
June 2010
Van Thanh Do, ITEM

Master of Telematics - Communication Networks and
Networked Services (2 year)
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Service Discovery for Future Mobile
Services

Atif Bhatti
Imran Aslam Choudhary

Problem Description
In current mobile systems, services are limited and known by both the user and the mobile device.
It is hence quite simple for a user roaming onto a location to make use of the services available at
this location. In the near future, mobile devices will be capable of connecting to multiple
heterogeneous mobile network systems simultaneously such 3G, WLAN, WIMAX, UWB, etc. and
have access to multiple services that are fully, partially equivalent or completely different in terms
of functionality, performance, quality, security, price, etc. The challenge is then to discover and
recognize these services in order to offer them to the user. It is also crucial that the service
discovery and matching are accomplished in acceptable amount of time. The first goal of this
project is to study, and evaluate existing service discovery system, protocols and procedure.
Secondly, the project is aiming at designing a service discovery for future mobile services. The
project consists of the following tasks:
o Study of current service discovery systems
o Requirements of future mobile services
o Evaluation of current discovery systems
o Specification of future service discovery systems
o Design of a service discovery for future mobile services

Assignment given: 20. January 2010
Supervisor: Van Thanh Do, ITEM

Dedication

We would like to dedicate this Master Thesis to our beloved country

‘‘Pakistan’’ which has given us identification and confidence to stand proud

in this world.

We are also thankful to our families without whom support this must have

never been possible. Thank you for all the unconditional love, guidance, and

support that you have always given us. Thank you for everything. It will take

another thesis to express how special we feel to have you as part of our lives.

i

Abstract

The pervasive computing environment for heterogeneous network is on a continuous rise. The

ability to interact and control network devices with different functionalities within office and

home environment could be very beneficial to a lot of users. The service discovery in computers

and mobile devices enabled them to interact with one another through wireless and

heterogeneous wired networks. Services advertise their existence in a dynamic way and devices

are designed with this capability to discover these services and its properties automatically.

These devices are though based on different technologies but are still able to communicate and

discover one another based on existing service discovery architectures. It is notable that a

significant number of networked devices are now mobile and these mobile devices make service

discovery more challenging.

In future mobile multi-domain multi-language environments, a service can be anything and

introduced by anybody. Consequently, same or equivalent services may have different names

and services with same name or type may be completely different. Existing service discovery

systems are incapable of handling these situations.

We have implemented a service discovery system which supports semantics to service

descriptions. It allows any user to act as a service provider and introduce any service at any time.

The service provider can define any service as equivalent to any existing service and in any

language as wanted. In addition, it is capable to find services that are not exact matches of the

requested ones. More semantics are introduced through attributes like EquivalenceClass,

ParentType and Keywords. The test conducted on this system in real time proves that the system

is efficient and can be applied in real life.

ii

Preface

This report serves as a Thesis in Network and Quality of Service, in the final semester of the

Master's Program in Computer Network and Network Services at Norwegian University of

Science and Technology, NTNU. The assignment was given by Telenor and the project has been

carried out at Department of Telematics.

This project has been a challenging task in the complex but very exciting field of Service

Discovery. Working on a research topic with such a vast scope has been really challenging and

involves lots of brainstorming.

iii

Acknowledgements

We would like to thank our supervisor, Nor Shahniza Kamal Bashah for her valuable input in

every weekly meeting. Her guidance, enthusiasm and knowledge have contributed so much in

this research work. We would like to express our gratitude to her.

Finally we would like to thank our Professor, Dr Do van Thanh, who always has been a source of

inspiration during this project. We are really thankful to him for his continuous guidance and

thoughtful ideas.

Trondheim, June 15, 2010

Atif Bhatti Imran Aslam Choudhary

iv

Abbreviations
3G Third Generation (Mobile Communication System)
DA Directory Agent
DAML-S DARPA Agent Mark-up Language for Services
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
GENA General Event Notification Architecture
GPRS General Packet Radio Service
GSM Global System for Mobile
HTTP Hyper Text Transport Protocol
IANA Internet Assigned Numbers Authority
IP Internet Protocol
ISO International Standards Organization
LUS Look up Service
NAT Network Address Translation
NIC Network Interface Card
OWL
OS

Ontology Web Language
Operating System

P2P Peer to Peer
PDA Personal Digital Assistant
RDF Resource Description Framework
RMI Remote Method Invocation
SA Service Agent
SLM Salutation Manager
SLP Service Location Protocol
SMS Short Message Service
SOAP
SQL

Simple Object Access Protocol
Structured Query Language

SSDP Simple Service Discovery Protocol
SSL Secure Socket Layer
TCP/IP Transmission Control Protocol/Internet Protocol
TM Transport Manager
UA User Agent
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol
UIC UPnP Implementers Corporation
UPnP
URI

Universal Plug and Play
Uniform Resource Identifier

URL Uniform Resource Locator
UWB Ultra-Wideband
VOIP Voice over Internet Protocol
VPN Virtual Private Network

v

WLAN Wireless Local Area Network
WIMAX Worldwide Interoperability for Microwave Access
WSDL Web Services Description Language
 XML Extensible Markup Language

vi

Definitions

Service a mechanism enabling the end-user’s access to one or more capabilities

Network service service offered to the user by a network system

Service availability the time when the service can be accessed

Service continuity the ability for a user to maintain an ongoing service during mobility

across domains, networks, and devices

Service discovery the process of finding services that match the requirements of the

service requestor

Service advertisement the procedure to announce the service to potential users/consumers

Service search the procedure to search and find the desired services

Service lookup/service
request

the mediation of a request for a service

Service matching the process of comparing the service request against the available

service advertisements and determining which service best satisfies the

request

Equivalent service The service which has the same attributes or functionality is considered

as equivalent service.

Parent type The service which is being defined as a parent service due to the

similarities are being inherited by the service the process of comparing

the service request against the available service advertisements and

determining which service best satisfies the request.

vii

Table of Contents
1 Introduction ... 1

1.1 Motivation .. 2

1.2 Problem Statement ... 4

1.3 Methodology .. 5

1.4 Organisation of Thesis ... 8

2 Background .. 9

2.1 Existing Service Discovery Architectures.. 10

2.1.1 Universal Plug and Play .. 10

2.1.2 JINI ... 11

2.1.3 Service Location Protocol (SLP) .. 12

2.1.4 Salutation .. 12

2.2. Web Services .. 13

2.2.1. Simple Object Access Protocol ... 14

2.2.2. Web Service Description Language .. 16

2.2.3. UDDI... 18

3 Requirements of Future Mobile Services .. 21

3.1. Requirement for Future Mobile Services ... 22

3.1.1. A service in the future can be anything .. 22

3.1.2. A service can be introduced by anybody at any time ... 22

3.1.3. In a mobile environment, services must be discovered very fast: 24

3.1.4. It is crucial not to misunderstand or confuse one service with another one 25

3.1.5. All the services available in an area must be discovered .. 26

3.1.6. It is also essential to verify that a service is offering what it announces 26

3.1.7. It is also essential to be able to conclude that a service is trustful 26

3.1.8. The user must be able to move everywhere in the world 26

3.1.9. There are many services and service discovery systems it is important to ensure
interoperability... 27

3.2. Evaluation of existing Service Discovery Architectures .. 29

3.2.1) Summarizing the evaluation .. 30

viii

4 Design .. 32

4.1. Service Registration: .. 34

4.2. Discovery of Service: ... 37

4.3. Select a Service .. 39

4.4. Find A Service:... 41

5 Implementation .. 44

5.1. Overview of the system architecture .. 45

5.1.1. Web Service Client ... 45

5.1.2. Development Environment ... 46

5.1.3. Support for ontologies: ... 47

5.2. Class Overview .. 47

5.2.1. Base Class: .. 48

5.2.2. DALService .. 48

5.2.3. DALServiceType .. 48

5.2.4. DALKeyword ... 48

5.2.5. Discover .. 50

5.2.6. OwlHelper ... 50

5.2.7. Service... 50

5.2.8. ServiceType .. 50

5.3. Database Overview .. 51

5.3.1. Service... 52

5.3.2. ServiceType .. 52

5.3.4. ServiceKeyword .. 53

5.3.5. Keyword .. 53

5.4. Main methods ... 53

5.4.1. Register Service .. 53

5.4.2. Lookup by Service Type: .. 55

5.4.3. Lookup by Keyword: .. 57

5.4.4. Get Service by Service name: ... 58

6 Testing... 60

6.1 Use Scenarios ... 61

ix

6.1.1. Anybody can Introduce a service at anytime .. 61

6.1.2. Similar services in different languages. .. 63

6.1.3. Same services with Different Name ... 65

6.1.4. Different Services with Same Name ... 66

6.1.5. Partially Equivalent Service .. 66

6.2. Scalability ... 69

6.2.1. Service Repository with 50 services ... 70

6.2.2. Service Repository with 100 services ... 74

6.2.3. Service Repository with 250 services ... 78

6.2.4. Service Repository with 500 services ... 82

6.2.5. Service Repository with 1000 services ... 86

6.3 System Overall Behavior ... 90

7 Conclusion .. 92

7.1 Major Contribution of this thesis ... 93

7.2 Summary of thesis .. 94

7.3 Future Work ... 94

Appendix A .. 96

A.1 Class Description .. 96

A.2 Database table overview ... 103

Appendix B. Publication ... 106

Bibliography .. 114

x

Table of Figures

Figure 1-1 Existing Network Scenarios .. 2
Figure 1-2 Current Scenarios .. 3

Figure 1-3 Future Scenario ... 4
Figure 1-4 Common view of design science research process……………….……………………5
Figure 2-1 Web Service Architecture ... 14
Figure 2-2 UDDI Service Cloud ... 19

Figure 3-1 Ambiguity in words... 22

Figure 3-2 Relations between services ... 23
Figure 3-3 Language semantics .. 24

Figure 3-4 Fast discovery of service during handoff .. 25
Figure 3-5 Service interoperability ... 27

Figure 3-6 Service discovery interoperability ... 28
Figure 4-1 case diagram of Future service discovery system ... 33
Figure 4-2 Service type description template ... 35
Figure 4-3 Sequence diagram for “Registration of Service” .. 36
Figure 4-4 Collaboration Diagram for Registration of Service .. 37
Figure 4-5 Sequence Diagram for “Discovering services” ... 38
Figure 4-6 Collaboration Diagram for “Discovering Services” ... 39
Figure 4-7 Sequence Diagram for “Service Request” .. 40
Figure 4-8 Collaboration Diagram for Service Type .. 41
Figure 4-9 Sequence Diagram for “Finding a Service” .. 42
Figure 4-10 Collaboration Diagram for “Finding a Service” ... 43
Figure 5-1 Future service discovery system architecture ... 45
Figure 5-2 Class Diagram ... 49

Figure 5-3 Entity Relationship Diagram ... 51
Figure 5-4 Main Loop followed for Registration of Services... 55
Figure 5-5 Main loops for Service Type lookup ... 56
Figure 5-6 Loop followed for Keyword lookup ... 58
Figure 5-7 Loop for Service Name Lookup .. 59
Figure 6-1 User interface to register a new Service Type .. 61
Figure 6-2 User interface to register a new Service SubType .. 62
Figure 6-3 User Registration a new service with newly registered Service Type 62

Figure 6-4 User successfully registering the service received .. 63
Figure 6-5 Service in different languages equivalent to Taxi ... 64
Figure 6-6 Service in different languages equivalent to Taxch .. 64
Figure 6-7 Same services with different name ... 65

xi

Figure 6-8 Different service with same name ... 66
Figure 6-9 Parent type and Subtype relation for telephony .. 67
Figure 6-11 Retrieval of service by service name .. 68
Figure 6-10 Retrieval of services in telephony ... 67

xii

Table of Tables

Table 3-1 Summarizing evaluation of existing architectures ... 30

xiii

Table of charts

Chart 6-1 Retrieving all services when number of services registered are 50 70
Chart 6-2 Retrieving services by service name when number of services registered are 50 71

Chart 6-3 Retrieving services with service type lookup where services registered are 50 72

Chart 6-4 Retrieving services by keywords when number of services registered are 50 73

Chart 6-5 Retrieving all services when number of services registered are 100 74

Chart 6-6 Retrieving services by service name when number of services registered are 100 75

Chart 6-7 Retrieving services by service Type when number of services registered are 100 76

Chart 6-8 Retrieving services by Keyword lookup when number of services registered are 100 77

Chart 6-9 Retrieving all services when number of services registered are 250 78

Chart 6-10 Retrieving services with service name when number of services registered are 250 . 79

Chart 6-11 Retrieving services by Service Type with no. of services 250 80
Chart 6-12 Retrieving services by keyword when number of services registered are 250 81

Chart 6-13 Retrieving all services when number of services registered are 500 82

Chart 6-14 Retrieving services by name when number of services registered are 500 83

Chart 6-15 Retrieving services with service type having 500 services .. 84
Chart 6-16 Retrieving services by keyword when number of services registered are 500 85

Chart 6-17 Retrieving all services when number of services registered are 1000 86

Chart 6-18 Retrieving services by name when number of services registered are 1000 87

Chart 6-19 Retrieving services with service type having 1000 services 88
Chart 6-20 Retrieving services by keywords when services registered are 1000 89
Chart 6-21 System overall behaviour ...90

Chapter 1 Introduction

1

Chapter 1

1 Introduction

“If you go out 10 years, computers are not going to be these rectangular objects we

carry around. They are going to be extremely tiny. They are going to be everywhere.

 There is going to be pervasive computing. It is going to be embedded in the

environment, in our clothing. It is going to be self-organizing.”

Ray Kurzweil, 2007

In this modern era, computer devices and network services are playing an important role to

accomplish our daily tasks. Ranging from classical services as printers, scanners, fax machines to

others common services such as radio, television, air condition, and DVD player, etc. can all be

expressed as “ubiquitous computing”. This term presented by Mark Weiser in (1), means that

computers are present everywhere in our daily environment.

Users should be able to choose and make use of the services that are available to them. Ideally,

they would like to obtain access to the right services immediately, without requiring them to

reconfigure their device. This function should not be noticeable by the user. They should be able

to interact and manage all the devices and services whenever required without any difficulty.

In future, a number of different services will be available but discovering the appropriate service

is a major challenge. For example if a user at a train station is searching for a service “Train

Booking”, but he ended up discovering a service with name ‘‘book’’ which is a service for

lending a book. This is a simple example that highlights the problem but such a discovery

mistake could be very devastating and disastrous in case of emergency.

Service discovery also plays an essential role in ad hoc communications (2). The mobile phone,

Pocket PC and laptop could form an ad hoc network. In such network without administrative

control, the device must be self organizing. For example, the laptop may offer a translation

Chapter 1 Introduction

2

service to mobile phone and the phone may offer internet access service via its General Packet

Radio Service (GPRS) Interface. Since this network is dynamic, there is a need of dynamic and

automatic service discovery functionality. Moreover the voice and data services are expensive on

the conventional communication systems such as 3G, GSM etc. Voice over IP (VoIP) is getting

popular for its affordable service as compared to conventional telephony service. It is becoming

popular for the Service Provider to provide access to their users from different access

technologies in order to promote their services. As an example T-Mobile, a worldwide telecom

operator has announced that it will introduce Unlicensed Mobile Access (UMA) in 2006. It will

provide ‘‘GSM over WiFi’’, thus filling coverage gaps and possibly allowing for lower traffic

charges (3) . This will have certain challenges toward service continuation. The multiple

connections will enable access to a wider variety of services that need to be discovered, properly

understood and used.

Unfortunately, the existing service discovery systems are limited to their own domains and

specific devices and not able to discover these diverse services that were introduced in an

unorganized way. Therefore, a more efficient service discovery solution capable of

interoperating-cover different network technologies and platforms is needed.

1.1 Motivation

The networks of today are going through an evolution phase with the main focus shifting toward

making the life easier for the end user. The technology enhancements are therefore done keeping

in view of the above requirement. The main focus of this document is for service discovery for

future mobile services.

Figure 1-1 Existing Network Scenarios

Chapter 1 Introduction

3

Traditional mobile networks as illustrated in Figure 1-1 have limited number of specified

services which can be listed down as Telephony, SMS service, emergency calls, etc. But if we

closely look at the current mobile devices that are available today we will realize that they are

capable of connecting to more than one network (4). This will allow the mobile device to access

different network services, such as a PDA can connect to a GSM network and meanwhile

connect to a WLAN as well by using the built in Network Interface Card (NIC) (5).

Suppose a device currently connected to a GSM network is using a telephony service, during the

call, the mobile device detects a WLAN network. Optionally the device can choose to connect

with WLAN to use cheaper Voice over IP (VOIP) service that has been defined equivalent at the

time of registration to telephony service of GSM (it is worth noting that only functionality and

not quality is considered by the user in this case). The challenge is how the device can discover

any equivalence between services? This could be more misleading if the service name is not

appropriate or having ambiguity. The scenario is specified in Figure 1-2 where the device is not

able to detect any equivalence service until or unless they have the same name or same type.

Figure 1-2 Current Scenarios

In current mobile systems, the number of services are limited and known by both the user and the

mobile device. It is hence quite simple for a user roaming onto a location to make use of the

services available at this location. In the near future as illustrated in figure 1-3, mobile devices

Chapter 1 Introduction

4

will be capable of connecting to multiple heterogeneous mobile network systems simultaneously

such as 3G, WLAN, WIMAX, UWB, etc. and have access to multiple services that are fully or

partially equivalent, completely different in terms of functionality, performance, quality,

security, price, etc. The challenge is then to discover and recognize these services in order to

offer them to the user. It is also crucial that the service discovery and matching are accomplished

in acceptable amount of time.

The first goal of this thesis is to design and implement the newly presented service discovery

system and its procedure. Secondly, it is aiming at testing and evaluating the proposed service

discovery architecture for future mobile services.

Figure 1-3 Future Scenario

1.2 Problem Statement

Addressing the described situation the main problem statements of this work are as follows:

• How can the services be discovered rapidly when the mobile user is roaming into an area?

• What are the requirements for the future service discovery?

• How can the future service discovery method allow the introduction of new services by
anybody at any time?

• How can the service discovery be performed semantically?

• How can we discover same service with different names efficiently?

Chapter 1 Introduction

5

• How can different services with same name be discovered without confusion?

• How can services be defined as partially equivalent?

• How can services be introduced in multiple languages?

1.3 Methodology

The research methodology used for this work is based on the design science research process (6).

The process is not a research method on its own but a formalized combination of existing

methods.

Figure 1-4 illustrates the common view of the design science research process.

Figure 1-4 Common view of design science research process

Chapter 1 Introduction

6

According to this process, the research methodology is divided into three phases which are:

First Phase: Problem identification

This phase is more related to Analysis stage in a classic software design life cycle. It specifies

research questions and verifies its practical relevance. From there, the research question is

defined. There are four steps involved which are:

i. Identify problem: This is to assure its relevance and understanding. Literature research or

expert interviews can be used in order to identify the problem.

ii. Literature research – Part I: It is needed to review the state-of-the-art concerning the

identified problem or to analyse possible obstacles and difficulties for its solution.

iii. Expert interviews: It is used to identify relevant and addressed problems.

iv. Pre-evaluation relevance: Based on the problem identified from the literature research or

expert interviews the pre-evaluation relevance is defined. The step involves creating a

general research hypothesis in the form of a utility theory, postulating a link between the

solution space and the problem space.

This phase offers a solid and important foundation for the further research process.

Second Phase: Solution design

The second phase consists of two steps which are:

i. Design artefact: During this stage, the problem can be restated. The existing solutions and

state-of-the-art have to be taken into account.

ii. Literature research – Part II: This is a more depth study on the existing solutions and their

state-of-the-art. It is important to keep track of ongoing current activities to be able to react

on changes in research findings.

Third Phase: Evaluation

The steps involved in this stage are:

i. Refine hypothesis: Should be refine by “smaller” hypothesis with a more constricted but

more precise scope.

ii. Case study/action research: It shows applicability in practice.

Chapter 1 Introduction

7

iii. Expert survey: By showing general interest.

iv. Laboratory experiments or simulations: Which is used to compare different approaches.

Steps (ii), (iii) and (iv) are the alternatives of conducting the evaluation based on types of output

or expected outcome of the research process.

At the end of the research process, results are summarized and published. As the nature of action

research, the iteration process (for e.g. back to “design artefact” or “identify problem”) are

relevant.

The different stages in each phases have not been followed strictly through this work, since

several different problem areas have been investigated, and several different artefacts have been

developed. The steps involved in this research are:

i. Identify problem and Literature research – Part I: First Phase

In this phase first the existing service discovery systems are studied and evaluated. Based on

the limitations identified, some research questions of the research are defined.

ii. Design artefact and Literature research – Part II: Second Phase

In the second phase, the requirements of future mobile services are proposed which is based

on the findings from the initial stage (Problem identification phase). An in depth study on the

existing service discovery systems and their state-of-the-art as well as current research

activities involved are also conducted in order to be able to react on changes in research

findings. The outputs of this phase are conceptual models of future service discovery system

and descriptions of requirements for future mobile services.

iii. Case study and Laboratory experiments – Third Phase

In this phase, the future service discovery system is implemented based on the conceptual

model of the design artefact (Solution design phase). Some case studies are given to show the

applicability in practice and the laboratory experiments are conducted for testing and

evaluation purpose.

Chapter 1 Introduction

8

1.4 Organisation of Thesis

This report is organized as follows:

Chapter 1 begins with an introduction of service discovery technology and its limitation in
modern heterogeneous networks. It also briefly introduced the reasons for proposing this
research.

Chapter 2 explains existing well known service discovery protocols briefly and web services
particularly in detail.

Chapter 3 presents requirement for the future service discovery protocol and evaluation of
current service discovery architectures based on requirements proposed.

Chapter 4 proposes the design of future mobile service discovery architecture by specifying use
cases for different scenarios that are derived in order to fulfil the requirements.

Chapter 5 provides all the details that have been covered in order to implement the proposed
Architecture.

Chapter 6 presents Testing of the implemented solution which is later on followed by the
evaluation.

Chapter 7 concludes this report.

Chapter 2 Background

9

Chapter 2

2 Background

‘‘You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New

York and his head is meowing in Los Angeles. Do you understand this? And radio

operates exactly the same way: you send signals here, they receive them there. The only

difference is that there is no cat’’

Albert Einstein, when asked to describe radio.

As the title of the project suggests, the contribution of this research is to specify service

discovery for future mobile services. This chapter will present existing well known service

discovery protocols. In order to have a basic understanding of existing well known service

discovery architectures we will explain each protocol in detail. Web services will be discussed

in detail in second section of this chapter as it will be further used for implementation in this

project whereas the architectures that will be discussed briefly includes

1) Universal Plug and Play

2) Jini

3) Service Location Protocol

4) Salutation

Chapter 2 Background

10

2.1 Existing Service Discovery Architectures

This section will present existing well known service discovery protocols. In order to have a

basic understanding of existing well known service discovery architectures we will explain each

protocol briefly. As the future implementation of the proposed architectures will be relevant to

web services architecture therefore it will be discussed in complete details. The protocols that

will be discussed briefly are as follows

2.1.1 Universal Plug and Play

Universal Plug and Play (UPnP) are a set of networking protocols which are designed to support

zero-configuration (7), "invisible" networking, and automatic discovery for a breadth of device

categories from a wide range of vendors. The UPnP architecture allows peer to peer networking

of computers, networking in home appliances, and wireless devices. It is a distributed, open

architecture protocol based on established standards such as TCP/IP, UDP, HTTP, XML, and

SOAP.

When a new UPnP device is connected within a network for the first time it will search for

DHCP server by using its Dynamic Host Configuration Protocol (DHCP) (8) client which is

already embedded in it. If the DHCP server is available the device will use the IP address that

was assigned to it. If there is no DHCP Server available the device will use Auto IP to choose an

address from a set of reserved private addresses at the Network. The device can then move easily

between managed and unmanaged networks. After the addressing phase the discovery phase will

take place and that will be handled by Simple Service Discovery Protocol (SSDP) (9).

Universal Plug and Play (UPnP) is a widely accepted standard for automatically detecting

devices and services in a Local Area Network (LAN). However UPnP does not provide any

mechanisms for authentication. The protocol stack being used in UPnP includes IP as its lowest

layer which is a very big constraint as it is limited to HTTP over UDP over IP. UPnP does not

support the naming of devices as in DNS server as it always allocate IP address. IP multicast

does not scale very well on big networks.

Chapter 2 Background

11

2.1.2 JINI

Jini pronounced “Genie”, is introduced by Sun systems in 1999. The basic idea behind the

invention of this technology has been to provide the flexibility in the network (10). Different

resources can be shared and used across the network as they are available locally. JINI

architecture consists of major three components as JINI Client, a Service Locator, and JINI

services (11). Discovery in JINI is very simple and consists of the following six steps:

• Discover: The device is plugged in and discovery occurs when the Service Provider looks for

a Lookup Service (LUS) to register with Lookup by multicast. The Client uses unicast if

know the lookup service otherwise it uses multicast.

• Join: Once the LUS is found, it returns a service register object to the service, which is used

to register the service in the lookup.

• Discover: When a Client wants to use a specific service it searches for the service by either

unicasting discovery if the LUS location is known or by multicasting discovery.

• Lookup: When Client reaches to LUS it gets the service register object, which Client uses to

lookup particular service by LUS catalog and searches based on the type, name or

description of service.

• Receive: LUS will return java proxy which contains the specification on how to connect

directly to the service. If the service object consists of two programs, one proxy on the client

and another controlling program on hardware device, the communication between them

might use Remote Method Invocation (RMI).

• Use: Now the Network Client interacts directly with the network service via service proxy.

JINI is efficient as it is easier to add or remove services, relocation of services, fast discovery,

and the services are available immediately and found automatically. It requires Java which needs

48 KB of memory. For future network there is no issue of memory. Jini has so many advantages

but it is not scalable for future mobile where numbers of nodes are too high. Jini application can

be written in any language but it has to be wrapped with Java which requires JVM to be present.

Chapter 2 Background

12

2.1.3 Service Location Protocol (SLP)

Service Location Protocol was introduced by IETF in 1997 and was later updated with SLP

version 2 (12). SLP provides a scalable framework for providing hosts with access to

information about the existence, location and configuration of networked services (12) . An SLP

agent is a software entity that processes SLP protocol messages and acts in three different roles

which can be listed down as User Agent (UA), Service Agent (SA) and Directory Agent (DA).

The SLP User Agent is responsible for looking out for the location of services; Service Agent

advertises the location of service whereas the Directory Agent can be considered as a caching

entity. It is an optional entity that is used to provide scalability and also acts as a centralized

repository for service location information.

SLP eliminates need of prior information to access and use a service. The user supplies the

required type of service and its attributes describing the service whereas SLP retrieves the

service for the user. SLP provide the dynamic configuration for services in Local Area Network

where dynamic changes occur rapidly. The devices use SLP to announce services on Local Area

Network. A service must have a URL for locating the service. In addition it can have a number

of different key-values pair called attributes.

SLP is a simple protocol for advertisement of services in Intranet. The entities and operation of

SLP is really simple. It has a really secure architecture. However it is not scalable over the

Internet. There is no mechanism to deal with for replay attacks. If Directory Agent fails due to

any reason the whole network and service are no longer available to communicate with each

other.

2.1.4 Salutation

Salutation is a service discovery architecture that has been developed by Salutation Consortium

(13). The goal of Salutation is to solve the service discovery problem and making it possible with

wide range of appliances and equipment within an environment that has widespread connectivity

and mobility. As the devices are of various kind with different functionalities, these devices are

required to be processor, operating system and communication protocol independent. The

Salutation architecture enables it applications, services and devices to describe and advertise

their capabilities to other applications, services and devices. Application, services and devices

Chapter 2 Background

13

can also search other applications, services or devices for a particular capability, and to request

and establish interoperable sessions with them (14).

Major Components of Salutation can be listed down as: Salutation Manager (SLM) and

Transport Manager (TM). The core of the architecture is the Salutation Manager. It contains a

Registry where it keeps the record of the services available. A Client can register or unregister

itself from the nearest Salutation Manager available. The Salutation Manager discovers the other

Salutation Managers by matching types and attributes as specified by local Salutation Manager.

The Salutation Managers communicate amongst one another by using Salutation Manager

Protocol. As all the services are registered with their local Salutation Manager so in order to

know about them, a unique feature capability exchange is needed. After discovering the required

services the Client can then request the Salutation Manager to keep the track of availability of

service by checking periodically. The Transport Manager is responsible for providing reliable

communication channels, regardless of what the underlying network transports are.

Salutation provides us with certain advantages. Salutation is independent on the network

technology and may run over multiple infrastructures, such as over TCP/IP and IrDA (15). It is

not limited to HTTP over UDP over IP. There are no specified programming languages to be

followed for Salutation unlike Jini which has Java as its pre requisite.

2.2. Web Services

Web services introduce a new trend of reusing application modules; they are self-contained and

self describing application components which can be used as a part of other applications (16) .

An XML Web service can be used internally by a single application or exposed externally over

the Internet for use by any number of applications accessible through a standard interface, an

XML Web service allows heterogeneous systems to work together as a single web of

computation.

A web service is platform independent as it uses the XML language and HTTP that can be used

with any device. The HTTP protocol is mostly common in the current devices for example

(Palmtop, Pocket PC, 3G cell phones). The feature that makes web services so special is the fact

Chapter 2 Background

14

that HTTP is using port 80, which is open, at most firewalls (17). Web services allow

heterogeneous systems to work together as a single web of computations.

Figure 2-1 Web Service Architecture

The Web service elements

As shown in Figure 2-1, the web service concept is based on the three elements. We will discuss

in details each of the elements. The details are discussed as under

2.2.1. Simple Object Access Protocol

Simple Object Access Protocol (SOAP) is basically a communication protocol that is being used

to access a Web service. SOAP basically allows a program that is running in one kind of

operating system (such as Windows XP) to communicate with same or another kind of operating

system (such as Linux) by using the HTTP and XML as the mechanisms to exchange

information in a decentralized distributed environment (18). SOAP also specifies how the called

program can return a response. SOAP as other protocols have certain advantages and

disadvantages which are discuss as under

Advantages:

• SOAP is simple, extensible and platform independent.

• SOAP is language independent.

Chapter 2 Background

15

• Unlike previous remote execution technologies SOAP over HTTP provide extensibility

and flexibility making it as platform independent and firewall-friendly.

• SOAP allows use of different transport protocols. HTTP is the standard transport protocol
used in the stack, but different protocols for example RSS, SMTP etc are also usable.

Disadvantages:

Soap has various disadvantages which its competitor highlights and are discussed below as

under

• SOAP can be slower than the competing middleware technologies because of the XML

architecture.

• The interacting parties role are fixed as only one party (the client) can call the service of

the others when HTTP is used as the transport protocol and WS addressing or ESB are

not in use.

SOAP Elements:

A SOAP message is an ordinary XML document and consists of certain elements which are
defined as follows.

• Envelope: It is a mandatory part of a SOAP message. It specifies the start and end point
of the message.

• Header: It is an optional part of a SOAP message. It contains any additional attributes

of the message which can be used in processing of the message.

• Body: It is the mandatory part of a SOAP message. It contains the XML data regarding

the message which is being sent.

• Fault: It is an optional part of the message. It contains information about the errors that

might occur while processing the message.

 A SOAP message containing a SOAP header block and a SOAP body is written down to

illustrate the elements (19)

<env:Envelopexmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
<n:alertcontrolxmlns:n="http://example.org/alertcontrol">
<n:priority>1</n:priority>

Chapter 2 Background

16

<n:expires>2001-06-22T14:00:00-05:00</n:expires>
</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmlns:m="http://example.org/alert">
<m:msg>Pick up Mary at school at 2pm</m:msg>
</m:alert>
</env:Body>
</env:Envelope>

Conclusion:

SOAP is a lightweight protocol that can replace more complicated, distributed object

technologies for many applications. However, SOAP's use of Web servers to tunnel through

firewalls may limit its usefulness because it potentially opens corporations to external access.

SOAP may increasingly find itself in the sights of security personnel as it will become more

ubiquitous.

2.2.2. Web Service Description Language

WSDL stands for Web Services Description Language and is a standard format for describing a

web service. It is an XML based protocol that is used for exchanging information in a distributed

environment. It is the language that UDDI uses. WSDL was developed jointly by Microsoft and

IBM. WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'. W3C defines the standard

as "an XML format for describing network services as a set of endpoints operating on messages

containing either document-oriented or procedure-oriented information. WSDL is extensible to

allow description of endpoints and their messages regardless of what message formats or

network protocols are used to communicate." (20).

WSDL is often used in combination with SOAP and XML schema to provide web services over

the Internet. A client program connecting to a web service can read the WSDL to determine what

functions are available on the server. Any special data types used are embedded in the WSDL

file in the form of XML Schema (21). The client can then use SOAP to actually call one of the

functions listed in the WSDL.

Chapter 2 Background

17

Elements of WSDL:

Web Services can be broken down into three specific elements by WSDL which can be reused

once defined or can be combined. A WSDL document can have various elements, but they are

contained within these three main elements. These three major elements of WSDL can be

defined separately as

• Types

• Operations

• Binding

The main structure of a WSDL document looks like this (22)

<definitions>

<types>

definition of types........

</types>

<message>

definition of a message....

</message>

<portType>

<operation>

definition of a operation.......

</operation>

</portType>

<binding>

definition of a binding....

</binding>

<service>

definition of a service....

</service>

</definitions>

Chapter 2 Background

18

Sub Elements of WSDL (23):

• Definition: It is always the root element of a WSDL document. It specifies the name of

the web service and declares multiple namespaces used in remaining of the document. It

is also the container for the remaining of the service elements specifies in the document.

• Data types: The data types are declared for later use in the messages.

• Message: A message is an abstract definition of the data presented in the entire document

or as an argument that can be later returned as a result of message invocation.

• Operation: Operation is an abstract definition for a message, such as naming a method,

or business process, that will accept and process the message

• Port type: It is a set of operations that is mapped to one or more end points, defining the

collection of operations for a binding.

• Binding: Protocol and data formats for the operations and messages which are

specifically defined for a particular port type.

• Port: The target address for the service communication, which is a combination of

network address and the binding.

• Service: Services map the binding to the port and include any extensibility definitions.

2.2.3. UDDI

The universal description, discovery and integration (UDDI) defines a method to publish and

discover information about web services (24). To contact a business for ordering something, it is

required to find information about that business: street address, telephone number, website, or

web service address. It can obtain the information directly from a business representative,

perhaps in the form of business card, handwritten note, or e-mail. It can also look up a business

name in a telephone directory and obtain the address and telephone number. Similarly, the

information necessary for a program running on a computer to talk to a program running on

another computer over the web must be published. Although UDDI is like a white pages or

yellow pages for web services, it also enables developers to interact with UDDI at both design

time and runtime. In short, UDDI resources can be considered part of the web services

architecture and infrastructure (25). The “web service” provides a business specific functionality

through internet connection, for the purpose of providing a way for another company or software

program to use the service.

Chapter 2 Background

19

Figure 2-2 UDDI Service Cloud

Figure 2-2 shows a UDDI service cloud, which consists of several collaborating UDDI registries.

Web services are playing an important role in a distributed business environment. For example,

company “x” providing a service for the payment through the internet, any business client can

use the service of “x” for the secure transaction.

In the beginning, it seems to be very simple to manage the process of web service discovery. But

the reality is different, because there are a number of different organizations each providing

different services, this leads difficulty in the discovery of a service.

The UDDI is implemented in a common XML format to avoid the interoperability issues;

because many companies started to define ways to allow their internal applications to interact

with the business systems at other companies using the emerging web infrastructure. Each

company invents a unique approach based on experience designers, available technologies and

project budgets. The XML solve the integration problem between different companies and

provide a single registry for all the services. (26)

The UDDI has two main parts: registration and discovery. The registration part means that

businesses can post information to UDDI that other businesses can search for and discover,

which is the other part. Businesses and individuals interact with UDDI by using SOAP API’s or

one of the user interfaces provided by the operators or other web services vendors. UDDI

operators post WSDL descriptions of their web services for registration and discovery. UDDI

provides separate WSDL file for registration and discovery services, using its own XML

document format.

Chapter 2 Background

20

• A UDDI registration consists further into three components:

• White pages - contain address, contact details, and known identifiers for Web services

providers.

• Yellow pages - have industrial categorization of Web services based on standard

taxonomies.

• Green pages - contain technical information about services.

Conclusion

Web service is a great concept which allows the construction of applications using components

distributed across heterogeneous networks and domains. However, the Web service discovery

based on UDDI is falling because of inconsistencies between the information stored by the

UDDI registries and the Web services really available on the Web The readers can refer to (27)

for discussing shortcomings of UDDI and the properties of an ideal. Discovery of a Web service

is critical for privacy issue which is a security concern for the use of Web services (28).

Chapter 3 Requirement for Future Mobile Services

21

Chapter 3

3 Requirements of Future Mobile Services

‘‘Why can‘t computers in real life work like they do on Star Trek? (. . .) They don‘t

have to do all that careful handwork involving cables and IP addresses and logins

and passwords on Star Trek—it all just works. Is it just special effects, or are we

missing something?’’

Paul Vixie

In future mobile environment, mobile devices will be able to perform handover between

access networks to improve connectivity. To ensure service continuity, services in the new

network must be discovered rapidly. However, due to the plurality and diversity of the

services introduced by different players at different times and places it is quite challenging to

identify services rapidly and new service discovery system is required. As the previous

section contain an overview of different service discovery methods, this part is focusing on

the requirements of future services, which are used to deduce the future service discovery

requirement. Both requirements will be defined and explained thoroughly for clear

understanding.

The chapter is divided in two sections as follows

3.1) Requirement for future mobile services

3.2) Evaluation of existing service discovery architectures based on requirement for future
mobile services

Chapter 3 Requirement for Future Mobile Services

22

3.1. Requirement for Future Mobile Services

3.1.1. A service in the future can be anything

� Future service discovery must be capable of handling different services with same

names without confusion.

The future service can be anything and can be published by anyone, this leads to a

number of challenges. The consequence is the situation where the same name or word

can have several meanings and denotes different services. Ambiguity and confusion

are hence introduced which can result to different interpretation (29). For example if a

user search for “Book” this may lead to an ambiguity between the Literature book and

ticket booking. Figure 3-1 shows the problem where user searching for the “Book”

might get erroneous result. Therefore, the future service discovery must be capable of

handling different services with same name without confusion.

Figure 3-1 Ambiguity in words

3.1.2. A service can be introduced by anybody at any time

Future service discovery,

� must be capable of having services with multiple names in multiple languages.

� must allow the introduction of any service anytime by anybody

The future service discovery must allow introducing any service any time by anybody,

the result of this flexibility may raise the following consequences.

Chapter 3 Requirement for Future Mobile Services

23

• Not all services can be standardized as in current service discovery systems where

a service is well specified and has a uniquely defined name.

• Another consequence is that the same service can be given different names by

different service providers

• Since there is no regulation about a service definition a service may be close to

another one but not 100% similar. There are two cases as follows:

o A service A contains similar elements with service B but have also

different elements as shown in Figure 3-2 a). The intersection of A and B

is not empty and different from both A and B.

A B

A∩B ≠ Ø ≠ A ≠ B

A

B

A∩B = A

a) b)

Figure 3-2 Relations between services

o A service A is a subset of service B since all the elements of A are also

elements of B.

• The service may have several names in different languages but all of them refer to

the same thing. The goal is to work globally without any language ambiguity. One

of the users from China should be able to use a service that is provided in English

and the same should be the case for an Englishman who want to use a Chinese or

a Japanese service without having language as a hurdle. The future service

therefore should lay special emphasize on the language compatibility.

• A service name may have several names in different languages as shown in Figure

3-3.

Chapter 3 Requirement for Future Mobile Services

24

Figure 3-3 Language semantics

3.1.3. In a mobile environment, services must be discovered very fast:

� Requirement for future service discovery, it must be very efficient.

The future service discovery must be very efficient. Efficient is a relative word for

future service discovery. Efficient means to be fast in two ways.

• In future the user equipment can perform handoff between networks while using

any service such as telephony, online shopping, banking etc. The goal of future

service discovery is to be fast enough to discover the service before the handover

(30). This can be more illustrated from the following example. A user “A” using

internet banking service from (GPRS) GSM network, the device of user A is

capable to connect with WLAN as well. When user A enter in his office its device

found a network with higher bandwidth and connect with WLAN while using the

internet banking the device discover the service on WLAN and handover to

WLAN while continuing the internet banking service as shown in Figure 3-4.

Chapter 3 Requirement for Future Mobile Services

25

Figure 3-4 Fast discovery of service during handoff

3.1.4. It is crucial not to misunderstand or confuse one service with another one

� The service discovery must be error-free

It is crucial not to misunderstand about a service or to confuse one service with

another one. The service discovery must be simple and unique in order to error free.

The service discovery is based on the name of the service, whenever a user uses a

service it checks the available services and has an idea about the service from its

name. Sometimes the service function can be misunderstood because of the short

service names. The structure for the service has to be simple and unique. The end user

should be able to easily use the service without any ambiguity that can create the

confusion for him regarding the service type (31). The service names should be long

enough to define a service properly. For example “London_Victoria_train_schedule”

instead of “Train_schedule” only the first make the sense to understand what a service

will provide. So if the user does not provide complete information such as

“Train_schedule” which is not sufficient to locate a specific service, the service

discovery should request to add more detail in order to discover the service without

any error.

Chapter 3 Requirement for Future Mobile Services

26

3.1.5. All the services available in an area must be discovered

� The service discovery must be sound

The future service discovery must be sound in order to discover all the available

services. When the user find a service the service discovery should return a valid

answer instead of terminating the service discovery with a message “Not Found”. If

the service discovery does not find any appropriate it must request the user to add

more key words in order to discover the service. To achieve this, the future service

discovery must be sound.

3.1.6. It is also essential to verify that a service is offering what it announces

� It must be possible to extend the service discovery with verification functions.

Before using any service it is very important to have a little knowledge about the

service or description which describes the service. As in web service UDDI contains

the description. In UPnP, after the discovery of a service the step 2 description

describe the service. Same with Jini Lookup Service (LUS) have knowledge of the

service but this description cannot directly see by the user they are more at the

protocol level and user is unable to see the description. Therefore the future service

discovery must verify the service to ensure what service is providing.

3.1.7. It is also essential to be able to conclude that a service is trustful

� It must be possible to extend the service discovery with security functions to

validate a service.

It is also essential to make sure that a service is trustful. A service has to registered

with a central database, server or repository. This entity is responsible to ensure that a

service is trustful. So whenever a user will be accessing the service, he will trust a

service because of the entity verifying it. It will be based on mutual trust.

3.1.8. The user must be able to move everywhere in the world

� The future service discovery must be ubiquitously and location aware.

For each user there is usually a set of services that he/she is using frequently such as

for example weather, taxi, hotel, bus, cinema, etc. However, quite often these services

are changing according to the location of the user. For example, when the user is in

Paris he/she will initiate the service taxi and in this context he/she means “taxi in

Paris” and not “taxi in Trondheim”. When the user arrives to Paris and switch on

Chapter 3 Requirement for Future Mobile Services

27

his/her mobile phone and the service discovery will try to find the services weather,

taxi, hotel, buss, cinema in Paris. If they exist all the information will be queried and

all the necessary preparations will be made. When the user wants to request for a taxi

then he/she will get the Paris taxi.

3.1.9. There are many services and service discovery systems it is important to ensure

interoperability

� Service Discovery must be capable of discovering current existing services.

The service discovery for future network would have a number of different features

such as fast, secure, reliable and with many other specialities, but the future service

discovery should be capable to discover the existing services already deployed and

available for use. This is a challenge for the future service discovery mechanism to be

interoperable with respect to the service discovery for both the future services as well

as the existing services. For example, if an existing service was launched to use for

finding a location in a city, then this service should be discovered by the future

service discovery. As shown in Figure 3-5 the future service discovery can discover

both the existing as well as the future services.

Figure 3-5 Service interoperability

� The service discovery must be capable of operating with existing service discovery

systems.

Chapter 3 Requirement for Future Mobile Services

28

The future service should be interoperable with the current services. One of the main

concerns for the future services is that the users/programmers have to design the

future services from scratch but the future services must be able to communicate with

the current service discovery systems in order to interact with the current services.

This includes all the current service mechanisms such as Web services, Salutation,

Jini, and UPnP to communicate and interoperable with future service discovery.

Figure 3-6 Service discovery interoperability

Chapter 3 Requirement for Future Mobile Services

29

3.2. Evaluation of existing Service Discovery Architectures

This part will focus on the evaluation of current well known service discovery architectures.

We will now evaluate current existing service discovery architectures using the requirements

previously identified in part 1 of this chapter. Table 3-1 evaluates the existing service

discovery systems by sequence mentioned below

1. Universal Plug and Play

2. Jini

3. Service Location Protocol

4. Salutation

5. Web services

Chapter 3 Requirement for Future Mobile Services

30

3.2.1) Summarizing the evaluation

Table 3-1 Summarizing evaluation of existing architectures

UpnP Jini SLP Salutation Web
services

Capable of
handling
different
services with
same names
without
confusion

No Partially
fulfilling if
128 bit
service id is
remembered

No 3.2.1 No No
 it is
handled
manually

Capable of
services with
multiple
names in
multiple
languages

No Yes by
attributes of
a service

Partially
supporting

No No

Allow the
introduction of
any service
anytime by
anybody

No. Partially
With
registering
with LUS

Partially
Supporting
for local
domain but
not globally

No
Salutation
manager
responsible
for
registration

No
UDDI is
authority for
publish a
service

Efficient Partially
fulfilled
With cache
its fast but
when
primary
proxy fail
it’s not
efficient

Partially
If unicast
address is
known

Partially
Fast when
directory
agent is not
used

NO No

Error-free Yes Yes
By Leasing

Yes Yes Yes
UDDI
contains the
description

Sound Partially
fulfilled

No No Partially
With
salutation
manager

Partially

Chapter 3 Requirement for Future Mobile Services

31

Possible to
extend service
discovery with
verification
functions

Partial
fulfilled

No Yes No No

Possible to
extend the
service
discovery with
security
functions to
validate a
service

No
Internal
mechanism

No Yes
But
vulnerable
to replay
attack

Yes
Identification
and
Password
scheme

Partially
SSL only
provide 1-1
Not for
multiple
entities

Capable of
functioning
ubiquitously

No No Partially if
operating
with DA
and Scopes

No No

Capable of
operating with
existing
service
discovery
system

Partially
With JINI

Yes
With UPnP,
Web
Service and
SLP

Partially
With JINI

No Partially
With JINI

Chapter 4 Design

32

Chapter 4

4 Design

‘‘To write good software you must simultaneously keep two opposing ideas in your

head. You have to be able to think how hard can it be? With one half of your brain

while thinking it will never work with the other’’

Paul Graham

There are few important steps involved in service discovery which are to be kept in mind

when proposing a new model. The steps are as follows:

• Service registration:
o What type of information should be supplied to the Service Broker to make it

sufficient enough to do registration?

• Service discovery:
o On the way how the discovery is organized. It is a whole system consisting of many

servers, databases and functionality to discover the services.

o There are few challenges such as:
� The service name – since the service can be from anything and it can be

introduced by anybody at any time, the open and flexible future service discovery

might result to different types of service names been introduced and it is not

standardized. This will result as a challenge for the service broker on how the

service matching will be performed.

• Service matching:
o Where would the service matching functionality held; should it be in the Client side or

at the Network side?

� If the service matching is done in the Client side, it is needed to consider the

Client’s terminal ability as it will require more powerful processor

� If the service matching is done at the Network side, it could take longer time

From discussion above two major features are identified:

Chapter 4 Design

33

• Service Discovery – where the Client sends a message to the Service Broker asking what

are the services available

o If it is a powerful Client, it can do the matching by itself

• Service Lookup/Service Request – where the Client asking for the specific service

o In this feature, both the service discovery and service matching are done by the

Service Broker and it could take longer time.

There are number of systems which use syntactic matching for locating the contents such as

“Gnutella” (32) and direct locating based on Distributed Hash Table Chord (33), they are

widely used for file sharing, in the case of services it could be used for discovery of services.

The chord has been proved to be efficient. But none of the methods support semantic lookup.

The proposed system will be a combination of syntactic and semantic design. To have a more

clear picture of the system design and considering the challenges discussed above we will use

the unified modelling language (UML) (34) use case diagrams.

Four cases are specifically identified to represent the high level requirements of the future

mobile services. A Service provider can register a service whereas a client can discover a list

of available services, request a specific service and then select a service. The cases are

illustrated in Figure 4-1 and are discusses in detail below

Figure 4-1 case diagram of Future service discovery system

Chapter 4 Design

34

4.1. Service Registration:

In traditional old systems the services that are present in the system are having a standardized

name which is specifically assigned to it e.g telephony with a dedicated service number

which uniquely identifies it. Hence a direct syntax matching is done but as we know that in

future the mobile will be capable of connecting to heterogeneous network and therefore

different services will exist which will be entirely new to the client . So in order to be

discovered the services will have to advertise it. The Service Provider will have to provide

certain details while introducing a new service which will make it easier for the user to

identify the desired services.

Service name:

Service name is the first item of information that has to be provided by the Service provider

while introducing a service. As specified in the requirements previously there is no restriction

as anyone can introduce any service at any time, there is no specific naming convention to be

followed which has been the case previously for existing service discovery architectures.

Moreover the service name can be introduced in multiple languages which cannot be done

earlier in other existing service discovery architectures.

Service type:

Service type is one of the necessary information required while registering a service. It is

important in order to identify a service functionality e.g a service name of Micheal Jackson

will have a service type as Music. In existing service discovery system the service type are

already standardized and no new service type can be introduced, hence negating our

requirements 1 and 2 which state that a service can be introduced by anyone . Moreover our

system type allows anyone to introduce service type and in any language. There can be

different cases while introducing a new service type which are discussed as follows

• Brand-new service type: without relation with any existing service type: A service

type description in XML (eXtensibleMarkup Language) containing the service type

Name, Keywords, ParentType, StateVariables, etc. as shown in Figure 4-2 below. In

addition an URI (Uniform Resource Identifier) has to be assigned to this service type

description. This service type description will be used later in the service matching.

Since the service type is a brand-new type that was not derived by any existing service

type ParentType and ParentType has to be set to nil. The service type does not have

Chapter 4 Design

35

any alias since there exists no equivalent service type. The EquivalentClass is then left

empty.

• Equivalent service type: The service type has a different name and may be another

implementation but is equivalent to an existing service type. The service provider has

to add the name of the existing service type and also all the known service type in

different languages.

• Subtype of an existing service type: The service type has all the functions and

features of an existing service type but has also additional ones. The parent type is

hence indicated.

Service type description template
A service type description has the following items:

• Name: The name can be in any language and less than 64 characters.
• Keywords: Some words that can be used in the first round discovery
• ParentType: The name of service type that the current type is derived from.
• ParentTypeURI: The URI of the parent type
• EquivalenceClass: All alias in any language are given here
• StateVariables. The state variables determine the states of the services. They are

left empty in the service type description
• Actions: Actions are the methods that can be called by clients or other services

o Each action has a name and a set of parameters
� Each parameter has a type, allowable values (for enumerated

types), and direction (in or out)
• Events: Enable clients to subscribe to the occurrence of a particular event

Figure 4-2 Service type description template

After defining the require fields we will take a look at the execution of the events by drawing

a sequence diagram for registration of service as specified in Figure 4-3. The steps are as

follows

1) Service provider will request the service broker to register a service by providing

necessary information i-e Service name, Service Type, keywords etc.

2) The service broker in order to register a service has to make sure that the service type

already exist or is it a brand new service type so it will pass the service type information to

service matcher.

3) The service matcher will check whether the service type already exists or do we need to

add a new service type. If the service type already exists it will just pass the information to

Chapter 4 Design

36

service broker after the successful lookup. If it’s a new service type, it will be added in our

system and then the information will be passed over to the service broker respectively.

4) Once the service type exists, the service broker will send the necessary information to the

service info base (repository) in order to register the service. The service name will be used to

check if any service with the same name and same parent type cannot be added twice whereas

a service with same name and completely different functionality can be added with different

parent type.

5) The service info base will update the service broker that the service has been successfully

registered.

6) The service broker will update the service provider that the service has been successfully

added and is now ready to be used.

Figure 4-3 Sequence diagram for “Registration of Service”

Chapter 4 Design

37

The collobaration diagram for registration of a service can be found in figure 4-4 illustrated
below

Figure 4-4 Collaboration Diagram for Registration of Service

4.2. Discovery of Service:

After the services are registered the most important part for the client is to discover the

services. This can be achieved by advertising the services. There can be two possible ways of

doing it either by broadcasting or the user can retrieve all services by requesting the service

broker. As the web service architecture is been used in our application and it is not capable of

broadcasting periodically until it is being invoked by any process or a client. The services can

therefore be discovered by the client by simply sending a request to the service broker. The

process is explained in collaboration and sequence diagram below and the respective steps

are defined accordingly.

Chapter 4 Design

38

1. Request List of

available service

Service Provider Client
Service Broker

(WS-App)
Service Infobase

(Repository)

Service Matcher

(OWL)

2. Lookup for available Services, Service Type

3. Get Equivalent for

Service, Parent Type

4. Return Service and

Equivalent Classes

5. Return Service and Equivalent

Classes

Figure 4-5 Sequence Diagram for “Discovering services”

The event execution is as follows

1) Client request list of available services for specific service types i-e communication,

Music etc.

2) The service broker on receiving the request performs a look up for the available

services in the repository. The services are saved along with their parent id which

makes it easier for the user to select the appropriate service.

3) On getting the requested services from the repository the service matcher will look for

any equivalent class defined for the service as well its parent type to provide the client

which might be of interest to him.

4) Once retrieving the desired services and its equivalent classes the services will be

returned back to the service broker.

5) The service broker will return the list of available services along with their equivalent

type that can be either logical or any service name defined in different language that is

providing the same functionality.

Chapter 4 Design

39

The collaboration diagram for discovering a service is shown below in Figure 4-6

Figure 4-6 Collaboration Diagram for “Discovering Services”

4.3. Select a Service

Once the list of available services are discovered a client need to select the appropriate

service as per his requirement. This can be done by the client going through all services that

were retrieved and then making a decision manually on which service to invoke. However

this architecture provides the client with an option to select a service by specifying precisely

the service name and service type. It is known as service search or service lookup. This

greatly increases the efficiency of the system as the network automatically search and find the

service for the client hence relieving him from this burden. However this approach holds a

major drawback as the client is unable to discover newly introduced services which may be

of interest to him. Service lookup events are explained in sequence diagram below

Chapter 4 Design

40

Figure 4-7 Sequence Diagram for “Service Request”

The events are executed as follows

1) Client request service A specifically with its service type. The service type is send to

avoid confusion as different services can have the same name so just to make sure

that right service is retrieved.

2) The service broker on receiving the request performs a look up for the desired service

in the repository.

3) On retrieving the requested service from the repository the service matcher will look

for any equivalent class defined for the service as well its parent type

4) Required service and its equivalent class if any will then be returned back to the

service broker.

5) The service broker will then return service A along with their equivalent type if any to

the client.

 The collaboration diagram for service type is shown below in Figure 4-8

Chapter 4 Design

41

Figure 4-8 Collaboration Diagram for Service Type

4.4. Find A Service:

Client can also find the desired services by searching based on the appropriate keywords. The

service provider while registering a service, provides keywords that highlight the main feature of

the service. These keywords can be used later on in order to return the appropriate service to the

client e.g if a client search for food, dining etc. a hotel service defined with such keywords will

be returned. The sequence diagram for finding a service is as follows

1) The client sends a request to service broker by providing appropriate keywords in order

to find a service.

2) The service broker forwards the information to the service info base for service lookup.

3) Service InfoBase lookup for the service by searching against the service and the

keywords that were defined while registering it by the service provider.

4) Once the service is retrieved it might also be of interest for the client to have different

service that are equivalent to the service that is retrieved through the keyword search so a

lookup will be carried out accordingly for the service type equivalent or its parent type

equivalent.

Chapter 4 Design

42

5) Services retrieved are then sent to the service broker so that they can be send back to the

client.

6) The client is presented with the service response on bases of his key word search.

Figure 4-9 Sequence Diagram for “Finding a Service”

Chapter 4 Design

43

The collaboration Diagram for finding a service is presented below in Figure 4-10.

Figure 4-10 Collaboration Diagram for “Finding a Service”

Chapter 5 Implementation

44

Chapter 5

5 Implementation

‘‘The function of good software is to make the complex appear to be simple.”

Grady Booch

This chapter describes implementation details of the service discovery for future mobile

environment. Brief overview of complete architectures, classes and database is presented in

order to make it simpler to understand that how the system has been implemented. However the

four use cases that are specifically presented in design are presented on functional level as it is of

interest. For further implementation details refer for class and database overview which is part of

this report in Appendix A. Chapter 5 will be divided into Following 4 sections listed below

5.1) System Overview

5.2) Class overview

5.3) Database Overview

5.4) Methods Descriptions

Chapter 5 Implementation

45

5.1. Overview of the system architecture

The major components of the architecture are:

5.1.1. Web Service Client–

This component is an application running on the remote mobile terminal. The Client on behalf of

the user can ask/search for a service. It can also on behalf of the Service Provider introduce and

register a new service. The protocol used between the Client and the actual XML Web Service is

SOAP (Simple Object Access Protocol) (35).

Figure 5-1 Future service discovery system architecture

Components of the service discovery system consisting of:

i) ASP .Net (36)Website (XML Web Service) This service acts as an interface

between the Client/Service Provider and the System Server. The IIS Internet

Information Services 5.01 (37) is customized in order to publish the ASP.Net

pages on the Internet.

ii) Database – This component acts as a service repository which stores the services

registered by the service provider.

Chapter 5 Implementation

46

iii) OWL (38)file – is used for semantic matching with the OWL Lite

(EquivalenceClass and ParentType).

5.1.2. Development Environment

The hardware as well as the software components used for the system implementation are

described below:

i) Hardware

A computer with installed Windows XP is used as a server. The server can process several

request from multiple clients at parallel. The Client can request the server by using any platform

or browser to retrieve the desired services. The Server contains an original Intel Processor (2.60

GHZ) along with 2 GB of RAM in order to ensure fast operation of the system.

ii) Software

5.1.1. Operating System

The operating system is selected by considering various technical aspects which are discusses

below.

Server side:

Since the application is developed using .Net technology, the .Net framework version 2.0 (39) is

installed on the server. Microsoft Windows based operating system is the minimum requirement

for this version of .Net framework. Therefore Microsoft Windows XP (40) was installed on the

server.

Client:

The Client is independent of any architecture and hence can access the services by using any

industry standard Internet browser from any operating system that has access to the Internet.

5.1.2. Programming languages:

For the implementation of this project Microsoft Visual Studio 2005 IDE for C# (41) was used.

The application was developed in C# whereas the website was developed using ASP.Net

technology.

C#:

C# was mainly used as an implementation language because of its convenient programming

capabilities, the object oriented paradigm it supports, type-safety and wide range of libraries

available as a part of .Net framework. Another reason to use C# was the OwlDotNetApi that was

Chapter 5 Implementation

47

mainly used to access OWL file in order to define parent as well as equivalent classes for service

types. The detail of this API can be found on (42).

ASP.Net:

ASP.Net is used for the XML web service and the web form interface for accessing the web

service. There were certain reasons for using ASP.Net during implementation phase

1) For building XML web service because it makes exposing and calling web

services very simple.

2) For Client website because of the flexibility of interface it provides and

support for the mobile devices. By building a website in ASP.Net one has to

write the code once and the ASP.Net automatically generates pages based

on the device they are called.

5.1.3. Support for ontologies:

As the semantic meaning in this project of service discovery is being achieved by using

ontologies. OWL (Ontology) file was continuously monitored manually by using Protégé 4.0.2

(43) in order to check the updates. OWL Lite is chosen in the implementation of this project due

to its simplicity and the dynamic nature of the project even though it is known that it has some

limitations as to compare with the OWL DL and OWL Full (44). Since the services can be

introduced by anybody and there is no control mechanism on introducing the services, therefore

it is required to avoid complexity in the system usage and for that only the EquivalenceClass and

the ParentType properties is used which can be accomplished by the OWL Lite. More over the

owl has another important feature which is the capability to support multiple languages (45)

which is very useful in context of our system.

5.2. Class Overview

There are eight classes in total that have been written for the implementation of the system. Each

of the classes was used accordingly to fulfill different functionalities. The class diagram is

shown in Figure 5-2 where the classes relationship and there functions can be seen. Each method

and field functionality for each class is specifically mentioned in Appendix A1 and can be

referred to for detail. A brief introduction to each class and its basic functionality is discussed

below.

Chapter 5 Implementation

48

5.2.1. Base Class:

The Base class provides the functionality to connect with the data base tables. In addition to

connectivity it provides the database functions such as (Insert, update and retrieval). This class

has a number of overloaded methods to extend the functionality. The Base class is inherited by

three different classes to reuse the code.

5.2.2. DALService

The Data Access layer service (DALService) class inherits the Base class and reuses its basic

functionality to connect with the database, insertion and retrieval. Additionally it provides the

functionality to access the service table in the database. This includes adding of equivalent

service id, finding of service, retrieval of all the services on matching and insertion of service.

5.2.3. DALServiceType

The Data Access layer service type (DALServiceType) class inherits the Base class. In addition

to the base class functionality it also provides access to the servicetype table in the database.

This class not only accesses the servicetype table but it has to ensure the consistency between the

database table and the ontology.

5.2.4. DALKeyword

The Data Access layer keyword (DALKeyword) class inherits the Base class for reusability of

the code such as the basic connectivity with the database, insertion and retrieval. It provides

additional functionality to access the keyword in the database. Moreover it ensures not to use the

same keyword for two services. At the time of registering a service it first checks whether the

same keyword is already stored in database for any other service. If any value is matched then

instead of adding the keyword the keywordID is used to avoid the redundancy.

Chapter 5 Implementation

49

Figure 5-2 Class Diagram

Chapter 5 Implementation

50

5.2.5. Discover

The Discover class contains the overall logic of web service, the methods of discover class are

directly exposed to the client to use them. The ASP.net page also consumes this web-service.

Discover class is performs most prominent functionalities by calling other class methods in the

same package, the discover class performs different tasks such as adding new service type,

finding service by name, keyword, serviceId and by service type. The discover class also

performs the process of service registration.

5.2.6. OwlHelper

OwlHelper class uses the OWLDOTNET API to perform different tasks in ontology. These tasks

contains searching of class from ontology on the basis of service type name, For every class in

ontology contains an URI, this URI uniquely identify the class but this URI is a long string

include the name of the class, OwlHelper is used to extract the name of class from the URI.

Along this the OwlHelper returns all the equivalent classes from the ontology.

5.2.7. Service

service class is a representation of each individual service which is being used to perform

different functions associated with service such as service registration, service retrieval and

service matching. Service class includes overloaded constructor, properties (attributes such as

description of service, equivalent services, associated keyword, name of the service, address

URI) and different fields.

5.2.8. ServiceType

The servicetype class is a representation of each individual servicetype which is being used to

perform different functions associated with servicetype such as servicetype registration,

servicetype retrieval and servicetype matching. Servicetype class includes overloaded

constructor, properties: (attributes such as All equivalent classes in the ontology, Parent (service

type) of the servicetype, name of the servicetype in the ontology, associated keyword, unique

URI in the ontology and different field.

Chapter 5 Implementation

51

5.3. Database Overview

 Microsoft SQL server 2005 enterprise edition (46) was used as repository during implementation

of this project. The database was used to store all the available service, service type, service

URI, keywords for each specific service as well as equivalent for each service or service type if

any exist. A brief overview of each table is discussed below whereas the relationships between

these tables can be seen in ERD diagram illustrated Figure 5-3. For more detail on each table

sample data is illustrated for each table separately in Appendix A.2 which can be referred to if

required.

Figure 5-3 Entity Relationship Diagram

Chapter 5 Implementation

52

5.3.1. Service

 The table service is used to store the data for every registered service. This table typically

contains each service id which is generated by the database at the time of registration of service.

The second field is ServiceName which is a string value to store the name in Unicode (the

Unicode is used to support characters of different languages. For any service there must be

parent service which describes the belonging type or the classification of service, this association

is being done by using the servicetypeId as a foreign key from the table of serviceType. Until

now there is no field which define the address of the service from where a service can be

invoked this is done with ServiceURI to store the URI of a service. To ensure that the user has

selected appropriate service there is a field called ServiceDescription to store brief description of

the service which could be helpful to select the most appropriate service.

5.3.2. ServiceType

This table is used to store every service type which is being inserted in the ontology. There are

two reasons for doing this.

 i. First it used to ensure the relationships between the service and their service type

along with the equivalent services, this is done to reduce the complexity of the

system.

 ii. The second reason is to increase the performance of the system. By decreasing

lookups in the ontology which take longer time as compare to database lookup.

The service type table is used to maintain the record of the classes which has been inserted in the

ontology at the time of registering service type. At the time of registration of service type the

database allocate an auto-generated id which is stored in ServiceTypeId field. The service name

could also be retrieved from the ontology but due to the performance issue it is better to store in

database field instead of ontology, the serviceTypeName is used to store the name of the service

type. The servicetype shows a relation between parent and child including the grandparent

relation, for grandparent a servicetype could be child of another service type. To achieve the

grandparent relation the ServiceTypeParentId is used, this relation is not only used for the

grandparent but it is also used for the semantic application. There must be some link to identify

Chapter 5 Implementation

53

service type from ontology this is done by storing the unique URI for each class in the ontology

in ServiceTypeURI.

5.3.3EquivalentService

One of the goal of service discovery is to return the services which has partial features. This type

of services are stored in the system with the title of equivalent services. To store the equivalent

service there must be two services (ServiceId and EquivalentServiceId) to be equivalent of each

other and uniquely identify the relation i.e. EquivalencyID.

5.3.4. ServiceKeyword

The keyword table contains the auto generated KeywordId for every keyword. This table is used

to store the keyword for the later usage of keyword.

5.3.5. Keyword

The service keyword table has been designed to avoid redundancy of keywords. For this the

table stores association between the keywords and services. To accomplish this it contains auto

generated ServiceKeywordId for every association between the service (ServiceType) and

keyword (KeywordId).

5.4. Main methods

As four use cases were specifically explained in our design, these methods are explained in

detail. Each class and its methods are mentioned separately in Appendix A.1, whereas database

sample data is presented in Appendix A.2 which can be referred to for detail lookup if required.

The four methods are described in detail below.

5.4.1. Register Service:

Definition of the method: This method is used to register a service, for registration few things

has to be provided such as

• Service name (It could be any name which give an idea about service)

• Service URI (contains the URI/ address of the service to invoke)

• Service description (Short description that can represent a general overview about the

service)

Chapter 5 Implementation

54

• Keyword (this could be different words which help user to search about service e.g. for taxi

service one can insert the keywords such as: public transport, travel)

• Service type (service name alone is not sufficient to define the type of service because two

services can have same name they could be differ only from the type they belong the service

type makes the difference)

• Available services (it shows all registered services for the selected type. The user optionally

selects one of the services to make them equivalent at service level).

Functionality:

For Registration of service the first method called is Discover.RegisterService () this method

calls all the necessary method. The method follows the loop illustrated in Figure 5-4.

Once the user enters the service name and other service parameters, the user also select the

service type. For the selected service type the system calls the method

_OWLHelper.SearchServiceType() which returns the object of service type and pass it

to DALSericeType.GetServiceTypeId.

DALServiceType dalServiceType = new DALServiceType();

int typeId =

dalServiceType.GetServiceTypeId(_owlHelper.SearchServiceType(srv.Typ

e.SeviceTypeName))

Once the ServiceTypeId is returned then the service is registered from the following code.

dalService.Insert(string ServiceName,int ServiceTypeId,string ServiceURI,string ServiceDescription);

Optionally a service can be declared as equivalent to any other service if user selects any service

that is equivalent to it. This can be accomplished by:

dalService.AddEquivalentServiceId(newServiceId,

srv.EquivalentServiceIds[i]);

Chapter 5 Implementation

55

Figure 5-4 Main Loop followed for Registration of Services

5.4.2. Lookup by Service Type:

Definition of the method: This method is used to lookup services by service type. The system

returns all services of given type. This required a parameter of service type. Service Type

Lookup follows loop which is being illustrated in Figure 5-5 below.

• Service type (the user enters the service type)

Chapter 5 Implementation

56

Figure 5-5 Main loops for Service Type lookup

Functionality

First the system search for given service type id from database by:

DALServiceType.GetServiceTypeId(ServiceType serviceType)

Once the Service type id is returned, the system will look for all the services whose service type

id (Parent id) is the one returned by the GetServiceTypeId().

This task is accomplished by:

DALServiceType.GetServiceByServiceTypeId(int ServiceTypeId).

After retrieving the values the result is diplayed on the ASP Page for the client.

Chapter 5 Implementation

57

5.4.3. Lookup by Keyword:

Definition of the method: This method is used to lookup services by Keyword passed in

argument. The system returns all the services associated with the keyword. This required a

parameter Keyword.

• Keyword(the user enters the keyword)

Functionality

The system searches for the specified keyword by using the method. Keyword Lookup follow

loop illustrated in Figure 5-6

DALKeyword dalkeyword = new DALKeyword();

DataTable dtServices= dalkeyword.GetServiceIdByKeyword(Keyword);

The method returns all the associated services and stored the result in a temporary datatable.

Each service is returned by using:

DALService.GetServiceByServiceID()

After getting all the service Ids the system check for all the equivalent services, this

accomplished by:

DALService.GetEquivalentServiceId()

This method returns equivalentIds, however from this equivalent id the services cannot be
returned directly, therefore the system uses equivalent id to get service id, which can display all
the services.

DALService.GetServiceByServiceID()

The lookup method avoids circular reference.

Chapter 5 Implementation

58

Figure 5-6 Loop followed for Keyword lookup

5.4.4. Get Service by Service name:

Definition of the method: This method is used to lookup services by directly providing the

service name.

• Service Name (the user enters the service name this could be in English or any other
Unicode).

Functionality

Services are being retrieved on the basis of passed service name as an argument. System

retrieves all the services with matching of name. After the syntactic matching, system check for

semantic matching which is searching of all equivalent class for a service.

Chapter 5 Implementation

59

DALService.GetServiceByName()

The above method returns a service (or more than one service with same name). After getting

the required service the system checks for the service type (Parent type). At this point the system

returns either single or more than one service with their ParentType. This method follows the

loop specified in Figure 5-7.

Figure 5-7 Loop for Service Name Lookup

Chapter 6 Testing

60

Chapter 6

6 Testing

‘‘Program testing can be used to show the presence of bugs, but never to show their

absence!’’

Edsger Dijkstra

In order to ensure that the implementation is working properly and is fulfilling the requirements

specified in chapter 3 testing was conducted. This chapter is divided into two parts. Part 1 covers

five use scenarios that are being set to ensure that the necessary requirements for the future

service discovery are being achieved. The five scenarios are as follow

o Anybody can introduce a service at anytime

o Service name with multiple languages

o Same service with different name

o Different services with same name

o Partial matching services

Part 2 deal with the scalability issues and test that how does the system behaves with different

number of services. There are five points of check that were laid down in order to note down the

system behavior. The check points are as follows

o Service Repository with 50 services

o Service Repository with 100 services

o Service Repository with 250 services

o Service Repository with 500 services

o Service Repository with 1000 services

Chapter 6 Testing

61

Section I

6.1 Use Scenarios

“But what is it good for?”

Engineer at the Advanced Computing
Systems Division of IBM, commenting on
the microchip, 1968

6.1.1. Anybody can Introduce a service at anytime

The system is really flexible for any user to introduce a service anytime without any requirement

for registration initially to post a service in the repository. As in traditional service discovery

systems the service types are well defined and the user is not able to register a service type until

the authority approve and update it at his own .This system allows the user to register any service

type at anytime without such delays.

Figure 6-1 User interface to register a new Service Type

If a user wants to register a service for his university and no service type of education exist he

can register a new service type of education as shown in Figure 6-2 below. If he feels that there

should be further subtype of University in education he can add it as a subtype of service type as

Chapter 6 Testing

62

shown in Figure 6-2 below. The user also has the option to define service type equivalent to any

other service type by using the same interface and without any prior registration.

Figure 6-2 User interface to register a new Service SubType

Once the service types are registered, the user can register his university service by simply
providing service name, service URI , service description, and selecting his service type. The
procedure is elaborated in Figure 6.3 below

Figure 6-3 User Registration a new service with newly registered Service Type

Once the service types are registered the user can register his university service by simply
providing service name, service URI , service description, and selecting his service type. The
procedure is elaborated in Figure 6.3 below.The service is successfully registered as illustrated in

Chapter 6 Testing

63

figure. Hence one of the basic requiremet specifying that anyone should be able to register a
service at anytime is successfully fulfilled and running. The service registered and retrieved is
shown in Figure 6-4 below.

Figure 6-4 User successfully registering the service received

6.1.2. Similar services in different languages.

If a client wants to find a service he can either do that by providing search criteria in English

which is the default language or in his native language e.g a taxi service can have different

names in multiple languages e.g

Taxi: {Teksi, Riksha, такси, ….}

If the Client want to search for an appropriate service and his search is based on word ‘Taxi’ or

in his native language which is equivalent to ‘Taxi’ it will not only return taxi service define in

English but all other services define in different languages and are declared independent to

taxi..The process is illustrated in Figure 6-5 below.

Chapter 6 Testing

64

Figure 6-5 Service in different languages equivalent to Taxi

As shown in Figure 6-5 above if a user try to find a service by entering taxi in its native language

which is ‘‘urdu’’ in this case, all the services which are logically equivalent to it and are defined

at time of registration are being retrieved and shown to the client. The same process is elaborated

for a user who is searching for a taxi service in ‘‘bulgarian’’ by entering такси. The result is

illustrated in Figure 6-6 below.

Figure 6-6 Service in different languages equivalent to Taxch

Chapter 6 Testing

65

It can be seen from the figures that more than one service are returned when a user is searching

in its native language. It is because the services are logically equivalent and are defined so at the

time of registration. It could be really helpful for the user considering the heterogeneous nature

of the future mobile services. The services maybe unknown to him because of the different

languages but if he is abroad and the services are logically equivalent he can still use them for his

purpose.

6.1.3. Same services with Different Name

When a Client wants to find a service, for e.g a Restaurant service he will use any appropriate

word either in standard English or his native language. The Restaurant service can have other

different names for e.g.

Restaurant: {Restoran, Ristorante, Café, Bistro, Warung, … }

If the Client enters the word Café, it will return not only the Café service but also other similar

service which are defined with Café in other names which are equivalent to it and are specified at

time of its definitions. This is illustrated in Figure 6-7 below.

Figure 6-7 same services with different name

Chapter 6 Testing

66

6.1.4. Different Services with Same Name

Since in the future ubiquitous communication systems the service can be anything and introduce

by anybody, there can be a possibility of having different term and perspectives of knowledge of

the service from the user and service provider. The future service discovery supports the function

of having different services with the same name as shown in Figure 6-8.

Figure 6-8 Different service with same name

As in the above example, the word Book can refer to a type of Book service (for e.g. buying

online book or information about a book). There can also be other meaning of Book service

which may refer to a Reservation service. Even though the future service discovery allows

having different services with the same name, the ambiguity and confusion can still be avoided

via the details of the Service Description and Service Type returned during the service search.

6.1.5. Partially Equivalent Service

The future service discovery is using a semantic matching instead of just syntactical match as the

one used in the existing service discovery. This is very important especially in the situation

where no equivalent service is available but there exist service, which have more additional

functions than the requested one – partially match service.

The future service discovery introduces the use of service sub-typing by having ParentType and

attributes ParentType in the Service Type description template.

Chapter 6 Testing

67

Figure 6-9 Parent type and Subtype relation for telephony

As illustrated in Figure 6-9, when the Client is asking for Telephony service; Skype, SIP and G1
are returned because they are grand children of Telephony (Skype and SIP are subtype of IP
Telephony while G1 is subtype of GSM) and have inherited all the characteristics of Telephony.
In this case the Skype, SIP and G1 are having similar functions (voice call – which is the generic
Telephony features) but some of them have more or different additional functions (for e.g. Skype
has video call feature) and they are also different in service components and service
implementations.

Figure 6-10 Retrieval of services in telephony

However, if the Client is asking for a specific Skype service, only the Skype is returned and

nothing else. This is as illustrated in Figure 6-11.

Chapter 6 Testing

68

Figure 6-11 Retrieval of service by service name

Chapter 6 Testing

69

Section II

6.2. Scalability

“When you are stuck in a traffic jam with a Porsche, all you do is burn more gas in

idle. Scalability is about building wider roads, not about building faster cars.”

 – Steve Swartz

As per the requirements specified previously a service should be discovered really fast. Ideally

the system should therefore discover the services quickly. The retrieval time for the tests

conducted is when a client requests a service from the service broker till the time it is being

returned back to the client. The system behavior is expected to be stable with service name

lookup being the fastest way to retrieve the service and keyword lookup being the slowest. The

minimum time is always expected to be with service name search as the search will be conducted

in database and no lookup in the ontologies is required in this case. In case of service type and

keyword search it will consume more time to return the result back to client. Reason for this

delay is Owl lookup which is required to determine ParentType and EquivalentType etc after

database lookup is performed. Considering that tests were conducted to measure how does the

system scale with the different number of services registered in repository. The system behavior

was tested with system in following states

1) Service repository with 50 services

2) Service repository with 100 services

3) Service repository with 250 services

4) Service repository with 500 services

5) Service repository with 1000 services

Considering the internet architecture, fluctuation in response is expected for every process once

repeated. Moreover it will also depend how much resources are being consumed at the server

once a request is being received, therefore to ensure the authenticity of these tests each process

was repeated for 5 times and the mean value was considered as the final concrete response time.

Chapter 6 Testing

70

6.2.1. Service Repository with 50 services

The first test was conducted when the total numbers of services registered were fifty whereas

twenty service types existed in the OWL file. The scenario was considered in order to check the

system behavior with different ranges of services stored. Initial point was decided with small

number of services to see how does the system behave and to have a clear picture for future

behavior of system when more number of services are being added in the system and more tests

are being carried out.

a) Retrieving All Services

When all services were retrieved the system behaved stable and no major fluctuation in retrieval

time was being observed that can be clearly seen in chart 6-1 displayed below. The mean time

was found to be 178.125ms.

Chart 6-1 Retrieving all services when number of services registered are 50

The readings time for discovering all services are as follows

Reading 1 453.125 ms

Reading 2 109.375 ms

Reading 3 109.375 ms

Reading 4 109.375 ms

Reading 5 109.375 ms

Mean Reading Value 178.125 ms

0

100

200

300

400

500

1 2 3 4 5 Mean

Retrieving for All services

1

2

3

4

5

Mean

Timems

Reading

Chapter 6 Testing

71

b) Retrieving specific service by service name

When a specific service which was ‘‘Skype’’ in this case was requested by its service name

the system behaved efficiently as expected and consume very little time as only the lookup

was being performed in the database. The time reading that were observed are displayed in

chart 6-2 below. The mean time was found to be 31.255 ms.

Chart 6-2 Retrieving services by service name when number of services registered are 50

The readings time for retrieving a service by its service name is as follows

 Reading 1 62.500 ms

 Reading 2 15.625 ms

 Reading 3 31.255 ms

 Reading 4 31.250 ms

 Reading 5 15.650 ms

 Mean Reading Value 31.255 ms

0

10

20

30

40

50

60

70

1 2 3 4 5 Mean

Retrieving By Service Name

1

2

3

4

5

Mean

Timems

Reading

Chapter 6 Testing

72

c) Retrieving services by service type

When the services were tried to be retrieved by the service type lookup the system

behaved slower as expected as compared to the results of the service name lookup. The

reason for this delay is that the initial look up is being carried out in database and then the

equivalent classes are being looked in ontology file which consumed considerably more

time. However the system still discovers the services really fast and scale well. The mean

time for service type lookup was found to be 75.000 ms. Time consume for retrieving the

services can be seen in chart 6-3 below.

Chart 6-3 Retrieving services with service type lookup where services registered are 50

The readings time for retrieving a service by its service type is as follows

Reading 1 78.125 ms

Reading 2 62.550 ms

Reading 3 78.125 ms

Reading 4 62.500 ms

Reading 5 93.750 ms

Mean Reading Value 75.000 ms

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 Mean

Retrieving by Service Type

1

2

3

4

5

Mean

Timems

Reading

Chapter 6 Testing

73

d) Retrieving services by Keyword

When the services were tried to be retrieved by keyword lookup the system behaved slower than

the preceding both cases as expected. The reason for this delay is that the initial look up is being

carried out in database and syntax based matching is being done in the keyword table. Once the

services are retrieved a lookup against these values is performed in ontology file. It also depend

that how many services were returned as a result of key word search as against each value a

lookup in ontology will be carried out. Time consume for retrieving the services when

performing keyword search can be seen in chart 6-4 below. The mean time was found to be

103.125.

Chart 6-4 Retrieving services by keywords when number of services registered are 50

The readings time for retrieving a service by its service name is as follows

Reading 1 156.25 ms

Reading 2 78.125 ms

Reading 3 93.750 ms

Reading 4 109.37 ms

Reading 5 78.125 ms

Mean Reading Value 103.125 ms

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 Mean

Retrieving by Keyword

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

74

6.2.2. Service Repository with 100 services

The second test was conducted when the total numbers of services registered were hundred and

service types stored in OWL file were thirty in number. This scenario was considered in order to

check the system behavior by increasing the value of services twice then the first test.

a) Retrieving All Services

When all services were retrieved the system behaved slower. As all information specific to each

service is stored in different tables at the time of registration and when retrieval is requested for

each service a lookup against each service is conducted in all the database tables and it results in

a slower time response then all three other scenarios which are discussed later on in this section.

A look at Figure 5-3 can explain the database relation i-e ERD diagram moreover the database

tables and the sample data can be seen in Appendix A.2. However no major fluctuation in

retrieval time was being observed that can be seen in chart 6-5 displayed below. The mean time

was found to be 325.00 ms.

Chart 6-5 Retrieving all services when number of services registered are 100

The readings time for discovering all services are as follows

 Reading 1 765.625 ms

 Reading 2 218.750 ms

Chapter 6 Testing

75

 Reading 3 218.750 ms

 Reading 4 218.750 ms

 Reading 5 203.125 ms

 Mean Reading Value 325.000 ms

b) Retrieving specific service by service name

‘‘Skype’’ service was searched once again to test the system behaviour. The system response

time was extremely efficient and a faster response was experienced. The mean time was found to

be 40.625 ms and the response time experienced for each reading can be seen in chart 6-6

displayed below

Chart 6-6 Retrieving services by service name when number of services registered are 100

The readings time for retrieving a service by its service name is as follows

 Reading 1 62.50 ms

 Reading 2 31.25 ms

 Reading 3 46.875 ms

 Reading 4 31.25 ms

 Reading 5 31.25 ms

 Mean Reading Value 40.625 ms

0

10

20

30

40

50

60

70

1 2 3 4 5 Mean

Retrieving by Service Name

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

76

c) Retrieving services by service type

The service type instances were also increased in our OWL file to test how the system

scales to the increased number of service type along with the services. The system was

still observed to be efficient and the service search by it service type was performed in a

competent way. No major fluctuations were observed in the system behaviour. The mean

time for service type lookup was found to be 196.250 ms. Time consume for retrieving

the services can be seen in chart 6-7 below.

Chart 6-7 Retrieving services by service Type when number of services registered are 100

The readings time for retrieving a service by its service type is as follows

Reading 1 171.875 ms

Reading 2 187.500 ms

Reading 3 293.750 ms

Reading 4 171.875 ms

Reading 5 156.250 ms

Mean Reading Value 196.250 ms

0

50

100

150

200

250

300

350

1 2 3 4 5 Mean

Retrieving by ServiceType

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

77

d) Retrieving services by Keyword

When the services were tried to be retrieved by keyword lookup the system behaved slower

than the preceding both cases as expected. ‘‘Food’’ was used as the keyword to search all the

available services relevant to it and 17 services were returned as a result of search criteria. As

explained earlier these services were not only the result of the services which were stored in

database with following keywords bur also which share the equivalent relationship with these

values. The system did scale well in this case as well and performed efficiently. Time

consume for retrieving the services when performing keyword search can be seen in chart 6-8

below. The mean time was found to be 237.034.

Chart 6-8 Retrieving services by Keyword lookup when number of services registered are 100

The readings time for retrieving a service by keywords is as follows

Reading 1 202.35 ms

Reading 2 207.46 ms

Reading 3 256.45 ms

Reading 4 319.65 ms

Reading 5 199.52 ms

Mean Reading Value 237.034 ms

0

50

100

150

200

250

300

350

1 2 3 4 5 Mean

Retrieving by Keywords

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

78

6.2.3. Service Repository with 250 services

Total number of services was increased to 250 whereas service type was increased to 50. This

scenario was considered in order to develop a concrete view of the system behaviour at regular

interval of times.

a) Retrieving All Services

As experienced previously the system response was slower while retrieving all services once the

number is been increased to 250. The mean time was found to be 787.5.500 ms for the five

reading been carried out to retrieve all the services. The reading values are been display below in

chart 6-9 below

Chart 6-9 Retrieving all services when number of services registered are 250

The readings time for discovering all services are as follows

 Reading 1 1531.25 ms

 Reading 2 593.750 ms

 Reading 3 593.750 ms

 Reading 4 609.375 ms

 Reading 5 609.375 ms

 Mean Reading Value 787.500 ms

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 Mean

Retrieving All Services

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

79

b) Retrieving specific service by service name

‘‘Skype’’ service was searched once again to test the system behaviour when the total number of

services were increased to 250. The system response time was extremely efficient just like the

prior cases. The mean time was found to be 62.50 ms and the response time for each reading can

be seen in chart 6-10 displayed below

Chart 6-10 Retrieving services with service name when number of services registered are 250

The readings time for retrieving a service by its service name is as follows

 Reading 1 78.125ms

 Reading 2 62.500ms

 Reading 3 62.500ms

 Reading 4 46.875ms

 Reading 5 62.500ms

 Mean Reading Value 62.500ms

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 Mean

Retrieving by Service Name

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

80

c) Retrieving services by service type

The service types were also increased to fifty along with the value of services to take a closer

look at system behaviour. Service type ‘Telephony’ was searched and 8 services were returned.

The services returned was a result of database lookup as well as OWL look up in order to

determine the relationship that exist through OWL file i-e parent, child etc. The system is

observed to be behaving stable with service lookup search as efficient discovery is experienced.

The readings are illustrated below in chart 6-11.

Chart 6-11 Retrieving services by Service Type with no. of services 250

The readings time for retrieving a service by its service type is as follows

Reading 1 281.250 ms

Reading 2 234.375 ms

Reading 3 265.625 ms

Reading 4 250.000 ms

Reading 5 234.268 ms

Mean Reading Value 253.103 ms

0

50

100

150

200

250

300

1 2 3 4 5 Mean

Retrieving by Service Type

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

81

d) Retrieving services by Keyword

When the services were tried to be retrieved by keyword lookup the system behaved a bit slower

as expected. Once again the search was conducted by providing the keyword ‘‘Food’’ and 22

services were retrieved as a result of it. The response was a bit slower compared to service name

or service type search but still it was quiet efficient considering the syntax matching that is being

conducted in the database and then the lookup that is performed in ontology files. The mean time

for key word lookup with 250 services stored in repository was found to be 450.094 ms. all five

reading that were carried out are displayed in chart 6-12 below and reading value can also be

seen beneath that.

Chart 6-12 Retrieving services by keyword when number of services registered are 250

The readings time for retrieving a service by its service name is as follows

 Reading 1 453.125 ms

 Reading 2 424.376 ms

 Reading 3 413.436 ms

 Reading 4 472.505 ms

 Reading 5 492.015 ms

 Mean Reading Value 451.091 ms

360

380

400

420

440

460

480

500

1 2 3 4 5 Mean

Retrieving by Keywords

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

82

6.2.4. Service Repository with 500 services

Fourth interval for testing was decided at 500 services with 75 service types. This was one of an

important real time test by adding a lot of services in the system to monitor the system behavior.

It will make it easier to understand how the system will behave in real time.

a) Retrieving All Services

When all services were retrieved the system behaved slower as estimated, however no major

fluctuation in retrieval time was being observed that can be seen in chart 6-13 displayed below.

The mean time was found to be 1193.75 ms.

Chart 6-13 Retrieving all services when number of services registered are 500

The readings time for discovering all services are as follows

Reading 1 1250.00ms

 Reading 2 1187.50ms

 Reading 3 1156.25 ms

 Reading 4 1187.50ms

 Reading 5 1187.50ms

 Mean Reading Value 1193.75 ms

1100

1120

1140

1160

1180

1200

1220

1240

1260

1 2 3 4 5 Mean

Retrieving for All Service

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

83

b) Retrieving specific service by service name

‘‘Skype’’ service was searched once again to test the system behaviour when the total

number of services were increased to 500. The system response time was extremely efficient

as anticipated and been observed in previous cases. The mean time was found to be 78.125

ms.The response time for each reading can be seen in chart 6-14 displayed below

Chart 6-14 Retrieving services by name when number of services registered are 500

The readings time for retrieving a service by its service name is as follows

 Reading 1 78.125ms

 Reading 2 93.750ms

 Reading 3 78.125ms

 Reading 4 62.500ms

 Reading 5 78.125ms

 Mean Reading Value 78.125ms

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 Mean

Retrieving by Service Name

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

84

c) Retrieving services by service type

The service types were further increased to seventy five along with the value of services

to make the system more real time and tests should be more efficient accordingly. Service

type ‘Telephony’ was searched once again and 8 services were returned as no new

services were registered in this service type category. The system is observed to be

behaving stable with service lookup search as efficient discovery is experienced and no

major fluctuation in real time was noted. The readings are illustrated below in chart 6-15.

Chart 6-15 Retrieving services with service type having 500 services

The readings time for retrieving a service by its service type is as follows

Reading 1 515.625 ms

Reading 2 359.375 ms

Reading 3 484.375 ms

Reading 4 421.875 ms

Reading 5 604.125 ms

 Mean Reading Value 477.075 ms

0

100

200

300

400

500

600

700

1 2 3 4 5 Mean

Retrieving by Service Type

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

85

d) Retrieving services by Keyword

The last test for this case was key word lookup in order to retrieve the desired services. Once

again ‘Food‘ was searched and the mean time taken for returning the list of matching

services was found to be 1487.50 ms. It was slower for the reason explained previously,

however it was still efficient considering that 27 services were look up from 500 services

based on syntax matching and then performing ONTOLOGY file matching accordingly. No

major fluctuation of timing was experienced while conducting this testing. The readings are

illustrated in chart 6-16 below

Chart 6-16 Retrieving services by keyword when number of services registered are 500

The readings time for retrieving a service by its service name is as follows

Reading 1 1359.375 ms

Reading 2 1250.000 ms

Reading 3 1203.000 ms

Reading 4 1656.255 ms

Reading 5 1968.715 ms

 Mean Reading Value 1487.500 ms

0

500

1000

1500

2000

2500

1 2 3 4 5 Mean

Retrieving with Keywords

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

86

6.2.5. Service Repository with 1000 services

Fourth interval for testing was decided at 500 services with 75 service types. This was one of an

important real time test by adding a lot of services in the system to monitor the system

behaviour. It wil make it easier to understand how will the system will behave in real time.

a) Retrieving All Services

When all services were retrieved the system no major difference were observed except a slight

slower as estimated, however no major fluctuation in retrieval time was being observed that can

be seen in chart 6-17 displayed below. The mean time was found to be 2345.6 ms.

Chart 6-17 Retrieving all services when number of services registered are 1000

The readings time for discovering all services are as follows

Reading 1 2523.175 ms

Reading 2 2310.425 ms

 Reading 3 2280.605 ms

Reading 4 2305.225 ms

Reading 5 2310.475 ms

 Mean Reading Value 2345.600 ms

2150

2200

2250

2300

2350

2400

2450

2500

2550

1 2 3 4 5 Mean

Retrieving for All Services

1

2

3

4

5

Mean

Chapter 6 Testing

87

b) Retrieving specific service by service name

‘‘Skype’’ service was searched once again to test the system behaviour when the total

number of services stored in database are 1000. The system response time was extremely

efficient as been observed previously. The mean time was found to be 110.653 ms.The

response time for each reading can be seen in chart 6-18 displayed below

Chart 6-18 Retrieving services by name when number of services registered are 1000

The readings time for retrieving a service by its service name is as follows

 Reading 1 112.250ms

 Reading 2 108.550ms

 Reading 3 106.125ms

 Reading 4 119.215ms

 Reading 5 107.125ms

 Mean Reading Value 110.653ms

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

1 2 3 4 5 Mean

Retrieving for Service Name

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

88

c) Retrieving services by service type

The service types were further increased to hundred for this final test case along with the

value of services to make the system more vulnerable to real time. Service type

‘Telephony’ was searched once again and 17 services were returned as response by the

application. New services were registered in this service type category which results in

retrieval of more services. The system is observed to be behaving a bit slow because of

database and then OWL lookup accordingly. The readings are illustrated below in chart

6-19. The mean time has been found to be 1340.635 ms in this case.

Chart 6-19 Retrieving services with service type having 1000 services

The readings time for retrieving a service by its service type is as follows

Reading 1 1378.725 ms

Reading 2 1269.425 ms

Reading 3 1379.450 ms

Reading 4 1321.125 ms

Reading 5 1354.450 ms

 Mean Reading Value 1340.635 ms

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

1 2 3 4 5 Mean

Retrieving for Service Type

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

89

d) Retrieving services by Keyword

When the services were tried to be retrieved by keyword lookup the system behaved a bit

slower as expected. Once again the search was conducted by providing the keyword ‘‘Food’’

and 31 services were retrieved as a result of it. The mean time for key word lookup with

1000 services stored in repository was found to be 4030.492 ms. all five reading that were

carried out are displayed in chart 6-20 below and reading value can also be seen beneath that.

Chart 6-20 Retrieving services by keywords when services registered are 1000

The readings time for retrieving a service by its service name is as follows

Reading 1 4055.975ms

Reading 2 3815.325ms

Reading 3 4197.125ms

Reading 4 3815.325 ms

Reading 5 4268.715ms

 Mean Reading Value 4030.492ms

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

1 2 3 4 5 Mean

Retrieving for Keywords

1

2

3

4

5

Mean

Reading

Timems

Chapter 6 Testing

90

6.3 System Overall Behavior

As per the requirements specified previously a service should be discovered really fast. The

system is expected to take minimum time in retrieval of service by its service name as only

database search will be performed, whereas more time is consumed for ServiceType and

Keyword lookup as ontologies are also looked up after database lookup. Chart 6-21 illustrates

the overall system behavior for retrieving of services as per user request i-e Service name,

service type etc with different number of services registered in system repository.

Figure 6.21 System Overall Behavior

The x-axis shows the number of services used for testing while y-axis is the time taken (in

milliseconds) to return the results based on different types of parameters used in discovery of

services which are:

1) retrieving all available services

2) retrieving by service name

3) retrieving by service type

4) retrieving by keywords

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

50 100 250 500 1000

T
im

e
 (

m
s)

No. of services

System Overall Behavior

all available services

service name

service type

keyword

Chapter 6 Testing

91

The mean reading value for each number of service tested is used to plot the graph hence this

result is retrieved. The system behaved exactly as expected and been discussed at the beginning

of this section. Service name lookup was really fast and scales well to real time tests that were

conducted at different intervals by adding more services in the system repository. However the

service lookup and key word look were considerably slower then preceding service name lookup

as after retrieving the information from the database, lookup was carried out in ontologies to

provide semantic meaning to the search and service discovery, hence making it gradually slower.

However the system overall real time performance was found to be satisfactory and it scales well

to the increased number of services.

The System performance can be further enhanced by introduction of a powerful server to host

this application. Search tends to be slower once more resources are being consumed at the

machine so a powerful server will ensure more efficiency. OWLDOTNETAPI can also be edited

for scaling well to large number of services and will definitely help a great deal to increase the

architecture efficiency. Due to the shortage of time this cannot be conducted in this master thesis

but can definitely be an area of interest for future work.

Chapter 7 Conclusion

92

Chapter 7

7 Conclusion

‘‘There’s two possible outcomes: if the result confirms the hypothesis, then you’ve made a

discovery. If the result is contrary to the hypothesis, then you’ve made a discovery.’’

Enrico Fermi

This chapter summarizes the works done in this master thesis. Major contributions through this

research oriented project along with the result obtained are discussed in detail. We will also

discuss the test results that have been conducted in order to measure the system efficiency in real

time environment along with the future work that should be focused on. This chapter is

organized as follows

7.1) Major Contribution of this thesis

7.2) Summary of thesis

7.3) Future Work

Chapter 7 Conclusion

93

7.1 Major Contribution of this thesis

The aim of this thesis has been to identify requirements for future mobile services, design an

architecture that fulfill future mobile services requirements and implement the design

accordingly. The major contributions in this project are therefore summarized as follows:

• Requirements for future mobile services are proposed by foreseeing that how future mobile

environment will be shaping in years to come. Based on these requirements current well

known service discovery architectures are evaluated and their shortcomings were specifically

identified.

• Design of system for future mobile services has been proposed. In traditional service

discovery architectures no method has been specified to define services as equivalent or

partially equivalent to one another, however considering ubiquitous nature of the future

mobile environment it will be really important. The system has been designed to allow the

services to be introduced by anybody at any time, to be defined as equivalent or partially

equivalent to any other service of its type along with multi language support. No formal

approval is required for the introduction of a service which makes this design really flexible.

• Implementation is successfully carried out for the design proposed. The development was

carried out in Windows environment and makes the system usable for any user in mobile or

normal environment. This implementation is for real-life usage, and makes it possible to use

service discovery in any distributed application by using a simple graphical user interface.

The class view, Database tables sample data and source code is presented in Appendix A.

System design and its implementation has been submitted for approval to WIMOB

conference 2010 in Canada. The paper draft can be found in Appendix B.

• Testing was conducted considering use scenarios which are still lacked in current service

discovery architectures. The system was evaluated specifically for scalability in the real time

environment and was found to be quiet efficient and stable in most of the scenarios.

Chapter 7 Conclusion

94

7.2 Summary of thesis

We successfully created a system that fulfills the requirement of our system allowing anyone to

act as a service provider and introduce a service at any time. The services can be introduce in any

language by the service provider as well as can define it equivalent to any existing service. The

service can be searched by its service type or service name. Moreover the user can also retrieve

similar services by requesting any specific service type or all available services registered. The

system provides Semantic meaning to the service discovery by using OWL to define the

relationships among the services.

We consider five real time use scenarios in order to check the system functionality that is

missing in current architectures. Same services with different names, different services with

same names, services in multiple languages, and partial equivalent services were specifically

identified and were found to be successfully providing semantics to the service discovery.

Anyone can introduce a service at any time and the flexibility proposed was ensured. The system

was tested for scalability by adding a lot of services and at different check points. The system

behaved quite efficient in service name search and all the desired information was retrieved

really fast. The service type lookup and key word look up was found to be a bit slow because the

system once searching in database has to look accordingly in OWL to find the equivalent and

ensure semantic needed by the service discovery. The system resources were found to be one of

an important feature at time of searching so a powerful server is proposed in order to implement

it in real time environment.

7.3 Future Work

Due to the shortage of time there are several tasks that could not be completed during the work

of this thesis. Further works include:

i. Carry out larger experiments and test on the future service discovery system with:

a. various number of clients

b. different bandwidth

c. by increasing number of Parents (ParentType)

d. complicated service ontology

Chapter 7 Conclusion

95

ii. To move the future service discovery system to a real mobile and wireless environment (the

Client is implemented on real mobile phones). The connection of the mobile could be either

via the mobile network or the local WLAN etc. It might also be interesting to carry out

experiment with a larger number of mobile phones to challenge the capacity and robustness

of the service discovery.

iii. To have a distributed ontology framework on the future service discovery system as

illustrated in Figure 7-1.

Figure 7-1 Distributed ontology framework for future service discovery system

Appendix A.1 Class Description

96

Appendix A

A.1 Class Description

A1.1. Base Class:

The Base class provides the main connectivity with the data base. In addition to connectivity it

provides the database functions such as (Insert, update and retrieval). This class has a number of

overloaded methods to extend the functionality. The Base class is inherited by three different

classes to reuse the code.

The Base class exposes the following method and fields.

Method

 Name Description

ExecuteDataSet(string sqlString) The method argument takes the sql string and returns

dataset.

ExecuteDataSet(string
storeProcedure, params object[]
KeyValueParameters)

The method argument takes the stored procedure & key
value parameter and returns dataset.

ExecuteDataTable(string sqlString) It returns the data table for both methods; the only

difference is the argument.

DataTable
ExecuteDataTable(string
storeProcedure, params object[]
KeyValueParameters)

ExecuteNonquery(string sqlString) The method is used for (update, delete, insert) & return

number of rows affected.

ExecuteNonquery(string
storedProcedure, params object[]
KeyValueParameters)

ExecuteReader(string sqlString) It returns the reader object for both methods; the only

difference is the argument.

ExecuteReader(string
storedProcedure, params object[]
KeyValueParameters)

ExecuteScalar(string sqlString) It returns a single value.

ExecuteScalar(string
storedProcedure, params object[]
KeyValueParameters)

Appendix A.1 Class Description

97

Fields

 Name Description

 connectionString A protected field type of SqlConnection.

 sqlAdapter A protected field type of SqlDataAdapter.

 sqlComm A protected field type of SqlCommand.

 sqlConn A protected field type of SqlConnection.

 sqlReader A protected field type of SqlDataReader.

A1.2. DALService

The Data Access layer service (DALService) class inherits the Base class and reuses its basic

functionality as connectivity with the database, insertion and retrieval. Additionally it provides

the functionality to access the service table in the database. This includes adding of equivalent

service id, finding of service, retrieval of all the services on matching and insertion of service.

The DALService exposes the following members.

Constructor

 Name Description

 DALService() Initializes a new instance of the DALService class.

Methods

Access
modifier

Name Description

 AddEquivalentServiceId(int ServiceId,
int EquivalentServiceId)

It creates the equivalent relation in the data base.

 FindServiceByName(string
ServiceName)

It returns the data table for the service name
specified in argument. It’s a wild card matching.

 GetAllEquivalent(int ServiceId,
ArrayList serviceIds)

It adds all the service ids which are equivalent to
specified service id in array.

 GetEquivalentServiceId(int ServiceId) It return array id for those services which are
equivalent with the specified argument.

 GetServiceByName(string
ServiceName)

The method returns the data table for exact service
name.

 GetServiceByServiceId(int ServiceId) Returns the complete information in data table for
a service id.

 GetServiceByServiceTypeId(int[]
ServiceTypeId)

It returns the data table for more than one service
type id.

 GetServiceByServiceTypeId(int It returns the data table for a service type id.

Appendix A.1 Class Description

98

ServiceTypeId)

 Insert(string ServiceName, int
ServiceTypeId, string ServiceURI,
string ServiceDescription)

It returns the service ID generated by the data
base.

A1.3. DALServiceType

The Data Access layer service type (DALServiceType) class inherits the Base class. In addition

to the base class functionality it also provides access to the servicetype table in the database. This

class not only accesses the servicetype table but it has to ensure the consistency between the

database table and the ontology.

DALServiceType exposes following methods and fields.

Fields

 Name Description

 _owlHelper An object of OWL helper class to work with ontology.

Constructor

 Name Description

 DALServiceType() Initializes a new instance of the DALServiceTyp class.

Methods

 Name Description

 GetServiceByServiceTypeId(int
ServiceTypeId)

It return the service type and the parent type based of
service id passed as an argument

 GetServiceTypeId(ServiceType
serviceType)

It return the database id of a service type based on the
object of servicetype as an argument

 GetServiceTypeIdsHierarchy(int
ServiceTypeId)

It returns the parent servicetype id i-e an array of
servicetype id for passed ServiceTypeId.

 Insert(string ServiceTypeName, string
ServiceTypeURI, int ParentTypeId)

It inserts a servicetype in the database.

 Insert(ServiceType newType) It insert the servicetype but first it checks for the parent of
passed servicetype id. If the parent does not exist then it
first add the servicetype id for the parent and then perform
the insertion of servicetype.

Appendix A.1 Class Description

99

A1.4. DALKeyword

The Data Access layer keyword (DALKeyword) class inherits the Base class for reusability of

the code such as the basic connectivity with the database, insertion and retrieval. It provides the

additional functionality to access the keyword in the database. Moreover it ensures not to use the

same keyword for two services. At time of registering a service it first checks whether the same

keyword is already stored in database for any other service. If any value is matched then instead

of adding the keyword the keywordID is used to avoid the redundancy. The DALKeyword

exposes the following methods.

Constructor

 Name Description

 DALKeyword () Initializes a new instance of the DALKeyword class.

Methods

 Name Description

 GetServiceIdByKeyword(string
Keyword)

It returns the array of service id associated with the passed
argument.

 Insert(int ServiceId, string Keyword) It inserts the keyword with its associate service id.

A1.5. Discover Members

The Discover class contains the overall logic of web service, the methods of discover class are

directly exposed to the client to use them. The ASP.net page also consumed this web-service.

The Discover class is performing the most prominent functionalities by calling other class

methods in the same package, the discover class performs different tasks such as adding new

service type, finding service by name, keyword, serviceId and by service type. The discover class

also performs the process of service registration.The discover class exposes the following

members.

Constructor

 Name Description

 Discover() Initializes a new instance of the Discover class.

Method

 Name Description

AddServiceType(ServiceType serviceType) This method adds a service type in the

database and in ontology it creates a class.

Appendix A.1 Class Description

100

FindService(string ServiceName) It find the service based on name

FindServiceByKeyword(string Keyword) It returns all the service which associate

with the keyword.

GetServiceById(string ServiceId) It returns the service by service id.

GetServicesByServiceType(ServiceType
srvType)

It returns all services by passing the service
type.

GetServiceTypes() It returns all available service types.

RegisterService(Service srv) It registers the service

Fields

 Name Description

 _owlHelper An object of OWL helper class to work
with ontology.

 _strBaseURI This field stores the main URI to indicate
each class in the ontology.

 _strOwlFile File location of Ontology.

A1.6. OwlHelper Members

The OwlHelper class uses the OWLDOTNET API to perform different tasks in ontology. These

tasks contains searching of class from ontology on the basis of service type name, Each of the

class in the ontology contains an URI, this URI uniquely identify the class but this URI is a long

string include the name of the class, OwlHelper is used to extract the name of class from the

URI. Along this the OwlHelper returns all the equivalent classes from the ontology.

The OwlHelper exposes the following members.

Constructor

 Name Description

 OwlHelper() Initializes a new instance of the OwlHelper
class.

Method

 Name Description

 ExtractName(String node) It extracts the class name from the URI in
the ontology.

GetEquivalentClasses(string ServiceTypeURI) It returns all the equivalent classes for

passed serviceTypeURI from the ontology.

GetServiceType() It returns all the classes from the ontology.

Appendix A.1 Class Description

101

SearchServiceType(string ServiceTypeName) It returns the matched class for the specified

argument.
Fields

 Name Description

 _strBaseURI This field stores the main URI to indicate
each class in the ontology.

 _strOwlFile File location of Ontology.

A1.7. Service Members

The service class is a representation of each individual service which is being used to perform

different functions associated with service such as service registration, service retrieval and

service matching. Service class includes overloaded constructor, properties: (attributes such as

description of service, equivalent services, associated keyword, name of the service, address

URI) and different fields.

Constructor

 Name Description

 Service() Initializes a new instance of the Discover class.

 Service(string Name, string
URI, string Description,
int[] EquivalentServiceIds,
string[] Keywords,
ServiceType Type,
 string StateVariables,
string Actions, string
Events)

Overloaded constructor

Properties

 Name Description

 Description String field to store short description about the service

 EquivalentServiceIds Array of all equivalent service ids

 Keywords Associated keywords

 ServiceId Integer ID for Service

 ServiceName To store the name of service.

 ServiceURI URI of service WWW.GOOGLE.COM

 Type OBJECT OF SERVICE TYPE

Appendix A.1 Class Description

102

A1.8. ServiceType Members

The servicetype class is a representation of each individual servicetype which is being used to

perform different functions associated with servicetype such as servicetype registration,

servicetype retrieval and servicetype matching. Servicetype class includes overloaded

constructor, properties: (attributes such as All equivalent classes in the ontology, Parent (service

type) of the servicetype, name of the servicetype in the ontology, associated keyword, unique

URI in the ontology and different field.

The Base type exposes the following members.

Constructor

 Name Description

 ServiceType() Initializes a new instance of the ServiceType class.

 ServiceType(string
ServiceTypeName, string
ServiceTypeURI, string[]
EquivalentClasses,
ServiceType
ParentServiceType)

Overloaded constructor

Fields

 Name Description

 _parentType Value of Parent type e.g (Transport is parent type of TAXI).

 _strEquivalentClasses Value of equivalent e.g(Cab is equivalent of Taxi)

 _strServiceTypeName Value of the servicetype itself e.g(Taxi)

 _strServiceTypeURI This field stores the main URI to indicate each class in the
ontology.

Appendix A.2 Database Overview

103

A.2 Database table overview

 Microsoft SQL server 2005 enterprise edition (46) was used as repository during implementation

of this project. The database was used to store all the available service, service type, service URI,

keywords for each specific service as well as equivalent for each service or service type if any

exist. A brief overview of each table is discussed below whereas the relationships between these

tables can be seen in ERD diagram illustrated Figure 5-3. For more detail on each table sample

data is illustrated for each table saperately in Appendix A.2 which can be referred to if required.

A2.1. Service Table

The table service is used to store the data for every registered service. This table typically

contains each service id which is generated by the database at the time of registration of service.

The second field is ServiceName which is a string value to store the name in Unicode (the

Unicode is used to support characters of different languages. For any service there must be

parent service which describes the belonging type or the classification of service, this association

can be possible by using the servicetypeId as a foreign key from the table of serviceType. Until

now there is no field which define the address of the service from where a service can be invoked

this is done with ServiceURI to store the URI of a service. To ensure that the user has selected

appropriate service there is a field called ServiceDescription to store brief description of the

service which could be helpful to select the most appropriate service.

The Sample data for service table

ServiceI
d

ServiceName ServiceTypeId ServiceURI ServiceDescription

http://www.jumeirah.com/en/hotel 108 برعلا جرب 78
s-and-
resorts/destinations/dubai/burj-al-
arab/

burj Al rab on of the
best restaurant

79 Cassis
Restaurant

155 http://www.cassis-gourmand.com/ restaurant in Jakarta

86 Book 161 www.amazon.com/harrypotter Harry Potter Novel
story

87 Book 163 www.eazyjet.com/book online Booking
service EazyJet
airline

Appendix A.2 Database Overview

104

A2.2. Service Type Table

This table is used to store every service type which is being inserted in the ontology. There are

two reasons for doing this.

 i. First it used to ensure the relationships between the service and their service type

along with the equivalent services, this is done to reduce the complexity of the

system.

 ii. The second reason is to increase the performance of the system. By decreasing

lookups in the ontology which take longer time as compare to database lookup.

The service type table is used to maintain the record of the classes which has been inserted in the

ontology at the time of registering service type. At the time of registration of service type the

database allocate an auto-generated id which is stored in ServiceTypeId field. The service name

could also be retrieve from the ontology but due to the performance issue it is better to store in

database field instead of ontology, the serviceTypeName is used to store the name of the service

type. The servicetype shows a relation between parent and child including the grandparent

relation, for grandparent a servicetype could be child of another service type. To achieve the

grandparent relation the ServiceTypeParentId is used, this relation is not only used for the

grandparent but it also used for the semantic application. There must be some link to identify the

service type from ontology this is done by storing the unique URI for each class in the ontology

in ServiceTypeURI.

Sample data for service type table

ServiceTyp
eId

ServiceTypeName ServiceTypeURI ServiceTypeParen
tId

108 restaurant http://www.semanticweb.org/ontologies/de
mo1.owl#restaurant

107

155 restoran http://www.semanticweb.org/ontologies/de
mo1.owl#restoran

-1

161 Novel http://www.semanticweb.org/ontologies/de
mo1.owl#Novel

160

163 EazyJet http://www.semanticweb.org/ontologies/de
mo1.owl#EazyJet

162

Appendix A.2 Database Overview

105

A2.3. EquivalentService

One of the goal of service discovery is to return the services which has partial features. This type

of services are stored in the system with the title of equivalent services. To store the equivalent

service there must be two services (ServiceId and EquivalentServiceId) to be equivalent of each

other and uniquely identify the relation ie EquivalencyID.

Sample data for EquivalentService table

EquivalencyId ServiceId EquivalentServiceId
16 91 83

A2.4. ServiceKeyword

The keyword table contains the auto generated KeywordId for every keyword. This table is used

to store the keyword for the later usage of keyword.

Sample data for service keyword table

ServiceKeywordId ServiceId KeywordId
79 78 60
80 78 61
81 78 62
82 79 60
83 79 63

A2.5. Keyword

The service keyword table has been designed to avoid redundancy of keywords. For this the table

stores the association between the keywords and services. To accomplish this it contains auto

generated ServiceKeywordId for every association between the service (ServiceType) and

keyword (KeywordId).

Sample data for serviceKeyword table

KeywordId Keyword
60 Restaurant
61 Dubai
62 Italy
63 Karachi

Appendix B Publication

106

Appendix B. Publication

 The following paper draft has been submitted to WIMOB conference 2010 under category
‘‘ Ubiquitous Computing, Services and Applications’’. The conference is scheduled to be held
in October whereas the decision on the approval of this paper draft will be announced by end of
July. The draft of the paper is attached from next page.

Appendix B Publication

107

Appendix B Publication

108

Appendix B Publication

109

Appendix B Publication

110

Appendix B Publication

111

Appendix B Publication

112

Appendix B Publication

113

Bibliography Service Discovery for Future Mobile Services

114

Bibliography
1. MarkWeiser. The Computer for the 21st Century. s.l. : Scientific American, 1991.

2. Patric Goering, Geert heijenk,boudewijn haverkort,Robert Haarman. The effect of
mobility on local service discovery in the ahoy ad-hoc network system, Proceedings of the 4th
European performance engineering conference on Formal methods and stochastic models for
performance evaluation. Berlin,Germany : Springer-Verlag Berlin, Heidelberg, 2007. 978-3-
540-75210-3 .

3. Martin Bäckström, Andreas Havdrup, Tomas Nylander, Jari Vikberg,Peter Öhman
Ericsson Review No. 2, 2005. Mobile@Home—GSM services over wireless LAN. Review No.
2, 2005.

4. Upkar vashney, Ron Vetter. Emerging mobile and wireless networks,Communications of the
ACM,Pages: 73 - 81 . New York : ACM, USA, 2000. ISSN:0001-0782 .

5. Felkey, Brent I. Fox and Bill G PDA Interface, Expanding your hardware capabilities..
Facts and Comparisons 2003, Volume 38, Number 1, pp 90–92.

6. Philipp Offermann, Olga Levina, Marten Schönherr, Udo Bub, Outline of a Design
Science Research Process. Proceedings of the 4th International Conference on Design Science
Research in Information Systems and Technology. ACM 2009 :, Pages: 1-1.

7. Stuart Cheshire, Daniel Steinberg. Zero Configuration Networking: The Definitive Guide .
s.l. : O'Reilly Media, December,2005. 0-596-10100-7.

8. Droms, R. Dynamic Host Configuration Protocol, Request for Comments: 2131 . s.l. :
http://www.ietf.org/rfc/rfc2131.txt, March 1997.

9. Y. Goland, T. Cai, P.Leach Simple Service Discovery Protocol. s.l. IETF Draft, October
1999, Vols. draft- cai-ssdp-v1-03-.txt, .

10. Jini Introduction. TTM47AC Laboratory in construction of self-configuring systems,
Fakultet for informasjonsteknologi, matematikk og elekroteknikk,INSTITUTT FOR
TELEMATIKK[Online] http://www.item.ntnu.no/fag/ttm47ac/Information/Jini_Introduction.pdf

11. Jini Technology The community Resource for Jini Technology.. [Online] 2006. The
community Resource for Jini http://www.jini.org/wiki/Jini_Architecture_Specification .

12. E. Guttman, C. Perkins,Sun Microsystems,J. Veizades, M. Day RFC 2608, Service
Location Protocol version 2. s.l. : IETF,Network Working Group, 1998.

13. Salutation Consortium White Paper: Salutation Architecture. www.salutation.org :, 1999.

Bibliography Service Discovery for Future Mobile Services

115

14. Salutation Consortium, Salutation Architecture Specification Version 2.0 [Online] .
http://systems.cs.colorado.edu/grunwald/mobilecomputing/papers/salutation/sa20e1a21.pdf, 1
June 1999.

15., IrDA-Infrared Communication Interface revison. 6/04 s.l. : copyright Cambell Scientific,
inc 2003-2004 .

16. W3C. web service. [Online] 2006. www.webservice.com.

17. Prof Do Van Thanh,. Semantic Web Lecture 1. Slide 6-9 : Department of telematics,
NTNU, Trondheim, 2009.

18. Matteo Villa, Giovanni Di Matteo,Roberto Lucchi, Michel Millot, Ioannis
Kanellopoulos. INSPIRE NETWORK SERVICES SOAP Framework . s.l. : European
Commission, Joint Research Centre. EUR 23635 - 2008.

19. Martin Gudgin, Marc Hadley, Noah Mendelsohn,Jean-Jacques Moreau. SOAP Version
1.2 Part 1: Messaging Framework (Second Edition). [Online]. http://www.w3.org/TR/soap12-
part1/ 27 April 2007.

20. Erik Christensen, Francisco Curbera,Greg Meredith,Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C. [Online]
http://www.w3.org/TR/wsdl#_introduction.

21. W3C Recommendation,. XML Schema Part 0: Primer Second Edition. 28 October 2004.
[Online]: http://www.w3.org/TR/xmlschema-0/ .

22. W3School.. w3school. [Online] http://www.w3schools.com/wsdl/wsdl_documents.asp

23. Erik Christensen, Francisco Curbera,Greg Meredith,Sanjiva Weerawarana. Web
Services Description Language (WSDL) Version 1.2. [Online]
http://www.w3.org/TR/2003/WD-wsdl12-20030611/wsdl12.pdf.

24. Introduction to UDDI Concepts,Important Features and Functional. Oasis UDDI.
October 2004. online : http://www.uddi.org/pubs/uddi-tech-wp.pdf.

25. Newcome, Eric. Understanding Web services: XML, WSDL, SOAP, and UDDI, Chapter 5
Finding web services Page 151-162. s.l. : Addison-Wesley, 2002. 0201750813, 9780201750812.

26. Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc. UDDI Technical white paper. 6th september 2000.

27. Reynolds, Fred Hartman and Harris. Was the Universal Service Registry a Dream? Web
Services Journal,, Vols. Dec 2, 2004.

Bibliography Service Discovery for Future Mobile Services

116

28. Barbara Carminati, Elena Ferrari, Patrick C.K. Hung . Exploring Privacy Issues in Web
Services Dscovery Agencies. IEEE Security and Privacy. Sep/Oct 2005, Vols. vol. 3, no. 5, pp.
14-21.

29. IEEE Systems, Man, and Cybernetics Society. Different Interpretations by Syntactic
Search. s.l. : Page 270-274, IEEE International Conference on Systems, Man, and Cybernetics
,1996.

30. WHITEPAPER INTERDigital Media Independent Handover : WHITEPAPER (C). s.l.
InterDigital Inc, King of Prussia, PA 19406 USA. [online]
http://www.interdigital.com/images/id_pubs/InterDigitalMIHWhitePaper_Apr09.pdf.

31. Lampson, Butler W. Designing a Global Name Service, Digital Equipment Corporation.
Digital Equipment, 130 Lytton Avenue, Palo Alto, CA 94301 : s.n. ACM 0-89791-198-
9/86/0800-0001.

32. Gnutella. http://gnutella.wego.com. [Online]

33. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan.Chord: A Scalable Peer-to-peer Lookup Service for Internet. s.l. : IEEE Press
Piscataway, NJ, USA, FEBRUARY2003.

34. Cliff Kettemborough, Introduction to Use Case Diagrams. March 5, 1999.

35. (W3C), World Wide Web Consortium. SOAP Version 1.2 Part 1 – Messaging Framework
(Second Edition). http://www.w3.org/TR/soap12-part1. [Online] 27 April 2007.

36. Onion, Fritz. "Essential ASP .Net with Examples in C#”. Microsoft .Net Development
Series. [book auth.] MA: Addison Wesley. Boston : ISBN 0201760401, 2004.

37. Microsoft Internet Information Services (Iis) 6.0 Resource Kit. ISBN:0735614202 :
Microsoft Press, 2003 .

38. (W3C), World Wide Web Consortium. OWL Web Ontology Language Overview.
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3. [Online] 10 February 200.

39. David S Platt, The Microsoft Platform Ahead. ISBN 0735620644 : Microsoft Press
Redmond, WA, USA , 2004.

40. Louis Columbus. The Microsoft Windows XP Professional Handbook. ISBN:1584502193 :
Charles River Media, Inc. Rockland, MA, USA , 2002 .

41. Brian Johnson, Criag Young, Marck Skibo. Inside Microsoft Visual Studio .NET. s.l. :
Microsoft Press Redmond, WA, USA .

Bibliography Service Discovery for Future Mobile Services

117

42.OWlDotNetApi.
OwlDotNhttp://users.skynet.be/bpellens/OwlDotNetApi/documentation.html. [Online] [Cited: 06
10, 2010.]

43. Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen “The
Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications”. ..
The Semantic Web (ISWC 2004), 2004, pp. 229-243. , s.l. : The Semantic Web (ISWC 2004), ,
2004, Vols. pp. 229-243.

44. Robert M Colomb, Frontiers in Artificial Intelligence and Applications; Vol. 156,
Proceeding of the 2007 conference on Ontology and the Semantic Web.. s.l. : IOS Press
Amsterdam, The Netherlands, The Netherlands, 2007. ISBN:0922-6389 , 978-1-58603-729-1 .

45. Phillips, Jeremy J. Carroll and Addison. Multilingual RDF and OWL : s.n., Vol. copied
from 10.1.1.85.143.

46. Ray Rankins, Paul Bertucci,Chris Gallelli, Alex T SilverStein. Microsoft(R) SQL Server
2005 Unleashed. s.l. : Sams Indianapolis, IN, USA, 2006. 0672328240 .

	Title Page
	Problem Description
	masteroppgave.pdf

