation braids
A braid P which satisfies e ≤ P ≤ ∆ is called a permutation braid. The name reflects
the fact that there is a bijection from the set of permutation braids in BN , to the set SN .
The bijection can be constructed by sending i to λ(i) (the ending position of the strand
beginning at i), and letting each crossing be positive. Geometrically, a permutation braid
is a braid where any pair of strands cross positively at most once. We denote the set of
permutation braids by S+

N .
For a permutation braid P we can define a starting set S(P ) and a finishing set F (P )

as follows:

S(P ) = {i | P = biP
′ for some P ′ ∈ B+N}

F (P ) = {i | P = P ′bi for some P ′ ∈ B+N}.

Note that we can actually define these sets for any braid, but that the sets then may be
empty. The starting set is the set of indices of the generators which can start a repre-
sentation of a braid, and the finishing set is similarly defined. Notice that we can write
F (P ) = S(revP ). As a concrete example, we look at ∆4:

∆4 = b1b2b3b1b2b1

= b1b2b3b2b1b2

= b1b3b2b3b1b2

= b3b1b2b3b1b2

= b3b2b1b2b3b2 (3.11)
= b3b2b1b3b2b3

= b2b3b2b1b2b3. (3.12)

This calculation shows that S(∆4) = F (∆4) = {1, 2, 3}. Notice that by using Lemma 3.7,
we can generalize this to get S(∆) = F (∆) = {1, 2, . . . , N − 1}.
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3.2.3 Decomposition into normal form
For a positive braid B, we may decompose it into a product B = P1P2 · · ·Pk of permuta-
tion braids by letting each Pi be the longest possible sequence of generators that still form
a permutation braid. Note that every generator is a permutation braid by Lemma 3.7, so
we can always create a “trivial” decomposition where every generator forms its own per-
mutation braid. We say that a decomposition B = P1P2 · · ·Pk into permutation braids is
left-weighted if S(Pi+1) ⊆ F (Pi). This means that for any j ∈ S(Pi+1), if we “move” bj
from Pi+1 to Pi, we can write the new braid P ′i as P ′i = Pibj = P ′bjbj for some positive
braid P ′. This new braid is no longer a permutation braid, since the strands in position j
and j + 1 at the end of P ′ now cross twice.

As an example we look at the braid (b2b3)(b3b2) ∈ B4 in Figure 3.6a.
Equations (3.12) and (3.11) show that P1 = b2b3 ≤ ∆4 and P2 = b3b2 ≤ ∆4, hence they

(a) The left-weighted braid (b2b3)(b3b2).

=

(b) The not left-weighted braid (b2b3)(b3b2b3), and its
left-weighted form (b2b3b2)(b3b2).

are both permutation braids. We cannot apply the braid relations to change these braids in
any way, and hence we have S(P2) = F (P1) = {3}, and the braid is left-weighted.

For a braid that is not left-weighted, look at (b2b3)(b3b2b3) in Figure 3.6b. For a
geometric argument, we see that the last crossing is between strands 3 and 4, and that both
of them lie “on top” of strand 2, and thus we can “move” the crossing to the middle of the
braid. More formally, notice that we can write P2 = b3b2b3 = b2b3b2, so S(P2) = {2, 3}.
Meanwhile we have that for P1 = b2b3 we have F (P1) = {3}, and as such S(P2) *
F (P1). Finally, doing a straightforward computation yields

(b2b3)(b3b2b3) = (b2b3)(b2b3b2) = (b2b3b2)(b3b2),

where all the terms are permutation braids by the equations leading up to (3.12). We will
later generalize the last computation, and show that when moving a generator like this we
will always get new permutation braids.

The next lemma is useful when determining starting sets.

Lemma 3.8. Let A ∈ S+
N have permutation σ. The following are equivalent:
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(i) i ∈ S(A),

(ii) strands i and i+ 1 cross in A,

(iii) σ(i+ 1) < σ(i).

Proof. If A = biA
′, then (i) implies (ii) since the strands cross in bi. Point (ii) and (iii) are

equivalent since the strands cross positively at most once. If we have (ii), we can draw a
diagram of the permutation in which this crossing is the first to happen. Constructing the
braid from this diagram gives a word starting with bi, which implies (i).

Lemma 3.9. Let A ∈ S+
N . Then biA ∈ S+

N if and only if i 6∈ S(A).

Proof. Assume that biA ∈ S+
N . If i ∈ S(A), then we can write biA = bibiA

′, which is
not a permutation braid, contradicting the assumption, and thus i 6∈ S(A). For the other
direction, note by the previous lemma that if i 6∈ S(A), strands i and i + 1 do not cross
in A, which means that they cross once in biA. Every other pair of strands cross at most
once, and hence biA ∈ S+

N .

The above lemmas are important for the following reason: If in our decomposition we
encounter PiPi+1 where S(Pi+1) * F (Pi), we can find a j ∈ S(Pi+1)\F (Pi), and write
PiPi+1 = Pibjb

−1
j Pi+1. Let Ci = Pibj and Ci+1 = b−1j Pi+1. Since Pi, Pi+1 ∈ S+

N , we
can write

∆ = Pi+1B

=⇒ b−1j ∆ = Ci+1B

=⇒ ∆ = Ci+1BbN−j ,

showing that Ci+1 ∈ S+
N . For Ci we use the lemmas:

j 6∈ F (Pi) =⇒ j 6∈ S(revPi) =⇒ bj revPi ∈ S+
N ,

which again means that

∆ = bj revPiQ

=⇒ rev ∆ = rev(bj revPiQ)

=⇒ ∆ = revQPibj

=⇒ (revQ)−1∆ = Pibj

=⇒ ∆ = Pibjτ(revQ),

showing that Pibj = Ci ∈ S+
N .

Due to a rather lengthy proof, we refer to Lemma 2.2 in [15] for the proof of the next
lemma.

Lemma 3.10. Every P ≥ e has a unique left-weighted decomposition P = P1A1 with
P1 ∈ S+

N . Every other positive factorisation P = AB with A ∈ S+
N satisfies P1 = AQ

for some Q ≥ e.
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Thus we can say that the permutation braid P1 has maximal length, since for any
other decomposition P = AB with A ∈ S+

N , we have A ≤ P1. The lemma implies the
following corollary, which will be crucial for the proof of the main result.

Corollary 3.11. Let P have a left-weighted factorisation P = P1A1, with P1 ∈ S+
N .

Then S(P ) = S(P1).

Proof. Clearly S(P1) ⊆ S(P ). Let i ∈ S(P ). Then P = biB with B ≥ e, and by
Lemma 3.10 we then have P1 = biQ for some Q ≥ e, and hence i ∈ S(P1).

We now state the main result.

Theorem 3.12 (Garside normal form). Any word W in BN can be written uniquely as

W = ∆rP1P2 · · ·Pk, (3.13)

where r ∈ Z, Pi ∈ S+
N , and PiPi+1 is left-weighted for 1 ≤ i ≤ k − 1. We call r the

infimum of W , and k the canonical length of W .

Proof. We can write W as

W = W1(x1)−1W2(x2)−1 · · · (xs)−1Ws+1,

where everyWj is a positive word of length≥ 0, and the xj are generators. By Lemma 3.7,
for each xj there exists a positive word Xj such that xjXj = ∆, which implies (xj)

−1 =
Xj∆

−1, and thus we can write

W = W1X1∆−1W2X2∆−1 · · ·WsXs∆
−1Ws+1.

By using Theorem 3.5 to move any appearance of ∆−1 to the left, we get W = ∆−sP ,
where P is a positive word.

We now want to express P as a left-weighted decomposition. Write P = P1Q1, where
P1 is the longest sequence of generators that form a permutation braid. If S(Q1) ⊆ F (P1),
i.e P = P1Q1 is a left-weighted decomposition, use the same technique to write Q1 =
P2Q2. If not, simply move generators from Q1 to P1 by writing P1Q1 = P1bjb

−1
j Q1 =

C1Q
′. By a previous argument we know that C1 is still a permutation braid. By repeating

this process, we can make sure that P = P1Q1 is left-weighted. Remember that by
Lemma 3.10, this decomposition is unique. We now proceed by induction. Assume that
P = P1 · · ·PiQi is left-weighted. If we use the method above to decompose Qi =
Pi+1Qi+1 into a left-weighted decomposition, we have S(Pi+1) = S(Qi) ⊆ F (Pi) by
Corollary 3.11, and hence the decomposition P = P1P2 · · ·PiPi+1Qi+1 is left-weighted
and unique. Since P has finite length, the process must end, and by induction we have
reached a left-weighted form P = P1 · · ·Pk. This is called the left-canonical form of P .

Now all that remains is to show uniqueness. Assume that

∆rP = ∆sQ,

where P,Q are shorthand for left-weighted decompositions. We assume that ∆ � Q, as
then we would define m = s+ 1 and look at the expression ∆mQ′ instead. Suppose that
r > s, and let a = r − s. We then get that

∆rP = ∆sQ =⇒ ∆aP = Q,

17



which means that ∆ ≤ Q, contrary to our assumption. By a mirrored argument we get r =
s, which in turn implies P = Q. By Lemma 3.10 these must have the same decomposition,
and hence we have shown uniqueness and the proof is complete.

We finish this section with the algorithm of Elrifai and Morton for computing the
normal form [15]. First assume that we have written P = ∆rP ′ for some P ′. Assume
that P ′ is factored into permutation braids P ′ = P1P2 · · ·Pk. Again, this can always be
done by taking the naive approach and letting each bi form a permutation braid. Compute
the sets F (Pi) and S(Pi). If S(Pi+1) ⊆ F (Pi) for each i, then the decomposition is left-
weighted. If not we can find a j ∈ S(Pi+1) \F (Pi), and write PiPi+1 = Pibjb

−1
j Pi+1 =

CiCi+1. By the discussion following Lemma 3.9, both Ci and Ci+1 are still permutation
braids, and we use them to replace PiPi+1 in the decomposition.

Because S(Pi) might not equal S(Pibj), we cannot simply move to the next permuta-
tion braid, but must start again by finding the first i where S(Pi+1) ⊆ F (Pi). However,
because the permutation braids will increase in length and there is a finite set of letters in
a braid word, the process must terminate.

If we let P be a word of length |P | in the Artin generators, i.e P = bi1 · · · bi|P | ,
then every generator can move at most |P | steps, while comparing starting and finishing
sets and updating the permutations has complexity O(N). Thus the normal form can be
computed in time O

(
|P |2N

)
.

Thurston [16] gave a different algorithm for computing the Garside normal form of
a positive braid word given as a product of permutation braids P = P1P2 · · ·Pk. The
complexity of the algorithm is O

(
k2N logN

)
, which might be faster than the previous

algorithm, as the permutation braids might be products of multiple generators.
For the sake of completeness, from [9] we note that the BKL normal form of a braid

w with length |w| in the band generators ((3.4)) can be computed in time O
(
|w|2N

)
.

All of this work will come in handy in the next chapter, where we discuss the word
problem for braid groups, and in Section 6.6 when we look at an attack on the WalnutDSA
signature scheme using the Garside normal form.
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Chapter 4

Cryptographic protocols based
on braid groups

4.1 Mathematical problems
In order for us to construct a cryptosystem, we require a hard mathematical problem to
build upon. We will first introduce a few selected problems, which some of the older braid
group cryptosystems are built upon.

4.1.1 The word problem
The word problem asks if two given words in some generating set represent the same ele-
ment. In our case, this is equivalent to asking whether two braid words represent the same
braid. This problem can be solved through the use of the normal forms from Section 3.2,
since every braid has a unique normal form.

Notice that there is a surjective homomorphism φ : BN → SN , which sends a braid b to
its permutation φ(b) = σ, where σ(i) = λ(i). This morphism ignores whether crossings
are positive or not, thus φ(b) = φ(b−1) as they swap the same strands. If the resulting
permutation is the identity permutation, we say that b is a pure braid, and the set PBN of
pure braids forms a subgroup. More precisely, we define

PBN := ker(φ). (4.1)

In our case, since we are working in a group, we can reduce the word problem in the braid
group to the word problem in the pure braid subgroup PBN : the question

w
?
= w′

can be written equivalently as
w(w′)−1

?
= e,

and thus we have reduced the problem of checking whether two braids are equivalent to
checking whether the above product is equivalent to the nullstring. The first thing we do is
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compute the permutation ofw(w′)−1; if it is not trivial, the braids are not equivalent. If it is
trivial, we can compute the normal form of the left hand side. Since it is unique, the normal
form of w(w′)−1 is equal to the nullstring if the two braids are equivalent. Thus the word
problem can be solved by the algorithm of Elrifai and Morton in timeO

(∣∣w(w′)−1
∣∣2N),

or even faster if we choose one of the other approaches.

Another approach is Dehornoys handle reduction algorithm presented in [14], which
is an extension of free reductions, where we delete patterns of the form xx−1 or x−1, that
deals with subwords of the form beii vb

−ei
i . We will not go into the algorithm here, but

remark that the algorithm is deterministic, and that a braid is equivalent to the trivial braid
if the result of the handle reduction is the nullstring.

4.1.2 Conjugacy search problems

• The conjugacy search problem: In its simplest form, the conjugacy search prob-
lem is that given two braids x, y where it is known that y = axa−1 for some a ∈ BN ,
find a b ∈ BN such that y = bxb−1.

• Generalized conjugacy search problem: A more general form of the previous
problem is the following: given x, y ∈ BN such that y = axa−1 for some a ∈
Bm,m ≤ N , find a b ∈ Bm such that y = bxb−1.

• Multiple simultaneous conjugacy search problem: A version of the conjugacy
search problem is called the multiple simultaneous conjugacy search problem, which
is as follows: given yi, xi ∈ BN such that yi = axia

−1 for 1 ≤ i ≤ t, find a b ∈ BN
such that yi = bxib

−1 for all i.

4.2 Commutator based key exchange

The following protocol was proposed in [3, 5]. The protocol assumes nothing about the
group other than that the conjugacy search problem is believed to be hard, and thus is still
interesting even though the protocol in the braid group case has been proven insecure.

The public keys consist of two subgroups generated by the braids p1, p2, . . . , pl and
q1, q2, . . . , qm in BN . Alice chooses her secret key as a word u on l letters and their
inverses, and Bob chooses a secret key which is a word v on m letters and their inverses.
The protocol is shown in Protocol 1.
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Protocol 1 The Anshel-Anshel-Goldfeld protocol

Public information: The braid index N .
Key agreement:
Alice computes a = u(p1, . . . , pl)
Bob computes b = v(q1, . . . , qm)
Alice uses a to compute q′1 = aq1a

−1, . . . , q′m = aqma
−1, and sends q′1, . . . q

′
m to Bob

Bob similarly computes p′1, . . . p
′
l and sends them to Alice

Alice computes tA = au(p′1, . . . , p
′
l)
−1

Bob computes tB = v(q′1, . . . , q
′
m)b−1

The secret key is tA = tB .

The protocol works because

u(p′1, . . . , p
′
l)
−1 = (bu(p1, . . . , pl)b

−1)−1 = b(u(p1, . . . , pl))
−1b−1 = ba−1b−1,

and hence

tA = au(p′1, . . . , p
′
l)
−1

= ab(u(p1, . . . , pl))
−1b−1

= aba−1b−1

= av(q1, . . . , qm)a−1b−1

= v(q′1, . . . , q
′
m)b−1

= tB .

In [23], an attack against the multiple simultaneous conjugacy search problem was pre-
sented with very high success rate against the parameters N = 80 and l = m = 20,
where every generator of the public subgroups consisted of 5 to 10 Artin generators. The
different algorithms and techniques presented render this protocol useless with these pa-
rameters. The writers also mention having experimented with different versions of the
protocol, including one with secret words a, b of length 100 in the public generators, but
all of them turned out to be vulnerable, and thus braid groups seem unsuitable for this
protocol.

4.3 Diffie-Hellman key agreement
We define two commuting subgroups of BN , which will be used in a Diffie-Hellman like
scheme. The subgroups themselves are not commutative, but the elements from the differ-
ent groups commute with each other. We defineLBN andUBN as the subgroups generated
by b1, . . . , bbN/2c−1 and bbN/2c+1, . . . , bN−1. Because of the first group relation ((3.2)),
we see that for any a ∈ LBN and b ∈ UBN we have ab = ba.

Using these subgroups we construct a Diffie-Hellman type conjugacy search problem:
given x, ya, yb ∈ BN such that ya = a−1xa and yb = b−1xb for some a ∈ LBN and
b ∈ UBN , find

b−1yab = b−1a−1xab = a−1b−1xba = a−1yba.
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We can see that this problem is a variant of the generalized conjugacy search problem. In
[24], this problem was used to build the following key agreement protocol.

Protocol 2 Diffie-Hellman type key agreement.

Public information: The braid index N and a sufficiently complicated braid x ∈ BN .
Key agreement:
Alice chooses a random secret braid a ∈ LBN and sends y1 = axa−1 to Bob
Bob chooses a random secret braid b ∈ UBN and sends y2 = bxb−1 to Alice
Alice computes K = ay2a

−1

Bob computes K = by1b
−1.

We see that
K = ay2a

−1 = abxb−1a−1 = baxa−1b−1 = by1b
−1

since the subgroups commute, and hence Alice and Bob compute the same secret key.
Details concerning “sufficiently complicated braids” can be found in [24]. We can draw
parallels to the regular Diffie-Hellman scheme. In this case x takes the place of the gener-
ator g, and conjugation axa−1 replaces exponentiation ga.

4.4 A braid group public key encryption scheme
Along with the previous protocol, an encryption scheme using the same ideas was also pre-
sented in [24]. Let H : BN → {0, 1}k be a public, collision free, one way hash function.
This means that the probability of having H(b1) = H(b2) when b1 6= b2 is negligible, and
retrieving b from H(b) is infeasible.

Protocol 3 Braid group encryption scheme

Public information: A collision free, one way hash functionH , and the braid indexN .
Key generation:
Alice chooses a private key s ∈ LBN , and a braid p ∈ BN . She computes p′ = sps−1

and publishes her public key (p, p′).
Bob wants to send a message mB ∈ {0, 1}k to Alice. He picks a random braid r ∈
UBN and computes p′′ = rpr−1.
Encryption:
Bob sends the pair (m′′B , p

′′), where m′′B = mB ⊕ H(rp′r−1). Here ⊕ is addition in
Z/2Z.
Decryption:
Alice computes mA = m′′B ⊕H(sp′′s−1), and we get mA = mB .

Because the braids s and r commute, we get

sp′′s−1 = srpr−1s−1 = rsps−1r−1 = rp′r−1,

and thus

mA = m′′B ⊕H(sp′′s−1) = mB ⊕H(rp′r−1)⊕H(sp′′s−1) = mB
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as claimed.
An attack against the Diffie-Hellman type problem from before was also presented in

[23], and a variety of different choices for the index N and the length of the words p, s, r
all seemed to indicate that the scheme was vulnerable to their attack.
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Chapter 5

WalnutDSA

In this chapter we study the WalnutDSATMsignature scheme, submitted to the NIST post
quantum cryptography standardization process. We follow the presentation given in [4],
and later revisions of this article. The scheme involves a representation of the braid group
called the colored Burau representation, and a group action called E-multiplication.

5.1 Colored Burau representation

Let Fq denote the field with q elements, and let Fq[t1, t−11 , . . . , tN , t
−1
N ] be the ring of Lau-

rent polynomials in N variables. We want to introduce the colored Burau representation

ΠCB : BN → GL
(
N,Fq[t1, t−11 , . . . , tN , t

−1
N ]
)
o SN . (5.1)

The symbol o is notation for a semidirect product, which is a generalization of a direct
product. For two groups G and H , their semidirect product with respect to a homomor-
phism ϕ : H → Aut(G) is the group with G × H as the underlying set, and the group
operation ∗ defined as

(g1, h1) ∗ (g2, h2) = (g1ϕ(h1)(g2), h1h2).

For the generators bi, we create a colored Burau matrix as follows: If i = 1, we set

CB(b1) =



−t1 1 0 . . . 0

0 1 0 . . .
...

... 1
. . .

1


, CB(b−11 ) =



− 1
t2

1
t2

0 . . . 0

0 1 0 . . .
...

... 1
. . .

1


.
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For 2 ≤ i < N we define

CB(bi) =


1

. . .
ti −ti 1

. . .
1

 , CB(b−1i ) =



1
. . .
1 − 1

ti+1

1
ti+1

. . .
1

 .

The variables here appear in row i. Recall that there is a surjection φ : BN → SN which
sends a braid b to its corresponding permutation σ. We can use this to associate to each
generator braid bi a colored Burau matrix/permutation pair (CB(bi), φ(bi)). We now want
to define a multiplication of such pairs, in order to form the colored Burau group. To begin,
we notice that given a Laurent polynomial f(t1, . . . , tN ) in N variables, a permutation
σ ∈ SN can act on it by permuting the indices of the variables. We denote this action as
f 7→ σf :

σf(t1, . . . , tN ) = f(tσ(1), . . . , tσ(N)). (5.2)

Note that the action of σ is really a group action on the natural numbers, and we stress that
even though it is natural to think of the permutation as acting from left to right, similarly
to how the braids permute from top to bottom, the action starts on the right and moves left.
For example, (1, 2)(2, 3) = (1, 2, 3) instead of (1, 2)(2, 3) = (1, 3, 2).

We then extend this action to matrices over the ring of Laurent polynomials by letting
the permutation act on each entry, and we denote this action by M 7→ σM . For ease of
notation, let σi be the i-th transposition (i, i + 1). Multiplication of two pairs of Burau
matrices and permutations is then given as follows: given two generator braids b±i , b

±
j with

permutations σi, σj , the pair associated with b±i · b
±
j is(

CB(b±i ), σi) · (CB(b±j ), σj) = (CB(b±i ) · σiCB(b±j ), σiσj
)
. (5.3)

We can extend this definition to general braids inductively: given b = be1i1 b
e2
i2
· · · bekik , the

matrix part CB(b) of the associated pair is(
CB(be1i1 ) · σi1CB(be2i2 ) · σi1σi2CB(be3i3 ) · · · σi1σi2 ···σik−1CB(be1i1 ) · CB(be2i2 ) · · ·CB(b

ek
ik

)
)
.

(5.4)
The colored Burau representation is then given as

ΠCB : BN → GL
(
N,Fq[t1, t−11 , . . . , tN , t

−1
N ]
)
o SN

b 7→ (CB(b), σi1σi2 · · ·σik) .

Notice that σi1σi2 · · ·σik is just φ(b), the permutation of the braid, and so we can write
this as ΠCB(b) = (CB(b), σb). One now checks that the braid relations hold for the
representation. For |i− j| > 1, this is easy because the transpositions will be disjoint and
hence σiσj = σjσi and σiCB(b±j ) = CB(b±j ). Finally, we get two block matrices which
will commute.

For the other relation, the equations we have to check are

CB(bi) · (i,i+1)CB(bi+1) · (i,i+1)(i+1,i+2)CB(bi) =

CB(bi+1) · (i+1,i+2)CB(bi) · (i+1,i+2)(i,i+1)CB(bi+1)
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and
(i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) = (i+ 1, i+ 2)(i, i+ 1)(i+ 1, i+ 2).

It is fairly straightforward to see that the permutations are the same, and we have

(i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) = (i, i+ 2) = (i+ 1, i+ 2)(i, i+ 1)(i+ 1, i+ 2),

which matches the permutation of the braids in Figure 3.2b.
For the matrix part we begin by writing the matrices in block form:

CB(bi) =


Ii−2 0i−2,4 0i−2,N−i−2

04,i−2

1 0 0 0
ti −ti 1 0
0 0 1 0
0 0 0 1

04,N−i−2

0N−i−2,i−2 0N−i−2,4 IN−i−2



CB(bi+1) =


Ii−2 0i−2,4 0i−2,N−i−2

04,i−2

1 0 0 0
0 1 0 0
0 ti+1 −ti+1 1
0 0 0 1

04,N−i−2

0N−i−2,i−2 0N−i−2,4 IN−i−2

 .

We see that in order to check the first equation, it suffices to check the middle block, since
the rest will automatically commute. In the calculations, we will therefore abuse notation
by writing CB(bi) while referring to the middle block. For 2 ≤ i ≤ N − 2 we compute

CB(bi) ·(i,i+1) CB(bi+1) ·(i,i+1)(i+1,i+2) CB(bi) =
1 0 0 0
ti −ti 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 ti −ti 1
0 0 0 1




1 0 0 0
ti+1 −ti+1 1 0

0 0 1 0
0 0 0 1

 =


1 0 0 0
ti 0 −ti 1

titi+1 −titi+1 0 1
0 0 0 1



CB(bi+1) · (i+1,i+2)CB(bi) · (i+1,i+2)(i,i+1)CB(bi+1) =
1 0 0 0
0 1 0 0
0 ti+1 −ti+1 1
0 0 0 1




1 0 0 0
ti −ti 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 ti −ti 1
0 0 0 1

 =


1 0 0 0
ti 0 −ti 1

titi+1 −titi+1 0 1
0 0 0 1

 ,

and see that the relation is satisfied. For i = 1, the computations become

CB(b1) · (1,2)CB(b2) · (1,2)(2,3)CB(b1) =−t1 1 0
0 1 0
0 0 1

 1 0 0
t1 −t1 1
0 0 1

−t2 1 0
0 1 0
0 0 1

 =

 0 −t2 1
−t1t2 0 1

0 0 1


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and

CB(b2) · (2,3)CB(b1) · (2,3)(1,2)CB(b2) = 1 0 0
t2 −t2 1
0 0 1

−t1 1 0
0 1 0
0 0 1

 1 0 0
t1 −t1 1
0 0 1

 =

 0 −t2 1
−t1t2 0 1

0 0 1

 ,

and thus all of the relations are satisfied, and we have a valid representation of the group.
Since the relations are satisfied, and any occurrence of bib−1i in the braid word disappears
in the representation, it is independent of the expression of b in the generators.

5.2 E-multiplication
The group action E-multiplication was first introduced in [2] as a one way function. For-
mally, it is a right action of the colored Burau group, henceforth denoted as CBN , on the
set GL(N,Fq)× SN . We denote an ordered list of non-zero elements in the finite field as
t-values:

{τ1, τ2, . . . , τN} ⊂ F×q .

For any set of t-values, i.e a vector ~τ , we can evaluate a Laurent polynomial f(t1, t2, . . . , tN )
to obtain an element of Fq:

f(t1, t2, . . . , tN )(~τ) := f(~τ).

Like before, we extend this action to matrices over Laurent polynomials. We now define
E-multiplication. It takes as input two ordered pairs

(M,σ0) ∈ GL(N,Fq)× SN , (CB(b), σb) ∈ CBN ,

and returns a new pair (M ′, σ′) ∈ GL (N,Fq) × SN . We denote the operation of E-
multiplication with a ?, and write

(M ′, σ′) = (M,σ0) ? (CB(b), σb). (5.5)

As for the colored Burau representation, we define the operation inductively. When the
braid b = b±i is a single generator or its inverse, we set

(M,σ0) ? (CB(b±i ), σi) =
((
M · σ0CB(b±i )

)
(~τ), σ0σi

)
. (5.6)

We see that the operation is the same as doing a regular multiplication in the colored Burau
group, and then evaluating the matrix part in a set of t-values. In the general case where
b = be1i1 b

e2
i2
· · · bekik , we set

(M,σ0)?(CB(b), σb) = (M,σ0)?
(
CB(be1i1 ), σi1

)
?
(
CB(be2i2 ), σi2

)
?· · ·?

(
CB(bekik ), σik

)
,

(5.7)
where we associate from the left.
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For ease of notation, and to write the operation as an action by the braid group, for a
pair (M,σ) ∈ GL(N,Fq)× SN and a braid b with permutation σb, we write

(M,σ) ? b := (M,σ) ? (CB(b), σb). (5.8)

It is worth noting that for a pair (M,σ) and two generator braids b±i , b
±
j , we have(

(M,σ) ? b±i
)
? b±j =

(
(M,σ) ? (CB(b±i ), σi)

)
? b±j

= ((M · σCB(b±i ))(~τ), σσi) ? b
±
j

= (((M · σCB(bi))(~τ) · σσiCB(b±j ))(~τ), σσiσj)

= ((M · σCB(b±i ) · σσiCB(b±j ))(~τ), σσiσj)

= ((M ·σ (CB(b±i ) · σiCB(b±j )))(~τ), σσiσj)

= (M,σ) ? (CB(b±i ) · σiCB(b±j ), σiσj)

= (M,σ) ?
(
(CB(b±i ), σi) · (CB(b±j ), σj)

)
= (M,σ) ? (b±i · b

±
j ),

(5.9)

where the final multiplication happens in the colored Burau group. This is a requirement
for E-multiplication to formally be a group action, but it is a nice result which we can
extend to get

(M,σ) ? b = (M,σ) ? (CB(b), σb) = ((M · σCB(b))(~τ), σσb). (5.10)

Note however that when we actually compute an E-multiplication, we do it generator by
generator, meaning that we evaluate the matrices in every step instead of computing with
polynomials.

The calculations above can be done since σ is a bijection, and since for Laurent poly-
nomials f and g, we can extend (f · g)(~τ) = f(~τ)g(~τ) to show that the evaluation map

φ~τ : GL(N,Fq[t1, t−11 , . . . , tN , t
−1
N ])→ GL(N,Fq)

M 7→M(~τ)

is a homomorphism.
Finally we note that since the colored Burau representation is independent of the ex-

pression of the braid and evaluation is a homomorphism, E-multiplication is also indepen-
dent of the expression of the braid.

5.3 Cloaking elements
The security of WalnutDSA is based on certain braids which hide and obscure our mes-
sages. We call these braids cloaking elements.

Definition 5.1 (Cloaking element). Let (M,σ) ∈ GL(N,Fq)×SN . A braid v in the pure
braid subgroup PBN is called a cloaking element if

(M,σ) ? v = (M,σ). (5.11)

We denote the set of cloaking elements for the pair (M,σ) as Cloak(M,σ).
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Lemma 5.2. The set of cloaking elements form a subgroup, and is called the stabilizer of
(M,σ).

Proof. Let v, w ∈ Cloak(M,σ). By the calculations in 5.9 we have

(M,σ) ? (v · w) = (M,σ) ? ((CB(v), σv) · (CB(w), σw))

= ((M,σ) ? (CB(v), σv)) ? (CB(w), σw)

= (M,σ) ? (CB(w), σw)

= (M,σ),

and thus v · w ∈ Cloak(M,σ).

We remark that whether or not a braid is a cloaking element depends on the t-values.
The authors present the following way to generate cloaking elements.

Proposition 5.3. Fix integersN ≥ 2 and 1 < a < b ≤ N . Assume that the t-values τa, τb
satisfy τaτb = −1. Let M ∈ GL(N,Fq) and σ ∈ SN . A cloaking element v of (M,σ)
is then given by v = wb4iw

−1 where bi is any Artin generator, and the permutation σw
satisfies

σw(i) = σ−1(a), σw(i+ 1) = σ−1(b).

Proof. As in the proof of the group relations for CBN , we only look at the central block
matrix of CB(bi) in the following computation, and we abuse the notation in the same
way by referring to CB(bi) as the middle block of the full matrix:

CB(b2i ) =




1 0 0 0
ti −ti 1 0
0 0 1 0
0 0 0 1

 ·σi


1 0 0 0
ti −ti 1 0
0 0 1 0
0 0 0 1

 , IdSN



=




1 0 0 0
ti − titi+1 titi+1 1− ti 0

0 0 1 0
0 0 0 1

 , IdSN

 .

This gives the following central block for CB(b4i )

CB(b4i ) =




1 0 0 0
ti − titi+1 titi+1 1− ti 0

0 0 1 0
0 0 0 1

 ·


1 0 0 0
ti − titi+1 titi+1 1− ti 0

0 0 1 0
0 0 0 1


IdSN

, IdSN



=




1 0 0 0
(ti − titi+1) + titi+1(ti − titi+1) (titi+1)2 titi+1(1− ti) + (1− ti) 0

0 0 1 0
0 0 0 1

 , IdSN


Using the assumptions σσw(i) = a, σσw(i+ 1) = b and τaτb = −1, we get

(M,σ) ? v = (M,σ) ? ((CB(w), σw) · (CB(b4i ), IdSN ) · (CB(w−1), σw))

= ((M · σ(CB(w) · σwCB(b4i ) · σw IdSN CB(w−1)))(~τ), σσw IdSN σ−1
w )

= ((M · σ(CB(w) · σwCB(w−1)))(~τ), σ)

= (M,σ).
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Notice that in the construction above, the matrix M is arbitrary, and we can thus say
without ambiguity that v cloaks σ. We apply this in the following way. Fix a braid b =
be1i1 b

e2
i2
· · · belil , and choose a point 1 ≤ k ≤ l. Write b = x1 · x2, where x1 = be1i1 · · · b

ek−1

ik−1

and x2 = bekik · · · b
el
il

. For a pair (m0, σ0) we have

(m0, σ0) ? b = ((m0, σ0) ? x1) ? x2).

Using Proposition 5.3 we can generate a cloaking element v for the permutation σ0σx1
.

By construction, for any matrixM we then have that (M,σ0σx1)?v = (M,σ0σx1). Since
(m0, σ0) ? x1 is on the form (M,σ0σx1) for some matrix M , we get

(m0, σ0) ? b = ((m0, σ0) ? x1) ? x2)

= (M,σ0σx1) ? x2

= (M,σ0σx1) ? v ? x2

= ((m0, σ0) ? x1) ? v ? x2

= (m0, σ0) ? x1 ? v ? x2.

Thus we have created a new braid b′ = x1 · v · x2 which contains v and has the property
that (m0, σ0) ? b = (m0, σ0) ? b′. We call the inserted cloaking element v a concealed
cloaking element. This process can be iterated, and we have the following definition.

Definition 5.4. Given a braid b ∈ BN , the output of κ iterations of randomly inserting
cloaking elements is denoted κ(b) and called a κ-cloaking of b.

5.4 Cryptographic notation
Following the main article, we present some notation for cryptographic protocols.

• Let S be a set

〈S〉 denotes a unique encoding of S as a binary string.

s
$←− S denotes the operation of randomly choosing s ∈ S.

• Let A(∗; ρ) be a randomized algorithm with randomness based on a coin ρ.

A(y1, . . . , yq; ρ) denotes the output of algorithmA on input y1, . . . , yq and coin
ρ.

z
$←− A(y1, . . . , yq) denotes choosing ρ at random and letting z = A(y1, . . . , yq; ρ).

• Let b ∈ BN . We define P(b) := (IdN , IdSN
) ? b.

The security of Walnut is based on the following problem:

Definition 5.5 (The REM problem). The REM-problem is: consider the braid group BN
for N ≥ 10. Given a pair (M,σ) ∈ GL(N,Fq)×SN where it is stipulated that (M,σ) =
P(b) for some unknown braid b with sufficiently long BKL normal form [9], then it is
infeasible to find a braid b′ such that (M,σ) = P(b′). Informally, this means that reversing
E-multiplication is hard.
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5.5 Key generation
The Walnut protocol allows a signer with a private/public key pair to create a signature for
a given message that can be authenticated by anyone who knows the public key and the
verification protocol. The system wide parameters, denoted par, are generated by a central

authority via a parameter generation algorithm denoted Pg, so par $←− Pg. A signer S
generates its own key pair, denoted (Pub(S),Priv(S)), via a key generation algorithm

Kg. More concretely: (Pub(S),Priv(S))
$←− Kg(par).

5.5.1 Public system wide parameters:
• An integer N ≥ 10 and the associated braid group BN .

• An integer κ > 1 which is chosen to meet the security level. The signature will use
κ concealed cloaking elements.

• A rewriting algorithm R : BN → BN which uses the braid relations to rewrite a
word, such as the normal forms from Section 3.2 or Dehornoys handle reduction
(page 20).

• A finite field Fq .

• Two integers 1 < a < b < N .

• t-values {τ1, . . . , τN}, where τi ∈ F×q and τa · τb = −1.

5.5.2 Private key:
The signer’s private key is a pair of reduced (no subwords x · x−1 or x−1 · x appear for
any generator) braids:

Priv(S) = (w,w′) ∈ BN × BN ,

where the braids w,w′ and w · w′ are not in the pure braid group.

5.5.3 Public key:
The signer’s public key consists of two matrix and permutation pairs which are generated
from the public key:

Pub(S) = (P(w),P(w′)).

5.6 Encoder
In order to use the protocol, we require a method to turn a messagem ∈ {0, 1}∗ into a braid
word. Let H : {0, 1}∗ → {0, 1}2η be a cryptographically secure 2η-bit hash function for
η ≥ 1. In the main article, it is formally defined what “cryptographically secure” means,
but other papers have assumed that the intended meaning is that of a “random oracle”. In
the verification step of the signature scheme, it can be shown that the permutation of the
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encoded message has to be trivial, and therefore the output braid must be a pure braid. We
thus want to construct an injective function E : {0, 1}2η → HN , where HN is a subgroup
of the pure braid group. This will make sure that two distinct words will give distinct
encodings. The encoding algorithm is then presented as follows: the collection of pure
braids given by

g(N−1),N = b2N−1

g(N−2),N = bN−1 · b2N−2 · b−1N−1
g(N−3),N = bN−1 · bN−2 · b2N−3 · b−1N−2 · b

−1
N−1

...

g1,N = bN−1bN−2 · · · b2b21b−12 · · · b
−1
N−2b

−1
N−1

(5.12)

will generate a free subgroup HN ≤ PBN . For simplicity, we write gi = gi,N when N is
clear from context.

5.6.1 Encoding algorithm:
We create the braid E(H(m)) ∈ BN as follows. The hash H(m) of the message consists
of η 2-bit blocks. Fix a collection S of η tuples Sk, where each Sk is a four-tuple of
generators from the set above:

Sk = (gk1 , gk2 , gk3 , gk4).

For the k-th block of H(m), there is a bijective mapping to its corresponding tuple
Sk, and the output of the encoder is the product of the generators obtained from going
through all the blocks ofH(m) in order. The encoding function is injective, because given
E(M1) = gi1gi2 · · · gil = E(M2) for two message digests M1 and M2, each gik must
come from the same tuple Sk. Since the correspondence between message-block and tuple
is bijective, the k-th block of the message digest must be the same for both messages. Since
this holds for all k, we have that M1 = M2, which shows that the encoder is injective.

5.7 Signature generation and verification

5.7.1 Signature generation:
To sign a message m ∈ {0, 1}∗, the signer does as follows:

1. Compute H(m).

2. Generate cloaking elements v, v1, v2 where v cloaks (IdN , IdSN
), v1 cloaks P(w)

and v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R(κ(v1 · w−1 · v · E(H(m)) · w′ · v2)), which is now a rewritten
braid. We generate the κ concealed cloaking elements from the element P(w).
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5. The signature is the pair (H(m),Sig).

The cloaking elements v, v1, v2 disappear under the correct E-multiplication, as does the
κ concealed cloaking elements.

5.7.2 Signature verification:

A signature (m,Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate P(w) ? Sig.

4. Test the equality

Matrix
(
P(w) ? Sig

) ?
= Matrix

(
P
(
E
(
H(m)

)))
·Matrix

(
P(w′)

)
, (5.13)

where Matrix denotes the matrix part of the pair, and the multiplication on the right
is ordinary matrix multiplication.

5. Reject signatures longer than 214 Artin generators1.

6. Accept the signature if 4 and 5 hold.

We show the computations involved in the verification process. Since v cloaks (IdN , IdSN
),

v1 cloaks P(w) and v2 cloaks P(w′), we have that σv = σv1 = σv2 = IdSN
, and

(IdN , IdSN
) ? v = (CB(v)(~τ), IdSN

) = (IdN , IdSN
)

P(w) ? v1 = ((CB(w) · σwCB(v1))(~τ), σw) = (CB(w)(~τ), σw)

P(w′) ? v2 = ((CB(w′) · σw′CB(v2))(~τ), σw′) = (CB(w′)(~τ), σw′).

(5.14)

Given the fact that E-multiplication is independent of the expression of braids, and how
we defined a κ-cloaking of a braid, we have that

P(w) ? Sig = P(w) ?R(κ(v1 · w−1 · v · E(H(m)) · w′ · v2))

= P(w) ? (v1 · w−1 · v · E(H(m)) · w′ · v2).

By construction, σE(H(m)) = IdSN
. Note also that because the map φ, which sends a

braid b to its permutation σb, is a homomorphism, σw−1 = σ−1w . Combining all of this,

1This is to block certain length based attacks on the scheme.
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the matrix part of P(w) ? Sig becomes(
CB(w) ·

(
CB(v1) · CB(w−1)σw

· CB(v)σ−1
w · σ

−1
w CB(E(H(m))) · σ

−1
w CB(w′) · σ

−1
w σw′CB(v2)

))
(~τ)

=
(
CB(w) ·

(
CB(v1)σw · CB(w−1)

·
(
CB(v)σ−1

w · CB(E(H(m))) · CB(w′) · σw′CB(v2)
)))

(~τ)

=
(
CB(w) ·

(
CB(v1)σw · CB(w−1)

)
·

(
CB(v)σwσ

−1
w · CB(E(H(m))) · CB(w′) · σw′CB(v2)

))
(~τ)

∗
=
(
CB(w) · σwCB(w−1) · CB(E(H(m))) · CB(w′)

)
(~τ)

=
(
CB(E(H(m))) · CB(w′)

)
(~τ)

= Matrix
(
P(E(H(m)))

)
·Matrix

(
P(w′)

)
,

where ∗ follows from the identities derived in (5.14). In order to save space, we have
skipped some steps in the equations while evaluating the matrices.

5.8 Security proof
We present a security proof that is virtually identical to the one in [4]. We will present
a slightly modified version of the above scheme called WalnutDSA-I, and show that it
is existentially unforgeable under adaptive chosen-message attacks in the random oracle
model. To show this, we assume that if a forger has the ability to forge valid signatures
of a specific type with a non-negligible probability, he is able to break the REM-problem
with non-negligible probability. We define the set

Cloak :=
{

(v, v1, v2) | v ∈ CloakId, v1 ∈ CloakP(w), v2 ∈ CloakP(w′)
}
,

where Id = (IdN , IdSN
). The system wide parameters and key generation algorithm are

the same as in the original scheme, and are given by

par
$←− Pg

(Pub(S),Priv(S))
$←− Kg(par).

To sign a message m we use two hash functions H,G : {0, 1}∗ → {0, 1}2η , and we use
the following protocol

1. (v, v1, v2)
$← Cloak, V = 〈(v, v1, v2)〉, so V is a string encoding of (v, v1, v2).

2. Compute E(H(m||G(V ))), where || means string concatenation.

3. Compute
Sig = R

(
κ
(
v1w

−1v · E
(
H
(
m||G(V )

))
· w′v2

))
. (5.15)

The signature is (m,H(m), G(V ),Sig).
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To validate the signature one checks that

Matrix
(
P(w) ? Sig

)
?
= Matrix

(
P
(
E
(
H
(
m||G(V )

))))
·Matrix

(
P(w′)

)
. (5.16)

Notice that all signatures on a messagem created by an honest signer will lie in the double
coset

DCm,V,H,G :=
{
R
(
X · E

(
H
(
m||G(V )

))
· Y
)∣∣∣X,Y ∈ BN} , (5.17)

but there might be valid signatures lying outside of this set.

Security proof
We assume the existence of a forger F , that when given a public key (Pub(S)) and a
message m can produce a valid signature lying in DCm,V,H,G. This is fairly restrictive,
but as noted by the authors it is important to rule out certain kinds of attacks.

More precisely we define F to be a randomized algorithm that can make hash queries
to a random oracle.

• Hash query: let Oρ denote a random oracle that depends on a coin ρ. The oracle
responds to a hash query, which is a string str ∈ {0, 1}∗, with the hash of the string.

To describe the forger F , we study WalnutDSA-I with parameters and keys given by

par
$←− Pg, (Pub(S),Priv(S))

$←− Kg(par).

We assume that the hash function H is fixed and multi-collision-resistant, while the hash
function G = Gρ is given by the oracle Oρ, which depends on a coin ρ. The forger is
defined to be a randomized algorithm that when given a message m ∈ {0, 1}∗, a public
key Pub(S) and a coin ρ, outputs a tuple (m,h, gρ, s), where h = H(M), gρ = Gρ(V ),

and V $← Cloak, s
$← DCm,V,H,G. We assume that the probability that (m,h, gρ, s) is a

valid signature is non-negligible.
The proof is based on the forking lemma, and we will present the needed result without

a proof. For details, see [7, 29].

Lemma 5.6. Let F be run twice with input

(m,Pub(S), ρ), (m,Pub(S), ρ′).

Then, with non-negligible probability, F will output two valid signatures

(m,h, gρ, s), (m,h, gρ′ , s
′),

such that gρ 6= gρ′ .

A non-trivial application of the lemma provides us with a method to run the forger
twice with the same cloaking elements V , which we require for the next step. Using the
lemma we can show that the forger can break the REM-problem from Definition 5.5 with
non-negligible probability, provided there is a polynomial time solution to the conjugacy
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search problem in braid groups. We recall the problem here for simplicity. The conjugacy
search problem is: given two braids x, y where it is known that y = axa−1 for some
a ∈ BN , find a b ∈ BN such that y = bxb−1. Such polynomial time solutions are
conjectured to exist, and there exist experimental results that support the claim, see [18,
21].

Theorem 5.7. Assume that the conjugacy search problem can be solved in polynomial
time in braid groups, and that two WalnutDSA-I signatures

(m,H(m), Gρ(V ), s), (m,H(m), Gρ′(V ), s′)

with Gρ(V ) 6= Gρ′(V ) are known to an adversary. Then the adversary can solve the
REM-problem in polynomial time with non-negligible probability.

Proof. Let

s = R
(
X
(
E(H

(
m||Gρ(V )

))
Y
)

= X · E
(
H
(
m||Gρ(V )

))
· Y

s′ = R
(
X
(
E(H

(
m||Gρ′(V )

))
Y
)

= X · E
(
H
(
m||Gρ′(V )

))
· Y,

where = means equivalent in the braid group. Note that the braids X,Y only depend on
the cloaking elements V . We get that

s · (s′)−1 = X ·
(
E
(
H
(
m||Gρ(V )

))(
E
(
H
(
m||Gρ′(V )

)))−1) ·X−1, (5.18)

and by our assumptions it is possible to solve for X , which means we can also solve for
Y . By (5.14) we have

(IdN , IdSN
) ? Y = (IdN , IdSN

) ? w′ ? v2

= P(w′) ? v2

= P(w′),

which means that P(w′) = P(Y ), and hence we have reversed E-multiplication.

The forking lemma is crucial in this proof, since it allows us to use the same elements
X,Y for both signatures, which enables us to reduce the problem to the conjugacy search
problem.

5.8.1 Strong existential forgery
Strong existential forgery is the situation where an attacker is able to forge a second sig-
nature for a message that is different from a previously obtained signature of the same
message. Since a signature

Sig = R(κ(v1 · w−1 · v · E(H(m)) · w′ · v2))

for a messagem can be multiplied by an additional cloaking element on the right to create a
new valid signature for the messagem, WalnutDSA is subject to strong existential forgery.
However, this is not an issue if we require a forgery to be a pair (m, s) in which m has not
been signed before.
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Chapter 6

Attacks on Walnut

From the first publication of Walnut, many people researched and proposed attacks against
the protocol, causing it to be modified several times. We will give a short presentation
of some of these attacks, following roughly the descriptions given in [28], the security
discussion chapter of [4], and the authors’ own webpage dedicated to this purpose [31].

Definition 6.1 (Security level). A secret is said to have security level k over a finite field
F if the best known attack for obtaining the secret involves running an algorithm that
requires at least 2k elementary operations (addition, subtraction, multiplication, division)
in the field.

We note that in the first submission to NIST, the parameter q was set to q = 25 = 32
for the 128-bit version, and q = 28 = 256 for the 256-bit version. It was specified that
τ1 = τ2 = 1, instead of τaτb = −1. For both versions, N = 8 was used.

6.1 Factorization attack
The first attack against the scheme was a universal forgery attack that was published by
Hart et al. in [22]. In this version of Walnut, the private key was a single braid w, and
the public key was P(w). This turns the signature into a pure braid. The attack proceeds
by collecting a set of message/signature pairs (mi, si) for i in some finite indexing set I ,
and then use this set to create a valid signature for a message m. Specifically, we want to
find a short expression in GL(N,Fq) for the element h = Matrix (P(E(H(m)))). Let
gi = Matrix(P(E(H(mi)))) and assume that

h =

L∏
j=1

g
eij
ij
, ij ∈ I. (6.1)

We then get that

s =

L∏
j=1

s
eij
ij
,
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which is the concatenation of the corresponding signatures, is a valid signature form. Thus
an attacker can create a forgery if they can solve a factorization problem over GL(N,Fq).
An algorithm to solve this problem was also presented in [22], with time complexity
O
(
q(N−1)/2

)
.

The authors provided several countermeasures to their attack. First of all, an increase
of parameters could thwart the attack. Furthermore, they note that the signatures produced
are extremely long, and that a limit on the length of the signatures would block their attack.

To counter the attack, the creators of WalnutDSA changed the private (and thus also the
public) key into two different braids with nontrivial permutations. This was done to prevent
the concatenation of two signatures from still beeing a valid signature. However, Ward
Buellens proved in [11] that despite these changes, by doubling the size of the signatures
the attack in [22] could still be used. In response, the authors of WalnutDSA set an explicit
length limit on the signatures to block the attack.

6.2 Collision search attack

In [10], Simon Blackburn proposed a Pollard-rho type attack to show that the parameters in
the WalnutDSA submission were slightly too small to achieve the required security levels.
Specifically, he showed that in order to achieve k-bit security, we need to have

qN(N−3)−1 > 22k.

Blackburn presented a collision search algorithm that finds a collision for the function
P : BN → GL(N,Fq) × SN in

√
|GL(N,Fq)× SN | number of operations. Using this

he was able to find an equivalent private key. The number of possible elements in each
part of the public key is bounded above by N !qN(N−1), as there are N ! permutations in
SN , and the number of matrices over Fq with (0, 0, . . . , 0, 1) in the last row is qN(N−1).
Since N = 8 was used for both the 128-bit and 256-bit version, we get Table 6.1. The key

Security level q N !qN(N−1)
√
|N !qN(N−1)|

128 25 ≈ 2295.3 ≈ 2147.65

256 28 ≈ 2463.3 ≈ 2231.65

Table 6.1: Upper bounds on the number of elements of P(BN ).

part is that for the 256-bit version, the upper bound on the number of elements is not high
enough to block the collision search. Blackburn also uses the estimate qN(N−3) for the
number of possible matrices for each part of the public key, provided in an earlier version
of WalnutDSA, as a lower bound, and notes that the 128-bit version might also be broken
by the collision search.

In response, the authors changed the parameters from N = 8 to N = 10 for both the
128-bit and the 256-bit versions.

40



6.3 Encoder issues and collision search

Ward Buellens showed in [12] that the original 4-bit encoder, which used two bits to
decide which braid from the set {g1, g2, g3, g4} from (5.12) to map to, and two bits to
choose an exponent, was not injective. In [8], Buellens and Blackburn also showed that it
mapped to a set of braids where the matrix parts of P ◦ E were lying in a space of only
dimension 13 over Fq . This meant that they could find messages m1 and m2 such that
P
(
E(H(m1))

)
= P

(
E(H(m2))

)
by a regular collision search algorithm. They imple-

mented an algorithm based on an algorithm of Oorschot and Wiener [33], which takes an
expected

∣∣P(E(H({0, 1}∗))
)∣∣1/2 evaluations of P ◦ E ◦H . Since the cardinality of the

matrix part of the output space of P ◦ E ◦H is bounded above by qdim, we have an upper
bound of

(
qdim

)1/2
evaluations of P ◦ E ◦H , which for the suggested parameters is q6.5,

way below the required security levels.
To defend against the attack they proposed two solutions; either significantly increas-

ing the parameters, or to change the encoder into an injective one along with a slight
adjustment of the parameters. The first solution has the drawback that it increases the
size of the private and public keys, and it also impacts the verification algorithm. Thus
they recommended the second option, which has several other benefits. While not only re-
moving the potential hazard of encoding two different messages as the same braid, chang-
ing the encoder would bump the dimension of P

(
E
(
H({0, 1}∗)

))
up to (N − 2)2 + 1,

which gives the collision finding algorithm an upper bound of q((N−2)
2+1)1/2 evaluations

of P ◦ E. Note that the authors never give any estimate on the number of elementary
operations it takes to evaluate P ◦ E, but given that this step is a part of the verification
step of the scheme, and where WalnutDSA shines is in the signature verification [4], we
can assume that this is fast. The experimental results also show that the attack is practical.
The equation to obtain the required security level is

qdim ≥ 22k, (6.2)

and the required parameters for 256-bit security level would then be q = 28 and N = 10.
In response to this attack, the encoder was changed into the one described in Sec-

tion 5.6.

6.4 Subgroup chain attack

The final attack given in [8] solves the REM problem by exploiting the fact thatP restricted
to pure braids is a homomorphism P : PN → GL(N,Fq). For 1 < k ≤ N , we define Ak
to be the group of invertible N ×N matrices of the form

Ak =


X Y 0

0 1 0
0 0 IdN−k

 | X ∈ GL(k − 1,Fq), Y ∈ Fk−1q

 .
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We then get the following commutative diagram

{e} P2 . . . PN BN

{(IdN , IdSN
)} A2 . . . AN AN × SN

P P P P .

Using this subgroup structure, the REM problem can be solved by successively reducing
the problem to a collision search in a smaller subgroup. The running time of the attack is
dominated by the first step, which is estimated to require qN−5/2 E-multiplications. The
authors also give a faster version of the attack, which creates longer signatures. In order to
not reach the upper limit on the signature length, they suggest to only apply this method to
solve the most expensive steps. In this version they use a finer chain of subgroups, which
gets the expected running time down to qN/2−1.

To block the attack, the authors have no other suggestion than to increase the parame-
ters such that qN/2−1 is higher than the desired security level. This would imply that for
N = 10, q have to be increased from 25 to 232 for 128-bit security.

In response to the attack, the authors changed q to M31 = 231 − 1 for 128-bit, and
q = M61 = 261 − 1 for 256-bit security. This also has the advantage that Fq is now
a prime field, which makes it possible to create cloaking elements without requiring that
τ1 = τ2 = 1. When τaτb = −1, the running time increases by at least a factor of

√
q
√
x,

where x is a parameter that was set to 60 for N = 8 in the attack code, while the Walnut
designers expect x = 96 for N = 10 [1]. This brings the expected running time up to√
xq(N−1)/2.

6.5 Removing cloaking elements
An attack by Kotov, Menshov and Ushakov [25] on an older version of Walnut showed
how to remove the cloaking elements from a signature. Their attack works purely on
braids, and as such is independent of the size of q. In the old version of Walnut, there
were no concealed cloaking elements, and as such the only cloaking elements present in
the signature

Sig = R
(
v1w

−1v · E
(
H
(
m||G(V )

))
· w′v2

)
were v, v1 and v2. The authors noticed that since all of these elements were of the form
wb±2i w−1, they twisted the strands σ−1(a) and σ−1(b). Since the t-values are public, an
attacker could trace the strands to find all “critical letters”, braids b±1i which swap σ−1(a)
and σ−1(b). One would then flip the power of the exponent at one of the critical letters and
minimize the result (i.e removing trivial braids), since there might be a cloaking element
there. Note that for an element wbeii b

ei
i w
−1, if we replace one of the ei with −ei, we

would get a trivial braid. After minimizing the new braid, one would check the length; if
the new braid was significantly shorter, one would have evidence that a cloaking element
was removed. For cloaking elements of the form wb±4i w−1, one would swap b±1i for b∓3i .

Given the extremely naive explanation above, the attack proceeds as follows: the at-
tacker would collect k pairs (mi, si), where si is a signature for mi created with the
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signer’s private key (w,w′). One would then remove the cloaking elements from the sig-
natures to get a set of braids

Pi = w−1 · E
(
H(mi)

)
· w′, 1 ≤ i ≤ k.

We obtain the following equations:

P1P
−1
2 = w−1E

(
H(m1)

) (
E
(
H(m2)

))−1
w

...

Pk−1P
−1
k = w−1E

(
H(mk−1)

) (
E
(
H(mk)

))−1
w,

where we know both Pi−1P
−1
i and E

(
H(mi−1)

) (
E
(
H(mi)

))−1
for all i. Thus we

have an instance of the multiple conjugacy search problem, which we have discussed
before. Because the uncloaking procedure might not produce an element of the form
w−1E

(
H(mi)

)
(w′), there might be errors in the given set. The authors describe a method

to deal with this, and one would use this approach to attempt to solve the system to obtain
a solution x, and compute x′ as

x′ = E
(
H(mi)

)−1
xPi

for some i. The authors show that when using (x, x′) to sign a message m, the signature
coincides with one obtained using (w,w′), even though (x, x′) 6= (w,w′).

The authors suggested introducing critical letters at random places in the private braids
to block the attack, but noted that this approach could also fail due to their attack on the
Kayawood key agreement protocol [26], also designed by SecureRF.

To patch Walnut, κ concealed cloaking elements were introduced. The designers of
Walnut suggested that to achieve security level k, one would need

κ > k/ log2(N !), (6.3)

but due to certain assumptions that do not hold, it has been debated whether this counter-
measure is effective [27].

6.6 Decomposition of products in braid groups
The last attack is given by Merz and Petit [28]. Like the previous attack, theirs work
purely on the braids, and is therefore independent of q. Their approach is to find common
subsequences of permutation braids in the Garside normal forms (Theorem 3.12) of the
braids ABC and B when B is known. They then use these to produce braids A′ and C ′

such that

A′ ≡ A (mod ∆2), C ′ ≡ C (mod ∆2), and A′C ′ = AC, (6.4)

which can be used to break WalnutDSA.
Given the beauty of the mathematics, and the required countermeasures, we will work

more thoroughly through the details of this attack than we did for the previous ones.
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6.6.1 Normal form of products
Recall from (3.9) that for a generator braid bi we have bi = ∆bN−i∆

−1 = τ(bN−i),
which gives us

bi∆ = ∆τ(bi).

We can extend this to every braid P to get P∆ = ∆τ(P ), since τ is an automorphism,
and we call τ(P ) a reflection of P . We recall that τ2 = Id, which implies that that ∆2 is
in the centre of the braid group. We also recall from Theorem 3.12 that the Garside normal
form of a braid A is of the form

A = ∆a ·A1A2 · · ·An,

where a is called the infimum of A, and n is the canonical length. We are interested in the
normal form of the product AB, i.e the normal form of

AB = ∆a ·A1 · · ·An∆b ·B1 · · ·Bm
= ∆a+b · τ b(A1) · · · τ b(An)B1 · · ·Bm
= ∆a+b · τ b

′
(A1) · · · τ b

′
(An)B1 · · ·Bm, (6.5)

where b′ ≡ b (mod 2). This is a product of permutation braids by the following lemma.

Lemma 6.2. A braid B is a permutation braid if and only if τ(B) is.

Proof. Let B be a permutation braid. By definition we have ∆ = BP for some positive
braid P . We compute

∆ = BP

=⇒ τ(∆) = τ(BP )

∆∆∆−1 = τ(B)τ(P )

∆ = τ(B)τ(P ),

which shows that τ(B) is a permutation braid.
Now assume that τ(B) is a permutation braid. Then, by the point above, τ(τ(B))

is also a permutation braid. However, since τ2 = Id, we get that B is a permutation
braid.

For the next lemma, recall that by the definition of the starting set S(A), if i ∈ S(A)
thenA can be written asA = biA

′. We then have that if i ∈ S(A), then τ(A) = τ(biA
′) =

τ(bi)τ(A′) = bN−iτ(A′), and hence (N − i) ∈ S(τ(A)). Recall that a product A1A2

being left-weighted means that S(A2) ⊆ F (A1).

Lemma 6.3. A product A1A2 is left-weighted if and only if τ(A1)τ(A2) is.

Proof. Assume that A1A2 is left-weighted, and that τ(A1)τ(A2) is not. Then there exists
a j ∈ S(τ(A2)) \ F (τ(A1)). We write

τ(A1A2) = τ(A1)τ(A2)

= τ(A1)bjb
−1
j τ(A2).
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By Lemma 6.2 and the discussion preceding Lemma 3.10, we know that τ(A1)bj is a
permutation braid. However, because τ(A1)bj = τ(A1bN−j), this means that A1bN−j
must also be permutation braid, which implies (N−j) 6∈ F (A1). Note that j ∈ S(τ(A2))
implies (N − j) ∈ S(A2) by the discussion above. From the assumption that A1A2 is
left-weighted we have (N − j) ∈ S(A2) ⊆ F (A1), and we have reached a contradiction.
Hence τ(A1)τ(A2) is left-weighted.

If τ(A1)τ(A2) is left-weighted, then τ(τ(A1))τ(τ(A2)) is left-weighted by the argu-
ments above. Again, using τ2 = Id, this implies that A1A2 is left-weighted.

Therefore, (6.5) is a product of permutation braids, but in general not left-weighted.
However, by Lemma 6.3, τ b

′
(A1) · · · τ b′(An) is left-weighed and we get the following

corollary.

Corollary 6.4. Let ∆a · A1 · · ·An and ∆b · B1 · · ·Bm be the normal forms of A and B,
and let b′ ≡ b mod 2. Then the product τ b

′
(A1) · · · τ b′(An)B1 · · ·Bm is left-weighted

if and only if τ b
′
(An)B1 is.

Since this condition will not be met for mostA,B ∈ BN , the normal form of a product
is not necessarily the product of the normal forms. When computing the normal form
of AB, there might be created more ∆’s in the process of computing the left-weighted
product of τ b

′
(A1) · · · τ b′(An)B1 · · ·Bm. Moving these all the way to the left results in

reflections of all the leftward permutation braids. We say that a change in a braid that is
not a reflection is a non-trivial change.

When τ b
′
(An)B1 is not left-weighted, we can find a j ∈ S(B1)\F (An) and exchange

An for A′n = Anbj , which will still be a permutation braid. This would be a non-trivial
change to An. For such a change to happen to An−1, we require S(An) 6= S(Anbj), and
that there is a j ∈ S(Anbj) \ F (An−1). This process continues inductively until some
braid, say An−c, is not changed.

Since we moved a generator from B1 to start the process, the finishing set F (B1)
might differ from the finishing set of the new braid. A similar process to the one above
must then be applied to the braids on the right. The discussion above gives us the following
proposition.

Proposition 6.5. Let A,B ∈ BN , and let ∆a · A1 · · ·An and ∆b · B1 · · ·Bm be their
normal forms. The normal form of AB is then of the form

∆a+b+k · τ b+k(A1) · · · τ b+k(An−c)X1 · · ·Xl, (6.6)

for some integer 0 ≤ c ≤ n and permutation braidsX1, . . . Xl, where k ∈ Z is the number
of ∆’s created when computing the left-weighted form of τ b(A1) · · · τ b(An) ·B1 · · ·Bm.

Note that

∆k ·X1 · · ·Xl = τ b(An−c+1) · · · τ b(An) ·B1 · · ·Bm. (6.7)

The point of Proposition 6.5 is that if c is less than n, the permutation braids in the
normal forms of A and AB coincide up to reflection for the n− c leftmost factors.

The authors of [28] rigorously prove an analogous statement for the right side of the
normal forms. The details are not very important in this context, and we state the proposi-
tion without proof.
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Proposition 6.6. Let A,B ∈ BN , and let ∆a · A1 · · ·An and ∆b · B1 · · ·Bm be their
normal forms. The normal form of AB is then of the form

∆a+b+k · Y1 · · ·Yl ·Bd+1 · · ·Bm, (6.8)

for some integer 0 ≤ d ≤ m and permutation braids Y1, . . . Yl, where k ∈ Z is the number
of ∆’s created when computing the left-weighted form of τ b(A1) · · · τ b(An) ·B1 · · ·Bm.

Again, the point of the proposition is to notice that if d < m, then the normal forms of
B and AB coincide on the m− d rightmost factors.

Penetration distance

In [28], the authors provide experimental data for an estimate for the value c. Its numerical
value is not too interesting; the key part is that for a given N , their data suggests that there
exists an upper bound for the expected value of c. More precisely, they follow the work
done in [19] and define the penetration-distance as follows.

Definition 6.7 (Penetration distance). For two braidsA,B, the penetration distance pd(A,B)
for the product AB is the number of permutation braids at the end of A which undergo a
non-trivial change in the normal form of the product.

They then find the penetration distances of random braids of a given length, and visu-
alize the results. Based on the experiments, the authors propose the following conjecture
for the expected penetration distance of two random braids.

Conjecture 6.8. LetA,B ∈ BN be braid words that are picked uniformly at random from
all freely reduced braid words of length k. Then there exists a CN ∈ N such that for all k,
we have

E(pd(A,B)) < CN , (6.9)

The conjecture implies that there is a bound on the penetration distance, regardless of
the length of A and B. This has a significant impact on Propositions 6.5 and 6.6. Let
A and B be braid words of canonical length n and m. If we assume that the conjecture
is true, then we expect at least the n − CN leftmost permutation braids of A and AB to
coincide up to reflection, as long as n ≥ CN . In the proof of Proposition 6.6, the authors
show that CN is also a bound for d. Because of this, we expect that at least the m − CN
rightmost permutation braids of B and AB coincide whenever m ≥ CN .

6.6.2 Algorithm
Using the propositions above, we will show how to find braids A′, C ′ with A′ ≡ A
(mod ∆2) and C ′ ≡ C (mod ∆2), such that A′C ′ = AC.

Let A = ∆a · A1 · · ·An, B = ∆b · B1 · · ·Bm and C = ∆c · C1 · · ·Cr be the normal
forms of random, freely reduced braid words in BN . Assume that m ≥ CN , where CN
is the constant from Conjecture 6.8. From Proposition 6.5, we expect the normal form of
BC to be of the form

∆b+c+k · τ c+k(B1) · · · τ c+k(Bm−CN
)Y1 · · ·Yl (6.10)
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Figure 6.1: Average penetration distance after multiplication with a braid of given length on the
right hand side. This figure is copied from Fig. 3 in [28].

for some permutation braids Y1, . . . , Yl such that

∆k · Y1 · · ·Yl = τ c(Bj+1) · · · τ c(Bm) · C1 · · ·Cr, (6.11)

where k is the number of ∆’s that are created when computing the left-weighted form of
τ c(Bj+1) · · · τ c(Bm) ·C1 · · ·Cr. The j in this equation is the index of the rightmost braid
in the product B1 · · ·Bm that does not undergo a non-trivial change. By our assumptions,
j > m− CN .

If the part of B that was preserved into BC is of length greater than CN + 1, which
we can expect for m−CN > CN + 1 =⇒ m > 2CN + 1, we expect by Proposition 6.6
that the normal form of A(BC) is of the form

∆a+b+c+k+k′ ·X1 · · ·Xs · τ c+k(BCN+1) · · · τ c+k(Bm−CN
) · Y1 · · ·Yl. (6.12)

Here

∆k′ ·X1 · · ·Xs = τ b+c+k(A1) · · · τ b+c+k(An) · τ c+k(B1) · · · τ c+k(Bi−1), (6.13)

where i is the index of the leftmost braid in the product B1 · · ·Bm that does not undergo a
non-trivial change. Note that the indexes CN + 1 and m−CN are not strict bounds, given
that the expected penetration distance is strictly less than CN , but the expressions given
here correspond better with the propositions used to derive the result.
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Putting all this together lets us write the normal form of a given ABC as

∆u ·X1 · · ·Xs · τ c+k(Bi) · · · τ c+k(Bj) · Y1 · · ·Yl, (6.14)

where u = a+b+c+k+k′. As discussed above, we expect |i−j| > 0 whenm > 2CN+1.
The algorithm to find A′ and C ′ is then as follows:

1. Compute the normal forms of B and ABC.

2. Check if there is a common subsequence of permutation braids Bi1 · · ·Bi2 in the
normal form of B for some 1 ≤ i ≤ i1 < i2 ≤ j ≤ m, in the normal form of
ABC . If one is found, save the location of Bi1 in B and ABC and move to 3. If no
sequence is found, do the same search for a sequence τ(Bi−1) · · · τ(Bi−2) of τ(B)
in the normal form of ABC. If no common subsequence is found in either of the
braids, we terminate the process, and cannot find the factors. If multiple sequences
are found, we do the rest of the algorithm for all of them.

3. Split B or τ(B) at Bi1 or τ(Bi1) respectively. Do the same for ABC, and denote
the parts atBI , BII , ABCI andABCII . Note that τ c+k(Bi1) · · · τ c+k(Bi2) belong
to B or τ(B) depending on whether c+ k leaves residue 0 or 1 modulo 2, since τ2

is the identity. Thus, without knowing either c or k, we know the residue of c + k,
and we write (c+ k)′ ≡ c+ k (mod 2). We now have

BI = ∆b · τ c+k(B1) · · · τ c+k(Bi1)

BII = τ c+k(Bi1+1) · · · τ c+k(Bm)

ABCI = ∆a+b+c+k+k′ ·X1 · · ·Xs · τ c+k(Bi) · · · τ c+k(Bi1)

ABCII = τ c+k(Bi1+1) · · · τ c+k(Bj) · Y1 · · ·Yl.

4. Compute

A′ : = ABCI ·B−1
I ·∆

−(c+k)′

= ∆a+b+c+k+k′ ·X1 · · ·Xs · τ c+k(Bi1−1)−1 · · · τ c+k(B1)−1 ·∆−b−(c+k)′

= ∆a+b+c+k · τ b+c+k(A1) · · · τ b+c+k(An) ·∆−b−(c+k)′ by (6.13)

= ∆a+c+k−(c+k)′ ·A1 · · ·An

and

C′ : = ∆(c+k)′ ·B−1
II ·ABCII

= ∆(c+k)′ · τ c+k(Bm)−1 · · · τ c+k(Bi1+1)−1 · τ c+k(Bi1+1) · · · τ c+k(Bj) · Y1 · · ·Yl
(∗)
= ∆(c+k)′ · τ c+k(Bm)−1 · · · τ c+k(Bj+1)−1 ·∆−kτ c(Bj+1) · · · τ c(Bm) · C1 · · ·Cr

= ∆(c+k)′−k · C1 · · ·Cr,

where (∗) is true by (6.11).
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Since a+ c+ k − (c+ k)′ ≡ a (mod 2) and (c+ k)′ − k ≡ c (mod 2), we have

A′ ≡ A (mod ∆2) and C ′ ≡ C (mod ∆2).

Furthermore,

A′C ′ = ∆a+c+k−(c+k)′ ·A1 · · ·An ·∆(c+k)′−k · C1 · · ·Cr
= ∆a+c · τ ((c+k)

′−k)(A1) · · · τ ((c+k)
′−k)(An) · C1 · · ·Cr

= ∆a+c · τ c(A1) · · · τ c(An) · C1 · · ·Cr
= AC.

6.6.3 Cracking Walnut
Since a legitimately produced signature of a message m is of the form

Sig = W1 · E
(
H(m)

)
·W2,

and since every attacker can compute E
(
H(m)

)
, an attacker only has to collect a single

valid signature/message pair before being able to create braids W ′1,W
′
2 that satisfy (6.4).

Note that given

W ′1 ≡W1 (mod ∆2) and W ′2 ≡W2 (mod ∆2),

the equation W ′1 ·W ′2 = W1 ·W2 implies that

W ′1 ·W ′2 = W1

(
∆2
)s ·W2

(
∆2
)r

= W1 ·W2

(
∆2
)r+s

=⇒ r + s = 0,
(6.15)

since ∆2 is in the center of the braid group.
Given that Sig = W1 ·E

(
H(m)

)
·W2 is a valid signature for the message m, we have

that Sig′ = W1 · E
(
H(m′)

)
·W2 is a valid signature for the message m′. Furthermore,

from (6.15) we get

W ′1 · E
(
H(m′)

)
W ′2 = W1

(
∆2
)s · E(H(m′)

)
·W2

(
∆2
)r
,

= W1 · E
(
H(m′)

)
·W2

(
∆2
)r+s

= W1 · E
(
H(m′)

)
·W2,

and thus the attacker can use W ′1,W
′
2 to forge valid signatures for any message m′.

In the algorithm, one has to compute the normal form of Sig and E(H(m)). Using
the algorithm of Thurston in [16], this is done in time O

(
|P |2N logN

)
, where |P | is

the number of permutation braids in a given decomposition of a braid, not necessarily
in normal form. As explained in [28], the running time of the entire algorithm is domi-
nated by this step, and since |E(H(m))| ≤ |Sig |, the running time of the algorithm is
O
(
|Sig |2N logN

)
.

As a countermeasure to the attack, the authors propose two changes. The first one is to
simply increase the parameter N . However, from their experimental data it seems like we
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require N ≈ 50 for 128-bit, and N ≈ 85 for 256-bit security, a massive increase from the
current parameters.

Rather than doing the above, they suggest putting concealed cloaking elements into
the encoding E

(
H(m)

)
, as this would impact the number of common subsequences in the

encoding and in the signature. They suggest adding as many as 30 and 60 elements for
the two security levels, but note that there might be a need for more given the uncloaking
procedure discussed in the previous section.

This solution was also found independently by the Walnut designers, and in [1] they
found that inserting a concealed cloaking element every 7-12 generators will block the
attack.
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Chapter 7

Conclusion

On January 30, 2019, NIST announced the candidates that were selected for round two of
the standardization process, and WalnutDSA was not one of them. Though no reason was
given for whether a scheme was chosen or not, we can make some educated guesses as to
why Walnut did not make the cut.

7.1 Poor design choices
First off, the parameters were too small. Not being able to block against the collision
attack presented by Blackburn [10] does not give a lot of credibility to your product.

Similarly, the message encoder not being injective seems like something the team
should have realized from the start. The dimension problem exploited by Buellens and
Blackburn [8], while somewhat harder to discover, was also a major weakness.

After the attack presented in [22], both the private and the public key were changed
from one to two braids. Ward Buellens then showed in [11] that this change was not
enough to block the attack, which prompts a discussion of whether the change should be
reverted or not, as it also doubled the size of the keys.

In an early version, an estimate on the number of possible matrices in each part of
the public key was qN(N−3). This was changed to qN(N−1)+1 in a later version of the
Walnut documentation, where it was stated that “The search space for all such matrices is
again the square of this lower bound”. Given how the colored Burau representation and
E-multiplication is designed, the bottom row of a matrix in the image will always equal
(0, 0, . . . , 0, 1). This gives a strict upper bound of qN(N−1) possible matrices in each part
of the public key. Thus their stated lower bound is greater than the actual upper bound. It
is mentioned several times in [4] that the bottom row is all zero except for the last element,
but they do not remark that the last element is always equal to 1. Again, this mistake does
not bring credibility to the authors.

While none of the points above provide a clear reason as to why Walnut did not get
chosen, they give an impression of a team that did not fully understand the implications of
the choices they have made during the construction of the scheme, or when designing the
countermeasures.
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7.2 Flaws in security proof
A more concrete point is the lack of a description for the simulator in the security proof
given in [4]. The only description given for the simulator is that it answers a signature
query with a valid signature, without specifying how this would be done. In the security
proof it is noted that the simulator does not know the private key, but for this to actually
mean something there has to be a difference in how a signing query is answered when one
has the private key, and when one does not. Therefore the proof only works for key-only
attacks.

This was first pointed out by Buellens [13], and discussed over several of the follow-
ing pages. The authors refer to the article “Security Proofs for Signature Schemes” by
Pointcheval and Stern [30] as a model for their security proof. However, this article has an
entire page devoted to describing the simulator. Buellens also remarks the following:

1. Given a hash function H with too short output length l, we know that the scheme is
insecure, as one might be able to find collisions H(m) = H(m′) where m 6= m′.
This would imply that a valid signature for m is also a valid signature for m′.

2. There has to be an upper limit to the length of signatures, or else the scheme is
insecure by an attack by Buellens [8].

Since the scheme is not secure if these considerations are not taken into account, the se-
curity proof should fail somewhere, but neither of these quantities are mentioned in the
proof.

To further add to this, the security proof makes a rather strong assumption that the
signatures produced by the forger F lie in the set

DCm,V,H,G :=
{
R
(
X · E

(
H
(
m||G(V )

))
· Y
)∣∣∣X,Y ∈ BN} ,

instead of dealing with signatures of any form.
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