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Abstract: The full Mueller matrix for a Spectralon white reflectance 
standard was measured in the incidence plane, to obtain the polarization 
state of the scattered light for different angles of illumination. The 
experimental setup was a Mueller matrix ellipsometer, by which 
measurements were performed for scattering angles measured relative to the 

normal of the Spectralon surface from −90° to 90° sampled at every 2.5° for 
an illumination wavelength of 532 nm. Previously, the polarization of light 
scattered from Spectralon white reflectance standards was measured only 
for four of the elements of the Muller matrix. As in previous investigations, 
the reflection properties of the Spectralon white reflectance standard was 
found to be close to those of a Lambertian surface for small scattering and 
illumination angles. At large scattering and illumination angles, all elements 
of the Mueller matrix were found to deviate from those of a Lambertian 
surface. A simple empirical model with only two parameters, was 
developed, and used to simulate the measured results with fairly good 
accuracy. 
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Introduction 

For calibration of optical instruments the availability of a white Lambertian surface, which 
appears equally bright from all directions regardless of illumination direction and wavelength, 
would be desirable. Since a white Lambertian surface is not available, a Spectralon white 
reflectance standard, which is the commercial product closest to a Lambertian surface, is 
commonly used for calibration purposes. Spectralon is a white diffuse material (based on 
polytetrafluoroethylene) with excellent reflection properties, produced by Labsphere, USA. It 
is formed as a thermoplastic resin by heat and pressure treatment, and can be shaped into a 
variety of shapes. Spectralon has the highest diffuse reflectance values of any known 
substance (up to 99%) in the ultraviolet (UV), visible (VIS), and near-infrared (NIR) spectral 
ranges [1, 2], and the reflection properties are spectrally flat between 400 and 1,500 nm. Also, 
the Spectralon material is thermally stable to above 350 °C, chemically inert, and extremely 
hydrophobic, and is therefore used in a wide variety of applications as diffuse reflectance 
standards [3, 4]. It is also used as interiors of integrating spheres, which are reflectance 
accessories [5] for the creation of diffuse light sources. 

In previous studies, Spectralon white reflectance standards were found to behave closely 
as a Lambertian surface for small scattering and illumination angles, but to deviate from it for 
large scattering and illumination angles. Haner et al. [6] conducted hemispherical reflectance 
measurements with VIS and NIR light, and found the total reflectance of Spectralon to be 
0.971 ± 0.04. Voss et al. [7] found the Spectralon reflection properties to be nearly 
Lambertian for normally incident un-polarized light, Early et al. [3] found them to depend on 
the illumination and observation angles, and others found them to be polarization dependent 
[8, 9]. A reoccurring problem in these experiments was the presence of speckles in the 
measured signal when using a coherent laser as a light source. Georgiev et al. [10] and 
McGuckin et al. [11] discussed the effect of speckles, as well as methods for reducing such 
interference effects. 

For un-polarized and linearly polarized illumination Spectralon white reflectance 
standards are well documented and often used as calibration standards, but for applications 
involving other polarization states more documentation is needed. Imaging polarimetry is a 
technique used in many fields, such as remote sensing, atmospheric science, and industrial 
monitoring. It enhances the information available in such imaging applications, but depends 
on accurate knowledge of the polarization states. Chami [12] found polarization 
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measurements to be of interest for separating the fraction of inorganic particles from biogenic 
cells in remote sensing applications. Gilbert et al. [13] applied a circular polarization approach 
to improve the contrast in underwater visibility. In 2004, Yao [14] developed a Monte Carlo 
modeling technique to study subsurface polarization imaging of scattering media, and 
obtained results indicating that different objects appear differently in polarization sensitive 
imaging. Kattawar et al. [15] found the diagonal elements of the Mueller matrix to be 
sensitive to perturbations in the environment surrounding the target. Recently, Zhai et al. [16] 
investigated the use of Mueller matrix imaging beneath an air-sea interface, and found the 
elements M22 and M44 to be less influenced by the interface than the other elements. Tyo et al. 
[17] provided a review of passive imaging polarimetry for remote sensing and found a need 
for improved calibration techniques in imaging polarimetry. 

For these reasons, it is important to measure the full Mueller matrix of Spectralon white 
reflectance standards for all polarization states. To that end, we used a Mueller matrix 
ellipsometer (MME) [18] to measure the full Mueller matrix for a Spectralon white 
reflectance standard pertaining to four different angles of illumination and forward as well as 
backward observation directions. In these full Mueller matrix measurements, 16 different 
states of polarization were generated. A polarization state generator (PGS) was used to 
polarize the incident light in four different states, and a polarization state analyzer (PSA) was 
used to analyze the scattered light in four different states. Together the PGS and the PSA 
generated the 16 different elements comprising the full Mueller matrix. 

Theory for Mueller matrix of a diffuser 

Knowledge of the Mueller matrix allows a complete polarimetric description of light scattered 
from a partially diffuse object. Here the measurements of the Mueller matrix are based on 
similar techniques as those used in standard scattering of diffuse, polarized light [4, 9]. But 16 
optimally selected intensity measurements were used in order to determine the Mueller matrix 
with minimum error propagation as described elsewhere [18]. When considering scattering 
from a surface, it is convenient to refer the polarization states to the plane of incidence in 
order to obtain the common s and p polarized components. The notation used here for the 
Stokes vector and Mueller matrix follows the definition given by Hauge et al. [19]. Note that 
the standard BRDF measurements performed with linear polarizers generating s and p 
polarized states of the incident light, and analyzing s and p states of the scattered light, are 
included as a subset of the current measurements of the full Mueller matrix. However, the 
normalization issues for an absolute BRDF measurement remain as complicated as described 
in e.g. Bhandari et al. [9]. 

Several standard Mueller matrices may be considered initially for a partially diffuse 
sample. The most common form of the Mueller matrix of a general depolarizer is given by 
[20]: 
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M M  (1) 

A Lambertian surface, is a homogenous, isotropic diffuser with 0.a b c= = =  For a general 

non-isotropic diffuser, the diagonal elements a, b, and c in Eq. (1) are positive and less than 1. 
On the other hand, a non-depolarizing Mueller matrix can be made up of the basic building 
blocks of the so-called isotropic dichroic retarder, commonly encountered in specular 
reflection from an isotropic surface [21]: 
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In the special case of reflection from an isotropic surface, 
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=  [21], where Rp and Rs are the 

reflection coefficients for the s and p components, respectively. 
In previous studies of Spectralon diffusers [8, 9], only linear polarizers in p and s 

directions were used in the characterization, and hence only the elements M11, M12, M21, and 
M22 were measured. All other elements were disregarded, but it was noted that the Mueller 
matrix must be of the form: 
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where M11 for small illumination and scattering angles is much larger than either of |M12|, 
|M21|, and |M22|. However, |M12|, |M21|, and |M22| would increase significantly for large 
scattering and illumination angles. In this work, the aim is to understand the significance of 
the Mueller matrix elements denoted by question marks in Eq. (3) for a Spectralon diffuser 
used as a reference standard. To that end, the full Mueller matrix pertaining to four different 

illuminations angles θ0 = 0°, 30°, 45°, and 60° was measured for scattering angles θ between 
0° and 180° for every 2.5°. Earlier measurements showed that speckle effects from laser light 
would influence BRDF measurements [10, 11]. To reduce speckle effects a rotating diffuser 
was inserted in front of the polarization optics. One full Mueller matrix measurement to obtain 
the 16 different elements of the Mueller matrix in addition to one dark measurement for each 
element took about 50 seconds. During each full measurement stability was required. This 
was achieved using an ultra-stable laser and a stable photomultiplier detector, thus providing 
reasonably good absolute measurements also of the scattering phase function M11, which 

depends both on the illumination angle θ0 and the scattering angle θ. 

Results and discussion 

An interesting feature that may be studied in detail whenever the complete Mueller matrix is 
available is the so-called depolarization index p (or degree of purity), which is obtained from 
the full Mueller matrix as follows [22, 23]: 
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∑
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The depolarization index is between 0 and 1, i.e. 0 1.p≤ ≤  When 0,p =  the scattered light is 

fully depolarized, as it would be for scattering from a Lambertian surface, and when 1,p =  the 

scattered light is fully polarized. The left-hand side in Fig. 1 shows that a simple empirical 
model (to be described below) can be used to simulate the depolarization index that is 
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obtained from Eq. (4) and the measured results for the Muller matrix. For small scattering 

angles (θ), the depolarization index is seen to be very small (regardless of the value of the 

illumination angle (θ0)), but as θ and θ0 increase, p increases, as would be expected since then 
many of the elements of the Mueller matrix differ from zero. Note that all other common 
forms of the linear depolarization index previously reported [4, 9], can be readily produced 
from the Mueller matrix, as it completely describes the transformation of any incident 
polarization state. 

 

Fig. 1. A: Depolarization index p for simulated and measured results. B: M11 element for a 
Lambertian surface (with depolarization index p = 0) and measured for a Spectralon surface 

with illumination at normal incidence (θ0 = 0°), as well as for θ0 = 30°, θ0 = 45 o, and θ0 = 60°. 
The y-axis is normalized to the Lambertian surface. 

On the right-hand side in Fig. 1, the M11 element (representing the scattering phase 
function) is shown for the same four illumination angles as in the left-hand side of the figure. 

g. For a Lambertian surface, M11 would be independent of the illumination angle θ0, and thus 

only depend on the scattering angle θ, as indicated by the black curve on the right-hand side 
of Fig. 1. 

#167044 - $15.00 USD Received 19 Apr 2012; accepted 23 May 2012; published 20 Jun 2012
(C) 2012 OSA 2 July 2012 / Vol. 20,  No. 14 / OPTICS EXPRESS  15049



 

Fig. 2. Measured (black) and simulated (red) normalized Mueller matrices for four different 

illumination angles θ0. A: Normal incidence (θ0 = 0). B: θ0 = 30°. The element M11 is the so-
called scattering phase function (from particle scattering terminology), normalized to its 
maximum value. The y- axis is normalized to the m22 element. 
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Fig. 3. Measured (black) and simulated (red) normalized Mueller matrices for four different 

illumination angles θ0. C: θ0 = 45°. D: θ0 = 60°. The element M11 is the so-called scattering 
phase function (from particle scattering terminology), normalized to its maximum value. The y- 
axis is normalized to the m22 element. 

Figure 2 and 3 shows the 16 normalized Mueller matrix elements (black dots) for each of 

the four illumination angles θ0 = 0°, 30°, 45°, and 60° together with simulated results (red 
curves) based on a simple empirical model to be described below. Many of the elements 
appear insignificant compared to the noise level in the measurement. A close inspection of the 
Mueller matrices in Fig. 2 and 3 shows that the most significant elements can be summarized 
as: 
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where each quantity mij represents a normalized Mueller matrix element. The elements m13, 
m14, m31, and m41 are all constant (within the noise level) for all illumination and scattering 
angles and less than 0.05. 

The absolute value of each normalized element (except M11 see Fig. 1), increases with the 

scattering angle θ, and also with the illumination angle θ0. In particular, the normalized 

diagonal elements m22, m33, and m44 increase to 0.5 for θ0 = 60° and θ = 85°, indicating that 
the Spectralon sample to a significant degree behaves like the partial diffuser described by 
Eq. (1), and hence rather different from a Lambertian diffuser, which is described by Eq. (1) 

with 0.a b c= = =     However, at small illumination angles θ0 (less than 30°) and scattering 

angles less than |80°|, the Spectralon diffuser behaves to a large extent as a Lambertian 
diffuser for which each normalized diagonal element m22, m33, or m44 is less than 0.05. 

Each of the off-diagonal elements m12, m21, m43, or m34 is smaller than the diagonal 
elements by a factor between 2 and 3, but is still significant, particularly at large illumination 

angles θ0 (see Fig. 2 and 3). A comparison with Eq. (2) shows that the non-vanishing values 
of the elements m43 and m34 indicate the presence of a dichroic retarder component, i.e. 
scattering where the polarization of the scattered light is not scrambled or lost. As for an 
isotropic dichroic retarder, there appears to be significant symmetry between elements m34 and 

m43 (i.e. m34 ≈-m43) as well as between m12 and m21. 
The non-vanishing elements m23, m32, m42, and m24 (see Fig. 2 and 3), which one also 

would expect for a rotated dichroic retarder, may be explained by light scattering from surface 
roughness of low spatial frequency. Furthermore, an apparent symmetry may be observed 

with m24 ≈m42, m24 ≈-m42 and m34 ≈-m43. As a result, a simplified Mueller matrix for the 
Spectralon diffuser in the plane of incidence is proposed to be as Eq. (5). 

This Mueller matrix still appears to have a rather general form, but because of the 
symmetry between the measured Muller matrix elements, discussed above, it may be 

parameterized. Since the symmetry also holds for different illumination angles θ0, a simple 
empirical model with only one parameter [see Eqs. (6) and (7) below] can be derived that 
gives results that agree fairly well with the measured Muller matrices for all four illumination 

angles θ0 and scattering angles θ between −80° and 80°. This empirical model can be split into 
the sum of two matrices, where the first matrix is that of an ideal isotropic diffuser or 
Lambertian surface, and the second matrix represents a non-depolarizing surface [19, 22, 23]. 
Even if the latter approximation does not hold and the second matrix can be further 
decomposed, the representation given in Eqs. (6) and (7) below is a useful form of the Mueller 
matrix of the Spectralon, since it includes both the depolarization index p, the ideal isotropic 
diffuser or Lambertian reflector, represented by the first matrix, and its correction, represented 
by the second matrix. 
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where 

#167044 - $15.00 USD Received 19 Apr 2012; accepted 23 May 2012; published 20 Jun 2012
(C) 2012 OSA 2 July 2012 / Vol. 20,  No. 14 / OPTICS EXPRESS  15052



 
3

0
( )

| | .
22

p
θ θ+

=  (7) 

Here θ is the scattering angle, θ0 is the illumination angle, κ1 = 0.67, κ2 = 0.17, κ3 = 0.45, κ4 = 

0.04, and κ5 = 0.03. Our empirical model in Eqs. (6) and (7) and the values for κ1, κ2, κ3, κ4 

and κ5 were found by a best fit to the measured results. Figure 1 shows that the empirical 
model give results for the depolarization index that agree fairly well with those calculated 

from the measured Muller matrix using Eq. (6) for scattering angles θ between −80° and 80°. 

For all four illumination angles θ0 = 0°, 30°, 45°, and 60°, the absolute value of the error 
between normalized simulated and normalized measured Muller matrix elements are less than 
0.03. Since the error between the Mueller matrix elements obtained from the simple empirical 
model in Eqs. (6) and (7) and the measured Muller matrix elements is small, this model 
provides a simple way to obtain an estimate of all Mueller matrix for different illumination 

angles θ0 and scattering angles θ between −80° and 80°. 

Conclusion 

The Mueller matrix of a Spectralon white reflectance standard diffuser has been measured in 
the incidence plane. As in previous investigations, the behavior of the Spectralon white 
reflectance standard for small scattering and illumination angles was found to be close to that 
of a Lambertian surface. In previous measurements only the four elements related to the 
intensity (M11) and to linearly polarized light (m12, m21, and m22) have been investigated. The 
full Mueller matrix measurements show that for large scattering and illumination angles the 
significance of many of the other elements increases. In particular, the diagonal elements m22, 
m33, and m44 grow significantly for large scattering and illumination angles. Also, the off-
diagonal elements m12, m21, m34, and m43, which are a factor 2-3 times smaller than the 
diagonal elements, and the elements m32, m23, m24, and m42, which are a factor 6-10 times 
smaller than the diagonal elements, grow significantly for large scattering and illumination 
angles. For large scattering and illumination angles many elements of the Mueller matrix were 
found to be significantly different from zero, implying that the behavior of the Spectralon was 
not close to that of a Lambertian surface. For simulations of the Muller matrix for Spectralon, 
a simple empirical model has been derived, which provides an easy way of simulating the 
Muller matrix elements for different scattering and illumination angles. 
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