
Master in Security and Mobile Computing
June 2010
Peter Herrmann, ITEM
Samset Haldor, Telenor

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

State-of-the-art Study and Design of a
Small Footprint Version of the COOS
Plugin Framework

Kashif Nizam Khan

Problem Description
Telenor Objects is a new business unit in the Telenor Group. Telenor Objects delivers managed
services for connected objects, with the aim to increase the number of devices connected to the
network infrastructure so that customers can benefit from real time information on their assets.
The Connected Objects Operating System (COOS) is a platform built by Telenor Objects especially
for developing Machine-to-Machine (M2M) communication and value-adding services. COOS is a
modular and flexible platform, and includes a plugin framework offered to device and service
developers for easy connecting services and devices to the platform.

The current version of the COOS plugin framework is based on Java Standard Edition and OSGI,
with some support for development on J2ME. Telenor Objects wish to offer a small footprint
version of the plugin framework for Window-based mobile/limited devices typically running
Windows CE or Windows Mobile.
The assignment is to design and develop a prototype of a small footprint version of the COOS
plugin framework. The work will consist of the following tasks:
 Study the Connected Objects concept, and the COOS platform
 Short state-of-the-art study on mobile/limited/embedded devices and the OS and
programming support, main focus on Windows-based devices.
 Define the requirements for the plugin framework
 Design of a small footprint version Windows-based plugin framework prototype
 Implement a prototype with the goal to connect to a COOS node and send and receive
messages; either on simulator or on an actual device depending on time available.

Assignment given: 15. January 2010
Supervisor: Peter Herrmann, ITEM

Abstract

GSM and UMTS technologies have already gained a huge market penetration
resulting in millions of customers. Machine-to-Machine (M2M) Communi-
cation is promising to be the next big technology that is going to hit the
mass market with numerous essential services. Telemetry systems, which
were thought once as the domain of big industrial companies, are now be-
ing available to larger and wider customers because of the advances in M2M
communication. Thanks to mobile technologies, millions of small handheld
devices are now available in the mass market which can be used to com-
municate real time information to the customers. Telenor Objects (a small
business unit of Telenor Group) has defined a new Connected Object Op-
erating system (COOS) which aims to provide a common platform for the
devices to communicate real time data and to provide value added services
to the customers. COOS is a modular and flexible platform, and includes a
plugin framework offered to device and service developers for easy connecting
services and devices to the platform. The current version of COOS plugin
framework is based on Java Standard Edition and OSGI, with some support
for development on J2ME. This thesis research work aims to provide a brief
overview of the Connected Object concept and the COOS platform architec-
ture. The main goal of this thesis is to design a small footprint version of
the COOS plugin framework for Windows-based handheld devices. It will
also provide a state-of- the art study on mobile device programming focus-
ing on Windows-based services. This thesis research can serve as a starting
document to provide a full functioning plugin framework for Windows-based
devices and services.

i

Acknowledgements

It is a very special moment for me to submit my Master’s thesis which even-
tually will end my Master’s study. At this moment, I want to express my
sheer gratitude to the Almighty and some special people without whom this
thesis would not have been possible.

The list starts with my supervisors Professor Peter Herrmann of NTNU,
Professor Tuomas Aura of AYY and my instructor at Telenor R & I, Mr.
Haldor Samset. Their continuous guidance and support worked as a true
inspiration for me throughout my thesis. Their able supervision has guided
me through this thesis with great support. I would also like to mention the
name of a very special person here: Mr. Knut Eilif Husa of Tellu AS, who is
one of the designers and developers of COOS. Without his continuous help,
guidance and valuable comments this thesis would not have been possible.
Special thanks to Mr. Haldor for providing me an office place at Telenor R
& I, Trondheim and the COOS team at Telenor R & I, Trondheim for being
helpful and answering my questions.

Finally, I would like to thank some very special persons for whom I have
been able to survive this solitary period: my greatest parents, my beloved
wife Jinat Rehana, my family and all my dearest friends for their continuous
love, affection and inspiration.

Trondheim, June 30th 2010

Kashif Nizam Khan

iii

Abbreviations and Acronyms

3G 3rd Generation
AF Actor Frame
AMR Automatic Meter Reading
API Application Programming Interface
CDC Connected Device Configuration
CDMA Code Division Multiplication Access
CLDC Connected Limited Device Configuration
CO Connected Object
COOS Connected Objects Operating System
DICO Deployed Infrastructure for Connected Objects
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global Systems for Mobile
GUI Graphical User Interfaces
IoT Internet of Things
IP Internet Protocol
J2ME Java MicroEdition
JIT Just-in-Time
JVM Java Virtual Machine
LCM Lifecycle Manager
LTE Long Term Evolution
M2M Machine-to-Machine Communications
OS Operating System
OSGi Open Service Gateway initiative
QoS Quality of Service
PDA Personal Digital Assistant
PL Programming Language
R & I Research and Innovation
RFID Radio Frequency Identification
SDK Software Development Kit

v

TCP Transmission Control Protocol
UIQ User Interface Quartz
UMTS Universal Mobile Telecommunication System
URI Uniform Resource Identifier
UUID Universal Unique Identifier
WiMAX Worldwide Interoperability for Microwave Access

vi

Contents

Abstract i

Abbreviations and Acronyms v

List of Tables xii

List of Figures xiv

1 Introduction 1
1.1 Background . 1
1.2 Methodology . 3
1.3 Scope . 5
1.4 Thesis Outline . 6

2 Machine-to-Machine Communication 8
2.1 What is M2M Communication? 8
2.2 Internet of Things . 10
2.3 Sensor Networks . 12
2.4 M2M Services and Applications 14

2.4.1 Personal Health Management 15
2.5 M2M Market Scenario . 16

3 Mobile Device Programming 20
3.1 Platforms for Mobile Device Programming 20

viii

3.1.1 Java MicroEdition . 21
3.1.2 Symbian and Maemo 21
3.1.3 Windows Mobile Programming 22

4 Connected Objects 25
4.1 Architecture of Connected Objects Service Platform 25

4.1.1 Important Definitions 27
4.1.2 Detailed Architecture of COOS 28

4.2 COOS Basic . 32
4.2.1 COOS Messaging . 32
4.2.2 COOS Naming Service 33

4.3 Features of COOS . 34

5 Plugin Framework in COOS 36
5.1 Features of COOS Plugin Framework 37
5.2 COOS Plugin Framework in JAVA 38

6 Requirements of a Plugin Framework 42
6.1 Basic Requirements . 43

6.1.1 Constructing a Message 43
6.1.2 Serialization/Deserialization 45
6.1.3 Establish/Maintain Connection with the CO Service

Platform . 45
6.1.4 Send and Receive Message 45
6.1.5 Small Size . 46

6.2 Optional Requirements . 46
6.2.1 COOS Plugin Support 46
6.2.2 COOS Node Support 47
6.2.3 COOS Configuration Support 47
6.2.4 Energy Efficiency . 47

7 Design and Implementation 48

ix

7.1 Design of the Plugin Framework 48
7.2 Implementation . 50

7.2.1 Class Diagram . 50
7.2.2 Connection Establishment 54
7.2.3 Serialization/Deserialization and Message Construction 54
7.2.4 User Interface . 56

8 Conclusion 58
8.1 Discussion . 58
8.2 Future Work . 61

Bibliography 63

A Appnedix: Source Codes and Sample Output 67
A.1 Source Codes . 67

A.1.1 DefaultMessage() . 67
A.2 Sending and Receiving a String 77

x

List of Tables

2.1 Deployed Wireless M2M Devices in Europe 18

6.1 Requirements of the COOS Plugin Framework 43

8.1 Achieved Requirements . 61

xii

List of Figures

2.1 M2M Communication Scenario 9
2.2 Internet of Things- A New Dimension 10
2.3 Sensor Networks - An example Architecture 12
2.4 Detailed Architecture of a General Sensor Network[24] 13
2.5 Personal Health Management using Sensor Network[24] 16
2.6 Example of Possible M2M Services[24] 17

4.1 General Architecture [28] . 26
4.2 Modules in COOS . 28
4.3 COOS [39] . 29
4.4 Deployed Infrastructure for Connected Objects (DICO) [39] . 30
4.5 Detailed CO Architecture with Different Interfaces [28] 31
4.6 COOS Categories [15] . 32
4.7 COOS Router Network with Connected Components [26] . . . 33

5.1 Plugin Framework . 37

6.1 Plugin Framework Workflow Diagram 44
6.2 Message Format . 44

7.1 Design . 49
7.2 Class Diagram . 51
7.3 Connect Message . 55
7.4 User Interface . 57

xiv

Chapter 1

Introduction

1.1 Background

Human thirst for innovation started from the invention of wheels. Since then,
we are always in quest of innovations that will simplify our day to day works.
Advances in technology are now driving people to imagine the unthinkable
and to see the unforeseen. The need to stay connected and share informa-
tion led us to the invention of the internet. Since then, the internet has
been the most effective and essential technology for the mankind. Today we
cannot imagine our daily routines without the ’Google’ or the ’Facebook’, let
alone millions of transactions and information sharing throughout the net-
work globe. Human interactions and communication through the internet
has outreached all other services delivered by technological boons.

However the predictable way of communication is changing. Imagination
has taken us one further step ahead where machines are communicating and
interacting with each other and sharing useful information. People are now
talking about the ’internet of things’ or simply network of objects [19, 27].
Household appliances, small handheld devices or pacemakers equipped with
sensors are communicating over the internet, sharing useful information and
in some cases taking crucial and complex decisions without human interven-
tions. We can sense that Machine-to-Machine (M2M) communication is the
new big leap in this era of technological advancements [17].

These networks comprising of such objects can generally deal with huge
amount of data and can make quick decisions and swift responses if needed.

1

CHAPTER 1. INTRODUCTION 2

Simple surveillance and monitoring tasks normally takes up a good amount
of time and a lot of data processing [21]. The idea in M2M communication
is to let simple sensor devices perform these simple surveillance and remote
sensing tasks and to aggregate the data into a data repository without hu-
man intervention. Sensor networks has been one of the most popular research
areas in the computing and engineering society and it is expected to be the
next big thing for the futuristic society.

Although, M2M communication has gained significant popularity in research
arena, it has not succeeded to get the market penetration that was expected
[35, 30]. There are several reasons for that. Currently, M2M communication
is lacking the proper technologies and platform to share the data which is
acquired from the environment. One reason for that is the confusion of the
investors to invest in this sector. It seems that the potential outcome and the
targeted customers are not well defined for M2M communications. Although,
there have been some initiatives to provide a well defined platform and ser-
vices for M2M communication, these initiatives lack proper cooperation and
collaboration between the initiatives. As a result, the resulting technological
environment is confusing and almost no standardization of such technology
exists. The lack of standardization is hindering the deployment of reliable
services for M2M communication [30, 38].

Different objects can communicate over different networks using diversified
communication technologies. Moreover, the number of potential subscribers
and the number of sensing devices is expected to be massive in numbers.
As a result, it is very essential to provide a standardized platform for M2M
communication. Telenor Research and Innovation (R & I) has taken an ap-
preciable initiative to provide a standardized service platform architecture
for what they call the ’Connected Objects’[26]. This initiative is aimed to
provide a platform for M2M services and communications over any type of
networks, employing any type of routing mechanism and using any type of
smart devices.

Telenor R & I has defined this platform as ’Connected Object Operating
System’ or in short COOS. A small business unit named Telenor Objects
is dealing with the development of COOS architecture [9]. Developing sup-
port applications for M2M has to deal with certain challenges like the vast
differences in the capabilities of the underlying devices (or objects) and pro-
viding critical system properties like scalability and flexibility. The COOS

CHAPTER 1. INTRODUCTION 3

service platform architecture offers some very useful and crucial properties
like adaptability, scalability, device independence and flexibility. Large por-
tion of the COOS platform (COOS Basic and Plugin Framework) is released
as open source [3].

The COOS platform provides a plugin framework for objects to get connected
to COOS. An object becomes a connected object when it is connected with
the COOS through the plugin framework [15]. In simple words, the plugin
framework is a gateway or entrance into COOS for external entities or ob-
jects. The current version of the COOS plugin framework is based on Java
Standard Edition and OSGI, with some support for development on J2ME.
Telenor Objects wish to offer a small footprint version of the plugin frame-
work for Window-based mobile/limited devices typically running Windows
CE or Windows Mobile. This thesis work is intended to design and develop
a prototype of such a small footprint version of the plugin framework. The
work will consist of the following tasks:

• Study the Connected Objects concept, and the COOS platform

• Short state-of-the-art study on mobile/limited/embedded devices and
the OS and programming support, main focus on Windows-based de-
vices.

• Define the requirements for the plugin framework

• Design of a small footprint version Windows-based plugin framework
prototype

• Implement a prototype with the goal to connect to a COOS node and
send and receive messages; either on simulator or on an actual device
depending on time available.

1.2 Methodology

This thesis work intends to perform a state-of-the-art study on M2M com-
munication, mobile/embedded device programming and to illuminate the
working functionalism of the COOS platform. The final goal of this research
work is to produce a small light weight version of the COOS plugin frame-
work in .NET platform. The basic idea here is to get a grasp on the theory
of M2M communication and produce a working documentation for further

CHAPTER 1. INTRODUCTION 4

research on COOS plugin framework.

Although COOS platform is very subtle and flexible in its functionalism and
possesses a very effective design methodology, the working version is not
documented yet. We have tried to envision the whole concept step by step
or we should say class by class from the code. Obviously the specifications
presented in [15, 28] and the wiki pages ([39]) were the main source or design
map during this journey of exploration.

Although M2M communication is a hot topic in the research arena, it is
still an immature and less explored research field. This is one of the key
reasons for starting this research by visualizing the current status of M2M
and predicting its future. Although originally our main idea was to concen-
trate towards the COOS platform only, it soon became apparent that the
credibility of a common platform like COOS can only be established if the
platform is utilized by a significant number of machines or services. So we
started our work by looking at the big picture at first. Chapter 2 presents
the essential concepts related to M2M communications and some example
scenarios offered by M2M services. It will also be interesting to investigate
the market scenario for M2M communication as at the end of the day the
success of a technology depends on its acceptability in the mass market.

COOS platform ensures the connectivity for the handheld embedded devices
and smart phones and all other machines or objects able to send and re-
ceive data over the internet. As we target to produce a plugin framework in
.NET platform, it is also necessary to find out the available platforms and
programming languages for embedded/mobile device programming specially
for windows enabled device. In this regard, we will also try to produce a
state-of-the-art study on the current technologies regarding mobile device
programming.

To understand the functionality of the COOS plugin framework, it is very
important to grasp the basic definitions, components and principles of the
working mechanism in COOS. Being a versatile project, COOS specifications
covers almost all the ins and outs of the working mechanism. In doing so,
these specifications do not highlight more on a specific part like the plugin
framework. So, we will try to fetch out the important basics that are com-
pulsory to visualize the working principles of the plugin framework.

CHAPTER 1. INTRODUCTION 5

As we are trying to produce a small prototype of a plugin framework that
already exists, it is very important to derive the new design following the
same workflow from the existing design. Our focus will be to induce the new
model from the existing one. At first we will try to focus on a design that
contains minimal functionalities that must be present in a plugin framework.
As this work aims to produce a small working prototype, our goal will be to
design the framework in a flexible way so that future research works can add
up new functionalities easily. As we also aim to produce a working version
of the prototype, we have chosen Visual C# as the programming language.
The final outcome of this thesis intends to provide a precise documentation
for designing a small footprint version of the COOS plugin framework and a
working simulator which is able to connect and communicate with the COOS
platform.

1.3 Scope

From the research findings related to M2M communication, it is apparent
that this field has enormous possibilities in which many potential aspects are
not dealt yet. Although this thesis includes a brief overview of M2M com-
munication scenario, it is not directed towards producing a survey on this
topic. The main focus will revolve around finding out the possibilities and
problems related to the field of information and communication technology.

COOS platform comes to rectify the need of a common platform for enor-
mous diversified devices and objects. It also presents an opportunity for
developing and integrating new potential services. It offers several Applica-
tion Programming Interfaces (APIs) which can be used as building blocks
for new services. It means COOS has many different and diversified aspects.
For this obvious reason and for the vast perimeter of the COOS system, it
is not possible to discuss all the aspects of COOS in a Master’s thesis. Our
main focus will be towards the communication and transport mechanisms of
COOS. We will revolve around the functionalities which are related to the
plugin framework. Advanced COOS features like module specifications or
model driven service development are out of the scope of this thesis.

CHAPTER 1. INTRODUCTION 6

1.4 Thesis Outline

This thesis is split into 8 chapters. In Chapter 2 there will be an overview
of the M2M communication and the Internet of Things. As M2M commu-
nication is a vast topic which covers a broad area of the information and
communication technology, it is not possible to cover all the aspects of this
diversified technology in a singal chapter. Chapter 2 will therefore focus only
towards the important definitions, available technologies to support the evo-
lution of M2M communication, some example architectures and services and
most importantly the market scenario revealing the current status of M2M
communication in the global market.

Chapter 3 discusses about the available OSs and programming language sup-
port for developing applications for the mobile/embedded devices. One of
basic objective of this thesis is to implement a simulator of a small working
version of the plugin framework and if time constraints allow we will also
test the simulator on an actual device. The purpose of this chapter is to
gather the necessary information available for embedded/mobile device pro-
gramming.

In Chapter 4 we illustrate the working principle and architecture of COOS.
This chapter contains the essential information regarding the Connected Ob-
ject platform and it will help the reader to understand the basics of the
COOS and more importantly the plugin framework. For obvious reasons,
the discussions of this chapter are directed more towards understanding the
plugin framework in COOS and its transport mechanisms. It also contains
some important definitions and terms that will be used frequently in the up-
coming chapters.

Chapter 5 presents the detailed architecture and working mechanism of the
plugin framework. It also includes the features of the plugin framework and
the design of the framework in JAVA. The information presented in this
chapter represents the way we have visualized the plugin framework looking
into the code base of COOS.

Chapter 6 documents the basic requirements that a plugin framework de-
sign must address. It contains all the detailed information for constructing
a plugin framework and we have used this chapter as the base for our design
which is presented in Chapter 7.

CHAPTER 1. INTRODUCTION 7

In Chapter 7 we present our main contribution which is the design methodol-
ogy and the implementation mechanism of a small footprint version of COOS.
By ’foorprint’ we mean that this version of the plugin framework is a small
lightweight prototype of the COOS plugin framework and it includes only
the basic functionalities.

Lastly, Chapter 8 ends the thesis with a short discussion on the key findings
of this thesis and a brief discussion on the possibilities to extend this work
in future research.

Chapter 2

Machine-to-Machine
Communication

The internet has become an unimaginable store of data where every second
hundreds of terabytes of data is flowing around the globe. It has become
a challenge to process all the real time data, identify information from the
data, signify the importance of data and take necessary decisions based on the
information. As a result, the focus is rapidly changing towards a communica-
tion paradigm where machines or objects are able to sense data, communicate
the data between them and in some cases process the information from the
data. We are slowly shifting towards a technological society where virtually
everything will be connected to every other thing. We are talking about the
Internet of Things [19, 27]. This chapter presents an introductory discussion
on M2M communication. It also includes a brief discussion on the status of
the M2M communication and the Internet of Things.

2.1 What is M2M Communication?

We have seen how General Packet Radio Service (GPRS) , Global Systems for
Mobile (GSM) and now 3rd Generation (3G) mobile technologies along with
the internet, has affected the global communication. These efficient technolo-
gies are offering connectivity to the mass people on very cheap costs. M2M
communication is promising to be the next big technology if it is introduced
efficiently on a global scale. Although, this thesis is explicitly using M2M
as Machine-to-Machine communication, the word ’M2M’ may be used as
Machine-to-Machine, Machine-to-Man or Man-to-Machine communications

8

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 9

in various contexts.

In a general sense, Machine-to-Machine communication is defined as the au-
tomated exchange of information between two machines without any human
intervention at either end of the system [17]. M2M communication precisely
defines a network of intelligent assets which are capable of sensing, commu-
nicating and processing information. The assets can be sensors, mobiles,
printers, faxes, wireless displays, cars and truck fleets, fitness monitors and
what not. Such assets can monitor different physical conditions like temper-
ature, speed, light, heart rate and movement. By sensing and sharing such
type of information, machines can react and make decisions on a particular
situation without human intervention [22].

M2M communication prefers wireless technologies to maintain connectivity.
The choice of technology varies from infrared, bluetooth, zigbee to GSM,
Code Division Multiplication Access (CDMA), Universal Mobile Telecommu-
nication System(UMTS), Long Term Evolution (LTE), WiFi and WiMAX,
depending on the application of the M2M service. As a result, M2M can offer
diversified services to the end users which are discussed in later sections.

Figure 2.1: M2M Communication Scenario

Figure 2.1 presents a general M2M communication scenario. The assets (ve-
hicles, appliances etc) are equipped with sensors. The sensors are continu-
ously collecting data from the assets. The type of data sensed depends on
the specific service of the M2M communication scenario. For example, in
case of vehicle, the sensors may sense the battery condition of the vehicle,

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 10

the current fuel level from the fuel tank or the status of the engine. This
information is then transmitted over the internet to the business application
server which receives the data, processes it and takes necessary action (for
example alerting the driver about bad engine condition) based on the data
received. It is not necessary that the data is transmitted over the internet
every time. For example, a self diagnostic system for a vehicle may gather
the data from the sensors via short-range wireless technologies (bluetooth,
zigbee etc) and warn the driver about alarming conditions. This figure is
just an illustration of how things happen in M2M communication.

2.2 Internet of Things

With the advent of wireless communication technologies, we are now able
to communicate anywhere, anytime with anyone. Such ubiquity is taken us
one step ahead, where we are now talking about the connectivity anywhere,
anytime with anything. It simply means that the dimension of connectivity
to anyone is now expanded to allow the communication between anything
(Figure 2.2).

Figure 2.2: Internet of Things- A New Dimension

The idea of Internet of Things is composed of two individual concepts: In-
ternet and Things. Internet can be defined as:
"The network of interconnected computer networks which is based on the stan-
dard communication protocol, TCP/IP", while Things are
"Physical objects that can be uniquely identified digitally by some means". So,

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 11

we can define Internet of Things semantically as
"The network of interconnected objects or things that are uniquely identifiable
and can communicate using a standard communication protocol".
This definition of Internet of Things (IoT) is still very abstract. [40] defines
IoT as
"Things having identities and virtual personalities operating in smart spaces
having intelligent interfaces to connect and communicate within social, envi-
ronmental and user contexts".

The concept of IoT, specially the set of functionalities and actions that the
connected objects should or can perform, is still undergoing an enormous re-
search. In a more general sense, if an object is equipped with the knowledge
of its own properties like creation, transformation, actions, use, recycling or
some other useful properties, the object can interact the with the physical
world [40]. The current internet can be thought of as a collection of homo-
geneous devices (PCs, mobiles, Personal Digital Assistants (PDAs) etc) as
they more or less exhibit the same communication properties and purposes.
However, it will be a great challenge for IoT to provide seamless connectiv-
ity among diversified heterogeneous devices. These things or objects can be
meant for completely different environment and can have completely differ-
ent properties.

IoT can bring a technological revolution if it is supported by dynamic and
prominent technologies. The most important concern here is to identify each
device uniquely. IPv6 shows a good example of unique addressability in the
internet where all the connected devices have a uniquely identifiable address.
IoT can use a similar structure to create an address gamut where all the
physical objects and things will be uniquely identifiable [38]. In such a way,
all the objects can identify each other, interact with each other, exchange or
relay information and actively participate in the processing of information.

Radio Frequency Identification (RFID) is a very simple and cost-effective way
of item identification. RFID systems can be seen as a next-generation tech-
nology for bar-codes. However, it offers much more dynamic functionalities
other than item identification. For example, RFID systems can track items
in real-time with the help of Global Positioning System (GPS), which pro-
vides essential information about the objects like physical location or status.
Sensor technologies are also emerging in this regard to collect and transmit
the physical status or data from the objects or things.

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 12

The idea of IoT is very simple yet very innovative. IoT paves the way for
new pioneering services that can exploit the connectivity and accessibility of
everything from anywhere. It can greatly simplify our social life, increase
the quality and efficiency of communication and broaden our network of
interaction. Still it is unimaginable to foresee the types of applications IoT
will offer. IoT is envisioning about almost endless possibilities.

2.3 Sensor Networks

Figure 2.3: Sensor Networks - An example Architecture

In most scenarios, M2M vision consists of several sensor networks which are
collecting data from the environment and communicating the data to the
application servers through the internet. The basic idea is that, objects or
things are outfitted with sensors. The sensors sense or monitor the data

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 13

of interest and communicate it to remote users or applications of interest.
Figure 2.3 presents a typical architecture of sensor networks presented in [31].

In the lowest level of this simple scenario, the sensors are deployed in the en-
vironment to monitor the behavior of objects or the environment and collect
the data. Data from sensors are aggregated at the wireless sensor network
gateways. Gateways generally address the queries from the M2M system,
select the set of sensors that match the appropriate query and process the
data collected from the sensors according to the query. Gateways also in-
teract with the M2M system with the help of an API. M2M system acts as
a middleman between the applications and the wireless sensor networks. It
performs several essential operations such as: service registration, request
analysis, service publication functions etc. Based on the request of the ap-
plication, it generates an appropriate query, selects the proper gateways and
communicates information between the application and the sensors. On the
highest level of this architecture lie the users or the applications that use the
wireless sensor networks to gather information of interest.

Figure 2.4: Detailed Architecture of a General Sensor Network[24]

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 14

Figure2.4 presents a detailed architecture of a generic sensor network involv-
ing all the major communicating parties namely: Sensors, Local Communi-
cation Network, Access Network, Transport Network and Service platform.
Figure2.4 also presents a nice overview of the different technologies that can
be used by these parties. The local communication can be wired or wire-
less. However, wireless communication is more convenient in this regard
and hence preferred over the wired communications. Bluetooth, Zigbee or
WiFi are example technologies preferred for wireless communications in lo-
cal area. With the current advancement in telecommunication technologies,
GSM, UMTS or WiMAX will be more suitable for the interface between the
local area network and the service platform. This figure also points out that,
in certain installations public networks can be totally bypassed if there is a
closed private network or remote management available. In such case, there
is no need to use the public telecommunication networks. However, this is a
special case and requires expensive installations.

2.4 M2M Services and Applications

This section presents some examples of the services M2M can provide us.
Let’s start with an example of a retailer service. In this scenario, the retailer
supplies the goods to the retails store and the biggest challenge he faces
is to track the items while they are supplied to the stores [17]. The M2M
communication offers a very simple way of monitoring the products as they
are transported along the distribution channel from the retailer’s storage area
to the retail stores.

• The items are attached with a RFID tag in the store house. This RFID
tag is able to sense some important information from the products such
as the temperature.

• While being loaded into the lorry, the items pass through a RFID
reader panel so that the exact information of all the items loaded, can
be stored.

• The movement of the lorry is tracked by the GPS system that contin-
uously reports its location to a central server. The mobile technologies
like GSM, or UMTS can be used to send the continuous location infor-
mation.

• The store manager can track the progress of the product delivery con-
tinuously. In such a way, the store manager can also monitor the prod-

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 15

ucts’ status and assess any stock level problems or shortage of stocks
in early stages.

• Upon arriving at the retail stores, the goods are again unloaded by
passing through a RFID reader panel. Now, the store keeper can mon-
itor the delivery and check the status of goods. For example, he can
check the temperature of the goods to examine whether the goods were
transported exceeding the temperature limit or not.

This is a simple example that shows how M2M communications can improve
the quality of the process management. [24] presents some possibilities for
M2M services. We will discuss one potential M2M services in the following
section.

2.4.1 Personal Health Management

The personal health management uses sensing devices to monitor and collect
data about the personal health and stores it in a database. It offers services
regarding the access of the healthcare data to the interested stakeholders.
The basic idea is to deploy sensors in patients’ environment and monitor the
healthcare related information from the environment or directly from the pa-
tient. The data can be communicated to an application server via the public
transport network preferably using a telecommunication network. The ap-
plication server stores the data and offers the access of the information to
interested business logics. The information provided here may be regarding
the personal health of a specific patient or the overall statistical data. This
overall scenario is depicted in Figure 2.5.

In the context of M2M service, this personal health management system can
be very effective. For example, the healthcare information can be monitored
remotely by the medical application servers and inform the responsible medi-
cal personnel about the current situation of a patient. It can be more effective
in disaster scenarios like earthquakes. For example, it can help the rescue
workers to locate the patient. It can also help the medical personnel about
the status of the patient and they can arrange medical assistance beforehand.
All these possibilities makes the health care management system much more
efficient and effective and improves the quality of service.

This is a very simple example which illustrates the never ending potential
of the M2M services. Service like environmental monitoring, animals and

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 16

Figure 2.5: Personal Health Management using Sensor Network[24]

fish farm monitoring, fire warning system or remote home monitoring sys-
tem have already started to create new business opportunities. Such services
can create a very positive impact on our day to day lives. Companies like
Telefonica or Siemens have already started to offer home automation and
remote home management systems and devices. Figure 2.6 presents some
of the possible M2M services. M2M communications have a huge poten-
tial for diversified business ventures. Much of the M2M research effort is
now directed towards exploring the mobile M2M communication possibilities
specially the mobile M2M services. [41, 37, 18, 32, 20, 29, 36, 23, 33] are
examples of such research which has produced appreciable results. So, more
innovative and efficient M2M services are going to be invented in near future.

2.5 M2M Market Scenario

A lot of research has been devoted towards predicting the future marker sce-
nario for M2M communications [35, 30, 17, 24, 21, 16]. Many of these reports
picturize the global M2M market scenario. In this section, we will limit our
discussion to European markets only.

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 17

Figure 2.6: Example of Possible M2M Services[24]

Although, M2M communications in form of telemetry and remote sensing
are present for quite some years now, the market scenario has not been so
impressive. [17] points out some key issues that hinder the seamless growth
of M2M market so far. These are:

• Lack of low cost technology for local access media.

• Lack of a single comprehensive application (i.e Google, Facebook).

• Higher costs for integrating M2M solution with existing systems.

• Inability of the vendors or policy makers to describe a proper value
chain.

However, with the recent advent in mobile technologies, the mobile M2M
market has started to gain some excellent figures in case of market pene-
tration. With the lessons learnt from previous mistakes, policies for M2M
communications now focus more on stratergical advantages. The European
market has approached the mobile M2M market in a sensible way. One of
the key reasons for this is the common mobile telecommunication technology
used throughout the Europe which is GSM. Moreover, each European market

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 18

Table 2.1: Deployed Wireless M2M Devices in Europe

Segment 2006 2007 2008 2009 2010 2011
Private vehicles 0.6 0.9 1.6 2.3 6.1 15.7
Commercial vehicles 0.4 0.6 0.8 1.2 1.9 2.5
Energy meters 0.8 0.9 1.2 1.2 1.4 1.7
Security alarms 0.5 0.6 0.7 0.9 1.1 1.5
POS-terminals 0.5 0.5 0.5 0.6 0.7 0.8
Other 1.3 1.5 1.7 1.8 2.0 2.2
Total (millions) 4.1 4.9 6.4 7.9 13.2 24.4

targets to monopolize single product solutions and also the value chains are
clearly defined.

EU regulations require each home to have Automatic Meter Reading (AMR)
system and each vehicle to be fitted with M2M devices. So, the scenario looks
very promising for the mobile M2M markets. In a recent research performed
in [30], it is found out that in 2008 alone one third of the electronics goods
sold were internet enabled which is 27 percent more than the year 2007. In
2011, half of the devices produced will be internet enabled and it will be two
third around the year 2014[30].

In 2007 T. Ryberg et. al performed a survey on the European wireless M2M
market in [35]. The figures that came out during this research are very
promising. According to this research the number of deployed M2M units or
devices reached 4.1 millions in the year 2006. It is predicted here that, this
number is likely to raise upto more than 24.4 millions around the year 2011.
Table 2.1 depicts the number of deployed M2M enabled devices in Europe
according to the research performed in [35].

These numbers are highly promising. The mobile network operators have
also started to pay attention towards manipulating this massive market. As
discussed in the previous section, much research efforts have been directed
towards creating useful and consumer friendly M2M applications and ser-
vices. In this process, Telenor has focused to develop a common platform for
the M2M devices to enable them to connect and share data more efficiently.
COOS is a significant step towards defining a structured service architec-

CHAPTER 2. MACHINE-TO-MACHINE COMMUNICATION 19

ture for M2M communications. M2M communications has created new mass
market for the business ventures. It will be interesting to see how this big
market is approached strategically.

Chapter 3

Mobile Device Programming

The introduction of wireless communication technologies, small handheld and
mobile devices have gained enormous popularity. The ease of access and the
need to stay connected anywhere at any time have also paved the way for
new emerging mobile services and applications. As a result, a lot of research
is currently directed towards improving the efficiency and effectiveness of the
mobile technology as well as improving the quality of service. However, such
enormous research effort is also backed by generous technological support.
This has been possible because of efficient Programming Languages (PLs)
and Operating Systems (OSs) which have provided a flexible environment to
the application developers. In this chapter, we will mainly try to find out
the PL and OS support for embedded/mobile device programming.

3.1 Platforms for Mobile Device Programming

The need for a good and stable platform for mobile device programming was
felt from the introduction of small handheld devices specially mobile phones.
Small processing power, limited battery life and relatively small graphical
displays put a lot of constraint for the application developers. The con-
ventional programming languages which are used to develop programs for
normal computers and laptops are not suitable for small handheld devices
like smart phones.

Now a days, almost all the popular programming languages provide the sup-
port for embedded/mobile device programming. In addition, a good number
of new platforms have been developed solely for the mobile device application

20

CHAPTER 3. MOBILE DEVICE PROGRAMMING 21

development.

3.1.1 Java MicroEdition

Java is one of the most popular and flexible programming languages. Java
MicroEdition which is well known as J2ME in the developers’ arena, pro-
vides the same essence of Java with a flexible, stable and reliable environ-
ment for mobile application programming [6]. It has been designed keeping
the constraints of the embedded devices in mind. Java ME is not merely a
programming language. It is a combination of the technology and its specifi-
cations. With the help of this platform, it is easy to produce a Java runtime
environment fulfilling the requirement of limited memory and power. J2ME
provides configurations with the essential libraries and virtual machine and
APIs [6].

With the current advancement in mobile technologies, now there is also a
large gap between the capabilities of various mobile phones. Some of the
mobile devices now possess the capability of extra processing power and
memory than the other limited ones. Keeping this difference in mind, J2ME
provides two different types of configurations for mobile device programming:
Connected Limited Device Configuration (CLDC) and the Connected Device
Configuration (CDC) [6].

The basic features of J2ME includes cross-platform compatibility, better
user-experience, security and safety, rich class libraries for easy application
development and last but certainly not the least, is to allow the basics of
Java technology so that a skilled Java developer can easily grasp its basics.

3.1.2 Symbian and Maemo

Symbian and Maemo are two very famous OSs for mobile device program-
ming. These two OSs are mainly developed and maintained by Nokia with
the help of some other open source communities such as Debian and GNOME
[7, 8]. Although these two OSs were initially designed and developed keeping
specially Nokia mobile devices in mind, both of them have gained much pop-
ularity resulting in some other manufacturers producing Symbian or Maemo
based devices.

CHAPTER 3. MOBILE DEVICE PROGRAMMING 22

Symbian OS is a very organized and subtle software system. Symbian uses
C++ as the native programming language for developing applications. It
is a very smartly built software environment which allows the developers to
produce flexible, efficient and high performance software products for mo-
bile/handheld devices [34]. Initially mobile devices had very little graphical
support with the inputs mainly controlled by keypads. Symbian OS provides
a very efficient way of talking to the hardware. It provides both the low-level
APIs as well as the high-level APIs for developing technological components
for different types of devices. Till now, the most popular Symbian OS phones
that have conquered the market are Nokia 80 series, Nokia 60 series and User
Interface Quartz (UIQ) series phones [8]. Symbian provides developer tools
and free emulators for the developer to design new software products. By
maintaining an open source community, it also provides numerous useful and
efficient APIs and source codes for mobile application development.

Maemo is a similar type of open source project like Nokia and it is also a
great initiative taken by Nokia to provide a proficient platform for advanced
smart phones like Nokia N810 internet tablet [7]. Like Symbian, Maemo
also provides a Software Development Kit (SDK) for developing application
on top of the platform. Maemo OS is essentially based and inspired by
Linux OS. This OS not only provides some very useful components to the
developers, it also allows the easy integration of components from various
online repositories. Developers can choose the programming languages like
C, Java, Python or Rubi for developing applications in Maemo. However, C
and Java are the two most popular choices among the Maemo developers. In
case of Java development in Maemo, a Java Virtual Machine (JVM) named
Jalimo is available [5]. It has a very rich class library. With the support of
Debian and GNOME, Maemo offers a scalable, reliable and stable platform
for mobile application development.

3.1.3 Windows Mobile Programming

Windows based mobile devices have gained much popularity among the mo-
bile users and as such windows enabled embedded devices have a good share
of the products in the market. Microsoft provides a set of OSs for mobile/em-
bedded device programming known as Windows Embedded. Among others,
Windows Embedded CE is arguably the most popular OS available for win-
dows enabled embedded devices. It is also sometimes called as Windows
Mobile OS. It was previously known as Pocket PC.

CHAPTER 3. MOBILE DEVICE PROGRAMMING 23

Windows CE is a highly customizable real-time operating system specially
designed for embedded devices or smart phones that have constrained power
and memory. It provides tools and emulators that allow the developers to
build custom environment for specific devices. One of the interesting features
of Windows CE is that it resembles a small Windows 32-bit OS [12]. As such
it supports most of the Win32 APIs and it also supports the x86 and ARM
like processor architectures [13]. Microsoft has developed a number of popu-
lar mobile OSs based on the Windows CE kernel. Among those, Pocket PC,
Windows Mobile and Smartphone are widely used. Microsoft also provides
numerous useful tools and plugins for easy integration and development over
the Windows CE. Visual Studio 2005 and 2008 support the development of
Windows CE applications based on emulators. A .NET framework is avail-
able for windows based embedded device programming which is based on the
Just-in-Time (JIT) compiler. The .NET framework is equipped with a large
library and run-time management system.

3.1.3.1 Programming Languages for Windows Mobile Program-
ming

There is also a good set of choices for developers when it comes to the se-
lection of suitable programming language for windows enabled embedded/-
mobile device programming. Visual C/C++ is often preferred as the pro-
gramming language in this case because with thess languages, it is possible
to talk directly with the hardware without any intermediary layers [2]. With
Visual C++ it is possible to develop faster, light-weight and flexible mobile
applications. Visual C++ can communicate with the Win32 APIs very ef-
ficiently and it is much easier to interact with the conventional Windows
Desktop APIs using Visual C++. That is why Visual C++ is sometimes re-
ferred to as the native language for windows mobile application development.
However, when it comes to debugging and error-handling, Visual C++ en-
vironment may be much more challenging than other Visual languages like
Visual C# [2]. It is also a bit complex to design high level interfaces for
mobile application using Visual C++.

Visual Basic .NET and Visual C# are also very popular programming lan-
guages for mobile application development specially for windows enabled de-
vices. These two programming languages are very much preferred for the new
programmers because these are easier to learn. A lot of underlying plumbing
is performed by the .NET compact framework, so it is very easy for a de-

CHAPTER 3. MOBILE DEVICE PROGRAMMING 24

veloper to build application on top of the framework. It is also very flexible
when it comes to designing nice high-level user interfaces. .NET framework
greatly simplifies the task of the developer as there are many useful compo-
nents already available for application development [2]. It is also much easier
to convert a standard Visual C# or Visual Basic Code for windows mobiles
compared to other programming languages. As these two languages do not
talk to the hardwares directly but with the help of intermediary layers, they
are also sometimes referred as managed languages.

Apart from these popular languages Java is also used for windows mobile
development. J2ME is a popular language for windows mobile application
development for traditional Java developers. For mobile web application
development Jscript or ASP.NET is commonly used [2].

3.1.3.2 Other Platforms for Smartphone Programming

Recently a good number of research has been performed for developing sim-
ple, flexible and efficient OS for mobile device programming. Among them
Android, iPhone and BlackBerry have gained much popularity. Android is
an open source project which is led and maintained by Google [1]. Android
enabled phones have gained significant popularity very recently and a recent
research shows that Android enabled phones rank in the second position in
US among the consumers for the first half of 2010 [1]. Android platform is
mainly based on Java libraries and applications and linux kernel. Android
offers the essence of traditional Object Oriented platform for the mobile ap-
plication developers. Its popularity is based on the flexibility of the platform
and the large and rich repositories of open source components and applica-
tions.

iPhone OS is the OS used for some of the most popular Apple devices namely
iPhone, iPad and iPod Touch. Unlike other mobile device OSs, iPhone OS is
a proprietary software system solely managed by Apple. It is based on Mac
operating system. Apple provides a SDK for third party software developers
and maintains an application store for the consumers. The SDK contains
almost 1500 APIs for the developers and offers a large collection of library
classes for Application development [4]. It is a bit complex to develop ap-
plications for iPhone OS as the traditional Mac based applications are not
supported for iPhones.

Chapter 4

Connected Objects

As discussed in Chapter 2, M2M communication is offering a rapidly growing
market. The number of devices eager to connect and share information is
rapidly increasing day by day. One of the major issues for developing a gen-
eral platform for M2M communication is the diversity in the capabilities and
functionalities of vastly different devices. The second problem that comes
across M2M communication is the absence of a general communication plat-
form that supports properties like scalability or flexibility. It means that
this hugely promising M2M communication lacks a general platform which
offers a general solution for the different devices or object to stay connected
and share information. COOS is a very innovative and efficient initiative of
Telenor R & I which offers a scalable, reliable, flexible and secure platform
for M2M communications. This chapter presents an overview of the COOS
architecture and its basic functionalities.

4.1 Architecture of Connected Objects Ser-
vice Platform

Figure 4.1 presents a general overview of the network architecture proposed
by COOS. COOS offers a simple and flexible service platform for M2M
communication. This CO(Connected Object) service platform is reachable
through the internet as it is connected to the backbone IP network. The COs
that wish to communicate with each other or with the CO service platform,
are similarly connected to the internet [28]. The COs may also connect with
each other using the transport networks or gateways. In this case, the COs

25

CHAPTER 4. CONNECTED OBJECTS 26

Figure 4.1: General Architecture [28]

may use the local communication network or 3rd party mobile telecommu-
nication networks as the transport network. Figure 4.1 also points out the
topology of the CO network. The COs may be connected directly one-by-
one with the backbone network or they may be connected in groups with the
backbone network directly or via gateways. So, the basic concept of COOS
is to mediate the communication between different networks and objects and
provide a simplified and general service platform.

The CO project aims to provide a generic plugin framework for M2M com-
munication. The COOS project is an open source project and the developers
can develop intended services according to the specifications provided with
COOS. The up to date technical information is maintained in a wiki page
[39]. The specifications are provided in [15, 28]. These documents are dis-
tributed through the Telenor’s research web page and are accessible to all.
We will start looking into some more details of the COOS architecture in
the following sections, starting with some important definitions in the next
section.

CHAPTER 4. CONNECTED OBJECTS 27

4.1.1 Important Definitions

This section contains some important definitions in the context of this thesis.
For a detailed overview of all the definitions regarding COOS [26, 25, 39, 15,
28] are recommended readings.

4.1.1.1 Object

Object can be defined as an entity that is able to send and receive data. It can
be a device or a service. Generally, an object can be a client, a server or both
server and client depending on its required functionality [28, 26]. As a server,
it can offer services to other objects and as a client it can request services from
other objects. In this scenario, objects talk to each other through well defined
interfaces. Depending on the actual communication scenario, an object can
be a remote device, a sensor, a RFID tag or any kind of service.

4.1.1.2 Edge

An edge is a gateway between an object and the CO service platform. In
other words, an edge is the connection between an object and the platform.
The external gateways, objects or the local transport system uses the edge
to reach and communicate with the platform [28, 26].

4.1.1.3 Plugin

Plugin is any object the can be attached into the messaging bus.

4.1.1.4 Module

Module refers to a set of functions in COOS. It is the smallest set of opera-
tions that perform a specific task. Messaging is an example of COOS module
[26].

4.1.1.5 Application Programming Interface (API)

In the context of COOS, API refers to a set of rules that a software process
must comply in order to communicate with another software process. In this
framework, a software process can be an object, an operating system process
or simply a protocol stack [28]. As far as information is communicated with

CHAPTER 4. CONNECTED OBJECTS 28

a software process, the rules stated in the API must be fulfilled. In many
contexts, API refers to the operational interfaces between different functional
components in the COOS system.

4.1.1.6 Connected Object (CO)

An object becomes a Connected Object (CO) when it gets connected with
the platform and communicates with the platform through an edge [28].

4.1.1.7 Customer Service

Customer Service is the service delivered by the CO service platform to
specific customers. Customers need to register for a specific service with
the COOS system in order to receive the offered services. It is also a specific
role or model of object.

4.1.1.8 Gateway

In the context of coos, gateway is a device that connects the local commu-
nication network with the access network. Mobile devices or RFID readers
are examples of gateways [28].

4.1.2 Detailed Architecture of COOS

The general Architecture of COOS is very straightforward. At the very low-
est level, COOS has some modules. As defined earlier, modules offer specific
functionalities. Modules can interact with each other through a messaging
system. This messaging system is asynchronous [26]. The messages have
a specific format that wraps the raw data to make the message carrier and
content independent. Modules are deployed as OSGI bundles inside an OSGI
container. Figure 4.2 depicts the general concept of modules.

Figure 4.2: Modules in COOS

CHAPTER 4. CONNECTED OBJECTS 29

The OSGI container that contains the OSGI bundles of modules, is known
as the COOS. COOS can interact with other COOS or objects from the real
world. A connected object connect with COOS through the Plugin Frame-
work (Figure 4.3). More detailed discussion about the Plugin Framework
follows in Chapter 5.

Figure 4.3: COOS [39]

A COOS instance generally runs on a physical machine [26]. When different
COOS instances get connected and send and receive data among each other,
a CO platform is created. And when such a platform is deployed, it is called
Deployed Infrastructure for Connected Objects (DICO) (Figure 4.4). The
topology or the structure of the DICO completely depends on the physical
installations. Several DICOs can also interconnect with each other and share
information. DICOs also offer the flexibility to share its components or mod-
ules among each other.

The basic idea behind COOS is to overcome the difficulties of M2M com-
munication like inaccessibility due to lack of standardization. It promises
optimal performance with secure data flow between connected objects [26].
By providing a standard platform of distributed APIs, COOS aims to create
a global communication system for connected objects. On one hand it offers
connectivity by allowing developers to create and distribute modules for their
specific tasks, and on the other hand it ensures flexibility by allowing input
control of the messages and providing a standard communication protocol.
COOS has its own object-naming scheme which uniquely assigns addresses
to objects. For the transportation of messages, it uses the standard TCP/IP
protocol stack. In this case, customers are allowed to choose the security

CHAPTER 4. CONNECTED OBJECTS 30

Figure 4.4: Deployed Infrastructure for Connected Objects (DICO) [39]

level for the transportation of messages. As such, it uses IPSec protocol for
the authentication of the parties and end-to-end secured transportation of
the messages.

As stated earlier, different components in CO service platform interact with
each other through different interfaces. Figure 4.5 is a detailed illustration
of Figure 4.1 which highlights the different interfaces between different com-
ponents.

One of the vital points that should be kept in mind while standardizing any
communication platform is to clearly define the set of rules specifying how
different components should talk with each other. CO platform specifications
([15, 28]) clearly states the requirement and functionalities for the different
interfaces shown in Figure 4.5. We will not discuss the details of the require-
ments here as this is out of the context of this thesis. For detailed reading
[15, 28] is prescribed.

The architecture of COOS is based on four crucial design properties or prin-
ciples. These properties are :

CHAPTER 4. CONNECTED OBJECTS 31

Figure 4.5: Detailed CO Architecture with Different Interfaces [28]

• Stable - Ensures all time availability of the platform.

• Reliable - Guarantees that the platform does what it is intended to do.

• Flexible - Promises easy configurations to add or modify new function-
alities and

• Scalable - Assures that the platform is capable of taking high or small
loads.

As discussed earlier, COOS architecture is designed in a modular way. Fig-
ure 4.6 depicts the modularization of COOS. As we can see from the figure,
COOS is sub divided into two categories: Basic, Features and Advanced [15].
In this research, we focus mainly on COOS Basic and COOS Features. In
the next two sections, we will discuss about these two categories.

CHAPTER 4. CONNECTED OBJECTS 32

Figure 4.6: COOS Categories [15]

4.2 COOS Basic

Figure 4.6 presents an overview of the functionalities that COOS can offer. Of
course not all these functionalities are required in every scenario. However,
the COOS basic module needs to be present in all the implementations. In
this section, we will mainly discuss the COOS messaging module from COOS
Basic.

4.2.1 COOS Messaging

COOS offers a distributed point-to-point messaging service [26]. COOS mes-
saging system is very flexible, highly configurable and it supports diversified
routing algorithms. It is based on a process model that supports concurrent
execution of processes [26, 15]. Figure 4.7 describes the COOS messaging
system.

As we can see from this figure, the objects or rather the components are
connected via the router network. Both the connected objects and routers
form an overlay network. The figure also points out an interesting prop-
erty of COOS messaging. If we analyze the router network, we can see that
distributed point-to-point routing is offered. However, when we see the big
picture, the routing system is centralized from the viewpoint of the object-
s/components. Each object/component is connected to a router and each

CHAPTER 4. CONNECTED OBJECTS 33

Figure 4.7: COOS Router Network with Connected Components [26]

of them connects with the routers via a Message API. This architecture
makes the routing system scalable and fault-tolerant. Components commu-
nicate with each other using virtual links. The virtual links are mapped
to a transport mechanism by COOS. As COOS routing is configurable, it
can run several routing schemes concurrently depending on the topology or
the transport requirements of different communications. Currently, COOS
supports Link State Routing and Hierarchical Routing. The objects/compo-
nents interact with each other through bi-directional channels. Depending
on the cost of links, a message and its reply may be transported through
different channels. There are also transport components in the routing sys-
tem. These components are responsible for the transportation of the message
between the channels and links. Transport components maintain a queue for
the message delivery[15].

4.2.2 COOS Naming Service

As discussed earlier, COOS has its own naming service for identifying objects
uniquely. When an object connects to the platform via an edge or bus, it
is assigned a Universal Unique Identifier (UUID) [15]. The identifier itself
contains vital information that helps the routing mechanism. The structure
of the UUID is as follows:

UUID = <segmentA><segmentB><segmentC>....<endpointAddress>

CHAPTER 4. CONNECTED OBJECTS 34

As we can see, UUID contains hierarchical segment information and an end-
point address. The segment information contains information which indi-
cates the network segment within which the object resides. The segment
information helps the routing mechanism to route the messages at correct
address. The endpoint address is a unique identifier that identifies the ob-
ject within a network segment. One example of UUID is: uuid = coosP-
ing.24eb78adef76892d. Here coosPing is the network segment of the uuid
and its address is 24eb78adef76892d.

4.3 Features of COOS

From Figure 4.6 we can see that, COOS has five different modules or features.
The features are described as follows:

• Object Management - Object Management deals with the management
of the objects which comprises of User Manager, Access Control Man-
ager, Lifecycle Manager etc. These are different management modules
that perform the necessary object management tasks to ensure the con-
nectivity of the objects. For example, the Lifecycle Manager (LCM)
keeps track of the status and states of the objects. Objects register
themselves with the LCM during their startup and deregister them-
selves when they shut down.

• Persistence - Persistence deals with data storage in the platform. Cur-
rently, COOS supports an Object-Relational Mapping library called
Hibernate [15] as the data base. The basic idea is to store the per-
sistence data and make it available for other objects. The objects can
utilize the central database using their own proxy database manager.

• Control and Optimization - This module is responsible for policy man-
agement, load balancing and controlling. It has a Policy Manager that
organizes the policies for different users, a Load Balancer which is re-
sponsible for load balancing tasks and a Controller which controls the
link properties like Quality of Service (QoS), bandwidth, latency e.t.c

• Security - This module is accountable for providing the security prop-
erties of the platform. Security properties like confidentiality, integrity
or non-repudiation are the concerns of this module.

• Plugin Framework - Plugin framework is a generic framework that helps
objects to build edges to connect to the platform. It is the entry point

CHAPTER 4. CONNECTED OBJECTS 35

into the COOS. More detailed discussion on plugin framework follows
in Chapter 5.

Chapter 5

Plugin Framework in COOS

Plugin Framework is the gateway towards the COOS system for the objects.
As discussed earlier, objects get connected with the COOS system with the
help of the edges. Plugin Framework comes to help building the edges to-
wards the platform. Objects may use different technologies or standards.
However there should be a generic way for all the objects to get connected
with the platform. Plugin Framework promises a generic doorway towards
the CO platform which should be independent of technology (Java, .Net,
C/C++ etc) [15].

As COOS plugin framework aims to be independent of the technology, it
will be easy to integrate objects supporting different standards. Figure 5.1
depicts the role of the plugin framework in COOS. Plugin framework helps
to implement edges for objects or components. COOS specifications [15, 28]
require that plugin framework should not only allow components that wish
to connect to the platform using native COOS protocols, but also to allow
other components or objects to connect to the platform which are not using
COOS protocols. Of course, this means a well defined protocol needs to be
established so that components that are not familiar with the COOS proto-
col, can understand how to talk with the platform.

COOS specifications [15, 28] discuss very little about the Plugin Framework.
As stated earlier, there is also no documentation of the COOS platform which
is implemented in JAVA. In this research, we have tried to visualize the design
and functionalities of the COOS plugin framework by analyzing the codes.
In the next section, we will discuss the features of Plugin Framework.

36

CHAPTER 5. PLUGIN FRAMEWORK IN COOS 37

Figure 5.1: Plugin Framework

5.1 Features of COOS Plugin Framework

One of the important functionalities of plugin framework is the management
of different plugins or edges. Plugin framework provides a SDK for plugin
development and management. Actually, plugin framework provides some
interfaces in a plugin package that must be implemented in order to create
and install own plugins.

Plugin framework offers consumer producer style for the plugin development
[15]. This style is very easy to understand and flexible to implement. Pro-
ducers produce a message and deliver it to the framework for transportation.
The framework transport the message using the message bus and Consumers
consume the message from the framework. Consumer-Producer style of mes-
sage communication is very suitable for functions like writing information to
file or sensor communications. The interfaces provided by the SDK also con-
tain default implementations. So the plugin developers need to extend the
default implementation and add their specific functionalities of interest. SDK
provides four different actors or interfaces. These are discussed as follows:

• Producer - As discussed earlier, Producer produces message and passes
it to the message bus through the plugin framework. One interesting
thing to notice is that, a producer seems like a consumer if seen from a

CHAPTER 5. PLUGIN FRAMEWORK IN COOS 38

connected object’s viewpoint, since it consumes information from the
object. However, COOS developers choose the name Producer as it is
seen from the Message bus side [15].

• Consumer - The function of Consumer is straightforward. It consumes
the messages from the Message bus.

• Endpoint - Endpoint deals with the registration, authentication and
life cycle management of the plugins. Endpoints are also responsible
for creating producers and consumers during plugin development.

• Exchange - Exchange interface helps the framework to transport mes-
sages from and to the message bus. It has some exchange patterns
which is used by the framework to synchronize with the bus [15]. In-
Out is an example of exchange pattern which tells the framework that
the consumer is supposed to consume a message and send a response in
reply. In-Only does not require the consumer to send any response. In
Optional-Out, Out-Only, Out-In and Out-Optional-In are the remain-
ing exchange patterns which are defined in [39, 15].

• Interaction Helper - This is a simple helper module which helps the
framework to send and receive messages according to different exchange
patterns.

The default implementations provided in the SDK contains lots of underlying
functionalities which are required for plugin development. As a result, it
becomes very easy for the developers to develop new plugins without worrying
much about the framework protocols or functionalities. [39] presents a nice
PingPong example which helps to understand this whole scenario in more
detail.

5.2 COOS Plugin Framework in JAVA

Currently, COOS has a JAVA version of the Plugin Framework. It is not
designed collectively in one class. The functionalities of the plugin frame-
work are distributed in different classes. As there is no specific discussion on
the design or the functionalities in the specifications, this research work has
been directed towards understanding the working principles of the Plugin
Framework by looking at the classes themselves. In this section, we will try
to give an abstract view of the functionalities of the plugin framework.

CHAPTER 5. PLUGIN FRAMEWORK IN COOS 39

Most of the major functionalities of the plugin framework are implemented
in the following classes: DefaultEndpoint(), DefaultMessage(), Serializer-
Factory(), PluginChannel() and DefaultChannelServer(). Apart from these
classes Plugin framework also uses some other channels for other less impor-
tant tasks. These aforementioned classes perform the following functionali-
ties:

• DefaultEndpoint() - This class performs many important functions and
it is the base class not only for the Plugin framework but also for other
components of COOS.As mentioned earlier this class is responsible for
creating Consumers and Producers for plugins. It also takes care of the
login, authentication and lifecycle management of the plugins. Apart
from that it helps to set the endpoint UUIDs, informs the log system
about the current state of processing, helps to create exchange patterns,
initializes the processing of messages, initializes an endpoint and much
more. Actually, a lot of cementing has been performed in this class
so that creating and maintaining plugins, processing of messages and
logging can be performed effectively.

• SerializerFactory()- Serialization and Deserialization are two of the
most essential functions of the plugin framework. In the context of
data communication, serialization deals with converting a message into
a sequence of bits suitable to be transmitted over the wire across the
network. Deserialization performs the exact opposite role - converts the
bits to a message according to a message structure. The SerializerFac-
tory() factory in COOS deals with the serialization and deserialization
of messages. Currently COOS supports Actor Frame (AF) serialization
and JAVA serialization. AF serialization means the serialization has to
be implemented by own mechanism rather than using the default se-
rialization methods of programming languages like JAVA or C#. The
SerializerFactory() initializes the The ObjectSerializer(). ObjectSerial-
izer() has six helper classes for six different primitives. These are:

1. ObjectHelper() - Chooses the proper helper class for serializa-
tion/deserialization from the object primitve.

2. ArrayHelper() - Serializes/Deserializes arrays of data (String ar-
ray, Byte array, Integer array)

3. StringHelper() - Serializes/Deserializes string type data.
4. IntegerHelper() - Serializes/Deserializes integer type data.
5. HashtableHelper() - Serializes/Deserializes hash tables.

CHAPTER 5. PLUGIN FRAMEWORK IN COOS 40

6. VectorHelper() - Serializes/Deserializes Vectors(which can contain
any Java primitives i.e byte, int etc).

• DefaultMessage() - This is the most important component of the plugin
framework. This class deals with the processing of incoming or outgoing
messages. The transport mechanism of COOS delivers the message to
this class for further processing. Similarly, this class delivers the final
message to be communicated to the transport system. COOS has a
special format for constructing messages which is defined in a special
protocol named Connect Protocol. DefaultMessage() class constructs
the message according to the Connect protocol. After constructing the
message, it pipes the message to the appropriate serialization method.
Similarly, for an incoming message it breaks up the message, extracts
the header information, cuts down the serialized message and pipes
it to the deserialization engine. More discussion on constructing the
message follows in Chapter 7.

• DefaultChannelServer() -DefaultChannelServer() implements the server
part of the Connect protocol. This class processes messages from the
clients or objects and produces the reply message. For example, De-
faultChannelServer() produces the Connect Acknowledgement message
in reply of a Connect message from an object. It also sets up the
channel properties for message transportation.

• PluginChannel() - The client part of the Connect protocol is imple-
mented in PluginChannel() class. It starts the connection and pro-
cesses the reply messages from the server. It also sets up important
connection parameters according to the reply from the server. In case
of an outgoing message, for example Connect this class builds up the
payload of the message and initializes the DefaultMessage() which then
adds up the headers and pipes it to the serialization mechanism.

It is important to note that, the COOS specifications does not contain any
documentation about the Connect protocol. This protocol defines the mes-
sage structure and thus it is very important for the developers to know the
rules to construct a message. Otherwise the objects cannot send and receive
messages correctly. Moreover, the logging system in COOS is also a bit stiff
in case of connection establishment and message passing. It does not produce
any response in case a message with an unknown format is passed to it. In
such case, it becomes really difficult to figure out what went wrong.

CHAPTER 5. PLUGIN FRAMEWORK IN COOS 41

In this chapter, we have discussed about the structure and functionalities
of COOS plugin framework in brief. This information is very essential for
developing technology independent plugin framework for connected object
communication. In the next chapter, we will discuss about the requirements
of a small footprint version of COOS plugin framework which is developed
in .NET platform using C# as the programming language.

Chapter 6

Requirements of a Small
Footprint Version of COOS
Plugin Framework

The aim of this research is to produce a small lightweight version of the
COOS plugin framework for objects that support the .Net platform. This
version of the plugin framework will be used by the application logic running
in an object in order to get connected to the platform. We have already seen
the properties and functionalities of the COOS plugin framework in JAVA
which is discussed in Chapter 5. In this chapter, we discuss the requirements
for a small footprint version of COOS plugin framework that will eventually
run on .NET platform. There are some requirements which must be met
and some other requirements which are optional. The optional requirements
enhance the functionality and flexibility of the plugin framework. We list all
the requirements in the Table 6.1 according to their priority.

The priorities are classified into two catagories: Basic and Optional. The Ba-
sic functionalities must be present in a deployment of a plugin framework and
so these requirements must be met. Optional requirements are not necessary
for each deployment of a plugin framework. However, if these requirements
are fulfilled, they make the plugin framework fully compatible with the CO
service platform and they greatly enhance the usability of the framework. It
might not be feasible to implement all the Optional requirements because
some of them might exceed the limit of memory usage or processing power
of small handheld devices. It will depend on the designer how much extra
functionality he wants to deliver keeping the device constraints in mind.

42

CHAPTER 6. REQUIREMENTS OF A PLUGIN FRAMEWORK 43

Table 6.1: Requirements of the COOS Plugin Framework

Requirement Priority
1 Message Construction Basic
2 Serialization Basic
3 Deserialization Basic
4 Connection Establishment Basic
5 Message Communication Basic
6 COOS Plugin Support Optional
7 COOS Node Support Optional
8 COOS Configuration Support Optional
9 Energy Efficiency Optional
10 Small Size Basic

6.1 Basic Requirements

As discussed earlier, the basic duty of the plugin framework is to help an
object to create edges towards the CO service platform. It is also responsible
for sending and receiving the messages on behalf of the object. Apart from
these two essential tasks, plugin framework also maintains the connectivity
with the CO service platform. Figure 6.1 represents the basic workflow of the
plugin framework. A plugin framework must perform these functionalities
in order to enable an object’s communication with the CO service platform.
We will discuss these functionalities and the requirements in details in the
following sections.

6.1.1 Constructing a Message

Upon receiving the message payload from the application logic, the plugin
framework should reconstruct the message adding extra header information.
The message format is defined in the Connect Protocol. The format of a
message is depicted in Figure 6.2
As we can see, plugin framework needs to add a lot of extra information to
aid message transportation and message processing. A short description of
the message fields are as follows:

• Message Length - The total length of the message in bytes (Integer).

CHAPTER 6. REQUIREMENTS OF A PLUGIN FRAMEWORK 44

Figure 6.1: Plugin Framework Workflow Diagram

Figure 6.2: Message Format

• Version - Version of the plugin framework (1 byte).

• Receiver Endpont URI - The Uniform Resource Identifier (URI) or the
UUID of the Receiver (String).

• Sender Endpoint URI - UUID of the Sender (String).

• Header Length- Number of headers to follow (Integer).

• Headers - Headers including type of the header and the value of the
header (String).

CHAPTER 6. REQUIREMENTS OF A PLUGIN FRAMEWORK 45

• Payload Length - Length of the actual payload message in bytes (Inte-
ger).

• Payload - Actual payload message (String, Byte or Object).

6.1.2 Serialization/Deserialization

As discussed in Chapter 5, one of the vital duties of plugin framework is
to serialize and deserialize the message. Serialization/Deserialization assists
message transportation. We already know that COOS supports two types
of serialization: Actor Frame or own serialization which is also the default
serialization and the JAVA built in serialization. However, in this case, we
require the plugin framework to run on .NET platform. So, it is required that
own serialization and deserialization method is implemented. While devel-
oping the serialization and deserialization mechanism, one should also keep
in mind that this mechanism should be compatible with the COOS serial-
ization/deserialization methods. This is simply because the COOS platform
has to deserialize the message that is serialized using the own serialization
mechanism of the .NET version of the plugin framework.

6.1.3 Establish/Maintain Connection with the CO Ser-
vice Platform

Plugin Framework should establish and maintain connectivity with the CO
service platform. CO service platform always listens on port 15656. It
means that the CO service platform offers services and connectivity through
this port. So, the plugin framework should implement some sort of socket
programming in order to connect to the platform. It also has to use efficient
streaming mechanisms to send and receive message from the sockets. As
we know, COOS supports the general TCP/IP protocol, plugin framework
should maintain the connectivity using TCP transport mechanisms.

6.1.4 Send and Receive Message

The most important activity of the plugin framework is to send and receive
messages on behalf of the connected object. It means the plugin framework
has to establish proper links and channels, maintain the connection state
and safeguard the message communication from the sender to the receiver.
Depending on the exchange pattern of the messages, plugin framework may

CHAPTER 6. REQUIREMENTS OF A PLUGIN FRAMEWORK 46

or may not wait for a reply. Upon receiving the message, it should pipe the
message to the deserialization mechanism and inform the object about the
content of the message.

6.1.5 Small Size

Size is a very crucial factor while designing a plugin framework for specific
devices or objects. Depending on the constraints put on the size of the
plugin framework, optional requirements may or may not be offered in a
plugin framework design. The constrictions in this case can be the processing
capability of the object, the available memory space and the battery life of the
object. If there are limitations like these, a plugin framework that supports
all the basic and optional features mentioned in Table 6.1 may not be a
feasible solution. In our case, we are designing a small footprint version
of the plugin framework which will act as a prototype. In situations like
this, system designer should put on strict restrictions on size and design the
framework in such a way which will be small and efficient at the same time.

6.2 Optional Requirements

The optional requirements stated in Table 6.1 identifies the adaptable fea-
tures of COOS plugin framework which will enhance the reusability and
efficiency of the framework. We will discuss these features in brief in this
section.

6.2.1 COOS Plugin Support

As stated in Chapter 5, COOS plugin framework provides an SDK for plugin
development and it prefers the consumer producer style of plugin develop-
ment. So, if the plugin framework provides such kind of plugins with already
defined interfaces, it will be very helpful for the developers to use the inter-
faces and plugins and build their plugins on top of these skeletons. In such
case, the developer needs not to worry about the class diagrams or message
constructions. All he needs to do is to develop a producer and a consumer
according to his own specific requirements and make the necessary method
or class invocation. The rest of the job is taken care of by the underlying
plugins. This feature will greatly enhance the efficiency of the framework.

CHAPTER 6. REQUIREMENTS OF A PLUGIN FRAMEWORK 47

6.2.2 COOS Node Support

It is also helpful if the plugin framework support the standard COOS nodes.
By standard COOS node we mean a node which is deployed in COOS and
possesses all the functionalities which is required from a COOS node. If other
than developing own nodes to interact with the CO platform, the developer
chooses to develop the nodes according to COOS specifications, it will be
interoperable with the COOS system and the communication efficacy will
increase.

6.2.3 COOS Configuration Support

If the plugin SDK supports the COOS configurations, it will simplify the
object integration with the platform. By COOS configuration we mean, all
the necessary protocols and specifications which are required for an object
to build edges towards the CO service platform. Of course it is completely
upto the system designer what configuration he will include or support in
the plugin framework for easy object integration. The end goal is always to
allow objects to get connected and make accessible through the platform.

6.2.4 Energy Efficiency

Although we have considered energy efficiency as an optional requirement, it
has become apparent that it is one of the most crucial features that a plugin
framework should contain. The plugin framework developed for the objects
are meant to run on the object’s machine. As COOS targets small hand-
held devices to provide seamless connectivity, the plugin framework designer
should pay serious attention to the limited capabilities of the small handheld
embedded devices. Some optional requirements may not be considered to be
present in the plugin framework if it is developed for such a device which
does not support extra processing or memory space. And the battery life of
such a device is also limited. So the energy efficiency of the plugin framework
should be considered seriously.

Chapter 7

Design and Implementation of
a Small Footprint Version of
COOS Plugin Framework

One of the essential objectives of this thesis is to produce a small footprint
version of the COOS plugin framework that will enable devices (that sup-
port .NET Platform) to connect to the CO service platform. So far we
have discussed the functionalities of the COOS plugin framework and the
requirements of a plugin framework that will aid an object to connect to the
platform. In this chapter, we will present the design of our plugin framework.
We will also discuss the implementation procedure followed to develop such
a plugin framework.

7.1 Design of the Plugin Framework

The design of the small lightweight version of the COOS plugin framework
straightly follows from the workflow diagram (Figure 6.2) presented in Chap-
ter 6. It is presented in Figure 7.1. This small lightweight version of the
plugin framework performs all the basic functionalities which is required to
help and object to build an edge towards the CO service platform and send
and receive messages.
In this design, the application logic running on an object needs to invoke the
plugin framework. The plugin framework then establishes connection with
the platform. Although the design does not suggest any specific transport
protocol, standard TCP transport is preferred. COOS also supports secured

48

CHAPTER 7. DESIGN AND IMPLEMENTATION 49

Figure 7.1: Design

TCP transport with end-to-end security like IPSec. However, for this simple
lightweight plugin framework we have only considered standard TCP trans-
port for the time being. During the design phase, we tried to develop our
own transport mechanism for the client (object) side communication with the
platform. However, sooner it became relevant that it is not compulsory to
develop own transport mechanisms. Ofcourse, it will provide more flexibility
and probably more efficiency. However, it will also introduce complexity in
the design and eventually in the implementation phase. And, our goal was
to keep the design as simple as possible. So, we kept the design and par-
tial implementation of the transport mechanism aside and went on with the
normal socket programming concepts. This is possible because, CO service
platform is always listening on port 15656 and waiting for objects to connect
to it using legitimate Connect protocols.

This plugin framework also constructs the message according to the format
defined in the Connect protocol. Next section presents an example of how
the messages are constructed in the actual implementation. The serializa-

CHAPTER 7. DESIGN AND IMPLEMENTATION 50

tion and deserialization block helps to serialize or deserialize data suitable for
transportation over the communication medium and transport block simply
communicates messages back and forth between the object and the platform
using the standard socket programming and streaming mechanisms. We do
not discuss the design again here as the functionalities of each of the blocks
are discussed in Chapter 5 and Chapter 6. In the following section, we will
discuss the implementation procedure.

7.2 Implementation

The plugin framework is implemented using Visual C# in the Microsoft Vi-
sual Studio 2008 environment. C# is an object-oriented language that offers
a platform for simple, feasible and flexible programming environment. It is
one of the popular initiative of Microsoft .NET. As COOS plugin framework
already has a working version in JAVA, the choice of programming language
was more towards classical C based language. C# is chosen because it not
only offers object-orientedness but also the Visual C# makes it much easier
to develop nice and simple Graphical User Interfaces (GUI).

7.2.1 Class Diagram

Figure 7.2 represents the Class Diagram for our implementation. It includes
the interfaces, classes and essential methods (methods are shown in a filtered
view). As depicted in the figure, our implementation consists of seven classes
and two interfaces. The main class which invokes all other classes in this
implementation is the DefaultMessage() class. In the following subsection
we will discuss these classes and their methods in brief.

7.2.1.1 DefaultMessage() Class

This class implements the interface defined as Message(). DefaultMessage()
not only implements the two base methods defined in Message() namely,
deserialize() and serialize(), but also implements some other essential meth-
ods like sendAndReceive(), sendConnectMessage() and sendMessage(). The
functionalities of each of the methods are discussed as follows:

CHAPTER 7. DESIGN AND IMPLEMENTATION 51

Figure 7.2: Class Diagram

• deserialize() - Deserializes the whole message along with the header
information. It extracts the body from the message and constructs the
header.

• deserializeBody() - Deserializes the body of the message only.

• sendAndReceive() - As the name suggests, it is responsible for sending
and receiving the final message with headers. While sending, this class
is invoked with a byte array which is the serialized message. Similarly,

CHAPTER 7. DESIGN AND IMPLEMENTATION 52

while receiving data on behalf of the framework, this class fetches an
array of bytes from the network stream and invokes the deserialization
engine.

• sendConnectMessage() - Constructs the connect message with the nec-
essary headers and an empty body. Message construction is discussed
in Section 7.2.3 in more detail.

• sendMessage() - Constructs a string message with necessary headers.

• serialize() - This method is responsible for serializing the message. It
communicates with the class SerializerFactory() to determine the seri-
alization type (default or AF) and invokes the serializer engine.

7.2.1.2 SerializerFactory() Class

The serializer factory class is responsible for registering and maintaining the
serialization methods. It maintains a hashtable which contains entries for all
the supported serialization methods or mechanisms. The method description
for this class is as follows:

• getDefaultSerializer() - Returns the name of the default serializer mech-
anism.

• getSerializer() - Returns the current serializer mechanism for a session.

• registerSerializer() - Registers a serializer mechanism that can be used
for serialization and deserialization of a method. Currently, our imple-
mentation only supports the own serialization or default serialization
mechanism.

7.2.1.3 Interface() Class

This class is responsible for the user interface invocation and connection es-
tablishment. Our implementation provides a simple user interface for sending
and receiving connect message, string or byte. Connection establishment and
user interface design are discussed in detail in Section 7.2.2 and Section 7.2.4
respectively.

CHAPTER 7. DESIGN AND IMPLEMENTATION 53

7.2.1.4 Object Serializer()

Object Serializer() class implements the Serializer() interface. This class is
onvoked by the DefaultMessage() class with the body of the message. Object
Serializer() class determines the type of the data and according to the type
it invokes one of the three helper classes StringHelper(), IntegerHelper() and
ObjectHelper() class. The deserialize() and serialize() method invoke the se-
rialization and deserialization mechanism for the specific data type. These
mechanisms are implemented in the helper classes.
It should be noted that, although our implementation supports the commu-
nication of byte datatype, we have not implemented any ByteHelper() class.
The reason is that, after implementing IntegerHelper() it became apparent
that sending and receiving a byte is not so cumbersome so that it should
be implemented in a class. As a result, we have implemented it in a simple
method named sendByte() in the DefaultMessage() class.

7.2.1.5 StringHelper(), ObjectHelper() and IntegerHelper() Class

These helper classes perform the actual serialization and deserialization of
the message according to the data type contained in the body. These classes
accept two parameters: the data to be serialized/deserialized and an in-
stance of the network stream. As these classes perform more or less the same
functionalities they are discussed together here. All of these helper classes
implement two very essential methods: Persist() and Resurrect().

• Persist() - This method is responsible for the serialization of the mes-
sage. This method takes the message to be serialized, and writes the
serialized bytes to the network stream. In case of simple primitives like
Integer, this method directly writes the serialized data to the stream.
However, in case of String it uses another method WriteUTF() to write
the data in Unicode Transformation Format -8 (UTF-8). WriteUTF()
method is discussed in Section 7.2.3 in more detail.

• Resurrect() - This class performs the opposite duties with respect to
the Persist() method. It receives the serialized data as byte array and
deserializes it to a primitive of object, string or integer type. It assumes
that the first byte in the message indicates the data type of the primitive
contained in the message. In case of string, it uses ReadUTF() method
to read the data in UTF-8. ReadUTF() method is also discussed in
Section 7.2.3 in more detail.

CHAPTER 7. DESIGN AND IMPLEMENTATION 54

7.2.2 Connection Establishment

As mentioned earlier, CO Service Platform listens on port 15656, accepts
request for connection and provides services. In order to establish an edge
towards the platform, we have used simple socket programming mechanisms
of C#. The following line is an example of simple client request for TCP
Connection towards a server which is running on localhost and listening on
port 15656.

TcpClient C l i en t = new TcpClient (" l o c a l h o s t " , 15656) ;

7.2.3 Serialization/Deserialization and Message Con-
struction

We will discuss the serialization/deserialization ahead of message construc-
tion as it includes some important concepts which will simplify the discussion
of the message construction. In our implementation, serialization/deserializa-
tion and message construction are performed in conjunction. COOS system
serializes/deserializes strings using UTF-8. UTF-8 is widely used in case of
stream communications. It is very flexible and it is also backward compatible
with ASCII.
COOS plugin framework uses the JAVA built in readUTF() and writeUTF()
methods provided by the DataOutputStream() class, which read and write
data in UTF-8. However, C# does not have such built in methods for writ-
ing and reading data in UTF-8 format. So, we have developed own method
for writing and reading data in UTF-8 format. The methods are as follows:
pub l i c s t a t i c void WriteUTF(BinaryWriter bw, s t r i n g s t r)

{
ushort s i z e = (ushort) (s t r . Length) ;
bw . Write ((byte) (s i z e >> 8)) ;
bw . Write ((byte) s i z e) ;
bw . Write (s t r . ToCharArray ()) ;

}

pub l i c s t a t i c s t r i n g ReadUTF(BinaryReader br)
{

ushort s i z e = 0 ;
s i z e += (ushort) (br . ReadByte () << 8) ;
s i z e += br . ReadByte () ;

CHAPTER 7. DESIGN AND IMPLEMENTATION 55

char [] s = br . ReadChars (s i z e) ;
r e turn new s t r i n g (s) ;

}

The methodology for writing data in UTF-8 format is pretty simple. The
WriteUTF()method is provided with the BinaryWriter instance which writes
data streams to the socket connection and the string data. The first three
lines of the WriteUTF() method writes the size of the data according to the
UTF-8 specifications [11, 14]. The last line in this method writes the string
data to the stream. The ReadUTF method reads the size of the data accord-
ing to the UTF-8 specification and then reads the data itself.

As stated in Chapter 5, COOS plugin framework basically supports both
own serilization and Java serialization methods. For obvious reason, we have
used the own serialization mechanism. At the startup, our main objective
was to send connect message and send and receive strings. However, our
implementation also supports the serialization/deserilization of integers, ob-
jects and bytes.

Message construction has been performed according to the message format
presented in Figure 6.2. A Connect message is required to connect to the CO
service platform. The connect message is constructed and serialized as follow:

Figure 7.3: Connect Message

The first integer part ’63’ indicates the size of the total message. It is followed
by a byte ’0’ which indicates the version. The two boolean values ’false’ in-
dicate that this message does not contain any sender and receiver endpoint
URI. Next part is an integer ’3’ which indicates the number of headers. The
headers are all string values. Headers indicate the ’type’ of the message
which is ’msg’, the ’name’ of the message which is obviously ’connect’ and
the connection UUID ’con_uuid’ which is ’.UUID-1234’. Headers are man-
aged by Hashtables with the type of the header as its key and the value of
the header as the value of the corresponding key. The headers should be fol-
lowed by the body of the message. Connect message generally has an empty

CHAPTER 7. DESIGN AND IMPLEMENTATION 56

body. This is indicated by an integer ’0’ which reflects the length of the body.

In case of writing integer values we faced a critical problem. COOS system
was unable to read the size of our version of connect message and our plugin
framework failed to detect the size of the message coming from the other size.
After a little bit of research we found out that the problem was regarding the
format of the integer which is handled differently in JAVA and in C#. JAVA
platform and other network protocols generally handle integer in big-endian
format. However, Microsoft .NET platform deals with little-endian format.
So, we have changed the byte order of all the integer going in and out from
our plugin framework, to make the system compatible with the COOS plugin
framework. One of the useful C# method that we have used in this regard is
IPAddress.HostToNetworkOrder(). For example, if we want to write integer
’3’ to the stream, we write it like this:
dout . Write ((i n t) IPAddress . HostToNetworkOrder (3)) ;

Detailed source codes are included in Appendix A.

7.2.4 User Interface

Initially there was no user interface for our version of the plugin framework.
We communicated with the CO service platform using the console interface.
In later stages, we have developed a simple user interface for sending and
receiving ’connect’, ’string’ and ’bytes’. It also shows the reply message from
the server. The user interface is depicted in Figure 7.4.

The user interface on the right side is the starting interface as we run our
plugin framework. As we can see from the figure (Figure 7.4), the plugin
framework allows to send and receive connect message or a string or a byte.
The user interface on the left hand side depicts the scenario when a connect
message has been sent to the server. The reply message is shown in the
dialogue box. The server acknowledges the Connect message with an Con-
nection Acknowledgement message. It also sends back the router information
that will be used to send and receive messages for this session.
So, in short, we have developed a simulator for the plugin framework which
helps objects to connect to the CO service platform and sends and receives
messages. Currently our system only supports the communication of strings
and bytes. It is only a small lightweight version of the plugin framework that
demonstrates that it is possible to connect objects that support different

CHAPTER 7. DESIGN AND IMPLEMENTATION 57

Figure 7.4: User Interface

technologies and standards.

Chapter 8

Conclusion

8.1 Discussion

One of the easy conclusions that comes out from this thesis is that M2M
communication has a huge potential as an emerging technology which can
very easily conquer the consumer market. However, we have also realized
that there are various challenges regarding this field which are yet to be ad-
dressed. It is felt that, in the field of communication technology everybody
is talking about the huge potential of M2M communication and trying to
visualize its potential on their own way. This scarce distribution of interest
and realization is lacking the proper collaboration and standardization in
this field. Such lack of common standards is very harmful for an emerging
technology. Until very recently, nobody has got the clear picture of the possi-
bilities and market scenario of M2M communication. This has been the main
reason behind the lack of interest of investing money for the stake holders
and customers.

The situation has started to change for some recent appreciable research ef-
forts like COOS. COOS is a very significant effort towards providing a sort
of standardization to M2M communication. With such initiatives, customers
are getting a clear picture of the whole system. Each party now atleast
knows how to approach in this field and what is the possible outcome of
their investment. COOS can be considered as one of the first steps towards
a standardized system of M2M. As we have seen in Chapter 2, the oppor-
tunities for developing new services for M2M are almost endless. History
has shown that emerging technologies with such endless possibilities ends in
vain in many situations just for the lack of standardization. For this reason,

58

CHAPTER 8. CONCLUSION 59

service providers, stake holders, network operators and all the other parties
involved in M2M communication scenario should seriously signify their goals
and requirements and stick to one common standard. Moreover, the service
providers should design exciting services keeping the customer demand in
mind. The success of M2M communication greatly depends on one or two
stable and exciting applications or services that will hit the consumer market
like ’Google’ or ’Facebook’. If the service providers can design such service
where the winner takes it all, M2M communication has enormous possibili-
ties for all the stake holders.

The idea of connecting every object through the internet has also opened new
doors of opportunities for telecommunication network operators and service
providers. As a result, significant research is now being performed to fig-
ure out the mobile M2M possibilities. With already established networks of
mobile devices, it does not seem difficult to expand the reach of telecommuni-
cation networks to provide connectivity to all the embedded devices. COOS
targets the embedded mobile devices and objects for providing a common
platform for communication. Chapter 3 presents the available programming
languages and OSs for mobile/embedded device programming. One of our
initial targets was to implement a working version of plugin framework to
run on a windows enabled device. Thats why we have focused more on the
opportunities available for windows enabled embedded device programming.

Developing a small footprint version of the COOS plugin framework in .NET
platform was a challenging task. Initially, it seemed a very tough to identify
the functionalities of the plugin framework by just analyzing a large code base
consisting of hundreds of files containing thousands of lines of source codes.
However, this challenging task has enabled us to get a better overview and un-
derstanding of the functionalities of COOS. In Chapter 5 we have discussed
about the plugin framework in detail. Although the COOS specifications
([15, 28]) present the features of the plugin framework in detail, they contain
very less discussion on the actual functionalities of the plugin framework and
the implementation in Java. As such, the discussion presented in Chapter
5 on the actual implementation, highlights our conceptualization about the
actual design.

In Chapter 6 we have presented the general requirements for a plugin frame-
work which will aid an object to connect with the CO service platform. Al-
though, we have implemented the plugin framework in .NET platform using

CHAPTER 8. CONCLUSION 60

C# as the programming language, the requirements of a plugin framework
presented in Chapter 6 are independent of the underlying technology. These
requirements are generic with respect to any platform or device or program-
ming language. Any system designer who wants to design a new plugin
framework for any other platform, can design the framework following these
requirements.

It is very important to note that, although we have implemented a small
footprint version of the COOS plugin framework, this framework is meant
to run on the object’s device. The COOS plugin framework will still run on
the server side. Our version of the plugin framework will run on a client de-
vice which supports .NET platform and will interact with the COOS plugin
framework in order to establish and maintain the device’s connectivity with
the CO service platform. The initial goal of this thesis was to implement a
small prototype version of the COOS plugin framework. This goal has been
achieved and we have shown the simulated results in Chapter 7. Table 6.1
presents the requirements of a general plugin framework. We have not im-
plemented all of the required features in our versions. Our implementation
only addresses the basic requirements which are needed to aid an object’s
connectivity with the platform. Table 8.1 depicts the features which we have
implemented. If we compare Table 6.1 and Table 8.1, we can see that our
version of the plugin framework implements only the basic requirements. We
have not addressed the optional features because of time constraints and also
because we never intended to implement a fully functional version of the plu-
gin framework. This of course leaves space for future work.

In Chapter 2 and Chapter 4 we have discussed how the lack of a common
platform for connected objects was hindering the growth of M2M commu-
nication. COOS is a significant research initiative from Telenor Research
Group which not only provides a platform for the objects to communicate
with each other but also allows the service providers to develop new exciting
services and offer the services to the connected objects through the platform.
Being an open source project, COOS will significantly aid the growth of the
internet of things and it will take the M2M communication one step ahead.
However, during this thesis we have felt that lack of documentation and in
some cases lack of protocol specifications will make the system designer’s job
a bit more complex. It’s still early days for COOS and as it is an ongoing
research project, we hope that COOS will provide more elaborative specifi-
cations and documentations. This thesis can be a good documentation for
those who want to design and implement plugin frameworks for their own

CHAPTER 8. CONCLUSION 61

Table 8.1: Achieved Requirements

Requirement Implemented
1 Message Construction Yes
2 Serialization Yes
3 Deserialization Yes
4 Connection Establishment Yes
5 Message Communication Yes
6 COOS Plugin Support No
7 COOS Node Support No
8 COOS Configuration Support No
9 Energy Efficiency No
10 Small Size Yes

platform and device.

8.2 Future Work

This thesis leaves space for some exciting future research regarding the plugin
framework development for COOS. New questions have kept coming during
this thesis. Is it necessary to include all the features required for a plugin
framework (presented in Table 6.1) especially when it is meant to run on a
embedded device which has limited processing power and battery life? Will
it be feasible? Or is it possible to design and implement a platform indepen-
dent plugin framework which will run on any device? Questions like these
are yet to be answered and they are very significant for future research on
COOS. It will be also interesting to see the behavior of our small version of
the plugin framework on an actual device like Nordic ID PL3000 which runs
on Windows CE 6.0 platform.

We have tested our plugin framework by only sending String and Bytes. Al-
though, our version supports the communication of Integer header properties
and Objects, we have not tested them yet. In future, it will be interesting to
see if it is possible to support the communication of all the primitives which
are supported by the COOS plugin framework in Java. Future research may
also be directed towards developing much more flexible and efficient plugin
framework. This thesis has only shown that it is possible to develop a plugin

CHAPTER 8. CONCLUSION 62

framework in any platform and interact with CO service platform. So, it
will be interesting to see whether it is possible to design a framework which
provides all the functionalities like the COOS plugin framework and at the
same time it is feasible to implement it on actual devices.

Regarding the M2M communication, future research can be directed towards
developing new exciting services. As COOS is providing a common platform
for the service providers also, it will be interesting to see how these new ser-
vices cope up with the COOS platform. Security is another issue which is a
crucial property of any system now a days. So, security mechanisms in COOS
specifically in plugin framework should be carefully designed. As numerous
devices are expected to connect with each other, the scalability of COOS
platform will be an important issue to focus. Although COOS promises to
be scalable both on high loads and low loads, experiments should be per-
formed practically to see the performance of COOS platform both on high
loads and low loads.

To conclude, we can say that through this thesis, we have realized that M2M
communication is a thrilling technology with numerous challenges and ex-
citing possibilities. COOS has emerged to provide a common platform for
objects or things, to communicate with each other. The idea of connecting
all the things with each other and allow them to communicate without any
human intervention, which seemed a fairy tell even some years ago now ap-
pear very realistic for research initiatives like COOS. Recently Telenor has
promised to provide a new platform Shepherd for aiding efficient commu-
nication of sensor applications [10]. Shepherd will use COOS as the key
technology. This thesis is a small effort to aid the plugin framework devel-
opment for COOS and provide a starting documentation for future research
on plugin framework development for COOS. We hope that COOS will be a
significant step forward towards efficient M2M communication.

Bibliography

[1] Android: Open Source Project . WWW page of Android:
http://source.android.com/. [Accessed 28th May 2010.].

[2] Choosing a Programming Language for Windows Mobile De-
velopment . WWW page : http://msdn.microsoft.com/en-
us/library/bb677133.aspx. [Accessed 28th May 2010.].

[3] COOS Open Source Community. WWW page of COOS Open
Source Community: http://telenorobjects.com/shepherd/open-source-
community.aspx. [Accessed 28th May 2010.].

[4] iPhone OS . WWW page of iPhone:
http://www.apple.com/iphone/preview-iphone-os/. [Accessed 28th
May 2010.].

[5] Jalimo. WWWpage of Jalimo: https://wiki.evolvis.org/jalimo/index.php/Hauptseite.
[Accessed 25th May 2010.].

[6] Java ME Technology. WWW page of J2ME:
http://java.sun.com/javame/technology/index.jsp. [Accessed 25th
May 2010.].

[7] Maemo. WWW page of Maemo: http://maemo.org/intro/platform/.
[Accessed 25th May 2010.].

[8] Symbian. WWW page of Symbian: http://www.symbian.org/about-
us/history-symbian. [Accessed 25th May 2010.].

[9] Telenor Objects. WWW page of Telenor Objects:
http://telenorobjects.com/about-us.aspx. [Accessed 28th May 2010.].

[10] The Shepherd ő Platform . WWW page of Shepherd:
http://telenorobjects.com/shepherd.aspx. [Accessed 28th May 2010.].

63

BIBLIOGRAPHY 64

[11] UTF-8 and Unicode Standards. WWW page of UTF-8:
http://www.utf8.com/. [Accessed 25th May 2010.].

[12] Windows CE Programming For Pocket PC In A Nutshell. WWW
page : http://www.ece.northwestern.edu/realtime/windows.pdf [Ac-
cessed 28th May 2010.].

[13] Windows Embedded CE Technical Specifications. WWW page
of Windows CE: http://www.microsoft.com/windowsembedded/en-
us/products/windowsce/technical-specifications.mspxn. [Accessed 25th
May 2010.].

[14] F. Yergeau. UTF-8, a Transformation Format of ISO 10646. Tech.
rep., Alis Technologies, November 2003.

[15] Arild Herstad, Espen Nersveen, Jan Audestad, Geir Melby
and Knut Eilif. Connected Objects Platform Specification (Internal
Document). R & I Research Note, Telenor R & I, October 2008.

[16] Brown, A. Wireless Enterprise Stratergies: 2008 Market Outlook.
Viewpoint snapshot, Stratergy Analytics, November 2007.

[17] Brown, A., and Moroney, J. A Brave New World in Mobile
Machine-to-Machine (M2M) Communications. Forecast and outlook
snapshot, Stratergy Analytics, July 2008.

[18] Chen, Y., and Yang, Y. Cellular based machine to machine com-
munication with un-peer2peer protocol stack. In Vehicular Technology
Conference Fall (VTC 2009-Fall), 2009 IEEE 70th (20-23 2009), pp. 1
–5.

[19] Conti, J. The internet of things. Communications Engineer 4, 6 (2006),
20–25.

[20] Curran, I., and Pluta, S. Overview of machine to machine and
telematics. In Water Event, 2008 6th Institution of Engineering and
Technology (22-23 2008), pp. 1 –33.

[21] Dr. Jens Struker, D. G., and Faupel, T. RFID Report 2008
Optimizing Business Processes in Germany. Tech. rep., Department of
Telematics, Albert-Ludwig University, 2008.

[22] Enterprise, V. G. Global Machine to Machine Communication.
White paper, Vodafone.

BIBLIOGRAPHY 65

[23] Evans, C. Intelligent retail business: Location based services for mobile
customers. In Pervasive Computing and Applications, 2007. ICPCA
2007. 2nd International Conference on (26-27 2007), pp. 354 –359.

[24] Ferreira, J. C. Sensor Telecos- New Business Oppurtunities. D1-
main technology trends, capabilities of devices and service examples,
EURESCOM, March 2006.

[25] Grønbæk, I. M2M Architecture with Node and Topology Abstrac-
tions. pp. 89–109.

[26] Herstad, A., Nersveen, E., Samset, H., Storsveen, A., Svaet,
S., and Husa, K. Connected objects: Building a service platform for
M2M. pp. 1 –4.

[27] INFSO, D., and EPoSS. Internet of Things in 2020: A roadmap for
the future. Report from the workshop: Beyond rfid - the internet of
things, September 2008.

[28] Jan Audestad, Inge Grønbæk, Stein Svaet. Connected Objects
Platform Specification, Version 1. R & I Research Report, Telenor R &
I, February 2009.

[29] Karim, J., Bin Wan Amat, W., and Razak, A. Car ignition
system via mobile phone. In Future Computer and Communication,
2009. ICFCC 2009. International Conference on (3-5 2009), pp. 474
–476.

[30] King, P. Digital Media Devices Global Market Report. Research re-
port, Stratergy Analytics, July 2008.

[31] Krco, S., Tsiatsis, V., Matusikova, K., Johansson, M., Cubic,
I., and Glitho, R. Mobile network supported wireless sensor network
services. In Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE
Internatonal Conference on (8-11 2007), pp. 1 –3.

[32] Laguna, M. A., Finat, J., and González, J. A. Mobile health
monitoring and smart sensors: a product line approach. In EATIS ’09:
Proceedings of the 2009 Euro American Conference on Telematics and
Information Systems (New York, NY, USA, 2009), ACM, pp. 1–8.

[33] Martsola, M., Kiravuo, T., and Lindqvist, J. Machine to ma-
chine communication in cellular networks. In Mobile Technology, Ap-
plications and Systems, 2005 2nd International Conference on (15-17
2005), pp. 6 pp. –6.

BIBLIOGRAPHY 66

[34] Richard Harrison and Mark Shackman. Symbian OS C++ for
Mobile Phones. John Wiley and Sons, 2007.

[35] Ryberg, T. The European Wireless M2M Market. Research report,
M2M Research Series, May 2007.

[36] Siwen, L., and Yunhong, L. Design and implementation of home
automation system. In Information Science and Engieering, 2008. ISISE
’08. International Symposium on (20-22 2008), vol. 2, pp. 633 –636.

[37] Song, J. Y., and Kim, D. H. u-manufacturing model: applica-
tion system using rfid/usn, mobile and internet technology. In Ad-
vanced Communication Technology, 2008. ICACT 2008. 10th Interna-
tional Conference on (17-20 2008), vol. 1, pp. 79 –83.

[38] Sverre Bye Grimsmo. Reliability issues when providing M2M Ser-
vices in the Internet of Things. Master’s thesis, Norwegian University
of Science and Technology, NTNU, 2009.

[39] Telenor R & I. Connected Objects WIKI.
WWW page of the Connected Objects WIKI:
http://telenorobjects.onjira.com/wiki/display/coos/Home. [Accessed
15th March 2010.].

[40] Union, I. T. The Internet of Things. Executive summary, ITU.

[41] Wang, W., Srinivasan, V., and Chua, K.-C. Extending the life-
time of wireless sensor networks through mobile relays. Networking,
IEEE/ACM Transactions on 16, 5 (oct. 2008), 1108 –1120.

Appendix A

Source Codes and Sample
Output

A.1 Source Codes

In this section, we include the important portions of source code of one of
the most important classes of our implementation: DefaultMessage().

A.1.1 DefaultMessage()

us ing System ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Text ;
us ing System . IO ;
us ing System . Runtime . S e r i a l i z a t i o n ;
us ing System . Runtime . S e r i a l i z a t i o n . Formatters . Binary ;
us ing System . Co l l e c t i o n s ;
us ing System . Net ;
us ing System . Net . Sockets ;

namespace t e s t
{

pub l i c c l a s s DefaultMessage : Message
{
St r ing TRACE_ROUTE = " traceRoute " ;
S t r ing TRACE = " t ra c e " ;

67

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 68

St r ing PRIORITY = " p r i o r i t y " ;
S t r ing QOS_CLASS = "QoS " ;
S t r ing MESSAGE_NAME = "name " ;
S t r ing SECURITYTOKEN = " sectoken " ;
S t r ing EXCHANGE_PREFIX = " coosx " ;
S t r ing EXCHANGE_ID = " xId " ;
S t r ing EXCHANGE_PATTERN = " xpattern " ;
S t r ing DEFAULT_MESSAGE_NAME = " " ;
S t r ing TIME_STAMP = " t s " ;
S t r ing GUARANTEED_DELIVERY = " gd " ;
S t r ing TRANSACTION_ID = " tId " ;
S t r ing SENDER_ENDPOINT_NAME = " senderEPName " ;
S t r ing RECEIVER_ENDPOINT_NAME = " receiverEPName " ;
// message type header parameter
S t r ing TYPE = " type " ;
// message type va lue s
S t r ing TYPE_MSG = "msg " ;
S t r ing TYPE_ERROR = " e r r o r " ;
S t r ing TYPE_ANALYZE = " analyze " ;
S t r ing TYPE_ROUTING_INFO = " rou t i ng In f o " ;
S t r ing TYPE_ALIAS = " a l i a s " ;
S t r ing ERROR_REASON = " errorReason " ;
S t r ing ERROR_NO_ROUTE = " noRoute " ;
S t r ing ERROR_NO_ALIAS = " noAl ias " ;
S t r ing ERROR_TOO_MANY_HOPS = " tooManyHops " ;
S t r ing ERROR_NO_RECEIVER = " noReciver " ;
// message hops f i e l d
St r ing HOPS = " hops " ;
// message segment f i e l d
St r ing SEGMENT = " seg " ;
// Message content type header parameter
S t r ing CONTENT_TYPE = " contentType " ;

// Property content type
St r ing CONTENT_TYPE_PROPERTY = " property " ;
// St r ing content type
St r ing CONTENT_TYPE_STRING = " s t r i n g " ;
// Byte array content type
St r ing CONTENT_TYPE_BYTES = " bytes " ;
// Object content type
St r ing CONTENT_TYPE_OBJECT = " ob j e c t " ;
// body s e r i a l i z a t i o n method header parameter

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 69

St r ing SERIALIZATION_METHOD = " s e r " ;
// s e r i a l i z a t i o n method ActorFrame , not dependant on java SE but own
// s e r i a l i z a t i o n must be implemented
St r ing SERIALIZATION_METHOD_AF = " a f " ;
// s e r i a l i z a t i o n method Java , dependant on Java SE
St r ing SERIALIZATION_METHOD_JAVA = " java " ;
// s e r i a l i z a t i o n method de f au l t
S t r ing SERIALIZATION_METHOD_DEFAULT = " de f " ;
/// </summary>
protec t ed St r ing rece ive rEndpo intUr i ;
p ro tec t ed St r ing senderEndpointUri ;
p ro tec t ed Hashtable headers = new Hashtable () ;
p ro tec t ed Object body ;
pro tec t ed byte [] s e r i a l i z e dbody ;
pub l i c s t a t i c TcpClient c l i e n t ;
pub l i c s t a t i c MemoryStream bout ;
pub l i c s t a t i c BinaryWriter w;

pub l i c s t a t i c S t r i ngBu i l d e r r ep ly = new St r i ngBu i l d e r () ;
I n t e r f a c e i n t e r = new I n t e r f a c e () ;
i n t e r . ShowDialog () ;

}

pub l i c s t a t i c void sendConnectMessage ()
{
dout . Write ((bool) f a l s e) ;
MemoryStream bout = new MemoryStream () ;
BinaryWriter dout = new BinaryWriter (bout) ;
dout . Write ((byte) 0) ;
dout . Write ((bool) f a l s e) ;
dout . Write ((bool) f a l s e) ;
dout . Write ((i n t) IPAddress . HostToNetworkOrder (3)) ;
DefaultMessage .WriteUTF(dout , " type ") ;
DefaultMessage .WriteUTF(dout , "msg ") ;
DefaultMessage .WriteUTF(dout , "name ") ;
DefaultMessage .WriteUTF(dout , " connect ") ;
DefaultMessage .WriteUTF(dout , " con_uuid ") ;
DefaultMessage .WriteUTF(dout , " .UUID−1234") ;
dout . Write ((i n t) IPAddress . HostToNetworkOrder (0)) ;
MemoryStream bouth = new MemoryStream () ;

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 70

BinaryWriter douth = new BinaryWriter (bouth) ;
byte [] payload = bout . ToArray () ;
i n t l ength = payload . Length ;
douth . Write ((i n t) (IPAddress . HostToNetworkOrder (l ength))) ;
douth . Write (payload) ;
byte [] s e r i a l = bouth . ToArray () ;
douth . Flush () ;
sendAndReceive (s e r i a l) ;
}

pub l i c s t a t i c void sendMessage (s t r i n g mess)
{
MemoryStream bout = new MemoryStream () ;
BinaryWriter dout = new BinaryWriter (bout) ;
dout . Write ((byte) 0) ;
dout . Write ((bool) t rue) ;
DefaultMessage .WriteUTF(dout , " coos : // myownarti fact ") ;
dout . Write ((bool) t rue) ;
DefaultMessage .WriteUTF(dout , " coos : // Ping ") ;
dout . Write ((i n t) IPAddress . HostToNetworkOrder (6)) ;
DefaultMessage .WriteUTF(dout , " type ") ;
DefaultMessage .WriteUTF(dout , "msg ") ;
DefaultMessage .WriteUTF(dout , "name ") ;
DefaultMessage .WriteUTF(dout , " t e s t ") ;
DefaultMessage .WriteUTF(dout , " xId ") ;
DefaultMessage .WriteUTF(dout , " 1 2 3 4 ") ;
DefaultMessage .WriteUTF(dout , " xpattern ") ;
DefaultMessage .WriteUTF(dout , " OutIn ") ;
DefaultMessage .WriteUTF(dout , " contentType ") ;
DefaultMessage .WriteUTF(dout , " s t r i n g ") ;
DefaultMessage .WriteUTF(dout , " s e r ") ;
DefaultMessage .WriteUTF(dout , " de f ") ;
i n t l ength = mess . Length ;
dout . Write ((Int16) IPAddress . HostToNetworkOrder (l ength)) ;
DefaultMessage .WriteUTF(dout , mess) ;
MemoryStream bouth = new MemoryStream () ;
BinaryWriter douth = new BinaryWriter (bouth) ;
byte [] payload = bout . ToArray () ;
i n t l ength = payload . Length ;
douth . Write ((i n t) (IPAddress . HostToNetworkOrder (l ength))) ;
douth . Write (payload) ;
byte [] s e r i a l = bouth . ToArray () ;

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 71

douth . Flush () ;
sendAndReceive (s e r i a l) ;
}

pub l i c s t a t i c void sendByte (byte b)
{
MemoryStream bout = new MemoryStream () ;
BinaryWriter dout = new BinaryWriter (bout) ;
dout . Write ((byte) 0) ;
dout . Write ((bool) t rue) ;
DefaultMessage .WriteUTF(dout , " coos : // myownarti fact ") ;
dout . Write ((bool) t rue) ;
DefaultMessage .WriteUTF(dout , " coos : // Ping ") ;
dout . Write ((i n t) IPAddress . HostToNetworkOrder (5)) ;
DefaultMessage .WriteUTF(dout , " type ") ;
DefaultMessage .WriteUTF(dout , "msg ") ;
DefaultMessage .WriteUTF(dout , "name ") ;
DefaultMessage .WriteUTF(dout , " Ping ? ") ;
DefaultMessage .WriteUTF(dout , " xId ") ;
DefaultMessage .WriteUTF(dout , " 1 2 3 4 ") ;
DefaultMessage .WriteUTF(dout , " xPattern ") ;
DefaultMessage .WriteUTF(dout , "OutOnly ") ;
DefaultMessage .WriteUTF(dout , " contentType ") ;
DefaultMessage .WriteUTF(dout , " byte ") ;
dout . Write ((i n t) IPAddress . HostToNetworkOrder (1)) ;
dout . Write ((byte)b) ;
MemoryStream bouth = new MemoryStream () ;
BinaryWriter douth = new BinaryWriter (bouth) ;
byte [] payload = bout . ToArray () ;
i n t l ength = payload . Length ;
douth . Write ((i n t) (IPAddress . HostToNetworkOrder (l ength))) ;
douth . Write (payload) ;
byte [] s e r i a l = bouth . ToArray () ;
douth . Flush () ;
sendAndReceive (s e r i a l) ;
}

s t a t i c void sendAndReceive (byte [] s e r i a l)
{
t ry
{
Console . WriteLine (" Connected to the Server ") ;
c . Write (s e r i a l , 0 , s e r i a l . Length) ;

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 72

c . Flush () ;
Console . WriteLine (" Data sent to the Server ") ;
t ry
{
byte [] s e r i a l 1 = new byte [1 5 0] ;
DefaultMessage msg1 = new DefaultMessage (reader) ;

}
catch (EndOfStreamException e)
{
Console . WriteLine (e . Message) ;

}
}
catch (SocketExcept ion e)
{
Console . WriteLine (e . Message) ;
}

}
pub l i c DefaultMessage ()
{
setHeader (MESSAGE_NAME, DEFAULT_MESSAGE_NAME) ;
setHeader (TYPE, TYPE_MSG) ;

}
pub l i c DefaultMessage (S t r ing signalName)
{
setHeader (MESSAGE_NAME, signalName) ;
setHeader (TYPE, TYPE_MSG) ;

}
pub l i c DefaultMessage (S t r ing signalName , S t r ing type)
{
setHeader (MESSAGE_NAME, signalName) ;
setHeader (TYPE, type) ;

}
pub l i c DefaultMessage (BinaryReader din)
{
d e s e r i a l i z e (din) ;

}
pub l i c S t r ing getRece iverEndpointUr i ()
{
re turn rece ive rEndpo intUr i ;
}

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 73

pub l i c Message setRece iverEndpointUr i (S t r ing rece ive rEndpo intUr i)
{
t h i s . r e ce ive rEndpo intUr i = rece ive rEndpo intUr i ;
r e turn t h i s ;

}

. . . .

. . . .

. . . .

pub l i c void d e s e r i a l i z e (BinaryReader dinR)
{
i n t k=0;
Console . WriteLine (" D e s e r i a l i z a t i o n S ta r t i ng ") ;
NetworkStream ms = (NetworkStream)dinR . BaseStream ;
i n t j = IPAddress . HostToNetworkOrder (dinR . ReadInt32 ()) ;
r ep ly . Append (" Message S i z e ") ;
r ep ly . Append(j) ;
r ep ly . Append(System . Environment . NewLine) ;
byte ve r s i on = dinR . ReadByte () ;
r ep ly . Append (" Vers ion ") ;
r ep ly . Append(ve r s i on) ;
r ep ly . Append(System . Environment . NewLine) ;
Console . WriteLine (" Payload S i z e "+ j) ;
Console . WriteLine (" Vers ion " + ve r s i on) ;
i f (dinR . ReadBoolean ())
{
dinR . ReadByte () ;
r e ce ive rEndpo intUr i = dinR . ReadString () ;
r ep ly . Append (" Rece iver EndPoint URI ") ;
r ep ly . Append(rece ive rEndpo intUr i) ;
r ep ly . Append(System . Environment . NewLine) ;
}
i f (dinR . ReadBoolean ())
{
dinR . ReadByte () ;
senderEndpointUri = dinR . ReadString () ;
r ep ly . Append (" Sender EndPoint URI ") ;
r ep ly . Append(senderEndpointUri) ;
r ep ly . Append(System . Environment . NewLine) ;

}

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 74

i n t headerS i ze = IPAddress . HostToNetworkOrder (dinR . ReadInt32 ()) ;
Console . WriteLine (" Header S i z e "+ headerS i ze) ;
r ep ly . Append (" Header S i z e ") ;
r ep ly . Append(headerS i ze) ;
r ep ly . Append(System . Environment . NewLine) ;
f o r (i n t i = 0 ; i < headerS i ze ; i++)
{
dinR . ReadByte () ;
S t r ing key = dinR . ReadString () ;
Console . WriteLine (" Key " + key) ;
r ep ly . Append (" Key ") ;
r ep ly . Append(key) ;
dinR . ReadByte () ;
S t r ing value = dinR . ReadString () ;
Console . WriteLine (" Value "+value) ;
r ep ly . Append (" Value ") ;
r ep ly . Append(value) ;
i f (! (headers . Contains (key)))
headers .Add(key , va lue) ;
r ep ly . Append(System . Environment . NewLine) ;

}
s e r i a l i z e dbody = new byte [IPAddress . HostToNetworkOrder (dinR . ReadInt32 ())] ;
Console . WriteLine (" Message Body Length "+ s e r i a l i z e dbody . Length) ;
r ep ly . Append (" Message Body Length ") ;
r ep ly . Append(s e r i a l i z e dbody . Length) ;
r ep ly . Append(System . Environment . NewLine) ;
i f (s e r i a l i z e dbody . Length == 0)
{

re turn ;
}
dinR . Read (s e r i a l i z edbody , 0 , s e r i a l i z e dbody . Length) ;
}

p r i va t e void de s e r i a l i z eBody ()
{
i f (body == nu l l && s e r i a l i z e dbody != nu l l && s e r i a l i z e dbody . Length > 0)
{
St r ing serMethod = headers [SERIALIZATION_METHOD] . ToString () ;
i f (serMethod != nu l l)
{
S e r i a l i z e r s e r i a l i z e r = S e r i a l i z e rF a c t o r y . g e t S e r i a l i z e r (serMethod) ; /// problem

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 75

body = s e r i a l i z e r . d e s e r i a l i z e (s e r i a l i z e dbody) ;
}
e l s e
{
throw new Exception ("No s e r i a l i z a t i o n method ind i c a t ed in message header ") ;

}
}

}
pub l i c byte [] s e r i a l i z e ()
{
MemoryStream bout = new MemoryStream () ;
BinaryWriter dout = new BinaryWriter (bout) ;
dout . Write ((Byte) 1) ;
// The addre s s e s
dout . Write ((Boolean) (r ece ive rEndpo intUr i != nu l l)) ;
i f (r e ce ive rEndpo intUr i != nu l l)
{
WriteUTF(dout , r ece ive rEndpo intUr i) ;

}
dout . Write ((Boolean) (senderEndpointUri != nu l l)) ;
i f (senderEndpointUri != nu l l)
{
WriteUTF(dout , senderEndpointUri) ;
}

// The body
i f (body != nu l l && s e r i a l i z e dbody == nu l l)
{
// headers .Add(CONTENT_TYPE, CONTENT_TYPE_STRING) ;
S t r ing serMethod = " de f " ;
i f (serMethod != nu l l)
{
S e r i a l i z e r s e r i a l i z e r = S e r i a l i z e rF a c t o r y . g e t S e r i a l i z e r (serMethod) ;
i f (s e r i a l i z e r != nu l l)
{
s e r i a l i z e dbody = s e r i a l i z e r . s e r i a l i z e (body) ;

}
e l s e
{
throw new Exception (" S e r i a l i z a t i o n method not r e g i s t e r e d : " + serMethod) ;

}
}

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 76

e l s e
{
t ry
{
S e r i a l i z e r s e r i a l i z e r = S e r i a l i z e rF a c t o r y . g e tD e f a u l t S e r i a l i z e r () ;
s e r i a l i z e dbody = s e r i a l i z e r . s e r i a l i z e (body) ;
headers .Add(SERIALIZATION_METHOD, SERIALIZATION_METHOD_DEFAULT) ;

}
catch (Exception e)
{
S e r i a l i z e r s e r i a l i z e r = S e r i a l i z e rF a c t o r y . g e t S e r i a l i z e r (SERIALIZATION_METHOD_JAVA) ;
i f (s e r i a l i z e r != nu l l)
{
s e r i a l i z e dbody = s e r i a l i z e r . s e r i a l i z e (body) ;
headers .Add(SERIALIZATION_METHOD, SERIALIZATION_METHOD_JAVA) ;
}
e l s e
{
throw new Exception (" S e r i a l i z a t i o n f a i l e d ") ;

}
}

}
// The headers
dout . Write ((i n t) headers . Count) ;
dout . Flush () ;
IDict ionaryEnumerator en = headers . GetEnumerator () ;
whi l e (en . MoveNext ())
{
dout . Write ((S t r ing) en .Key) ;
dout . Write ((S t r ing) en . Value) ;

}
dout . Flush () ;
// The body
i f (s e r i a l i z e dbody != nu l l)
{
dout . Write ((i n t) s e r i a l i z e dbody . Length) ;
dout . Write (s e r i a l i z e dbody) ;

}
e l s e
{
dout . Write ((i n t) 0) ;

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 77

}
St r ing temp = dout . ToString () ;
Console . WriteLine (temp) ;
re turn bout . ToArray () ;

}
. . . .
. . . .
. . . .

}

A.2 Sending and Receiving a String

Input : Hello COOS

Output at Client Side:

Message Size 137
Version 0
Header Size 4
Key name Value connectAck
Key type Value msg
Key router_uuid Value .UUID-R-Router1-1-1276723963015-0-0
Key con_uuid Value .UUID-R-Router1-1-1276723963015-0-0
Message Body Length 0
Message Size 209
Version 0
Receiver EndPoint URI coos://Ping
Sender EndPoint URI coos://.UUID-localhost-1-1276723963015-3-0
Header Size 7
Key hops Value 1
Key receiverEPName Value Ping
Key name Value test Received With Body Hello COOS
Key xId Value 1234
Key type Value msg
Key xpattern Value InOut
Key senderEPName Value myownartifact
Message Body Length 0

Output at Server Side

APPENDIX A. APPNEDIX: SOURCE CODES AND SAMPLE OUTPUT 78

[Thread−4] INFO org . coos . messaging . t r anspo r t . TCPTransport −
Reader s t a r t ed on : / 1 2 7 . 0 . 0 . 1 : 1 5 6 5 6

[Thread−4] INFO org . coos . messaging . t r anspo r t . TCPTransport −
Writer s t a r t ed on : / 1 2 7 . 0 . 0 . 1 : 1 5 6 5 6

[Thread−7] DEBUG org . coos . messaging . t r anspo r t . DefaultChannel
Server − Allocat ingnew channel !

[Thread−7] DEBUG org . coos . messaging . rout ing . DefaultRouter −
coos1 : Adding l i n k : Link to org . coos . messaging . t r anspo r t
. TCPTransport@1a12495 , destUUID : .UUID−1234 , a l i a s e s : []

[Thread−7] INFO org . coos . messaging . p ro c e s s o r . Logger −
DefaulLoggerName , ReceiverEndpoint : coos : // myownartifact ,
SenderEndpoint : coos : // Ping , Message name : t e s t , Message
type : msg , isOutLink : f a l s e

[pool−1−thread −1] DEBUG myowngroup . impl . myownarti fact
Endpoint −Endpoint : coos : // myownartifact , Proce s s ing
incoming exchange : ExchangeID : 1234

[pool−1−thread −1] DEBUG myowngroup . impl . myownarti fact
Endpoint −Endpoint : coos : // myownartifact ,
Proce s s ing outgoing exchange : ExchangeID : 1234

[pool−1−thread −1] INFO org . coos . messaging . p ro c e s s o r . Logger −
DefaulLoggerName , ReceiverEndpoint : coos : // Ping ,
SenderEndpoint : coos : / / .UUID−l o c a l ho s t −1−1276723963015−3−0,
Message name : t e s t Received With Body He l lo COOS,
Message type : msg , isOutLink : t rue

[Thread−7] INFO org . coos . messaging . t r anspo r t . TCPTransport −
Connection c l o s i n g EOF

[Thread−7] INFO org . coos . messaging . t r anspo r t . TCPTransport −
Clos ing t ranspo r t : nu l l :15656
Received msg : t e s t from : coos : // Ping with body : He l lo COOS

	Title Page
	Problem Description
	Abstract
	Abbreviations and Acronyms
	List of Tables
	List of Figures
	Introduction
	Background
	Methodology
	Scope
	Thesis Outline

	Machine-to-Machine Communication
	What is M2M Communication?
	Internet of Things
	Sensor Networks
	M2M Services and Applications
	Personal Health Management

	M2M Market Scenario

	Mobile Device Programming
	Platforms for Mobile Device Programming
	Java MicroEdition
	Symbian and Maemo
	Windows Mobile Programming

	Connected Objects
	Architecture of Connected Objects Service Platform
	Important Definitions
	Detailed Architecture of COOS

	COOS Basic
	COOS Messaging
	COOS Naming Service

	Features of COOS

	Plugin Framework in COOS
	Features of COOS Plugin Framework
	COOS Plugin Framework in JAVA

	Requirements of a Plugin Framework
	Basic Requirements
	Constructing a Message
	Serialization/Deserialization
	Establish/Maintain Connection with the CO Service Platform
	Send and Receive Message
	Small Size

	Optional Requirements
	COOS Plugin Support
	COOS Node Support
	COOS Configuration Support
	Energy Efficiency

	Design and Implementation
	Design of the Plugin Framework
	Implementation
	Class Diagram
	Connection Establishment
	Serialization/Deserialization and Message Construction
	User Interface

	Conclusion
	Discussion
	Future Work

	Bibliography
	Appnedix: Source Codes and Sample Output
	Source Codes
	DefaultMessage()

	Sending and Receiving a String

