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Abstract 
 
The pervasive computing environment for heterogeneous network is on a continuous rise. The 

ability to interact and control network devices with different functionalities within office and 

home environment could be very beneficial to a lot of users. The service discovery in computers 

and mobile devices enabled them to interact with one another through wireless and 

heterogeneous wired networks. Services advertise their existence in a dynamic way and devices 

are designed with this capability to discover these services and its properties automatically. 

These devices are though based on different technologies but are still able to communicate and 

discover one another based on existing service discovery architectures. It is notable that a 

significant number of networked devices are now mobile and these mobile devices make service 

discovery more challenging. 

 

In future mobile multi-domain multi-language environments, a service can be anything and 

introduced by anybody. Consequently, same or equivalent services may have different names 

and services with same name or type may be completely different. Existing service discovery 

systems are incapable of handling these situations.  

We have implemented a service discovery system which supports semantics to service 

descriptions. It allows any user to act as a service provider and introduce any service at any time. 

The service provider can define any service as equivalent to any existing service and in any 

language as wanted. In addition, it is capable to find services that are not exact matches of the 

requested ones. More semantics are introduced through attributes like EquivalenceClass, 

ParentType and Keywords. The test conducted on this system in real time proves that the system 

is efficient and can be applied in real life. 
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Definitions          
 

Service a mechanism enabling the end-user’s access to one or more capabilities 
 

Network service service offered to the user by a network system 
 

Service availability the time when the service can be accessed 
 

Service continuity the ability for a user to maintain an ongoing service during mobility 

across domains, networks, and devices 

 
Service discovery the process of finding services that match the requirements of the 

service requestor 

 
Service advertisement the procedure to announce the service to potential users/consumers 

 
Service search the procedure to search and find the desired services 

 
Service lookup/service 
request 
 

the mediation of a request for a service 

Service matching the process of comparing the service request against the available 

service advertisements and determining which service best satisfies the 

request 

 
Equivalent service The service which has the same attributes or functionality is considered 

as equivalent service. 

 
Parent type The service which is being defined as a parent service due to the 

similarities are being inherited by the service the process of comparing 

the service request against the available service advertisements and 

determining which service best satisfies the request. 
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Chapter 1 

1 Introduction  
 

“If you go out 10 years, computers are not going to be these rectangular objects we    

carry around. They are going to be extremely tiny. They are going to be everywhere.   

 There is going to be pervasive computing. It is going to be embedded in the   

environment, in our clothing. It is going to be self-organizing.” 

Ray Kurzweil, 2007 

 

In this modern era, computer devices and network services are playing an important role to 

accomplish our daily tasks. Ranging from classical services as printers, scanners, fax machines to 

others common services such as radio, television, air condition, and DVD player, etc. can all be 

expressed as “ubiquitous computing”. This term presented by Mark Weiser in (1), means that 

computers are present everywhere in our daily environment. 

 

Users should be able to choose and make use of the services that are available to them. Ideally, 

they would like to obtain access to the right services immediately, without requiring them to 

reconfigure their device. This function should not be noticeable by the user. They should be able 

to interact and manage all the devices and services whenever required without any difficulty. 

 

In future, a number of different services will be available but discovering the appropriate service 

is a major challenge. For example if a user at a train station is searching for a service “Train 

Booking”, but he ended up discovering a service with name ‘‘book’’ which is a service for 

lending a book. This is a simple example that highlights the problem but such a discovery 

mistake could be very devastating and disastrous in case of emergency. 

 

Service discovery also plays an essential role in ad hoc communications (2). The mobile phone, 

Pocket PC and laptop could form an ad hoc network. In such network without administrative 

control, the device must be self organizing. For example, the laptop may offer a translation 
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service to mobile phone and the phone may offer internet access service via its General Packet 

Radio Service (GPRS) Interface. Since this network is dynamic, there is a need of dynamic and 

automatic service discovery functionality. Moreover the voice and data services are expensive on 

the conventional communication systems such as 3G, GSM etc. Voice over IP (VoIP) is getting 

popular for its affordable service as compared to conventional telephony service. It is becoming 

popular for the Service Provider to provide access to their users from different access 

technologies in order to promote their services. As an example T-Mobile, a worldwide telecom 

operator has announced that it will introduce Unlicensed Mobile Access (UMA) in 2006. It will 

provide ‘‘GSM over WiFi’’, thus filling coverage gaps and possibly allowing for lower traffic 

charges (3) . This will have certain challenges toward service continuation. The multiple 

connections will enable access to a wider variety of services that need to be discovered, properly 

understood and used. 

 

Unfortunately, the existing service discovery systems are limited to their own domains and 

specific devices and not able to discover these diverse services that were introduced in an 

unorganized way. Therefore, a more efficient service discovery solution capable of 

interoperating-cover different network technologies and platforms is needed.  

 

1.1 Motivation  

The networks of today are going through an evolution phase with the main focus shifting toward 

making the life easier for the end user. The technology enhancements are therefore done keeping 

in view of the above requirement. The main focus of this document is for service discovery for 

future mobile services.  

 

Figure 1-1 Existing Network Scenarios 
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Traditional mobile networks as illustrated in Figure 1-1 have limited number of specified 

services which can be listed down as Telephony, SMS service, emergency calls, etc. But if we 

closely look at the current mobile devices that are available today we will realize that they are 

capable of connecting to more than one network (4). This will allow the mobile device to access 

different network services, such as a PDA can connect to a GSM network and meanwhile 

connect to a WLAN as well by using the built in Network Interface Card (NIC) (5).  

 

Suppose a device currently connected to a GSM network is using a telephony service, during the 

call, the mobile device detects a WLAN network. Optionally the device can choose to connect 

with WLAN to use cheaper Voice over IP (VOIP) service that has been defined equivalent at the 

time of registration to telephony service of GSM (it is worth noting that only functionality and 

not quality is considered by the user in this case). The challenge is how the device can discover 

any equivalence between services? This could be more misleading if the service name is not 

appropriate or having ambiguity. The scenario is specified in Figure 1-2 where the device is not 

able to detect any equivalence service until or unless they have the same name or same type. 

 

Figure 1-2 Current Scenarios 

In current mobile systems, the number of services are limited and known by both the user and the 

mobile device. It is hence quite simple for a user roaming onto a location to make use of the 

services available at this location. In the near future as illustrated in figure 1-3, mobile devices 
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will be capable of connecting to multiple heterogeneous mobile network systems simultaneously 

such as 3G, WLAN, WIMAX, UWB, etc. and have access to multiple services that are fully or 

partially equivalent, completely different in terms of functionality, performance, quality, 

security, price, etc. The challenge is then to discover and recognize these services in order to 

offer them to the user. It is also crucial that the service discovery and matching are accomplished 

in acceptable amount of time.  

 

The first goal of this thesis is to design and implement the newly presented service discovery 

system and its procedure. Secondly, it is aiming at testing and evaluating the proposed service 

discovery architecture for future mobile services. 

 

Figure 1-3 Future Scenario 

1.2 Problem Statement 

Addressing the described situation the main problem statements of this work are as follows: 

• How can the services be discovered rapidly when the mobile user is roaming into an area? 
 

• What are the requirements for the future service discovery? 
 

• How can the future service discovery method allow the introduction of new services by 
anybody at any time? 
 

• How can the service discovery be performed semantically? 
 

• How can we discover same service with different names efficiently? 
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• How can different services with same name be discovered without confusion? 

 
• How can services be defined as partially equivalent? 

 

• How can services be introduced in multiple languages? 

1.3 Methodology 

The research methodology used for this work is based on the design science research process (6). 

The process is not a research method on its own but a formalized combination of existing 

methods.  

Figure 1-4 illustrates the common view of the design science research process. 

 

Figure 1-4 Common view of design science research process 

 



Chapter 1                                                                                                                                 Introduction                                                             

6 
 

According to this process, the research methodology is divided into three phases which are: 

First Phase: Problem identification 

This phase is more related to Analysis stage in a classic software design life cycle. It specifies 

research questions and verifies its practical relevance. From there, the research question is 

defined. There are four steps involved which are: 

i. Identify problem: This is to assure its relevance and understanding. Literature research or 

expert interviews can be used in order to identify the problem. 

ii.  Literature research – Part I: It is needed to review the state-of-the-art concerning the 

identified problem or to analyse possible obstacles and difficulties for its solution. 

iii.  Expert interviews: It is used to identify relevant and addressed problems.  

iv. Pre-evaluation relevance: Based on the problem identified from the literature research or 

expert interviews the pre-evaluation relevance is defined. The step involves creating a 

general research hypothesis in the form of a utility theory, postulating a link between the 

solution space and the problem space. 

This phase offers a solid and important foundation for the further research process.  

Second Phase: Solution design 

The second phase consists of two steps which are: 

i. Design artefact: During this stage, the problem can be restated. The existing solutions and 

state-of-the-art have to be taken into account.  

ii.  Literature research – Part II: This is a more depth study on the existing solutions and their 

state-of-the-art. It is important to keep track of ongoing current activities to be able to react 

on changes in research findings.  

Third Phase: Evaluation  

The steps involved in this stage are: 

i. Refine hypothesis: Should be refine by “smaller” hypothesis with a more constricted but 

more precise scope.  

ii.  Case study/action research: It shows applicability in practice.  
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iii.  Expert survey: By showing general interest. 

iv. Laboratory experiments or simulations: Which is used to compare different approaches. 

Steps (ii), (iii) and (iv) are the alternatives of conducting the evaluation based on types of output 

or expected outcome of the research process. 

At the end of the research process, results are summarized and published. As the nature of action 

research, the iteration process (for e.g. back to “design artefact” or “identify problem”) are 

relevant. 

The different stages in each phases have not been followed strictly through this work, since 

several different problem areas have been investigated, and several different artefacts have been 

developed. The steps involved in this research are: 

i. Identify problem and Literature research – Part I: First Phase 

In this phase first the existing service discovery systems are studied and evaluated. Based on 

the limitations identified, some research questions of the research are defined. 

ii.  Design artefact and Literature research – Part II: Second Phase 

In the second phase, the requirements of future mobile services are proposed which is based 

on the findings from the initial stage (Problem identification phase). An in depth study on the 

existing service discovery systems and their state-of-the-art as well as current research 

activities involved are also conducted in order to be able to react on changes in research 

findings. The outputs of this phase are conceptual models of future service discovery system 

and descriptions of requirements for future mobile services. 

iii.  Case study and Laboratory experiments – Third Phase 

In this phase, the future service discovery system is implemented based on the conceptual 

model of the design artefact (Solution design phase). Some case studies are given to show the 

applicability in practice and the laboratory experiments are conducted for testing and 

evaluation purpose.   
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1.4 Organisation of Thesis 

This report is organized as follows: 

 
Chapter 1 begins with an introduction of service discovery technology and its limitation in 
modern heterogeneous networks. It also briefly introduced the reasons for proposing this 
research. 
 
Chapter 2 explains existing well known service discovery protocols briefly and web services 
particularly in detail.  
 
Chapter 3 presents requirement for the future service discovery protocol and evaluation of 
current service discovery architectures based on requirements proposed. 
 
Chapter 4 proposes the design of future mobile service discovery architecture by specifying use 
cases for different scenarios that are derived in order to fulfil the requirements. 
 
Chapter 5 provides all the details that have been covered in order to implement the proposed 
Architecture. 
 
Chapter 6 presents Testing of the implemented solution which is later on followed by the 
evaluation. 
 
Chapter 7 concludes this report. 
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Chapter 2 

2 Background 
 

‘‘You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New           

York and his head is meowing in Los Angeles. Do you understand this? And radio 

operates exactly the same way: you send signals here, they receive them there. The only 

difference is that there is no cat’’ 

 
Albert Einstein, when asked to describe radio. 

 

As the title of the project suggests, the contribution of this research is to specify service 

discovery for future mobile services. This chapter will present existing well known service 

discovery protocols. In order to have a basic understanding of existing well known service 

discovery architectures we will explain each protocol in detail.  Web services will be discussed 

in detail in second section of this chapter as it will be further used for implementation in this 

project whereas the architectures that will be discussed briefly includes 

1) Universal Plug and Play 

2) Jini 

3) Service Location Protocol 

4) Salutation 
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2.1 Existing Service Discovery Architectures 

This section will present existing well known service discovery protocols. In order to have a 

basic understanding of existing well known service discovery architectures we will explain each 

protocol briefly. As the future implementation of the proposed architectures will be relevant to 

web services architecture therefore it will be discussed in complete details. The protocols that 

will be discussed briefly are as follows  

2.1.1 Universal Plug and Play 

Universal Plug and Play (UPnP) are a set of networking protocols which are designed to support 

zero-configuration (7), "invisible" networking, and automatic discovery for a breadth of device 

categories from a wide range of vendors. The UPnP architecture allows peer to peer networking 

of computers, networking in home appliances, and wireless devices. It is a distributed, open 

architecture protocol based on established standards such as TCP/IP, UDP, HTTP, XML, and 

SOAP. 

When a new UPnP device is connected within a network for the first time it will search for 

DHCP server by using its Dynamic Host Configuration Protocol (DHCP) (8) client which is 

already embedded in it. If the DHCP server is available the device will use the IP address that 

was assigned to it. If there is no DHCP Server available the device will use Auto IP to choose an 

address from a set of reserved private addresses at the Network. The device can then move easily 

between managed and unmanaged networks. After the addressing phase the discovery phase will 

take place and that will be handled by Simple Service Discovery Protocol (SSDP) (9).  

 

Universal Plug and Play (UPnP) is a widely accepted standard for automatically detecting 

devices and services in a Local Area Network (LAN). However UPnP does not provide any 

mechanisms for authentication.  The protocol stack being used in UPnP includes IP as its lowest 

layer which is a very big constraint as it is limited to HTTP over UDP over IP. UPnP does not 

support the naming of devices as in DNS server as it always allocate IP address. IP multicast 

does not scale very well on big networks.  
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2.1.2 JINI  

Jini pronounced “Genie”, is introduced by Sun systems in 1999. The basic idea behind the 

invention of this technology has been to provide the flexibility in the network (10). Different 

resources can be shared and used across the network as they are available locally. JINI 

architecture consists of major three components as JINI Client, a Service Locator, and JINI 

services (11). Discovery in JINI is very simple and consists of the following six steps: 

• Discover: The device is plugged in and discovery occurs when the Service Provider looks for 

a Lookup Service (LUS) to register with Lookup by multicast. The Client uses unicast if 

know the lookup service otherwise it uses multicast. 

• Join: Once the LUS is found, it returns a service register object to the service, which is used 

to register the service in the lookup. 

• Discover: When a Client wants to use a specific service it searches for the service by either 

unicasting discovery if the LUS location is known or by multicasting discovery. 

• Lookup:  When Client reaches to LUS it gets the service register object, which Client uses to 

lookup particular service by LUS catalog and searches based on the type, name or 

description of service. 

• Receive: LUS will return java proxy which contains the specification on how to connect 

directly to the service. If the service object consists of two programs, one proxy on the client 

and another controlling program on hardware device, the communication between them 

might use Remote Method Invocation (RMI). 

• Use:  Now the Network Client interacts directly with the network service via service proxy. 

JINI is efficient as it is easier to add or remove services, relocation of services, fast discovery, 

and the services are available immediately and found automatically. It requires Java which needs 

48 KB of memory. For future network there is no issue of memory. Jini has so many advantages 

but it is not scalable for future mobile where numbers of nodes are too high. Jini application can 

be written in any language but it has to be wrapped with Java which requires JVM to be present.  
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2.1.3 Service Location Protocol (SLP) 

Service Location Protocol was introduced by IETF in 1997 and was later updated with SLP 

version 2 (12). SLP provides a scalable framework for providing hosts with access to 

information about the existence, location and configuration of networked services (12) . An SLP 

agent is a software entity that processes SLP protocol messages and acts in three different roles 

which can be listed down as User Agent (UA), Service Agent (SA) and Directory Agent (DA). 

The SLP User Agent is responsible for looking out for the location of services; Service Agent 

advertises the location of service whereas the Directory Agent can be considered as a caching 

entity. It is an optional entity that is used to provide scalability and also acts as a centralized 

repository for service location information. 

SLP eliminates need of prior information to access and use a service. The user supplies the 

required type of service and its attributes describing the service whereas SLP retrieves the 

service for the user. SLP provide the dynamic configuration for services in Local Area Network 

where dynamic changes occur rapidly. The devices use SLP to announce services on Local Area 

Network. A service must have a URL for locating the service. In addition it can have a number 

of different key-values pair called attributes. 

SLP is a simple protocol for advertisement of services in Intranet. The entities and operation of 

SLP is really simple. It has a really secure architecture. However it is not scalable over the 

Internet. There is no mechanism to deal with for replay attacks. If Directory Agent fails due to 

any reason the whole network and service are no longer available to communicate with each 

other. 

2.1.4 Salutation 

Salutation is a service discovery architecture that has been developed by Salutation Consortium 

(13). The goal of Salutation is to solve the service discovery problem and making it possible with 

wide range of appliances and equipment within an environment that has widespread connectivity 

and mobility. As the devices are of various kind with different functionalities, these devices are 

required to be processor, operating system and communication protocol independent. The 

Salutation architecture enables it applications, services and devices to describe and advertise 

their capabilities to other applications, services and devices. Application, services and devices 
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can also search other applications, services or devices for a particular capability, and to request 

and establish interoperable sessions with them (14). 

 
Major Components of Salutation can be listed down as: Salutation Manager (SLM) and 

Transport Manager (TM). The core of the architecture is the Salutation Manager. It contains a 

Registry where it keeps the record of the services available. A Client can register or unregister 

itself from the nearest Salutation Manager available. The Salutation Manager discovers the other 

Salutation Managers by matching types and attributes as specified by local Salutation Manager. 

The Salutation Managers communicate amongst one another by using Salutation Manager 

Protocol. As all the services are registered with their local Salutation Manager so in order to 

know about them, a unique feature capability exchange is needed. After discovering the required 

services the Client can then request the Salutation Manager to keep the track of availability of 

service by checking periodically. The Transport Manager is responsible for providing reliable 

communication channels, regardless of what the underlying network transports are. 

 
Salutation provides us with certain advantages. Salutation is independent on the network 

technology and may run over multiple infrastructures, such as over TCP/IP and IrDA (15). It is 

not limited to HTTP over UDP over IP. There are no specified programming languages to be 

followed for Salutation unlike Jini which has Java as its pre requisite. 

 

2.2. Web Services 

Web services introduce a new trend of reusing application modules; they are self-contained and 

self describing application components which can be used as a part of other applications (16) . 

An XML Web service can be used internally by a single application or exposed externally over 

the Internet for use by any number of applications accessible through a standard interface, an 

XML Web service allows heterogeneous systems to work together as a single web of 

computation. 

 
A web service is platform independent as it uses the XML language and HTTP that can be used 

with any device. The HTTP protocol is mostly common in the current devices for example 

(Palmtop, Pocket PC, 3G cell phones). The feature that makes web services so special is the fact 
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that HTTP is using port 80, which is open, at most firewalls (17).  Web services allow 

heterogeneous systems to work together as a single web of computations. 

 

 

Figure 2-1 Web Service Architecture 

The Web service elements 

As shown in Figure 2-1, the web service concept is based on the three elements. We will discuss 

in details each of the elements. The details are discussed as under 

2.2.1. Simple Object Access Protocol 

Simple Object Access Protocol (SOAP) is basically a communication protocol that is being used 

to access a Web service. SOAP basically allows a program that is running in one kind of 

operating system (such as Windows XP) to communicate with same or another kind of operating 

system (such as Linux) by using the HTTP and XML as the mechanisms to exchange 

information in a decentralized distributed environment (18). SOAP also specifies how the called 

program can return a response. SOAP as other protocols have certain advantages and 

disadvantages which are discuss as under 

Advantages:  

• SOAP is simple, extensible and platform independent. 

• SOAP is language independent. 
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• Unlike previous remote execution technologies SOAP over HTTP provide extensibility 

and flexibility making it as platform independent and firewall-friendly. 

• SOAP allows use of different transport protocols. HTTP is the standard transport protocol 
used in the stack, but different protocols for example RSS, SMTP etc are also usable. 

Disadvantages: 

Soap has various disadvantages which its competitor highlights and are discussed below as 

under 

• SOAP can be slower than the competing middleware technologies because of the XML 

architecture. 

• The interacting parties role are fixed as only one party (the client) can call the service of 

the others when HTTP is used as  the transport protocol and WS addressing or ESB are 

not in use. 

SOAP Elements: 

A SOAP message is an ordinary XML document and consists of certain elements which are 
defined as follows. 

• Envelope: It is a mandatory part of a SOAP message. It specifies the start and end point 
of the message. 

•  Header:  It is an optional part of a SOAP message. It contains any additional attributes 

of the message which can be used in processing of the message. 

• Body:  It is the mandatory part of a SOAP message. It contains the XML data regarding 

the message which is being sent. 

• Fault:  It is an optional part of the message. It contains information about the errors that 

might occur while processing the message. 

 A SOAP message containing a SOAP header block and a SOAP body is written down to 

illustrate the elements (19) 

 
<env:Envelopexmlns:env="http://www.w3.org/2003/05/soap-envelope"> 
<env:Header> 
<n:alertcontrolxmlns:n="http://example.org/alertcontrol"> 
<n:priority>1</n:priority> 
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<n:expires>2001-06-22T14:00:00-05:00</n:expires> 
</n:alertcontrol> 
</env:Header> 
<env:Body> 
<m:alert xmlns:m="http://example.org/alert"> 
<m:msg>Pick up Mary at school at 2pm</m:msg> 
</m:alert> 
</env:Body> 
</env:Envelope> 
 

Conclusion: 

SOAP is a lightweight protocol that can replace more complicated, distributed object 

technologies for many applications. However, SOAP's use of Web servers to tunnel through 

firewalls may limit its usefulness because it potentially opens corporations to external access. 

SOAP may increasingly find itself in the sights of security personnel as it will become more 

ubiquitous. 

2.2.2. Web Service Description Language 

WSDL stands for Web Services Description Language and is a standard format for describing a 

web service. It is an XML based protocol that is used for exchanging information in a distributed 

environment. It is the language that UDDI uses. WSDL was developed jointly by Microsoft and 

IBM. WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'. W3C defines the standard 

as "an XML format for describing network services as a set of endpoints operating on messages 

containing either document-oriented or procedure-oriented information. WSDL is extensible to 

allow description of endpoints and their messages regardless of what message formats or 

network protocols are used to communicate." (20).  

 

WSDL is often used in combination with SOAP and XML schema to provide web services over 

the Internet. A client program connecting to a web service can read the WSDL to determine what 

functions are available on the server. Any special data types used are embedded in the WSDL 

file in the form of XML Schema (21). The client can then use SOAP to actually call one of the 

functions listed in the WSDL. 
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Elements of WSDL: 

Web Services can be broken down into three specific elements by WSDL which can be reused 

once defined or can be combined. A WSDL document can have various elements, but they are 

contained within these three main elements. These three major elements of WSDL can be 

defined separately as  

• Types 

• Operations 

• Binding 

The main structure of a WSDL document looks like this (22) 

<definitions> 

<types> 

definition of types........ 

</types> 

<message> 

definition of a message.... 

</message> 

<portType> 

<operation> 

definition of a operation.......   

</operation> 

</portType> 

<binding> 

definition of a binding.... 

</binding> 

<service> 

definition of a service.... 

</service> 

</definitions> 
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Sub Elements of WSDL (23):  

• Definition:  It is always the root element of a WSDL document. It specifies the name of 

the web service and declares multiple namespaces used in remaining of the document. It 

is also the container for the remaining of the service elements specifies in the document. 

• Data types:  The data types are declared for later use in the messages. 

• Message: A message is an abstract definition of the data presented in the entire document 

or as an argument that can be later returned as a result of message invocation. 

• Operation: Operation is an abstract definition for a message, such as naming a method, 

or business process, that will accept and process the message 

• Port type: It is a set of operations that is mapped to one or more end points, defining the 

collection of operations for a binding.  

• Binding: Protocol and data formats for the operations and messages which are 

specifically defined for a particular port type. 

• Port:  The target address for the service communication, which is a combination of 

network address and the binding.  

• Service: Services map the binding to the port and include any extensibility definitions. 

2.2.3. UDDI  

The universal description, discovery and integration (UDDI) defines a method to publish and 

discover information about web services (24). To contact a business for ordering something, it is 

required to find information about that business: street address, telephone number, website, or 

web service address. It can obtain the information directly from a business representative, 

perhaps in the form of business card, handwritten note, or e-mail. It can also look up a business 

name in a telephone directory and obtain the address and telephone number. Similarly, the 

information necessary for a program running on a computer to talk to a program running on 

another computer over the web must be published. Although UDDI is like a white pages or 

yellow pages for web services, it also enables developers to interact with UDDI at both design 

time and runtime. In short, UDDI resources can be considered part of the web services 

architecture and infrastructure (25). The “web service” provides a business specific functionality 

through internet connection, for the purpose of providing a way for another company or software 

program to use the service. 
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Figure 2-2 UDDI Service Cloud 

Figure 2-2 shows a UDDI service cloud, which consists of several collaborating UDDI registries. 

Web services are playing an important role in a distributed business environment. For example, 

company “x” providing a service for the payment through the internet, any business client can 

use the service of “x” for the secure transaction. 

 

In the beginning, it seems to be very simple to manage the process of web service discovery. But 

the reality is different, because there are a number of different organizations each providing 

different services, this leads difficulty in the discovery of a service. 

 

The UDDI is implemented in a common XML format to avoid the interoperability issues; 

because many companies started to define ways to allow their internal applications to interact 

with the business systems at other companies using the emerging web infrastructure. Each 

company invents a unique approach based on experience designers, available technologies and 

project budgets. The XML solve the integration problem between different companies and 

provide a single registry for all the services. (26) 

 

The UDDI has two main parts: registration and discovery. The registration part means that 

businesses can post information to UDDI that other businesses can search for and discover, 

which is the other part. Businesses and individuals interact with UDDI by using SOAP API’s or 

one of the user interfaces provided by the operators or other web services vendors. UDDI 

operators post WSDL descriptions of their web services for registration and discovery. UDDI 

provides separate WSDL file for registration and discovery services, using its own XML 

document format.  
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• A UDDI  registration consists further into three components: 

• White pages - contain address, contact details, and known identifiers for Web services 

providers. 

• Yellow pages - have industrial categorization of Web services based on standard 

taxonomies. 

• Green pages - contain technical information about services. 

 
Conclusion 

Web service is a great concept which allows the construction of applications using components 

distributed across heterogeneous networks and domains. However, the Web service discovery 

based on UDDI is falling because of inconsistencies between the information stored by the 

UDDI registries and the Web services really available on the Web The readers can refer to (27) 

for discussing shortcomings of UDDI and the properties of an ideal. Discovery of a Web service 

is critical for privacy issue which is a security concern for the use of Web services (28). 
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Chapter 3 

3 Requirements of Future Mobile Services 
 

‘‘Why can‘t computers in real life work like they do on Star Trek? (. . . ) They don‘t 

have to do all that careful handwork involving cables and IP addresses and logins 

and passwords on Star Trek—it all just works. Is it just special effects, or are we 

missing something?’’ 

Paul Vixie 

 

In future mobile environment, mobile devices will be able to perform handover between 

access networks to improve connectivity. To ensure service continuity, services in the new 

network must be discovered rapidly. However, due to the plurality and diversity of the 

services introduced by different players at different times and places it is quite challenging to 

identify services rapidly and new service discovery system is required. As the previous 

section contain an overview of different service discovery methods, this part is focusing on 

the requirements of future services, which are used to deduce the future service discovery 

requirement. Both requirements will be defined and explained thoroughly for clear 

understanding.  

The chapter is divided in two sections as follows 

3.1) Requirement for future mobile services 

3.2) Evaluation of existing service discovery architectures based on requirement for future 
mobile services  
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3.1. Requirement for Future Mobile Services 
 

3.1.1. A service in the future can be anything 

� Future service discovery must be capable of handling different services with same 

names without confusion. 

The future service can be anything and can be published by anyone, this leads to a 

number of challenges. The consequence is the situation where the same name or word 

can have several meanings and denotes different services. Ambiguity and confusion 

are hence introduced which can result to different interpretation (29). For example if a 

user search for “Book” this may lead to an ambiguity between the Literature book and 

ticket booking. Figure 3-1 shows the problem where user searching for the “Book” 

might get erroneous result. Therefore, the future service discovery must be capable of 

handling different services with same name without confusion. 

 

Figure 3-1 Ambiguity in words 

3.1.2. A service can be introduced by anybody at any time 

Future service discovery, 

� must be capable of having services with multiple names in multiple languages. 

� must allow the introduction of any service anytime by anybody 

The future service discovery must allow introducing any service any time by anybody, 

the result of this flexibility may raise the following consequences. 
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• Not all services can be standardized as in current service discovery systems where 

a service is well specified and has a uniquely defined name. 

• Another consequence is that the same service can be given different names by 

different service providers 

• Since there is no regulation about a service definition a service may be close to 

another one but not 100% similar. There are two cases as follows: 

o A service A contains similar elements with service B but have also 

different elements as shown in Figure 3-2 a). The intersection of A and B 

is not empty and different from both A and B. 

 

A B 

A∩B ≠ Ø ≠ A ≠ B 

A 

B 

A∩B = A 

a) b) 

 

Figure 3-2 Relations between services 

o A service A is a subset of service B since all the elements of A are also 

elements of B. 

• The service may have several names in different languages but all of them refer to 

the same thing. The goal is to work globally without any language ambiguity. One 

of the users from China should be able to use a service that is provided in English 

and the same should be the case for an Englishman who want to use a Chinese or 

a Japanese service without having language as a hurdle. The future service 

therefore should lay special emphasize on the language compatibility. 

• A service name may have several names in different languages as shown in Figure 

3-3. 
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Figure 3-3 Language semantics 

3.1.3. In a mobile environment, services must be discovered very fast: 

� Requirement for future service discovery, it must be very efficient.  

The future service discovery must be very efficient. Efficient is a relative word for 

future service discovery. Efficient means to be fast in two ways. 

• In future the user equipment can perform handoff between networks while using  

any service such as telephony, online shopping, banking etc. The goal of future 

service discovery is to be fast enough to discover the service before the handover 

(30). This can be more illustrated from the following example. A user “A” using 

internet banking service from (GPRS) GSM network, the device of user A is 

capable to connect with WLAN as well. When user A enter in his office its device 

found a network with higher bandwidth and connect with WLAN while using the 

internet banking the device discover the service on WLAN and handover to 

WLAN while continuing the internet banking service as shown in Figure 3-4. 
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Figure 3-4 Fast discovery of service during handoff 

3.1.4. It is crucial not to misunderstand or confuse one service with another one 

� The service discovery must be error-free 

It is crucial not to misunderstand about a service or to confuse one service with 

another one. The service discovery must be simple and unique in order to error free. 

The service discovery is based on the name of the service, whenever a user uses a 

service it checks the available services and has an idea about the service from its 

name. Sometimes the service function can be misunderstood because of the short 

service names. The structure for the service has to be simple and unique. The end user 

should be able to easily use the service without any ambiguity that can create the 

confusion for him regarding the service type (31). The service names should be long 

enough to define a service properly. For example “London_Victoria_train_schedule” 

instead of “Train_schedule” only the first make the sense to understand what a service 

will provide. So if the user does not provide complete information such as 

“Train_schedule” which is not sufficient to locate a specific service, the service 

discovery should request to add more detail in order to discover the service without 

any error. 
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3.1.5. All the services available in an area must be discovered 

� The service discovery must be sound 

The future service discovery must be sound in order to discover all the available 

services. When the user find a service the service discovery should return a valid 

answer instead of terminating the service discovery with a message “Not Found”. If 

the service discovery does not find any appropriate it must request the user to add 

more key words in order to discover the service. To achieve this, the future service 

discovery must be sound. 

 

3.1.6. It is also essential to verify that a service is offering what it announces 

� It must be possible to extend the service discovery with verification functions. 

Before using any service it is very important to have a little knowledge about the 

service or description which describes the service. As in web service UDDI contains 

the description. In UPnP, after the discovery of a service the step 2 description 

describe the service. Same with Jini Lookup Service (LUS) have knowledge of the 

service but this description cannot directly see by the user they are more at the 

protocol level and user is unable to see the description. Therefore the future service 

discovery must verify the service to ensure what service is providing. 

 

3.1.7. It is also essential to be able to conclude that a service is trustful 

� It must be possible to extend the service discovery with security functions to 

validate a service. 

It is also essential to make sure that a service is trustful. A service has to registered 

with a central database, server or repository. This entity is responsible to ensure that a 

service is trustful. So whenever a user will be accessing the service, he will trust a 

service because of the entity verifying it. It will be based on mutual trust. 

 

3.1.8. The user must be able to move everywhere in the world 

� The future service discovery must be ubiquitously and location aware. 

For each user there is usually a set of services that he/she is using frequently such as 

for example weather, taxi, hotel, bus, cinema, etc. However, quite often these services 

are changing according to the location of the user. For example, when the user is in 

Paris he/she will initiate the service taxi and in this context he/she means “taxi in 

Paris” and not “taxi in Trondheim”.  When the user arrives to Paris and switch on 
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his/her mobile phone and the service discovery will try to find the services weather, 

taxi, hotel, buss, cinema in Paris. If they exist all the information will be queried and 

all the necessary preparations will be made. When the user wants to request for a taxi 

then he/she will get the Paris taxi. 

 

3.1.9. There are many services and service discovery systems it is important to ensure 

interoperability  

� Service Discovery must be capable of discovering current existing services. 

The service discovery for future network would have a number of different features 

such as fast, secure, reliable and with many other specialities, but the future service 

discovery should be capable to discover the existing services already deployed and 

available for use. This is a challenge for the future service discovery mechanism to be 

interoperable with respect to the service discovery for both the future services as well 

as the existing services. For example, if an existing service was launched to use for 

finding a location in a city, then this service should be discovered by the future 

service discovery. As shown in Figure 3-5 the future service discovery can discover 

both the existing as well as the future services. 

 

 

Figure 3-5 Service interoperability 

 
� The service discovery must be capable of operating with existing service discovery 

systems. 
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The future service should be interoperable with the current services. One of the main 

concerns for the future services is that the users/programmers have to design the 

future services from scratch but the future services must be able to communicate with 

the current service discovery systems in order to interact with the current services. 

This includes all the current service mechanisms such as Web services, Salutation, 

Jini, and UPnP to communicate and interoperable with future service discovery.  

 

 

Figure 3-6 Service discovery interoperability 
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3.2. Evaluation of existing Service Discovery Architectures 

This part will focus on the evaluation of current well known service discovery architectures. 

We will now evaluate current existing service discovery architectures using the requirements 

previously identified in part 1 of this chapter. Table 3-1 evaluates the existing service 

discovery systems by sequence mentioned below  

1. Universal Plug and Play 

2. Jini 

3. Service Location Protocol 

4. Salutation 

5. Web services  
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3.2.1) Summarizing the evaluation 

Table 3-1 Summarizing evaluation of existing architectures 

 
 

UpnP Jini SLP Salutation Web 
services 

Capable of 
handling 
different 
services with 
same names 
without 
confusion 

No Partially 
fulfilling if 
128 bit 
service id is 
remembered 

No 3.2.1 No No 
 it is 
handled 
manually 

Capable of 
services with 
multiple 
names in 
multiple 
languages 

No Yes by 
attributes of 
a service 

Partially 
supporting 

No No 

Allow the 
introduction of 
any service 
anytime by 
anybody 

No.  Partially 
With 
registering 
with LUS 

Partially 
Supporting 
for local 
domain but 
not globally 

No 
Salutation 
manager 
responsible 
for 
registration 

No  
UDDI is 
authority for 
publish a 
service 

Efficient  Partially 
fulfilled 
With cache 
its fast but 
when 
primary 
proxy fail 
it’s not 
efficient 

Partially  
If unicast 
address is 
known 

Partially 
Fast when 
directory 
agent is not 
used 

NO No 

Error-free Yes Yes  
By Leasing  

Yes Yes Yes 
UDDI 
contains  the 
description 

Sound Partially 
fulfilled 

No No Partially 
With 
salutation 
manager 

Partially 
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Possible to 
extend service 
discovery with 
verification 
functions 

Partial 
fulfilled 

No Yes No No 

Possible to 
extend the 
service 
discovery with 
security 
functions to 
validate a 
service 

No 
Internal 
mechanism 

No Yes 
But 
vulnerable 
to replay 
attack 

Yes 
Identification 
and  
Password 
scheme 

Partially 
SSL only 
provide 1-1 
Not for 
multiple 
entities 

Capable of 
functioning 
ubiquitously 

No No Partially if 
operating 
with DA 
and Scopes  

No No 

Capable of 
operating with 
existing 
service 
discovery 
system 

Partially 
With JINI 

Yes 
With UPnP, 
Web 
Service and 
SLP 

Partially 
With JINI 

No Partially 
With JINI 
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Chapter 4 

4 Design 
 

‘‘To write good software you must simultaneously keep two opposing ideas in your 

head. You have to be able to think how hard can it be? With one half of your brain 

while thinking it will never work with the other’’ 

 

Paul Graham 

 

There are few important steps involved in service discovery which are to be kept in mind 

when proposing a new model. The steps are as follows: 

• Service registration: 
o What type of information should be supplied to the Service Broker to make it 

sufficient enough to do registration? 

• Service discovery: 
o On the way how the discovery is organized. It is a whole system consisting of many 

servers, databases and functionality to discover the services.  

o There are few challenges such as: 
� The service name – since the service can be from anything and it can be 

introduced by anybody at any time, the open and flexible future service discovery 

might result to different types of service names been introduced and it is not 

standardized. This will result as a challenge for the service broker on how the 

service matching will be performed.  

• Service matching: 
o Where would the service matching functionality held; should it be in the Client side or 

at the Network side? 

� If the service matching is done in the Client side, it is needed to consider the 

Client’s terminal ability as it will require more powerful processor 

� If the service matching is done at the Network side, it could take longer time  

From discussion above two major features are identified: 
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• Service Discovery – where the Client sends a message to the Service Broker asking what 

are the services available 

o If it is a powerful Client, it can do the matching by itself 

• Service Lookup/Service Request – where the Client asking for the specific service 

o In this feature, both the service discovery and service matching are done by the 

Service Broker and it could take longer time. 

There are number of systems which use syntactic matching for locating the contents such as 

“Gnutella” (32) and direct locating based on Distributed Hash Table Chord (33), they are 

widely used for file sharing, in the case of services it could be used for discovery of services. 

The chord has been proved to be efficient. But none of the methods support semantic lookup. 

The proposed system will be a combination of syntactic and semantic design. To have a more 

clear picture of the system design and considering the challenges discussed above we will use 

the unified modelling language (UML) (34) use case diagrams. 

 

Four cases are specifically identified to represent the high level requirements of the future 

mobile services. A Service provider can register a service whereas a client can discover a list 

of available services, request a specific service and then select a service. The cases are 

illustrated in Figure 4-1 and are discusses in detail below 

 

Figure 4-1 case diagram of Future service discovery system 
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4.1. Service Registration: 

In traditional old systems the services that are present in the system are having a standardized 

name which is specifically assigned to it e.g telephony with a dedicated service number 

which uniquely identifies it. Hence a direct syntax matching is done but as we know that in 

future the mobile will be capable of connecting to heterogeneous network and therefore 

different services will exist which will be entirely new to the client . So in order to be 

discovered the services will have to advertise it. The Service Provider will have to provide 

certain details while introducing a new service which will make it easier for the user to 

identify the desired services.  

 

Service name:  

Service name is the first item of information that has to be provided by the Service provider 

while introducing a service. As specified in the requirements previously there is no restriction 

as anyone can introduce any service at any time, there is no specific naming convention to be 

followed which has been the case previously for existing service discovery architectures. 

Moreover the service name can be introduced in multiple languages which cannot be done 

earlier in other existing service discovery architectures. 

 

Service type: 

Service type is one of the necessary information required while registering a service. It is 

important in order to identify a service functionality e.g a service name of Micheal Jackson 

will have a service type as Music. In existing service discovery system the service type are 

already standardized and no new service type can be introduced, hence negating our 

requirements 1 and 2 which state that a service can be introduced by anyone . Moreover our 

system type allows anyone to introduce service type and in any language. There can be 

different cases while introducing a new service type which are discussed as follows 

• Brand-new service type: without relation with any existing service type: A service 

type description in XML (eXtensibleMarkup Language) containing the service type 

Name, Keywords, ParentType, StateVariables, etc. as shown in Figure 4-2 below. In 

addition an URI (Uniform Resource Identifier) has to be assigned to this service type 

description. This service type description will be used later in the service matching. 

Since the service type is a brand-new type that was not derived by any existing service 

type ParentType and ParentType has to be set to nil. The service type does not have 
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any alias since there exists no equivalent service type. The EquivalentClass is then left 

empty. 

• Equivalent service type: The service type has a different name and may be another 

implementation but is equivalent to an existing service type. The service provider has 

to add the name of the existing service type and also all the known service type in 

different languages. 

• Subtype of an existing service type:  The service type has all the functions and 

features of an existing service type but has also additional ones. The parent type is 

hence indicated. 

 

 
Service type description template 
A service type description has the following items: 

• Name: The name can be in any language and less than 64 characters. 
• Keywords: Some words that can be used in the first round discovery 
• ParentType: The name of service type that the current type is derived from. 
• ParentTypeURI: The URI of the parent type 
• EquivalenceClass: All alias in any language are given here 
• StateVariables.  The state variables determine the states of the services. They are 

left empty in the service type description 
• Actions: Actions are the methods that can be called by clients or other services 

o Each action has a name and a set of parameters  
� Each parameter has a type, allowable values (for enumerated 

types), and direction (in or out)  
• Events:  Enable clients to  subscribe to the occurrence of a particular event 

Figure 4-2 Service type description template 

After defining the require fields we will take a look at the execution of the events by drawing 

a sequence diagram for registration of service as specified in Figure 4-3. The steps are as 

follows  

1)  Service provider will request the service broker to register a service by providing 

necessary information i-e Service name, Service Type, keywords etc. 

2) The service broker in order to register a service has to make sure that the service type 

already exist or is it a brand new service type so it will pass the service type information to 

service matcher. 

3) The service matcher will check whether the service type already exists or do we need to 

add a new service type. If the service type already exists it will just pass the information to 
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service broker after the successful lookup. If it’s a new service type, it will be added in our 

system and then the information will be passed over to the service broker respectively. 

4) Once the service type exists, the service broker will send the necessary information to the 

service info base (repository) in order to register the service. The service name will be used to 

check if any service with the same name and same parent type cannot be added twice whereas 

a service with same name and completely different functionality can be added with different 

parent type. 

5) The service info base will update the service broker that the service has been successfully 

registered. 

6) The service broker will update the service provider that the service has been successfully 

added and is now ready to be used. 

 

Figure 4-3 Sequence diagram for “Registration of Service” 
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The collobaration diagram for registration of a service can be found in figure 4-4 illustrated 
below 

 

Figure 4-4 Collaboration Diagram for Registration of Service 

4.2. Discovery of Service: 

After the services are registered the most important part for the client is to discover the 

services. This can be achieved by advertising the services. There can be two possible ways of 

doing it either by broadcasting or the user can retrieve all services by requesting the service 

broker. As the web service architecture is been used in our application and it is not capable of 

broadcasting periodically until it is being invoked by any process or a client. The services can 

therefore be discovered by the client by simply sending a request to the service broker. The 

process is explained in collaboration and sequence diagram below and the respective steps 

are defined accordingly. 
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1.  Request List of 

available service

Service Provider Client
Service Broker

(WS-App)
Service Infobase

(Repository)

Service Matcher

(OWL)

2. Lookup for available Services, Service Type

3. Get Equivalent for 

Service, Parent Type

4. Return Service and 

Equivalent Classes

5. Return Service  and Equivalent 

Classes

 

Figure 4-5 Sequence Diagram for “Discovering services” 

The event execution is as follows 

1) Client request list of available services for specific service types i-e communication, 

Music etc. 

2) The service broker on receiving the request performs a look up for the available 

services in the repository. The services are saved along with their parent id which 

makes it easier for the user to select the appropriate service. 

3) On getting the requested services from the repository the service matcher will look for 

any equivalent class defined for the service as well its parent type to provide the client 

which might be of interest to him. 

4) Once retrieving the desired services and its equivalent classes the services will be 

returned back to the service broker. 

5) The service broker will return the list of available services along with their equivalent 

type that can be either logical or any service name defined in different language that is 

providing the same functionality. 
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The collaboration diagram for discovering a service is shown below in Figure 4-6 

 

 

Figure 4-6 Collaboration Diagram for “Discovering Services” 

4.3. Select a Service 

Once the list of available services are discovered a client need to select the appropriate 

service as per his requirement. This can be done by the client going through all services that 

were retrieved and then making a decision manually on which service to invoke. However 

this architecture provides the client with an option to select a service by specifying precisely 

the service name and service type. It is known as service search or service lookup. This 

greatly increases the efficiency of the system as the network automatically search and find the 

service for the client hence relieving him from this burden. However this approach holds a 

major drawback as the client is unable to discover newly introduced services which may be 

of interest to him. Service lookup events are explained in sequence diagram below 
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Figure 4-7 Sequence Diagram for “Service Request” 

The events are executed as follows 

1) Client request service A specifically with its service type. The service type is send to 

avoid confusion  as different services can have the same name so just to make sure 

that right service is retrieved. 

2) The service broker on receiving the request performs a look up for the desired service 

in the repository.  

3) On retrieving the requested service from the repository the service matcher will look 

for any equivalent class defined for the service as well its parent type  

4) Required service and its equivalent class if any will then be returned back to the 

service broker. 

5) The service broker will then return service A along with their equivalent type if any to 

the client. 

 The collaboration diagram for service type is shown below in Figure 4-8 
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Figure 4-8 Collaboration Diagram for Service Type 

4.4. Find A Service: 

Client can also find the desired services by searching based on the appropriate keywords. The 

service provider while registering a service, provides keywords that highlight the main feature of 

the service. These keywords can be used later on in order to return the appropriate service to the 

client e.g if a client search for food, dining etc. a hotel service defined with such keywords will 

be returned. The sequence diagram for finding a service is as follows  

1) The client sends a request to service broker by providing appropriate keywords in order 

to find a service. 

2) The service broker forwards the information to the service info base for service lookup. 

3) Service InfoBase lookup for the service by searching against the service and the 

keywords that were defined while registering it by the service provider. 

4) Once the service is retrieved it might also be of interest for the client to have different 

service that are equivalent to the service that is retrieved through the keyword search so a 

lookup will be carried out accordingly for the service type equivalent or its parent type 

equivalent. 
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5) Services retrieved are then sent to the service broker so that they can be send back to the 

client. 

6) The client is presented with the service response on bases of his key word search. 

 

 

Figure 4-9 Sequence Diagram for “Finding a Service” 
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The collaboration Diagram for finding a service is presented below in Figure 4-10. 

 

Figure 4-10 Collaboration Diagram for “Finding a Service”  
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Chapter 5 

 

5 Implementation 
 

‘‘The function of good software is to make the complex appear to be simple.”  

 

Grady Booch 

 

This chapter describes implementation details of the service discovery for future mobile 

environment. Brief overview of complete architectures, classes and database is presented in 

order to make it simpler to understand that how the system has been implemented. However the 

four use cases that are specifically presented in design are presented on functional level as it is of 

interest. For further implementation details refer for class and database overview which is part of 

this report in Appendix A. Chapter 5 will be divided into Following 4 sections listed below 

5.1) System Overview 

5.2) Class overview 

5.3) Database Overview 

5.4) Methods Descriptions 
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5.1. Overview of the system architecture 

The major components of the architecture are: 

5.1.1. Web Service Client–  

This component is an application running on the remote mobile terminal. The Client on behalf of 

the user can ask/search for a service. It can also on behalf of the Service Provider introduce and 

register a new service. The protocol used between the Client and the actual XML Web Service is 

SOAP (Simple Object Access Protocol) (35).   

 

Figure 5-1 Future service discovery system architecture 

Components of the service discovery system consisting of: 

i) ASP .Net (36)Website (XML Web Service) This service acts as an interface 

between the Client/Service Provider and the System Server. The IIS Internet 

Information Services 5.01 (37) is customized in order to publish the ASP.Net 

pages on the Internet. 

ii)  Database – This component acts as a service repository which stores the services 

registered by the service provider. 



 
Chapter 5                                                                                                                           Implementation  

46 
 

iii)  OWL  (38)file – is used for semantic matching with the OWL Lite 

(EquivalenceClass and ParentType).  

 

5.1.2. Development Environment 

The hardware as well as the software components used for the system implementation are 

described below: 

i) Hardware   

A computer with installed Windows XP is used as a server. The server can process several 

request from multiple clients at parallel. The Client can request the server by using any platform 

or browser to retrieve the desired services. The Server contains an original Intel Processor (2.60 

GHZ) along with 2 GB of RAM in order to ensure fast operation of the system. 

ii) Software 

5.1.1. Operating System 

The operating system is selected by considering various technical aspects which are discusses 

below. 

Server side: 

Since the application is developed using .Net technology, the .Net framework version 2.0 (39) is 

installed on the server. Microsoft Windows based operating system is the minimum requirement 

for this version of .Net framework. Therefore Microsoft Windows XP (40) was installed on the 

server.  

Client: 

The Client is independent of any architecture and hence can access the services by using any 

industry standard Internet browser from any operating system that has access to the Internet. 

5.1.2. Programming languages:  

For the implementation of this project Microsoft Visual Studio 2005 IDE for C# (41) was used. 

The application was developed in C# whereas the website was developed using ASP.Net 

technology. 

C#: 

C# was mainly used as an implementation language because of its convenient programming 

capabilities, the object oriented paradigm it supports, type-safety and wide range of libraries 

available as a part of .Net framework. Another reason to use C# was the OwlDotNetApi that was 
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mainly used to access OWL file in order to define parent as well as equivalent classes for service 

types. The detail of this API can be found on (42).  

ASP.Net:  

ASP.Net is used for the XML web service and the web form interface for accessing the web 

service. There were certain reasons for using ASP.Net during implementation phase 

1) For building XML web service because it makes exposing and calling web 

services very simple.  

2) For Client website because of the flexibility of interface it provides and 

support for the mobile devices. By building a website in ASP.Net one has to 

write the code once and the ASP.Net automatically generates pages based 

on the device they are called.  

 

5.1.3. Support for ontologies:  

As the semantic meaning in this project of service discovery is being achieved by using 

ontologies. OWL (Ontology) file was continuously monitored manually by using Protégé 4.0.2 

(43) in order to check the updates. OWL Lite is chosen in the implementation of this project due 

to its simplicity and the dynamic nature of the project even though it is known that it has some 

limitations as to compare with the OWL DL and OWL Full (44). Since the services can be 

introduced by anybody and there is no control mechanism on introducing the services, therefore 

it is required to avoid complexity in the system usage and for that only the EquivalenceClass and 

the ParentType properties is used which can be accomplished by the OWL Lite. More over the 

owl has another important feature which is the capability to support multiple languages (45)  

which is very useful in context of our system.  

 

5.2. Class Overview 

There are eight classes in total that have been written for the implementation of the system. Each 

of the classes was used accordingly to fulfill different functionalities. The class diagram is 

shown in Figure 5-2 where the classes relationship and there functions can be seen. Each method 

and field functionality for each class is specifically mentioned in Appendix A1 and can be 

referred to for detail. A brief introduction to each class and its basic functionality is discussed 

below. 
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5.2.1. Base Class: 

The Base class provides the functionality to connect with the data base tables. In addition to 

connectivity it provides the database functions such as (Insert, update and retrieval). This class 

has a number of overloaded methods to extend the functionality. The Base class is inherited by 

three different classes to reuse the code. 

 

5.2.2. DALService 

The Data Access layer service (DALService) class inherits the Base class and reuses its basic 

functionality to connect with the database, insertion and retrieval. Additionally it provides the 

functionality to access the service table in the database. This includes adding of equivalent 

service id, finding of service, retrieval of all the services on matching and insertion of service.  

 

5.2.3. DALServiceType 

The Data Access layer service type (DALServiceType) class inherits the Base class.  In addition 

to the base class functionality it also provides access to the servicetype table in the database. 

This class not only accesses the servicetype table but it has to ensure the consistency between the 

database table and the ontology.  

 

5.2.4. DALKeyword  

The Data Access layer keyword (DALKeyword) class inherits the Base class for reusability of 

the code such as the basic connectivity with the database, insertion and retrieval.  It provides 

additional functionality to access the keyword in the database. Moreover it ensures not to use the 

same keyword for two services. At the time of registering a service it first checks whether the 

same keyword is already stored in database for any other service. If any value is matched then 

instead of adding the keyword the keywordID is used to avoid the redundancy.  
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Figure 5-2 Class Diagram 



 
Chapter 5                                                                                                                           Implementation  

50 
 

5.2.5. Discover 

The Discover class contains the overall logic of web service, the methods of discover class are 

directly exposed to the client to use them. The ASP.net page also consumes this web-service. 

Discover class is performs most prominent functionalities by calling other class methods in the 

same package, the discover class performs different tasks such as adding new service type, 

finding service by name, keyword, serviceId and by service type. The discover class also 

performs the process of service registration. 

 

5.2.6. OwlHelper 

OwlHelper class uses the OWLDOTNET API to perform different tasks in ontology. These tasks 

contains searching of class from ontology on the basis of service type name, For every class in  

ontology contains an URI, this URI uniquely identify the class but this URI is a long string 

include the name of the class, OwlHelper is used to extract the name of class from the URI. 

Along this the OwlHelper returns all the equivalent classes from the ontology. 

 

5.2.7. Service 

service class is a representation of each individual service which is being used to perform 

different functions associated with service such as service registration, service retrieval and 

service matching. Service class includes overloaded constructor, properties (attributes such as 

description of service, equivalent services, associated keyword, name of the service, address 

URI) and different fields. 

 

5.2.8. ServiceType 

The servicetype class is a representation of each individual servicetype which is being used to 

perform different functions associated with servicetype such as servicetype registration, 

servicetype retrieval and servicetype matching.  Servicetype class includes overloaded 

constructor, properties: (attributes such as All equivalent classes in the ontology, Parent (service 

type) of the servicetype, name of the servicetype in the ontology, associated keyword, unique 

URI in the ontology and different field. 
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5.3. Database Overview 

       Microsoft SQL server 2005 enterprise edition (46) was used as repository during implementation 

of this project. The database was used to store all the available service, service type, service 

URI, keywords for each specific service as well as equivalent for each service or service type if 

any exist. A brief overview of each table is discussed below whereas the relationships between 

these tables can be seen in ERD diagram illustrated Figure 5-3. For more detail on each  table 

sample data is illustrated for each table separately in Appendix A.2 which can be referred to if 

required. 

 

Figure 5-3 Entity Relationship Diagram 
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5.3.1. Service 

 The table service is used to store the data for every registered service. This table typically 

contains each service id which is generated by the database at the time of registration of service. 

The second field is ServiceName which is a string value to store the name in Unicode (the 

Unicode is used to support characters of different languages. For any service there must be 

parent service which describes the belonging type or the classification of service, this association 

is being done by using the servicetypeId as a foreign key from the table of serviceType. Until 

now there is no field which define the address of the service from where a service can be 

invoked this is done with ServiceURI to store the URI of a service. To ensure that the user has 

selected appropriate service there is a field called ServiceDescription to store brief description of 

the service which could be helpful to select the most appropriate service. 

 

5.3.2. ServiceType 

This table is used to store every service type which is being inserted in the ontology. There are 

two reasons for doing this. 

                    i.            First it used to ensure the relationships between the service and their service type 

along with the equivalent services, this is done to reduce the complexity of the 

system. 

                  ii.             The second reason is to increase the performance of the system. By decreasing 

lookups in the ontology which take longer time as compare to database lookup. 

The service type table is used to maintain the record of the classes which has been inserted in the 

ontology at the time of registering service type. At the time of registration of service type the 

database allocate an auto-generated id which is stored in ServiceTypeId field. The service name 

could also be retrieved from the ontology but due to the performance issue it is better to store in 

database field instead of ontology, the serviceTypeName is used to store the name of the service 

type. The servicetype shows a relation between parent and child including the grandparent 

relation, for grandparent a servicetype could be child of another service type. To achieve the 

grandparent relation the ServiceTypeParentId is used, this relation is not only used for the 

grandparent but it is also used for the semantic application. There must be some link to identify 
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service type from ontology this is done by storing the unique URI for each class in the ontology 

in ServiceTypeURI. 

5.3.3EquivalentService 

One of the goal of service discovery is to return the services which has partial features. This type 

of services are stored in the system with the title of equivalent services. To store the equivalent 

service there must be two services (ServiceId and EquivalentServiceId) to be equivalent of each 

other and uniquely identify the relation i.e. EquivalencyID. 

5.3.4. ServiceKeyword 

The keyword table contains the auto generated KeywordId for every keyword. This table is used 

to store the keyword for the later usage of keyword. 

5.3.5. Keyword 

The service keyword table has been designed to avoid redundancy of keywords. For this the 

table stores association between the keywords and services. To accomplish this it contains auto 

generated ServiceKeywordId for every association between the service (ServiceType) and 

keyword (KeywordId). 

 

5.4. Main methods 

As four use cases were specifically explained in our design, these methods are explained in 

detail. Each class and its methods are mentioned separately in Appendix A.1, whereas database 

sample data is presented in Appendix A.2 which can be referred to for detail lookup if required. 

The four methods are described in detail below. 

5.4.1. Register Service: 

Definition of the method: This method is used to register a service, for registration few things 

has to be provided such as  

• Service name (It could be any name which give an idea about service) 

• Service URI (contains the URI/ address of the service to invoke) 

• Service description (Short description that can represent a general overview about the 

service) 
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• Keyword ( this could be different words which help user to search about service e.g. for taxi 

service one can insert the keywords such as: public transport, travel ) 

• Service type (service name alone is not sufficient to define the type of service because two 

services can have same name they could be differ only from the type they belong the service 

type makes the difference) 

• Available services (it shows all registered services for the selected type. The user optionally 

selects one of the services to make them equivalent at service level). 

Functionality: 

For Registration of service the first method called is Discover.RegisterService () this method 

calls all the necessary method. The method follows the loop illustrated in Figure 5-4.  

Once the user enters the service name and other service parameters, the user also select the 

service type. For the selected service type the system calls the method 

_OWLHelper.SearchServiceType() which returns the object of service type and pass it 

to DALSericeType.GetServiceTypeId. 

DALServiceType dalServiceType = new DALServiceType(); 

int typeId = 

dalServiceType.GetServiceTypeId(_owlHelper.SearchServiceType(srv.Typ

e.SeviceTypeName)) 

Once the ServiceTypeId is returned then the service is registered from the following code. 

dalService.Insert(string ServiceName,int ServiceTypeId,string ServiceURI,string ServiceDescription); 

Optionally a service can be declared as equivalent to any other service if user selects any service 

that is equivalent to it. This can be accomplished by: 

dalService.AddEquivalentServiceId(newServiceId, 

srv.EquivalentServiceIds[i]); 
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Figure 5-4 Main Loop followed for Registration of Services 

5.4.2. Lookup by Service Type: 

Definition of the method: This method is used to lookup services by service type. The system 

returns all services of given type. This required a parameter of service type. Service Type 

Lookup follows loop which is being illustrated in Figure 5-5 below. 

• Service type (the user enters the service type) 
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Figure 5-5 Main loops for Service Type lookup 

Functionality 

First the system search for given service type id from database by: 

DALServiceType.GetServiceTypeId(ServiceType serviceType) 

Once the Service type id is returned, the system will look for all the services whose service type 

id (Parent id) is the one returned by the GetServiceTypeId(). 

This task is accomplished by: 

DALServiceType.GetServiceByServiceTypeId(int ServiceTypeId). 

After retrieving the values the result is diplayed on the ASP Page for the client.  
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5.4.3. Lookup by Keyword: 

Definition of the method: This method is used to lookup services by Keyword passed in 

argument. The system returns all the services associated with the keyword. This required a 

parameter Keyword. 

• Keyword(the user enters the keyword) 

Functionality 

The system searches for the specified keyword by using the method. Keyword Lookup follow 

loop illustrated in Figure 5-6 

DALKeyword dalkeyword = new DALKeyword(); 

DataTable dtServices= dalkeyword.GetServiceIdByKeyword(Keyword); 

The method returns all the associated services and stored the result in a temporary datatable. 

Each service is returned by using: 

DALService.GetServiceByServiceID() 

After getting all the service Ids the system check for all the equivalent services, this 

accomplished by: 

DALService.GetEquivalentServiceId() 

This method returns equivalentIds, however from this equivalent id the services cannot be 
returned directly, therefore the system uses equivalent id to get service id, which can display all 
the services. 

DALService.GetServiceByServiceID() 

The lookup method avoids circular reference. 
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Figure 5-6 Loop followed for Keyword lookup 

5.4.4. Get Service by Service name: 

Definition of the method: This method is used to lookup services by directly providing the 

service name. 

• Service Name (the user enters the service name this could be in English or any other 
Unicode). 

Functionality 

Services are being retrieved on the basis of passed service name as an argument. System 

retrieves all the services with matching of name. After the syntactic matching, system check for 

semantic matching which is searching of all equivalent class for a service. 
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DALService.GetServiceByName() 

The above method returns a service (or more than one service with same name). After getting 

the required service the system checks for the service type (Parent type). At this point the system 

returns either single or more than one service with their ParentType. This method follows the 

loop specified in Figure 5-7. 

 

Figure 5-7 Loop for Service Name Lookup 
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Chapter 6 

 

6 Testing 
 

‘‘Program testing can be used to show the presence of bugs, but never to show their          

absence!’’ 

 

Edsger Dijkstra 

In order to ensure that the implementation is working properly and is fulfilling the requirements 

specified in chapter 3 testing was conducted. This chapter is divided into two parts. Part 1 covers 

five use scenarios that are being set to ensure that the necessary requirements for the future 

service discovery are being achieved. The five scenarios are as follow  

o Anybody can introduce a service at anytime 

o Service name with multiple languages 

o Same service with different name 

o Different services with same name 

o Partial matching services  

Part 2 deal with the scalability issues and test that how does the system behaves with different 

number of services. There are five points of check that were laid down in order to note down the 

system behavior. The check points are as follows 

o Service Repository with 50 services 

o Service Repository with 100 services 

o Service Repository with 250 services 

o Service Repository with 500 services 

o Service Repository with 1000 services 
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Section I 

6.1 Use Scenarios 

“But what is it good for?” 

 
Engineer at the Advanced Computing 
Systems Division of IBM, commenting on 
the microchip, 1968 

 
6.1.1. Anybody can Introduce a service at anytime 

The system is really flexible for any user to introduce a service anytime without any requirement 

for registration initially to post a service in the repository. As in traditional service discovery 

systems the service types are well defined and the user is not able to register a service type until 

the authority approve and update it at his own .This system allows the user to register any service 

type at anytime without such delays.  

 

Figure 6-1 User interface to register a new Service Type 

If a user wants to register a service for his university and no service type of education exist he 

can register a new service type of education as shown in Figure 6-2 below. If he feels that there 

should be further subtype of University in education he can add it as a subtype of service type as 
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shown in Figure 6-2 below. The user also has the option to define service type equivalent to any 

other service type by using the same interface and without any prior registration. 

 

Figure 6-2 User interface to register a new Service SubType 

Once the service types are registered, the user can register his university service by simply 
providing service name, service URI , service description, and selecting his service type. The 
procedure is elaborated in Figure 6.3 below 

 

Figure 6-3 User Registration a new service with newly registered Service Type 

Once the service types are registered the user can register his university service by simply 
providing service name, service URI , service description, and selecting his service type. The 
procedure is elaborated in Figure 6.3 below.The service is successfully registered as illustrated in 
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figure. Hence one of the basic requiremet specifying that anyone should be able to register a 
service at anytime is successfully fulfilled and running. The service registered and retrieved is 
shown in Figure 6-4 below.

 

Figure 6-4 User successfully registering the service received 

6.1.2. Similar services in different languages. 

If a client wants to find a service he can either do that by providing search criteria in English 

which is the default language or in his native language e.g a taxi service can have different 

names in multiple languages e.g 

 

Taxi: {Teksi, Riksha, такси, ….} 

 

If the Client want to search for an appropriate service and his search is based on word ‘Taxi’ or 

in his native language which is equivalent to ‘Taxi’ it will not only return taxi service define in 

English but all other services define in different languages and are declared independent to 

taxi..The process is illustrated in Figure 6-5 below. 
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Figure 6-5 Service in different languages equivalent to Taxi 

As shown in Figure 6-5 above if a user try to find a service by entering taxi in its native language 

which is ‘‘urdu’’ in this case, all the services which are logically equivalent to it and are defined 

at time of registration are being retrieved and shown to the client. The same process is elaborated 

for a user who is searching for a taxi service in ‘‘bulgarian’’ by entering такси. The result is 

illustrated in Figure 6-6 below. 

 

Figure 6-6 Service in different languages equivalent to Taxch 
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It can be seen from the figures that more than one service are returned when a user is searching 

in its native language. It is because the services are logically equivalent and are defined so at the 

time of registration. It could be really helpful for the user considering the heterogeneous nature 

of the future mobile services. The services maybe unknown to him because of the different 

languages but if he is abroad and the services are logically equivalent he can still use them for his 

purpose. 

6.1.3. Same services with Different Name 

When a Client wants to find a service, for e.g a Restaurant service he will use any appropriate 

word either in standard English or his native language. The Restaurant service can have other 

different names for e.g. 

Restaurant: {Restoran, Ristorante, Café, Bistro, Warung, … } 

If the Client enters the word Café, it will return not only the Café service but also other similar 

service which are defined with Café in other names which are equivalent to it and are specified at 

time of its definitions. This is illustrated in Figure 6-7 below. 

 

Figure 6-7 same services with different name 
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6.1.4. Different Services with Same Name 

Since in the future ubiquitous communication systems the service can be anything and introduce 

by anybody, there can be a possibility of having different term and perspectives of knowledge of 

the service from the user and service provider. The future service discovery supports the function 

of having different services with the same name as shown in Figure 6-8. 

 

Figure 6-8 Different service with same name 

As in the above example, the word Book can refer to a type of Book service (for e.g. buying 

online book or information about a book). There can also be other meaning of Book service 

which may refer to a Reservation service. Even though the future service discovery allows 

having different services with the same name, the ambiguity and confusion can still be avoided 

via the details of the Service Description and Service Type returned during the service search.   

6.1.5. Partially Equivalent Service 

The future service discovery is using a semantic matching instead of just syntactical match as the 

one used in the existing service discovery. This is very important especially in the situation 

where no equivalent service is available but there exist service, which have more additional 

functions than the requested one – partially match service.  

The future service discovery introduces the use of service sub-typing by having ParentType and 

attributes ParentType in the Service Type description template.  
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Figure 6-9 Parent type and Subtype relation for telephony 

As illustrated in Figure 6-9, when the Client is asking for Telephony service; Skype, SIP and G1 
are returned because they are grand children of Telephony (Skype and SIP are subtype of IP 
Telephony while G1 is subtype of GSM) and have inherited all the characteristics of Telephony. 
In this case the Skype, SIP and G1 are having similar functions (voice call – which is the generic 
Telephony features) but some of them have more or different additional functions (for e.g. Skype 
has video call feature) and they are also different in service components and service 
implementations. 

 

Figure 6-10 Retrieval of services in telephony 

However, if the Client is asking for a specific Skype service, only the Skype is returned and 

nothing else. This is as illustrated in Figure 6-11. 
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Figure 6-11 Retrieval of service by service name 
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Section II 

6.2. Scalability 

 

“When you are stuck in a traffic jam with a Porsche, all you do is burn more gas in                 

idle.  Scalability is about building wider roads, not about building faster cars.” 

                                                                                                                      – Steve Swartz 

As per the requirements specified previously a service should be discovered really fast. Ideally 

the system should therefore discover the services quickly. The retrieval time for the tests 

conducted is when a client requests a service from the service broker till the time it is being 

returned back to the client. The system behavior is expected to be stable with service name 

lookup being the fastest way to retrieve the service and keyword lookup being the slowest. The 

minimum time is always expected to be with service name search as the search will be conducted 

in database and no lookup in the ontologies is required in this case. In case of service type and 

keyword search it will consume more time to return the result back to client. Reason for this 

delay is Owl lookup which is required to determine ParentType and EquivalentType etc after 

database lookup is performed. Considering that tests were conducted to measure how does the 

system scale with the different number of services registered in repository. The system behavior 

was tested with system in following states 

1) Service repository with 50 services 

2) Service repository with 100 services 

3) Service repository with 250 services 

4) Service repository with 500 services 

5) Service repository with 1000 services 

Considering the internet architecture, fluctuation in response is expected for every process once 

repeated. Moreover it will also depend how much resources are being consumed at the server 

once a request is being received, therefore to ensure the authenticity of these tests each process 

was repeated for 5 times and the mean value was considered as the final concrete response time. 
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6.2.1. Service Repository with 50 services 

The first test was conducted when the total numbers of services registered were fifty whereas 

twenty service types existed in the OWL file. The scenario was considered in order to check the 

system behavior with different ranges of services stored. Initial point was decided with small 

number of services to see how does the system behave and to have a clear picture for future 

behavior of system when more number of services are being added in the system and more tests 

are being carried out.  

a) Retrieving All Services 

When all services were retrieved the system behaved stable and no major fluctuation in retrieval 

time was being observed that can be clearly seen in chart 6-1 displayed below. The mean time 

was found to be 178.125ms. 

 

Chart 6-1 Retrieving all services when number of services registered are 50 

The readings time for discovering all services are as follows 

Reading 1                    453.125 ms 

Reading 2                     109.375 ms 

Reading 3                     109.375 ms 

Reading 4                    109.375 ms 
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b) Retrieving specific service by service name 

When a specific service which was ‘‘Skype’’ in this case was requested by its service name 

the system behaved efficiently as expected and consume very little time as only the lookup 

was being performed in the database. The time reading that were observed are displayed in 

chart 6-2 below. The mean time was found to be 31.255 ms. 

 

 

Chart 6-2 Retrieving services by service name when number of services registered are 50 

The readings time for retrieving a service by its service name is as follows 

                                          Reading 1                           62.500 ms 

      Reading 2                                  15.625 ms 

      Reading 3                             31.255 ms 

      Reading 4                                  31.250 ms 

                  Reading 5              15.650 ms 
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c) Retrieving services by service type 

When the services were tried to be retrieved by the service type lookup the system 

behaved slower as expected as compared to the results of the service name lookup. The 

reason for this delay is that the initial look up is being carried out in database and then the 

equivalent classes are being looked in ontology file which consumed considerably more 

time. However the system still discovers the services really fast and scale well. The mean 

time for service type lookup was found to be 75.000 ms. Time consume for retrieving the 

services can be seen in chart 6-3 below. 

 

Chart 6-3 Retrieving services with service type lookup where services registered are 50 

The readings time for retrieving a service by its service type is as follows 
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d) Retrieving services by Keyword 

When the services were tried to be retrieved by keyword lookup the system behaved slower than 

the preceding both cases as expected. The reason for this delay is that the initial look up is being 

carried out in database and syntax based matching is being done in the keyword table. Once the 

services are retrieved a lookup against these values is performed in ontology file. It also depend 

that how many services were returned as a result of key word search as against each value a 

lookup in ontology will be carried out. Time consume for retrieving the services when 

performing keyword search can be seen in chart 6-4 below. The mean time was found to be 

103.125. 

 

 

Chart 6-4 Retrieving services by keywords when number of services registered are 50 

The readings time for retrieving a service by its service name is as follows 
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Reading 2                        78.125 ms 
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6.2.2. Service Repository with 100 services 

The second test was conducted when the total numbers of services registered were hundred and 

service types stored in OWL file were thirty in number. This scenario was considered in order to 

check the system behavior by increasing the value of services twice then the first test.  

a) Retrieving All Services 

When all services were retrieved the system behaved slower. As all information specific to each 

service is stored in different tables at the time of registration and when retrieval is requested for 

each service a lookup against each service is conducted in all the database tables and it results in 

a slower time response then all three other scenarios which are discussed later on in this section. 

A look at Figure 5-3 can explain the database relation i-e ERD diagram moreover the database 

tables and the sample data can be seen in Appendix A.2. However no major fluctuation in 

retrieval time was being observed that can be seen in chart 6-5 displayed below. The mean time 

was found to be 325.00 ms. 

 

Chart 6-5 Retrieving all services when number of services registered are 100 

The readings time for discovering all services are as follows 

       Reading 1                            765.625 ms 

       Reading 2                            218.750 ms 
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         Reading 3                               218.750 ms 

          Reading 4                     218.750 ms 

          Reading 5                                203.125 ms 

                                                              ____________ 

         Mean Reading Value                     325.000 ms 

b) Retrieving specific service by service name 

‘‘Skype’’ service was searched once again to test the system behaviour. The system response 

time was extremely efficient and a faster response was experienced. The mean time was found to 

be 40.625 ms and the response time experienced for each reading can be seen in chart 6-6 

displayed below 

 

Chart 6-6 Retrieving services by service name when number of services registered are 100 

The readings time for retrieving a service by its service name is as follows 
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c) Retrieving services by service type 

The service type instances were also increased in our OWL file to test how the system 

scales to the increased number of service type along with the services. The system was 

still observed to be efficient and the service search by it service type was performed in a 

competent way. No major fluctuations were observed in the system behaviour. The mean 

time for service type lookup was found to be 196.250 ms. Time consume for retrieving 

the services can be seen in chart 6-7 below.  

 

Chart 6-7 Retrieving services by service Type when number of services registered are 100 

The readings time for retrieving a service by its service type is as follows 

Reading 1                       171.875 ms 

Reading 2                        187.500 ms 

Reading 3                       293.750 ms 

Reading 4                      171.875 ms 
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d) Retrieving services by Keyword 

When the services were tried to be retrieved by keyword lookup the system behaved slower 

than the preceding both cases as expected. ‘‘Food’’ was used as the keyword to search all the 

available services relevant to it and 17 services were returned as a result of search criteria. As 

explained earlier these services were not only the result of the services which were stored in 

database with following keywords bur also which share the equivalent relationship with these 

values. The system did scale well in this case as well and performed efficiently. Time 

consume for retrieving the services when performing keyword search can be seen in chart 6-8 

below. The mean time was found to be 237.034. 

 

Chart 6-8 Retrieving services by Keyword lookup when number of services registered are 100 

The readings time for retrieving a service by keywords is as follows 
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6.2.3. Service Repository with 250 services 

Total number of services was increased to 250 whereas service type was increased to 50. This 

scenario was considered in order to develop a concrete view of the system behaviour at regular 

interval of times.  

a) Retrieving All Services 

As experienced previously the system response was slower while retrieving all services once the 

number is been increased to 250.  The mean time was found to be 787.5.500 ms for the five 

reading been carried out to retrieve all the services. The reading values are been display below in 

chart 6-9 below 

 

Chart 6-9 Retrieving all services when number of services registered are 250 

The readings time for discovering all services are as follows 
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b) Retrieving specific service by service name 

‘‘Skype’’ service was searched once again to test the system behaviour when the total number of 

services were increased to 250. The system response time was extremely efficient just like the 

prior cases. The mean time was found to be 62.50 ms and the response time for each reading can 

be seen in chart 6-10 displayed below 

 

Chart 6-10 Retrieving services with service name when number of services registered are 250 

The readings time for retrieving a service by its service name is as follows 
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c) Retrieving services by service type 

The service types were also increased to fifty along with the value of services to take a closer 

look at system behaviour. Service type ‘Telephony’ was searched and 8 services were returned. 

The services returned was a result of database lookup as well as OWL look up in order to 

determine the relationship that exist through OWL file i-e parent, child etc. The system is 

observed to be behaving stable with service lookup search as efficient discovery is experienced. 

The readings are illustrated below in chart 6-11. 

 

Chart 6-11 Retrieving services by Service Type with no. of services 250 

The readings time for retrieving a service by its service type is as follows 
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d) Retrieving services by Keyword 

When the services were tried to be retrieved by keyword lookup the system behaved a bit slower 

as expected. Once again the search was conducted by providing the keyword ‘‘Food’’ and 22 

services were retrieved as a result of it. The response was a bit slower compared to service name 

or service type search but still it was quiet efficient considering the syntax matching that is being 

conducted in the database and then the lookup that is performed in ontology files. The mean time 

for key word lookup with 250 services stored in repository was found to be 450.094 ms. all five 

reading that were carried out are displayed in chart 6-12 below and reading value can also be 

seen beneath that. 

 

Chart 6-12 Retrieving services by keyword when number of services registered are 250 

The readings time for retrieving a service by its service name is as follows 

                                           Reading 1                              453.125 ms 

                                           Reading 2                               424.376 ms 

                                           Reading 3                               413.436 ms 

                                           Reading 4                              472.505 ms 

                                           Reading 5                              492.015 ms 

__________ 

                                           Mean Reading Value                  451.091 ms 

360

380

400

420

440

460

480

500

1 2 3 4 5 Mean

Retrieving by Keywords

1

2

3

4

5

Mean

Reading

Timems



 
Chapter 6                                                                                                                                    Testing  

82 
 

6.2.4. Service Repository with 500 services 

Fourth interval for testing was decided at 500 services with 75 service types. This was one of an 

important real time test by adding a lot of services in the system to monitor the system behavior. 

It will make it easier to understand how the system will behave in real time.  

a) Retrieving All Services 

When all services were retrieved the system behaved slower as estimated, however no major 

fluctuation in retrieval time was being observed that can be seen in chart 6-13 displayed below. 

The mean time was found to be 1193.75 ms. 

 

Chart 6-13 Retrieving all services when number of services registered are 500 

The readings time for discovering all services are as follows 
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b) Retrieving specific service by service name 

‘‘Skype’’ service was searched once again to test the system behaviour when the total 

number of services were increased to 500. The system response time was extremely efficient 

as anticipated and been observed in previous cases. The mean time was found to be 78.125 

ms.The response time for each reading can be seen in chart 6-14 displayed below 

 

 

Chart 6-14 Retrieving services by name when number of services registered are 500 

The readings time for retrieving a service by its service name is as follows 
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c) Retrieving services by service type 

The service types were further increased to seventy five along with the value of services 

to make the system more real time and tests should be more efficient accordingly. Service 

type ‘Telephony’ was searched once again and 8 services were returned as no new 

services were registered in this service type category. The system is observed to be 

behaving stable with service lookup search as efficient discovery is experienced and no 

major fluctuation in real time was noted. The readings are illustrated below in chart 6-15. 

 

 

Chart 6-15 Retrieving services with service type having 500 services 

The readings time for retrieving a service by its service type is as follows 
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d) Retrieving services by Keyword 

The last test for this case was key word lookup in order to retrieve the desired services. Once 

again ‘Food‘ was searched and the mean time taken for returning the list of matching 

services was found to be 1487.50 ms. It was slower for the reason explained previously, 

however it was still efficient considering that 27 services were look up from 500 services 

based on syntax matching and then performing ONTOLOGY file matching accordingly. No 

major fluctuation of timing was experienced while conducting this testing. The readings are 

illustrated in chart 6-16 below 

 

Chart 6-16 Retrieving services by keyword when number of services registered are 500 

The readings time for retrieving a service by its service name is as follows 
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6.2.5. Service Repository with 1000 services 

Fourth interval for testing was decided at 500 services with 75 service types. This was one of an 

important real time test by adding a lot of services in the system to monitor the system 

behaviour. It wil make it easier to understand how will the system will behave in real time.  

a) Retrieving All Services 

When all services were retrieved the system no major difference were observed except a slight 

slower as estimated, however no major fluctuation in retrieval time was being observed that can 

be seen in chart 6-17 displayed below. The mean time was found to be 2345.6 ms. 

 

Chart 6-17 Retrieving all services when number of services registered are 1000 

The readings time for discovering all services are as follows 
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b) Retrieving specific service by service name 

‘‘Skype’’ service was searched once again to test the system behaviour when the total 

number of services stored in database are 1000. The system response time was extremely 

efficient as been observed previously. The mean time was found to be 110.653 ms.The 

response time for each reading can be seen in chart 6-18 displayed below 

 

 

Chart 6-18 Retrieving services by name when number of services registered are 1000 

The readings time for retrieving a service by its service name is as follows 
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c) Retrieving services by service type 

The service types were further increased to hundred for this final test case along with the 

value of services to make the system more vulnerable to real time. Service type 

‘Telephony’ was searched once again and 17 services were returned as response by the 

application. New services were registered in this service type category which results in 

retrieval of more services. The system is observed to be behaving a bit slow because of 

database and then OWL lookup accordingly. The readings are illustrated below in chart 

6-19. The mean time has been found to be 1340.635 ms in this case. 

 

Chart 6-19 Retrieving services with service type having 1000 services 

The readings time for retrieving a service by its service type is as follows 
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Reading 4                      1321.125 ms 

Reading 5                      1354.450 ms 

__________ 

                                        Mean Reading Value                   1340.635 ms  
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d) Retrieving services by Keyword 

When the services were tried to be retrieved by keyword lookup the system behaved a bit 

slower as expected. Once again the search was conducted by providing the keyword ‘‘Food’’ 

and 31 services were retrieved as a result of it. The mean time for key word lookup with 

1000 services stored in repository was found to be 4030.492 ms. all five reading that were 

carried out are displayed in chart 6-20 below and reading value can also be seen beneath that. 

 

Chart 6-20 Retrieving services by keywords when services registered are 1000 

The readings time for retrieving a service by its service name is as follows 

Reading 1                    4055.975ms 

Reading 2                     3815.325ms 

Reading 3                     4197.125ms 

Reading 4                    3815.325 ms 

Reading 5                    4268.715ms 

__________ 

          Mean Reading Value                4030.492ms 
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6.3 System Overall Behavior 

As per the requirements specified previously a service should be discovered really fast.  The 

system is expected to take minimum time in retrieval of service by its service name as only 

database search will be performed, whereas more time is consumed for ServiceType and 

Keyword lookup as ontologies are also looked up after database lookup. Chart 6-21 illustrates 

the overall system behavior for retrieving of services as per user request i-e Service name, 

service type etc with different number of services registered in system repository.  

 

Figure 6.21 System Overall Behavior 

 

The x-axis shows the number of services used for testing while y-axis is the time taken (in 

milliseconds) to return the results based on different types of parameters used in discovery of 

services which are: 

 

1)      retrieving all available services 

2)      retrieving by service name 

3)      retrieving by service type 

4)      retrieving by keywords 

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

50 100 250 500 1000

T
im

e
 (

m
s)

No. of services

System Overall Behavior

all available services

service name

service type

keyword



 
Chapter 6                                                                                                                                    Testing  

91 
 

The mean reading value for each number of service tested is used to plot the graph hence this 

result is retrieved. The system behaved exactly as expected and been discussed at the beginning 

of this section. Service name lookup was really fast and scales well to real time tests that were 

conducted at different intervals by adding more services in the system repository. However the 

service lookup and key word look were considerably slower then preceding service name lookup 

as after retrieving the information from the database, lookup was carried out in ontologies to 

provide semantic meaning to the search and service discovery, hence making it gradually slower. 

However the system overall real time performance was found to be satisfactory and it scales well 

to the increased number of services.  

 

The System performance can be further enhanced by introduction of a powerful server to host 

this application. Search tends to be slower once more resources are being consumed at the 

machine so a powerful server will ensure more efficiency. OWLDOTNETAPI can also be edited 

for scaling well to large number of services and will definitely help a great deal to increase the 

architecture efficiency. Due to the shortage of time this cannot be conducted in this master thesis 

but can definitely be an area of interest for future work. 
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Chapter 7  

7 Conclusion 
 

‘‘There’s two possible outcomes: if the result confirms the hypothesis, then you’ve made a 

discovery. If the result is contrary to the hypothesis, then you’ve made a discovery.’’ 

 

Enrico Fermi 

This chapter summarizes the works done in this master thesis. Major contributions through this 

research oriented project along with the result obtained are discussed in detail. We will also 

discuss the test results that have been conducted in order to measure the system efficiency in real 

time environment along with the future work that should be focused on. This chapter is 

organized as follows 

7.1) Major Contribution of this thesis 

7.2) Summary of thesis 

7.3) Future Work 
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7.1 Major Contribution of this thesis  

The aim of this thesis has been to identify requirements for future mobile services, design an 

architecture that fulfill future mobile services requirements and implement the design 

accordingly. The major contributions in this project are therefore summarized as follows: 

 

• Requirements for future mobile services are proposed by foreseeing that how future mobile 

environment will be shaping in years to come.  Based on these requirements current well 

known service discovery architectures are evaluated and their shortcomings were specifically 

identified. 

 

• Design of system for future mobile services has been proposed. In traditional service 

discovery architectures no method has been specified to define services as equivalent or 

partially equivalent to one another, however considering ubiquitous nature of the future 

mobile environment it will be really important. The system has been designed to allow the 

services to be introduced by anybody at any time, to be defined as equivalent or partially 

equivalent to any other service of its type along with multi language support. No formal 

approval is required for the introduction of a service which makes this design really flexible. 

 

• Implementation is successfully carried out for the design proposed. The development was 

carried out in Windows environment and makes the system usable for any user in mobile or 

normal environment. This implementation is for real-life usage, and makes it possible to use 

service discovery in any distributed application by using a simple graphical user interface. 

The class view, Database tables sample data and source code is presented in Appendix A. 

System design and its implementation has been submitted for approval to WIMOB 

conference 2010 in Canada. The paper draft can be found in Appendix B. 

 

• Testing was conducted considering use scenarios which are still lacked in current service 

discovery architectures. The system was evaluated specifically for scalability in the real time 

environment and was found to be quiet efficient and stable in most of the scenarios. 
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7.2 Summary of thesis 

We successfully created a system that fulfills the requirement of our system allowing anyone to 

act as a service provider and introduce a service at any time. The services can be introduce in any 

language by the service provider as well as can define it equivalent to any existing service. The 

service can be searched by its service type or service name. Moreover the user can also retrieve 

similar services by requesting any specific service type or all available services registered. The 

system provides Semantic meaning to the service discovery by using OWL to define the 

relationships among the services.  

 

We consider five real time use scenarios in order to check the system functionality that is 

missing in current architectures. Same services with different names, different services with 

same names, services in multiple languages, and partial equivalent services were specifically 

identified and were found to be successfully providing semantics to the service discovery. 

Anyone can introduce a service at any time and the flexibility proposed was ensured. The system 

was tested for scalability by adding a lot of services and at different check points. The system 

behaved quite efficient in service name search and all the desired information was retrieved 

really fast. The service type lookup and key word look up was found to be a bit slow because the 

system once searching in database has to look accordingly in OWL to find the equivalent and 

ensure semantic needed  by the service discovery. The system resources were found to be one of 

an important feature at time of searching so a powerful server is proposed in order to implement 

it in real time environment.  

7.3 Future Work  

Due to the shortage of time there are several tasks that could not be completed during the work 

of this thesis. Further works include: 

i. Carry out larger experiments and test on the future service discovery system with: 

a. various number of clients 

b. different bandwidth 

c. by increasing number of Parents (ParentType) 

d. complicated service ontology 
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ii.  To move the future service discovery system to a real mobile and wireless environment (the 

Client is implemented on real mobile phones). The connection of the mobile could be either 

via the mobile network or the local WLAN etc. It might also be interesting to carry out 

experiment with a larger number of mobile phones to challenge the capacity and robustness 

of the service discovery. 

 

iii.  To have a distributed ontology framework on the future service discovery system as 

illustrated in Figure 7-1. 

 

Figure 7-1 Distributed ontology framework for future service discovery system 



Appendix A.1                                                                                                                    Class Description              

96 
 

Appendix A 

A.1 Class Description 
 

A1.1. Base Class: 

The Base class provides the main connectivity with the data base. In addition to connectivity it 

provides the database functions such as (Insert, update and retrieval). This class has a number of 

overloaded methods to extend the functionality. The Base class is inherited by three different 

classes to reuse the code. 

The Base class exposes the following method and fields. 

Method 

 Name Description 

 
ExecuteDataSet(string sqlString) The method argument takes the sql string and returns 

dataset. 

 
ExecuteDataSet(string 
storeProcedure, params object[] 
KeyValueParameters) 

The method argument takes the stored procedure & key 
value parameter and returns dataset. 

 
ExecuteDataTable(string sqlString) It returns the data table for both methods; the only 

difference is the argument. 

 
DataTable 
ExecuteDataTable(string 
storeProcedure, params object[] 
KeyValueParameters) 

 

 
ExecuteNonquery(string sqlString) The method is used for (update, delete, insert) & return 

number of rows affected. 

 
ExecuteNonquery(string 
storedProcedure, params object[] 
KeyValueParameters) 

 

 
ExecuteReader(string sqlString) It returns the reader object for both methods; the only 

difference is the argument. 

 
ExecuteReader(string 
storedProcedure, params object[] 
KeyValueParameters) 

 

 
ExecuteScalar(string sqlString) It returns a single value. 

 
ExecuteScalar(string 
storedProcedure, params object[] 
KeyValueParameters) 
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Fields 

 Name Description 

 connectionString A protected field type of SqlConnection.  

 sqlAdapter A protected field type of SqlDataAdapter. 

 sqlComm A protected field type of SqlCommand. 

 sqlConn A protected field type of SqlConnection. 

 sqlReader A protected field type of SqlDataReader. 

 

A1.2. DALService  

The Data Access layer service (DALService) class inherits the Base class and reuses its basic 

functionality as connectivity with the database, insertion and retrieval. Additionally it provides 

the functionality to access the service table in the database. This includes adding of equivalent 

service id, finding of service, retrieval of all the services on matching and insertion of service.  

The DALService exposes the following members. 

Constructor 

 Name Description 

 DALService() Initializes a new instance of the DALService class. 

Methods 

Access 
modifier 

Name Description 

 AddEquivalentServiceId(int ServiceId, 
int EquivalentServiceId) 

It creates the equivalent relation in the data base. 

 FindServiceByName(string 
ServiceName) 

It returns the data table for the service name 
specified in argument. It’s a wild card matching. 

 GetAllEquivalent(int ServiceId, 
ArrayList serviceIds) 

It adds all the service ids which are equivalent to 
specified service id in array. 

 GetEquivalentServiceId(int ServiceId) It return array id for those services which are 
equivalent with the specified argument.  

 GetServiceByName(string 
ServiceName) 

The method returns the data table for exact service 
name. 

 GetServiceByServiceId(int ServiceId) Returns the complete information in data table for 
a service id. 

 GetServiceByServiceTypeId(int[] 
ServiceTypeId) 

It returns the data table for more than one service 
type id. 

 GetServiceByServiceTypeId(int It returns the data table for a service type id. 
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ServiceTypeId) 

 Insert(string ServiceName, int 
ServiceTypeId, string ServiceURI, 
string ServiceDescription) 

It returns the service ID generated by the data 
base. 

 

A1.3. DALServiceType  

The Data Access layer service type (DALServiceType) class inherits the Base class.  In addition 

to the base class functionality it also provides access to the servicetype table in the database. This 

class not only accesses the servicetype table but it has to ensure the consistency between the 

database table and the ontology.  

DALServiceType exposes following methods and fields. 

Fields 

 Name Description 

 _owlHelper An object of OWL helper class to work with ontology. 

Constructor 

 Name Description 

 DALServiceType() Initializes a new instance of the DALServiceTyp class. 

 

Methods 

 Name Description 

 GetServiceByServiceTypeId(int 
ServiceTypeId) 

It return the service type and the parent type based of 
service id passed as an argument 

 GetServiceTypeId(ServiceType 
serviceType) 

It return the database id of a service type based on the  
object of servicetype as an argument 

 GetServiceTypeIdsHierarchy(int 
ServiceTypeId) 

It returns the parent servicetype id i-e an array of 
servicetype id for passed ServiceTypeId.  

 Insert(string ServiceTypeName, string 
ServiceTypeURI, int ParentTypeId) 

It inserts a servicetype in the database. 

 Insert(ServiceType newType) It insert the servicetype but first it checks for the parent of 
passed servicetype id. If the parent does not exist then it 
first add the servicetype id for the parent and then perform 
the insertion of servicetype. 
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A1.4. DALKeyword   

The Data Access layer keyword (DALKeyword) class inherits the Base class for reusability of 

the code such as the basic connectivity with the database, insertion and retrieval.  It provides the 

additional functionality to access the keyword in the database. Moreover it ensures not to use the 

same keyword for two services. At time of registering a service it first checks whether the same 

keyword is already stored in database for any other service. If any value is matched then instead 

of adding the keyword the keywordID is used to avoid the redundancy. The DALKeyword 

exposes the following methods. 

Constructor 

 Name Description 

 DALKeyword () Initializes a new instance of the DALKeyword class. 

Methods 

 Name Description 

 GetServiceIdByKeyword(string 
Keyword) 

It returns the array of service id associated with the passed 
argument. 

 Insert(int ServiceId, string Keyword) It inserts the keyword with its associate service id. 

 

A1.5. Discover Members 

The Discover class contains the overall logic of web service, the methods of discover class are 

directly exposed to the client to use them. The ASP.net page also consumed this web-service. 

The Discover class is performing the most prominent functionalities by calling other class 

methods in the same package, the discover class performs different tasks such as adding new 

service type, finding service by name, keyword, serviceId and by service type. The discover class 

also performs the process of service registration.The discover class exposes the following 

members. 

Constructor 

 Name Description 

 Discover() Initializes a new instance of the Discover class. 

Method 

 Name Description 

 
AddServiceType(ServiceType serviceType) This method adds a service type in the 

database and in ontology it creates a class. 
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FindService(string ServiceName) It find the service based on name 

 
FindServiceByKeyword(string Keyword) It returns all the service which associate 

with the keyword. 

 
GetServiceById(string ServiceId) It returns the service by service id. 

 
GetServicesByServiceType(ServiceType 
srvType) 

It returns all services by passing the service 
type. 

 
GetServiceTypes() It returns all available service types. 

 
RegisterService(Service srv) It registers the service  

Fields 

 Name Description 

 _owlHelper An object of OWL helper class to work 
with ontology. 

 _strBaseURI This field stores the main URI to indicate 
each class in the ontology. 

 _strOwlFile File location of Ontology. 

 

A1.6. OwlHelper Members 

The OwlHelper class uses the OWLDOTNET API to perform different tasks in ontology. These 

tasks contains searching of class from ontology on the basis of service type name, Each of the 

class in the ontology contains an URI, this URI uniquely identify the class but this URI is a long 

string include the name of the class, OwlHelper is used to extract the name of class from the 

URI. Along this the OwlHelper returns all the equivalent classes from the ontology. 

The OwlHelper exposes the following members. 

Constructor 

 Name Description 

 OwlHelper() Initializes a new instance of the OwlHelper 
class. 

Method 

 Name Description 

 ExtractName(String node) It extracts the class name from the URI in 
the ontology. 

 
GetEquivalentClasses(string ServiceTypeURI) It returns all the equivalent classes for 

passed serviceTypeURI from the ontology. 

 
GetServiceType() It returns all the classes from the ontology. 
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SearchServiceType(string ServiceTypeName) It returns the matched class for the specified 

argument. 
Fields 

 Name Description 

 _strBaseURI This field stores the main URI to indicate 
each class in the ontology. 

 _strOwlFile File location of Ontology. 

  

A1.7. Service Members 

The service class is a representation of each individual service which is being used to perform 

different functions associated with service such as service registration, service retrieval and 

service matching. Service class includes overloaded constructor, properties: (attributes such as 

description of service, equivalent services, associated keyword, name of the service, address 

URI) and different fields. 

Constructor 

 Name Description 

 Service() Initializes a new instance of the Discover class. 

 Service(string Name, string 
URI, string Description, 
int[] EquivalentServiceIds, 
string[] Keywords, 
ServiceType Type,  
        string StateVariables, 
string Actions, string 
Events) 

Overloaded constructor 

Properties 

 Name Description 

 Description String field to store short description about the service 

 EquivalentServiceIds Array of all equivalent service ids 

 Keywords Associated keywords 

 ServiceId Integer ID for Service 

 ServiceName To store the name of service. 

 ServiceURI URI of service  WWW.GOOGLE.COM 

 Type OBJECT OF SERVICE TYPE 
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A1.8. ServiceType Members 

The servicetype class is a representation of each individual servicetype which is being used to 

perform different functions associated with servicetype such as servicetype registration, 

servicetype retrieval and servicetype matching.  Servicetype class includes overloaded 

constructor, properties: (attributes such as All equivalent classes in the ontology, Parent (service 

type) of the servicetype, name of the servicetype in the ontology, associated keyword, unique 

URI in the ontology and different field. 

The Base type exposes the following members. 

Constructor 

 Name Description 

 ServiceType() Initializes a new instance of the ServiceType class. 

 ServiceType(string 
ServiceTypeName, string 
ServiceTypeURI, string[] 
EquivalentClasses, 
ServiceType 
ParentServiceType) 

Overloaded constructor 

Fields 

 Name Description 

 _parentType Value of Parent type e.g (Transport is parent type of TAXI). 

 _strEquivalentClasses Value of equivalent e.g(Cab is equivalent of Taxi) 

 _strServiceTypeName Value of the servicetype itself e.g(Taxi) 

 _strServiceTypeURI This field stores the main URI to indicate each class in the 
ontology. 
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A.2 Database table overview 

       Microsoft SQL server 2005 enterprise edition (46) was used as repository during implementation 

of this project. The database was used to store all the available service, service type, service URI, 

keywords for each specific service as well as equivalent for each service or service type if any 

exist. A brief overview of each table is discussed below whereas the relationships between these 

tables can be seen in ERD diagram illustrated Figure 5-3. For more detail on each  table sample 

data is illustrated for each table saperately in Appendix A.2 which can be referred to if required. 

A2.1. Service Table 

The table service is used to store the data for every registered service. This table typically 

contains each service id which is generated by the database at the time of registration of service. 

The second field is ServiceName which is a string value to store the name in Unicode (the 

Unicode is used to support characters of different languages. For any service there must be 

parent service which describes the belonging type or the classification of service, this association 

can be possible by using the servicetypeId as a foreign key from the table of serviceType. Until 

now there is no field which define the address of the service from where a service can be invoked 

this is done with ServiceURI to store the URI of a service. To ensure that the user has selected 

appropriate service there is a field called ServiceDescription to store brief description of the 

service which could be helpful to select the most appropriate service. 

The Sample data for service table 

ServiceI
d 

ServiceName ServiceTypeId ServiceURI ServiceDescription 

http://www.jumeirah.com/en/hotel 108 برعلا جرب 78
s-and-
resorts/destinations/dubai/burj-al-
arab/ 

burj Al rab on of the 
best restaurant 

79 Cassis 
Restaurant 

155 http://www.cassis-gourmand.com/ restaurant in Jakarta 

86 Book 161 www.amazon.com/harrypotter Harry Potter Novel 
story 

87 Book 163 www.eazyjet.com/book online Booking 
service EazyJet 
airline 
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A2.2. Service Type Table 

This table is used to store every service type which is being inserted in the ontology. There are 

two reasons for doing this. 

                    i.            First it used to ensure the relationships between the service and their service type 

along with the equivalent services, this is done to reduce the complexity of the 

system. 

                  ii.             The second reason is to increase the performance of the system. By decreasing 

lookups in the ontology which take longer time as compare to database lookup. 

The service type table is used to maintain the record of the classes which has been inserted in the 

ontology at the time of registering service type. At the time of registration of service type the 

database allocate an auto-generated id which is stored in ServiceTypeId field. The service name 

could also be retrieve from the ontology but due to the performance issue it is better to store in 

database field instead of ontology, the serviceTypeName is used to store the name of the service 

type. The servicetype shows a relation between parent and child including the grandparent 

relation, for grandparent a servicetype could be child of another service type. To achieve the 

grandparent relation the ServiceTypeParentId is used, this relation is not only used for the 

grandparent but it also used for the semantic application. There must be some link to identify the 

service type from ontology this is done by storing the unique URI for each class in the ontology 

in ServiceTypeURI. 

Sample data for service type table 

ServiceTyp
eId 

ServiceTypeName ServiceTypeURI ServiceTypeParen
tId 

108 restaurant http://www.semanticweb.org/ontologies/de
mo1.owl#restaurant 

107 

155 restoran http://www.semanticweb.org/ontologies/de
mo1.owl#restoran 

-1 

161 Novel http://www.semanticweb.org/ontologies/de
mo1.owl#Novel 

160 

163 EazyJet http://www.semanticweb.org/ontologies/de
mo1.owl#EazyJet 

162 
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A2.3. EquivalentService 

One of the goal of service discovery is to return the services which has partial features. This type 

of services are stored in the system with the title of equivalent services. To store the equivalent 

service there must be two services (ServiceId and EquivalentServiceId) to be equivalent of each 

other and uniquely identify the relation ie EquivalencyID. 

Sample data for EquivalentService table 

EquivalencyId ServiceId EquivalentServiceId 
16 91 83 
 

A2.4. ServiceKeyword 

The keyword table contains the auto generated KeywordId for every keyword. This table is used 

to store the keyword for the later usage of keyword. 

Sample data for service keyword table 

ServiceKeywordId ServiceId KeywordId 
79 78 60 
80 78 61 
81 78 62 
82 79 60 
83 79 63 
 

A2.5. Keyword 

The service keyword table has been designed to avoid redundancy of keywords. For this the table 

stores the association between the keywords and services. To accomplish this it contains auto 

generated ServiceKeywordId for every association between the service (ServiceType) and 

keyword (KeywordId). 

Sample data for serviceKeyword table 

KeywordId Keyword 
60 Restaurant 
61 Dubai 
62 Italy 
63 Karachi 
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Appendix B. Publication 
 

 

 The following paper draft has been submitted to WIMOB conference 2010 under category 
‘‘ Ubiquitous Computing, Services and Applications’’.  The conference is scheduled to be held 
in October whereas the decision on the approval of this paper draft will be announced by end of 
July. The draft of the paper is attached from next page. 
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