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Abstract We present a framework for the estimation of the Fractional Flow
Reserve index based on blood �ow simulations that incorporate clinical imag-
ing and patient-speci�c characteristics. The process of model design implies
making choices in order to build a suitable mathematical model, e.g. simu-
lating a 3D domain versus a 1D domain, modeling of peripheral resistances,
determining the regions of interest, etc. Here we thoroughly evaluate the im-
pact of such choices on FFR prediction accuracy by reduced-order models with
respect to more complete models by means of uncertainty quanti�cation and
sensitivity analysis. Moreover, we assess the uncertainty of FFR predictions
based on our framework with respect to input data, and further determine
the most in�uential inputs with sensitivity analysis, aiming at increasing the
clinical usability of predictions by providing information on the reliability of
model output on a per case basis. Analysis is carried out for a population of
13 patients for which 24 invasive FFR measurements are available. Our anal-
ysis con�rms previously observed sources of uncertainty and provides insight
into aspects to be improved in any model-based non-invasive FFR estimation
method.

Keywords computational FFR · uncertainty quanti�cation · model
complexity · total uncertainty

1 Introduction

Ischemic heart disease is the leading cause of death globally [33], and its rel-
evance will increase as the global population ages. In this study we consider

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fredrik.e.fossan@ntnu.no



2 Fredrik E. Fossan et al.

patients with stable Coronary Artery Disease (CAD) which, in addition to
acute myocardial infarction, is the main symptomatic manifestation of coro-
nary artery disease. In this context, Fractional Flow Reserve (FFR) has been
shown to be a reliable, but invasive, tool to study the functional signi�cance of
coronary artery stenosis. Further, FFR-guided revacularization has improved
event-free survival and lower healtcare costs in randomized studies [49,34,7].
Over the last decade many attempts have been made to predict FFR non-
invasively using computational �uid dynamics and mathematical models [6].

Seeking clinical applicability, many proposed methods for non-invasive FFR
prediction rely on simpli�ed versions of the original physical problem, i.e. sim-
pli�cations to the original problem are made in order to reduce computational
cost and to allow for a fast calculation of FFR, see for example [19,35]. How-
ever, in such studies no information on the errors made by using simpli�ed
models are provided. Two notable exceptions are found in [3,2], where results
obtained using reduced, one-dimensional blood �ow models are validated by
comparison to results obtained using 3D transient models for a synthetically
generated population and for a real patient population, respectively. However,
in both cases the impact of modelling assumptions chosen to simplify the
problem is either only partially explored or completely ignored. We perform
an extensive evaluation of the impact of model reduction choices on FFR pre-
dictions by using uncertainty quanti�cation and sensitivity analysis (UQ&SA)
tools. These tools are extremely useful in addressing such questions, as UQ&SA
provide insight into which elements of the simpli�ed model are most in�uential
on FFR prediction and are thus ideal candidates for optimization.

A few previous studies have investigated the sensitivity of FFR predic-
tions to various sources of uncertainty in patient-speci�c models of coronary
�ow [41,30], while others have analyzed generic models of coronary blood �ow
and stenoses as general investigations into the uncertainty of model predicted
FFR [9,48]. Sankaran et al. [41] and Morris et al. [30] both investigated the
e�ects of uncertainty in computational prediction of FFR. Sankaran et al. ac-
counted for uncertainties in lesion geometry, peripheral resistance and blood
viscosity, while Morris et al. considered only uncertainty about parameters for
a lumped stenosis model, proximal pressure, and resistance in the coronary
microvasculature.

This study extends the above mentioned previous works by including un-
certainties in additional parameters required for performing a computational
assessment of FFR. Additionally, by performing such a study on a population
of patient-speci�c cases, we provide further insight into the role played by
di�erent parameters for di�erent ranges of FFR, with particular attention to
intermediate stenoses with FFR values between 0.7 and 0.9, showing how the
various sources of uncertainty may impact individual cases di�erently.

The noninvasive, sampling based UQ&SA methods of Monte-Carlo and
Polynomial chaos are employed to estimate global Sobol sensitivity indices
which assess sensitivity by partitioning the uncertainty in the model output
into components associated with particular inputs. Further these methods ap-
proximate the distribution of the model output from which summary quan-
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tities may be calculated to describe the resulting uncertainty in FFR model
prediction where desired.

The rest of this paper is structured as follows. In Sect. 2 we introduce
two predictive models of FFR based on 3D incompressible Navier-Stokes and
reduced-order one-dimensional �ow, respectively. Additionally we describe the
the UQ&SA framework in Sect. 2. Next, in Sect. 3 we present results for
the optimal reduced-order model setup, as well as for the UQ&SA analysis
performed on FFR predictions. Finally, in Sect. 4 we discuss presented results
as well as considerations on further steps to be taken in order to increase the
accuracy and reduce the uncertainty in model-based FFR prediction.

2 Materials and methods

2.1 Study population

We consider a population of 13 patients that underwent invasive angiography
and FFR measument after clinical and coronary computed tomography an-
giography (CCTA) examinations indicated stable CAD. We collected 24 FFR
measurements from these patients. The FFR measurements had a mean of 0.77
and a standard deviation of 0.17, with a positive FFR prevalence of 41.67 %
for a cuto� value of FFR < 0.8. The patients were recruited as part of an
ongoing clinical trial at St. Olavs Hospital, Trondheim, Norway [?].

2.1.1 Recruitment

The study subjects included in the analysis had undergone coronary computed
tomography angiography (CCTA) due to chest pain and suspicion of stable
CAD. Patients were enrolled with the �ndings of one or more coronary stenosis
on CCTA and being further referred for invasive coronary angiography (ICA)
with invasive FFR measurements.

Exclusion criteria included unstable coronary heart disease, previous percu-
taneous coronary intervention or bypass surgery, renal insu�ciency (estimated
glomerular �ltration rate < 30 mL/min), obesity (BMI > 40), non diagnos-
tic quality of the CCTA due to motion artifacts or known allergy to contrast
agent or contraindications to adenosine.

2.1.2 Data acquisition

CCTA was performed using two CT scanners with 2 × 128 detector rows
(Siemens dual source De�nition Flash) using a standardized protocol [14].

Echocardiographic imaging was performed using a GE Vivid E95 scanner
(GE Vingmed Ultrasound, Horten, Norway). Cardiac output (CO) was cal-
culated based on cross-sectional area of left ventricle out�ow tract measured
immediately proximal to the points of insertion of the aortic lea�ets and ve-
locity time integral derived from PW Doppler.
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Fractional �ow reserve was measured using Verrata Plus (Philips Volcano,
San Diego, USA) pressure wires according to standard practice. Intra-coronary
nitroglycerin (0.2 mg) was given to all patients before advancing the pressure
wire into the coronary arteries and hyperemia was induced by continuous in-
travenous infusion of adenosine at a rate of at least 140 µg/kg/min. FFR
measurements were taken during the nadir of the Pd/Pa tracings. After mea-
surement the interventional cardiologist removed the pressure wire back to the
equalization point at the tip of the guiding catheter, to ensure that there was
no drift.

Blood pressure measurements (Pmeas) were performed on both arms as part
of clinical routine before ICA using an automatic, digital BP device, Welch
Allyn ProBP 3400.

2.2 Estimation of FFR from CCTA images

2.2.1 Computational domain segmentation and meshing

Segmentation of vessels was performed using the open-source software ITK-
SNAP [54], which provides a user-friendly interface for a semi-automatic active
contour evolution approach. The output of ITK-SNAP is a labeled voxel vol-
ume identifying voxels labeled as vessels and a surface mesh of the segmented
volume (in VTK format). Surface mesh processing, �ow extensions addition
and meshing were performed using the open-source library Vascular Model-
ing ToolKit (VMTK) [1,47]. The meshing re�nement level was determined
by a meshing algorithm parameter called edge-length factor lf , which was
set to lf = 0.21 for all simulations. A mesh independence study showed that
such discretization provides mesh independent FFR predictions for a set of 4
patient-speci�c geometries.

2.2.2 3D modeling framework

Mathematical model. We consider the domain de�ned by the coronary tree ves-
sels as Ωf ∈ R3. Moreover, its boundary is partitioned as ∂Ωf := Γin∪Σ∪Γout,
where Σ represents the wall boundary, Γin is the inlet cross-section and Γout =
Nout⋃
j=1

Γout,j is the union of the Nout outlets of the tree. Furthermore, blood �ow

in coronary arteries is modeled assuming that blood is an incompressible New-
tonian �uid, for which the incompressible Navier-Stokes equations hold. These
equations, along with boundary conditions are given by
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∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u in Ωf ,

∇ · u = 0 in Ωf ,

u = 0 on Σ ,

p = Pin(t) on Γin , and

p = Pout,j(t) on Γout,j , j = 1, 2, . . . , Nout ,

(1)

where Pin(t) is a prescribed pressure function and Pout,j(t) is provided by
the lumped-parameter model that is coupled to the j-th outlet. In fact, each
outlet is coupled to a lumped-parameter model [24], which in turns derives
from the original work by Mantero et al. [28]. This lumped-parameter model
setup is depicted in Fig. 1 and is governed by the ordinary di�erential equations
(ODEs) 

dVca

dt
= Qout −Qm ,

dVm

dt
= Qm −Qd .

(2)

Volumes relate to pressure at corresponding compartments by
Pca =

Vca

Cca
,

Pcm =
Vcm

Ccm
+ PLV ,

(3)

where PLV is the left ventricular pressure.
Flow Qout,j , for the j-th outlet, is computed as

Qout,j =

∫
Γout,j

u · nout,jdS , (4)

where nout,j is the exterior unit-vector normal for Γout,j . On the other hand,
Pout,j is provided by the lumped-parameter model as

Pout,j = MAPj +Rp,jQout,j . (5)

Numerical methods. The mathematical models presented in Section 2.2.2 are
solved using the open-source library CBCFLOW [11], based on FEniCS [27]. In
particular, CBCFLOW provides a �exible problem setup, allowing to combine
its highly e�cient incompressible Navier-Stokes solver with typical boundary
conditions and simple models used in computational hemodynamics. Here, a
python script allowed CBCFLOW to interact with lumped-parameter models
and to prescribe the needed boundary conditions.

The problem de�ned by Eq. (1) is solved by CBCFLOW using the In-
cremental Pressure Correction Scheme, described in [44]. The solver imple-
mentation follows very closely the one reported in [31]. Apart from spatial
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Fig. 1: Schematic representation of a lumped-parameter model coupled to a
3D domain outlet Γ out

j and related to Eq. (2) and Eq. (3). Portion of the 3D
domain is also shown.

and temporal discretization, the only numerical parameter to be set for this
scheme is a multiplicative factor for the streamline di�usion stabilization term,
referred to as s in this work, see [55] for details about this term. Moreover,
Eqs. (2) are solved using an explicit Euler discretization. Numerical param-
eters are set to ∆t = 1 ms and s = 1. A parameter independence study has
shown that such choices provide parameter independent FFR predictions for
a set of patient-speci�c geometries.

De�nition of main parameters from patient-speci�c data. For each patient, the
following patient-speci�c data is used:

� proximal and distal pressure tracings acquired during invasive FFR mea-
surement for baseline and hyperemic conditions,

� cardiac output derived from ultrasonographic examination,
� computational domain extracted from CCTA data.

The following paragraphs describe the process of personalizing the model
to patient-speci�c details. The �ow to the coronary branch is based on the
work of Sakamoto et al. [38], who studied the dependence of �ow on coronary
branch dominance. From this we calculate the relative distribution of total
coronary �ow, γjk, to each coronary branch j for people with k dominant
vasculature (j = {RCA,LM} and k = {LeftDom,RightDom}). Furthermore,
total coronary �ow was assumed to be 4.5 % of CO. Thus, the baseline coronary
�ow to the left or right branch is

qjcor = 0.045 · γjk · CO. (6)

The two �ow fractions may be combined to get the fraction of CO to
a branch, λcor = 0.045 · γjk. Total peripheral compliance is computed as a
percentage of total arterial compliance of 1.7 mL mmHg−1. The percentage of
the total arterial compliance assigned to the left/right branch is equal to the
relation between �ow in branch of interest over total cardiac output, that is

Ctot = qjcor
/
CO × 1.7 mL mmHg−1. (7)
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Fig. 2: Aortic and left ventricle characteristic waveforms used for patient-
speci�c simulations. τ and p̃ are normalized time and pressure. The waveform
shapes were taken from [24].

Mean Arterial Pressure (MAP) and Pulse Pressure (PP) are extracted from
pressure tracings, as well as cardiac cycle duration T . MAP and PP are used to
prescribe a scaled characteristic aortic pressure waveform at the network's inlet
and a scaled characteristic left ventricle pressure waveform (peak left ventricle
pressure is 1.05 times the peak inlet pressure) for all lumped-parameter models.
The characteristic waveforms are shown in Fig. 2. Total peripheral resistance
is estimated from MAP and the target branch �ow in baseline conditions qjcor
as

Rtot =
MAP− Pd

qjcor
. (8)

The total peripheral resistance Rtot and total peripheral compliance Ctot

are distributed among outlets using Murray's law, that is

Rj =

∑Nout

i=1 r3
i

r3
j

Rtot (9)

and

Cj =
r3
j∑Nout

i=1 r3
i

Ctot , (10)

where j stands for the j-th outlet of the network. Rj and Cj have to be
subsequently distributed among the di�erent compartments (see Figure 1) of
the lumped-parameter model attached to the j-th outlet. The fractions for
distributing Rj among Rp,j , Rm,j and Rd,j are set to 0.01, 0.84 and 0.15,
respectively. Similarly, fractions used to distribute Cj among Ca,j and Cm,j

are 0.025 and 0.975, respectively.

Modeling pipeline. The modeling pipeline is as follows
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1. Using parameters de�ned in this section as initial guess, total peripheral
resistance Rtot is modi�ed in order to match target branch �ow qcor de�ned
by Eq. (6). The iterative procedure is described later in this section.

2. We determine heart rate, MAP and PP from pressure tracings taken un-
der hyperemic conditions. Moreover, we use Rtot from previous step to
estimate a new total peripheral resistance, now in hyperemic conditions:
Rtot,hyp = Rtot/α, which is subsequently distributed among outlets with
criteria speci�ed in Eq. (9). The hyperemic factor, α, was set to 3.

3. Once the transient simulation is available, we compute equivalent total
resistances for each outlet using the resulting cardiac cycle averaged outlet
pressure and �ow, and perform a simulation using the same numerical
framework while prescribing MAP and total resistances, thus obtaining a
simulation that approaches a steady state.

Solution monitoring and total resistance estimation. As noted previously, total
peripheral resistance Rtot is modi�ed in order to match average branch �ow
qcor de�ned in Eq. (6). Starting with the initial guess provided by Eq. (8), Rtot

is updated after each cardiac cycle using

Rm+1
tot = Rmtot (1− ω(qcor − qobs)/qcor) , (11)

where m is the iteration index (which corresponds to the cardiac cycle index),
qcor is the target coronary �ow in a branch, provided by Eq. (6) and qobs is
the observed �ow at the branch inlet. ω is a relaxation parameter and was
set to ω = 0.9. Once that a new value for Rtot is available, the resistance is
distributed among outlets using Eq. (9).

In order to extract predicted FFR, we computed spatial averages for pres-
sure over 3D subdomains de�ned as

Ωf,k := {x ∈ Ωf : ||x− xk|| < rk} , (12)

where xk is the k−th node of a vessel's centerline that corresponds to the
point were the invasive FFR measurement was taken, and rk is the radius of
the vessel at node k. Locations xk were identi�ed by inspection of angiograms
and segmentation results by modelers and cardiologists.

2.3 Reduced order model

One-dimensional blood �ow in elastic compliant vessels can be described in
terms of pressure and �ow (P , Q) by

∂A

∂P

∂P

∂t
+
∂Q

∂x
= 0, (13a)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
= −A

ρ

∂P

∂x
+
f

ρ
, (13b)
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where f = −2 (ζ + 2)µπU is the frictional term, ρ is the density, µ is the
viscosity of blood, A is the cross-sectional area and U is the cross-sectional
averaged velocity. The velocity pro�le is prescribed by

u(x, ξ, t) = U(x, t)
ζ + 2

ζ

[
1−

(
ξ

r

)ζ]
, (14)

where r(x, t) is the lumen radius, ξ is the radial coordinate and ζ is the poly-
nomial order.

At arterial connections, conservation of mass and a coupling relations are
enforced, i.e.

N∑
i=1

Qi = 0, (15a)

P1 + λ
ρ

2
U2

1 = Pi + λ
ρ

2
U2
i +∆Pi i = 2, . . . , N, (15b)

where N is the number of vessels in the connection, ∆P is an additional pres-
sure loss and λ is a coe�cient between zero and one. At healthy junctions,
∆P is set to zero and λ is set to one, so that Eq. (15b) describes continuity
of total pressure. At arterial stenoses, the �ow regimes are 3D and the 1D
assumptions no longer hold. Stenotic regions are thus removed and treated as
junctions with N = 2. Moreover, λ is set to zero, and ∆P is an experimentally
derived pressure loss term given by [53]. Here we use an equivalent expression,
reported in[26], namely

∆P =
Kv µ

A0D0
Q+

Ktρ

2A2
0

(
A0

As
− 1

)2

Q|Q|, (16)

where A0 and As refer to cross-sectional areas of the normal and stenotic
segments, respectively. Similarly, D0 and Ds represent the normal and stenotic
diameters, whereas Ls is the length of the stenosis. Furthermore, Kv and Kt

are empirical coe�cients, with Kv = 32 (0.83Ls + 1.64Ds) · (A0/As)
2
/D0 and

Kt = 1.52 [26].
Eqs. (13a)-(13b) are commonly used to model pulse wave propagation in

the cardiovascular system. A pressure-area relation is required in order to close
the system, which for elastic vessel walls assumes the form of an algebraic
relation. However, as we will show later, FFR predictions can be obtained
by neglecting transient terms, thus we can use the steady state version of
Eqs. (13a)-(13b), which, in terms of steady state variables P̄ and Q̄, reads

Q̄in = Q̄out, (17a)

P̄in +
ρ

2

(
Q̄in

Āin

)2

= P̄out +
ρ

2

(
Q̄out

Āout

)2

+ Q̄in

∫ l

0

2 (ζ + 2)πµ

Ā2
dx, (17b)

where l is the length of the 1D segment, Xin denotes variables at the inlet
of the segment and Xout denotes variables at the outlet. As for the 3D case,
steady state simulations are performed prescribing a constant pressure at the
inlet of a given coronary network and resistances at its outlets.
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Numerical solution Consider a network of D vessels with M outlets, at which
terminal resistances Rout,j , with j = 1, 2, . . .M , are attached. The pressure dis-
tribution in this network is uniquely de�ned by setting outlet �ows,Qout,j , with
j = 1, 2, . . .M . As previously stated, in our modeling framework we prescribe
pressure at the inlet of the network. Finding the pressure distribution over
the network for this setting reduces to solving a system of nonlinear algebraic
equations for the M unknown outlet �ows, i.e. x = [Qout,1, Qout,2 . . . Qout,M ].
M−1 equations are given by coupling equations for the pressures at junctions,
Eqs. (15b), and an additional equation is provided to enforce that the inlet
boundary condition is ful�lled, i.e. P presc

in = P̄in,k, where k is the index of the
inlet vessel of the network and P presc

in is the pressure to be prescribed. The
solution x∗ thus satis�es f (x∗) = 0, where f are the aforementioned (residual)
equations. For a given x, f is evaluated by distributing the outlet �ows along
the coronary tree by ensuring conservation of mass according to Eq. (15a).
Furthermore, the pressure at outlets are found from

Pout,j = Pd +Rout,jQout,j , (18)

where Pd = 5 mmHg is the out�ow pressure. The pressure drop,∆P1D-0D, from
the inlet to the outlet of a 1D-0D segment, for a given �ow Q, was calculated

from Eqs. (16) and (17b), where the integral
∫ l

0
2(ζ+2)πµ

Ā2 dx was estimated using
the trapezoidal rule. For a junction with N vessels there are N − 1 daughter
(d) vessels and N − 1 equations relating pressure and �ows at a junction. We
reserve one such equation in the evaluation of f , to relate the pressure in the
outlet of the mother vessel (m) for the given �ows Qm, Qd and pressure Pd.
(The remaining N−2 equations are used as residual equations in f .) With this
we can traverse from outlets to the inlet and assign �ow in addition to inlet
and outlet pressure in all 1D-0D segments, necessary to evaluate f . The python
based optimization tool scipy.optimize.minimize.root [22] was used to solve
the nonlinear problem with a tolerance of 10−10 Pa. The solution procedure is
summarized in Algorithm 1.

Algorithm 1 Numerical solution of 1D-0D model.

1: initial guess of x
2: tol = 10−10

3: while max (|f |) ≥ tol do
4: distribute �ow in network by enforcing Eq. (15a) at junctions
5: calculate pressure in terminal segments Pout,j according to Eq. (18)
6: calculate ∆P in all 1D-0D segment according to Eqs. (16) and (17b)
7: traverse from outlet to inlet and distribute pressure in the network based on ∆P and

coupling equations Eqs. (15b) at each junction
8: evaluate f
9: update x
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2.3.1 From 3D domain to a 1D network

The construction of a network of 1D domains from the original 3D domain
involves a series of non-trivial steps. Here we describe them in detail. The
methods illustrated in this section are a modi�cation of those proposed in [2].
All steps described here were performed using VMTK [1] and VTK [42] li-
braries via python scripting.

Skeletonization of the 3D domain. In order to obtain the 1D network, center-
lines of the 3D volume meshes were generated and cross-sectional areas, Ai,
perpendicular to the centerlines were calculated for centerline node i, with a
spacing of approximately 0.5 mm.

Masking of junctions. After centerline generation, the portions of the center-
lines which coincide with arterial junctions were masked in order to exclude
them from the 1D domain de�nition, since no reasonable 1D description of
such portions of the domain can be formulated. This process was performed
as summarized in Algorithm 2 and explained below. Points in mother (m) and
daughter vessels (d) were masked based on di�erent criteria. Points pd,1 and
pd,2 in daughter vessel 1 and daughter vessel 2 were considered as part of the
junction if

Sd1−d2
≤ rmax-sphere,d1

+ rmax-sphere,d2
, (19)

where Sd1−d2
is the distance between points pd,1 and pd,2 and rmax-sphere,d1

and rmax-sphere,d2
are the maximum inscribed sphere radius at points pd,1 and

pd,2 respectively. A point pm of the mother vessel was considered as part of
the junction if

Sm−d ≤ 1.5 rmax-sphere,dmin , (20)

where Sm−d is the distance between point pm and a point, pd in a daughter
vessel. The value rmax-sphere,dmin for a point pd situated n points downstream
of the center of the junction is found by evaluating rmax-sphere for all daughter
vessels at the same number of points (n) downstream the center of the junction,
and taking the minimum observed value, see Fig. 3. The criteria in Eqs. (19)
and (20) were designed to keep as much of the 1D-0D domain intact; however,
this caused incomplete masking in some cases (particularly of centerline points
in daughter vessels) as visualized in Fig. 4. In order to check for the smoothness
of transition from junctions to 1D segments we calculated the ratio of the

maximum inscribed sphere and radius of the cross-sectional area, ri =
√

Ai

π

for successive points, i.e.

γ =

ri
rmax,i

ri+1

rmax,i+1

. (21)

After the initial junction mask in step 1, γ was calculated for the next 10
downstream centerline points in daughter vessels. If γ exceeded a value of 1.3
for a centerline point, i = n, the centerline points 1, . . . , n, n < 10 were also
marked as part of the junction. Fig. 4 show the result before (left) and after
(right) the correction.
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Fig. 3: Illustration of step one for detection of junctions. The green tubes corre-
spond to radius obtained from cross-sectional area perpendicular to centerline,
and blue tubes to the radius of the maximum inscribed sphere.

Fig. 4: Illustration of the second step for masking of junctions. The left panel
illustrate the result of applying junction criteria based on Eqs. (19) and (20),
whereas the right panel shows the �nal result after correcting with criteria
based on Eq. (21)

Masking of stenotic regions. Stenotic regions are parts of the original domain
where the 1D blood �ow model is not valid and must be replaced by ad-hoc
models for the prediction of pressure drop across stenoses. Such regions were
detected and quanti�ed by comparing the observed radius ri to an estimated
healthy radius r̂i predicted by a weighted Gaussian kernel �ltering procedure
on the reconstructed radius ri. It is worth noting that the healthy radius r̂i is
needed by the stenosis detection algorithm since a priori there is no reference
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Algorithm 2 Junction masking llgorithm

1: for segmentk in 1D-0Dnetwork do

2: for pi in segmentk do

3: for segmentl in 1D-0Dnetwork do

4: for pj in segmentl do
5: if segmentk is not segmentl then
6: Calculate distance, Spi−pj , between points pi and pj
7: if Spi−pj < rmax-sphere,pi + rmax-sphere,pj then

8: if segmentk is not mother of segmentl then
9: mask point pj as junction
10: else if segmentl is daughter of segmentk then

11: rmax-sphere,dmin ←∞
12: for segmentd in daughters of segmentk do

13: if rmax-sphere,d,pj < rmax-sphere,dmin then

14: rmax-sphere,dmin ← rmax-sphere,d,pj

15: Calculate distance, Spi−pj , between points pi and pj
16: if Spi−pj < 1.5 · rmax-sphere,dmin then

17: mask point pi as junction

18: Remove masked points from the segments in 1D-0Dnetwork

19: for segmentk in 1D-0Dnetwork do

20: for i in range (10) do
21: calulate γ (pi, pi+1)
22: if γ > 1.3 then

23: mask points p1, . . . , pi as junction

radius available. The methodology followed here was proposed by Shazad et
al. [43].

First a local average radius rmax
i is calculated by averaging the observed

radii according to a Gaussian kernel with standard deviation σmax, that is

rmax
i =

∑n
i′=1 N

(
i
′ |i, σmax

)
ri′∑n

i′=1 N (i′ |i, σmax)
. (22)

Here and in, what follows i
′ |i denotes the distance between centerline nodes

with indexes i and i
′
. Based on this smoothed radius and its deviation from

the local average, a weight factor is calculated for each observed radius as

wi = N (ri|rmax
i , σr) . (23)

Finally, the healthy radius is estimated by averaging the observed radii weighted
by proximity, using a Gaussian kernel with standard deviation σx, and the like-
lihood, wi, of each observed radius, ri, given the local average rmax, i.e.

r̂i =

∑n
i′=1 N

(
i
′ |i, σx

)
wi′ ri′∑n

i′=1 N (i′ |i, σx)wi′
, (24)

where N
(
i
′ |i, σ

)
= 1

σ
√

2π
exp {− (i

′
− i)2/2σ2}.
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A centerline node was marked as a stenosis if the stenosis degree was above
a stenosis threshold θs, where stenosis degree is de�ned as

SDi = 1− ri
r̂i
. (25)

Stenotic regions were determined by traversing upstream and downstream of
such centerline nodes and marking all nodes where SDi was above a certain
healthy stenosis threshold, θh. The radius associated with centerline points at
the start (upstream, u) and end (downstream, d) were used to calculate the
reference radius of the stenotic region according to r0 = 0.5 (ru + rd). The
stenosis model (see. Eq. 16) was then quanti�ed by the minimum radius rs,
reference radius r0 and stenosis length, Ls = (xd − xu), see Algorithm 3.

Algorithm 3 Stenosis detection algorithm

1: Estimate healthy radius r̂ of 1D segment
2: Calculate SD for all points in segment
3: rs ←∞
4: {xi} ← {xi|SDi > θs}
5: for xk in {xi} do
6: xu ← argmin(xk − xj) such that SDj < θh
7: xd ← argmin(xj − xk) such that SDj < θh
8: Replace the region between xu and xd with a stenotic junction model (see Eq. (16))
9: if rk < rs then
10: rs ← rk
11: ls ← xd − xu
12: r0 ← 0.5 (ru + rd)

The determination of stenotic regions is illustrated by Fig. 5. The left panel
shows the original radius r together with the estimated healthy radius, r̂, for a
1D segment. Additionally, the calculated stenosis degree and a stenotic region
based on a stenosis threshold, θs = 0.3, and healthy threshold, θh = 0.2, are
shown. The right panel of the �gure shows a 1D network extracted from a 3D
volume mesh. The 1D segments are separated at arterial junctions, and further
divided into stenotic (colored) and healthy regions (dark blue) as described
above. The segment with the most severe stenosis (red) corresponds to the
vessel shown in the left panel of the �gure.

2.4 Uncertainty quanti�cation and sensitivity analysis

In addition to verifying that a computational model solves the idealized math-
ematical model to an adequate level of accuracy and subsequently validating
that it accurately represents the real system we are interested in, we must
also consider how the model will perform when the inputs required to specify
the system are uncertain. This is often the case, especially in biomedical mod-
elling as many parameters and inputs appearing in our models are taken from
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Fig. 5: Original radius, r, and estimated healthy radius, r̂, together with cal-
culated stenosis degree, SD, and the stenotic region (shaded area) for a 1D
segment is shown in the left panel. A 1D network of arteries (blue) extracted
from a 3D volume mesh (transparent grey), where junctions and stenotic re-
gions have been masked is illustrated in the right panel.

population data or from patient speci�c measurements that may have signi�-
cant variability. Uncertainty quanti�cation and sensitivity analysis (UQ&SA)
provide a means to analyze the performance of models relying on uncertain
inputs, as well as assisting in prioritizing which inputs are limiting factors that
prevent greater certainty in model predictions.

2.4.1 UQ&SA framework

UQ&SA were conducted to identify which parameters for model reduction
were most in�uential and to analyze the performance of the model with clini-
cally relevant levels of uncertainty in input data. The uncertainty in the �rst
case represents the range of model behavior when allowing parameters to vary
over some predetermined range, whereas in the second case the intention is
to quantify the expected range of model predictions given the assumed uncer-
tainties in model inputs. In both cases the �rst requirement is to perform UQ
of the model M , which takes input data z to yield a prediction y. Since the
values of z are unknown the uncertainty about them may be represented by a
random vector Z with distribution chosen to re�ect the situation of interest.
Thus the model output is also a random variable, Y = M(Z).

The problem at hand is to characterize the distribution of Y given the dis-
tribution of Z. We employ the nonintrusive Monte Carlo methods and Poly-
nomial chaos to do so as these treat M as a black box and do not require
modifying M to account for the stochastic nature of Z. The review of Eck et
al. [9] presents several methods and concepts of UQ&SA within the context of
cardiovascular modelling, and we refer the reader to this work for more details
regarding the methods of UQ&SA used here.

Visualization of the distribution of Y as well summary quantities such as
the mean E [Y ], variance V [Y ] and percentiles provide a means for assessing
the performance of a model under realistic conditions with uncertain inputs
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and allow determining if the model uncertainty is low enough for use. For
example the 2.5-th and 97.5-th percentiles (y2.5 %, y97.5 %), determine a range
where 95 % of realizations of Y will fall given the uncertainty about Z. Note
that this analysis does not account for any uncertainty due to the discrepancy
between the model and reality, often referred to as modelling error.

Sensitivity analysis (SA) further analyzes the distribution of Y in order to
identify the contributions of particular inputs to the overall uncertainty. Un-
derstanding how distinct inputs contribute to uncertainty allows prioritization
of inputs for parameter estimation or for higher �delity measurement. Sobol
sensitivity indices, �rst-order (Si) and total (ST,i), are widely employed [40],
de�ned as

Si =
V [E [Y | Zi]]

V [Y ]
(26a)

ST,i = 1− V [E [Y | Z¬i]]
V [Y ]

, (26b)

where the vector, Z¬i, contains all elements of Z except Zi. These indices
partition the total V [Y ] into portions attributable to speci�c combinations
of inputs. The �rst order indices Si quantify the variance due to Zi alone,
i.e. independent of the values of the other inputs. The total sensitivity index,
ST,i, includes e�ect due to interaction with other parameters and represents
the reduction in variance expected to be achieved by �xing Zi at a particular
value.

Larger values of Si suggest that Zi strongly a�ects Y and thus may be
a prime target for improved measurement or optimization in the context of
parameter estimation. In the case where ST,i and thus also Si are small, Zi has
little in�uence on Y and should not be prioritized for improved measurement
and may not be estimated accurately in an inverse problem context. When Si
is small but ST,i is large, the e�ect of Zi depends greatly on the values of other
parameters thus it may still be valuable to improve its measurement, and it
may be estimated in an inverse problem though its identi�ability may depend
on the values of other parameters.

In many casesM does not simply model a single scalar value, but a vector,
or even a continuous function. While the above methods and indices still apply
pointwise, it is often useful to summarize the uncertainties and sensitivities.
Eck et al. [10] proposed a method to summarize sensitivities of time varying
quantities by weighting the sensitivities by the uncertainty, V [Y ], at each
time point. This may naturally be extended to any set or region where the
sensitivities are desired to be summarized by a weighted average over the
points of interest.

These averaged sensitivities are based on comparing the sensitivities be-
tween two points based on weighting by the uncertainty at those points

V ki = V [E [Yk | Zi]] = Ski V [Yk] . (27a)

V kT,i = V [E [Yk | Zi]] = SkT,iV [Yk] . (27b)
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where Ski and SkT,i are respectively the �rst order and total sensitivity index
of output Yk with respect to Zi. This weighting partitions the uncertainty
according the particular inputs but, in contrast to Si and ST,i, allows com-
parison based on the absolute amount of uncertainty due to input Zi at each
point rather than the normalized proportion. Thus input Zj may have a high
sensitivity at point k, but the uncertainty at k may be very small. Thus one
must consider if the absolute uncertainties should be compared or only the
normalized sensitivities.

From V ki and V kT,i the averaged �rst-order sensitivity indices are caluclated
as

ASi =

∑n
k=1 V

k
i∑n

k=1 V [Y ]k
=

∑n
k=1 S

k
i V [Yk]∑n

k=1 V [Yk]
, (28)

and averaged total sensitivity indices are

AST,i =

∑n
k=1 V

k
i∑n

k=1 V [Y ]k
=

∑n
k=1 S

k
T,iV [Yk]∑n

k=1 V [Yk]
. (29)

These may provide useful summaries of sensitivities, particularly when the
uncertainties of the various outputs of M are quite di�erent.

To perform UQ&SA for a given model one must �rst specify the uncer-
tainty of the inputs by specifying an appropriate distribution for Z. The dis-
tribution should re�ect the conditions the UQ&SA is intended to analyze, thus
for evaluating model performance, one should choose inputs re�ecting the ac-
tual uncertainties of the inputs that will be used when employing the model.
On the other hand, when performing UQ&SA to analyze a model's range of
behavior and to identify inputs relevant for input estimation, the distribution
of Z should re�ect the range of plausible values for the inputs. For instance,
if only a range of values is considered and no prior knowledge is available to
prioritize certain regions, a uniform distribution is appropriate to investigate
how the inputs in�uence the model's behavior.

Once the distribution Z has been speci�ed, the method to approximate
the measures of uncertainty and sensitivity indices must be determined, a
decision a�ected by the number of inputs and the smoothness of M . Nonin-
strusive methods are typically sample based methods, e.g. Monte Carlo and
Polynomial chaos with stochastic collocation or numerical quadrature. For
details about these methods see [9] and references cited therein. Polynomial
chaos is highly e�cient relative to Monte Carlo as long as M is su�ciently
smooth and is thus preferred when applicable. Both approaches approximate
Y = M(Z) by evaluating the deterministic model y = M(z) at each sample

point in
{
z(s)
}Ns

s=1
, which is a set of points sampled from the input distri-

bution Z or determined by the speci�c approximation algorithm used. Once
the values of M are calculated for each sample point the estimated measures
of uncertainty and sensitivity are computed according to the speci�c method
chosen. The accuracy of the methods is typically not assessed a priori and
thus a posterior estimate of the error is necessary to assess convergence. For
Monte Carlo methods bootstrapping is often used to assess the precision of the
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estimates [36]. The samples
{
y(s)
}Ns

s=1
are resampled to generate a number of

new sample sets. For each of these sample sets the measures of uncertainty and
sensitivity are calculated and the statistics of the set of estimated measures
provide an assessment of the accuracy achieved.

2.4.2 UQ&SA for 1D-0D model setting

The hybrid 1D-0D model described in Sect. 2.3 is based on a series of as-
sumptions. The governing equations for blood �ow given by Eqs. (13a)-(13b)
assume an axisymmetric vessel and negligible radial velocity component. The
axial velocity component still has a radial dependence, however, the shape of
the velocity pro�le must be speci�ed a priori in the derivation of Eq. (13b).
In this work we have assumed a power law pro�le given by Eq. (14), where
ζ is the polynomial order, and de�nes the shape of the pro�le. Though this
velocity pro�le is commonly used, little work has focused on what value of
ζ is appropriate for blood �ow in human arteries. In [45] a value ζ = 9 was
used in an anatomically based model of coronary blood �ow, whereas values of
ζ = 2 (carotid artery), and ζ = 9 (aorta) were used in a systematic comparison
between 1D and 3D hemodynamics in [52].

At arterial junctions and more importantly at stenotic regions, the assump-
tions of unidirectional blood velocity is no longer valid. In order to identify
such regions, the coronary geometry is preprocessed as described in Sect. 2.3.1.
The healthy vessel radius estimation uses a Gaussian kernel �ltering proce-
dure, Eq. (24), that depends on parameters σx (corresponding to centerline
longitudinal distance), σr (corresponding to radius) and σmax. In [43], where
centerline dimensions are given in millimeters, σx, σr and σmax were set to
8 mm, 0.25 mm and 200 mm respectively. In this work we have related the
parameters to the maximum radius rmax of the vessel of interest such that
σx = rmax σ

∗
x, σr = rmax σ

∗
r and σmax = rmax σ

∗
max. Given the estimate of

healthy vessel radius, the determination of stenotic regions depends on θs and
θh. The stenosis threshold, θs, de�nes how severe a stenosis has to be before a
region is marked as stenotic. A value of θs = 0 would classify all regions with
a positive stenosis degree as stenosis, whereas no regions would be classi�ed
as stenotic for a value of θs = 1. The stenosis healthy threshold, θh, de�nes
the length of the stenotic region. In this work, we have linked θh to θs such
that θh = θ∗h θs, where 0 ≤ θ∗h ≤ 1. See Fig. 5 for an illustration of the stenosis
detection procedure.

The stenosis detection procedure labels regions as healthy or stenotic. The
1D equations for blood �ow given by Eqs. (17a)-(17b) are applied in healthy
regions, while stenotic regions are modeled using Eqs. (15a)-(16). The second
term of Eq. (16), which re�ects the pressure drop due to a sudden expansion,
includes the parameterKt. A value ofKt = 1 re�ects a uniform outlet velocity,
whereas a value of Kt = 1.52 re�ects the product of a uniform and constant
outlet velocity [18].

In order to identify the most relevant parameters in the construction of the
reduced order model described in Sect. 2.3 we performed a sensitivity analysis
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Table 1: Ranges for exploratory sensitivity analysis of the hybrid 1D-0D model
(Sect. 2.3). Uniform distributions with minimum and maximum values denoted
below were assigned to all parameters. All parameters are dimensionless.

Input Symbol Minimum Maximum

Flow pro�le order ζ 2 9
Local averaging kernel length σ∗

x 0.1 3
Healthy radius variability σ∗

r 0.0075 1.5
Healthy smoothing kernel length σ∗

max 3 8
Diseased threshold θs 0 1
Healthy threshold θ∗h 0 1
Turbulent Loss coe�cient Kt 1 2

for the uncertain parameters Z3D�1D = [ζ, σ∗x, σ
∗
r , σ
∗
max, θs, θ

∗
h,Kt]. Parameters

variation was described by using uniform distributions with limits based on the
plausible ranges of each parameter (see Table 1 for exact ranges). Sensitivity
analysis was performed individually for all (N = 248) 1D segments (including
three or more centerline points), and with y = M(z) = ∆P1D-0D (z). The �ow
rate, Q, for each segment was taken from the solution obtained using the 3D
modeling framework. Then, ∆P1D-0D was obtained by evaluating Eqs. (17b)
and (16) as de�ned by z and with Q as input.

Measures of uncertainty and sensitivity were estimated by the Monte Carlo
method as described by Saltelli [39], and the accuracy of UQ&SA results was
assessed by evaluating the standard deviation of the estimates from 10 boot-
strapped samples until the standard deviation was below 0.0033 (i.e. 99 %
con�dent that obtained value is within ±0.01, with assumptions of normal-
ity) for all sensitivity indices with an estimated value larger than 0.05. The
maximum number of model evaluations was 3,121,812.

2.4.3 UQ&SA for FFR prediction setting

Conducting blood �ow simulations for estimation of FFR as described in
Sect. 2.2 requires determination of parameters based on clinical imaging, patient-
speci�c characteristics, clinical measurements and values from literature (pop-
ulation based studies, physiological studies, etc.). We apply uncertainty quan-
ti�cation and sensitivity analysis to understand the e�ect of uncertain input
parameters on FFR predictions for all available (24) invasive FFR measure-
ments.

An estimate of mean aortic pressure is [37]

MAP =
2

3
Pd +

1

3
Ps. (30)

A standard deviation in diastolic pressure, Pd, of 5.5 mmHg and a standard
deviation in systolic pressure, Ps, of 3.3 mmHg were reported in [16]. By as-
suming perfect positive correlation between Pd and Ps, a standard deviation
in the estimated aortic pressure is 4.77 mmHg. By these considerations, we
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modeled the estimate of aortic pressure (used as inlet boundary condition in
the FFR predictions) as a normal variable with mean given by Eq. (30) and
with a standard deviation of 4.77 mmHg.

Cardiac output (CO) was estimated (COmeas) based on cross-sectional area
and velocity-time integral at the left ventricle out�ow tract derived from PW
Doppler [25]. Dubin et al. [8] compared echocardiographic estimates of car-
diac output to thermodilution-derived invasive estimates. The average dif-
ference between the two methods was 0.11 L/min with a standard devia-
tion of 0.69 L/min. Thus, the uncertainty in CO based on the measurement,
COmeas, is modeled by a normally distributed random variable with mean cor-
responding to the PW Doppler estimate of COmeas and a standard deviation
of 0.69 L/min.

The �ow split between left and right coronary branches is based on the work
of Sakamoto et al. [38], who studied coronary blood �ow to the Left Anterior
Descending (LAD), Left Circum�ex (LCX) and the Right Coronary Artery
(RCA) in relation to coronary artery dominance. The resulting average �ows
and standard deviations quantify the expected range of �ow fractions to the left
and right coronary trees based on the dominance of the individual. Sakamoto
et al. [38] report mean and standard deviation of absolute �ow to each coronary
branch but do not account for di�erences in variability due to di�erences in
cardiac output or total coronary �ow. We thus assume that the �ow to each
branch is an independent fraction of CO and that the variability for individuals
with a given CO is proportional to the CO. Thus, the reported absolute �ows
and standard deviations are normalized by the population average cardiac
output, 6 L/min, in order to produce the corresponding �ow fractions as given
in Table 2. Note that this allows us to combine the uncertainty related to the
percent of CO to the coronaries and the separate factor for the �ow to each
branch, γjk, while still having an expected total coronary �ow of approximately
4.5 %.

Blood density and viscosity are related to the hematocrit level. We adopt
the relation for viscosity reported in Sankaran et al. [41], where µ =

µp

(1−H)2.5
,

with µp = 0.001 Pa·s the viscosity of plasma and H the hematocrit level. With
this we modeled H as normal variable with a mean of 0.45 and a standard
deviation of 0.031 based on average population variations [51]. The density of
blood can be related to the hematocrit according to ρ = ρeH + (1−H) ρp,
where ρp = 1018 kg/m3 is the density of plasma, and ρp = 1085 kg/m3 is the
density of erythrocytes [23].

The total peripheral resistance was distributed among outlets using Mur-
ray's law [32], which has a theoretical exponent of c = 3, derived from the
principle of minimum work. More recent studies [17] have suggested an expo-
nent of c = 7/3. We modeled Murray's exponent as a uniform variable where
2.0 ≤ c ≤ 3.0.

The coronary arteries were segmented semi-automatically from the CT
images using ITK-SNAP. The software requires one to set upper and lower
thresholds for intensities (Hounds�eld units) that de�ne what is considered
coronary vessel lumen. A larger lower threshold will decrease the cross-section
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Table 2: Input uncertainties for evaluation of the e�ects of parametric input
uncertainty on 1D-0D estimates of FFR. Uniform distributions are denoted
by U(min, max) and normal distributions N (mean, std. dev.). The gamma
distribution for α is denoted by G(shape, scale). The measured cardiac output
is denoted COmeas. Mean aortic pressure is represented as Pmeas, and it is
obtained from measurements and Eq. (30). We include coronary �ow fraction
distributions for each the four possible combinations of branch and dominance,
but note only one was used for any given case.

Input branch, dominance Symbol Distribution

Cardiac Output - CO (L/min) N (COmeas, 0.69)
Arterial Pressure - MAP (mmHg) N (Pmeas, 4.77)
Coronary �ow fraction left, right λcor (%) U(1.78, 3.42)
Coronary �ow fraction right, right λcor (%) U(1.1, 2.7)
Coronary �ow fraction left, left λcor (%) U(2.7, 4.1)
Coronary �ow fraction right, left λcor (%) U(0.27, 1.6)
TCRI - α (-) G(3, 0.75)
Murray's law exponent - c (-) U(2.0, 3.0)
Hematocrit - H (-) N (0.45, 0.031)
Stenosis radius pertubation - ∆rs (mm) U(−0.1, 0.1)
Stenosis length factor - λLs (-) U(−0.2, 0.2)

of the segmented lumen, whereas a smaller lower threshold would have the
contrary e�ect. Such variations in lumen cross-section is particularly important
at stenotic regions. To account for this, we introduced a global parameter ∆rs

to be applied to all stenotic regions of a network such that the minimum radius
in stenotic regions was given by rs = rs,segmented +∆rs, where rs,segmented is the
minimum radius as obtained from the original segmentation. The minimum
rs,segmented in our population was 0.29 mm, and we modeled ∆rs as a uniform
variable ranging from −0.1 mm to 0.1 mm. Similarly, we modeled the stenotic
length as Ls = (1 + λLs

)Ls,segmented, where λLs
is assumed to follow a uniform

distribution between -0.2 to 0.2.

Coronary �ow can increase signi�cantly with respect to resting �ow dur-
ing hyperemic conditions. Vasodilation of peripheral vessels downstream from
epicardial arteries is the most important mechanism controlling coronary �ow
[46]. Such changes can be seen as variations in the so-called total coronary
resistance index α. Although α is di�cult to measure, it is related to the
Coronary Flow Reserve (CFR), which is the ratio of �ow in hyperemic and
baseline conditions. According to the meta-analysis by Johnson et. al. [21],
CFR is normally between 1 and 6 with an average value of 2.57 for non-
ischemic vessels. The distribution is akin that of the gamma [29]. From these
considerations, we modeled the hyperemic factor α as a gamma distribution
with shape parameter 3, scale-factor 0.75 and shifted to 1.

We performed uncertainty quanti�cation and sensitivity analysis for FFR
predictions from the reduced order model described in Sect. 2.3 for 24 lo-
cations where FFR was measured invasively. Parameters that are related to
the process of going from a 3D problem to a 1D-0D model are those deriv-
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ing from the sensitivity analysis described in Sect. 2.4.2 and an optimiza-
tion procedure based on such analysis. The pipeline for predicting FFR was
the same as outlined in Sect. 2.2.2, however, now with the input parameters
ZFFR = [CO,MAP, λcor, c, α,H,∆rs, λLs

] de�ned by the input distribution
ZFFR as described above and summarized in.

The Python package chaospy [12] was used to calculate polynomial chaos
approximations of model predicted FFR. Regression was used to estimate the
coe�cients of the approximations for model evaluations at points sampled ac-
cording to the Hammersley sequence, which allows for adaptively increasing
the number of samples evaluated. The number of points used for each order
of approximation was twice the number of terms in the expansion. The ac-
curacy of the results from UQ&SA was assessed by comparing the estimates
between successive orders of approximation until the di�erence between esti-
mated sensitivity indices was below 0.01 for all indices with an estimated value
larger than 0.05. A approximation of maximum order 7 was performed, which
required 12,870 samples.

Cases that required approximation order greater than 7 were computed
more e�ciently in terms of computational burden by the Monte Carlo method
as described by Saltelli [39], and the accuracy of UQ&SA results was assessed
by evaluating the standard deviation of the indices from 10 bootstrapped sam-
ples until the standard deviation was below 0.0066 (i.e. 99 % con�dent that
obtained value is within ±0.02, with assumptions of normality) for all sensi-
tivity indices with an estimated value larger than 0.05. The maximum number
of model evaluations was 1,775,970.

3 Results

3.1 3D simulation results

While the primary objective of this work is to present and analyze a 1D-0D
framework for model-based FFR prediction, we report here the comparison of
predicted FFR values obtained using the 3D modeling framework described
in 2.2.2 versus invasive measured FFR values. Such values are provided in
order to show that the FFR prediction modeling framework, while still un-
der development, provides results that are aligned with many publications on
model-based FFR prediction, specially for initial stages of model development.
The average error of FFR predictions was -0.033 and the standard deviation
of the error was 0.119. Moreover, the correlation coe�cient of predicted FFR
versus invasive FFR was 0.84. In terms of diagnostic accuracy, prediction sen-
sitivity, speci�city, positive predicted value and negative predicted value were
60 %, 93 %, 86 % and 76 %, respectively. Fig. 6 shows a scatter plot and a
Bland-Altmann plot for predicted FFR versus measured FFR. More relevant
for the current study are results reported in Fig. 7, that shows predicted FFR
based on steady state simulations versus predicted FFR based on transient
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Fig. 6: Predicted FFR, FFR3D, versus invasive FFR, FFRmeas. Scatter plot
with grey line showing the FFR cuto� value of 0.8 (left) and Bland-Altman
plot with dashed lines showing ± 2 standard deviations (right).
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Fig. 7: Predicted FFR based on steady state simulations, FFR3D,SS, versus
predicted FFR based on transient simulations, FFR3D,US. Scatter plot with
grey line showing the FFR cuto� value of 0.8 (left) and Bland-Altman plot
with dashed lines showing ± 2 standard deviations (right).

simulations. In this case, mean error was -0.004 and standard deviation of the
error was 0.003, with a correlation coe�cient of 1.00.

3.2 Design and validation of the reduced order model for coronary blood �ow
simulations

3.2.1 Sensitivity analysis

We performed sensitivity analysis as described in Sect. 2.4.2 in order to iden-
tify most in�uential parameters in the construction of the reduced order model
described in Sect. 2.3. The sensitivity analysis was performed for each of the
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248 coronary vessel segments to estimate �rst-order (Si) and total (ST,i) Sobol
sensitivity indices for each case. The average sensitivities for all cases are pre-
sented in Table 3 and show that the velocity-pro�le parameter ζ is by far the
most in�uential parameter for most of the cases, with an average ST,ζ of 0.88.
The second most in�uential parameter is θs, which determines the marking of
stenotic regions and has an average ST,θs of 0.13. Moreover, aggregated sen-
sitivities, ASi and AST,i, where the individual uncertainties, V [Y ], are taken
into account are also shown in Table 3 and show that weighting the sensitivities
with the uncertainty leads to a di�erent ranking in terms of most in�uential
parameters. The stenosis threshold is the parameter that contributes the most
aggregate sensitivity, with AST,θs = 0.65. Second most in�uential is σ∗x, fol-
lowed by ζ and θ∗h.

Table 3: Summary of sensitivities resulting from the analysis in Sect. 2.4.2.
The average �rst-order (Si) and total (ST,i) sensitivity indices (see Eqs. (26a)
and (26b)), and the uncertainty weighted �rst-order (ASi) and total (AST,i)
sensitivity indices are reported (see Eqs. (28) and (29)).

ζ σ∗
x σ∗

r σ∗
max θs θh

∗ Kt

Si 0.867 0.006 0.001 0.000 0.074 0.001 0.001
ST,i 0.881 0.040 0.021 0.004 0.126 0.019 0.005
ASi 0.164 0.118 0.007 0.000 0.471 0.026 0.017
AST,i 0.171 0.277 0.064 0.009 0.653 0.088 0.032

The results from the sample based sensitivity analysis described in Sect.
2.4.2 were also analyzed in terms of the residuals res = ∆P3D −∆P1D-0D (z).
In particular, cases where no realization of ∆P1D-0D (z) in the broad range
de�ned by Z3D�1D yielded residuals lower than 7.5 mmHg were inspected in
detail. Such segments were either associated with a moderate to severe stenosis
with non-cylindrical shape and abrupt changes in radius, i.e. calci�ed stenosis,
or multiple mild stenoses with non-cylindrical shape.

3.2.2 Identi�cation of optimal parameters

We performed optimization to estimate the values of the four most in�uential
parameters (θs, σ

∗
x, ζ and θh

∗) based on AST,i. The remaining parameters were
�xed: σ∗r = 1, σ∗max = 4 and Kt = 1.52. We used the Python package scipy to
perform parameter estimation. A grid search approach, scipy.optimize.brute,
was chosen due to the discontinuous character of the problem in terms of
stenosis identi�cation and inability of other algorithms to provide meaningful
results. In order to enhance identi�ability we separated the optimization into
two cohorts, one in which the parameters related to the stenosis detection
were estimated, and one in which ζ was optimized. In the �rst cohort (N=19
vessel segments), all vessel segments with V kT,θs > 1 mmHg (See Eq. (27b))
were included, i.e. vessel segments where the square root of the variance due
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Fig. 8: Comparison of FFR1D-0D and FFR3D. Scatter plot (left) and
Bland-Altman plot (right). The reduced order model had a bias of
FFR3D − FFR1D-0D = −0.03 and a standard deviation of 0.03

to θs contributed to 1 mmHg or more. In the second cohort (N=213 vessel
segments), all vessel segments with V kT,θs < 0.1 mmHg were included and used
to estimate ζ. The root mean square error was used as cost function in the
parameter optimization, de�ned as

ε =

√√√√ 1

N

N∑
k=1

(
∆P k3D −∆P k1D-0D

)2
(31)

with N the number of vessel segments in the optimization procedure, ∆P k3D
the pressure drop in vessel segment k obtained with the 3D model framework,
and ∆P k1D-0D the pressure drop obtained using the 1D-0D model. Optimized
parameters are shown in Table 4, and Fig. 8 shows predicted FFR from 1D-
0D model (applying optimized parameters) vs predicted FFR from 3D model
framework at locations where FFR was measured. Equivalent inlet (pressure)
and out�ow (resistance) boundary conditions were employed as de�ned in
Sect. 2.2.2. The mean di�erence between FFR3D and FFR1D-0D was -0.03 and
standard deviation was 0.03. Indeed, the two worst residuals were associated
with vessel segments with non-cylindrical shape and abrupt changes in radius,
as identi�ed through analysis of residuals (see previous section).

Table 4: Optimal parameters for 1D-0D model settings. Estimated values are
indicated in bold. All parameters are non-dimensional.

Parameter ζ σ∗
x σ∗

r σ∗
max θs θh

∗ Kt

Optimal/default value 4.31 2.32 1 4 0.13 0.90 1.52
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Table 5: Average �rst-order (Si) and total (ST,i) Sobol sensitivity indices for
the sensitivity analysis described in Sect. 2.4.3.

CO MAP λcor c α H ∆rs λLs

Si 0.073 0.006 0.146 0.003 0.455 0.079 0.168 0.001
ST,i 0.093 0.007 0.179 0.003 0.510 0.091 0.187 0.002
ASi 0.077 0.004 0.127 0.002 0.396 0.019 0.337 0.002
AST,i 0.086 0.004 0.139 0.002 0.420 0.021 0.361 0.002

3.3 UQ&SA for FFR prediction

3.3.1 Sensitivity analysis

We performed UQ&SA based on the uncertain input parameters
ZFFR = [CO, MAP, λcor, c, α, H, ∆rs, λLs ] at 24 locations where FFR was
measured invasively, as described in Sect. 2.4.3. Average �rst-order (Si) and
total (ST,i) Sobol sensitivity indices are summarized in Table 5 together with
weighted �rst-order (ASi) and total (AST,i) Sobol sensitivity indices. Both
sets of indices indicate that uncertainties due to inlet pressure, MAP, Murray's
exponent, c, and stenosis length , λLs

, have low in�uence on predicted FFR for
the studied population, model framework, and assumed input uncertainties.
Only the indices of α,H and∆rs vary signi�cantly between the two sets, where
the sensitivity of ∆rs increases when the uncertainty in model output, V [Y ] is
taken into account. The contrary is valid forH. In other words, the uncertainty
in FFR is lower in the cases where H has a high in�uence as compared with
cases where ∆rs has a high in�uence. The hyperemic factor α is the most
in�uential parameter according to both sensitivity indexes, followed by the
uncertainty in minimum radius, ∆rs. Sensitivity indices are also visualized in
the top row of Fig. 9, where averaged sensitivity analysis for all 24 locations
are considered. The bottom row of the same �gure shows average and weighted
sensitivity indices for cases (N=11) where FFR was in the critical region 0.7 <
FFRmeas < 0.9. The most signi�cant di�erence is seen in sensitivity to ∆rs,
which is lower when only FFR values in this range are considered.

The top part of Fig. 10 shows the e�ect of uncertainty in input parameters
on predicted FFR in terms of the mean E [Y ] (blue circles) together with the
95 % prediction interval for all measured locations. The FFR obtained from the
3D framework and 1D-0D model with equivalent in�ow and out�ow boundary
conditions are also shown for comparison. In the bottom part of the �gure
parameters CO, λcor and α are �xed at their nominal values. The horizontal
lines represent ± two standard deviations (std. dev. = 0.02) of repeated FFR
measurements [20], i.e. 95 % probability of a FFR measurement error smaller
than this under assumption of normality.
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Fig. 9: The average �rst-order (Si) and total (ST,i) sensitivity indices (see
Eqs. (26a) and (26b)), and the uncertainty weighted �rst-order (ASi) and
total (AST,i) sensitivity indices are reported (see Eqs. (28) and (29)). The top
two bar-plots represent sensitivities when all 24 cases were considered, whereas
in the bottom two, only cases (N=11) where FFR was in the critical region
0.7 < FFRmeas < 0.9 were considered.

4 Discussion

4.1 Steady state versus transient simulations

A key aspect for the design of our 1D-0D solver in terms of computational cost
is the validity of the assumption that transient terms are negligible. This also
impacts model complexity, as the steady state problem allows one to avoid hav-
ing to model vessel deformation in the context of 1D models. Previous works
support the validity of such an assumption [30,5]. Our results con�rmed that
steady state simulations can accurately reproduce FFR predictions obtained
using transient models and thus allowed us to proceed with the much simpler
and computationally cheaper steady state 1D-0D model with respect to the
transient 1D-0D model. Of course, using a transient 1D-0D model would have
resulted in enormous savings in terms of computational time with respect to
transient or even steady state 3D simulations. However, the computational
time would still have been prohibitive to the extensive application of UQ&SA
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Fig. 10: The mean predicted FFR, E [Y ], versus invasive FFR. The error bars
represent the 95 % prediction intervals. The top part of the �gure represent
the impact of all input parameters with assumed uncertainties as described in
Sect. 2.4.3, whereas all input parameters related to �ow (CO, λcor and α) are
�xed at their nominal values in the bottom �gure. Here we also include the
uncertainty in FFR (horizontal lines) represented as ± two standard deviations
(std. dev. = 0.02) of repeated FFR measurements [20]
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techniques used in this work. CPU time per FFR prediction using the proposed
steady state 1D-0D model was approximately 0.05 sec.

4.2 Validation of the 1D-0D modeling framework for FFR prediction

In this study we have presented a framework for conducting blood �ow sim-
ulations for estimation of FFR based on clinical imaging and patient-speci�c
characteristics. Furthermore, two di�erent modeling approaches have been con-
sidered, the �rst of which is based on the transient/steady state 3D incom-
pressible Navier-Stokes equations in rigid domains, whereas the second is based
on a hybrid 1D-0D model, where healthy segments are modeled using the 1D
equations for blood in axisymmetric arteries, and stenotic regions are modeled
by an experimentally derived model for stenosis [26]. Fully 1D or even 1D-0D
models for FFR prediction have been previously proposed in the literature [2,
3]. However, this study is distinct in that we consider a fast steady state ver-
sion of the model and perform an extensive sensitivity analysis focusing on the
model parameters that are related to the model reduction (i.e. going from a 3D
to a simpli�ed 1D-0D problem). We considered two parameters associated with
necessary assumptions in the 1D-0D equations, namely the radial dependence
of the velocity pro�le, represented by ζ in Eq. (17b) and the parameter Kt

associated with the pressure drop due to a sudden expansion. In addition, �ve
parameters related to the the detection and quanti�cation of stenotic regions
were considered. This preprocessing of the 3D domain is necessary in order to
separate the coronary tree into healthy segments where the assumptions of 1D
equations for blood �ow are su�ciently accurate, and stenotic regions where
the assumptions do not longer hold and stenosis models have to be used.

Through the SA of given input parameters Z3D�1D we found that the
velocity pro�le parameter, ζ, was the most in�uential parameter. This is nat-
ural since most vessel segments were relatively smooth/healthy. However, by
weighting the sensitivities by the uncertainty according to Eqs. (28) and (29)
we found that the stenosis threshold, θs, is the most in�uential parameter
with σ′x, ζ and θh following thereafter. These parameters were then estimated
by separating vessels used in the optimization procedure into two di�erent
cohorts. The �lter and stenosis detection parameters θs, σ

′
x and θs were es-

timated from cases with high variance related to stenosis threshold θs. The
parameter ζ was estimated in a cohort of cases where θs had low variance (i.e.
in smooth vessels). Optimal parameters were found by minimizing di�erence
between pressure drops calculated by using the 3D modeling framework and
the 1D-0D model. Little work has focused on estimating appropriate velocity
pro�le shape, ζ, in Eq. 14 in coronary arteries by means of 3D solutions [2].
Though such a pro�le is commonly assumed in studies focusing on pulse wave
propagation, a values such as of ζ = 2, Pouseille �ow, or ζ = 9, a plug like
shape, [52,45] are commonly used. For the cases considered, we found that
the optimal value was ζ = 4.31, which is between both values reported in the
literature.
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Furthermore, through the analysis of residuals between∆P3D and∆P1D-0D,
we were able to di�erentiate between errors resulting from poor choices of pa-
rameters in the construction of the reduced order model, and cases where the
applied models no longer hold. We acknowledge that the 1D equations are not
valid at stenotic regions, and account for this by identifying and replacing such
regions with a stenosis model. However, the model under consideration was
developed based on experiments on idealized stenotic geometries [53], and as
proven, has limited validity in severely calci�ed stenoses with non-cylindrical
shape and abrupt changes in radius. Future work should focus on accounting
for such 3D e�ects.

FFR predictions obtained using the reduced order 1D-0D model, employing
optimized parameters, are compared with FFR predictions obtained using the
3D framework with equivalent inlet and outlet boundary conditions, see Fig. 8.
General agreement was satisfactory, with a bias of FFR3D−FFR1D-0D = −0.03
and a standard deviation of 0.03. Moreover, it is worth noting that the mis-
match between both modeling approaches is normally signi�cantly smaller
than uncertainties in FFR prediction due to FFR model setup (CO, α, etc),
see Fig. 8. This considerations lead to evidence that even if the 1D-0D model
output does not perfectly match 3D model output, it might lead to more ac-
curate FFR predictions by allowing to explore FFR model parameters more
extensively in order to design modeling setups that result in reduced uncer-
tainty. Also predicted FFR errors with respect to measured FFR can be re-
duced because the lower computational cost of the 1D-0D model with respect
to the 3D modeling framework might allow to obtain improved FFR modeling
assumptions due to the increased capacity to explore such assumptions.

4.3 UQ&SA of predicted FFR

We attempted to characterize FFR prediction uncertainty based on uncer-
tainty of clinical measurements (CO, MAP), and assigning conservative es-
timates for non-measured inputs (α, λcor, H, c). Geometric uncertainty was
also included in terms of variations on minimum stenosis radius rs and stenosis
length Ls.

The hyperemic factor α has shown to be the most in�uential parameter,
for the assumed input uncertainty and modelling framework. α represents the
e�ect of adenosine on total coronary resistance, i.e. the factor by which pe-
ripheral resistance is reduced from baseline to hyperemic conditions. However,
it is the corresponding increase of blood �ow, coronary �ow reserve (CFR),
which is important. Fig. 11 shows the predicted mean values of CFR vs the
predicted mean values of FFR. The error bars represent the ranges for the
95 % prediction interval. The average mean value of CFR was 2.55 with a
standard deviation of 0.54, in agreement with values reported in [21,50]. It
is worth mentioning that the same α is used for all vessels, probably increas-
ing the sensitivity of predicted FFR to this parameter. In fact, it is expected
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that tissue located distally to a stenosis, might show a reduced vasodilatory
capacity.

The uncertainty about stenosis segmentation, represented by ∆rs in this
study, has also shown to play a relevant role in terms of its contribution to
overall FFR prediction uncertainty. However, our results show that such role
is less relevant for lesions within the critical FFR range between 0.7 and 0.9.
Moreover, it must be noted that the range used to model uncertainties in
such parameter in this study was rather low. Further assessment of the role
of uncertainty in segmented geometries should involve considering such factor
over the entire geometry and not only at stenosis locations, by adopting an
approach similar to the one reported in [4]. This aspect will be the subject of
future work.

It is worth noting that most important parameters in terms of sensitivity
and uncertainty of FFR predictions are all ultimately related to the de�nition
of �ow through the coronary tree (CO, λcor and α), which points to the fact
that being able to model this variable correctly is of crucial importance for ob-
taining precise and reliable FFR predictions. Fig. 10 illustrates the achievable
reduction in uncertainty if �ow could be measured accurately in hyperemia,
with particular impact in the critical FFR range between 0.7 and 0.9. Although
the velocity of blood in epicardial arteries may be estimated with transtho-
racic Doppler echocardiography [15], currently such an approach has not been
used in the context of model-based FFR prediction, and consequently there is
no evidence on whether it can provide useful information or not. In any case,
our results show that obtaining accurate estimates for �ow is an aspect on
which to focus in order to reduce prediction uncertainty and increase accuracy
of model-based FFR prediction. Progress in this direction has been reported
in [13].
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