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Abstract

In this master’s thesis, we study principal G-bundles on smooth mani-
folds with connection, and how to make universal objects to classify them,
similar to Grassmannians for vector bundles. The constructions take us
into the category of simplicial presheaves on smooth manifolds, and result
in a theorem that states that the only natural differential forms associated
to the connection on principal G-bundles are the ones constructed in the
Chern-Weil homomorphism. This was first obtained in this way by Freed
and Hopkins in [7]. In the last chapter, we take a short look at what would
happen if the manifolds considered were complex instead of smooth.
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1 Introduction

The point of this master’s thesis is to study principal G-bundles, connections,
and some invariant theory associated to them. When I started out, I had some
knowledge of Lie groups and fibre bundles, but not about their combination
in principal G-bundles, and the only connection I had encountered was the
Levi-Civita-connection, in a class about Riemannian geometry. The important
invariant concept of characteristic classes was also something I knew mostly
by name. It therefore made sense to start at the definitions, and go through
some basic results and constructions in this field, for which I mainly utilized
the very helpful lecture notes by Johan Dupont that are cited as [5] and [6].
The main motivation for going into this theory, however, was to be able to
understand the paper [7] by Freed and Hopkins, where a categorical approach
is taken to construct an interesting classifying space for principal G-bundles
with connections. This classifying space is also used to prove what could be
considered the main result in [7] as well as in this thesis, which is that all
natural differential forms attached to connections on principal G-bundles come
from certain invariant symmetric polynomials, and can be obtained for a given
principal G-bundle using a map called the Chern-Weil homomorphism. That
this map produces natural differential forms – even characteristic classes – is
old news, and not covered very thoroughly in this thesis, but that they are the
only ones is a more interesting result, discovered by Freed and Hopkins in [7].

By a classifying space for principal G-bundles with connection we mean
some bundle E∇G → B∇G with a universal connection Θuniv that has the
following universal property: Any other principal G-bundle with connection Θ
can be embedded into the universal one in a way that makes the pullback of
the universal connection equal to Θ. It is well known that Grassmannians can
be used to make universal bundles that classify vector bundles in this way, but
to be able to take the connection into account, we need to move away from the
category of smooth manifolds, and into the one containing simplicial presheaves
on manifolds. In the same way that the embeddings of manifolds into the
Grassmannian bundle are unique only up to homotopy, we will also need to
make use of weak equivalences, to arrive at uniqueness in the correct homotopy
category.

Since connections are 1-forms on smooth manifolds, it could make sense
to look for some universal space of 1-forms when we are already searching for
Θuniv, and maybe even a universal de Rham complex. The justify the description
“universal” for a space of 1-forms, one would have to identify a neat universal
property for it that in a way included all possible 1-forms, and a good candidate
is a space Ω• for which the maps from a smooth manifold M and into it were
in one-to-one correspondence with the 1-forms on M itself. In other words, we
would seek the isomorphism

Hom(M,Ω•) = Ω•(M) (1)

for any smooth manifold M . Note that Ω is used for the desired universal object
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on the left side, and to denote differential forms on M (the de Rham complex)
on the right. This is actually also something that is achieved in [7], and which
we will take a look at.

To find the universal classifying space E∇G → B∇G, Freed and Hopkins
first move away from the category of smooth manifolds – which is where we
traditionally construct principal G-bundles – and into the realm of presheaves
on manifolds (another term that was rather unknown to me, but will be defined
in time). Through an embedding of the former category into the latter, we
move the entire classification problem to one of presheaves, but in a way that
remembers the smooth structure. The condition in (1) will actually help us on
the way to understand why the category of presheaves on manifolds is a good
choice, and once there, we also manage to develop E∇G, B∇G and Θuniv. To
find the right homotopy category, so that the maps into E∇G→ B∇G become
unique, we chose to follow the road set out in [7], and go via both groupoids
and simplicial sets. Luckily, most of the structures we meet are quite intuitive
if viewed in the right way, and result in a very practical situation, where the
universal objects can be defined almost directly to have the properties we require
of them.

After we have constructed our universal objects quite thoroughly, we move
on to two theorems about the de Rham-spaces of E∇G and B∇G, and it is here
that we get the result about natural differential forms on principal G-bundles
associated to a connection. Last of all, we take an outlook at classifying spaces
and connections in the setting of holomorphic bundles, which are defined over
complex manifolds instead of smooth ones.

The general outline of this thesis is as follows: The second (next) chapter is
where we begin with our most basic definitions, and learn more about principal
G-bundles in the setting of smooth manifolds. Most is built on results from [5],
and we only prove some of the propositions to get a feeling of how one calculates
with Lie groups and connections. The only really interesting result here is the
Chern-Weil homomorphism, which would require many pages to prove properly,
so this is refered to [5].

In the third chapter, we motivate the transition from smooth manifolds to
presheaves following [7], and define everything that we need in this new category.
The space of universal 1-forms appears of itself by definition, but other neat
properties of presheaves on manifolds that result from an easy application of
the Yoneda lemma help ensure that we are onto something also when it comes
to finding E∇G and B∇G. From here and up until the last chapter, we follow
the paper [7] closely, as they also build up their theory from the same starting
point. There are, however, some parts of the explanations in [7] that were either
non-existent or not entirely clear to me, so I have tried to extend these as much
as necessary.

In chapter four, we delve deeper into category theory, and try to justify
why groupoids and simplicial sets are the appropriate structures to use for our
purposes. Some examples are included, but nothing revolutionary happens. We
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also introduce weak equivalences in these categories, which will later be used to
obtain a homotopy category, or localization.

Chapter five is the one where we combine the ideas from the former two
chapters into the structure that we are actually going to use, namely simplicial
presheaves on manifolds. Some explanations are given that hopefully elaborate
on the choices made in [7], and we extend the definition of weak equivalences
to simplicial presheaves.

Finally, in chapter six, we construct the simplicial presheaves E∇G and
B∇G, show how they can be seen as a kind of simplicial G-bundle, and end
with the classifying theorem. On the way towards this, we need to work with
some weak equivalences that are not covered in great detail in [7], and in fact,
we end up completing the proof ideas that are used in that paper to justify the
parallel statements of our Theorem 6.3, Proposition 6.6, and Theorem 6.7. The
statement in Proposition 6.5 is used entirely without proof in [7], but we mend
that as well. This is the chapter where most of the (sometimes quite nasty)
computations are done, and where we to the largest degree work independently
to complete the ideas found in [7].

The penultimate chapter, seven, begins with a short explanation of what
goes on in the homotopy theory induced by our weak equivalences, but this
would require a lot of separate theory to cover rigorously. We then define the
de Rham complex in the simplicial setting, and state its value for the simplicial
presheaves E∇G and B∇G. No main theorems are proven in this part, but we
go through a property of the newly defined Koszul complex, and calculate the de
Rham complex of the simplicial sheaf Ω1(−) – something our simplicial setting
allows for, even if it seems kind of ridiculous from the viewpoint of ordinary,
smooth manifolds. The de Rham complex of B∇G is then investigated, and
produces the result that all natural differential forms on principal G-bundles
attached to the connection must come from the Chern-Weil homomorphism.

In chapter eight, we take a step back, and consider what would happen if
instead of principal G-bundles with connection over smooth manifolds, we were
working over complex manifolds with holomorphic connection. This chapter is
more speculative, and does not end with any special result, but we introduce
the Atiyah classs, which is a sheaf cohomology class associated to holomorphic
principal G-bundles that determines whether or not it is possible to endow them
with holomorphic connections at all. The fact that not all bundles even have
holomorphic connections certainly changes the picture, and we make some re-
marks on what a holomorphic version of E∇G and B∇G would look like.

Finally, I want to thank my supervisor Gereon Quick for his excellent as-
sistance both in picking out a theme for my thesis, helping me understand the
material I was examining, and making it into my own article. I thank also my
family and friends for their continued support, especially my fellow students of
maths (and physics) at NTNU. My student organization, Delta, also deserves a
mention, for having helped me survive the last year by being a great commu-
nity, where it was possible to take a break when needed the most. A special
shout-out to Eiolf Kaspersen, who proof-read almost the entire thesis for me.
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2 Principal G-bundles and connections

Even though the main results in this thesis will be obtained in a category of
generalized manifolds, which we will define in the following section, it is useful
to begin with the classical definitions of principal G-bundles and their connec-
tions encountered in the category of smooth manifolds. We will also go through
some basic properties, the curvature form, and the classical Chern-Weil homo-
morphism. We start off with the principal G-bundle, which is a special fibre
bundle where each fibre looks like the Lie group G.

Definition 2.1. If we are given a Lie group G, a principal G-bundle is a triple
(E,M, π) where E and M are smooth manifolds and π is a differentiable map-
ping between them. The group G acts differantiably from the right on E such
that the action on each fibre Eb = π−1(b) is free and transitive, and we also
have local trivializations of E:

For every point m in M there is a neighbourhood U around it and a diffeo-
morphism φ : π−1(U)→ U ×G, such that

π−1(U)
φ //

π
##

U ×G

proj1||
U

is commutative, and φ is equivariant, which means that

φ(xg) = φ(x)g ∀x ∈ π−1(U), g ∈ G.

The action of G on U ×G is given by (x, g)h = (x, gh) for x ∈ U , g, h ∈ G.

The space M is called the base space, while E is the total space and is some-
times used instead of (E,M, π) to denote the whole bundle (we also sometimes
use E →M , to specify the base space). We note that M is the orbit space of E
under the G-action, and that each fibre Eb looks like G even though they are not
themselves immediately endowed with any group structure. Trivial G-bundles
can always be constructed on any manifold M , simply as (M × G,M, proj1),
with the G-action (p, g)·h = (p, gh) for p ∈M and g, h ∈ G. A more interesting,
motivating example for this construction is the frame bundle, which given any
n-dimensional vector bundle V →M on a smooth manifold, is the fibre bundle
that to a point p ∈ M associates the fibre Hom(Rn, Vp), where Vp is the fiber
of V at p. This can easily be seen to be a principal GLn(R)-bundle, and is
typically constructed over the tangent bundle TM →M .

Next, we define a bundle map between the principal G-bundles (E,M, π)
and (F,N, π′) to be a pair (f̄ , f) of differentiable maps such that the diagram
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E
f //

π

��

F

π′

��
M

f̄ // N

commutes, and f̄ is equivariant with respect to the G-action.
An isomorphism of two principal G-bundles (E,M, π) and (F,M, π′) over

the same base space is obtained when f is the identity on M :

E
φ //

π   

F

π′~~
M

That every fibre in F is hit uniquely by its corresponding fibre in E follows
from the commutativity of the diagram, and because φ respects the free and
transitive G-action, we also get bijectivity on every fibre for free.

It follows from this definition that any automorphism of the trivial bundle
M ×G is of the form

φ(p, v) = (p, g(p) · v), p ∈M, v ∈ G, (2)

where g : M → G is a differentiable mapping. If we take any principal G-bundle
(E,M, π) and find a cover {Ui}i∈I of M corresponding to trivializations

φi : π−1(Ui)→ Ui ×G, (3)

we get a family of isomorphisms

φi ◦ (φj)
−1 : (Ui ∩ Uj)×G→ (Ui ∩ Uj)×G (4)

that must have the form φi ◦ (φj)
−1(p, v) = (p, gij(p) · v), where each gij :

Ui∩Uj → G is a differentiable map that we call a transition function for E with
respect to the given trivializations {φi}i∈I . They respect the following so-called
co-cycle conditions:

gij(p) · gjk(p) = gik(p) ∀i, j, k ∈ I, p ∈ Ui ∩ Uj ∩ Uk
gii(p) = 1 ∀i ∈ I, p ∈ Ui,

(5)

and conversely, given a system of differentiable maps fi : Ui → G that satisfy
these, we can construct a principal G-bundle that has the fi’s as transition
functions.
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2.1 Connections in principal G-bundles

The geometric construction that we call a connection needs some motivation
before we define it. Recall first that there to any Lie group G is associated a Lie
algebra g, which as a vector space simply is defined as the tangent space TeG
at the identity element e ∈ G, with a Lie bracket induced canonically from the
group structure of G.

Now, if (E,M, π) is any principal G-bundle, we can fix any x ∈ E and obtain
a mapping fx : G → E, sending g 7→ xg. Since G acts freely this mapping is
injective, so the induced tangent map at the identity e is also an injection
vx = fx∗ : g→ TxE. We can also consider the map π∗ : TxE → Tπ(x)M , which
is surjective as it is induced by the surjective projection, and note that

π∗(vx(g)) = (π ◦ fx)∗(g) = 0 ∀w ∈ g. (6)

The last equation follows because π ◦ fx = π(x) is a constant function, since
the G-action fx preserves the fibres, and thus the tangent map is trivial. Finally,
we can use the fact that E has local trivializations diffeomorphic to U×G, where
U is a neighborhood in M , to conclude that

dim(TxE) = dim(Tπ(x)M) + dim(g), (7)

which shows that the following is a short exact sequence of vector spaces:

0 // g
vx // TxE

π∗ // Tπ(x)M // 0

We call the image vx(g) ⊆ TxE the subspace of vertical tangent vectors of E,
while its complimentary subspace is denoted by Hx and contains the horizontal
tangent vectors. Note that Hx

∼= Tπ(x)M through π∗. These two subspaces
change with respect to each other as x moves along E, the vertical one pointing
along fibres Ex, and the horizontal one showing the direction of movement
that corresponds to actual movement in the base space, and it therefore makes
sense to track this change when one wants to understand how E “twists”. A
connection will be a splitting of the above exact sequence, equivalent to a linear
map ωx : TxE → g with

ωx ◦ vx = idg and Ker(ωx) = Hx, (8)

for every point x ∈ E. Since we also want this map to move differentially
along E, it makes sense to choose an element ω ∈ Ω1(E; g) with ω(x) = ωx.
This, however, is not enough for a definition, as it turns out that we further
can demand a certain nice behaviour of our connection with respect to the G-
action. The following example illustrates what we mean by that in the case of
trivializable G-bundles.

Example 2.2. If we consider the principal G-bundle E = M×G over M , where
M is any manifold, we can define a special 1-form ωMC ∈ Ω1(E; g), called the
Maurer-Cartan form, using the left multiplication Lg : G→ G as follows:
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(ωMC)(p,g) = (Lg−1 ◦ proj2)∗, (p, g) ∈ (M ×G) (9)

This form can be shown to be differentiable, so we only need to prove that
(8) holds for it to be a candidate for a connection on E. In our trivial case,
f(p,g)(h) = (p, gh), where (p, g) ∈ E and h ∈ G, so

(ωMC)(p,g) ◦ v(p,g) = (Lg−1 ◦ proj2)∗ ◦ f(p,g)∗

= (Lg−1 ◦ proj2 ◦f(p,g))∗

= (idTeG)∗

= idg

where the second last line can be seen to be equal to the identity on G by direct
evaluation. Now that we have a 1-form splitting our exact sequence, we just need
to introduce two important maps to write down the afore-mentioned additional
property of ωMC .

Let Rg : E → E denote the right action of a fixed g ∈ G, in the trivial
case (p, h) 7→ (p, hg), and Ad(g) : g→ g be the adjoint map at g, induced as the
differential at the identity element e ∈ G of the conjugation map conjg : G→ G,
where x 7→ gxg−1 (Ad can be seen as a canonical map from G to GL(g), and is
called the adjoint representation of G). Now we get:

Lemma 2.3. The Maurer-Cartan form defined above satisfies the following:

R∗gωMC = Ad(g−1) ◦ ωMC ∀g ∈ G (10)

Proof. We have that (ωMC)(p,g) = proj∗2(Lg−1)∗, and because Rg only acts on
the second argument of (p, g) ∈M×G and thus commutes with projection onto
G, we get

R∗h(ωMC)p,g = (R∗h)(proj∗2)(Lg−1)∗ = (proj∗2)(R∗h)(Lg−1)∗ (11)

Note that here, we use Rh to denote the right action on M×G, but also standard
right group multiplication if the domain is G. This works because the bundle
we work with is trivial, and therefore the action is exactly right multiplication,
only ignoring the first coordinate.

Further, we can also calculate

R∗h(Lg−1)∗ = (L(gh)−1)∗ ◦ (Rh)∗

= (Lh−1)∗ ◦ (Lg−1)∗ ◦ (Rh)∗

= (Lh−1)∗ ◦ (Rh)∗ ◦ (Lg−1)∗

= Ad(h−1) ◦ (Lg−1)∗,

Where the third line follows as right multiplication commutes with left multi-
plication. Applying proj∗2 to both sides yields the desired result.

7



Inspired by this, we finally arrive at the definition of a connection.

Definition 2.4. A connection on a principal G-bundle (E,M, π) is a 1-form
Θ ∈ Ω1(E; g) with the following two properties:

(1) Θx ◦ vx = idg, where vx : g→ TxE is the differential at the identity of the
map G→ E sending g 7→ xg.

(2) R∗gΘ = Ad(g−1) ◦Θ for all g ∈ G, where Rg and Ad(g) are the canonical
maps defined above.

It is by definition clear that the Maurer-Cartan form ωMC is a connection
on any trivial bundle.

As pointed out in [5], there is a more intuitive version of the second part
of this definition, which I wish to include here. It uses the afore-mentioned
subspaces of horizontal vectors, Hx ⊆ TxE, which were defined to be equal to
Ker(Θx) for any connection on E.

Proposition 2.5. For a 1-form Θ ∈ Ω1(E; g) that satisfies the first requirement
in Definition 2.4, the second one is equivalent to

(2’) (Rg)∗Hx = Hxg ∀x ∈ E, g ∈ G

Proof. The proof is quite direct and can be found in [5].

In other words, the horizontal tangent vectors are moved into other horizon-
tal vectors by the tangent map induced by the right G-action.

A nice result about connections is that we can obtain them for any principal
G-bundle over a paracompact base space, using a couple of easy results that I
will not prove here. First of all, it can be shown that the pullback of a connection
Θ on E along a bundle map f : E′ → E gives a connection denoted as f∗(Θ)
on E′. We also have that a sum

Θ′ =
∑
i∈I

λiΘi (12)

of connections {Θ}i∈I on E, where the {λi}i∈I form a partition of unity of the
base space M (i.e. each λi ∈ C∞(M), they are locally finite and have the sum 1
everywhere) is a connection. Since we can always find a covering {Ui}i∈I of our
paracompact M by trivializing neighbourhoods that admit a partition of unity,
we can then construct the Maurer-Cartan form on every Ui × G, pull them
all back to local connections on E, and finally tie them together to a global
connection using the partition of unity.

Having the connection, we can also define the important curvature form:

Definition 2.6. Given a principal G-bundle E with connection Θ, the curvature
form FΘ ∈ Ω2(E; g) is defined as

FΘ = dΘ +
1

2
[Θ,Θ], (13)
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where d is the differential, and [Θ,Θ] is the 2-form obtained by applying the Lie
bracket on g to the image of Θ ∧Θ ∈ Ω2(E; g⊗ g).

The name of this special 2-form suggests that it measures some kind of
curvature, and indeed, we have the following proposition from [5] that we do
not prove, but only include to give the nomenclature a tiny bit of justification:

Proposition 2.7. Given a principal G-bundle E, the following statements are
equivalent

1. E can be given a connection θ that produces a trivial curvature form Fθ =
0.

2. There exists an open covering {Ui}i ∈ I of M with trivializations, that
produces only constant transition functions gij : Ui ∩ Uj → G.

The second part of this equivalence certainly seems to suggest that E does
not twist too much, if imagined as a bunch of sets set-isomorphic to G, that each
sits above a point in the base space M . Of course, constant transitions does
not necessarily mean total flatness, which could maybe be defined by demanding
transition functions that are all constant and equal to the identity on G. With a
flat connection, there could still be some turning going on, but then it would have
to be “locally constant”. In a similar way, Gaussian curvature on manifolds is
defined in such a way that the cylinder has none of it, even if it intuitively seems
to turn when embedded in R3. The 2-sphere, on the other hand, which changes
the direction of its turning as one moves along it, has a constant, non-zero
Gaussian curvature, because this property is comparable to a sort of derivative
of the turning.

This last paragraph is just intuitive speculation, and we do not go deeper
into the theory of the curvature form, which would be interesting in itself. It is,
however, needed in the next subsection, and was therefore necessary to define.
There, we will also need the following two properties:

Definition 2.8. Given a principal G-bundle E, a vector space V , a k-form
ω ∈ Ωk(E;V ), and a group homomorphism ρ : G → GL(V ) (also called a
representation), we say that

1. ω is horizontal if at any point x ∈ E, ω(v1, ..., vk) = 0 unless all vectors
v1, ..., vk lie in the horizontal vector space Hx ⊂ TxE.

2. ω is ρ-equivariant if R∗gω = ρ(g−1) ◦ ω ∀g ∈ G.

A form satisfying both (1) and (2), with ρ being the trivial map g 7→ idV , is
called basic.

Again refering proofs to [5], we simply state that any curvature form FΘ is
both horizontal and Ad-equivariant, where the representation Ad was defined
earlier.

9



2.2 The Chern-Weil homomorphism

As the final part of our introduction to principal G-bundles with connection, we
take a look at the important Chern-Weil homomorphism, because the theory we
develop later will result in something that is related to it. It produces a family
of so-called characteristic classes, which are important invariants for G-bundles
and therefore interesting to study. First, we define what they are.

Definition 2.9. A characteristic class c for a principal G-bundle is a map
that to every principal G-bundle (E,M, π) associates a cohomology class c(E) ∈
H∗dR(M) (the de Rham cohomology of M) in such a way that any bundle map
(f̄ , f) : (E′,M ′, π′)→ (E,M, π) from another bundle (E′,M ′, π′) satisfies

c(E′) = f̄∗(c(E)). (14)

Note that the cohomology class c(E) is associated to the bundle E, but sits
in the base space.

When we now develop the Chern-Weil homomorphism, we do not dwell on
the proofs, but they can all be found in [5] if nothing else is specified. First, we
need some definitions.

Given a finite-dimensional, real vector space V , and some k ∈ N, we call P
a symmetric, k-linear function if it is a morphism

P : V k −→ R (15)

that is linear in all k variables, and satisfies

P (v1, ...vk) = P (vσ(1), ..., vσ(k)) (16)

for all vi ∈ V and permutations σ on k variables. These functions form a vector
space which we call Symk V . Setting Sym0 V = R, and defining a product
Symk V × Syml V → Symk+l V like this

P �Q(v1, ..., vk+l) =
1

(k + l)!

∑
σ

P (vσ(1), ..., vσ(k))Q(vσ(k+1), ..., vσ(k+l)), (17)

where σ runs through all permutations of (k+l) elements, we get a commutative
graded algebra

Sym• V =

∞⊕
k=0

Symk V. (18)

It could be good for intuition to note that each Symk V is isomorphic to the
vector space of real, homogeneous polynomials of degree k over the variables
{x1, ..., xn}, where n is the dimension of V .

If we set V = g for some Lie algebra g, we can define a right action of the
group G on Symk g by using the adjoint representation that we defined a while
back. We set
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(P · g)(v1, ..., vk) = P (Ad(g−1)(v1), ...,Ad(g−1)(vk)) (19)

for P ∈ Symk g, g ∈ G and v1, ..., vk ∈ g. That this is an action is immediate
from the fact that Ad(g−1) ◦ Ad(h−1) = Ad((hg)−1), which follows from the
definition of Ad and the chain rule.

Definition 2.10. An element P ∈ Symk g is called invariant if P · g = P for
all g ∈ G. The set of all invariant elements in Sym• g is denoted by I•(G) =⊕∞

k=0 I
k(G), and is a subalgebra of it.

We can now combine this new algebra with the curvature forms we defined for
principal G-bundles with connection. Given a bundle E → M with connection
Θ, this form FΘ is an element of Ω2(E; g), so we can define

F kΘ = FΘ ∧ ... ∧ FΘ ∈ Ω2k(E, g⊗ ...⊗ g). (20)

Because any P ∈ Ik(G) defines a k-linear and symmetric map gk → R, this
actually is a map g⊗ ...⊗ g→ R, and can be composed with the 2k-form F kΘ to
obtain P (F kΘ) ∈ Ω2k(E). Now, we know that any curvature form is horizontal
and Ad-equivariant, and combining this with the fact that P is invariant, one
can get that P (F kΘ) is basic, as defined in Definition 2.8. From this, it follows
from Corollary 6.13 in [5] that there exists a unique 2k-form on the base space
M that is pulled back to P (F kΘ) via the projection. We usually denote this form
by P (F kΘ) as well, and it is called the characteristic form corresponding to P .

Now it can further be shown that P (F kΘ) is a closed form, which places it in
H2k

dR(M). Its cohomology class, which we denote by w(P ;E), is also independent
of the connection chosen on E, and only depends on the isomorphism class of
E. Together with the fact that P (F kΘ) is preserved by pullbacks along G-bundle
maps (f̄ , f) : (E′,M ′, π′)→ (E,M, π) that preserve the connections, we get the
following

Proposition 2.11. Given a Lie group G and some P ∈ Ik(G), the map w(−;P )
that to a principal G-bundle (E,M, π) associates

w(E;P ) = [P (F kΘ)] ∈ H2k
dR(M) (21)

is a characteristic class.

The Chern-Weil homomorphism is obtained by fixing the bundle instead of
P , namely is the map

w(E;−) : Ik(G) −→ H2k
dR(M)

P 7−→ w(E;P )

It is a ring homomorphism if we use the product in I•(G) inherited from Sym• g,
and the wedge product in H∗dR(M).

A main result in Chapter 7 will be that the characteristic classes w(−;P ) are
the only ones that can be found on principal G-bundles with connection, and
actually the only natural differential forms on principal G-bundles associated to
connections.
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3 Generalized manifolds: Presheaves

From here on the discussion will be significantly more categorical in nature, and
we will use Man to denote the category of finite-dimensional, smooth manifolds
with smooth maps as morphisms. As mentioned, however, we need to move to a
slightly different category to construct our classifying space. One of the elegant
properties of this category mentioned in the introduction, is that we will be able
to find a universal space of differential forms Ω• there, which not only can be
used to pull back all differential forms on a manifold M from, but does so by a
unique map. This can be formulated as

Hom(M,Ω•) = Ω•(M), (22)

where the right hand side denotes the de Rham complex associated to any
smooth manifold in Man. To begin with, we notice that taking the de Rham
complex of a manifold can be thought of as a contravariant functor, because
smooth maps f ∈ Man(M,N) induce mappings between the associated de
Rham complexes,

f∗ : Ω•(N) −→ Ω•(M). (23)

This map is constructed simply by taking pullbacks of differential forms, thus
the notation f∗, but the details are of little interest here. Since the de Rham
complex is a set, we can write

Ω• : Manop −→ Set

M 7−→ Ω•(M)

where we have chosen to think of Ω• as a covariant functor from Manop (which
is the standard opposite category where all arrows are reversed) instead of a
contravariant one from Man.

This means that we could achieve what we want if we manage to construct
a category where such functors appear as the objects, and we start by giving
them a name.

Definition 3.1. A covariant functor from Manop to Set is called a presheaf
on manifolds.

Note that this is short for presheaf of sets on manifolds, where the fact that
the functor goes to Set is always implied if nothing else is specified.

This candidate for objects in our category, however, needs a great deal of
justification before we can be satisfied with it. First of all, our category is
supposed to generalize manifolds, and therefore they have to embed naturally
into it. But there is actually a presheaf of manifolds associated to each M ∈
Man, namely the Hom-functor, which we here denote by FM = Hom(−,M).
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FM : Manop −→ Set

X 7−→ Hom(X,M)

Next, we need to decide what the sets of morphisms will be, and the obvious
choice when having functors as objects is to take the natural transformations.
In other words, a morphism φ between two presheaves F and G associates to
each M ∈Man a map φ(M) : F (M)→ G (M) such that the following diagram
commutes for all choices of M,N ∈Man and f ∈ Hom(M,N)

F (N)
F(f) //

φ(N)

��

F (M)

φ(M)

��
G (N)

G (f) // G (M)

We denote the category of presheaves with natural transformations as Pre. To
finally show why it makes sense to move from Man to this category, we need
the contravariant version of the Yoneda lemma.

Lemma 3.2. If F is a contravariant functor from a category C to Set, and
HomC (−, C) is the contravariant Hom-functor induced by an object C ∈ C ,
then the natural transformations φ : HomC (−, C)→ F are in one-to-one corre-
spondence with the set F (C).

Proof. The proof is standard, and follows quite easily from associating to any
natural transformation φ the element (φ(C))(idC) ∈ F (C), and then reversing
the process.

The important consequence of this lemma here is that we for any F ∈ Pre
get a bijection

Pre(FX ,F ) ∼= F (X), (24)

where we remember FX to be the functor Hom(−, X) for some X ∈ Man. If
now both our presheaves are induced by smooth manifolds, X and Y , we obtain

Pre(FX ,FY ) ∼= FY (X) = Man(X,Y ), (25)

showing that we get exactly the same maps between our presheaves as we had in
the category Man. The smooth structure can therefore be said to be preserved
in morphisms, even though the codomain of all the functors in Pre is the almost
structure-free category of Set. Another way of phrasing it is that Man embeds
fully faithfully into Pre.

The Yoneda lemma also grants, of course, the consequence we had in mind
from the beginning of this section, namely that

Pre(FM ,Ω
•) ∼= Ω•(M) ∀M ∈Man (26)
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Of course, we can also fix a dimension n and consider the presheaf Ωn that
takes any manifold M to Ωn(M). Doing this for all n ∈ N0, and using the
mappings of presheaves that for any test manifold M become the differential
maps dn : Ωn(M) → Ωn+1(M), we can also write out the universal de Rham
complex as

Ω0 d0 // Ω1 d1 // Ω2 d2 // Ω3 d3 // · · ·

namely a chain complex of elements in Pre. Inspired by (26), we can actually
extend our definition to get de Rham complexes for all elements F in Pre, by
setting

Ωn(F ) = Pre(F ,Ωn). (27)

We can thus for example consider q-forms on Ωn, taking Ωq(Ωn) for q ∈ N0.
This is mainly interesting if we actually know about natural transformations
φ : Ωn → Ωq, but at least when n = q, we get the canonical q-form

ωq = idΩq : Ωq → Ωq. (28)

How we extend these sets Ωq(Ωn) to a chain complex is completely natural, but
it might be useful to give a concrete example when working on such a level of
abstraction. If we for example want to construct the de Rham complex Ω•(Ω1)
of the presheaf Ω1, we want something on the form

Ω0(Ω1)
e0 // Ω1(Ω1)

e1 // Ω2(Ω1)
e2 // Ω3(Ω1)

e3 // · · ·

Pre(Ω1,Ω0)
e0 // Pre(Ω1,Ω1)

e1 // Pre(Ω1,Ω2)
e2 // Pre(Ω1,Ω3)

e3 // · · ·

To see how the differentials ei work here, we apply all these presheaves to some
test manifold M , meaning that any natural transformation φ ∈ Pre(Ω1,Ωi)
is taken to a map φ(M) ∈ Set(Ω1(M),Ωi(M)), for i ∈ N0. The differential
maps ei then work on these natural transformations by post-composition of the
differentials di from the ordinary de Rham complex Ω•(M), as shown here in
the case φ ∈ Pre(Ω1,Ω0) :

Ω1(M)
id //

φ(M)

��

Ω1(M)
id //

d0◦φ(M)

��

Ω1(M)
id //

d1◦d0◦φ(M)

��

Ω1(M)
id // · · ·

Ω0(M)
d0 // Ω1(M)

d1 // Ω2(M)
d2 // Ω3(M)

d3 // · · ·

If we as is commonly done use e to refer to all the maps ei, the domains being
specified when necessary, we see that e ◦ e = 0 for the presheaf maps follows
immediately from the same fact for d in Ω•(M), so we indeed have a chain
complex. When the presheaf we consider is some FX , induced by a manifold
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X, the construction of this generalized de Rham complex leads to the ordinary,
“smooth” one.

We shall actually be able to calculate the de Rham complex of Ω1 later, as a
rather indirect consequence of one of our main theorems, but in general it might
be difficult to understand these complexes when our presheaves are not induced
by smooth manifolds.

3.1 Sheaves and stalks

Proceeding with the definitions, we now want to decide what we should require
of our presheaves to upgrade them to sheaves. The terminology might give it
away, since presheaves generally encode local data, and become sheaves if they
can be tied together globally. This is translated to our case in the following way.

Definition 3.3. Any presheaf F ∈ Pre is a sheaf if, given any manifold M ∈
Man and any open cover {Ui}i∈I of M , the sequence

F (M) // ∏
i∈I F (Ui) //

// ∏
i,j∈I F (Ui ∩ Uj)

is an equalizer diagram (i.e. F (M) is the equalizer of the right part).

Here the morphisms in the diagram are induced by the inclusion morphisms
of the open sets, and clearly any intersection Ui∩Uj has two natural choices, one
going into Ui and the other into Uj . This corresponds very well with the normal
intuition for a sheaf, since it means that a family of elements in {F (Ui)}i∈I
corresponds to exactly one element coming from F (M) if they agree on all
intersecting sets. As this is the case both for functions between manifolds and
differential forms, we have that any FX is a sheaf, and the same is true for Ω•.

Notice that the sheaves make up a full subcategory of Pre, so whenever we
speak of a sheaf map, we just mean a morphism in this category between two
objects that happen to be sheaves.

Another important construction when working with presheaves is the stalk,
which we also can imitate in our category.

Definition 3.4. Let F ∈ Pre be a presheaf. For any natural number m ∈ N0

we define the m-dimensional stalk of F to be the colimit

colim
r→0

F (Bm(r)), (29)

where Bm(r) ⊆ Rm is the open ball around the origin with radius r.

Here we consider all balls Bm(r) as manifolds, so F sends them to sets. With
fixed m, we look at their disjoint union qr>0F (Bm(r)), and taking the colimit
means imposing the following equivalence relation on them: x ∈ F (Bm(r)) is
identified with x′ ∈ F (Bm(r′)) where r ≤ r′ if and only if x′ is sent to x by
the morphism F (Bm(r′)) → F (Bm(r)) induced by the inclusion ι : Bm(r) →
Bm(r′).
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Remark 3.5. This definition of stalks differs slightly from the one that is used
in other branches of mathematics. Normally, one defines the stalk at a point,
and looks at the colimit over all open sets that include this point. When working
with manifolds, however, we always have local trivializations, so all open sets
around a point can be restricted to a ball of the appropriate dimension. Because
of how colimits are defined, restrictions to smaller sets preserve the structure
from bigger sets, that themselves might not be homeomorphic to balls, so it
is actually enough to consider these n-balls to get all information about what
happens at a point. In that sense, all points have the same neighbourhoods if we
just get close enough to them, so there is no reason for picking out a particular
point for the stalk either.

It is also worth mentioning about presheaves that we always have a sheaf
associated to it by a universal property, namely the sheafification. Given any
presheaf F , there exists a sheaf aF and a so-called universal map F → aF ,
such that any other map from F to any sheaf F ′ lifts uniquely through it. As
most universal properties, it is in many ways easiest described with a diagram,
in our case the following:

F //

!!

aF

∃!
��

F ′

As a matter of fact, a is a functor, and left adjoint to the forgetful functor that
embeds sheaves in Pre, but we will not prove why aF always exists here.

It might be time to take a step back and see how we can apply sheaves to our
main problem, namely finding some object from which all principal G-bundles
with connection can be pulled back. Sadly, even after all the work so far, we
have not yet arrived at a structure that fits it well enough. Following [7], we
see what happens if we try to make a classifying space FG in the category of
presheaves in the following way:

FG : Manop → Set, FG(M) = {iso-classes of G-connections on M} (30)

Here G is a fixed Lie group, with Lie algebra g, and the elements of the
set FG(M) are equivalence classes of G-bundles P → M with connection
Θ ∈ Ω1(P ; g). Two such bundles are considered equivalent if there is a bundle
isomorphism covering the base space M , that pulls back the connection in the
codomain to the one in the domain. That FG is indeed a presheaf is not very
difficult to prove, but sadly it is not a sheaf in general, as a simple example
shows: Take M = S1, and cover it canonically by two contractible open sets
U1 and U2 with U1 ∩U2 diffeomorphic to two open intervals. On a contractible
space U , we see almost immediately that any two G-bundles with connections
are isomorphic, as we can use exactly the element in C∞(U,G) that tweaks
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the one connection into the other as an isomorphism. The same holds for the
disconnected space U1∩U2, so the sheaf-defining equalizer diagram from Defini-
tion 3.3 (which in our case of only two open sets turns into a pullback diagram)
should look like this

FG(S1) //

��

FG(U1)

��

FG(S1) //

��

{0}

��
FG(U2) // FG(U1 ∩ U2) {0} // {0}

where {0} is the single isomorphism class in the cases where we have only one.
This is not a pullback diagram if FG(S1) is non-trivial. If we now consider
G = Z2, we know that the fibres of any Z2-bundle P → S1 will consist of
two distinct points, and we can prove that all such bundles are double covers.
But S1 can be covered either by two copies of itself, or by a single copy winding
around twice as fast. From the first section, we know that both these Z2-bundles
can be endowed with a connection, so they appear as elements in FZ2(S1), but
they are clearly not isomorphic, as they have a different number of connected
components. Thus we have found an example where FG(S1) consists of more
than one element, and consequently, FG is not be a sheaf in general.

The problem we encounter here, which is descriptive of the situation, is that
several non-isomorphic bundles with connections can be glued together from the
locally trivial ones if the manifold we are working on has interesting topology.
We approach this problem in the following section.
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4 Groupoids and simplicial sets

The example from the previous section shows that sheaves alone are not enough
to tackle our problem, at least not if used as näıvely as first proposed. What
we want to do, is to track isomorphism classes without removing all memory of
them entirely, and the solution that is arrived upon in [7] is to build groupoids
from our presheaves, and then introduce a notion of equivalence that lets us
replace the ugliest ones with easier versions. It will soon be clear from an
example exactly what we mean by this, but first we need to define these terms
properly.

Definition 4.1. A groupoid is a small category where all morphisms have in-
verses, i.e. for all objects A and B, every element in Hom(A,B) has a corre-
sponding element in Hom(B,A) with which it can be composed (in either order)
to form an identity morphism. We can make groupoids into a category of its
own, denoted by Grpd, by defining HomGrpd(G ,G ′) to be the set of functors
from a groupoid G to another G ′.

We normally denote a groupoid by {G0,G1}, where G0 is the collection of
objects, and G1 the collection of morphisms, or “arrows”, as they are usually
called. As is usual when working with categories, we define equivalence slightly
laxer than actual isomorphism.

Definition 4.2. Two groupoids G and G ′ are said to be equivalent if they are
equivalent as categories, which means that there exist functors F : G → G ′ and
G : G ′ → G such that the compositions G◦F and F ◦G are naturally isomorphic
to the identity functors on G and G ′, respectively.

We recall that this definition is equivalent to having one functor say F : G →
G ′, that is fully faithful (bijective on all Hom-sets) and dense (all objects in G ′

are isomorphic to an object hit by F ). Notice that in a groupoid, two objects
are isomorphic if and only if there is some arrow between them, as all maps are
invertible. This simplifies the density criterion.

Just to have a couple of examples in mind, we notice that any set S can
be seen as a (boring) groupoid with only identity arrows, i.e. G0 = S, G1 =
{ids}s ∈ S. More interestingly, if we have a group G acting on S from the
right, we can take G1 to be the set S ×G by using the group actions as arrows
in the following way: The arrow (s, g) ∈ S × G goes from s to s · g, and the
composition of arrows is defined by the group action. Because of the identity
element and inverses in G, we get both identity maps for all s ∈ S and inverses
for all non-identity arrows, so this really does define a groupoid.

A special subcategory of Grpd that will be of importance here, is the col-
lection of discrete groupoids.

Definition 4.3. A groupoid G is called discrete if all sets of morphisms Grpd(A,B)
between objects A and B are either empty or contain a single element.

We observe immediately that two discrete groupoids are equivalent if there
is a functor between them that is surjective on objects. This is because the
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unique morphism between two objects (if they have one) must be taken to some
morphism between their target objects, but since this is the only one there, full
faithfulness is already guaranteed.

As promised, the advantages of using groupoids will be shown in an example.
We now return to the case studied toward the end of last chapter, where tried
to classify principal Z2-bundles with connection. Since the connections have
values in the one-element Lie algebra that corresponds to Z2, there is only one
possible connection for any Z2-bundle, so we only have to find all of these Z2-
bundles. As mentioned, they are the same as double covers of S1. We can do
this classification by defining a groupoid in the following way:

G0 = {P → S1|P double cover}
G1 = {φ : P → P ′|φ isomorphism over S1}

Notice that this indeed is a groupoid, as all arrows are isomorphisms, and by
definition reversible.

Now this approach will give a very big groupoid, as S1 for example can be
covered by any two versions of itself immersed in R2. Up to isomorphism, on
the other hand, there are only two double covers: The trivial and disconnected
S1×Z2, and the cover by a single circle that wraps around the base version of S1

at twice the speed. If we now define a groupoid G ′ based on these isomorphism
classes, G0 = {S1 × Z2, S

1}, which is considerably easier to imagine. All the
arrows G1 come from automorphisms (since no isomorphism can be made from
a connected to a disconnected space), and if they are to respect the projection
on S1, we only get a single non-trivial morphism for each double cover, namely
the map that switches the elements of every fibre. Notice that they are their
own inverses. If we call them f1 and f2, we have

G1 = {idS1×Z2
, idS1 , f1, f2}. (31)

This groupoid G ′ of isomorphism classes is so easy that we can draw it,
renaming the elements of G0 as g1 and g2:

g1idg1 77 f1
zz

g2f2 77 idg2

zz

We can now define a functor from G to G ′ that sends any double cover to the
one representing its isomorphism class (i.e. number of connected components).
It does not take much work to convince oneself that this can be done in a way
that works well with morphisms, and the resulting functor is dense, full and
faithful. We have thus arrived upon a very simple groupoid to classify principal
Z2-bundles over S1, that is equivalent to the ugly one we started with, but notice
that it remembers the non-trivial automorphisms through its arrows f1 and f2.
This is the main difference from working with simple sets of isomorphism classes,
and combined with our notion of equivalence, it is the structure that we will
later use for our classification of principal G-bundles with connection.

19



The groupoid presented in the above paragraphs is actually already very
similar to the one we will be working with for the main classification, but before
we get to that, we want to learn more about this new category Grpd.

4.1 Simplicial sets

To be able to think about our groupoids in a more topological sense, we will
now see how we can associate topological spaces to them, by going through the
category of simplicial sets. As mentioned in [7], this is not strictly necessary
to obtain our theorems, but gives everything a nicer touch for those of us who
prefer to work with more geometrical spaces. Equivalent groupoids will translate
into weakly homotopy equivalent spaces, so also this notion will become more
familiar. All this requires a new series of definitions, which now follows.

Definition 4.4. The category ∆ is the one where the objects are finite, non-
empty and totally ordered sets, and the morphisms are order-preserving maps
between them. It is equivalent to a category where all objects are of the form
[n] = {0, 1, ..., n − 1}, and we will usually just think of these when considering
∆.

Note that the morphisms need not be strictly order-preserving. In this cate-
gory, there are essentially two types of maps that need to be understood, because
all other maps can be formed by composing these essential ones. The first are
the degeneracy maps si, that go from an object with n ≥ 2 elements to the one
with one less by halting for one step at the i-th place:

si :[n + 1] −→ [n]

j 7−→

{
j if j ≤ i
j − 1 if j > i

From [n], there are exactly n degeneracy maps, one for each i ∈ {0, ..., n − 1}.
The face maps di got the other way, from an object with n ≥ 1 element(s) to
the one above, skipping the i-th element like this:

di :[n] −→ [n + 1]

j 7−→

{
j if j < i

j + 1 if j ≥ i

From [n], there are n + 1 such face maps. We do not prove that they can be
used to form all morphisms in ∆, which is not very difficult to see, but proceed
by defining simplicial sets. A thorough introduction to the the category ∆ and
the way it is used to develop simplicial sets, can be found in [8].

Definition 4.5. A simplicial set is a covariant functor F : ∆op −→ Set. They
form a category denoted by Set∆ when we use natural transformations as mor-
phisms.
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Since a simplicial set essentially is a sequence of sets, one for each [n] where
n ≥ 0, we often denote them by F•, and set Fn = F•([n]). The set Fn is then
called the set of n-simplices, and we get maps between these sets from the face
and degeneracy maps in ∆. Often, we illustrate F• like this

F0
// F1

oo
oo //

//
F2 · · ·oo

oo

oo

where certain relations hold for the composition of these arrows, induced from
∆. The intuition behind the names “face” and “degeneracy” becomes clear here,
because the face maps can be seen as a way of picking out one of the (n + 1)
(n − 1)-simplices that can be thought of as the faces of an n-simplex, while
the degeneracy maps promote lower simplices to bigger ones by counting one of
their nodes twice. To further strengthen this very geometric way of considering
simplicial sets, we now state how they all correspond to topological spaces in a
very natural way.

First, we need the standard-simplices from Euclidean space, that serve as
models for any n-simplex. We define

∆n = {(x0, x1, ..., xn) ∈ Rn+1|xi ≥ 0, x0 + x1 + ...+ xn = 1} (32)

Now as mentioned earlier, any set I ∈ ∆ has an isomorphism to a unique set
n = {0, 1, ..., n} for some n ≥ 0, and we define Σ(I) = ∆n for the corresponding
n. The map Σ can easily be extended to a functor going from ∆ to the category
of topological spaces, and using this, we can define the geometric realization of
simplicial sets as follows.

Definition 4.6. Take any simplicial set F : ∆op → Set. The geometric real-
ization |F | is the topological space obtained as the quotient space of∐

I∈∆

Σ(I)× F (I) (33)

when we identify (θ∗t, x) ∼ (t, θ∗x) for all maps θ in our category ∆.

Intuitively, what the geometric realization does is to make the sets of n-
simplices into n-dimensional open disks, and then glue them together along the
borders as specified by the face and degeneracy maps. We do not dwell on a
longer explanation, as this merely is an intuitive aid, and not a construction we
will be using later.

Now that we have seen how simplicial sets can be made into spaces, we go
back to groupoids and turn them into simplicial sets. We will then obtain a
functor

Grpd −→ Set∆ −→ Top (34)

that lets us think geometrically about our groupoids.
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If we are given a groupoid G = {G0,G1}, we construct an associated simpli-
cial set F (G )• as follows: Let F (G )0 = G0 be the 0-simplices, and F (G )1 = G1

the 1-simplices. The degeneracy map F (G0) → F (G1) takes an element in G0

to its identity map, and the two face maps F (G0) ← F (G1) assign either the
source or the target to any map in G1. For n > 1, we take F (G )n to be the
compositions of n arrows, and make the face and degeneracy maps in the same
way as above. Degeneracy then always corresponds to adding an identity map
to some series of compositions, making the series one arrow longer, while face
maps skip one of the objects either by considering two arrows f and g in G1 as
the single arrow g ◦ f , or by dropping the first or last arrow in the composition.
To see that this indeed results in a simplicial set is not hard.

The two examples we considered for groupoids give rise to simplicial sets
using the above construction. Both are quite important, so we take a closer
look at them

Example 4.7. The groupoids S with only identity arrows, which practically
speaking are just sets S0 of nodes, result in what we call dicrete simplicial sets.
We usually write S = S• = F (S)• for them, since they consist of sets Sn which
all are isomorphic to S itself, the only n-simplices being n copies of the identity
map on some element in S. As we see, all simplices except for the ones in degree
0 are degenerate.

Example 4.8. Our next example was the groupoid created from a set S having
a (right) group action from some group G. This time we get something more
interesting, with 1-simplices coming from the group actions and higher simplices
from their compositions. Since each arrow going away from an element s ∈ S
can be represented by a unique element g ∈ G, we get the simplicial set

S // S ×Goo
oo //

//
S ×G×G · · ·oo

oo

oo

where, as an illustrative example, the element (s, g) ∈ S × G can be upgraded
by one of the two dashed arrows to either (s, e, g) or (s, g, e). Here e ∈ G is
the unit element and consequently corresponds to all identity arrows. Going the
other way, we can send (s, g, h) ∈ S×G×G to either (s, g), (s, gh) or (s×g, h).

Last of all, we need a notion of equivalence in our new categories, that cor-
responds to the one we have for groupoids (remember that two groupoids were
considered equivalent if they were equivalent as categories). As promised, this
will involve good old homotopy theory in the case of the geometric realizations.

Definition 4.9. A map f : X → Y between topological spaces is called a weak
homotopy equivalence if all the following induced maps on homotopy groups are
isomorphisms:

f∗ :π0(X) −→ π0(Y )

f∗ :πn(X,x) −→ πn(Y, f(x)) ∀n > 0, x ∈ X
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If such an f exists, X and Y are said to be weakly homotopy equivalent.

A map (natural transformation) of simplicial sets F• → F ′• is called a weak
equivalence if the map induced on the geometric realizations, |F•| → |F ′•| is a
weak homotopy equivalence. If such a map exists, F• and F ′• are said to be
weakly equivalent.

When talking about groupoids, we only referred to equivalences, not weak
ones, but we now state formally that all these notions of (weak) (homotopy)
equivalence are connected:

Proposition 4.10. The functors discussed in this chapter and illustrated in
(34), going from Grpd via Set∆ to Top, send equivalences via weak equivalences
to weak homotopy equivalences.

The proof is omitted as it is not a main focus of this article, but in [12] it is
shown that equivalent groupoids map to homotopy equivalent spaces, which is
even stronger than the weak homotopy equivalence we demanded. The simplicial
sets in the middle are then weakly equivalent by the above definition.
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5 Simplicial presheaves and sheaves

Now that we have found a category that seems more suited for dealing with
isomorphism classes of principal G-bundles with connection than ordinary sets,
namely groupoids, and seen that they can be realized nicely as simplicial sets,
we tackle the problem of associating a simplicial set to any given manifold. For,
if we cannot embed Man in Set∆, there really is no point in trying to find a
classifying space there. In the spirit of Section 3, we want to use something
similar to presheaves, only using simplicial sets rather than ordinary ones.

Definition 5.1. A simplicial presheaf on manifolds, often just called a simpli-
cial presheaf, is a covariant functor

F• : Manop −→ Set∆, (35)

and a morphism between two of them is a natural transformation.

Simplicial presehaves on manifolds make up a category, which we denote by
sPre.

Like we considered simplicial sets as an ordered sequence of sets, we can
also consider a simplicial presheaf F• as a sequence of presheaves Fn where
n ∈ N0, simply by applying F• to the elements n ∈ ∆ before applying it to any
manifold. There will be presheaf maps between them, associated to the face
and degeneracy maps.

Simple examples of simplicial presheaves are induced from all ordinary presheaves
of sets, since sets can be seen as discrete simplicial sets: If we have a presheaf
F , we make it into a simplicial presheaf that sends any manifold M to the
constant simplicial set F (M), like the one encountered in Example 4.7. Using
the description in the above paragraph, we get a sequence with one copy of the
presheaf F for each n ∈ N0, and all face and degeneracy maps equal to the
identity.

We also want to be able to speak of simplicial sheaves and stalks, essentially
moving our old definitions over from the realm of presheaves:

Definition 5.2. A simplicial presheaf F• on manifolds becomes a simplicial
sheaf on manifolds if every presheaf on manifolds Fn is a sheaf.

Whether F• is a sheaf or not, we can define the m-dimensional stalk of F•
for any natural number m ∈ N0 to be the colimit

colim
r→0

F•(B
m(r)), (36)

where Bm(r) ⊆ Rm is the open ball around the origin with radius r.

Notice that the m-dimensional stalk of F• is a simplicial set here, not just
a set. Its set of n-simplices is the m-dimensional stalk of Fn.

When we want to translate our weak equivalences from last chapter into the
world of simplicial presheaves, a first thought might be to require that a natural
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transformation between simplicial presheaves has to induce weak equivalences on
all simplicial sets, regardless of the manifold input. In other words, the natural
transformation φ : F• → F ′• should induce weak equivalences of simplicial
sets φ(M) : F•(M) → F ′•(M) for all M ∈ Man. This, however, is actually
too much, because one of the advantages of working with presheaves is that all
information in a way is gathered in the stalks, and as discussed earlier, these
can be defined for manifolds using only open balls. When some presheaf sends
a manifold to some simplicial set, this has to commute nicely with restricting
to any chart domain in the manifold, which can be chosen to be homeomorphic
to a ball in Rn for the appropriate dimension n. This is then picked up by
and stored in the n-dimensional stalk, collapsed together in an equivalence class
with the information from all other manifolds that restrict in the same way.
Since any point in any manifold lies in such a chart domain, the stalks actually
capture the entire picture, and it is enough to require that a weak equivalence
is induced on them. We therefore make the following definition:

Definition 5.3. A morphism (natural transformation) of simplicial presheaves
is called a weak equivalence if the induced map on all stalks are weak equivalences
of simplicial sets. If such a morphism exists between two simplicial presheaves,
they are said to be weakly equivalent.

In the same way that we could embed manifolds in the cateogory of presheaves
by using their Hom-functors, we want to construct simplicial presheaves from
them. First, we introduce the so-called simplicial manifolds, which are simpli-
cial sets in which every set is a manifold, and each morphism is a smooth map
from Man. Equivalently, it is a functor from ∆op to Man. If we call it X•, it
can be visualized like this:

X0
// X1

oo
oo //

//
X2 · · ·oo

oo

oo
Now we get a simplicial presheaf FX• associated to X• by assigning to any

M ∈Man the simplicial set

Man(M,X0) //Man(M,X1)
oo
oo //

//
Man(M,X2) · · ·oo

oo

oo

Here, the morphisms have also been transported by the covariant functor Man(M,−),
so the diagram makes sense. The functoriality makes sure that all relations be-
tween the morphisms are preserved, so we do indeed end up with a simplicial
set. Now, if we are given any ordinary manifold X ∈Man, we can construct a
discrete simplicial manifold X = X• like this

X // X
oo
oo //

//
X · · ·oo

oo

oo
where as usual when using the word discrete, all sets of simplices are X, and all
morphisms are the identity. Then FX = FX• is our induced simplicial presheaf,
constructed from X’s simplicial manifold. Notice that it will be a sequence of
copies of the ordinary presheaf Man(−, X) that we worked with in Chapter 3,
with all natural transformations being the identity.
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If we take two smooth manifolds X and Y , we notice that all natural trans-
formations φ going between the discrete simplicial sheaves FY• and FX• have
to have a natural transformation of the ordinary presheaves FY and FX as
the map going between their 0-simplices (since these are exactly FY and FX).
Since all maps within the simplicial presheaves FY• and FX• are the identity,
φ is also completely determined by what happens down at the 0th level, so we
actually get a one-to-one correspondence between transformations FY → FX

and possible φ. In other words

sPre(FY• ,FX•)
∼= Pre(FY ,FX) ∼= Man(Y,X), (37)

where the right equation is (25).
We note the fact that if we are given a functor from Manop to Grpd, we can

compose it with our functor taking groupoids to simplicial sets from Chapter
4, and thus end up with a simplicial presheaf. This will be part of our next
construction, which finally is the base space B∇G of our classifying space (it
will be a simplicial presheaf, of course, not an actual topological space).
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6 E∇G, B∇G and the classification theorem

Given any Lie group G and smooth manifold M , we can define a groupoid
B∇G

′(M) similarly to how we did it in the quite trivial case where G was
equal to Z2. The objects B∇G

′(M)0 will be the collection of all principal G-
bundles P over M with connection Θ, usually written as triples (P, π,Θ), where
π : P →M is the projection. The arrows B∇G

′(M)1 going from some (P, π,Θ)
to (P ′, π′,Θ′) will be the collection of isomorphisms φ : P → P ′ that preserve
the connection, i.e. φ∗(Θ′) = Θ.

P
φ //

π   

P ′

π′~~
M

As all such isomorphisms are invertible, this really does define a groupoid, and
it tracks automorphisms nicely, as discussed in the previous chapters.

Definition 6.1. Given any Lie group G, we define the simplicial presheaf
B∇G by setting B∇G(M) equal to the simplicial set associated to the groupoid
B∇G

′(M) defined above.

Since B∇G is supposed to be a (contravariant) functor, we also need maps f :
M → N in Man to be transferred to maps B∇G

′(f) : B∇G
′(N) → B∇G

′(M)
in Grpd, which can then be turned into maps of the simplicial sets with our
functor Grpd→ Set∆. Given any triple (P, π,Θ) ∈ B∇G′(N)0, we can send it
to the pullback (f∗(P ), f∗(π), f∗(Θ)) ∈ B∇G′(M)0, and this preserves identity
maps by the properties of pullbacks. Also our arrows, the isomorphism diagrams
φ : P → P ′ over N , can be pulled back by f to isomorphism diagrams f∗(P )→
f∗(P ′) over M . Because φ preserves the connection between P and P ′, the
connections induced on f∗(P ) and f∗(P ′) will also be preserved, so we end up
with an arrow in B∇G

′(M)1.
There is, unfortunately, a formal problem with this functor when it comes to

associativity. Given maps f : M → N and g : N → L, and a principal G-bundle
P → L, we can define both (g ◦ f)∗(P ) and f∗(g∗(P )), but according to [7],
they will only be canonically isomorphic, not equal. However, still according to
[7], this can be fixed using either Grothendieck’s theory of fibred categories or
higher categories, so we do not dwell on it in this thesis.

Proposition 6.2. The simplicial presheaf B∇G : Manop → Set∆ is a simpli-
cial sheaf.

Proof. Fix a smooth manifold M . If we are given two open subsets U1 and U2

of M , with a principal G-bundle and a connection on both, both the bundles
and the connections could be glued uniquely together on U1 ∪ U2 as long as
they agreed on the intersection U1 ∩ U2. This follows because both the bundle-
structure and the properties of a connection are local. Similarly, if there were
given connection-preserving isomorphisms between two bundles on U1 and U2,
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respectively, they could also be glued if they agreed on U1 ∩ U2, for the same
reason. Furthermore, this argument could easily be extended to arbitrary fam-
ilies of sets. This shows that the 0- and 1-simplices in B∇G(M) are sheaves,
and by definition, B∇G is built entirely from these.

Now, the way to classify our G-bundles will actually be to make a pair of
simplicial sheaves that looks like a bundle itself, and B∇G will have the role as
base space. We now go on to define E∇G, which can be seen as the total space
in this setting.

As with B∇G, we want to define E∇G by first making its corresponding
groupoid, E∇G

′. It is very similar to B∇G
′, but instead of having triples as

nodes, E∇G
′(M)0 consists of quadruples (P, π,Θ, s), where π : P → M is a

G-bundle with connection Θ and a global section s : M → P . Again, the
arrows are isomorphisms over M , that this time preserve the section as well as
the connection. The simplicial presheaf E∇G then takes manifolds M to the
simplicial set built from the above groupoid, and as with B∇G the smooth maps
of manifolds induce pullback-maps (the sections work nicely with them, so all
of the above arguments still apply). Since sections also are local by nature and
can be glued along open sets, E∇G becomes a simplicial sheaf.

The arrows in E∇G
′ are worth taking a closer look at. If we have one in

E∇G
′(M)1, for some M ∈ Man, it will be an isomorphism φ : P → P ′ over

M , which by commutativity has to preserve the fibres. Because φ also preserves
the section, in other words φ ◦ s = s′, this determines where one element per
fibre is sent, namely s(m) for m ∈ M . But last of all, φ has to respect the G-
action, which is free and transitive on every fibre, and this takes care of where
the rest of the elements in P are being sent. In other words, there can be
maximally one choice of isomorphism between two such G-bundles, and thus no
more than one arrow between each object in E∇G

′(M)0. In particular, there
are no non-trivial automorphisms. But this is what defines a discrete groupoid,
which means that we should be able to find a groupoid with dramatically fewer
objects that is equivalent to E∇G

′(M), and from it get a discrete simplicial
sheaf weakly equivalent to E∇G. The right choice is simply handed to us in [7]
as the discrete simplicial sheaf Ω1⊗g, but we have to prove the important weak
equivalence that we claim:

Theorem 6.3. The simplicial sheaf E∇G is weakly equivalent to Ω1 ⊗ g, the
discrete simplicial sheaf which sends a smooth manifold M to Ω1(M ; g).

As discussed previously, taking 1-forms is a sheaf on manifolds, and taking
their values in g does not change that. We then upgrade Ω1(−; g) to a discrete
simplicial sheaf as shown before, by using that one sheaf for all i ≥ 0 and the
identity for all face and degeneracy maps. Now for the proof:

Proof. We start by finding inverse weak equivalences

E∇G(M)
ψ // (Ω1 ⊗ g)(M)
φ

oo = Ω1(M ; g)
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for any M ∈ Man (it would be easier to use just one of them to prove this
theorem, but we will later need to go back and forth between these simplicial
sheaves, so both φ and ψ are useful). Again, we prefer to work on the level
of groupoids, since both of these simplicial sets come from those (Ω1 ⊗ g is
originally a sheaf upgraded to a discrete simplicial sheaf, but can also be seen
as the simplicial sheaf that at M is generated from the discrete groupoid G that
has G0 = Ω(M ; g), and only identity arrows).

So to start with ψ, it takes an element (P, π,Θ, s) ∈ E∇G
′(M)0 to the

pulled-back 1-form s∗(Θ). Remember that connections are 1-forms on the total
space with values in g, so this becomes a similar form living on M , the domain
of s, and hence an element in Ω1(M ; g). We wait before we define what ψ does
to the arrows in E∇G

′(M)1. The map φ takes a form α ∈ Ω1(M ; g) to the
trivial bundle proj1 : M ×G→M , with the identity section

s : M −→M ×G m 7−→ (m, e) (38)

where e is the identity element in G. We also need a connection, which we set to
be Θ = Ad(•−1) ◦ α+ ωMC , where ωMC is the Maurer-Cartan form on M ×G,
defined for all trivial bundles in Section 2.1.1 We use the notation Ad(•−1) to
mean the map Ad(g−1) at a point (g,m), and as earlier, it is the differential
of the G → G-mapping x → gxg−1 at e. Note that we here consider the first
summand, Ad(•−1) ◦ α, as a 1-form on all of TM × TG even though it only
depends on input from TM . This quadruple (M ×G,proj1,Θ, s) is certainly in
E∇G

′(M)0 if we can prove that Θ is a connection. Only identity arrows exist in
the groupoid Ω1(M ; g), and these are obviously sent to identities in E∇G

′(M).
Now to prove that Θ is a connection. First of all, it takes any point (m, g) ∈

M ×G to the function

Θ(m,g) = αm + ωMC(m,g) ∈ Hom(TmM × TgG, g), (39)

and this depends smoothly on the base point, so Θ is indeed an element in
Ω1(M × G, g). For the first part of Definition 2.4, we remember that the G-
action is closed on any fibre, which means that the differential function v(m,g) :
g → TmM × TgG (of the map h → (m, gh), taken at the identity e) must map
to 0 in the first coordinate (since the function that it is the derivative of never
moves along M , only G). This means that

Θ(m,g) ◦ v(m,g) = (αm + ωMC(m,g)) ◦ v(m,g)

= αm ◦ ◦v(m,g) + ωMC(m,g) ◦ v(m,g)

= 0 + idg

= idg,

1The connection used in [7] is actually just Θ = α+ωMC , but this did not seem to fit the
rest of their discussion. Inspired by Proposition 6.8 in [5], I tried composing with Ad(•−1),
and this yielded the desired weak equivalence, and also seems to fit better with the later
discussion about how the group Man(M,G) acts on Ω1 ⊗ g. It is of course possible that
everything is computed slightly differently in [7], including using a less intuitive group action,
but I could not see it.
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as required.
For the second part of our definition, we use the equivalent statement (2′),

found in Proposition 2.5 (notice that we can use it, because we already have
proven the first part of Definition 2.4). It requires that the differential (Rg)∗
of the right action preserves the kernel of Θ, so we first start with any tangent
vector [v1, v2] ∈ TmM × TgG that satisfies

Θ(m,g)([v1, v2]) = Ad(g−1) ◦ α(v1) + ωMC(m,g)([v1, v2]) = 0, (40)

or, equivalently

Ad(h−1g−1) ◦ α(v1) = −Ad(h−1) ◦ ωMC(m,g)([v1, v2]), (41)

where we have composed on both sides with Ad(h−1) for some h ∈ G, which
is always a diffeomorphism with inverse Ad(h). Both this last fact and the
composition rules for the adjoint are immediate from its definition.

We now want to see what Θ does to (Rh)∗([v1, v2]), for any h ∈ G. The map
Rh is as always the right action with the element h fixed, going from M × G
to M × G, but since the action only affects the second coordinate in trivial
bundles, the differential (Rh)∗ must be the identity on TM . In other words,
(Rh)∗([v1, v2]) = ([v1, (Rh)∗(v2)]), and we compute:

Θ(m,gh)((Rh)∗([v1, v2]))

= Ad(h−1g−1) ◦ α(v1) + ωMC(m,gh)([v1, (Rh)∗(v2)])

= −Ad(h−1) ◦ ωMC(m,g)([v1, v2]) + ωMC(m,gh)([v1, (Rh)∗(v2)])

= −(Lh−1 ◦Rh)∗ ◦ proj∗2((Lg−1)∗)([v1, v2]) + proj∗2((Lh−1g−1)∗) ◦ (Rh)∗([v1, v2])

= −(Lh−1 ◦Rh ◦ Lg−1)∗(v2) + (Lh−1 ◦ Lg−1 ◦Rh)∗(v2)

= 0

Here, the map Lg : G → G is the left multiplication, but is defined inside of
G, whereas Rg denotes the right group action. In our trivial case, however, Rg
has the exact same effect if viewed as the right multiplication within G, and
is therefore considered that way in the penultimate line above. Because multi-
plying from the right commutes with multiplying from the left, the differential
maps also commute, so we really get 0 in the last line. To get from the second
to the third line, (41) was used. Everything here is reversible, so we end up
with

(Rh)∗(Ker(Θ)) = Ker(Θ) ∀h ∈ G, (42)

as desired. Consequently, Θ is a connection on M ×G.
Now, we need to show that φ and ψ are inverse weak equivalences. We start

with ψ ◦ φ, which is relatively easy: Our definitions give us that

ψ ◦ φ(α) = s∗(Ad(•−1) ◦ α+ ωMC), (43)

where s : M → M × G is the identity section on the trivial bundle, sending
m 7−→ (m, e). The differential becomes s∗ : v 7−→ (v, 0), so this is a 1-form
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which at an element m ∈M returns the map

(ψ ◦ φ(α))m : TmM −→ g

v 7−→ Ad(e) ◦ αm(v) + ωMC(m,e)(v, 0) = αm(v),

i.e. ψ ◦ φ(α) is equal to α. Again we use that ωMC only depends on the second
coordinate, and basic properties of the adjoint mapping.

When we turn to φ ◦ ψ, we will not be able to obtain the identity functor,
but since a weak equivalence of groupoids is the same as an equivalence of
categories, an equivalence is all we need. Starting with a quadruple (P, π,Θ, s) ∈
E∇G(M)0, φ ◦ ψ takes it to (M × G,proj1,Ad(•−1) ◦ s∗(Θ) + ωMC , i), where
i : M →M ×G is the identity section. We now show that this new G-bundle is
isomorphic to the one we started with, by an isomorphism that preserves both
the section and the connection. It is the following:

M ×G
f //

proj1 ##

P

π
��

f(m, g) = s(m) · g

M

i

cc
s

??

We see immediately that f is smooth, as a composition of the smooth section
and the action map, and equivariant with respect to the G-action. As mentioned
in the first chapter, this is enough to get an isomorphism, since equivariance
guarantees bijectivity on the fibres. We also get the section preserved, since

f ◦ i(m) = f(m, e) = s(m) ∀m ∈M. (44)

The connection, however, is not as easy. To see what the pullback of Θ is,
we first need to break f up in a slightly strange way that will help us find its
differential map:

M ×G

s 0
0 id


// P ×G

id 0
0 Lh−1


// P ×G

id 0
0 Lh


// P ×G a // P

where a : P × G → P is the G-action on P , and h is any element in G. If we
now fix a point (m, g) in M ×G, f∗(Θ) will yield the function

(f∗Θ)(m,g) : TmM × TgG −→ g

[v1, v2] 7−→ Θs(m)g(f∗(v1) + f∗(v2)),

so we need to get a nice expression for f∗. The first three parts of the composition
we made out of f above are easy to differentiate, and if we fix g, we see that a
becomes a(−, g) : P → P , which is simply Rg from before. The first summand
is therefore
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Θs(m)g(f
∗(v1)) = Θs(m)g((Rg ◦ s)∗(v1))

= (R∗gΘ)s(m)(s∗(v1))

= Ad(g−1) ◦Θs(m)(s∗(v1))

= Ad(g−1) ◦ (s∗Θ)m(v1)

where the third line follows from the second by definition since Θ is a connection.
We also use the chain rule a lot without pointing it out.

For the second summand, we treat the last two maps in our chain as a single
one, and if we set h = g and fix some s(m) ∈ P , this composition a(s(m),−)◦Lg
will be a map G → P , sending k 7→ s(m)gk, where k ∈ G. Starting f at our
base point (m, g), we notice that it changes to (s(m), e) after the two first maps,
so when we differentiate, (a(s(m),−) ·Lg)∗ will be going from g to Ts(m)gP , and
be exactly the map vs(m)g, which shows up in the definition of a connection.
This results in

Θs(m)g(f
∗(v2)) = Θs(m)g(vs(m)g ◦ (Lg−1)∗(v2))

= Θs(m)g ◦ vs(m)g ◦ (Lg−1)∗(v2)

= idg ◦(Lg−1)∗(v2)

= ωMC(m,g)(v2)

where Θ is the left inverse of vs(m)g because of the defining properties of connec-
tions, and the last part merely is the definition of the Maurer-Cartan form on
any trivial bundle (technically, the projection should be in there, but we have
already simplified by only inputting the part of the tangent vector that comes
from TG, so this works out nicely).

Summing up, we see that

(f∗Θ)(m,g) = Ad(g−1) ◦ (s∗(Θ))m(v1) + ωMC(m,g)(v2) (45)

holds for every choice of (m, g), but this is exactly the connection we have on our
G-bundle M ×G. Thus f really is an isomorphism of G-bundles that preserves
both section and connection.

With this done, we can finally make ψ into a functor. Any arrow in E∇G
′(M)1

is an isomorphism, say between the bundles P and P ′ (ignoring for now the
rest of the quadruples), and since φ ◦ ψ sends them both to trivial bundles
(M × G) ∼= P and (M × G)′ ∼= P ′, these trivial bundles also have to be iso-
morphic. But they both have identity sections, so this determines that their
isomorphism must be the identity, again forcing them to have the same connec-
tion (since their isomorphism preserves it). Therefore, they come from the same
element α ∈ Ω1(M ; g) (the earlier fact that ψ◦φ = id, shows that φ is injective),
so P and P ′ are sent to the same element by ψ. Then their isomorphism can
be sent to the identity on α.
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That means that we finally have two functors, whose one composition re-
sults in the identity functor, while the other sends all objects to isomorphic
ones. It is easy to show that this is naturally isomorphic to the identity functor
on E∇G

′(M), so we get what we claimed. The weakly equivalent groupoids
E∇G

′(M) and Ω1(M ; g) induce weakly equivalent simplicial sets E∇G(M) and
Ω1(M ; g) for any M ∈ Man, and in particular when we choose M to be an
n-dimensional ball Bn(r) ∈ Rn of radius r > 0 around the origin. To get weakly
equivalent simplicial sheaves, we need a weak equivalence on the colimits of
these balls, namely the stalks, but here we simply reference a result saying that
the colimit of weak equivalences always is a weak equivalence for filtered colim-
its, which is what we have here (this is not part of what I have worked with in
this thesis, but the result can be found in [4]).

Now that we have both a base space B∇G and total space E∇G, we want to
make them into something similar to a principal G-bundle, but in the category
of simplicial sheaves. To do this, we first define what is meant by a group action
in this setting, and then find a base space weakly equivalent to B∇G that is
easier to work with.

Definition 6.4. If F is a sheaf and G a Lie group, a G-action on F is a sheaf
map (natural transformation)

a : FG ×F −→ F , (46)

where FG as usual is the sheaf Man(−, G), where G for the moment is con-
sidered simply a manifold. When inputting a test manifold M , we require the
resulting map

a(M) : Man(M,G)×F (M) −→ F (M) (47)

to be an action of the group Man(M,G) on the set F (M) (the set Man(M,G)
can easily be seen to be a group where the operation is multiplication of the
functions, which is easy to define as G already is a group).

Just like we constructed a groupoid from an ordinary group action on a set,
we can make one here whenever we input some manifold M . As before, it will
have the set F (M) as objects, and Man(M,G) as arrows. From this groupoid,
we know how to obtain a simplicial set by considering compositions of maps as
higher simplices, and if all this is done without first fixing any M , we obtain a
simplicial sheaf that can be expressed in the following way:

F // FG ×F
p1oo

p2
oo //

//
FG ×FG ×F · · ·oo

oo

oo

As before, the two leftmost left-going maps are the projection and the group
action. We will not show explicitly that this construction really results in a
simplicial sheaf, but since F is a sheaf and the G-action was defined naturally,
it is not difficult to see that maps of manifolds will result in maps between the
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lower simplices. Since the whole simplicial set is built from the 0-simplices and
the arrows, this suffices.

Now, to get back to the problem of considering E∇G as a total space over
B∇G, we remember that the only thing separating these two simplicial sheaves
is the choice of a section in E∇G, which is equivalent to a trivialization of
the bundle by basic G-bundle theory. It would therefore maybe make more
sense to work with a base space Btriv∇ G of trivializable bundles, but without
any specific trivialization being chosen. Then, for any smooth manifold M ,
Btriv∇ G(M) would be a triple like the ones found in B∇G(M), but with the
added condition that the bundles could all be trivialized. This, however, does
not result in a simplicial sheaf, only a simplicial presheaf, since trivializability
is a very local property (in fact, local instead of global trivialization is more
or less the whole point of working with manifolds). There is, however, another
alternative, as presented in [7]: If we take a principal G-bundle P → M with
a given trivialization s : M → P , any other trivialization s′ : M → P must be
given by s · g = s′, where g : M → G is a smooth map and the multiplication is
the right group action of G on P . This g is possible to find since the G-action is
transitive on all fibres, and unique because it is free. But the set of such maps
g is exactly FG(M) = Man(M,G), so we can think of FG(M) as acting on
the 0-simplices of E∇G(M). The orbits of this action will represent trivializable
G-bundles with connection over M , but with the specific trivialization (given
by the section) “moded” out. As it turns out, it is easier to work with our
weakly equivalent simplicial sheaf Ω1⊗ g, which we can consider as an ordinary
sheaf since it is discrete. For those, we have already defined group actions, in
Definition 6.4. We next show that we really get a FG-action on Ω1 ⊗ g, using
our weak equivalences from Theorem 6.3.

Proposition 6.5. If G is any Lie group, the natural transformation

T : FG × (Ω1 ⊗ g) −→ Ω1 ⊗ g, (48)

which for any smooth manifold M first sends the element α ∈ Ω1(M ; g) to E∇G0

with φ, then multiplies g ∈ FG(M) = Man(M,G) with the section, and finally
moves back to Ω1(M ; g) with ψ, is a G-action of sheaves.

Proof. First, we find a more explicit expression for what T does to an element
(g, α) ∈ Man(M,G) × Ω1(M ; g), for some M ∈ Man (we also denote T (g, α)
as α · g, of course, since it is an action). Following our three steps, we get:

α 7→ (M ×G,proj1,Ad(•−1) ◦ α+ ωMC , i)

7→ (M ×G,proj1,Ad(•−1) ◦ α+ ωMC , i · g)

7→ (i · g)∗(Ad(•−1) ◦ α+ ωMC)

= Ad(g−1) ◦ α+ g∗ωMC

Again, i is the identity section, and notice that Ad now depends on the function
g, not a single group element. We use ωMC for the Maurer-Cartan form on
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M ×G, but it is in the last line regarded as the Maurer-Cartan form restricted
to G. Being slightly sloppy with this canonical form’s domain should not lead
to any problems, as it is determined solely by the G-coordinate, and also sends
vectors from TM to 0. It is preserved nicely along inclusions and projections
when working with trivial bundles. The last equality is easily obtainable by
noticing that i · g sends m to (m, g(m)), which gives the differential (i · s)∗ =
(idT M, g∗), and remembering that α(m,h) only depends on input from TmM .

To show that T is a natural transformation, we take another smooth manifold
N , and a smooth map f : N → M . Remembering that Ω1 × g takes maps to
pullbacks, and FG uses pre-compositions, we get the commutative diagram

Man(M, g)× Ω1(M ; g)
T (M) //

−◦f×f∗(−)

��

Ω1(M ; g)

f∗(−)

��

(g, α) � //
_

��

(Ad(g−1) ◦ α+ g∗ωMC)
_

��
Man(N, g)× Ω1(N ; g)

T (N) // Ω1(N ; g) (g ◦ f, f∗(α)) � // f∗(Ad(g−1) ◦ α+ g∗ωMC)

The only transition that is not immediate from the definition is the bottom one,
but

[T (N)](g ◦ f, f∗(α)) = Ad(g ◦ f) ◦ f∗(α) + (g ◦ f)∗(ωMC)

= f∗(Ad(g) ◦ α) + f∗(g∗(ωMC))

using basic properties of pullbacks. We therefore have a natural transformation,
but still need to see that the action of Man(M,G) on Ω1(M ; g) is a group action
for any M ∈ Man. First of all, the unit function e : M → G, which maps all
m to the unit e in G, has differential 0 like any constant function. We therefore
get

α · e = Ad(e−1) ◦ α+ e∗ωMC = idg ◦α+ 0 = α, (49)

as desired. Compatibility is a tad nastier, but we compute

α · (gh) = Ad((gh)−1) ◦ α+ (gh)∗(ωMC)

(α · g) · h = Ad(h−1) ◦Ad(g−1) ◦ α+ Ad(h−1) ◦ g∗(ωMC) + h∗(ωMC),

where the first summand in both expressions are equal by properties of the
adjoint. Cancelling those, we take a closer look at (gh)∗(ωMC), starting by
splitting gh : M → G into two parts:

M

g
h


// G×G −·− // G

Here, the last part is group multiplication. The differential of this multiplication
is that of right multiplication for our left element, and vice versa. We therefore
obtain

(gh)∗ = (Rh)∗ ◦ g∗ + (Lg)∗ ◦ h∗ (50)
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If we now remember the definition of the Maurer-Cartan form, we see that

(gh)∗ωMC = (L(gh)−1)∗((Rh)∗ ◦ g∗ + (Lg)∗ ◦ h∗)
= (Lh−1g−1)∗((Rh)∗ ◦ g∗ + (Lg)∗ ◦ h∗)
= (Lh−1 ◦Rh ◦ Lg−1 ◦ g)∗ + (Lh−1 ◦ idTG ◦h)∗

= Ad(h−1) ◦ g∗(ωMC) + h∗(ωMC),

which is exactly what we needed. The base points in the above calculations
would be horrible to juggle, but luckily, the global formalism suffices, and we
can ignore them.

With this in place, we can define Btriv∇ G as the simplicial sheaf induced by
this group action, namely

Ω1 ⊗ g // FG × Ω1 ⊗ g
p1oo

p2
oo //

//
FG ×FG × Ω1 ⊗ g · · ·oo

oo

oo

It is a sheaf because both Ω1 ⊗ g and Man(−, G) are, just like we wanted.
The whole idea was, however, to find a more understandable simplicial sheaf to
replace, B∇G, so we really need a weak equivalence for our new construction to
have any value. Again we do this slightly differently from [7], because it seems
to work better with the calculations. We define the map

ζ : Btriv∇ G′ −→ B∇G
′, (51)

again using groupoids since both these simplicial sheaves are built from them (we
use Btriv∇ G′ to denote the groupoid behind Btriv∇ G). Given a fixed smooth mani-
foldM , ζM maps an element α ∈ Ω1(M ; g) to the triple (M×G,proj1,Ad(•−1))◦
α + ωMC). An arrow in Btriv∇ G′ is a group action by some element g ∈
Man(M,G), and this is sent to the isomorphism ζM (g) : M × G → M × G
that sends (m,h) 7→ (m, g(m)−1h), which is an arrow in B∇G

′(M) if it pre-
serves the connection. We prove that everything works out nicely.

Proposition 6.6. The map ζM : Btriv∇ G′(M) −→ B∇G
′(M) of groupoids de-

scribed above is a weak equivalence for every M ∈Man, and therefore induces
a weak equivalence of the simplicial sheaves Btriv∇ G and B∇G.

Proof. We first show that ζM actually maps arrows g from Man(M,G) to the
right kind of isomorphisms (that they are isomorphisms is evident by the now
well-known argument of the free and transitive group action). Starting with
α, the action from g sends it to Ad(g−1) ◦ α + g∗ωMC , and we want that the
isomorphism ζM (g) should go between the two copies of the trivial bundle in
the way that works well with pullbacks of the two connections. As it turns out,
it is easier to show this using the inverse function ζ−1

M (g) : (m,h) 7→ (m, g(m)h),
which means that we want to prove

(ζ−1
M (g))(Ad(•−1)◦α+ωMC) = Ad(•−1)◦ (Ad(g−1)◦α+g∗ωMC) +ωMC (52)
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Fixing a point (m,h) ∈M ×G, we get the differential

(ζ−1
M (g)∗)(m,h) =

[
id 0

(Rh ◦ g)∗ (Lg(m))∗

]
(53)

Taking [v1, v2] ∈ TmM×TgG and remembering that (m,h) lands in (m, g(m)h),
we compute the pullback:

(ζ−1
M (g))∗(Ad(•−1) ◦ α+ ωMC)([v1, v2])

= Ad((gh)−1)α(v1) + (L(gh)−1)∗ ◦ (Rh ◦ g)∗(v1) + (L(gh)−1)∗ ◦ (Lg(m))∗(v2)

= Ad(h−1) ◦Ad(g−1) ◦ α(v1) + Ad(h−1) ◦ (Lg−1)∗ ◦ g∗(v1) + (Lh−1)∗(v2)

= Ad(h−1) ◦Ad(g−1) ◦ α(v1) + Ad(h−1) ◦ (g∗ωMC)(v1) + ωMC(α)

We see that this agrees with Equation (52). Note that g in this calculation is a
function dependant on M , even if we do not write g(m) everywhere. The base
points have also been ignored for the sake of simplicity, but everything should
be completely unambiguous, and works out nicely.

Now that we know that ζM is a functor for all M ∈ Man, we take a look
at what happens when the manifold input is an n-dimensional ball B = Bn(r)
of radius r > 0 in Rn. Because B is contractible, any principal G-bundle
over it is trivializable, so any object in B∇G

′(B) is isomorphic to a trivial
one, (B × G,proj1,Θ). But in the proof of Theorem 6.3, we saw that trivial
principal G-bundles with connection were preserved by the map φ ◦ ψ, which
means that φ is surjective on them. But ζ is just φ without construction of
the identity section, so that means that any (B × G,proj2,Θ) can be hit with
ζB . In other words, ζB can hit something isomorphic to anything in B∇G

′(B),
and is therefore dense. Now for the arrow sets, we know from the first chapter
that any automorphism of a trivial principal G-bundle B × G is given by a
unique g ∈ Man(M,G) as (m,h) 7→ (m, g(m)h), which means that ζB is full
and faithful as well. In conclusion, ζB becomes an equivalence of the groupoids
Btriv∇ G′(B) and B∇G

′(B), and thus induces a weak equivalence between the
simplicial sets Btriv∇ G(B) and B∇G(B). As mentioned towards the end of the
proof of Theorem 6.3, this is enough to get a weak equivalence on the stalks, so
Btriv∇ G is weakly equivalent to B∇G as simplicial sheaves.

6.1 The classification theorem

All this means that we, up to our weak equivalences, can consider E∇G as some
sort of principal G-bundle of simplicial sheaves over B∇G, where the projection
map just takes a quadruple to the triple where the section has been left out
(remember how B∇G and E∇G are defined). To mirror manifolds even closer,
we even construct a connection, which should of course be a g-valued 1-form on
E∇G, or in symbols, a map

Θuniv : E∇G→ Ω1 ⊗ g. (54)
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Fortunately, we already have a map like this, namely the ψ from the proof of
Theorem 6.3, and simply set Θuniv = ψ. We will call it the universal connection
because of the following theorem, which shows that the simplicial sheaves we
have constructed in this chapter really make up a classifying space.

Theorem 6.7. Given a Lie group G and a principal G-bundle π : P → X with
connection Θ ∈ Ω1(P ; g), there is a unique (up to homotopy) classifying map

FP
f //

π

��

E∇G

��
FX

f̄ // B∇G

such that f∗(Θuniv) = Θ.

Here, FP and FX of course denote the discrete simplicial sheaves con-
structed from the sheaves Man(−, P ) and Man(−, X). The expression f∗(Θuniv)
means the composition of f and Θuniv, which becomes a natural transformation

f∗(Θuniv) : FP −→ Ω1 ⊗ g. (55)

Using (24), or essentially the Yoneda lemma, we know that these natural trans-
formations correspond bijectively to the set (Ω1 ⊗ g)(P ) = Ω1(P ; g), which is
where we find Θ. It is under this bijection that we claim f∗(Θuniv) = Θ.2

Proof. To define f , we begin by taking the pullback of our bundle π : P → X
along itself, resulting in a principal G-bundle π′ : P ′ → P with connection
Θ′ = π∗Θ. Using the universal property of pullback diagrams in a clever way,
we obtain a canonical section s′ : P → P ′, as illustrated in the diagram below.

P

s′

  

id

��

id

##

P ′
π′ //

π′

��

P

π

��
P

π
// X

Note that the outer diagram easily commutes, so there has to be a unique
morphism s′ to complete it. Commutativity of the diagram makes π′ ◦ s′ = idP ,
so s′ indeed is a section of the bundle P ′ → P . This means that (P ′, π′,Θ′, s′)
is a 0-simplex in E∇G(P ), so for any test manifold M , we can define a map

f(M) : Man(M,P ) −→ E∇G(M)

(φ : M → P ) 7−→ φ∗(P ′, π′,Θ′, s′)

2This is actually not entirely clear from [7], but the only way I could make the claim made
in the corresponding Proposition 5.26 work.
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This is extendable to a map between the whole simplicial sets because Man(M,P )
is discrete, so all its upward-going identity maps can be sent to the degeneracy
maps that add more and more identity automorphism diagrams to the quadru-
ples in E∇G(M), while the downward going identity maps go to their left in-
verses, that delete the last identity automorphism diagram. That f is a map
of simplicial sheaves (i.e. a natural transformation) follows because pullbacks
behave well with respect to compositions, so given a map ξ ∈Man(N,M), we
get the following commutative diagram

Man(M,P )
f(M) //

−◦ξ
��

E∇G(M)

ξ∗(−)

��

(φ : M → P ) � //
_

��

φ∗(P ′, π′,Θ′, s′)
_

��
Man(N,P )

f(N) // E∇G(N) (φ ◦ ξ : N → P )
� // ξ∗(φ∗(P ′, π′,Θ′, s′))

Now that we know that f is a functor, we check that f∗(Θuniv) = Θ. First of all,
using the Yoneda lemma, we know that Θ ∈ Ω1(P ; g) corresponds to a natural
transformation ζΘ : FP → Ω1 ⊗ g, which evaluated at a smooth manifold M
gives

ζΘ
M : Man(M,P ) −→ Ω1(M ; g)

φ 7−→ Ω1 ⊗ g(φ)(Θ) = φ∗Θ

since Ω1⊗ g takes smooth maps to pullbacks. Now we just need to see that the
composition of f and Θuniv is the same map at every M . Remembering how
Θuniv works, we get

f∗(Θuniv)M : Man(M,P ) −→ E∇G(M) −→ Ω1(M ; g)

φ 7−→ φ∗(P ′, π′,Θ′, s′) 7−→ (φ∗s′)∗(φ∗Θ′)

Now, we need to carefully unravel what this means. First of all, Θ′ = π∗Θ, but
pulling back a connection along a map of the base spaces actually corresponds to
pulling it back along the induced map from the pullback-bundle to the original
total space (the domains would not make sense if we tried to do a more direct
pullback along π). This means that Θ′ = π′∗Θ, since π′ is what we called this
induced map in our above pullback diagram. The same goes for φ∗Θ′, which
becomes φ′∗Θ′, where φ′ is the map of total spaces, as illustrated below.

φ∗P ′
φ′ //

��

P ′

π′

��
M

φ // P

The pullback-section φ∗s′ is defined as (φ′)−1 ◦ s′ ◦ φ, which works because φ′

bijectively hits the fibres represented by basepoints hit by φ. All in all, this
yields
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(φ∗s′)∗(φ∗Θ′) = ((φ′)−1 ◦ s′ ◦ φ)∗φ′∗(π′∗Θ)

= φ∗ ◦ s′∗ ◦ ((φ′)−1)∗ ◦ φ′∗ ◦ π′∗Θ
= φ∗ ◦ s′∗ ◦ π′∗Θ
= φ∗ ◦ id∗P Θ

= φ∗Θ

which is exacty what we wanted. Note that we use π′ ◦ s′ = idP from above.
All pullbacks in the above calculation are ordinary ones, of 1-forms, so we can
use the composition rules.

Now, only uniqueness remains. Let us assume that there exist two maps
f1, f2 : FP → E∇G which also yield Θ when composed with Θuniv. On some
M ∈Man, we would then get maps that sent some φ ∈Man(M,P ) to quadru-
ples in E∇G(M), say (M ×G,proj1,Θ1, s1) and (M ×G,proj1,Θ2, ss) (remem-
ber that all principal G-bundles in E∇G(M) are trivializable, because of their
global section). Composing with Θuniv produces

s∗1(Θ1) = Θuniv(f1(φ)) = (f∗1 Θuniv)(φ) = φ∗Θ = (f∗2 Θuniv)(φ) = Θuniv(f2(φ)) = s∗2(Θ2)

by assumption. We now show that the two quadruples are actually isomorphic,
by constructing a map ξ:

M ×G
ξ //

proj1 ##

M ×G

proj1{{

ξ(m, g) = (m, s2(m) · s1(m)−1 · g)

M

s1

cc
s2

;;

We see immediately that ξ is smooth, equivariant and bijective, and commutes
with both the projections and the sections. We can construct the pullback
connection ξ∗Θ2 = Θ1 on the left version of M × G to make ξ into a section-
and connection-preserving isomorphism, i.e. an arrow in E∇G. Since ξ◦s1 = s2,
we have

s∗1(ξ∗Θ2) = s∗2Θ2 = s∗1(Θ1), (56)

where the rightmost equation was found above. This means that the trivial
bundle with section s1 and connection ξ∗Θ2 is taken to the same element in
Ω1(M ; g) as (M ×G,proj1,Θ1, s1) by Θuniv, but we saw in the proof of Theo-
rem 6.3 that this makes them isomorphic by a section- and connection-preserving
isomorphism, or another arrow in E∇G. Then we can compose it with ξ to get
an arrow in E∇G between (M × G,proj1,Θ1, s1) and (M × G,proj1,Θ2, s2),
so they are isomorphic. In other words, any other choice of f ′ : FP → E∇G
that fulfils the hypothesis of the theorem must map to quadruples isomorphic
to the ones we hit with f , but then f and f ′ would be naturally isomorphic as
functors. The simplicial sheaf Ω1 ⊗ g is weakly equivalent to E∇G and would
be hit in the same place by the images of f and f ′, so the map f is unique up
to homotopy, as claimed.
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To finish up, we define f̄ as well. To make the diagram shown in the state-
ment of the theorem commute, we set

f̄(M) : Man(M,X) −→ B∇G(M)

φ 7→ φ∗(P, π,Θ),

which looks a lot like f , but this time just taking a pullback-bundle instead of
first constructing a special bundle with section over P . Notice that, if we send
an element φ ∈Man(M,P ) down to Man(M,X), this results in π ◦ φ, and

(π ◦ φ)∗(P, π,Θ) = φ∗(π∗(P, π,Θ)) = φ∗(P ′, π′,Θ) (57)

which is exactly taking the image of φ by f , and then dropping the section.
Therefore, this choice for f̄ makes for a commutative diagram. We do not
bother to show that f̄ is a map of simplicial sheaves, as it mirrors the proof for
f itself.

With this proof, we have completed our search for a classifying space for
principal G-bundles with connection, and seen that our notion of weak equiva-
lence is the correct one to get unique classifying maps. Most constructions have
been quite tautological, so using these categories to generalize smooth manifolds
seems to be a very good way to obtain this result. Proceeding, we want to study
the simplicial sheaves E∇G and B∇G a little closer, now that we know that they
are useful. The approach will be to try to find what corresponds to de Rham
complexes in the simplicial case, and computing them for E∇G and B∇G.

41



7 De Rham complexes of E∇G and B∇G

To define de Rham complexes in our setting, which is not only the category
sPre, but also takes weak equivalences into account, we actually need to go to
a homotopy category, which is a category where inverses have been added to all
weak equivalences, making them isomorphisms. We do not dwell on the details
here, as the prerequisites for understanding this properly are multiple, but it
is discussed in Chapter 6 of [7]. What is arrived upon, is a category ho sPre
and functor L : sPre → ho sPre which sends a weak equivalence X → Y to
an isomorphism LX → LY , and has the universal property that any other
“homotopy” category C with functor K : sPre → C that does the same, can
be lifted uniquely through it:

sPre
L //

K
%%

ho sPre

!∃
��

C

The category ho sPre is also called the localization of sPre. Since the point
of this new category is to keep the same objects as in sPre, only with many
more morphisms between them than before, we will refer to the image of a
simplicial presheaf F• by L simply as F•. This is just like how one often refers
to equivalence classes by an example element from the relevant class. A problem
that arises when we want to work in ho sPre is to understand the new Hom-
sets that arise between non-isomorphic objects in there, but we get the following
result from [7]:

Proposition 7.1. If F• is any simplicial presheaf, and F ′ a sheaf regarded as
a constant simplicial presheaf, the map

sPre(F•,F
′) −→ ho sPre(F•,F

′) (58)

is an isomorphism.

Furthermore, with the same condition on F ′, we actually get that

sPre(F•,F
′) ∼= ker{ Pre(F0,F ′)

//
// Pre(F1,F ′) }, (59)

where the ker-part is standard notation for the equalizer of the diagram within.
The two maps in this diagram are the ones induced from the two face maps
going from F1 to F0. We do not prove this in detail either, but remember that
a map between these simplicial presheaves is a set of presheaf-maps Fi → F ′i
indexed by i ∈ N0, which commute with the face and degeneracy maps. Because
F ′ is constant, F ′i is equal to F ′ for all i ∈ N0, and all its internal maps are the
identity. Thus, the bottom map F0 → F ′ has to be one that, post-composed to
either of the two above face maps, results in the same map F1 → F ′. Going in
the other direction, an entire map of simplicial presheaves can be built uniquely
from a map F0 → F ′, if it belongs to the above equalizer.
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We can now define de Rham complexes for simplicial presheaves, and com-
pute them for E∇G and B∇G. We here use Ωn to denote the discrete simplicial
presheaf built from the sheaf Ωn, for n ∈ N0.

Definition 7.2. Given a simplicial presheaf F•, we define its de Rham complex
to be

ho sPre(F•,Ω
0 → Ω1 → ...) ∼= ho sPre(F•,Ω

0)→ ho sPre(F•,Ω
1)→ ...

(60)

Since all Ωn fulfil the requirements in Proposition 7.1, and using (59), these
terms can be computed as the equalizers

ho sPre(F•,Ω
n) = ker{ Pre(F0,Ω

n)
ρ0 //

ρ1
// Pre(F1,Ω

n) }, (61)

where the maps ρ0 and ρ1 are induced from the face maps F0 F1
p0
oo
p1oo

. If

F = FX = Hom(−, X) for some X ∈Man, we remember that Pre(FX ,Ω
n) =

Ωn(X), which produces an even nicer result.
Now, we also need a certain differential graded algebra, the Koszul complex,

which is designed using the canonical graded algebras
∧•

V and Sym• V , with
V a real vector space. We do not repeat the whole constructions, but the first of
these consists of all alternating k-linear functions from V k to R, while the second
collects all of the symmetric k-linear functions. These functions are graded by
the V -dimension of their domains, and equipped with a standard multiplication
that preserves alternation and symmetry, respectively.

Definition 7.3. Given a real vector space V , the Koszul complex Kos• V is the
differential graded algebra

Kos• V =
∧•

V ⊗ Sym• V, (62)

where for now
∧•

V is graded normally, while Symn V has degree 2n for all
n ≥ 0 (add zeros for odd degrees). The differential dK of this graded algebra is
defined by the relations

dK(v) = v′, dK(v′) = 0, v ∈ V =
∧1

V, v′ ∈ V = Sym1 V (63)

The only difference between v and v′ in the definition is that they are con-
sidered elements in different versions of the same space, but dK does not really
change v. We do not bother to show that the tensor product results in a new
graded algebra, but check that our differential behaves as it should. Note that
this definition works with the degree of differentials being 1, because we have
graded Sym• V with the even numbers. It is also enough to define dK on these
elements as Kos• V is generated by V =

∧1
V : the wedge part directly from it,

43



and the symmetric part by Sym1 V = V = Im(dK). Because all differentials on
graded algebras must satisfy the graded Leibniz rule, we then get

dK(a · b) = dK(a) · b+ (−1)deg(a)a · dK(b), (64)

which determines dK on all elements, and keeps the degree as 1. The last
property to check is that dK ◦ dK = 0, but this is obvious on both

∧1
V and

Sym1 V from the definition, and if we assume that it holds for all elements of
degree less than that of an element a · b, where both a and b are of positive
degree, we can compute

dK ◦ dK(a · b) = dK(dK(a) · b+ (−1)deg(a)a · dK(b))

= dK ◦ dK(a) · b+ (−1)deg(dK(a))dK(a) · dK(b)

+ (−1)deg(a)(dK(a) · dK(b) + (−1)deg(a)a · dK ◦ dK(b))

= 0 · b+ (1− 1)dK(a) · dK(b) + a · 0
= 0

since deg(dK(a)) = deg(a) + 1. Because all elements in Kos• V are generated
from below, this is enough. We now know that this is a differential graded
algebra, and it looks like this:

Kos• V = R→
∧1

V →
∧2

V ⊕ Sym1 V →
∧3

V ⊕
(∧1

V ⊗ Sym1 V
)
→ ...

(65)
The cohomology of Koszul complexes will later be of interest, and it is ac-

tually quite easy to compute. We start by taking a look at the simplest case,
Kos• R.

Example 7.4. To get to Kos•R, we need the two graded algebras that it consists
of. Any k-linear function f : Rk → R is obviously determined by its value at the
point (1, ..., 1) ∈ R, and is symmetric because

f(x1, ..., xi, ..., xj , ...xk) = xixjf(x1, ..., 1, ..., 1, ...xk) = f(x1, ..., xj , ..., xi, ...xk)
(66)

Therefore, Symk R = R for all k ≥ 0, while
∧k R = R only for k ∈ {0, 1}, and

is equal to 0 everywhere else. The non-trivial part of
∧•R of course comes from

the fact that alternation not really is a thing in the two lowest dimensions. It is
now obvious that Kosk R = R in all dimensions, because we get one copy from

Symk R in all even dimensions, and one from (Sym
k−1
2 R)⊗ (

∧1 R) in the odd
ones. From the definition of dK , this results in

Kos• R = R 0 // R 1 // R 0 // R 1 // R 0 // R 1 // · · ·
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which gives the cohomology directly as that of a contractible space:

Hk(Kos• R) =

{
R, k = 0

0 k > 0
(67)

Having this result, we state without going through the bothersome and irrel-
evant proof that Kos•(V1 ⊕ V2) ∼= Kos• V1 ⊗Kos• V2 for any finite-dimensional,
real vector spaces V1 and V2. Using the Kunneth formula, we then get induc-
tively that

Hk(Kos• V ) =

{
R, k = 0

0 k > 0
(68)

for finite-dimensional vector spaces V .
We can now state two of our main results:

Theorem 7.5. Given a Lie group G with Lie algebra g, the de Rham complex
of E∇G is (Kos• g∗, dK)

Proof. The proof of this is quite long and requires a bunch of new theory, so we
do not cover it here. It can be found in Chapter 8 of [7].

This graded differential algebra is also called the Weil algebra. Since we only
work with finite-dimensional Lie groups, and therefore Lie algebras, we get from
the above discussion that E∇G always has trivial de Rham cohomology. Note
also the interesting fact that the Koszul algebra is constructed using only the
vector space properties of g (or, really, its dual), which means that all Lie groups
of the same dimension yield identical de Rham complexes, totally disregarding
the Lie brackets involved.

As an unexpected treat, we can use this to compute the de Rham complex
of the simplicial sheaf Ω1:

Example 7.6. Since Ω1 ⊗ g is weakly equivalent to E∇G for any Lie group G,
we can pick G = S1, which of course has R as Lie algebra (since there is only
one choice of Lie bracket in the 1-dimensional case, this statement is actually
unambiguous, but we do not use the bracket right now anyway). In this case,
E∇S

1 becomes weakly equivalent to Ω1 ⊗ R = Ω1, so they all have the same de
Rham complex. This is equal to Kos•R, and was computed in the above example
together with its cohomology.

Sadly, this indirect technique is in no obvious way extendable to an algorithm
for finding the de Rham complexes of the simplicial sheaves Ωn for arbitrary
n ∈ N0.

We also have a result for our simplicial base space, but again refer its proof
to [7].

Theorem 7.7. Given a Lie group G with Lie algebra g, the de Rham complex
of B∇G is (I•2 (G), d = 0).
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Here, I•2 (G) denotes the algebra I•(G) of invariant elements in Sym• g∗,
just like we defined it in Definition 2.10, but this time graded by twice the
degree. The result is very interesting, for the following reason: If we look at
the simplicial version of the Chern-Weil homomorphism, and fix our simplicial
sheaf E∇G, we get an injective3 map

w(E∇G;−) : Ik(G) −→ H2k
dR(B∇G) = I2k

2 (G) ∀k ∈ N. (69)

Because this is an injective homomorphism of finite dimensional vector spaces,
and Theorem 7.7 states that the codomain equals the domain, it becomes an
isomorphism. All the different cohomology classes w(E∇G;P ), one for each
P ∈ I•(G), are the ones associated to E∇G by the characteristic class w(−;P ).
They can be pulled back via diagrams like the one below:

FE
f //

π

��

E∇G

��
FX

f̄ // B∇G

Here, π : E → X is a principal G-bundle, and when we pull back via f̄ , we
obtain an element in H2k

dR(FX), a space which is equal to

ho sPre(FX ,Ω
2k) = ker{ Pre(FX ,Ω

2k)
id //

id
// Pre(FX ,Ω

2k) }

= Pre(FX ,Ω
2k)

= Ω2k(X)

These equalities come from the de Rham-definition, the fact that the equalizer
in a diagram like the one above always equals the domain, and finally (24).
Everything is natural all the way, so the element f̄∗(w(E∇G;P )) is equal to
w(E;P ), which comes from the ordinary Chern-Weil homomorphism on the
bundle E (this is how characteristic classes are supposed to work). Now, ac-
cording to Theorem 6.7, there is exactly one connection-preserving map (f, f̄)
into E∇G → B∇G induced from any bundle E → X, so H∗dR(B∇G) = I•2 (G)
actually sets a cap on the number of characteristic classes attached to connec-
tions: If a characteristic class c is defined from a connection, like the Chern-Weil
forms, its definition can be extended naturally to E∇G with Θuniv, and thus c’s
value at E must be equal to c(E) = f̄∗(c(E∇G)) for the appropriate map f̄ .
Therefore, there can be no more characteristic classes than there are cohomology
classes in H•dR(B∇G). But the whole argument actually extends to all natural
differential forms on G-bundles attached to connections: Ability to be defined
at E∇G and naturality is enough to ensure that the value on E∇G determines

3See Remark 7.9
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the differential form on any other principal G-bundle with connection, so the de
Rham complex of B∇G is a cap also here.

On the other hand, we know from the Chern-Weil theory presented in Chap-
ter 2 that all polynomials P ∈ I•(G) give rise to a characteristic class w(−;P ),
and they are all different classes since (69) is an isomorphism. In conclusion,
the characteristic classes constructed as in Proposition 2.11 with the Chern-
Weil homomorphism are the only ones that exist for principal G-bundles when
attached to a connection, even the only natural differential forms on principal
G-bundles attached to connections. As it can be seen as the most important
result in this thesis, we state it properly.

Corollary 7.8. Let G be any Lie group. Then the only natural differential
forms on principal G-bundles that are attached to connections, are the charac-
teristic classes constructed from polynomials in I•(G) through the Chern-Weil
homomorphism.

Remark 7.9. Actually, the fact that this Chern-Weil homomorphism is an in-
jection is not shown in [7], but refered to [3]. To get this result, one might go
back to the definition of curvature forms and the Chern-Weil homomorphism
and do everything in a simplicial setting. This would also require defining basic
forms for E∇G and showing that they can be pulled back to forms on B∇G.
The definition of the basic subcomplex is done in Chapter 7 of [7] for simplicial
sheaves coming from simplicial group actions, which is exactly what Btriv∇ G is
(we defined it by letting FG act on Ω1 ⊗ g = E∇G). Up to weak equivalence,
Btriv∇ G is exactly B∇G, as we showed. From this, one could show that dif-
ferent polynomials in I•(G) give rise to different, basic cohomology classes in
H•dR(E∇G) when applied to the curvature form obtained from Θuniv. They would
then correspond uniquely to cohomology classes in H•dR(Btriv∇ G) = H•dR(B∇G)
by Proposition 7.14 in [7], and we would have our injection.

Another way of getting the injectivity, is by showing that any two polynomi-
als P and P ′ in I•(G) give rise to different characteristic classes c and c′, i.e.
c(E) 6= c′(E) for at least some principal G-bundle (E,M, π). Then, if the poly-
nomials would have w(E∇G;P ) = w(E∇G;P ′), they would be pulled back to the
same class by the classifying map (f̄ , f) : (E,M)→ (E∇G,B∇G), so we would
also get c(E) = f̄∗(w(E∇G;P )) = f̄∗(w(E∇G;P ′)) = c′(E), a contradiction.

Remark 7.10. In [6], a principal G-bundle EG→ BG is constructed for which
there is a one-to-one correspondence between characteristic classes c for prin-
cipal G-bundles, and its own cohomology classes c(EG) ∈ H∗dR(BG) (Theorem
5.5, [6]). It is in other words a bundle containing exactly enough structure to
capture all possible characteristic classes, and nothing more, just like the sim-
plicial sheaves E∇G and B∇G. The advantages of the method presented in this
thesis, however, is that we also get E∇G → B∇G as a classifying space, by
Theorem 6.7, from which all other principal G-bundles can be pulled back, even
uniquely. We therefore arrive at a construction that seems to capture a very
important part of invariant theory for principal G-bundles, even though some of
its properties can be found in other places.
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8 The holomorphic case

So far, we have only been studying principal G-bundles on smooth manifolds,
but it is worth taking a look at what happens if we try to consider them over
complex manifolds instead. Much works the same way when we define the bun-
dles, but we restrict the number of available maps by requiring them to be
holomorphic. This added structure actually makes it a lot harder to find con-
nections on the holomorphic principal G-bundles, as we will name them, with
some having no possible connections at all, so the notion of a universal classi-
fying object similar to E∇G → B∇G becomes a little different. We define the
most important concepts, but as this chapter is meant mostly as a holomorphic
exposition building on what we have seen in the previous ones, we do not prove
much. We also assume knowledge about some concepts that have not been
discussed earlier, like germs and sheaf cohomology.

Definition 8.1. Let M be a complex manifold. Given a complex Lie group G,
a holomorphic principal G-bundle is an ordinary principal G-bundle (E,M, π)
where we also require that E is a complex manifold, and that both π and the
right G-action E ×G→ E are holomorphic maps.

Accordingly, maps between holomorphic principal G-bundles are defined to be
maps between ordinary principal G-bundles, that are holomorphic when taking
the complex structures of the manifolds into account.

As in the smooth case, we can get canonical principal GLn(C)-bundles by
taking the frame bundle of any holomorphic vector bundle V → M , which
means the bundle over M that to each p ∈ M associates the vector space of
linear maps Rn → Vm, where n = dim(V ).

Now, these new holomorphic principal G-bundles are of course special cases
of our ordinary principal G-bundles, and can therefore be endowed with connec-
tions in the sense of Definition 2.4. Carrying these, they get unique classification
maps into the universal object E∇G → B∇G, from where they can pull back
their connections. But none of this theory takes the holomorphic structure into
account, not even the definition of the connections, and we therefore turn to
another version of the connection, which is the one belonging to holomorphic
bundles.

When we now want to define holomorphic connections, we take inspiration
from [1] and [2] (they both have longer and more rigorous explanations for the
results we simply claim in the following paragraphs). Taking a holomorphic
principal G-bundle (E,M, π), it is possible to construct two new holomorphic
vector bundles over M : The first is the Atiyah bundle, At(E), which is defined
as the quotient TE/G, where the G-action on TE comes by differentiating the
action on E. One can see that the natural projection TE → E is G-equivariant,
so we get a well-defined projection for At(E) as well:

At(E) = TE/G→ E/G = M (70)

To make the other bundle, we start with the product E × g, where g is the Lie
algebra of G. Remembering the adjoint representation, we can define a G-action
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on this product in the following way:

(x, v) · g = (x · g,Ad(g−1)(v)) ∈ (E × g) ∀(x, v) ∈ E ×G, g ∈ G (71)

Then it is possible to form the space (E×Gg), which is the quotient space under
this action. Using the projection E → M , (E ×G g) can also be shown to be a
holomorphic vector bundle, which we call L→M .

These holomorphic vector bundles over M can, if the maps are chosen cor-
rectly, be put together with the canonical tangent bundle TM → M in the
following exact sequence:

0 // L
i // At(E)

ρ // TM // 0 (72)

Complying with the category in which we work, all arrows in the sequence are
maps of holomorphic vector bundles (they are not principal G-bundles, so we
do not demand any equivariance), and exactness means that

0 // Lm // At(E)m // TmM // 0 (73)

is an exact sequence of vector spaces for all elements m ∈M . It is not hard to
see that the fibres Lm are isomorphic to g, at least as vector spaces, and then
the dimension of At(E)m must be dim(g) + dim(TmM) for the exactness to
work (this can also be seen directly). In other words, we have an exact sequence
that looks a lot like the one used for defining the connection in Chapter 2, with
TM as cokernel and a kernel looking like g. The difference is that we this time
work with bundle maps over a manifold M , while we in the smooth case did not
bother to define bundle structures for our vector spaces. Anyway, the definition
of a holomorphic connection follows the same pattern:

Definition 8.2. A holomorphic connection for the holomorphic principal bundle
(E,M, π) is a splitting of the exact sequence given in (72).

Such a splitting is of course always possible to obtain when working on a
single fibre, like in (73), because vector spaces are torsion-free.

A splitting of the whole exact sequence of vector bundles, on the other hand,
is only obtainable in some special cases, which according to [1] are determined
by a special sheaf-cohomology class called the Atiyah class. If we let L̃ mean
the sheaf of germs of holomorphic sections M → L, and Ω̃1 the sheaf of germs of
holomorphic differential 1-forms on M , we can obtain a new sheaf, Hom(L̃, Ω̃1)
on M by a standard construction. The Atiyah class a(E) is then a class living

in the first sheaf cohomology H1(M,Hom(L̃, Ω̃1)), obtainable from any holo-
morphic principal G-bundle E through a process detailed in [1]. A main result
from the same paper states that the exact sequence (72) splits if and only if
a(E) = 0.

This condition is actually not that strict; for example, all Stein manifolds
have Hom(L̃, Ω̃1) = 0, and therefore allow holomorphic connections in general.
There are, however, holomorphic principal G-bundles that have non-trivial val-
ues for a(E), and these can never be endowed with holomorphic connections.
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We can now try to repeat the whole process behind E∇G and B∇G, but in
a holomorphic setting. This means seeking universal objects EC

∇G and BC
∇G

that all holomorphic bundles with holomorphic connection can be pulled back
from. The Chapters 2-5 of this thesis do not really rely on the fact that we were
working in a smooth setting, so all the category theoretical preparations could
go as before. If we denote the category of complex manifolds and holomorphic
mappings as ManC, we could also define holomorphic simplicial presheveaves
to be functors

F : Manop
C −→ Set∆, (74)

which would then form a category sPreC. The category ManC would be em-
bedded in sPreC by the map taking X ∈ ManC to ManC(−, X) (considered
as a constant holomorphic simplicial presheaf), again as a consequence of the
Yoneda lemma.

We can now try to construct the holomorphic simplicial presehaves EC
∇G and

BC
∇G from groupoids where the objects are holomorphic principal G-bundles

with holomorphic connection (and a global holomorphic section, in the case of
EC
∇G), and the arrows isomorphism diagrams that preserve everything. Over

the complex manifold M , an arrow would look like this:

P
φ //

π   

P ′

π′~~
M

A problem appears immediately, that we did not have for E∇G and B∇G,
namely that not all holomorphic bundles over M appear in BC

∇G(M), only the
ones that allow a holomorphic connection. If there should exist an M such that
none of its bundles had a trivial Atiyah class, that would set BC

∇G(M) = ∅, and
threaten BC

∇G’s status as a functor. Luckily for us, all trivial bundles M × G
allow holomorphic connections: The map ρ in the exact sequence (72) would
in this trivial case just be the projection from (TE/G)× TM onto TM , which
is holomorphically reversible with the inclusion. So long, the smooth method
seems to work for EC

∇G and BC
∇G as well.4

To proceed from this, though, we would need some result similar to Theo-
rem 6.3, and that would require a greater understanding of holomorphic con-
nections. If they too can be given as some fundamental holomorphic connection
(similar to the Maurer-Cartan form) plus a g-valued 1-form over M , i.e. be
seen as a kind of affine space, that would be good. We could then develop a
holomorphic version of Btriv∇ G, since a holomorphic section s : M → E also
would be moved bijectively into another one by multiplication with an element
in ManC(M,G), and end up with a bundle EC

∇G→ BC
∇G.

4Since holomorphic connections always exist on trivial bundles, one could ask why it is not
possible to glue together local connecitons on trivializing open sets to a global holomorphic
connection, like we did for ordinary principal G-bundles. The problem is to construct holo-
morphic partitions of unity, which is not possible because of the identity theorem on complex
manifolds. Without them, the process from the smooth case cannot be repreated.
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If we indeed could construct such a classifying space, find a universal holo-
morphic connection, and embed all holomorphic G-bundles with holomorphic
connections into it, it would be a little strange. If we then took a complex man-
ifold M that allowed for some holomorphic princiapl G-bundle P → M with
non-trivial Atiyah class, and therefore no holomorphic connection, there would
not exist any map from ManC(−, P ) → ManC(−,M) into EC

∇G → BC
∇G, as

this would endow P with a holomorphic connection. There would, however, be
a base map, as one could use the one that appears when the bundle M×G→M
is embedded (remember that all trivial holomorphic principal G-bundles have
holomorphic connections). Thus the only thing missing in the case P → M
would be the mapping of the total spaces, completing the commutative dia-
gram.

To conclude, the possible holomorphic version of Theorem 6.7 could be
slightly stranger than the smooth case, but might be achievable with a little
more insight into how holomorphic connections work. I have not had time to
study them deep enough in this thesis, but the result might not be that far
away if one finds a nice holomorphic simplicial sheaf weakly equivalent to EC

∇G.
If so, computing the de Rham cohomology of both EC

∇G and BC
∇G would be

natural further steps, and maybe result in something useful. These computa-
tions are already quite challenging for E∇G and B∇G, but as we know, going
to the complex world can either greatly simplify or complicate everything. It is
certainly worth trying, if one wants to learn more about holomorphic principal
G-bundles and their holomorphic connections.
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