
June 2010
Steinar Andresen, ITEM
Prof. Gerald Q. Maguire Jr., Royal Institute of
Technology (KTH), Stockholm, Sweden

Master in Security and Mobile Computing
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Multiple Escrow Agents in VoIP

Abdullah Azfar

Problem Description
The introduction of a key escrow agent in Voce over IP (VoIP) communication ensures that the Law
Enforcements Agencies (LEA) can retrieve the session key used to encrypt data between two users.
A masters thesis by Romanidis Evripidis titled Lawful Interception and Countermeasures: In the
era of Internet Telephony , Royal Institute of Technology (KTH), School of Information and
Communication Technology, COS/CCS 2008-20, September 2008 http://web.it.kth.se/~maguire/
DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf addressed the issues of
key escrow. The escrow agent stores the session key and some related data. The LEA is assumed
to have recorded a communication session between two users. The escrow agent reveals the key to
the LEA upon a legal request from the LEA.
 However, the use of a single escrow agent can have drawbacks. First of all a fraudulent request
by an evil employee from the LEA can lead to improper disclosure of a session key. After the
escrow agent reveals the key the evil person could fabricate data according to his needs and
encrypts it again (using the correct session key). In this situation the persons involved in the
communication session can be accused of crimes that he or she or they never committed. This
problem can be overcome by signing the hashes of the data with the user s private key and storing
the final hash with the escrow agent. This proposed architecture is being implemented in a master
thesis by Md. Sakhawat Hossen at the Department of Communication Systems (CoS) at the Royal
Institute of Technology (KTH).
 The problems with a single escrow agent still exists as any evil person either in the LEA or in
the escrow agent can reveal the session key. Again, a failure of the escrow agent due to technical
reasons can delay or even make it impossible to reveal the session key, thus the escrow agent
might not be able to comply with a lawful court order or comply with their escrow agreement in the
case of data being released according to this agreement (for example for disaster recovery).The
idea of this master thesis is to explore the question of what happens when there are multiple
escrow agents in the case of VoIP.
 In the case of a VoIP session, the session key will be divided into m chunks and stored with m
different escrow agents. The LEA has to retrieve n-out-of-m items to recover the session key.
Utilizing multiple escrow agents enhances security in following ways. First of all, no single
employee of a single escrow agent can disclose the whole key. Thus there would have to be
multiple evil employees to effect disclosure of a key. Secondly, any site or company might fail any
time (economically fail, experience a technical failure, or experience an accident or disaster).
Using an n-of-m scheme would be robust to m-n failures.
 Based on the above discussion, there are some issues that need to be addressed. This master
thesis project has the following goals:
 1) Implement a suitable algorithm to split the session key into m chunks.
 2) Implement a means to know the list of escrow agents and the role of a user for a
 given session.
 3) Implement a session key regeneration function to regenerate the session master
 key from n-out-of m chunks.
 4) Measure the performance of key escrow with multiple escrow agents in a working
 prototype.
 5) Find and evaluate out a suitable error detection and error correction method to
 detect and correct errors in a key chunk and/or across key chunks. A key goal in
 this regard is to understand how error detection and correction can be used to
 improve the reliability and availability of the escrow agents, potentially
 changing the choice of system parameters.
 6) For any large organization where hundreds, thousands, or more calls are
 generated each hour, what could be the most suitable way to escrow the keys and
 data? Should it be done after each call? Or should it be done once per day by
 sending bulk transfer? What could be the performance bottlenecks?

Assignment given: 18. January 2010
Supervisor: Steinar Andresen, ITEM

i

Abstract

 Using a Key escrow agent in conjunction with Voice over IP (VoIP) communication

ensures that law enforcements agencies (LEAs) can retrieve the session key used to encrypt

data between two users in a VoIP session. However, the use of a single escrow agent has

some drawbacks. A fraudulent request by an evil employee from the LEA can lead to

improper disclosure of a session key. After the escrow agent reveals the key this evil person

could fabricate data according to his/her needs and encrypt it again (using the correct session

key). In this situation the persons involved in the communication session can be accused of

crimes that he or she or they never committed. The problems with a single escrow agent

becomes even more critical as a failure of the escrow agent can delay or even make it

impossible to reveal the session key, thus the escrow agent might not be able to comply with a

lawful court order or comply with their escrow agreement in the case of data being released

according to this agreement (for example for disaster recovery).

 This thesis project focused on improving the accessibility and reliability of escrow agents,

while providing good security. One such method is based on dividing the session key into m

chunks and escrowing the chunks with m escrow agents. Using threshold cryptography the

key can be regenerated by gathering any n-out-of-m chunks. The value of m and n may differ

according to the role of the user. For a highly sophisticated session, the user might define a

higher value for m and n for improved, availability, reliability, and security. For a less

confidential or less important session (call), the value of m and n might be smaller. The thesis

examines the increased availability and increased reliability made possible by using multiple

escrow agents.

 Key words: Key escrow, VoIP, Law Enforcement Agency, Multiple Escrow Agents,

Threshold Cryptography, Reliability, Availability, Shamir’s Secret Sharing.

ii

Table of Contents

Abstract .. i

Table of Contents ... ii

List of Figures ... v

List of Tables .. vi

List of Listings .. vii

Acknowledgements .. viii

Abbreviations ... ix

Chapter 1: Introduction .. 1

1.1 Motivation .. 1

1.2 Thesis Overview ... 2

1.3 Goals of the Thesis Project .. 3

1.3.1 Splitting the Key ... 4

1.3.2 Where are the Keys Escrowed ... 5

1.3.3 Regenerating the Session Master Key .. 6

1.3.4 Reliability and Availability Issues ... 6

1.3.5 Error Detection and Error Correction ... 7

Chapter 2: Background ... 9

2.1 Escrow Agent .. 9

2.2 Key Escrow ... 9

2.2.1 Vulnerabilities and Risks of Key Escrow .. 10

2.2.2 Multiple Escrow Agents ... 12

2.3 Real Time Transport Protocol (RTP) ... 12

2.3.1 RTP Header Format ... 12

2.4 Real Time Transport Control Protocol (RTCP) ... 13

2.4.1 RTCP Services ... 13

2.4.2 RTCP Message Types .. 14

2.5 Secure Real Time Transport Protocol (SRTP) ... 14

2.6 Multimedia Internet Keying (MIKEY) .. 15

2.7 Minisip .. 16

2.8 Clipper Chip ... 16

2.9 Threshold Cryptography .. 17

2.10 Shamir’s Secret Sharing ... 18

2.11 Error Detection .. 20

2.11.1 Repetition Codes .. 20

iii

2.11.2 Checksum ... 21

2.11.3 Cyclic Redundancy Check (CRC) .. 21

2.12 Error Correction .. 22

2.12.1 Convolutional Code .. 22

2.12.2 Hamming Code .. 24

2.12.3 BCH Codes ... 26

2.12.4 Reed-Solomon Codes ... 26

Chapter 3: Related Work .. 27

3.1 SIP User Agent with Key Escrow ... 27

3.2 VoIP Lawful Interception ... 28

Chapter 4: Design and Implementation of Split Operation ... 29

4.1 Proposed Solution for Splitting the Key ... 29

4.2 What to Split and Escrow ... 30

4.3 Which Escrow Agents are Involved in a Session .. 31

4.4 Escrow Agents and Escrow Databases .. 32

4.5 Implementation Details .. 32

4.5.1 General Algorithm for Split and Escrow Operation ... 32

4.5.2 Storing the Key Chunks into Files ... 33

4.5.3 Dividing the TGK and Invoking the Split Function ... 34

4.5.4 URL Formation and Escrow Operation ... 34

4.5.5 How to Escrow ... 35

4.5.6 The Split Function .. 37

Chapter 5: Design and Implementation of Combine Operation 38

5.1 General Algorithm for Retrieving the Key chunks and Combining Them 38

5.2 Escrow Agent Support for LEA .. 39

5.3 The Combining Operation .. 42

Chapter 6: Performance Evaluation and Discussion .. 44

6.1 Experimental Setup for Escrow Operations ... 44

6.2 Time Required to Split the Base 64 TGK Value into Chunks 45

6.3 Escrow Time when all 5 Escrow Agents are Available .. 48

6.4 Escrow Time when 4 out of 5 Escrow Agents are Available .. 50

6.5 Escrow Time when 3 out of 5 Escrow Agents are Available .. 52

6.6 Escrow Time with Delay .. 54

6.6.1 Manipulating the Traffic Delay for a Specific Link ... 54

6.6.2 Escrow Time with Delay in 1 Escrow Agent ... 54

6.6.3 Escrow Time with Delays for Two Escrow Agents ... 56

6.6.4 Escrow Time with Delay for Three the Escrow Agents 57

6.6.5 Comparison of Escrow Time with Traffic Delay to Different numbers of Escrow

Agents 58

iv

6.7 Escrow Time with Different Numbers of randomly Available/Unavailable Escrow

Agents ... 60

6.7.1 Escrow Time with 1 Randomly Available/Unavailable Escrow Agent 60

6.7.2 Escrow Time with 2 Randomly Available/Unavailable Escrow Agents 61

6.7.3 Escrow Time with 3 Randomly Available/Unavailable Escrow Agents 62

6.7.4 Comparison of Escrow Times with 1, 2 and 3 Randomly Available/Unavailable

Escrow Agents .. 63

6.8 Availability Measures for LEA ... 64

Chapter 7: Conclusions and Future Work .. 67

7.1 Summary of Achievements .. 67

7.2 Future Work ... 68

References ... 70

Appendices .. 73

A. Generating Self-Signed Certificatess on Ubuntu 9.10 ... 73

B. SSL Enabling Script for Apache Server in OpenSuse 10.3 .. 75

C. Shamir’s Secret Sharing Algorithm Code (Common parts: To be added in both the

User Agent and the LEA) .. 78

D. Shamir’s Secret Sharing Algorithm Code (To be added only in the User Agent).... 84

E. Shamir’s Secret Sharing Algorithm Code (To be added only in the LEA) 87

F. Configuration of the CPU Used by the User Agent ... 91

G. Escrow Database Schema Definition .. 92

H. CPU Clock Resolution ... 97

I. SIP Express Router (SER) Configuration File .. 98

v

List of Figures

Figure 1-1: Splitting and regenerating the session key .. 5
Figure 2-1: RTP header format .. 13
Figure 2-2: SRTP packet format .. 15
Figure 2-3: Law Enforcement Access Field (LEAF) ... 17
Figure 2-4: Shamir’s secret sharing with two points (Sj and Sk; where j is not equal to k) 19

Figure 2-5: Example of a convolution encoder .. 23
Figure 4-1: General architecture of m Escrow agents .. 30
Figure 4-2: General Structure of the escrow databases .. 32
Figure 5-1: Login interface for LEA employee ... 39
Figure 5-2: Target information interface .. 40

Figure 6-1: Experimental setup for escrow operations .. 44
Figure 6-2: Experimental setup for split time calculation .. 45

Figure 6-3: Execution time for split function applied to the first 128 bytes of the TGK

encoded in base 64 ... 46
Figure 6-4: Execution time for split function applied to the last 128 bytes of the TGK encoded

in base 64 .. 47

Figure 6-5: Escrow time with 5 escrow agents working .. 49
Figure 6-6: Escrow time for 5 escrow agents shown separately .. 50

Figure 6-7: Escrow time with 4 escrow agents working .. 51
Figure 6-8: Escrow time for the 4 available escrow agents shown separately 52
Figure 6-9: Escrow time with 3 escrow agents working .. 53

Figure 6-10: Escrow time with 3 escrow agents working shown separately 54
Figure 6-11: Cumulative distribution of Escrow time with a delay of approximately 1 second

by escrow agent 2 ... 55
Figure 6-12: Cumulative distribution of Escrow time with a delay of approximately 1 second

by escrow agent 2 and escrow agent 4 ... 56
Figure 6-13: Cumulative distribution of Escrow time with a delay of approximately 1 second

by escrow agent 2, escrow agent 4, and escrow agent 5 .. 57

Figure 6-14: Cumulative distribution of Escrow time with a delay of approximately 1 second

in 1,2, and 3 escrow agents .. 58

Figure 6-15: Flow graph of the TCP packets from the user agent to an escrow agent 59
Figure 6-16: Success and failure state of escrow operation ... 60
Figure 6-17: Cumulative distribution of Escrow time with 1 randomly available/unavailable

escrow agent ... 61
Figure 6-18: Cumulative distribution of Escrow time with 2 randomly available/unavailable

escrow agents ... 62

Figure 6-19: Cumulative distribution of Escrow time with 3 randomly available/unavailable

escrow agents ... 63
Figure 6-20: Escrow time with 1, 2, and 3 randomly available/unavailable escrow agents 64

vi

List of Tables

Table 2-1: Next state table.. 24
Table 2-2: Output values .. 24
Table 2-3: Parity calculation in Hamming code ... 25
Table 2-4: Parity bits for data 1010 .. 25
Table 2-5: Error detection in Hamming code ... 25

Table 6-1: Statistical data to split first half of TGK encoded in base 64 47
Table 6-2: Statistical data to split second half of TGK encoded in base 64............................. 48
Table 6-3: Statistical data for escrowing data (all 5 escrow agents available)......................... 49
Table 6-4: Statistical data for escrowing data (4 out of 5 escrow agents available) 51
Table 6-5: Statistical data for escrowing data (3 out of 5 escrow agents available) 53

Table 6-6: Statistics concerning the time required to escrow data with delay of roughly 1

second by one of the escrow agents ... 56

Table 6-7: Statistics concerning the time required to escrow data with delay of roughly 1

second by two of the escrow agents ... 57
Table 6-8: Statistics concerning the time required to escrow data with delay of roughly 1

second by three of the escrow agents ... 58

Table 6-9: Statistics concerning the time required to escrow data with 1 randomly

available/unavailable escrow agent .. 61

Table 6-10: Statistics concerning the time required to escrow data with 2 randomly

available/unavailable escrow agents .. 62
Table 6-11: Statistics concerning the time required to escrow data with 3 randomly

available/unavailable escrow agents .. 63

vii

List of Listings

Listing 4-1: Creating five different files to store the key chunks ... 33
Listing 4-2: Dividing the TGK into two parts and invoking split() function 34
Listing 4-3: Formation of the URL where the top gray colored area shows how the parameters

are invoked and the lower yellow colored area shows the formation of the URL 35
Listing 4-4: Invocation of the libcurl method .. 36

Listing 5-1: PHP script to fetch information from escrow agents .. 41
Listing 5-2: Invocation of combine() function ... 43

viii

Acknowledgements

 First of all, I would like to thank my supervisor Professor Gerald Q. Maguire Jr. for his

valuable feedback, support and suggestions throughout the thesis project. Without his

personal involvement and intervention at critical stages, it would have been very challenging

to complete the project. He provided critical and useful suggestions on how to approach the

research problem systematically. I find myself fortunate to have him as my supervisor.

 I would also like to thank my home university supervisor Professor Steinar Hidle

Andresen in Norwegian University of Science and Technology (NTNU) for his helpful

suggestions during the initial phase of the project.

 Additional appreciation is extended to B. Poettering, Erik Eliasson, Md. Sakhawat

Hossen and Muhammad Sarwar Jahan Morshed for their valuable support and

constructive feedback during the project.

 Last but not the least, I would like to thank my family in Bangladesh for their

unconditional support throughout this journey. My always encouraging father has been a great

source of inspiration throughout my life. And finally, I would like to dedicate this thesis

project to my mother, whose blessings are always with me.

ix

Abbreviations

AES Advanced Encryption Standard

BCH Bose – Chaudhuri – Hocquenghem

CNAME Canonical Name

CRC Cyclic Redundancy Check

CSB Crypto Session Bundles

CSRC Contributing Source

DCA Distributed Certificate Authority

DH Diffie-Hellman

FEC Forward Error Correction

GF Galois Field

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol secure

IP Internet Protocol

LEA Law Enforcement Agency

LEAF Law Enforcement Access Field

LI Lawful Interception

MIKEY Multimedia Internet Keying

MKI Master Key Identifier

PKE Public Key Encryption

PSK Pre-Shared key

RSA Rivest Shamir Adleman

RTCP Real Time Transport Control Protocol

RTP Real Time Transport Protocol

SDP Session Description Protocol

SER SIP Express Router

SIP Session Initiation Protocol

SRTCP Secure Real Time Control Protocol

SRTP Secure Real Time Transport Protocol

SSL Secure Socket Layer

SSRC Synchronization Source

TEK Traffic Encrypting Key

TGK TEK Generation Key

TTP Trusted Third Party

UA User Agent

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

XOR Exclusive OR

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Motivation

 The idea of this masters thesis project is to explore the question of what happens when

there are multiple escrow agents in the case of key escrowed VoIP. In the case of a VoIP

session, the session key will be divided into m chunks and stored with m different escrow

agents. Using threshold cryptography the Law Enforcement Agency (LEA) only has to

retrieve n-out-of-m chunks to recover the session key. Utilizing multiple escrow agents

enhances security in following ways. First of all, no single employee of a single escrow agent

can disclose the whole key, thus there would have to be multiple evil employees to effect

disclosure of a key. Secondly, any site or company might fail any time (economic failure,

technical failure, or an accident or disaster). Using an n-out-of-m scheme would be robust to

m-n failures.

 The communication of users who are suspected of criminal activities or threat to national

security can be monitored by Lawful Interception (LI). Lawful Interception has been a

burning issue for 50-60 years and still the users are not positive to LI as it might raise some

controversial issues such as violation of human rights and decreased confidentiality of

commercial communication. However, if the session key is escrowed to an escrow agent(s)

then the LEA can capture and decrypt the session by lawful interception. Some business

organizations might be interested in escrowing the session key(s) as they can present a proof

of agreement in future if needed.

 The LEAs can retrieve the session key used to encrypt data between two users in a VoIP

session by showing legal documents to the escrow agent. But the use of a single escrow agent

has some drawbacks. A fraudulent request by an evil employee from the LEA can lead to

improper disclosure of a session key. After the escrow agent reveals the key the evil person

could fabricate data according to his/her needs and encrypt it again. In this situation an

innocent person involved in the communication session can be accused of crimes that he or

she or they never committed.

 The problems with a single escrow agent becomes even more critical as a failure of the

escrow agent can delay or even make it impossible to reveal the session key, thus the escrow

agent might not be able to comply with a lawful court order or comply with their escrow

agreement in the case of data being released according to this agreement (for example for

disaster recovery). The failure might be due to several reasons. The escrow agent might be

unavailable at the time when the request was sent. Or the escrow agent might fail as a

business for some reason. Or the escrow agent might face technical difficulties in sending the

key, for example, due to a network partition between the escrow agent and the LEA.

 A master thesis by Romanidis Evripidis at the Royal Institute of Technology (KTH)

addressed the issues of key escrow [1]. The escrow agent stores the session key and some

related data. The LEA is assumed to have recorded a communication session between two

users. The escrow agent reveals the key to the LEA upon a legal request from the LEA. He

pointed out that there is a problem when using a single escrow agent as any evil person either

in the LEA or in the escrow agent can reveal the session key.

Chapter 1: Introduction

2

 The problem of forgery by a single escrow agent can be overcome by signing the hashes of

the data with the user’s private key and storing the final hash with the escrow agent. This

proposed solution has been implemented in a master thesis by Md. Sakhawat Hossen also at

the Royal Institute of Technology (KTH) [2].

1.2 Thesis Overview

 This thesis will address the issues of using multiple escrow agents for storing a session

master key. The escrow agent must potentially store this key for a long period of time. The

user or the LEA can request keys any time. It is very important from both the user’s and

LEA’s point of view that the escrow agent is able to provide them the key in a timely fashion

whenever a proper request has been made. The LEA must present the proper authentication

and legal notice to the escrow agent in order to retrieve a key. If for some reason an escrow

agent goes out of business, then it becomes impossible for the user and the LEA to retrieve an

escrowed key. For example, a LEA might need to retrieve a session key after five years, but

could find that the escrow agent who had stored the session key is no longer in business. Or it

might happen that the escrow agent is not available 24 hours a day and 365 days of the year.

For example, an escrow agent might only be available only during some specific times of the

day, for example due to schedule maintenance or limited business hours. This can create an

undesirable situation. To avoid this situation the concept of multiple escrow agents has been

introduced. The session key will be divided into m chunks and will be stored with m escrow

agents. The key will be split in such a way that any n chunks out of m chunks will be

sufficient to regenerate the key. So as long as any n of the m escrow agents supply their part

of the split key to the LEA then the key can be regenerated. This overcomes the problem of

one escrow agent going out of business or being unavailable for a while.

 Another scenario may occur when one escrow agent has gone out of business. If the user

discovers that one of its escrow agents is no longer active, then the user might want to (re-)

escrow his/her key (the key which was escrowed with the previous escrow agent) with a new

escrow agent. This would not be possible in the case of a single escrow agent. But an n-out-

of-m key retrieval system can support this. If a user finds one escrow agent is no longer

active, then he/she can retrieve the key from any other n escrow agents, then split the key

again and store the part which was stored in the inactive escrow agent into a new escrow

agent.

 The fact that the set of escrow agents that are used can change over time makes it clear that

it is important to define a means to identify the escrow agents which are being used to store a

session key. With a single escrow agent, it is easy to identify user’s escrow agent (logically:

one only has to look at the IP address that the escrowing event sends traffic to and compare

this to a list of know escrow agents). But with multiple escrow agents, the user should publish

a list of his/her escrow agents. It is an important issue how to publish this list of escrow agents

and when and where to publish it. The user could publish the list of escrow agents on his/her

webpage. Or this information can be sent along with the Real Time Transport Protocol (RTP)

media streams. The list of escrow agents could also be attached to the last signed hash value.

The LEA can capture this file and if the LEA is able to retrieve the escrowed information

from any one of the escrow agents then it could find the list of all the escrow agents that were

used. Since the escrowed information is sent in a TLS tunnel, the escrow agent can only get

this information after producing a court order to one of the escrow agents.

Chapter 1: Introduction

3

 The issue of error detection and correction in the data sent by the escrow agents depends

on the reliability of the escrow agents. A study will be done on error detection and correction

based on the estimated reliability of the escrow agents. This study might be important or

unimportant depending upon the results of the first phase of the project - but can allow the

effective reliability of individual escrow agents to be increased by using information from

multiple escrow agents. A key issue is how a user can exploit multiple escrow agents to get

performance gains, similar to the performance gains that are achieved in RAID disk arrays

over individual disks.

 An n-out-of-m key escrowing scheme increases the reliability and availability of the key.

Availability can be defined as “the ability of a system to provide a set of services at a given

instant of time or at any instant within a given time interval” [3]. The asymptotic availability

is considered as the most common availability measure. It is the probability of finding a

system in working state at any randomly chosen time in future. The asymptotic availability is

denoted by A. Formally,

𝐴 = lim
𝑡→0

𝑃(𝐼(𝑡))

where, I(t) is a function of time describing the behaviour of the system.

𝐼 𝑡 =
1 𝑖𝑓 𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡,

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 On the other hand reliability can be defined as “the ability of a system to provide

uninterrupted service” [3]. The reliability function is defined as

𝑅(𝑡) = 𝑃(𝑇𝐹𝐹 > 𝑡)

Where, TFF is the time to first failure of the system.

1.3 Goals of the Thesis Project

 Based on the thesis overview above, there are some issues that need to be addressed. This

master thesis project has the following goals:

 Implement a suitable algorithm to split the session key into m chunks.

 Implement a means to know the list of escrow agents and the role of a user for a given

session.

 Implement a session key regeneration function to regenerate the session master key

from n-out-of –m chunks.

 Measure the performance of key escrow with multiple escrow agents in a working

prototype. (The prototype will build upon the earlier thesis work [2])

 Find and evaluate out a suitable error detection and error correction method to detect

and correct errors in a key chunk and/or across key chunks. A key goal in this regard

is to understand how error detection and correction can be used to improve the

reliability and availability of the escrow agents, potentially changing the choice of

system parameters.

 For any large organization where hundreds, thousands, or more calls are generated

each hour, what could be the most suitable way to escrow the keys and data? Should it

Chapter 1: Introduction

4

be done after each call? Or should it be done once per day by sending bulk transfer?

What could be the performance bottlenecks?

1.3.1 Splitting the Key

 The (session) key can be split into chunks in varieties of ways. The first approach of

splitting the key is to divide the key into two equal parts. Then both of these parts can be

further divided into smaller parts (for some number of cycles) and each of these final parts

can be sent to different escrow agents. For an m-out-of-m key scheme this approach would

offer a very simple solution. Just split the key, pad each chunk with zeros to keep the relative

positions of the bits unchanged and send the results to different escrow agents. To regenerate

the key, retrieve all the chunks and OR them to get the key. However, this would require that

all n parts be retrieved correctly. To provide higher reliability and availability we want to

implement an n-out-of-m retrieval system. In this scheme if we can only retrieve n chunks,

then we need to use some error correction codes to fix the errors (due to the missing chnunks).

If we can successfully correct for the missing chunks, then we can derive the original key.

Threshold cryptography could be another choice, but we need to consider its cost. We can use

Shamir’s secret sharing scheme. This algorithm is well proven one and very reliable. The

choice of n and m can depend upon the user's roles. For example, whenever a user orders a

pizza, it is very unlikely that this data has to be retrieved later, thus the user can use a splitting

function which has low reliability. In this case the number of escrow agents might be fewer

and the failure of all escrow agents might be acceptable. However, when a user orders a large

number of shares (or a large value of shares) in a company, then the user may use a splitting

function which escrows the key to larger number of escrow agents and is able to tolerate more

failures of escrow agents, while still providing high reliability of key recovery. This is shown

in Figure 1-1.

Chapter 1: Introduction

5

 In the libmikey library of minisip source code there is a file named Mikey.cxx. A function

named escrowSessionKey() was added to the library as a public member of the Mikey class

by Hossen [2]. Currently this function simply forms a URL to be used with one of the libcurl

fuctions to instantiate a curl object. The function invokes a method to generate the TGK along

with the pseudo-random number (Rand) and CSB ID value. After generating the parameters

needed to be escrowed, we can add a splitting operation. This splitting function will split the

key (and possibility the other parameters) into specified number of chunks and then send the

chunks to a set of escrow agents. This raise the questions of (1) which escrow agents should

chunks be sent to and (2) how does the LEA know whom these escrow agents are. These are

addressed in the next subsection.

1.3.2 Where are the Keys Escrowed

 A very important question to be answered in this thesis is that how can the LEA know who

the escrow agents are for a user session. This question becomes even more complex if we

enable the user to use different escrow agents for the different roles of a user. As from Figure

1-1, the user may use different splitting functions and different numbers of escrow agents for

different sessions. How can the LEA know the role of the user, number of escrow agents for

that role, and the identity of these escrow agents? This question is also valid for the user

himself or herself. If the user needs to retrieve a session master key several years after the

session has ended, how will they remember what role and escrow agents he/she used for that

particular session?

Figure 1-1: Splitting and regenerating the session key

Chapter 1: Introduction

6

 A suitable answer to all these questions could be to send the list of escrow agents at the

end of the session with the TGK, rand, CSB ID and the signed hash value of the last block to

all the escrow agents. The signed hash value of the last block is already generated by

Hossen’s thesis [2]. The last signed hash value is sent to the escrow agent in order to detect

forgery. We could just add the list of escrow agents with these parameters and send it to the

escrow agents. Another possibility would be to explicitly send the role of the user and the list

of escrow agents via the RTCP path. This information can be sent at any time during a

session. It can be sent at the beginning, at the end, or any time during the session.

1.3.3 Regenerating the Session Master Key

 The LEA captures the RTP streams and learns the user role and list of escrow agents from

the captured session. Then the LEA sends requests to the escrow agents requesting them to

each revealing their chunks of the session master key. The escrow agents, upon receiving

legal requests from the LEA with proper authorization, sends their chunk of the key to the

LEA. The LEA then regenerates the key using the received chunks. In order to regenerate the

key, the LEA should receive at least n-out-of-m chunks from the escrow agents. The ratio of

n/m should be low enough so that if some escrow agents fail to respond, that the key can still

be regenerated. Again, the ratio of n/m should be high enough so that the key cannot be

regenerated with few chunks. This ensures that even if few of the escrow agents have

corrupted employees, that the key is still safe, because the algorithm requires at least n chunks

to regenerate the key.

 Depending on the role of the user, the number of chunks needed to regenerate the keys

varies. When the user has more confidential data to communicate (e.g., when user plays the

role of a chief executive officer of a company), then the number of chunks needed to

regenerate the key must be high. This ensures that a larger number of escrow agents have to

be corrupted to disclose their chunks to any illegal authority. Conversely, when the same user

plays a private role when ordering pizzas, the number of chunks needed to regenerate the key

might be lower. The reason behind this reduced security is it usually does not matter if the

details of the pizza order is known to someone (however, the information might still be

somewhat sensitive as the order might include information about the time and place of

delivery, the ingredients that can not be used, the payment method and details, etc.). The

scenario of regenerating the key with n or n1<n number of chunks was shown in Figure 1-1.

 The implementation of this part of the thesis project will be done by extending the

functionality of Morshed’s [42] thesis to send requests to multiple escrow agents and to use

this information to regenerate the session key. We have to develop the method to identify the

list of escrow agents. Then the LEA should send the request for key to all the escrow agents.

These escrow agents will send their chunks and if the LEA receives at least n chunks, then it

will be able to regenerate the key.

1.3.4 Reliability and Availability Issues

 Reliability and availability are related with each other. For any system, these two

parameters carry great importance. In our multiple escrow agent system, the reliability and

availability of all the escrow agents might not be the same. An escrow agent with higher

availability and higher reliability is always preferable, but in real world this is not always

possible or affordable. All the escrow agents will not have same reliability and availability.

Chapter 1: Introduction

7

Some escrow agents might have high availability but low reliability. Conversely, some of the

escrow agents might have high reliability but lower availability. An example will make this

statement clear. Suppose we have an escrow agent which is active all through the day (24

hours), but does not maintain a proper backup system of the database. Due to a catastrophic

failure it might lose all of the data that has been stored with this escrow agent. This escrow

agent has a high availability but low reliability because one disaster can make the agent

completely useless (i.e., after the catastrophic failure no previously escrowed information can

ever be retrieved). On the other hand, another escrow agent might only be active 8 hours per

day but this agent may have a strong backup system so that any catastrophic failure cannot

wipe out any data. This escrow agent has lower availability but high reliability.

 The number of escrow agents where the key chunks will be stored is related with the

availability and reliability of the escrow agents and the costs that the user (and agents) are

willing to bear. With only one escrow agent, the reliability is low. With two escrow agents as

mentioned in clipper chip in section 2.8, the reliability depends on the availability of both

escrow agents. A single escrow agent failure causes an escrow retrieval request to fail.

However, using n-out-of-m escrow agents, the availability and reliability are expected to

increase over that of one or two escrow agents. But the value of n and m to maximize

reliability has to be determined. Simply increasing the number of escrow agents may not

proportionately increase reliability. There may be an inflection point where continuing to

increase the number of escrow agent may degrade the performance and may seriously degrade

the systems price/performance ratio. This issue should be considered while determining the

value of m and n.

 The cost of escrowing is a very practical issue for deploying an escrow based system.

Statistical data about the number of calls made by residential and corporate users will help to

determine the number of keys that have to be escrowed; as well has how an escrow agent

should be dimensioned. Another question to be answered is does the cost of escrowing always

increases or is there a plateau (i.e. the cost remains constant after a certain increase). The cost

of escrowing refers to the cost of storage and the cost of operating an escrow service (note

that we may consider this a constant fixed cost and simply consider the number of escrow

agents times this fixed cost plus the cost per unit of storage for the sum of all the storage that

an escrow action requires).

1.3.5 Error Detection and Error Correction

 There is always some noise in the communication channel. It is very likely that an error

might occur in a key chunk sent by an escrow agent to the LEA. If one chunk out-of the-n

required chunks has an error then unless there is redundant information which allow the LEA

to recover the missing data, then the LEA will not be able to regenerate the key. The LEA has

to know which chunks may have an error in order to request these chunks again. Repeated

requests for key chunks consumes time, bandwidth in both directions, and increases the load

on the escrow agent(s). The escrow agent may wish to employ forward error correction to

minimize the requirement for repeated requests for the same data. An efficient error detection

and correction code should be selected to deal with a burst error including missing chunks.

Each of the n chunks will pass through the error detection and if they are correct or can be

corrected, then the key will be regenerated. The error detection and correction scheme that

will be used in this thesis will be decided later.

Chapter 1: Introduction

8

 The necessity of error detection and correction in multiple escrow agent environment

depends on the availability and reliability of the escrow agents. If the escrow agents have high

reliability, then due to the use of TCP connections for requesting and retrieving escrowed

information there is a low probability of having an error in a key chunk. In this case the error

detection and correction procedure may add extra cost to the system without adding improved

reliability or increasing availability of the system. On the other hand, a system with low

reliability may provide an erroneous key chunk, thus the LEA may need error detection and

correction in order to ensure sufficient availability of session keys.. In order to answer these

questions, a study of the available data on network reliability and availability will be made.

Chapter 2: Background

9

Chapter 2: Background
 Some background information is presented in this chapter. It introduces some of the key

concepts that are going to be used in this thesis. We start by presenting the basic concepts of

Escrow Agent and Key Escrow. In the sections 2.3 to 2.7, we introduce the concepts of Real

Time Transport Protocol, Real Time Transport Control Protocol, Secure Real Time Transport

Protocol, Multimedia Internet Keying and Minisip. Finally, we briefly present the concepts of

Clipper Chip, Threshold Cryptography, Shamir’s Secret Sharing and Error Detection and

Correction techniques.

2.1 Escrow Agent

 An escrow agent is a trusted third party (TTP) with whom users will store their session

master key. A set of functional requirements have been specified for an escrow agent in [4].

The main task of the escrow agent is to securely store the session key and disclose the session

key only to an authenticated Law Enforcement Agency (LEA) or to another party as specified

in the escrow agreement with the user. Additional security related services that an escrow

agent can provide include: access control, key management, or notary (non-repudiation)

servers.

The escrow agent can provide services in three ways. It can provide on-line, in-line, or

off-line services [4]. However, in this thesis project we will assume that the users (or actually

there SIP user agents - UAs) escrow the individual session key and other information either

just after the session ends or performs a batch operation after a number of session (or after a

period of time). As the UA authenticates itself to the escrow agent for any escrow operation,

we can see that these are on-line operations. The LEA can make either an on-line request or

make an off-line request for escrowed information.

This thesis is concerned with the key management service of an escrow agent. A simple

escrow agent developed by Md. Sakhawat Hossen [2] will be the basis of the work done work

during this thesis project. This thesis project focuses on using multiple escrow agents and the

session master key will be split into these escrow agents.

To escrow the session key with the TTP we have used a third party application

programming interface (API) named “libcurl” which is a free and easy-to-use client-side URL

transfer library supporting HTTP, HTTPS, and many other protocols. We use the HTTPS

protocol to securely escrow our session master key with the escrow agent. Technical details of

the libcurl library can be found in [5].

2.2 Key Escrow

 The term key escrow refers to storing the cryptographic key with a TTP or escrow agent

[6]. The cryptographic keys which are needed to decrypt data can be escrowed. Key escrow is

generally done based on an agreement with the escrow agent. Based upon this agreement the

key should be revealed only to authorized parties upon proper authentication. The authorized

party may be a government or law enforcement agency (LEA) representative who has the

legal authority to access the content of encrypted communication.

 It is very important that the keys are only disclosed to a party with proper authentication

and access rights. Disclosing the key to any other entity can lead to improper (or in some

cases illegal) disclosure of data. The legal authority can be a LEA or another government

Chapter 2: Background

10

organization. If the depositor of the key has lost the key, the key might also be disclosed to

him/her - again only if the depositor correctly identifies them self and is authenticated.

 Key escrowing has been a burning issue for the past few decades. Illegal or corrupt bodies

might acquire the key from the escrow agent in order to learn personal data or even forge

(fake) data. A person might be accused of crimes based upon forged data. The United States

government introduced the Clipper chip with an escrow mechanism (discussed in detail in

section 2.8) to escrow session keys in such a way that they could be made available to LEAs.

However, this proposed solution failed due to some reasons. The Clipper Chip was designed

and manufactured, and then tested by a number of users, so its failure was an expensive one.

2.2.1 Vulnerabilities and Risks of Key Escrow

 Whenever a key is escrowed, there arises a question of the security of this escrowed key.

Whether the escrow agent is trustworthy? What are the chances of the key being reveled to

unauthorized person/organization? Can an intruder obtain the key from the escrow agent?

And so on. It is clear that key escrow introduces new vulnerabilities and risks. No matter what

actions the escrow agent takes there might always be a vulnerable path to unauthorized

recovery of data. Some of the vulnerabilities and risks of key escrow according to H. Abelson

et al. [7] are discussed below.

Recovery of plaintext If the key is escrowed then there is always a possibility of

recovering the encrypted data. This gives a new point of

attack for the intruders. As the key is being escrowed,

intruders can try to intercept this key in order to decrypt

the data. As long as this key is available somewhere there

is a risk that it can be obtained and used to decrypt the

data.

Insider abuse The escrow agent is expected to be a trusted third party.

However, these escrow agents are designed, implemented

and maintained by human beings. Due to human nature,

an employee of the escrow agent could be corrupted and

reveal the key to an evil person. On the other hand, the

authorized agency (LEA) might itself have some corrupt

employee(s) who would issue fake orders to the escrow

agent to reveal a key. Once the escrow agent reveals the

key the corrupted government employee could decrypt

data and/or forge data using this key. The employee

might fabricate data in order to accuse an innocent person

of a crime based upon fabricated evidence.

New targets for attack If there is only a single escrow agent and this agent stores

the keys in a single database, then attackers will target

this database. If they can gain access to this database then

they might gain access to all the keys. This problem can

be mitigated by distributing the keys among multiple

escrow agents. Unfortunately, the introduction of

multiple escrow agents will introduce additional cost.

Chapter 2: Background

11

Removal of forward secrecy The introduction of key escrowing removes the forward

secrecy of data. Forward secrecy refers to the inability to

recover the session data after the session ends even

though the key of the next session is disclosed. It means

that for each session there will be a unique key and that

unique key will be destroyed at the end of the session.

This makes it impossible to retrieve the session data

subsequently. The session data can be recovered during

the session (as the key is available during the session).

Forward secrecy improves secrecy and reduces cost of a

system, because the key does not need to be stored and if

the key is not stored it can not be disclosed later! But

with key escrow, the session key is stored with the

escrow agent, thus the session data might be decrypted

any time in the future using this key. This reduces

secrecy and also adds the additional cost of storing the

key.

Scaling One issue that needs to be mentioned here is scaling.

There will be billions of users of VoIP in future. With

key escrowing, the session key for each call for each user

has to be stored. It will require enormous storage

capability to store the keys. The main issue is that the

keys will be stored for some lifetime. Depending upon

local regulations and user desires each key might be

stored for thirty, forty or even fifty years. Thus the

amount of data stored will be huge , but fortunately the

disk storage capacity is inexpensive - but the reliable

storage of this data while avoiding improper disclosure is

not a simple matter.

Distinguishing different keys Not all keys are important to the users. Some keys are

relatively less speaking important, thus the user might

want to destroy the key after a short while. For example,

a user orders ten pizzas and gets the delivery in time. The

user might not need this data any more. However, if a

user orders hundred thousand dollars worth of shares in a

company, then he or she might want to store information

about this transaction for a longer period. A problem for

key escrow is that how to differentiate these user roles

and their corresponding requirements. One approach is

that the user may login with a different user identity and

perform tasks with this identity. In this case the escrow

agent can identify the user identity and thus could

identify that the user is using. This many cause problems

when the user does not know what role they should have

when they start a session. For example, when answering

a call the user might not know the purpose of the call and

hence not know the role that they are going to have until

some point later in the call. The user might even change

Chapter 2: Background

12

roles during a session, for example, exchanging familiar

greetings before getting down to the business purpose of

a call.

2.2.2 Multiple Escrow Agents

 The problems with a single escrow agent becomes critical as a failure of the escrow agent

due to technical or business reasons can delay or even make it impossible to reveal the session

key when a valid and lawful request is made. The single escrow agent could have a corrupted

employee who might reveal the key to any evil person. All these problems lead to the idea of

utilizing more than one escrow agents to overcome the shortcomings of a single escrow agent.

In this thesis project the session key will be divided into m chunks and will be stored with

m escrow agents. The key will be split in such a way that any n chunks out of m chunks can

be used to regenerate the key. As a result, if any n of the m of escrow agents supply their part

of the split key to the LEA then the key can be regenerated. This overcomes the problem of

one escrow agent going out of business or being temporarily unavailable for some time. A

corrupted employee from any single escrow agent cannot disclose the whole key because at

least n chunks are needed to regenerate the key; thus raising the threshold for corruption of

employees of the key escrow agents to at least one employee at each of n different escrow

agents. Additionally, if any escrow agent is unavailable, delay or failure to retrieve the key are

avoided as long as n-out-of-m escrow agents are available.

2.3 Real Time Transport Protocol (RTP)

 The real time transport protocol (RTP) provides end-to-end network transport functions for

real time data, such as audio and video over the Internet [8]. RTP is widely used for providing

VoIP services. RTP supports unicast or multicast network services. RTP provides the

services of payload type identification, sequence numbering, timestamping and delivery

monitoring. RTP runs on top of User Datagram Protocol (UDP) to make use of the

multiplexing and checksum services provided by UDP.

 RTP does not guarantee ordered delivery of the packets. A sequence number is used with

the packets. The receiver uses this sequence number to reconstruct the sequence. For each

multimedia stream, a separate RTP session is established. For example, separate sessions are

established for audio and video streams.

 RTP supports a range of multimedia formats such as H.264, MPEG-4, MJPEG, MPEG,

etc and allows new formats to be added without revising the RTP standard. The generic RTP

header does not include the information required by specific applications. It only includes the

RTP profiles and payload formats for different application types.

2.3.1 RTP Header Format

 The first twelve octets in the RTP header are present in every RTP packet. Optional

headers may be present after that. Then it is followed by RTP payload. The fields in the RTP

header are shown in Figure 2-1. The 2 bit version (Ver) field indicates the version of the

protocol. The padding (P) bit is used to indicate the extra padding bytes at the end of the RTP

packet. The extension bit (X) indicates presence of an extension header. The 4 bit CSRC

count (CC) field indicates the number of contributing source (CSRC) identifiers. The

Chapter 2: Background

13

contributing sources are the sources who participate in a media stream. The marker (M) bit is

used to indicate special relevance for the application. The 7 bit payload type (PT) field

indicates the format of the payload. The 16 bit sequence number field is incremented by one

for each RTP data packet sent. The receiver uses this sequence number to identify missing or

out of sequence packets. The 32 bit timestamp field is used to enable the receiver to play back

the received samples at appropriate intervals. The 32 bit synchronization source (SSRC)

identifier indicates the source of a stream. The 32 bit contributing source identifier indicates

the sources of a stream which is generated by multiple sources.

2.4 Real Time Transport Control Protocol (RTCP)

 RTCP provides control information for an RTP flow. RTCP is a sister protocol of RTP.

RTCP carries control information for an RTP session, but it does not transfer any media

stream. RTCP messages are sent over one port number higher than RTP packets. RTCP

periodically sends statistical information to the participants of a multimedia session.

 The fixed part of the RTCP packet format is similar to RTP packet format as shown in

Figure 2-1. The fixed part is followed by a variable length structured elements. The variable

length part should end in a 32 bit boundary in order to align the packets. A compound RTCP

packet can be created by concatenating multiple RTCP packets without any prevailing

separators. The compound RTCP packet can be sent as a single packet to the lower layer.

2.4.1 RTCP Services

 RTCP provides four types of services [8]. They are:

 RTCP gathers quality related information during a session and sends this data to the

participants of the session. An example of quality related information can be the flow

control and congestion control information. The participants can adaptively change the

data sending and receiving rate based on this information.

 RTCP assigns a canonical name (CNAME) for the sources participating in a session.

The SSRC identifier of a participant might change due to a conflict. The receivers

need to keep track the source identification for uninterrupted media stream. The

CNAME provides the receivers the facility of keeping track of the sources.

 RTCP information is sent by all the participants of the session. The RTCP traffic

increases with the increase of participants in a session. In a multicast session,

thousands of participants might be involved and network congestion may arise due to

excessive number of RTCP traffic. Each participant can observe the number of RTCP

packets. This observation can be used to avoid network congestion. The participants

can dynamically control the frequency of report transmissions based on the existing

Figure 2-1: RTP header format

Chapter 2: Background

14

RTCP traffic. A general rule is that RTCP traffic should not consume more than 5% of

the total bandwidth.

 The fourth service provided by RTCP is an optional service. RTCP can provide some

session control information as displaying the participant information in the user

interface.

2.4.2 RTCP Message Types

 RTCP carries a variety of control information. For this reason, RTCP messages can be

divided into several types.

 Sender Report (SR): The sender report is sent periodically by the active senders of a

session to report transmission and reception statistics. The statistics includes the

information of all RTP packets sent during the interval. A timestamp is included in the

sender report for the receiver to synchronize the RTP messages.

 Receiver Report (RR): The receiver report includes statistics and information of the

passive participants of the session. This report is sent to the active participants.

 Source Description (SDES): The source description message includes information

about the sources of the session. It includes the CNAME of the session participants. It

may also include additional information as the name, e-mail address, telephone

number, etc.

 BYE: The BYE message indicates the end of participation. A source sends a BYE

message to shut down a stream.

 Application Specific Function (APP): RTCP can provide additional services for

specific applications. The application specific message provides mechanism to design

services for various applications.

2.5 Secure Real Time Transport Protocol (SRTP)

 The Secure Real Time Transport Protocol (SRTP) provides security enhancements to RTP.

SRTP adds authentication, integrity, confidentiality and replay protection to the RTP and

RTCP traffic for both unicast and multicast applications [9]. SRTP defines cryptographic

transforms and key management schemes. SRTP has a sister protocol named Secure Real

Time Transmission Control Protocol (SRTCP) that provides the same security to RTCP as

SRTP provides to RTP. The security services provided by SRTP are optional and independent

from each other. But SRTCP message authentication is mandatory because it keeps track of

the session participants, maintains packet sequence number and provides feedback to the RTP

senders. SRTP is independent of the underlying transport protocol. Thus SRTP can protect

RTP transported over UDP, TCP, or any other transport protocol. SRTP is defined as a profile

of RTP. SRTP profile is an extension to the RTP audio/video profile.

 The packet format of SRTP is shown in Figure 2-2. The packet format is same as RTP with

two additional fields. The first field is a variable length optional Master Key Identifier (MKI)

field. The MKI field is used by the key management protocol to determine the master key

used to derive the session keys to encrypt the packets. The other field is an authentication tag

which is optional but recommended. The authentication tag has a configurable length and

provides authentication of both the RTP header and payload. This field also indirectly

provides replay protection by authenticating the sequence number of the packets.

 The encrypted portion of the SRTP packet consists of the encryption of the RTP payload

and the RTP padding (if present). The authenticated portion of the SRTP packet consists of

Chapter 2: Background

15

the RTP header and the encrypted portion. SRTP uses the Advanced Encryption Standard

(AES) for encryption/decryption of the RTP packet’s payload to provide confidentiality. A

128 bit block is encrypted with a 128 bit key. The authentication of the RTP packet is based

upon a key that is derived from the same master key that is used to encrypt the RTP payload.

2.6 Multimedia Internet Keying (MIKEY)

 MIKEY is a key management protocol used for real time applications. It supports both

peer-to-peer communication and group communication. MIKEY is mainly used to support

SRTP. An RTP session consists of different type of media data. The different types of media

data may need different keying mechanisms. MIKEY is designed to minimize the delay of

creating different keying sessions for different media data. The goal of MIKEY is to provide a

single keying session for a number of multimedia sessions. This helps reduce the cost of time

and storage.

 A collection of one or more cryptographic session is known as crypto session bundles

(CSB) [10]. The CSBs have TEK Generation Key (TGK) which is a bit-string agreed upon by

two or more parties. From the TGK, Traffic-encrypting Keys (TEK) can be generated. To set

up a CSB at first, a set of security parameters and TGKs are agreed upon for the CSB. Then

the TGK is used to derive a TEK for each Crypto Session. This TEK acts as the session

master key for SRTP.

 MIKEY provides three different variants of key agreements: pre-shared key (PSK), public

key encryption (PKE), and Diffie-Hellman (DH) exchange. The PSK method uses symmetric

encryption. An individual key has to be shared with every single peer. This is the most

efficient way to handle the transport of the common secret because only a small amount of

data has to be exchanged. The PKE method is similar to the pre-shared method. Each peer

requires a pair of public/private keys for encryption and signature. In DH method, both peers

need to have public/private key pairs for signatures in order to authenticate each other. The

public/private key pairs also protect against a man-in-middle attack. This method is more

Figure 2-2: SRTP packet format

Chapter 2: Background

16

costly in terms of time and storage due to increased number of public key operations. But the

advantage of this method is that it provides both greater flexibility and perfect forward

secrecy.

2.7 Minisip

 Minisip is an open source Voice over Internet Protocol (VoIP) user agent (UA) [11]. It is

based on the Session Initiation protocol (SIP) and special security features are included in it.

Minisip was initially developed in KTH. As it is open source software, a community from

both universities and companies continue working on it.

 Minisip is divided into four independent subsystems. The graphical user interface (GUI)

subsystem, policy subsystem, media subsystem and sip subsystem. The GUI subsystem is

responsible for interacting with the user (initiating and answering calls). The policy subsystem

is responsible for making decision about whether an incoming call should make the user

phone generate an alert or if it should be ignored. The media subsystem is responsible for

sending and playing media streams during a call. The SIP signalling logic is implemented by

sip subsystem. Details about these subsystems can be found in the licentiate thesis of Erik

Eliasson [12]. The most important feature of minisip is that it supports security for VoIP.

Minisip provided the first public implementation of Secured Real Time Transport Protocol

(SRTP) [13] and the first public implementation of Multimedia Internet Keying (MIKEY)

[14]. Minisip consists of five libraries. The libminisip library implements media, policy and

sip subsystems using the other four libraries. The minisip library implements a command line

based and a graphical user interface. The libmsip library implements the Session Initiation

Protocol (SIP) according to [15]. The libmikey library Implements MIKEY for authenticated

key exchange. The libmutil and libmnetutil library implements cross-platform support for

threads, mutexes, semaphores, network related functions, and other utility classes.

2.8 Clipper Chip

 The Clipper chip was developed with the intention of protecting private communication as

well as providing a means for the government for key escrowing [16]. The key for each

device is divided into two parts held by two escrow agents. Clipper chip works based on a

cryptographic algorithm named Skipjack [17] for transmitting information and Diffie-

Hellman key exchange algorithm [18] to distribute session keys. The Clipper chip generates

an 80 bit session key [19]. The session key is encrypted with the device's secret key and set in

a LEA field (LEAF) sent at the start of a session. Whenever a LEA needs access to a session

key, the LEA provides the device's serial number and a court order to both the escrow agents.

After both escrow agents have provided their responses, the LEA generates the master key for

the device by XORing the two parts together. Using this master key the LEA can decrypt the

encrypted session key carried in the LEAF. Note that once the master key has been disclosed

it can decrypt any session that this device has participated in..

 At the start of every Clipper session, a Clipper chip sends a 128 bit string called the Law

Enforcement Access Field (LEAF) to the receiver of the call. The Clipper chip encrypts the

session key with the device’s unique encryption key. It then appends the serial number of the

sender Clipper chip and a checksum. The government holds a master key known as family

key. The data to be placed in the LEAF is then encrypted with the family key. The

relationships between these different values and the LEAF are shown in Figure 2-3.

Chapter 2: Background

17

 Whenever an LEA intercepts a conversation, it first records the session including the

LEAF for this session. As the LEA has the family key from the government t can decrypt the

LEAF using the family key, this reveals the serial number of the specific Clipper Chip and the

encrypted session key that was encrypted with the device's unique encryption key. The LEA

now contacts the two escrow agents with the serial number and their court order, then asks the

escrow agents to provide their shares of the encryption key. When the escrow agents provide

the LEA with the shared parts of the encryption key, it puts them together to reconstruct the

device's unique key which it uses to decrypt the session key. With the decrypted session key,

the LEA can decrypt now the conversation.

 The Clipper chip escrow system has a serious vulnerability [21]. The LEAF field contains

information necessary to recover the session key. A 16 bit hash is included to prevent forgery

of the LEAF. However, this 16 bit hash is too short to protect against misuse of the Clipper

Chip (as the user can generate a fake LEAF field that appears to have a valid LEAF field, but

in fact if the LEA were to use this LEAF field they could not recover the session key).

Another problem with the Clipper chip is that, both the escrow agents should reveal their parts

of the key to the LEA. If one escrow agent fails to reveal its part or sends an erroneous part to

the LEA then the key cannot be reconstituted. Additionally, all sessions with this device can

now be decrypted, hence revealing much more information than a lawful intercept order

might specify and compromising all future sessions with this device. As a result of criticisms

of the many problems that the Clipper Chip showed, it was abandoned in 1996.

2.9 Threshold Cryptography

 Threshold cryptography has been used in a Distributed Certificate Authority (DCA)

scheme to protect the key against compromise [22]. The key is divided into several parts and

each part is stored in different servers. For (n, m) threshold cryptography, there will be m

servers with each server storing their own secret part. When a client needs to sign a message,

it sends the message to these servers and the servers each partially sign the message with their

keys. If at least n servers sign the message, then a valid certificate can be generated. The

resulting certificate can be verified with a public key.

Figure 2-3: Law Enforcement Access Field (LEAF)

Chapter 2: Background

18

 The secret shares in threshold cryptography do not have any explicit relation with each

other. If one server is compromised by an attacker, only the secret portion stored by that

server is revealed. The complete key can be generated only if n servers’ keys are

compromised. Additionally, if one or more servers are not functioning, the key can still be

generated as long as n servers are functioning. This gives extra reliability for key retrieval.

The key shares are also refreshed periodically. The shares before the refresh and after the

refresh are completely different. For this reason, if an attacker reveals the secret portion stored

by a server before refresh, it becomes totally useless for the attacker if a refresh operation is

done.

 Threshold cryptography can be applied to RSA. The RSA decryption key d can be split

into n parts, d= d1+d2+d3+……..+dn. Signing can be done on message m by

s=m
d1

.m
d2

.m
d3

.…….m
dn

Mod (N), where N is the product of two large primes. The problem

with this scheme is Mod(N) has to be generated by a trusted third party [23]. The third party

can easily forge the signature on a message. Boneh and Franklin [24] provided a solution

where the need for a trusted third party was overcome. Unfortunately, their solution has a

drawback, as it provides only m-out-of-m threshold decryption. This means that all the servers

need to sign into a message to generate a valid certificate.

 Rabin [25] proposed a new protocol based on Shamir secret sharing. Here the n servers can

sign to create a valid signature, but they need to interact with each other. The problem with

this scheme is that n servers will know additional information about each other which can

cause information leaking. Shoup [26] proposed another scheme where various servers need

to interact with each other only once, during the initial generation of the key. After this the

servers can work separately. But the problem with this scheme is that a trusted dealer is

needed which does not comply with the requirements proposed by Boneh and Franklin [24].

Nguyen [27] proposed a threshold signing scheme for RSA which does not require a trusted

third party and it can provide decryption with only n servers providing their secret share.

Nguyen also claims that there is no security information leak, the time and storage complexity

of the protocol is linear in the number of parties, and no restriction is placed on the RSA

moduli. The problem with this scheme is that the subset of servers which will provide their

secret share to generate the key should be predefined.

2.10 Shamir’s Secret Sharing

 Shamir’s secret sharing is an n-out-of-m threshold scheme based on polynomial

interpolation 0. At least n participants must provide their shares in order to decrypt the secret.

Any n-1 compromise of the shared secret is insufficient to decrypt the secret. Shamir’s secret

sharing is based on the idea that a polynomial of degree n-1 is defined by n points. For

example, to define a line of degree one, it takes two points and to define a parabola of degree

two, it takes three points. In order to decrypt a secret from n-out-of-m shares, a polynomial

can be defined over the known finite field GF(q) (Galois field with q elements) as

f(x)=a0+a1x
1
+a2x

2
+a3x

3
+…………+am-1x

m-1
where the coefficient a0 is the secret and all other

coefficients are random elements in the field. Each of the m shares is a point (xi, yi) on the

curve defined by the polynomial, where xi is not equal to 0. For any of the n shares the

polynomial is uniquely identified and a0 can be calculated by identifying the polynomial. But

for fewer shares than n for example, n-1 shares the secret could be any element in the field.

 Let us consider a simple example where two shares are required to decrypt the secret (n=2)

[29]. The polynomial is a degree one polynomial which represents a line in Figure 2-4. Each

Chapter 2: Background

19

share is a point on the line and the secret is the point where the line intercepts the y axis. Thus

with n=2, two points of the line can be found and the line can be interpolated to find where it

intercepts the y axis. In this way the secret can be calculated.

 The goal is to divide some data K into m pieces K1, K2,……,Km in such a way that:

a) Knowledge of any n or more Ki pieces makes K easily computable.

b) Knowledge of any n-1 or fewer Ki pieces leaves K completely undetermined.

This scheme is called (m,n) threshold scheme. To use the (m,n) threshold scheme to share

a secret K, without loss of generality assumed to be an element in a finite field F, we choose

at random (m-1) coefficients a1, a2,….,am-1 in F, and let a0=K. We build the

polynomial f(x)=a0+a1x
1
+a2x

2
+a3x

3
+…………+am-1x

m-1
 and construct any n points out of it.

For instance we set i=1,…..,n to retrieve (i, f(i)). Every participant is given a point (a pair of

input to the polynomial and output). Given any subset of m of these pairs, we can find the

coefficients of the polynomial using interpolation and the secret is the constant term a0.

 The following example illustrates the basic idea. Suppose that our secret is 1984 (i.e.

K=1984). We wish to divide the secret into 5 parts (m=5), where any subset of 3 parts (n=3) is

sufficient to reconstruct the secret. At random we obtain 2 numbers: 149, 57 (a1=149, a2=57).

Our polynomial to produce secret shares is therefore f(x)= 1984+149x+57x
2
.

 Now, we construct 5 points from this polynomial: (1, 2190); (2, 2510); (3, 2944); (4,

3492); (5, 4154).

 In order to reconstruct the secret any 3 points will be enough.

 Let us consider (x0, y0)= (2, 2510); (x1, y1)= (3, 2944); (x2, y2)= (5, 4154).

 We compute Lagrange interpolation polynomials for these three points:

𝑙0 =
𝑥 − 𝑥1

𝑥0 − 𝑥1
 .

𝑥 − 𝑥2

𝑥0 − 𝑥2
=

𝑥 − 3

2 − 3
 .

𝑥 − 5

2 − 5
=

1

3
𝑥2 −

8

3
𝑥 + 5

𝑙1 =
𝑥 − 𝑥0

𝑥1 − 𝑥0
 .

𝑥 − 𝑥2

𝑥1 − 𝑥2
=

𝑥 − 2

3 − 2
 .

𝑥 − 5

3 − 5
= −

1

2
𝑥2 +

7

2
𝑥 − 5

𝑙2 =
𝑥 − 𝑥0

𝑥2 − 𝑥0
 .

𝑥 − 𝑥1

𝑥2 − 𝑥1
=

𝑥 − 2

5 − 2
 .

𝑥 − 3

5 − 3
=

1

6
𝑥2 −

5

6
𝑥 + 1

Figure 2-4: Shamir’s secret sharing with two points (Sj and Sk; where j is not equal to k)

Chapter 2: Background

20

 Therefore

 = 2510
1

3
𝑥2 −

8

3
𝑥 + 5 + 2944 −

1

2
𝑥2 +

7

2
𝑥 + 5 + 4154

1

6
𝑥2 −

5

6
𝑥 + 1

 = 1984 + 150𝑥 + 56𝑥2

 The secret is the free coefficient, which means that K=1984.

2.11 Error Detection

 In a good cryptographic system, a change in a single bit in the ciphertext changes more

than one bit in corresponding plaintext. Most of communication channels contain some noise.

This noise can interfere with data and flip the bits. As a goal of this thesis is to implement an

n-out-of-m decryption of the session key, the first challenge is to detect errors in the retrieved

key, since any errors in the values received from the escrow agent could lead to an incorrect

regeneration of the session key. This error might occur due to a transmission channel failure,

noise, software fault, memory fault, etc. An error in one share means the key cannot be

regenerated. So the first task of the LEA is to detect any error in the shared parts sent by the n

escrow agents. Then it should correct the error and try to regenerate the key

 Error detection is simply the detection of any error in a message after being transmitted

from the sender to the receiver. A lot of research and techniques have been developed over the

years to detect errors in the received signals. Most of the techniques are based on adding some

redundancy to the original message to detect errors. Some of these methods are discussed

below.

2.11.1 Repetition Codes

 This approach divides the message into blocks and repeatedly sends blocks, i.e., each block

is sent more than once [30]. A comparison is made of all the repeated blocks and if any

mismatch is found, then the data which is carried by the majority of the copies of a given block

is considered to be as the correct data for this block. This approach is very simple, but cannot

guarantee completely error free correction or detection. If an error occurs at the same position

of each block, then this method fails.

 For example, we want to send a bit stream 00011011. We divide the bit stream into blocks

of two bits as 00, 01, 10, 11. Now we send each block by repeating each block two times. So

the bit stream sent would be 000000, 010101, 101010, 111111. Suppose an error occurs in the

first block and the receiver receives the first block as 000100, then the receiver can detect an

error has occurred because the block does not represent a single value. As the most frequent

value is 00, then the bit that is currently 1 is replaced by 0 to correct the error and the

redundancy is removed to yield a received value for the first two bits of "00". It would be

difficult to correct the error if the error occurs three times such as 010011. Although the

receiver knows there are errors (since all three sets of two bits should be the same) but

frequency count is equal for both 1 and 0. Additionally, it is impossible to detect an error

when the error occurs in same positions of the block. For example, if the receiver receives

Chapter 2: Background

21

010101 in place of 000000, then it cannot detect any error. In this case the method fails.

Additionally, if the receiver were to receive 000101, then it would "correct" the received

value to yield "01", since the number of errors was greater than the simple redundancy could

handle.

2.11.2 Checksum

 A checksum refers to adding some redundancy along with the data to enable error

detection. There are a number of checksum functions that can be used to calculate the

checksum [31]. The performance of a checksum depends on the quality of checksum function.

A good checksum function provides a high probability of error detection. Note that the

checksum is used to detect an error, following this some higher layer protocol is generally

utilized to decide what to do when an error is detected - for example, a retransmission might

be requested.

 The simplest checksum function is a parity check function. A bit stream is divided into

blocks of n bits and an XOR operation is performed on each bit of a block. The result is

appended to the block and sent to the receiver. The receiver receives the block (including the

result of the XOR operation) and performs an XOR operation again on the whole block. If the

result is 0, then the block is considered to be error free. Otherwise, an error is detected. This is

also known as even parity check. For example, consider a bit stream with a block size seven

consisting of the bits 1011000. After performing XOR operation in each bit we get a result 1.

This 1 is appended to the block and sent to the receiver as 10110001. The receiver again

performs an XOR operation on each bit and gets a result 0. The receiver believes that the

block as error free. Now, assume an error occurs in sixth bit and the receiver receives

10110101. The result of XOR operation is now 1 and an error is detected. The problem with

this approach is that even number of errors cannot be detected. It can detect only odd

numbers of errors, but cannot ensure the receiver of the number of errors or where they occur.

TCP uses a 16 bit checksum.

2.11.3 Cyclic Redundancy Check (CRC)

 A cyclic redundancy check is produced by a non secure hash function. This method is

frequently implemented in hardware. A CRC works on block of data and calculates a CRC

value for each block of data [32]. When the block is received, the CRC is again calculated and

matched with the previously calculated CRC value. If there is an error, then the CRC will not

match. CRC generally works by using a division operation where the remainder is taken as

the result. A good n bit CRC can detect an error of n bits in a burst. The problem with a CRC

is that any attacker can intercept the message and modify the message and recalculate the

CRC to yield a correct value for the modified message.

 Computing a CRC is based on polynomial arithmetic that computes the remainder of

dividing one polynomial in GF(2) by another where A polynomial in GF(2) is a polynomial in

a single variable x whose coefficients are 0 or 1. For example, the message 10011011, where

the order of transmission is from left to right is represented by the polynomial

x7+x4+x3+x+1. To utilize a CRC to protect this data, the sender and receiver agree on a

certain fixed polynomial called the generator polynomial. The generator polynomial must be

of degree n to compute an n bit CRC checksum. The algorithm starts by the sender adding n 0

bits at the end of the m bit message. The sender divides the resulting polynomial of degree

n+m-1 by the generator polynomial. The result is a polynomial of degree n-1 or less. The

Chapter 2: Background

22

remainder is a polynomial with n coefficients. This remainder is the CRC value. The sender

transmits the m bit message and the n bit CRC value. The receiver can detect errors in two

ways. The receiver can compute the CRC over the m bit message and compare this newly

computed with the received n bit CRC value. If the CRC checksums are same, then no error

has occurred. Alternatively, the receiver can divide all the received bits (including the n bit

CRC value) by the generator polynomial and check that the n bit remainder is 0. If the

remainder is 0, then the receiver believes that no error has occurred.

 Choosing a suitable generator polynomial is the key to generating reliable CRC value

[33][34]. All single bit errors are detected if the generator polynomial contains two or more

terms. If the generator polynomial is not divisible by x (i.e., if the last term of the generator

polynomial is 1), and e is the least positive integer such that the generator polynomial evenly

divides xe+1, then all double bit errors within a frame of e bits are detected. If x+1 is a factor

of the generator polynomial, then all errors consisting of an odd number of bits are detected.

As a result, an n bit CRC detects all burst errors of length upto n bits. Ethernet uses the 32 bit

CRC-32 (100000100110000010001110110110111).

2.12 Error Correction

 The error correction codes are used to correct the errors in a transmitted bit stream. The

errors are corrected by the receiver. This can be regarded as forward error correction (FEC),

since the sender adds this redundancy in advance - allowing the receiver to correct the

received message without making any additional request(s) or the sender. The error correction

can be done according to the capability of the error correcting code used during transmission

or storage. A number of error correcting codes have been proposed and implemented over

past few decades. Several of them are discussed below.

2.12.1 Convolutional Code

 Convolutional codes are used in numerous fields such as mobile communication, satellite

communication and digital video for error correction. A binary convolutional code is denoted

by a three-tuple (n, k, m) [35]. Each m bit string is transformed into an n bit string where m/n

is the code rate and the transformation depends on the last k bits of the m bit string. In this

formulation k is known as the constraint length. The choice of constraint length of a

convolutional code is made in several ways. The most popular choice is m + 1. To compute

the convolution code k memory registers are used to convolutionally encode the data. Each of

the k registers makes use of n modulo 2 adders and n generator polynomials.

 The first bit m1 is fed into the leftmost register. The encoder outputs n bits by using the

generator polynomials and the values in the other registers. By default, the values in the other

registers at the beginning are assumed to be 0. The second bit m2 is fed into the leftmost

register by shifting the previous value one register right. This continues until all the bits have

been fed into the registers and all registers contain 0. The encoder is shown in Figure 2-5.

Chapter 2: Background

23

 For example, let us consider m=1, n=2 and k=3 [36]. So each bit will be converted into a

two bit code and there will be three delay elements. Let the generator polynomials be (1,1,1)

and (1,1,0). The output from the (1,1,1) polynomial uses the XOR of the current input,

previous input, and the previous to previous input. The output from the polynomial (1,1,0)

uses the XOR of the current input and previous input.

 Let the input sequence be 0101. The first clock cycle makes the first input bit 0 available to

the encoder. The inputs to the modulo-two adders are all zeroes, so the output of the encoder

is 00.

 The second clock cycle makes the second input bit available to the encoder. The leftmost

register clocks in the previous bit, which was a 0, and the rightmost register clocks in 0 output

by the leftmost register. The inputs to the top first adder are 100, so the output is 1. The inputs

to the second adder are 10, so the output is also a one. So the encoder outputs 11 for the

channel symbols.

 The third clock cycle makes the third input bit 0 available to the encoder. The leftmost

register clocks in the previous bit, which was 1, and the rightmost register clocks in 0 from

two bit-times ago. The inputs to the first adder are 010, so the output is 1. The inputs to the

second adder are 01, so the output is 1. So the encoder outputs 11 for the channel symbols.

 The output sequence after all inputs would be 00 11 11 01.

 In order to flush the registers we need to input two more 0s. So the final output becomes

00 11 11 01 11 10.

 The encoder can be represented as a simple state machine. The example encoder has two

bits of memory, so there are four possible states. Initially the encoder is in the all 0 state. If

the first input bit is a 0, the encoder stays in the all 0 state at the next clock cycle. But if the

Figure 2-5: Example of a convolution encoder

Chapter 2: Background

24

input bit is a 1, the encoder transitions to the 10 state at the next clock cycle. Then, if the next

input bit is 0, the encoder transitions to the 01 state, otherwise, if the next input bit is 1, it

transitions to the 11 state. Table 2-1 shows the next state of the encoder given the current state

and the input.

 Next state

Current state Input = 0 Input = 1

00 00 10

01 00 10

10 01 11

11 01 11

 Another table can be constructed by defining the outputs by the encoder for different

combinations of inputs. This is shown in Table 2-2

 Output

Current state Input = 0 Input = 1

00 00 11

01 10 01

10 11 00

11 01 10

2.12.2 Hamming Code

 Hamming code can detect upto two bits of burst errors and correct a single bit. In contrast

to a parity checksum, such a code has the capability of correcting the message. Parity bits are

added to the original message in order to detect and correct errors. The more parity bits added

to the message, the more errors it is possible to correct. For example, to send a 7 bit message

with 3 parity bits added makes it possible to detect an error in any single position.

 The Hamming code works by following algorithm [37].

 All the bits are numbered starting from 1.

 All bit positions that are powers of two are marked as parity bits (bits 1, 2, 4, 8, 16, 32,

64, etc.)

 All other bit positions are for the data to be encoded (bits 3, 5, 6, 7, 9, 10, 11, 12, 13,

14, 15, 17, etc.)

 Each parity bit calculates the parity for some of the bits in the code word. The position

of the parity bit determines the sequence of bits that it alternately checks and skips.

 Parity bit 1 (bit 1): check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc.

(1,3,5,7,9,11,13,15...)

 Parity bit 2 (bit 2): check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc.

(2,3,6,7,10,11,14,15...)

 Parity bit 3 (bit 4): check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc.

(4,5,6,7,12,13,14,15,20,21,22,23...)

 Parity bit 4 (bit 8): check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc.

(8-15,24-31,40-47...)

Table 2-1: Next state table

Table 2-2: Output values

Chapter 2: Background

25

 Parity bit 5 (bit 16): check 16 bits, skip 16 bits, check 16 bits, skip 16 bits,

etc. (16-31,48-63,80-95...)

 Parity bit 6 (bit 32): check 32 bits, skip 32 bits, check 32 bits, skip 32 bits,

etc. (32-63,96-127,160-191...)

 Set a parity bit to 1 if the total number of ones in the positions it checks is odd. Set a

parity bit to 0 if the total number of ones in the positions it checks is even.

 This algorithm can be used to detect and correct a single bit error. For example, let us

consider a four bit message for transmission. Three bits of parity codes are added with this

message. According to the algorithm, we can construct Table 2-3 defining the data bits parity

bits and the bits to be checked by each parity bit.

8 bit codeword 1 2 3 4 5 6 7

Parity (P)/ Data(D) P P D P D D D

Even Parity

x x x x

 x x x x

 x x x x

 The three parity bits (1,2,4) are related to four data bits (3,5,6,7). Parity bit 1 checks even

parity for data bits (3,5,7), Parity bit 2 checks even parity for data bits (3,6,7), Parity bit 4

checks even parity for data bits (5,6,7). An error in bit 3 will affect parity bit 1 and 2, an error

in bit 5 will affect parity bit 1 and 4, an error in bit 6 will affect parity bit 2 and 4 and an error

in bit 7 will affect all three parity bits. Suppose we want to send the data bit 1001. According

to table 3 the sent data can be calculated as shown in Table 2-4.

8 bit codeword 1 2 3 4 5 6 7

Data(D) 1 0 1 0

Even Parity

1 1 0 0

 0 1 1 0

 1 0 1 0

 So the transmitted data will be 1011010. Now the receiver will receive this data and

calculate the even parity. If there is an error in bit five, thus the receiver receives 1011110,

then the error can be detected as shown in Table 2-5.

Table 2-3: Parity calculation in Hamming code

Table 2-4: Parity bits for data 1010

Table 2-5: Error detection in Hamming code

Chapter 2: Background

26

8 bit codeword 1 2 3 4 5 6 7

Data(D) 1 0 1 1 1 1 0

Parity error (1) 1 1 1 0

Parity correct (0) 0 1 1 0

Parity error (1) 1 1 1 0

 From the correct and erroneous parities we find a value 101 which indicates bit five has an

error. The value of bit five is changed to 0 and error correction is complete.

2.12.3 BCH Codes

 Bose – Chaudhuri – Hocquenghem (BCH) codes are a class of cyclic codes [18]. They

were discovered around 1959 and 1960 by R. C. Bose and D. K. Ray-Chaudhury and

independently by A. Hocquenghem. BCH codes form a large class of multiple random error-

correcting codes. BCH codes are important because there exists good decoding algorithms

that can perform multiple error corrections. The BCH code is a polynomial code over a finite

field with a particularly chosen generator polynomial. The codewords are formed by dividing

a polynomial representing the message by a generator polynomial and then taking the

reminder. The generator polynomial is a combination of several polynomials in GF(2
n
) [39].

2.12.4 Reed-Solomon Codes

 The Reed-Solomon code was invented in 1960 by Irving S. Reed and Gustave Solomon.

The Reed-Solomon codes are special cases of BCH codes. In many applications, errors are

not randomly distributed. Rather, the errors occur in a burst. Reed-Solomon codes are used for

burst error correction. Reed–Solomon coding is widely used in mass storage systems, such as

compact disks and digital video disks to correct the burst errors. Printed bar codes use Reed–

Solomon error correction to allow correct reading even if a portion of the bar code is

damaged. Reed-Solomon codes are also used for error correction in satellite communication.

An example of this was to encode the digital pictures sent back by the Voyager spacecraft

[40].

 A Reed-Solomon code is specified as RS(n,k) with s-bit symbols [41]. The encoder

takes k data symbols of s bits each and adds parity symbols to make an n symbol codeword.

There are n-k parity symbols of s bits each. A Reed-Solomon decoder can correct up

to t symbols that contain errors in a codeword, where 2t = n-k. Given a symbol size s, the

maximum codeword length (n) for a Reed-Solomon code is n = 2
s
 – 1.

Chapter 3: Related Work

27

Chapter 3: Related Work
 In this section, some of the related works are presented. The Clipper chip as discussed in

section 2.8 was an approach by the US government to use two escrow agents. The n-out-of-m

threshold cryptography as discussed in 2.9 is an approach to divide the secret among m

servers and retrieve the secret by having the shares from only n agents. A master thesis by

Md. Sakhawat Hossen at KTH has addressed the issues of single escrow agents and has

implemented the system [2]. Another thesis by Md. Sarwar Jahan Morshed at KTH addressed

VoIP Lawful Interception from the point of view of the LEA [42]. Overviews of these two

theses are given in sections 3.1 and 3.2.

3.1 SIP User Agent with Key Escrow

 In his thesis, Hossen [2] implemented a very simple key escrow agent. The session keys

are deposited with this escrow agent. During a session blocks of hashes are signed over the

session contents and transmitted over the Real Time Transport Control Protocol (RTCP)

channel parallel to the RTP media stream. The private key of the sender is used to sign the

hash of sent packets. The receiver can use these signed hash values together with the sender’s

public key to detect modification of the sender’s traffic. In fact, any party that has access to

the signed hash values and the sender’s public key can detect an attempt of forgery of the

session’s contents (Detecting this forgery is described in Morshed's thesis - see section 3.2.).

 A signed hash over multiple SRTP packets is computed to prevent forgery of a recorded

session. Because the hash is signed by the private key of the sender it is impossible for anyone

to forge the digital signature of the hash over the Secure Real Time Transport Protocol

(SRTP) packets as the private key is known only by the user. If an LEA retrieves the session

key from the escrow agent by showing an appropriate legal order and tries to fabricate data

into a captured media stream by generating SRTP packets and encrypting the media stream

with the session key, then the authenticity of these packets can not be verified. The verifier

decrypts the signed hash using the public key of the sender to produce the hash of SRTP

blocks as calculated by the sender. The verifier processes the captured session and does the

hashing operations to produce the hash of the captured session. If these two hashes are

identical, then the captured packets have not been changed. But if the LEA has fabricated

content or modified the session, then the hash of the captured session and the hash of the

decrypted SRTP blocks will not be the same.

 The escrow agent was implemented by Hossen using an Apache web server with MySQL

database support. The escrow agent receives the key from an authenticated user and after

proper validation of the received data it stores the escrowed data in a local database. The

MySQL database stores the session master key(s). The session master key is the TEK

Generation Key (TGK). This key is exchanged by the key agreement protocol MIKEY. This

TGK along with some security parameters are used to generate the session keys for

encryption and integrity protection. To allow a LEA to decode a captured session some

additional information is escrowed along with the session master key. For example, the final

signed hash value is also escrowed as a marker to indicate the end of a session. Morshed's

thesis discusses what information in addition to the master key should be escrowed.

 The web server enabled Secure Socket Layer (SSL) functionality. The user agent uses

secure HTTP (HTTPS) to escrow the key with the escrow agent. The key is transferred along

with the URL of the escrow agent. A key value pair is appended to the URL. The user name

and password are used for authentication to the escrow agent. The SIP URI is used as the user

Chapter 3: Related Work

28

name thus only the users registered to a SIP proxy server can escrow their keys. The SIP URI

need not all be in the same SIP domain nor do all of the subscribes in this domain need to use

this escrow agent, the only limit is that the user is identified by something that looks like a

SIP URI - and of course might actually be the user's SIP URI.The password is manually

assigned and is established when a user is added to the database. A key value pair is appended

to the URI with the user name and password to the escrow agent to escrow. A third party

application programming interface (API) named “libcurl” is used to escrow the session master

key. “libcurl” [38] is a free and easy-to-use client-side URL transfer library which supports

HTTP, HTTPS, and many other protocols.

3.2 VoIP Lawful Interception

 Md. Sarwar Jahan Morshed's thesis [42] addresses the issues of a LEA when retrieving a

session key and performing decryption of a captured session. He assumes that the LEA has

established the proper legal authority the key and associated information from the escrow

agent. This thesis also addresses the case when an evil person acquires the key from the

escrow agent in order to forge a captured session or to modify a captured session. He

demonstrates that is possible to detect all attempts to modify a recorded session - provided

that some specific data associated with the session is also recorded by the original user agent

when it escrows the information about the session with the escrow agent.

Chapter 4: Design and Implementation of Split Operation

29

Chapter 4: Design and Implementation of Split

Operation
 This chapter starts by proposing a solution for splitting the key into chunks in section 4.1.

Section 4.2 discusses which parameters to split and escrow. Section 4.3 and section 4.4

describes where are the keys escrowed and the architecture of the escrow agents and escrow

databases. Finally, section 4.5 describes the implementation details of the split and escrow

operation.

4.1 Proposed Solution for Splitting the Key

 As we are interested in splitting the key into m chunks and then retrieve the key from n-

out-f-m chunks, a suitable algorithm for this would be Shamir’s Secret Sharing Algorithm as

discussed in section 2.10. The advantages of choosing Shamir’s Secret Sharing algorithm are:

1) It is mathematically proven that the algorithm is secure.

2) The security level can be changed by changing the polynomial.

3) The algorithm is scalable because the number of chunks can be changed. It is

possible to increase or decrease the value of m or n for an implementation.

 In the libmikey library of minisip source code there is a file named Mikey.cxx. A function

named escrowSessionKey() was added to the library as a public member of the Mikey class

by Hossen [2]. Currently this function simply forms a URL to be used with one of the libcurl

fuctions to instantiate a curl object. The function invokes a method to generate the TGK along

with the pseudo-random number (Rand) and CSB ID value. After generating the parameters

needed to be escrowed, we can add a splitting operation. This splitting function will split the

key (and possibility the other parameters) into specified number of chunks and then send the

chunks to a set of escrow agents.

 The user agent is responsible for splitting the keys. The escrow agents will only store the

escrowed information. The splitting operation is performed in the user agent and the user

agent stores the values in files. Upon successful connection with the escrow agent, the user

agent escrows the split values. This is shown in Figure 4-1.

Chapter 4: Design and Implementation of Split Operation

30

4.2 What to Split and Escrow

 According to the thesis of Hossen [2] and Morshed [42], they have escrowed the session

master key, i.e., the TEK Generation Key (TGK) along with the pseudo-random number

(Rand), last signed hash and CSB ID value. This key is exchanged by the key agreement

protocol MIKEY. This TGK along with some security parameters are used to generate the

session keys for encryption and integrity protection.

 In our case, we are not modifying the escrow operation, rather enhancing the escrow

operation from one escrow agent to multiple escrow agents. Thus, the parameters being

escrowed will remain the same. But question arises which parameters should be split and then

escrowed. For m escrow agents, we can split the TGK, Rand, last signed hash and CSB ID

value into m chunks and then escrow them. But is it really necessary to split all these

parameters? Well, the reason behind splitting the key is to enhance security and availability

of the key. Splitting the Rand, last signed hash and CSB ID value enhances the security, but it

is not really necessary to do so. If we rather only split the TGK and replicate the Rand, last

signed hash and CSB ID value to m escrow agents, then our purpose is served. As this

implementation is an n-out-of-m system, no one can retrieve the TGK value without having at

least n chunks. This increases the security and confidentiality. Again, the availability

increases as even if few escrow agents are not working, the key is retrievable from n escrow

agents. So, we can conclude that we can reach our goal by splitting the TGK only into m

chunks. The Rand, last signed hash and CSB ID value will be replicated with each of these m

chunks into m escrow agents.

Figure 4-1: General architecture of m Escrow agents

Chapter 4: Design and Implementation of Split Operation

31

4.3 Which Escrow Agents are Involved in a Session

 An important part of this thesis project is to find a way for the LEA to know who the

escrow agents are for a session. Different user may use different escrow agents. Users may

use different number of escrow agents for different sessions. How can the LEA know the

number of escrow agents, or identity of these escrow agents? This question is also valid for

the user himself or herself. If the user needs to retrieve a session master key several years

after the session has ended, how will they remember the escrow agents he/she used for that

particular session?

 As discussed in section 1.3.2, we can solve this issue in two different ways. First we can

send the list of escrow agents at the end of the session with the session master key, rand, CSB

ID value and the signed hash value of the last block to all the escrow agents. The signed hash

value of the last block is already generated by Hossen’s thesis [2]. The last signed hash value

is sent to the escrow agent in order to detect forgery. We could just add the list of escrow

agents with these parameters and send it to the escrow agents. The LEA who captures the

traffic can easily notice from traffic analysis that the session has ending by sending packets to

some IP addresses other than the media stream has been sent to. If the LEA finds even one IP

address of an escrow agent from this traffic analysis, then it can present a lawful intercept

court order to this escrow agent to ask it to reveal the addresses of the other escrow agents

from the list that it received along with the key chunks.

 Another solution could be to explicitly send the role of the user and the list of escrow

agents via the RTCP path. This information can be sent at any time during a session. It can be

sent at the beginning, at the end, or any time during the session. Our proposal would be to

send this information twice in the session, once at the beginning, and then at the end of the

session. The reason behind this proposal is that the RTCP packets are sent over the User

Datagram Protocol (UDP) and thus their transmission is unreliable. If the LEA fails to capture

the RTCP packet containing the list of escrow agents due to the unreliable nature of UDP,

then it will never find out the list. Additionally, it is better to send the same information at the

end of the session to increase reliability. The libminisp library of the minisip code handles the

media streams. The MediaStream.cxx file contains the RealtimeMediaStreamSender class

which is mainly responsible for sending SRTP/RTCP packets. To send the list of escrow

agents in the RTCP path we can add a function inside the RealTimeMediaStreamSender class

in the MediaStream.cxx file. This function will send the user role and list of escrow agents via

the RTCP path at the beginning and at the end of a session.

 In this thesis project, we have implemented the first alternative. We have escrowed the

names of the escrow agents involved in a session with the split TGK chunks, Rand, last

signed hash and CSB ID values as discussed in section 4.2. We have added the names of the

escrow agents in the escrowSessionKey() function of Mikey.cxx file in libmikey library of the

minisip source code. The LEA who captures the traffic can detect from traffic analysis that

the session ends by sending packets to some IP addresses other than the media stream has

been sent to. The LEA would assume these IP addresses as the escrow agents. If for some

reason the LEA can not detect all the escrow agents from traffic analysis, then it can present a

lawful intercept court order to the escrow agent(s) it has detected from traffic analysis and ask

to reveal the addresses of the other escrow agents from the list along with the TGK chunk and

last signed hash value.

Chapter 4: Design and Implementation of Split Operation

32

4.4 Escrow Agents and Escrow Databases

 The escrow agents implemented for this thesis project is same as the escrow agents

implemented by Hossen [2], but with a minor modification. Each escrow agent has two fields

for the split TGK. In the original implementation of Minisip [11], there are 256 bytes in the

base 64 value of the TGK. We have divided these 256 bytes into two equal parts (128 bytes

each). This is done because we have used 128 byte security level in Shamir’s secret sharing

algorithm. So we can split at most 128 with a single execution of the algorithm.

 The escrow agents have been implemented using Apache web server with MySQL

database support. It has a database named db_escrowAgent consisting of two tables as

presented in the Figure 4-2. The primary task of the escrow agents is to receive the key

chunks from an authenticated user. After proper validation of the received data, it is stored in

a secure database. Figure 4-1 shows the general architecture of our escrow agents. The web

server is enabled with Secure Socket Layer (SSL) functionality so that user agent can use

secure HTTP (HTTPS) to escrow the key with the escrow agent. SSL has been enabled

according to the procedure shown in Appendix A for Ubuntu servers. To enable the SSL

capability of the in OpenSuse, a script has been used to automate the complete process (see

Appendix B).

 The databases consist of two tables: one for authentication data and the other for the

escrowed data. The authentication table stores the username and password of the valid users

who can escrow data with the escrow agents. We have used the SIP URI as the username so

that only users registered with the proxy server are able to escrow data with this escrow agent.

The password is manually assigned and is established when a user is added to the

authentication table of the database.

 The sipmasterkey table stores the two parts of the TGK key chunks along with Rand,

signed hash value, CSB ID values and the names of the escrow agents. The sipmasterkey table

also contains a date field that stores the current local time as a timestamp to record when the

entry in the table was made.

4.5 Implementation Details

 Necessary codes have been added to escrowSessionKey() function in Mikey.cxx file to

divide the base 64 value of TGK into 5 parts. The internal structure can be described as

follows:

4.5.1 General Algorithm for Split and Escrow Operation

 The procedure of splitting the key into chunks and escrowing them can be depicted by a

general algorithm. The algorithm works according to the following steps:

Figure 4-2: General Structure of the escrow databases

Chapter 4: Design and Implementation of Split Operation

33

1. Create five files for temporarily storing the key chunks.

2. Divide the TGK into two parts.

3. Invoke the split function for each of the parts.

4. Each part is split into five subparts. Store each of these split parts into the files

created in step 1. The five subparts created from the first part will be the first

entries in the five files. Five subparts created from the second part will be the

next entry in the files. Separate them with a separator “%”.

5. Create a temporary string with the Rand, signed hash, CSB ID value and the

names of the escrow agents. Separate them with “%” symbol.

6. Read the contents of the first file created in step 1 into a string.

7. Form a string with the IP address of the escrow agent.

8. Append the user id, password and strings created in steps 5 and 6 to the string

created in step 7.

9. Escrow the parameters by creating a curl object with the string formed in step 8.

10. Repeat steps 6 to 9 four times, read values from different files each time in step

6.

4.5.2 Storing the Key Chunks into Files

 As we are interested in dividing the key onto five chunks, we generated five files in order

to store the TGK parts. The split operation will divide the TGK into five parts and each of the

parts will be stored in these files. The number of parts can be increased or decreased by

changing the total Escrow Agent number. The number of files created will be exactly same as

the number of total Escrow Agents. Listing 4-1 shows how we have created multiple files to

store the key chunks.

 char filnamenumberstr[20];

 char filtmp[15]="ea.out";

 char eafilname[15];

 strcpy(eafilname, filtmp);

 for(int filnumber=1;filnumber<=totalea;filnumber++){

 strcpy(eafilname, filtmp);

 sprintf(filnamenumberstr,"%d",filnumber);

 strcat(eafilname, filnamenumberstr);

 output=fopen(eafilname,"w+");

 fclose(output);

 }

Listing 4-1: Creating five different files to store the key chunks

Chapter 4: Design and Implementation of Split Operation

34

4.5.3 Dividing the TGK and Invoking the Split Function

 There are 256 bytes in the base 64 value of the TGK. These 256 bytes are divided into 2

equal (128 bytes each) parts. The split function is called for each of these parts and each part

is divided into 5 chunks by the split function according to Shamir's Secret Share algorithm.

Each of these 5 parts is written into the 5 files created earlier. At the end of the split operation,

we get 5 files. Each of the files contains 2 subparts of the TGK. These 2 parts are separated by

a “%” symbol. Listing 4-2 shows how the TGK is divided into two parts and passed to split

function.

 for(sub=0;sub<=128;sub=sub+128){

 if(sub==128)

 tgktemp=tgk_b_64_ecoded.substr(sub);

 else

 tgktemp=tgk_b_64_ecoded.substr(sub,128);

 ssTgk=new char[tgktemp.size()+1];

 std::copy(tgktemp.begin(), tgktemp.end(), ssTgk);

 ssTgk[tgktemp.size()] = '\0',

 filnamenumber=1;

 split(ssTgk);

 tgktemp.erase(0, tgktemp.length());

 delete[] ssTgk;

 }

4.5.4 URL Formation and Escrow Operation

 An URL is formed with the IP address of the first escrow agent, user name and password

of the user appended by the contents of the first file. The signed hash value, rand value,

CSBID values are appended into the URL separated by a “%” symbol without any

modification. This information is escrowed to the first escrow agent through HTTPS channel.

This is repeated five times for five Escrow Agents with the contents of five different files. At

the end of this step we have successfully formed an URL with necessary parameters. Listing

4-3 shows how the parameters are invoked and read from file and how the URL is formed.

 int decodedlength;

 unsigned char *b_64_decode

=base64_decode(tgk_b_64_ecoded,&decodedlength);

 const char *csbId = itoa((int)ka->csbId()).c_str();// get the csbid

and convert to string

 char *tempcstr;

 tempcstr=new char

[rand_b_64_ecoded.length()+signedHash_b_64_ecoded.length()+100];

 strcpy(tempcstr,rand_b_64_ecoded.c_str());

 strcat(tempcstr,"%");

 strcat(tempcstr,signedHash_b_64_ecoded.c_str());

 strcat(tempcstr,"%----");

 strcat(tempcstr,csbId);

 strcat(tempcstr,"%");

Listing 4-2: Dividing the TGK into two parts and invoking split() function

Chapter 4: Design and Implementation of Split Operation

35

 int filnumcount=1;

 for(filnumcount=1;filnumcount<=totalea;filnumcount++){

 char eadata[1500];

 char filnumcountstr[15];

 char eafilname[20]="ea.out";

 sprintf(filnumcountstr,"%d",filnumcount);

 strcat(eafilname, filnumcountstr);

 fstream ea(eafilname, ios::in);

 while(! ea.eof()){

 ea.getline(eadata, 1500);

 }

 ea.close();

 std::string streadata(eadata);

 string url1;

 if(filnumcount==1)

 url1="https://130.237.81.122/escrow_agent1/?user=";

 else if(filnumcount==2)

 url1="https://192.168.1.212/~ea2/escrow_agent2/?user=";

 else if(filnumcount==3)

 url1="https://130.237.81.122/escrow_agent3/?user=";

 else if(filnumcount==4)

 url1="https://192.168.1.212/~ea4/escrow_agent4/?user=";

 else if(filnumcount==5)

 url1="https://192.168.1.212/~ea5/escrow_agent5/?user=";

 cstr=new char [url1.length()+streadata.length()+2*ka-

>uri().length()+500];

 strcpy(cstr, url1.c_str());

 strcat(cstr,ka->uri().c_str());// add sip uri as userid

 strcat(cstr,"&password=");

 strcat(cstr,ka->uri().c_str());// add sip uri as password

 strcat(cstr,"&data=");

 strcat(cstr,streadata.c_str());

 strcat(cstr,tempcstr); //This is the total string to be passed

as url

 char *eanames;

 eanames=new char[200];

 strcpy(eanames, "EA1,EA2,EA3,EA4,EA5");

 strcat(cstr,eanames);

4.5.5 How to Escrow

 We have used secure HTTP (HTTPS) to escrow the session master key. The key is

transferred along with the URL of the escrow agent by appending a key value pair in addition

to the key value pairs used to provide the user name and password for authentication to the

escrow agent. HTTPS is used to create a secure SSL tunnel between the user agent and the

server so that data can not be tampered with by others and to protect our key from being

intercepted. To escrow the session master key with the escrow agent from the user agent (in

our case: minisip) we have used libcurl [38], as described previously in section 3.1 . We have

Listing 4-3: Formation of the URL where the top gray colored area shows how the parameters are

invoked and the lower yellow colored area shows the formation of the URL

Chapter 4: Design and Implementation of Split Operation

36

modified the escrowSessionKey() function in Mikey.cxx file in the libmikey library of the

minisip source code to escrow the session master key which was written by Hossen [2].

 CURL *curl;
 CURLcode res;

 curl = curl_easy_init();

 if(curl) {

 curl_easy_setopt(curl, CURLOPT_URL, cstr);

 curl_easy_setopt(curl, CURLOPT_TIMEOUT,5); //wait for 5 seconds

for the escrow agent to respond

 #ifdef SKIP_PEER_VERIFICATION

/*If you want to connect to a site who isn't using a certificate that is

signed by one of the certs in the CA bundle you have, you can skip the

verification of the server's certificate. This makes the connection A LOT

LESS SECURE.If you have a CA cert for the server stored someplace else

than in the default bundle, then the CURLOPT_CAPATH option might come

handy for you.*/

 curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 0L);

 #endif

 #ifdef SKIP_HOSTNAME_VERFICATION

/* If the site you're connecting to uses a different host name that what

they have mentioned in their server certificate's commonName (or

subjectAltName) fields, libcurl will refuse to connect. You can skip this

check, but this will make the connection less secure.*/

 curl_easy_setopt(curl, CURLOPT_SSL_VERIFYHOST, 0L);//saki

 #endif

 res = curl_easy_perform(curl);

 cout <<"\n Time to escrow: \n" <<duration_escrow << '\n';

 ea.close();

 /* always cleanup */

 curl_easy_cleanup(curl);

 if (res == CURLE_OK)

 {

 cout<<"\ncurl has easily performed\n";

 cout << buffer << "\n";

 }

 else

 {

 cout << "Error: [" << res << "] - " << errorBuffer;

 cout<< "\ncurl objcet is not created properly\n";

 }

 }//https check ends here

 delete [] cstr;

 }

Listing 4-4: Invocation of the libcurl method

Chapter 4: Design and Implementation of Split Operation

37

 As we have used HTTPS with a self signed certificate, we needed to skip the verification

of the server's certificate. Libcurl provides the SKIP_PEER_VERIFICATION macro definition.

We can skip the verification of the server's certificate by defining this macro. Although it

makes the connection less secure, we have used this approach as our escrow agents are using

self signed certificates.

4.5.6 The Split Function

 We have used third party software for splitting the key. This software was written by B.

Poettering [43]. It is a free software, the code is licensed under the GNU General Public

License [44]. We have modified the code according to our need to integrate with Minisip.

 There was a problem with the split function. The split() function reads random values from

the /dev/random file. The /dev/random file generates random values from the entropy. The file

does not cache any value, so there is a substantial delay if there are no random numbers

generated. This was the reason of long delay for the split() function. We changed the random

number generator file to /dev/urandom. The /dev/urandom file serves the similar purpose as

/dev/random. But it caches the random values. So whenever the system runs out of random

numbers, it can reuse the cached values. Using /dev/urandom solved the problem of delay.

Now the split() function is executes in quick time. Using the /dev/urandom file decreases

security as the same random value might be repeated for encryption. But in our case this is not

a big issue as we are sending the data over https channel.

http://www.gnu.org/licenses/gpl.html

Chapter 5: Design and Implementation of Combine Operation

38

Chapter 5: Design and Implementation of

Combine Operation
 So far in this thesis project, we have designed and implemented escrow agents and added

functionalities to an existing user agent (Minisip) to split the session key. The work done so

far is adequate for a user agent to initiate call and at the end of the call the session key is

divided into five parts ant each of the parts is escrowed to the escrow agents with the user id,

Rand, last signed hash, CSB ID value, escrow agents names and the date and time. Now our

concern is to retrieve the session key from n escrow agents (where n is less than the total

number of escrow agents) for a particular call. In this chapter we have discussed how we can

retrieve the session key as an LEA using n-out-of-m threshold scheme.

5.1 General Algorithm for Retrieving the Key chunks and Combining

Them

 This section discusses about the general approach of how we have designed our system to

retrieve the key chunks from the escrow agents and combine them in order to get the TGK.

The general algorithm is as follows:

1. Login to the escrow agent by providing user id and password by a web

based form.

2. Provide the target user id, start time and end time of target session for

which the session key has to be retrieved.

3. For authenticated user, read the first escrow agent database and fetch the

two parts of the split TGK, Rand, CSB ID value, last signed hash value

and names of the escrow agents.

4. Write the values read in step 3 into a temporary file. Separate the values

by a “%” symbol.

5. Repeat step 3 and 4 for four other escrow agents. For each escrow agent,

write the retrieved values in separate files.

6. Read any three files until the first separator “%” is found.

7. Invoke the combining function with the values fetched in step 6. At the

end of this step we get the first half of the TGK.

8. Read the same three files read in step 6 starting after the first “%” symbol

until the next “%” symbol is found.

9. Invoke the combining function with the values fetched in step 8. At the

end of this step we get the second half of the TGK.

10. Merge the two halves of the TGK to get the session key.

Chapter 5: Design and Implementation of Combine Operation

39

5.2 Escrow Agent Support for LEA

 In Lawful Interception mechanism, Escrow Agent is one of the key components since it

works as a Trusted Third Party for storing the TEK generation key (TGK) along with other

escrowed information to derive the session keys later. So far we have discussed and

implemented the escrow agents for just storing the escrowed information. But from the point

of view of a LEA, the escrow agents should provide the necessary key parameters to the LEA

whenever a legal order is produced. The escrow agents are web based and co-located with an

apache web server. They have a database named db_escrowAgent consisting of two tables.

MySql is used for the database operation and Apache has been used as the web server. PHP

has been used for accessing the web server remotely. To support the LEA with necessary

information, we need to add one more table in the escrow agents according to Sarwar’s [42]

thesis. This table is named as t_lealogin consisting two fields: l_id and l_pass. This table is

used to verify the LEA authentication. Anyone with a valid LEA id and password can login

and request for escrowed information. The following login prompt appears before an LEA

employee.

 After verifying the login information, a second form is provided to fill up with target

information. This information includes the user id (in our case the sip user id) of a user, start

time of the escrow operation and end time of the escrow operation. As we are escrowing into

five escrow agents with a 5 second timeout, it is necessary to provide the end time to properly

retrieve information.

Figure 5-1: Login interface for LEA employee

Chapter 5: Design and Implementation of Combine Operation

40

 A php script has been written in order to fetch the information from the escrow agents. The

php script runs five times and invokes the escrow agents one after another. Upon successful

invocation on the escrow agents the script fetches the two split parts of the TGK, Rand, CSB

ID, the signed hash value and the names of the escrow agents and writes them into files

separated by a “%” symbol. After invoking five escrow agents, the LEA is provided with five

text files. This text files are stored and are inputs to the combining function. Basically, at this

point the LEA has retrieved everything and the role of escrow agent ends here. Now it is the

job of the LEA to combine the split key parts. The php script used to fetch information and

write them into files is shown in Listing 5-1.

<?php

$uid=$_POST['User_Id'];

$time1=$_POST['starttime'];

$time2=$_POST['endtime'];

for ($i = 1; $i <= 5; $i++) {

 if($i==1){

 $dbhost = 'localhost'; $dbuser = 'root'; $dbpass = '014409';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

('Error connecting to mysql');

 $dbname = 'escrowDatabase1';

 mysql_select_db($dbname);

 $myFile = "/home/azfar/Desktop/eadir/testFile1.txt";

 }

 else if($i==2){

 $dbhost = 'localhost'; $dbuser = 'root'; $dbpass = '014409';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

('Error connecting to mysql');

 $dbname = 'escrowDatabase2';

 mysql_select_db($dbname);

 $myFile = "/home/azfar/Desktop/eadir/testFile2.txt";

 }

 else if($i==3){

 $dbhost = 'localhost'; $dbuser = 'root'; $dbpass = '014409';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

('Error connecting to mysql');

 $dbname = 'escrowDatabase3';

 mysql_select_db($dbname);

 $myFile = "/home/azfar/Desktop/eadir/testFile3.txt";

 Figure 5-2: Target information interface

Chapter 5: Design and Implementation of Combine Operation

41

 }

 else if($i==4){

 $dbhost = 'localhost'; $dbuser = 'root'; $dbpass = '014409';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

('Error connecting to mysql');

 $dbname = 'escrowDatabase4';

 mysql_select_db($dbname);

 $myFile = "/home/azfar/Desktop/eadir/testFile4.txt";

 }

 else if($i==5){

 $dbhost = 'localhost'; $dbuser = 'root'; $dbpass = '014409';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

('Error connecting to mysql');

 $dbname = 'escrowDatabase5';

 mysql_select_db($dbname);

 $myFile = "/home/azfar/Desktop/eadir/testFile5.txt";

 }

 $select_key1 = mysql_query("select key1 from sipmasterkey where

userid ='$uid' and date BETWEEN '$time1' AND '$time2' ");

 $key1 = mysql_fetch_row($select_key1);

 $key1 = $key1[0];

 $select_key2 = mysql_query("select key2 from sipmasterkey where

userid ='$uid' and date BETWEEN '$time1' AND '$time2' ");

 $key2 = mysql_fetch_row($select_key2);

 $key2 = $key2[0];

 $select_rand = mysql_query("select rand from sipmasterkey where

userid ='$uid' and date BETWEEN '$time1' AND '$time2' ");

 $rand = mysql_fetch_row($select_rand);

 $rand = $rand[0];

 $select_signedhash = mysql_query("select signedhash from

sipmasterkey where userid ='$uid' and date BETWEEN '$time1' AND '$time2'

");

 $signedhash = mysql_fetch_row($select_signedhash);

 $signedhash = $signedhash[0];

 $select_csbid = mysql_query("select csbID from sipmasterkey where

userid ='$uid' and date BETWEEN '$time1' AND '$time2' ");

 $csbid = mysql_fetch_row($select_csbid);

 $csbid = $csbid[0];

 $select_eaname = mysql_query("select EAnames from sipmasterkey where

userid ='$uid' and date BETWEEN '$time1' AND '$time2' ");

 $eaname = mysql_fetch_row($select_eaname);

 $eaname = $eaname[0];

 $stringData = $key1.'%'.$key2.'%'.'%'.$rand.'%'.$signedhash.'%'

.$csbid.'%'.$eaname.'%';

 $b = fopen($myFile, "w") or die("can't open file");

 fwrite($b, $stringData);

 echo "your file has been saved";

 echo "</br>";

 fclose($b);

 }

?>

Listing 5-1: PHP script to fetch information from escrow agents

Chapter 5: Design and Implementation of Combine Operation

42

5.3 The Combining Operation

 The combining operation is done by reading the split key parts from the files read by the

LEA. Shamir’s Secret Sharing scheme is used to combine the split chunks. The files created

in section 5.2 serves as input to the combining function. As it is a 3-out-of-5 scheme, any

three files are read until the first “%” symbol is found. The combining function is invoked

with the values. The combining function combines the chunks to get the first half of the TGK.

Now, the same three files are read beginning after the first “%” symbol until the next “%”

symbol is found. The combining function is invoked with the values. The combining function

combines the chunks to get the second half of the TGK. The two halves of the TGK are

merged together to get the session key. Listing 6 shows this.

 FILE *fp1;

 FILE *fp2;

 FILE *fp3;

 static int flag=1;

 static int key1, key2, key3;

 key1=0;

 key2=0;

 key3=0;

 char c1,c2,c3;

 fp1=fopen("/home/azfar/Desktop/eadir/testFile1.txt", "r");

 fp2=fopen("/home/azfar/Desktop/eadir/testFile2.txt", "r");

 fp3=fopen("/home/azfar/Desktop/eadir/testFile3.txt", "r");

 char comb1[300], comb2[300], comb3[300], others[400];

 outfp=fopen("/home/azfar/Desktop/eadir/outfile.txt", "w");

 fclose(outfp);

 int w;

 for (w=1; w<=2; w++){

 key1=0;

 key2=0;

 key3=0;

 strcpy(comb1,"");

 strcpy(comb2,"");

 strcpy(comb3,"");

 while(1){

 c1=fgetc(fp1);

 if(c1!=EOF) {

 if (c1!='%') {

 comb1[key1]=c1;

 key1++;

 }

 else{

 comb1[key1]='\0';

 break;

 }

 }

 }

 printf("\n");

 while(1){

 c2=fgetc(fp2);

Chapter 5: Design and Implementation of Combine Operation

43

 if(c2!=EOF) {

 if (c2!='%') {

 comb2[key2]=c2;

 key2++;

 }

 else{

 comb2[key2]='\0';

 break;

 }

 }

 }

 printf("\n");

 while(1) {

 c3=fgetc(fp3);

 if(c3!=EOF) {

 if (c3!='%'){

 comb3[key3]=c3;

 key3++;

 }

 else{

 comb3[key3]='\0';

 break;

 }

 }

 }

 printf("\n");

 printf("%s\n",comb1);

 printf("%s\n",comb2);

 printf("%s\n",comb3);

 combine(comb1,comb2,comb3);

Listing 5-2: Invocation of combine() function

Chapter 7: Performance Evaluation and Discussion

44

Chapter 6: Performance Evaluation and

Discussion
 This chapter evaluates the performance of the proposed multiple key escrow agents based

on Shamir’s secret sharing. It also presents a detailed discussion and analysis of the

performance evaluation results. The chapter starts with a brief description of the experimental

setup. The measurements of time required to split the TGK are discussed in section 6.2.

Sections 6.3 through 6.5 examine measurements on the system with different numbers of

available escrow agents. Degradation of the performance of escrow agents was emulated

imposing high link delay on escrow agents -see section 6.6. In section 6.7, we discuss the

impact of escrow time as a function of the number of available/unavailable escrow agents.

Finally, in section 6.8 we describe the availability measures as experienced by the LEA.

6.1 Experimental Setup for Escrow Operations

 For the purpose of measuring the performance of the escrow operations we used the

experimental setup as shown in Figure 6-1.

We used one machine as SIP user agent and another machine as the SIP proxy server and

other user agent. We used two machines configured as escrow agents along with escrow

databases. These escrow agents were connected to the user agent via SSL tunnel. Both the

escrow agent machines had five databases and five escrow agents defined in them. This

allowed us to manipulate the escrow operation between the two escrow agent machines. We

were able to introduce link delays to certain escrow agents and use those escrow agents in one

machine. For example, if we wanted to impose link delay in escrow agent2 and escrow agent4,

Figure 6-1: Experimental setup for escrow operations

Chapter 7: Performance Evaluation and Discussion

45

we activated these two escrow agents in one machine and remaining three escrow agents in

the other machine. Thus we could impose delay in a single link in order to manipulate the

escrow operation. The other link with the three remaining escrow agents experienced no

delay. Now if we wanted to add link delay to one more escrow agent then we configured that

escrow agent in the same machine where the delay was being experienced. In this way we

performed our experiments. We used SuSE version 10.3 of Linux, on Dell T7570 with Intel
®

Pentium
®

D CPU processor clocked at 2.80GHz and configured with 2048 MB of memory as

the SIP user agents and proxy server. The CPU has a 1 microsecond clock resolution. Details

about the measurement of CPU clock resolution have been discussed in appendix H.

6.2 Time Required to Split the Base 64 TGK Value into Chunks

 The base 64 TGK value consists of 256 bytes. We divided this value into two equal halves.

Then we executed the split function ten times for each of the halves and each time the split

function was executed hundred times. This was done in order to collect samples for statistical

analysis of the execution time of the split function. In a normal execution, the split function is

only called twice, once for the first half of the TGK, and again for the remaining half of the

TGK value. In our experiment, we executed the split function one hundred times for the same

TGK value. The procedure was repeated ten times with ten different TGK values. As a result

we have ten measurements for each of these hundred calls. We hope that these 1000 calls to

the split function are representative of the time to compute the split and will give us insight

into the processing time taken by other processes running on the same computer. Figure 6-2

shows the Experimental setup for split time calculation.

 Figure 6-3 shows a box plot of the measured execution time of the split function for the

first half of the base 64 TGK value.

Figure 6-2: Experimental setup for split time calculation

Chapter 7: Performance Evaluation and Discussion

46

 From Figure 6-3, apart from round 2 there are some occasional outliers for each of the

rounds. However, in the case of round 2 we can see a lot of outliers. The reason for this large

number of outliers for this round is unknown. But we can make some assumptions based on

the following facts.

 The time to compute the split is data dependent - i.e., for different values of a key it

takes different amounts of time.

 The computer is multitasking - thus the CPU is being allocated to other processes.

 The computer is also servicing interrupts from various devices - ranging from the

clock to I/O devices

 Table 6-1 shows the statistical data found from the time required to split the first 128 bytes

of the base 64 TGK value using 1,000 calls of the split function. Here, the unit of time is

seconds.

Figure 6-3: Execution time for split function applied to the first 128 bytes of the TGK encoded in base 64

Chapter 7: Performance Evaluation and Discussion

47

 Figure 6-4 shows the box plot for the execution time of the split function for the second

half of the TGK value encoded in base 64 (i.e., the second 128 bytes). Note that the scale for

this figure is quite different for the previous figure, due to the one extreme outlier at 0.1

seconds in round 10.

 Table 6-2 shows the statistical data found from the time required to split the last 128 bytes

of the base 64 TGK value using 1,000 calls of the split function. The unit of time is seconds.

Table 6-1: Statistical data to split first half of TGK

encoded in base 64

Count 1000

Mean 0.0039

Median 0.0039

Mode 0.0038

Standard Deviation 0.00019

Sample Variance 3.72056E-08

Minimum 0.0038

Maximum 0.0063

Confidence Level (95.0%) 3.82489E-07

Figure 6-4: Execution time for split function applied to the last 128 bytes of the TGK encoded in base 64

Chapter 7: Performance Evaluation and Discussion

48

Count 1000

Mean 0.004

Median 0.0039

Mode 0.0038

Standard Deviation 0.003

Sample Variance 9.38E-06

Minimum 0.0038

Maximum 0.1

Confidence Level (95.0%) 6.07E-06

 Some observations can be made from Table 6-1 and Table 6-2. First, the mean time to

execute the split function for the first half of TGK encoded in base 64 is 0.0039 seconds and

the mean time to execute the split function for the second half of the TGK encoded in base 64

is 0.004 seconds. So, the mean time to execute the split function for escrowing the TGK

encoded in base 64 is the sum of these two values i.e. 0.0079 seconds or 7.9 milliseconds. The

next observation is that the median values are identical in both experiments. This is expected

because the split function is being executed with same security level and same number of

bytes; and the median is less affected than the mean by rare outliers. The third and final

observation is that the minimum time required to execute the split operation is same for both

experiments. This means that the time to split the original 256 byte based 64 encoded TGK is

2 * 0.0038 seconds or 7.6 milliseconds. From this we can observe that the minimum and

median time to split the original 256 byte based 64 encoded TGK are quite close (within in

0.002 milliseconds). The maximum observed time for splitting the second half of the TGK is

roughly 0.1 seconds; which dominates the maximum time of the first half, thus we can

observe that in this set of data the maximum time to perform the splitting of the original 256

byte based 64 encoded TGK is roughly 0.1 second.

6.3 Escrow Time when all 5 Escrow Agents are Available

 The chunks have been escrowed over five escrow agents. At first, all the five escrow

agents were available and 500 calls were made to escrow the split key chunks. Figure 6-5

shows a box plot for the time required to escrow the TGK when all escrow agents were

working.

Table 6-2: Statistical data to split second half of TGK encoded in base 64

Chapter 7: Performance Evaluation and Discussion

49

 Table 6-3 shows the statistics of the time required to escrow data 500 times while all 5

escrow agents were available (i.e., with 2500 escrow operations). The unit of time is seconds.

Count 2500

Mean 0.066

Median 0.060

Mode 0.043

Standard Deviation 0.027

Sample Variance 0.0007

Minimum 0.042

Maximum 0.286

Confidence Level (95.0%) 3.4945E-05

 Boxplots of the time required for the escrow operation time duration for each of the five

escrow agents are shown in Figure 6-6 (note that each row in the plot is based upon 500

samples).

Figure 6-5: Escrow time with 5 escrow agents working

Table 6-3: Statistical data for escrowing data (all 5 escrow agents available)

Chapter 7: Performance Evaluation and Discussion

50

 These plots show the time required to escrow the split parts of the TGK with each of the 5

escrow agents. In the next section we consider the case when one of the escrow agents does

not respond to an escrow request.

6.4 Escrow Time when 4 out of 5 Escrow Agents are Available

 In this test, a single escrow agent was made unavailable. So, 4 out of 5 escrow agents were

available. A timeout of 3 seconds were set when sending an escrow request to each escrow

agent, hence the user agent waits up to 3 seconds for each escrow agent to respond. If the

escrow agent does not respond within these 3 seconds, then the escrow agent is considered to

be unavailable and the user agent tries to communicate with the next escrow agent. Figure 6-7

shows the box plot for the time required for the escrow operations when four escrow agents

were working.

Figure 6-6: Escrow time for 5 escrow agents shown separately

Chapter 7: Performance Evaluation and Discussion

51

 Table 6-4 shows the statistical data found from the time required to escrow data 500 times

while 4 escrow agents were available (i.e., with 2000 escrow operations). The unit of time is

seconds.

Count 2000

Mean 0.069

Median 0.062

Mode 0.057

Standard Deviation 0.024

Sample Variance 0.0006

Minimum 0.043

Maximum 0.268

Confidence Level (95.0%) 3.0958E-05

 An observation made based upon Table 6-4 is that, a single escrow agent was unavailable

and the user agent waited for 3 seconds before timeout. After 3 seconds the user agent tried to

escrow a chunk with the next escrow agent. In our experiment, escrow agent2 was made

unavailable. It should be noted that we tried to escrow with each of the escrow agents

sequentially. Ideally, we should try to escrow the chunks to all the available escrow agents,

rather than stopping after reaching the threshold value (i.e. in our case 3). If we escrow

chunks with only the threshold number of agents, then later when combining the chunks to

compute the key, if one of the agents were unavailable, then the number of chunks available is

below the threshold and the system can not recover the key.

Figure 6-7: Escrow time with 4 escrow agents working

Table 6-4: Statistical data for escrowing data (4 out of 5 escrow agents available)

Chapter 7: Performance Evaluation and Discussion

52

 Boxplots representing time for the escrow agent to escrow its chunk for each of the four

available escrow agents are shown in Figure 6-8 (note that each row in the plot is based upon

500 samples).

6.5 Escrow Time when 3 out of 5 Escrow Agents are Available

 Now, one more escrow agent was unavailable. Therefore, only 3 out of 5 escrow agents

were available. A timeout of 3 seconds were set. Figure 6-9 shows the box plot for the time

duration required to escrow the split TGK with three working escrow agents.

Figure 6-8: Escrow time for the 4 available escrow agents shown separately

Chapter 7: Performance Evaluation and Discussion

53

 Table 6-5 shows the statistics of the time required to escrow a chunk 500 times when 3

escrow agents were available (i.e., a total of 1500 escrow operations). The unit of time is

seconds.

Count 1500

Mean 0.066

Median 0.064

Mode 0.058

Standard Deviation 0.014

Sample Variance 0.0002

Minimum 0.042

Maximum 0.271

Confidence Level (95.0%) 1.79E-05

 Boxplots representing time for escrowing a chunk with each escrow agents are shown in

Figure 6-10 (note that each row in the plot is based upon 500 samples).

Figure 6-9: Escrow time with 3 escrow agents working

Table 6-5: Statistical data for escrowing data (3 out of 5 escrow agents available)

Chapter 7: Performance Evaluation and Discussion

54

6.6 Escrow Time with Delay

 For the set of experiments described in this section, we manipulated the traffic delay of a

link in order to delay the escrow operation. We are interested in understanding the behavior of

the escrow operation as a function of the delays in escrowing with different escrow agents.

6.6.1 Manipulating the Traffic Delay for a Specific Link

 Linux offers a rich set of traffic control tools for managing and manipulating the effective

delay of a link. By using the “tc” command, we can control the packet sending rate between

two machines. We can control the characteristics for a specific link (e.g. eth0, eth1, wlan0,

etc). For the first set of experiment, we delayed the packet being sent between the user agent

and escrow agent2 by 1 second with a variation of 500 milliseconds. In our testing, we used

two machines as escrow agents. Both of these machines were configured with five escrow

agents. For the first set of experiment we escrowed four chunks of the key with escrow agents

running on one machine and the fifth chunk was escrowed to another machine. This fifth

chunk will be escrowed by escrow agent2. The command used to control the link in this way

was:

 tc qdisc add dev eth1 root handle 1:0 netem delay 1 sec 500 msec

6.6.2 Escrow Time with Delay in 1 Escrow Agent

 A delay of 1 second with variation of 500 milliseconds was introduced for escrow agent2.

The escrow timeout time was set to 5 seconds. As a consequence of the added link delay, the

Figure 6-10: Escrow time with 3 escrow agents working shown separately

Chapter 7: Performance Evaluation and Discussion

55

information to be escrowed was in fact escrowed, but with a delay. For the rest of the escrow

agents, the chunk was escrowed without any delay. We performed escrow operations 500

times for each of the escrow agents and plotted a cumulative distribution graph using

Microsoft Excel. This plot is shown in Figure 6-11. The initial knee of the curve at ~0.01

seconds represents the round trip time delay and escrow operation time to the four escrow

agents whose communication has not been delay. Since the delay is imposed on the traffic in

only one direction (i.e. 1.0 seconds +/-0.5 seconds in one direction) this leads to a round trip

delay of 1.0 seconds +/-0.5. Since we have to set up a TCP connection and a TLS tunnel, then

due to the count of the number of roundtrips we can see that the delayed escrow operation will

take place between ~3 seconds and 5 seconds. Details of the messages exchange to escrow

each chunk with an escrow agent are shown in section 6.6.5.

 Table 6-6 shows the statistics concerning the time required to escrow data 500 times to

each of the escrow agents with a delay of roughly 1 second by one of the escrow agents. The

unit of time is seconds.

Figure 6-11: Cumulative distribution of Escrow time with a delay of approximately 1 second by escrow

agent 2

Chapter 7: Performance Evaluation and Discussion

56

Count 2500

Mean 0.896

Median 0.068

Mode 0.060

Standard Deviation 1.648

Sample Variance 2.717

Minimum 0.044

Maximum 5.488

Confidence Level (95.0%) 0.002

6.6.3 Escrow Time with Delays for Two Escrow Agents

 The next experiment was very similar to the experiment described in the previous section.

In this experiment we delay the traffic to two escrow agents (specifically escrow agent2 and

escrow agent4). The amount of delay and delay variation for each link was same as the

previous experiment. We performed escrow operations 500 times for each of the escrow

agents and plotted a cumulative distribution, see Figure 6-12.

 Table 6-7 shows the statistics concerning the time required to escrow data 500 times to

each of the escrow agents with delay of roughly 1 second by two of the escrow agents. The

unit of time is seconds.

Table 6-6: Statistics concerning the time required to escrow data with delay of roughly 1 second by one of

the escrow agents

Figure 6-12: Cumulative distribution of Escrow time with a delay of approximately 1 second by escrow

agent 2 and escrow agent 4

Chapter 7: Performance Evaluation and Discussion

57

Count 2500

Mean 1.722

Median 0.078

Mode 0.064

Standard Deviation 2.034

Sample Variance 4.137

Minimum 0.043

Maximum 5.695

Confidence Level (95.0%) 0.003

6.6.4 Escrow Time with Delay for Three the Escrow Agents

 The final experiment involved delaying the escrow traffic for 3 escrow agents (specifically

escrow agent2, escrow agent4, and escrow agent5). The amount of delay and delay variation

was same as in the previous experiments. We performed escrow operations for 500 times each

of the escrow agents and plotted a cumulative distribution, see Figure 6-13.

Table 6-8 shows the statistics concerning the time required to escrow data 500 times to each

of the escrow agents with delay of roughly 1 second by three of the escrow agents. The unit of

time is seconds.

Table 6-7: Statistics concerning the time required to escrow data with delay of roughly 1 second by two of

the escrow agents

Figure 6-13: Cumulative distribution of Escrow time with a delay of approximately 1 second by escrow

agent 2, escrow agent 4, and escrow agent 5

Chapter 7: Performance Evaluation and Discussion

58

Count 2500

Mean 2.539

Median 3.575

Mode 0.058

Standard Deviation 2.037

Sample Variance 4.148

Minimum 0.043

Maximum 5.760

Confidence Level (95.0%) 0.003

6.6.5 Comparison of Escrow Time with Traffic Delay to Different
numbers of Escrow Agents

 Figure 6-14 shows the combined cumulative distribution curves with delay imposed on the

traffic to 1, 2, and 3 escrow agents. We can note that in all cases the escrow operations were

successful, despite the added delays for the traffic from the client to the various escrow

agents. As we can see the cumulative delay distributions for the three cases are very similar;

which is as expected since each of the links was subject to the same distribution of delays.

 Figure 6-15 represents a flow graph of the TCP packets from the user agent to an escrow

agent. The figure shows the initial three way TCP handshake needed to establish a TCP

connection between the user agent and escrow agent. The user agent sends a SYN message to

Table 6-8: Statistics concerning the time required to escrow data with delay of roughly 1 second by three

of the escrow agents

Figure 6-14: Cumulative distribution of Escrow time with a delay of approximately 1 second in 1,2, and 3

escrow agents

Chapter 7: Performance Evaluation and Discussion

59

the escrow agent. The escrow agent replies with a SYN message. Then the user agent sends

an ACK message and the escrow agent replies with another ACK message. After the three

way handshake, then a TLS connection needs to be established so that the data can be

escrowed.

 As mentioned earlier, we set a link delay of 1 second with a variation of 500 milliseconds

from the user agent to the escrow agent. Prior to send the data we send 6 packets from the

user agent to the escrow agent as shown in Figure 6-15. The first packet sent by the user agent

is the SYN packet, the second packet is the client hello request, the third packet is the https

ACK packet, the fourth packet is TLS handshake packet, the fifth packet is the TCP previous

segment packet and the sixth packet is TCP out of order packet. For each of the packets being

sent by the user agent there is a minimum 500 milliseconds delay. So, for the six packets there

will be a minimum of 3 seconds delay before data is being escrowed. This is exactly as shown

in Figure 6-14. The curve starts rising from 3 seconds of elapsed time. This is due to the

increased waiting time before the escrow operation can complete. Here we have ignored the

physical delay, interface delay, and processing delay because these delays are very small in

comparison to the extra delay that we have introduced. However, the maximum delay to send

each packet is 1.5 seconds, thus the maximum time needed to escrow the key would be 9

seconds.

 The success rate of escrowing depends on the availability of the escrow agents. The

escrow operation is 100% successful when all the 5 escrow agents are available and all the

parts of the key are escrowed. However, if one or two escrow agents are not available (i.e., at

least 3 escrow agents are available), then we have a partial failure as although the key is still

recoverable from at least 3 escrow agents. The system is considered as failure when less than

3 escrow agents are available. This is shown in Figure 6-16. The introduction of the n-out-of-

m scheme leads to a partial failure state. This is a unique contribution of this thesis project.

Without the redundancy introduced by the n-out-of-m scheme a single failure would lead to

Figure 6-15: Flow graph of the TCP packets from the user agent to an escrow agent

Chapter 7: Performance Evaluation and Discussion

60

system failure. The n-out-of-m scheme leads to a partial failure state, where the key is

recoverable even if only 3-out-of-5 escrow agents are available.

6.7 Escrow Time with Different Numbers of randomly

Available/Unavailable Escrow Agents

 The experiments described in this section were performed by randomly (according to a

defined distribution) making an escrow agent available or unavailable during each escrow

operation. For a large number of escrow operations, an escrow agent will be available for

some escrow operations, and unavailable for some escrow operations. The escrow agent is

made unavailable by setting the link’s delay. The link delay is manipulated in such a way that

sometimes the delay exceeds the maximum timeout for escrowing (set in these experiments to

be 5 seconds) and thus this escrow agent is considered unavailable. We used the TC command

for setting the link delay. The delay was set to 1.5 seconds with a uniform variation of 1

second.

 tc qdisc add dev eth1 root handle 1:0 netem delay 1500 msec 1000 msec

6.7.1 Escrow Time with 1 Randomly Available/Unavailable Escrow Agent

 The experiment described in this section is performed by making a single escrow agent

randomly available/unavailable. The escrow timeout for the user agent was set to 5 seconds

and a link delay of 1.5 seconds with uniform variation of 1 second was set between the user

agent and escrow agent2. All other escrow agents were available.

 We performed escrow operations 500 times for each of the escrow agents and plotted a

cumulative distribution, see Figure 6-17.

Figure 6-16: Success and failure state of escrow operation

Chapter 7: Performance Evaluation and Discussion

61

 Table 6-9 shows the statistics concerning the time required to escrow data 500 times to

each of the escrow agents with one randomly available/unavailable escrow agent. The unit of

time is seconds.

Count 2500

Mean 1.131

Median 0.062

Mode 0.059

Standard Deviation 2.160

Sample Variance 4.667

Minimum 0.043

Maximum 7.232

Confidence Level (95.0%) 0.003

6.7.2 Escrow Time with 2 Randomly Available/Unavailable Escrow
Agents

 Now we make an additionally escrow agent randomly available/unavailable and collect a

series of measurements. The amount of delay and delay variation was same per agent as in the

previous experiment (described in section 6.7.1). We performed escrow operations 500 times

for each of the escrow agents and plotted a cumulative distribution, see Figure 6-18.

Figure 6-17: Cumulative distribution of Escrow time with 1 randomly available/unavailable escrow agent

Table 6-9: Statistics concerning the time required to escrow data with 1 randomly available/unavailable

escrow agent

Chapter 7: Performance Evaluation and Discussion

62

 Table 6-10 shows the statistics concerning the time required to escrow data 500 times to

each of the escrow agents with 2 available/unavailable escrow agents. The unit of time is

seconds.

Count 2500

Mean 2.174

Median 0.073

Mode 0.060

Standard Deviation 2.626

Sample Variance 6.895

Minimum 0.042

Maximum 7.457

Confidence Level (95.0%) 0.003

6.7.3 Escrow Time with 3 Randomly Available/Unavailable Escrow
Agents

 Now we make yet an additionally escrow agent randomly available/unavailable and take a

series of measurements. The amount of delay and delay variation was same as the previous

two experiments (described in section 6.7.1). We performed escrow operations for 500 times

for each of the escrow agents and plotted a cumulative distribution graph, see Figure 6-19.

Figure 6-18: Cumulative distribution of Escrow time with 2 randomly available/unavailable escrow agents

Table 6-10: Statistics concerning the time required to escrow data with 2 randomly available/unavailable

escrow agents

Chapter 7: Performance Evaluation and Discussion

63

 An interesting observation from Figure 6-19 is that the curve never reached 100% mark.

This was because for some of the escrow operations timeout occurred for each of the three

escrow agents and thus became unavailable. Only two chunks were escrowed out of five

chunks and this is considered as a failure. In our experiment, we had 25 instances out of 500

escrow operations where there was a failure to escrow in three escrow agents. This made the

success rate 95% exactly as shown in Figure 6-19.

 Table 6-11 shows the statistics concerning the time required to escrow data 500 times to

each of the escrow agents with 3 randomly available/unavailable escrow agents. The unit of

time is seconds.

Count 2500

Mean 3.266

Median 4.994

Mode 4.997

Standard Deviation 2.670

Sample Variance 7.131

Minimum 0.043

Maximum 7.408

Confidence Level (95.0%) 0.003

6.7.4 Comparison of Escrow Times with 1, 2 and 3 Randomly
Available/Unavailable Escrow Agents

 Figure 6-20 shows the combined cumulative distribution curves with 1, 2, and 3 randomly

available/unavailable escrow agents. The top two curves reached maximum of 100% because

Figure 6-19: Cumulative distribution of Escrow time with 3 randomly available/unavailable escrow agents

Table 6-11: Statistics concerning the time required to escrow data with 3 randomly available/unavailable

escrow agents

Chapter 7: Performance Evaluation and Discussion

64

at least three chunks were escrowed with each escrow operation. But failures to escrow three

chunks reduced the lower curve to a maximum of less than 100%.

6.8 Availability Measures for LEA

 The LEA can request for session keys any time. It is very important from the LEA’s point

of view that the escrow agent is able to provide the LEA with the key in a timely fashion

whenever a legal request has been made. The LEA must present the proper authentication and

a legal warrant to the escrow agent in order to retrieve a key. If for some reason an escrow

agent goes out of business or suffers from a catastrophic failure, then it becomes impossible

for the LEA to retrieve an escrowed key. For example, a LEA might need to retrieve a

session key five years after it was escrowed, but could find that the escrow agent who had

stored the session key is no longer in business. Or it might happen that the escrow agent is not

available 24 hours a day and 365 days of the year. For example, an escrow agent might only

be available only during some specific hours of the day, for example due to schedule

maintenance or limited business hours. This can create an undesirable situation for the LEA.

The risk of this situation is reduced when multiple escrow agents are introduced. In this

approach the session key is divided into m chunks and stored with m escrow agents. The key

is split in such a way that any n chunks out of m chunks will be sufficient to regenerate the

key. Therefore, as long as any n of the m escrow agents supply their part of the split key to the

LEA, then the key can be regenerated. This overcomes the problem of one escrow agent going

out of business or being unavailable at the time when a request is made.

 𝑇𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑎𝑡 1 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑒𝑠𝑐𝑟𝑜𝑤 𝑎𝑔𝑒𝑛𝑡𝑠 𝑓𝑎𝑖𝑙
 P(≥1 of 5) = P1*(1-P)4 + P2*(1-P)3 +P3*(1-P)2 + P4*(1-P)1 + P5*(1-P)0
 𝑇𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑎𝑡 2 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑒𝑠𝑐𝑟𝑜𝑤 𝑎𝑔𝑒𝑛𝑡𝑠 𝑓𝑎𝑖𝑙
 P(≥2 of 5) = P2*(1-P)3 +P3*(1-P)2 + P4*(1-P)1 + P5*(1-P)0

Figure 6-20: Escrow time with 1, 2, and 3 randomly available/unavailable escrow agents

Chapter 7: Performance Evaluation and Discussion

65

 𝑇𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑎𝑡 3 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑒𝑠𝑐𝑟𝑜𝑤 𝑎𝑔𝑒𝑛𝑡𝑠 𝑓𝑎𝑖𝑙
 P(≥3 of 5) = P3*(1-P)2 + P4*(1-P)1 + P5*(1-P)0
 where the P on the right side of the equation is the probability that an individual escrow

agent fails.

 In our case if we have 5 escrow agents with equal failure probability of 0.2. Then

according to the above equations, the probability that 1 or more escrow agents fail is 0.11, the

probability that 2 or more escrow agents fail is 0.027 and the probability that 3 or more

escrow agents fail is 0.007.

 If the escrow operations were not all successful, then we can replace P by an increased

probability that the escrow agent fails. We can see this as:

𝑇𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑎𝑡 𝑡𝑒 𝑒𝑠𝑐𝑟𝑜𝑤 𝑎𝑔𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑠 𝑃 ∗
 1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑜𝑓_𝑒𝑠𝑐𝑟𝑜𝑤_𝑓𝑎𝑖𝑙𝑢𝑟𝑒 + 1 − 𝑃 ∗ (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑜𝑓_𝑒𝑠𝑐𝑟𝑜𝑤_𝑓𝑎𝑖𝑙𝑢𝑟𝑒)

 Here the second term represents the agent working (i.e., not failing) but the original escrow

attempt failed, while the first term represents the escrow agent's failure but with a successful

escrow operation.

In our n-out-of-m scheme, we have a total of m escrow agents. As one or more escrow

agents might be unavailable at any time, the number of active escrow agents will always be

less than or equal to m.

In our first experiment, we escrowed the key chunks with 5 escrow agents. In the first

experiment, all 5 escrow agents were available. As a result, the probability of key chunks

successfully being escrowed was 100%. So, the probability of the key chunks being retrieved

directly depends only on the number of active escrow agents when a LEA sends request. As

long as at least 3 escrow agents are active, the key can be successfully recovered. The

availability of the key chunks depends only on having at least three active escrow agents.

In our next experiment, as described in section 6.7.1, 1 escrow agent was made randomly

available/unavailable. In this case some of the key chunks were not escrowed. Now, the

probability of key chunks successfully being escrowed with a randomly selected escrow agent

dropped to 80%. As a result of the n-of-m redundancy, the probability of a sufficient number

of key chunks being retrieved decreases only if more than one escrow agent fails. When a

LEA sends a request to the escrow agents; then if all 5 of them are available, then the

probability of a sufficient set of chunks being retrieved is 100%, since we only need 3 chunks.

However, if two escrow agents fail, then the question is if the three remaining escrow agents

actually had the key successfully escrowed with them. We consider this in the next paragraph.

In the experiment described in section 6.7.2, 2 escrow agents were made randomly

available/unavailable. In this case some key chunks were escrowed to only 3 escrow agents

with a success rate of a randomly selected agent of 60%. As it is a 3-out-of-5 scheme, the

probability of retrieving the necessary three chunks also drops. When a LEA sends requests to

the escrow agents, then if all 5 of them are available then the probability of key chunks being

retrieved is (1-0.027) = 0.973. If 1 escrow agent with a missing chunk is unavailable then the

probability of retrieving the key remains 0.973. If 2 escrow agents with missing chunks are

unavailable, then the probability of retrieving the key also remains 0.973. However, if one

escrow agent with a key chunk is unavailable then the probability of escrow failure is 0.8. In

Chapter 7: Performance Evaluation and Discussion

66

this case the probability of retrieving a sufficient number of key chunks drops to 0.78,

regardless of whether the escrow agent(s) with the missing key chunk(s) are available or

unavailable. In this case, the LEA gets only 2 chunks out of 5 and as a result is unable to

recover the key. As a result the system is in failed state.

The reliability of key recovery by the LEA depends on how many escrow agents with

successfully escrowed keys serve the LEA. The escrow agents might be inactive during some

portion of the day. During this time period, any request by the user agent or the LEA will not

be served by the escrow agent. As a result the availability of this escrow agent decreases.

However, this escrow agent might still contribute to available of the key if it operates

correctly during the remaining period of the day. Thus we can see that if there is correlation in

the times when escrow agents are unavailable the availability of a sufficient number of chunks

of the key rapidly decreases.

It is essential that at least n-out-of-m escrow agents remain active at any time. However, if

there is a non-zero probability of the key not being successfully escrowed with all m escrow

agents, then we need to have n+1 or more escrow agents operating correctly in order for the

LEA to get the necessary n chunks of the key.

Chapter 7: Conclusions and Future Work

67

Chapter 7: Conclusions and Future Work
Lawful interception (LI) has always been a topic of debate in case of communication.

There have been so many changes and modifications in this issue since the early days of

communication. From human rights point of view, it seems awkward to record or tap a

communication session as it jeopardizes privacy. But from security point of view, it is a must.

Lawful interception helps to prevent and identify crimes and criminals.

But not all the employees of the LEA are honest. As human being, an employee of the

LEA might be corrupted. A fraudulent request by an evil employee from the LEA can lead to

improper disclosure of a session key. After the escrow agent reveals the key the evil person

could fabricate data according to his/her needs and encrypt it again by using the correct

session key. In this situation the persons involved in the communication session can be

accused of crimes that he or she or they never committed. A solution to this problem was

implemented by Hossen [2] by escrowing the last signed hash block to the escrow agent. But

his solution provided the escrow operation to only a single escrow agent. It is easier for a

fraudulent employee to convince a single escrow agent to reveal the session key. The

problems with a single escrow agent become critical as a failure of the escrow agent can delay

or even make it impossible to reveal the session key.

The basic idea of this thesis project was to implement multiple escrow agents instead of a

single escrow agent. And the session key will be divided into these escrow agents in such a

manner that neither the key can be retrieved from only a single escrow agent nor a failure of

an escrow agent can lead to a situation where the key can not be retrieved. Threshold

cryptography was the main concern of the thesis project. Then it was necessary to identify

which escrow agents involved in a session. Then it was left to the performance analysis of the

implemented system where it was necessary to analyse the reliability and availability of the

escrow agents.

7.1 Summary of Achievements

 Our first task is to split the session key into chunks. Subsequently these portions of the key

are distributed to m escrow agents. In the case of a lawful interception, the LEA only needs to

receive, n-out-of-m chunks in order to regenerate the key. Some of the issues we will consider

while splitting and regenerating the key are the reliability and availability of the escrow

agents.

 This thesis project focused on a proposal, implementation, and evaluation of a multiple key

escrow agent model that allows escrowing the session keys into m escrow agents. Shamir’s

secret sharing algorithm was used to implement threshold cryptography. The session key was

divided into m chunks and each of the chunks was escrowed to the m escrow agents. An n-

out-of-m key retrieval mechanism was implemented. This allowed to retrieve the key by

retrieving at least n chunks out of m chunks where the value of n is always less than or equal

to the value of m. Practically, the system was implemented with 5 escrow agents with a

threshold value of 3. This made it possible divide the session key into 5 chunks to escrow the

the chunks into 5 different escrow agents. For retrieving the key, at least 3 chunks out of those

5 chunks were needed. This increased the security as if an LEA officer wants to retrieve the

key chunks for a session, he or she has to convince at least 3 escrow agents. It case of

fraudulent request, it is difficult to convince all those 3 escrow agents with a fraudulent

Chapter 7: Conclusions and Future Work

68

notice. On the other hand, the reliability of the key being retrieved properly increase as if any

of the 2 escrow agents are unavailable for some reason, the remaining 3 escrow agents can

provide the key chunks.

 The next achievement of this thesis project was to implement a way to let the LEA know

which escrow agents are involved in a session. As we have used multiple escrow agents, the

user might choose to escrow on different escrow agents on different sessions. This makes the

job of the LEA tougher to identify the escrow agents. We solved this issue by escrowing the

names of the escrow agents along with the chunks of the session key and other security

parameters. The LEA, while capturing a session, can easily identify from traffic analysis that

the session has ended by sending packets to some IP addresses other than the media stream

has been sent to. If the LEA finds even one IP address of a escrow agent from this traffic

analysis, then it can present a lawful intercept court order to this escrow agent to ask it to

reveal the addresses of the other escrow agents from the list that it received key chunks.

 A thorough evaluation of the implemented system has been performed as was detailed in

Chapter 6. We examined the split operation time for the keys and found it to be a reasonable

one. Then we performed the escrow operations with all 5 escrow agents available. The

median value for this operation was 0.06 seconds. Then we measured the times needed to

escrow the keys with 4 and 3 escrow agents available. The median values for these two

experiments were 0.062 seconds and 0.064 seconds respectively. The median values in all

three cases were very close to each other and this complied with our expectation. Next, we

experimented by imposing some link delays for various escrow agents. First, we

experimented by imposing a delay of 0.5 seconds to 1.5 seconds for a single escrow agent.

Now the median value increased to 0.068 seconds. Then we performed the experiment with

same amount of delay for 2 and 3 escrow agents. The median value for these two experiments

increased to 0.078 seconds and 3.575 seconds respectively. We also calculated that the

maximum time needed to escrow a key chunk would be 9 seconds. The last set of experiments

we performed was escrowing the key chunks by making the escrow agents sometime

available and sometime unavailable. An error in communication channel or unavailability of

the escrow agents for a short period of time can create this situation in practical scenario. A

timeout value of the escrow operation was set to 5 seconds for the user agent. The link delay

was adjusted in a way such that the escrow operations are sometimes successful and

sometimes unsuccessful. At first, a single escrow agent was made available/unavailable. The

median value for the escrow operation in this case was 0.062 seconds. Next we performed the

experiments by making 2 and 3 escrow agents available/unavailable and got 0.073 seconds

and 4.994 seconds respectively as the median values for these two experiments. Finally, a

detail analysis regarding the availability measures for the LEA was performed.

7.2 Future Work

 In this project we have implemented a prototype multiple escrow agent based key escrow

system with a threshold value. This prototype needs further development before commercial

deployment. Some of the issues that should be addressed in future work are:

 1. We have used self signed certificates for the SSL connection between the user agent,

escrow agent, and the LEA. For commercial application, the certificate handling should utilize

the appropriate certificates for each of these actors in order to ensure mutual identification

based upon certificates

Chapter 7: Conclusions and Future Work

69

 2. We have stored the split key chunks into files as plain text. These values should be

securely stored into a secure database. How to ensure that the received chunk is secured and

not available improperly to an employee of the escrow agent should be examined in future

work.

 3. We have performed the escrow operations for each session at the end of the SIP session.

This escrow operation could be done at some later time, for example in a batch processing

manner at the end of the day or at some other time. This should be explored in future work.

 4. In the current implementation the LEA requests key chunks of a particular session and

the escrow agent is expected to respond immediately. Similar to the above, these requests and

responses could be done in a batch.

 5. An extensive study of error detection and correction has not been done in this thesis

project. As per the performance evaluation and analysis, we have found our escrow agents to

be reliable up to a threshold value. However, errors may occur in worse cases than we have

addressed. Improving the error detection and correction parts of this work should be done to

ensure a highly reliable and available system as part of future work.

References

70

References

[1] Romanidis Evripidis, “Lawful Interception and Countermeasures: In the era of Internet

Telephony”, http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080922-

Romanidis_Evripidis-with-cover.pdf, School of Information and Communication

Technology (COS/CCS), 2008-20, Royal Institute of Technology (KTH), September

2008.

[2] Md. Sakhawat Hossen, “A Session Initiation Protocol User Agent with Key Escrow:

Providing authenticity for recordings of secure sessions”,

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100118-

Md._Sakhawat_Hossen-with-cover.pdf, Department of Communication Systems

(CoS), Royal Institute of Technology (KTH), TRITA-ICT-EX-2010:1, January 2010.

[3] P.J. Emstad, P.E. Heegaard, B.E. Helvik, L. Paquereau, “Dependability and

Performance in Information and Communication Systems - Fundamentals”,

Department of Telematics, Norwegian University of Science and technology (NTNU),

Tapir Akademisk Forlag, 2008.

[4] Theodor W. Schlickmann, Ensuring trust and security in electronic

communication, EuroIntel '98 Proceedings, First Annual Conference &

Exhibit,Brussels,Belgium, 23-26 March 1998, 1998-XE-08..

http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a

3136/OSS1998-E1-08.pdf, last visited: January 2010.

[5] “Libcurl-the multiprotocol file transfer library|”, http://curl.haxx.se/libcurl/, last visited

January, 2010.

[6] Key Escrow, Wikipedia, http://en.wikipedia.org/wiki/Key_escrow, last visited

19/06/2009”, last visited: January 2010.

[7] H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, W. Diffie, J. Gilmore,

P. G. Neumann, R. L. Rivest, J. I. Schiller, B. Schneier, “The Risks of “Key

Recovery,” ”Key Escrow,” And “Trusted Third-Party Encryption”, A report by and ad

Hoc Group of Cryptographers and computer scientists,

http://www.crypto.com/papers/escrowrisks98.pdf, last visited: January 2010.

[8] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for

Real-Time Applications”, IETF RFC 3550, IETF Network Working Group, July 2003.

[9] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, “The Secure Real-

time Transport Protocol (SRTP)”, IETF RFC 3711, IETF Network Working Group,

March 2004.

[10] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman, “MIKEY: Multimedia

Internet KEYing”, IETF RFC 3830, IETF Network Working Group, August 2004.

[11] MiniSIP homepage, http://www.minisip.org, last visited: January 2010.

[12] Erik Eliasson, “Secure Internet Telephony: Design, Implementation, and Performance

Measurement”, Licentiate thesis, Royal Institute of Technology (KTH), School of

Information and Communication Technology, June 2006.

[13] Israel Abad Caballero, “Secure Mobile Voice over IP, Masters thesis, Royal Institute

of Technology (KTH)”, School of Information Technology and Microelectronics, June

2003, http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-

Israel_Abad_Caballero-final-report.pdf.

[14] Johan Bilien, “Key Agreement for Secure Voice over IP”, Masters thesis, Royal

Institute of Technology (KTH), School of Information Technology and

Microelectronics, IMIT/LCN 2003-14, December 2003

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100118-Md._Sakhawat_Hossen-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100118-Md._Sakhawat_Hossen-with-cover.pdf
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136/OSS1998-E1-08.pdf
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136/OSS1998-E1-08.pdf
http://curl.haxx.se/libcurl/
http://en.wikipedia.org/wiki/Key_escrow,%20last%20visited%2019/06/2009
http://en.wikipedia.org/wiki/Key_escrow,%20last%20visited%2019/06/2009
http://www.crypto.com/papers/escrowrisks98.pdf
http://www.minisip.org/
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-Israel_Abad_Caballero-final-report.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-Israel_Abad_Caballero-final-report.pdf

References

71

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-

report-final-with-cover.pdf.

[15] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, E. Schooler, “SIP: Session Initiation Protocol”, IETF RFC 3261, IETF

Network Working Group, June 2002.

[16] Electronic Privacy information Center, “The Clipper Chip”,

http://epic.org/crypto/clipper/, last visited: January 2010.

[17] SKIPJACK and KEA Algorithm Specifications, Version 2, 29 May 1998,

http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf, 29 May 1998.

[18] W. Trappe, L. Washington, “Introduction to Cryptography with Coding Theory”,

Pearson Prentice Hall, 2
nd

 Edition, 2006.

[19] Clipper Chip Technology, http://csrc.nist.gov/keyrecovery/clip.txt, last visited:

January 2010.

[20] The Metaphor is the Key: Cryptography, the Clipper Chip and the Constitution,

http://osaka.law.miami.edu/~froomkin/articles/clipper1.htm, last visited: January

2010.

[21] M. Blaze, “Protocol Failure in the Escrowed Encryption Standard”,

in Proceedings of the 2nd ACM Conference on Computer and Communications

Security, 2-4 November 1994, ACM Press, pp. 59-67.

[22] H. Zhou, M.W. Mutka, L.M. Ni, "Multiple-key cryptography-based distributed

certificate authority in mobile ad-hoc networks", Global Telecommunications

Conference, 2005. GLOBECOM '05. IEEE, 28 November-2 December 2005, Vol. 3,

ISBN: 0-7803-9414-3.

[23] A. D. Santis, Y. Desmedt, Y. Frankel, M. Yung, “ How to Share a Function Securely”,

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,

Montreal, Canada, 1994, pp. 522 – 533, ISBN:0-89791-663-8.

[24] D. Boneh, M. Franklin, “Efficient generation of shared RSA keys”, Journal of the

ACM (JACM), Volume 48 , Issue 4, July 2001, pp. 702-722, ISSN:0004-5411.

[25] T. Rabin, “A Simplified Approach to Threshold and Proactive RSA”, Springer Berlin /

Heidelberg, Volume 1462/1998, pp. 349-369, ISBN: 978-3-540-64892-5.

[26] V. Shoup, “Practical Threshold Signatures”, Springer Berlin / Heidelberg, Volume

1807/2000, pp. 207-220, ISBN: 978-3-540-67517-4.

[27] H.L. Nguyen, “RSA Threshold Cryptography”,

 http://www.comlab.ox.ac.uk/files/269/Thesis.pdf, Dept. of Computer Science,

University of Bristol, May 4, 2005.

[28] Shamirs’s Secret Sharing,

 http://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Mathematical_definition, last

visited: January 2010.

[29] RSA Laboratories, http://www.rsa.com/RSALABS/node.asp?id=2259, last visited:

January 2010.

[30] Repetition codes,

 http://www.mdstud.chalmers.se/~md7sharo/coding/main/node15.html, last visited

January 2010.

[31] A Checksum Algorithm, http://www.flounder.com/checksum.htm, last visited: January

2010.

[32] Cyclic Redundancy Check, http://www.hackersdelight.org/crc.pdf, last visited:

January 2010.

[33] W.W. Peterson and D.T. Brown, “Cyclic Codes for Error Detection”, Proceedings of

the Institute of Radio Engineers (IRE), January 1961, Volume: 49, Issue: 1, pp. 228–

235, ISSN: 0096-8390.

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://epic.org/crypto/clipper/
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/keyrecovery/clip.txt
http://osaka.law.miami.edu/~froomkin/articles/clipper1.htm
http://www.comlab.ox.ac.uk/files/269/Thesis.pdf
http://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Mathematical_definition
http://www.rsa.com/RSALABS/node.asp?id=2259
http://www.mdstud.chalmers.se/~md7sharo/coding/main/node15.html
http://www.flounder.com/checksum.htm
http://www.hackersdelight.org/crc.pdf

References

72

[34] Andrew S. Tanenbaum, “Computer Networks”, Third Edition. Prentice Hall, 1996,

ISBN: 0-13-394248-1.

[35] Introduction to Binary Convolutional codes,

http://www.csie.ncnu.edu.tw/~yshan/convolutional_codes.pdf, last visited: January

2010.

[36] Tutorial on Convolutional Coding with Viterbi Decoding,

http://home.netcom.com/~chip.f/Viterbi.html, last visited: January 2010.

[37] Calculating the Hamming Code,

http://users.cis.fiu.edu/~downeyt/cop3402/hamming.html, last visited: January 2010.

[38] Libcurl-the Multiprotocol File Transfer Library, http://curl.haxx.se/libcurl/, last

visited: January 2010.

[39] H. Wallace, “Error Detection and Correction using BCH the Codes”, 2001,

http://www.aqdi.com/bch.pdf, last visited: February 2010.

[40] Wikipedia, the free encyclopedia, “Reed-Solomon Error Correction”,

http://en.wikipedia.org/wiki/Reed–Solomon_error_correction, last visited: February

2010.

[41] An introduction to Reed-Solomon codes: principles, architecture and implementation,

http://www.cs.cmu.edu/afs/cs/project/pscico-

guyb/realworld/www/reedsolomon/reed_solomon_codes.html, last visited: February

2010.

[42] Muhammad Sarwar Jahan Morshed , “VoIP Lawful Intercept: Good Cop/Bad Cop”,

Master thesis, Royal Institute of Technology (KTH), School of Information and

Communication Technology, work in progress.

[43] Shamir’s Secret Sharing Scheme, http://point-at-infinity.org/ssss/, last visited: April

2010.

[44] GNU General Public License, http://www.gnu.org/licenses/gpl.html, last visited: April

2010.

[45] Madelon F. Zady, “Probability and the Standard Normal Distribution”,

http://www.westgard.com/lesson36.htm#tableunder, last visited: May 2010.

[46] Statsoft Electronic Statistics Textbook, http://www.statsoft.com/textbook/distribution-

tables/, last visited: May 2010.

http://www.csie.ncnu.edu.tw/~yshan/convolutional_codes.pdf
http://www.csie.ncnu.edu.tw/~yshan/convolutional_codes.pdf
http://home.netcom.com/~chip.f/Viterbi.html
http://users.cis.fiu.edu/~downeyt/cop3402/hamming.html
http://curl.haxx.se/libcurl/
http://www.aqdi.com/bch.pdf
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html
http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html
http://point-at-infinity.org/ssss/
http://www.gnu.org/licenses/gpl.html
http://www.westgard.com/lesson36.htm#tableunder
http://www.statsoft.com/textbook/distribution-tables/
http://www.statsoft.com/textbook/distribution-tables/

Appendices

73

Appendices

A. Generating Self-Signed Certificatess on

Ubuntu 9.10

1. Tell Apache2 to enable the SSL module.

sudo a2enmod ssl

2. Generate our certificate...

cd /tmp

sudo openssl req -new > new.cert.csr

...when prompted for info, fill it out. Here's what I typed...

SE

Stockholm

KISTA

KTH

(enter)

Abdullah Azfar

azfar@kth.se

(enter)

(enter)

...and now we continue...

sudo openssl rsa -in privkey.pem -out new.cert.key

sudo openssl x509 -in new.cert.csr -out new.cert.cert -req -signkey new.cert.key -days 1825

sudo cp new.cert.cert /etc/ssl/certs/server.crt

sudo cp new.cert.key /etc/ssl/private/server.key

3. Now we need to tell Apache2 to use this.

sudo cp /etc/apache2/sites-available/default /etc/apache2/sites-available/ssl

sudo vi /etc/apache2/sites-available/default

Change:

 Code:
 NameVirtualHost: *

To:

 Code:
 NameVirtualHost: *:80

Change:

 Code:
 <VirtualHost *>

To:

 Code:

mailto:azfar@kth.se

Appendices

74

 <VirtualHost *:80>

sudo vi /etc/apache2/sites-available/ssl

Change:

 Code:
 NameVirtualHost: *

To:

 Code:
 NameVirtualHost: *:443

Change:

 Code:
 <VirtualHost *>

To:

 Code:
 <VirtualHost *:443>

After the "DocumentRoot" line, add the following:

 Code:
 SSLEngine on
 SSLOptions + StrictRequire

 SSLCertificateFile /etc/ssl/certs/server.crt

 SSLCertificateKeyFile /etc/ssl/private/server.key

sudo cd /etc/apache2/sites-enabled

sudo a2ensite ssl

4. Now we need to adjust /etc/hosts if necessary, using the vi command:

Note this might already be done for you -- just doublecheck.

sudo vi /etc/hosts

 Code:
 127.0.0.1 localhost localhost.localdomain {your system name}

 127.0.0.1 {your system name}

 {static IP if you have one} {Fully qualified domain name if you have

one}

5. Now we restart our Apache2 service.

sudo /etc/init.d/apache2 restart

6. Test your server. You should be able to reach your pages on both http and https.

Remember, this goal here was only to get your pages to work on https for doing things

like web development testing, such as testing some eCommerce pages. However, you

don't want people reaching a secured page on http when they should be on https, so

remember that you'll want to trap for that in your .htaccess file in your website folder

and redirect users back to the page under https.

Appendices

75

B. SSL Enabling Script for Apache Server in

OpenSuse 10.3

#!/bin/bash

OS: openSuSE 10.3 (may apply to 10.2, but not tested)

This script will build the SSL server keys, csr and crt, install

them, and copy vhosts-ssl.conf

to the appropriate directory in /etc/apache2 to provide basic

https:// functionality on

opensuse 10.3

General Functions and Colors

green='\e[0;32m'

red='\e[0;31m'

lightred='\e[1;31m'

lightblue='\e[1;34m'

lightgray='\e[0;37m'

nc='\e[0m'

check_root () {

ROOT_UID=0

E_NOTROOT=67

if ["$UID" -ne "$ROOT_UID"]; then

echo -e "\n${lightblue}You must be ${lightred}root${lightblue} to

run this script.\nUser: ${lightgray}$USER${lightblue}, UID:

${lightgray}$UID${lightblue} can't!${nc}\n"

exit $E_NOTROOT

return $E_NOTROOT

else

return $ROOT_UID

fi

}

#check for root

check_root

Intro Line

echo -e "\n\tThis will create apache2 SSL server.key, .csr and .crt

and install them for basic\n https:// functionality on openSuSE

10.3. It will aslo set the apache2 SSL sysconfig flag. \nIn your

key, your common name CN must be a FQDN. You must edit vhost-

ssl.conf when done.\n"

read -p " Continue (y/n)? " key

if [$key == "y"] || [$key == "Y"]; then

echo -e "${green}\n\tLet's begin!${nc}\n"

else

Appendices

76

echo -e "\n\t${lightgray}key = key{lightblue} pressed, Apache2 SSL

Config - ${red}Canceled${nc}\n"

exit 1

fi

echo -e "${nc}"

Set SSL Flag

if a2enflag SSL; then

echo -e "\n\t${lightblue}Server SSL Flag Successfully Set\n${nc}"

else

echo -e "\n\t${lightblue}Server SSL Flag ${red}NOT

${lightblue}Set\nEdit /etc/sysconfig/apache2 manually\n${nc}"

fi

Create Temp Directory

echo -en "\n\t${lightblue}Creating Directory for New SSL KeySet"

if mkdir -p new_sslkeyset && cd new_sslkeyset; then

echo -e " - ${green}OK${nc}\n"

else

echo -e " - ${red}FAILED. Exiting...${nc}\n"

exit 1

fi

Generate Private Server Key

echo -e "\n\t${lightblue}Generating Private Server Key\n${nc}"

openssl genrsa -des3 -out server.key 1024

Generate Certificate Signing Request (CSR)

echo -e "\n\t${lightblue}Generating Certificate Signing Request

(CSR)\n${nc}"

openssl req -new -key server.key -out server.csr

Remove Passphrase from Key

echo -e "\n\t${lightblue}Removing Passphrase From Key To Eliminate

PW Request On Server Start\n${nc}"

cp server.key server.key.protected

openssl rsa -in server.key.protected -out server.key

Generating a Self-Signed Certificate

echo -e "\n\t${lightblue}Generating Self-Signed Certificate\n${nc}"

openssl x509 -req -days 3650 -in server.csr -signkey server.key -out

server.crt

Appendices

77

Installing the Private Key and Certificates

echo -e "\n\t${lightblue}Installing server.crt, server.key and

server.csr in /etc/apache2/<dir>${nc}\n"

if cp server.crt /etc/apache2/ssl.crt && cp server.key

/etc/apache2/ssl.key && cp server.csr /etc/apache2/ssl.csr; then

echo -e "\n\t${lightblue}Key, CSR and Certificate install

${green}Succeeded${nc}\n"

else

echo -e "\n\t${lightblue}Key, CSR and Certificate install

${red}Failed${nc}\n"

fi

Config Reminder

echo -e "${lightblue}\n\tDon't forget to create

/etc/apache2/vhosts.d/vhost-ssl.conf by copying

\n/etc/apache2/vhosts.d/vhost-ssl.template to

/etc/apache2/vhosts.d/vhost-ssl.conf and editing as \nnecessary. You

can check this script for the comments that contain a working

example of a \nvhost-ssl.conf${green}\n"

read -p " Would you like to copy /etc/apache2/vhosts.d/vhost-

ssl.template to vhost-ssl.conf now (y/n)? " key

if [$key == "y"] || [$key == "Y"]; then

cp /etc/apache2/vhosts.d/vhost-ssl.template

/etc/apache2/vhosts.d/vhost-ssl.conf

fi

echo -e "\n\t${green}All Done! ${lightblue}Remember to edit

${red}vhost-ssl.conf ${lightblue}as required and restart

apache2\n\n${nc}"

read -p " Would you like to see the example vhost-ssl.conf? " key

if [$key == "y"] || [$key == "Y"]; then

echo '

Virtual Host Configuration (/etc/apache2/vhosts.d/vhost-ssl.conf)

<IfDefine SSL>

<IfDefine !NOSSL>

<VirtualHost _default_:443>

DocumentRoot "/srv/www/htdocs"

fix -> #ServerName www.yourhost.com:443

-> #ServerAdmin youremail@xxxxxxxxxxxx

ErrorLog /var/log/apache2/error_log

TransferLog /var/log/apache2/access_log

SSLEngine on

SSLCipherSuite

ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

SSLCertificateFile /etc/apache2/ssl.crt/server.crt

SSLCertificateKeyFile /etc/apache2/ssl.key/server.key

SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

<Files ~ "\.(cgi|shtml|phtml|php3?)$">

Appendices

78

SSLOptions +StdEnvVars

</Files>

<Directory "/srv/www/cgi-bin">

SSLOptions +StdEnvVars

</Directory>

SetEnvIf User-Agent ".*MSIE.*" \

nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

CustomLog /var/log/apache2/ssl_request_log ssl_combined

</VirtualHost>

</IfDefine>

</IfDefine>'

fi

exit 0

C. Shamir’s Secret Sharing Algorithm Code

(Common parts: To be added in both the

User Agent and the LEA)

/*

 * ssss version 0.5 - Copyright 2005,2006 B. Poettering

 * http://point-at-infinity.org/ssss/

 * Modifications made by Abdullah Azfar in 2010

 * This program is free software; you can redistribute it and/or

 * modify it under the terms of the GNU General Public License

 * http://www.gnu.org/licenses/gpl.html

 * as published by the Free Software Foundation; either version 2

 * of the License, or (at your option) any later version.

*/

#include <stdlib.h>

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <stdint.h>

#include <assert.h>

#include <termios.h>

#include <sys/mman.h>

#include <fstream.h>

#include "/usr/include/gmp.h"

#include<boost/date_time/posix_time/posix_time.hpp>

using namespace boost::posix_time;

#define mpz_lshift(A, B, l) mpz_mul_2exp(A, B, l)

#define mpz_sizeinbits(A) (mpz_cmp_ui(A, 0) ? mpz_sizeinbase(A, 2) :

0)

#define RANDOM_SOURCE "/dev/urandom"

#define MAXDEGREE 1024

#define MAXTOKENLEN 128

http://point-at-infinity.org/ssss/
http://www.gnu.org/licenses/gpl.html

Appendices

79

#define MAXLINELEN (MAXTOKENLEN + 1 + 10 + 1 + MAXDEGREE / 4 + 10)

static const unsigned char irred_coeff[] = {

4,3,1,5,3,1,4,3,1,7,3,2,5,4,3,5,3,2,7,4,2,4,3,1,10,9,3,9,4,2,7,6,2,1

0,9,6,4,3,1,5,4,3,4,3,1,7,2,1,5,3,2,7,4,2,6,3,2,5,3,2,15,3,2,11,3,2,

9,8,7,7,2,1,5,3,2,9,3,1,7,3,1,9,8,3,9,4,2,8,5,3,15,14,10,10,5,2,9,6,

2,9,3,2,9,5,2,11,10,1,7,3,2,11,2,1,9,7,4,4,3,1,8,3,1,7,4,1,7,2,1,13,

11,6,5,3,2,7,3,2,8,7,5,12,3,2,13,10,6,5,3,2,5,3,2,9,5,2,9,7,2,13,4,3

,4,3,1,11,6,4,18,9,6,19,18,13,11,3,2,15,9,6,4,3,1,16,5,2,15,14,6,8,5

,2,15,11,2,11,6,2,7,5,3,8,3,1,19,16,9,11,9,6,15,7,6,13,4,3,14,13,3,1

3,6,3,9,5,2,19,13,6,19,10,3,11,6,5,9,2,1,14,3,2,13,3,1,7,5,4,11,9,8,

11,6,5,23,16,9,19,14,6,23,10,2,8,3,2,5,4,3,9,6,4,4,3,2,13,8,6,13,11,

1,13,10,3,11,6,5,19,17,4,15,14,7,13,9,6,9,7,3,9,7,1,14,3,2,11,8,2,11

,6,4,13,5,2,11,5,1,11,4,1,19,10,3,21,10,6,13,3,1,15,7,5,19,18,10,7,5

,3,12,7,2,7,5,1,14,9,6,10,3,2,15,13,12,12,11,9,16,9,7,12,9,3,9,5,2,1

7,10,6,24,9,3,17,15,13,5,4,3,19,17,8,15,6,3,19,6,1 };

int opt_showversion = 0;

int opt_help = 0;

int opt_quiet = 0;

int opt_QUIET = 0;

int opt_hex = 0;

int opt_diffusion = 1;

int opt_security = 0;

int opt_threshold = -1;

int opt_number = -1;

char *opt_token = NULL;

int totalea=5;

int minea=3;

unsigned int degree;

mpz_t poly;

int cprng;

struct termios echo_orig, echo_off;

FILE *output;

FILE *output2;

int filnamenumber;

void split(char *buf);

/* emergency abort and warning functions */

void fatal(char *msg)

{

 tcsetattr(0, TCSANOW, &echo_orig);

 fprintf(stderr, "%sFATAL: %s.\n", isatty(2) ? "\a" : "", msg);

 exit(1);

}

void warning(char *msg)

{

 if (! opt_QUIET)

 fprintf(stderr, "%sWARNING: %s.\n", isatty(2) ? "\a" : "", msg);

}

Appendices

80

/* field arithmetic routines */

int field_size_valid(int deg)

{

 return (deg >= 8) && (deg <= MAXDEGREE) && (deg % 8 == 0);

}

/* initialize 'poly' to a bitfield representing the coefficients of

an

 irreducible polynomial of degree 'deg' */

void field_init(int deg)

{

 assert(field_size_valid(deg));

 mpz_init_set_ui(poly, 0);

 mpz_setbit(poly, deg);

 mpz_setbit(poly, irred_coeff[3 * (deg / 8 - 1) + 0]);

 mpz_setbit(poly, irred_coeff[3 * (deg / 8 - 1) + 1]);

 mpz_setbit(poly, irred_coeff[3 * (deg / 8 - 1) + 2]);

 mpz_setbit(poly, 0);

 degree = deg;

}

void field_deinit(void)

{

 mpz_clear(poly);

}

/* I/O routines for GF(2^deg) field elements */

void field_import(mpz_t x, const char *s, int hexmode)

{

 if (hexmode) {

 if (strlen(s) > degree / 4)

 fatal("input string too long");

 if (strlen(s) < degree / 4)

 warning("input string too short, adding null padding on the

left");

 if (mpz_set_str(x, s, 16) || (mpz_cmp_ui(x, 0) < 0))

 fatal("invalid syntax");

 }

 else {

 int i;

 int warn = 0;

 if (strlen(s) > degree / 8)

 fatal("input string too long");

 for(i = strlen(s) - 1; i >= 0; i--)

 warn = warn || (s[i] < 32) || (s[i] >= 127);

 if (warn)

 warning("binary data detected, use -x mode instead");

 mpz_import(x, strlen(s), 1, 1, 0, 0, s);

 }

}

Appendices

81

/* basic field arithmetic in GF(2^deg) */

void field_add(mpz_t z, const mpz_t x, const mpz_t y)

{

 mpz_xor(z, x, y);

}

void field_mult(mpz_t z, const mpz_t x, const mpz_t y)

{

 mpz_t b;

 unsigned int i;

 assert(z != y);

 mpz_init_set(b, x);

 if (mpz_tstbit(y, 0))

 mpz_set(z, b);

 else

 mpz_set_ui(z, 0);

 for(i = 1; i < degree; i++) {

 mpz_lshift(b, b, 1);

 if (mpz_tstbit(b, degree))

 mpz_xor(b, b, poly);

 if (mpz_tstbit(y, i))

 mpz_xor(z, z, b);

 }

 mpz_clear(b);

}

void field_invert(mpz_t z, const mpz_t x)

{

 mpz_t u, v, g, h;

 int i;

 assert(mpz_cmp_ui(x, 0));

 mpz_init_set(u, x);

 mpz_init_set(v, poly);

 mpz_init_set_ui(g, 0);

 mpz_set_ui(z, 1);

 mpz_init(h);

 while (mpz_cmp_ui(u, 1)) {

 i = mpz_sizeinbits(u) - mpz_sizeinbits(v);

 if (i < 0) {

 mpz_swap(u, v);

 mpz_swap(z, g);

 i = -i;

 }

 mpz_lshift(h, v, i);

 mpz_xor(u, u, h);

 mpz_lshift(h, g, i);

 mpz_xor(z, z, h);

 }

 mpz_clear(u); mpz_clear(v); mpz_clear(g); mpz_clear(h);

}

/* routines for the random number generator */

void cprng_init(void)

{

Appendices

82

 if ((cprng = open(RANDOM_SOURCE, O_RDONLY)) < 0)

 fatal("couldn't open " RANDOM_SOURCE);

}

void cprng_deinit(void)

{

 if (close(cprng) < 0)

 fatal("couldn't close " RANDOM_SOURCE);

}

void cprng_read(mpz_t x)

{

 char buf[MAXDEGREE / 8];

 unsigned int count;

 int i;

 for(count = 0; count < degree / 8; count += i)

 if ((i = read(cprng, buf + count, degree / 8 - count)) < 0) {

 close(cprng);

 fatal("couldn't read from " RANDOM_SOURCE);

 }

 mpz_import(x, degree / 8, 1, 1, 0, 0, buf);

}

/* a 64 bit pseudo random permutation (based on the XTEA cipher) */

void encipher_block(uint32_t *v)

{

 uint32_t sum = 0, delta = 0x9E3779B9;

 int i;

 for(i = 0; i < 32; i++) {

 v[0] += (((v[1] << 4) ^ (v[1] >> 5)) + v[1]) ^ sum;

 sum += delta;

 v[1] += (((v[0] << 4) ^ (v[0] >> 5)) + v[0]) ^ sum;

 }

}

void decipher_block(uint32_t *v)

{

 uint32_t sum = 0xC6EF3720, delta = 0x9E3779B9;

 int i;

 for(i = 0; i < 32; i++) {

 v[1] -= ((v[0] << 4 ^ v[0] >> 5) + v[0]) ^ sum;

 sum -= delta;

 v[0] -= ((v[1] << 4 ^ v[1] >> 5) + v[1]) ^ sum;

 }

}

void encode_slice(uint8_t *data, int idx, int len,

 void (*process_block)(uint32_t*))

{

 uint32_t v[2];

 int i;

 for(i = 0; i < 2; i++)

 v[i] = data[(idx + 4 * i) % len] << 24 |

 data[(idx + 4 * i + 1) % len] << 16 |

 data[(idx + 4 * i + 2) % len] << 8 | data[(idx + 4 * i + 3) %

Appendices

83

len];

 process_block(v);

 for(i = 0; i < 2; i++) {

 data[(idx + 4 * i + 0) % len] = v[i] >> 24;

 data[(idx + 4 * i + 1) % len] = (v[i] >> 16) & 0xff;

 data[(idx + 4 * i + 2) % len] = (v[i] >> 8) & 0xff;

 data[(idx + 4 * i + 3) % len] = v[i] & 0xff;

 }

}

enum encdec {ENCODE, DECODE};

void encode_mpz(mpz_t x, enum encdec encdecmode)

{

 uint8_t v[(MAXDEGREE + 8) / 16 * 2];

 size_t t;

 int i;

 memset(v, 0, (degree + 8) / 16 * 2);

 mpz_export(v, &t, -1, 2, 1, 0, x);

 if (degree % 16 == 8)

 v[degree / 8 - 1] = v[degree / 8];

 if (encdecmode == ENCODE) /* 40 rounds are more than

enough!*/

 for(i = 0; i < 40 * ((int)degree / 8); i += 2)

 encode_slice(v, i, degree / 8, encipher_block);

 else

 for(i = 40 * (degree / 8) - 2; i >= 0; i -= 2)

 encode_slice(v, i, degree / 8, decipher_block);

 if (degree % 16 == 8) {

 v[degree / 8] = v[degree / 8 - 1];

 v[degree / 8 - 1] = 0;

 }

 mpz_import(x, (degree + 8) / 16, -1, 2, 1, 0, v);

 assert(mpz_sizeinbits(x) <= degree);

}

/* evaluate polynomials efficiently */

void horner(int n, mpz_t y, const mpz_t x, const mpz_t coeff[])

{

 int i;

 mpz_set(y, x);

 for(i = n - 1; i; i--) {

 field_add(y, y, coeff[i]);

 field_mult(y, y, x);

 }

 field_add(y, y, coeff[0]);

}

/* calculate the secret from a set of shares solving a linear

equation system */

#define MPZ_SWAP(A, B) \

 do { mpz_set(h, A); mpz_set(A, B); mpz_set(B, h); } while(0)

//int restore_secret(int n, mpz_t (*A)[n], mpz_t b[])

Appendices

84

int restore_secret(int n, void *A, mpz_t b[])

{

 mpz_t (*AA)[n] = (mpz_t (*)[n])A;

 int i, j, k, found;

 mpz_t h;

 mpz_init(h);

 for(i = 0; i < n; i++) {

 if (! mpz_cmp_ui(AA[i][i], 0)) {

 for(found = 0, j = i + 1; j < n; j++)

 if (mpz_cmp_ui(AA[i][j], 0)) {

 found = 1;

 break;

 }

 if (! found)

 return -1;

 for(k = i; k < n; k++)

 MPZ_SWAP(AA[k][i], AA[k][j]);

 MPZ_SWAP(b[i], b[j]);

 }

 for(j = i + 1; j < n; j++) {

 if (mpz_cmp_ui(AA[i][j], 0)) {

 for(k = i + 1; k < n; k++) {

 field_mult(h, AA[k][i], AA[i][j]);

 field_mult(AA[k][j], AA[k][j], AA[i][i]);

 field_add(AA[k][j], AA[k][j], h);

 }

 field_mult(h, b[i], AA[i][j]);

 field_mult(b[j], b[j], AA[i][i]);

 field_add(b[j], b[j], h);

 }

 }

 }

 field_invert(h, AA[n - 1][n - 1]);

 field_mult(b[n - 1], b[n - 1], h);

 mpz_clear(h);

 return 0;

}

D. Shamir’s Secret Sharing Algorithm Code

(To be added only in the User Agent)

/*

 * ssss version 0.5 - Copyright 2005,2006 B. Poettering

 * http://point-at-infinity.org/ssss/

 * Modifications made by Abdullah Azfar in 2010

 * This program is free software; you can redistribute it and/or

 * modify it under the terms of the GNU General Public License

 * http://www.gnu.org/licenses/gpl.html

 * as published by the Free Software Foundation; either version 2

http://point-at-infinity.org/ssss/
http://www.gnu.org/licenses/gpl.html

Appendices

85

 * of the License, or (at your option) any later version.

*/

void field_print(FILE* stream, const mpz_t x, int hexmode)

{

 int i;

 if (hexmode) {

 for(i = degree / 4 - mpz_sizeinbase(x, 16); i; i--)

 fprintf(output, "0");

 mpz_out_str(output, 16, x);

 fprintf(output,"%%");

 rewind(output);

 }

 else {

 char buf[MAXDEGREE / 8 + 1];

 size_t t;

 unsigned int i;

 int printable, warn = 0;

 memset(buf, degree / 8 + 1, 0);

 mpz_export(buf, &t, 1, 1, 0, 0, x);

 for(i = 0; i < t; i++) {

 printable = (buf[i] >= 32) && (buf[i] < 127);

 warn = warn || ! printable;

 fprintf(stream, "%c", printable ? buf[i] : '.');

 }

 if (warn)

 warning("binary data detected, use -x mode instead");

 }

}

/* Prompt for a secret, generate shares for it */

void split(char *buf)

{

 opt_threshold = minea;

 opt_number = totalea;

 unsigned int fmt_len;

 mpz_t x, y, coeff[opt_threshold];

 int deg, i;

 int filnum=1;

 opt_security=0;

 //printf("\nLength of buffer is %d \n", strlen(buf));

 for(fmt_len = 1, i = opt_number; i >= 10; i /= 10, fmt_len++);

 buf[strcspn(buf, "\r\n")] = '\0';

 if (! opt_security) {

 opt_security = opt_hex ? 4 * ((strlen(buf) + 1) & ~1): 8 *

strlen(buf);

 if (! field_size_valid(opt_security))

 fatal("security level invalid (secret too long?)");

 opt_security);

 }

Appendices

86

 field_init(opt_security);

 mpz_init(coeff[0]);

 field_import(coeff[0], buf, opt_hex);

 if (opt_diffusion) {

 if (degree >= 64)

 encode_mpz(coeff[0], ENCODE);

 else

 warning("security level too small for the diffusion layer");

 }

 cprng_init();

 for(i = 1; i < opt_threshold; i++) {

 mpz_init(coeff[i]);

 cprng_read(coeff[i]);

 }

 cprng_deinit();

 mpz_init(x);

 mpz_init(y);

 for(i = 0; i < opt_number; i++) {

 mpz_set_ui(x, i + 1);

 horner(opt_threshold, y, x, (const mpz_t*)coeff);

 char filname[15];

 char filnamenumberstring[20];

 char filnametmp[15]="ea.out";

 strcpy(filname, filnametmp);

 sprintf(filnamenumberstring,"%d",filnamenumber);

 strcat(filname, filnamenumberstring);

 filnamenumber++;

 output=fopen(filname,"a+");

 if (opt_token)

 fprintf(stdout,"%0*d-", fmt_len, i + 1);

 fprintf(output,"%0*d-", fmt_len, i + 1);

 field_print(stdout, y, 1);

 filnum++;

 }

 mpz_clear(x);

 mpz_clear(y);

 for(i = 0; i < opt_threshold; i++)

 mpz_clear(coeff[i]);

 field_deinit();

}

Appendices

87

E. Shamir’s Secret Sharing Algorithm Code (To

be added only in the LEA)

/*

 * ssss version 0.5 - Copyright 2005,2006 B. Poettering

 * http://point-at-infinity.org/ssss/

 * Modifications made by Abdullah Azfar in 2010

 * This program is free software; you can redistribute it and/or

 * modify it under the terms of the GNU General Public License

 * http://www.gnu.org/licenses/gpl.html

 * as published by the Free Software Foundation; either version 2

 * of the License, or (at your option) any later version.

*/

void field_print(FILE* stream, const mpz_t x, int hexmode)

{

 int i;

 outfp=fopen("/home/azfar/Desktop/eadir/outfile.txt", "a+");

 if (hexmode) {

 for(i = degree / 4 - mpz_sizeinbase(x, 16); i; i--)

 fprintf(stream, "0");

 mpz_out_str(stream, 16, x);

 fprintf(stream, "\n");

 }

 else {

 char buf[MAXDEGREE / 8 + 1];

 size_t t;

 unsigned int i;

 int printable, warn = 0;

 memset(buf, degree / 8 + 1, 0);

 mpz_export(buf, &t, 1, 1, 0, 0, x);

 for(i = 0; i < t; i++) {

 printable = (buf[i] >= 32) && (buf[i] < 127);

 warn = warn || ! printable;

 fprintf(stream, "%c", printable ? buf[i] : '.');

 fprintf(outfp, "%c", printable ? buf[i] : '.');

 }

 fprintf(stream, "\n");

 if (warn)

 warning("binary data detected, use -x mode instead");

 }

fclose(outfp);

}

/* Prompt for shares, calculate the secret */

void combine(char tempbuf1[], char tempbuf2[], char tempbuf3[])

{

 opt_threshold = 3;

 opt_number = 5;

 mpz_t A[opt_threshold][opt_threshold], y[opt_threshold], x;

 char buf[MAXLINELEN];

 char *a, *b;

http://point-at-infinity.org/ssss/
http://www.gnu.org/licenses/gpl.html

Appendices

88

 int i, j;

 unsigned s = 0;

 mpz_init(x);

 for (i = 0; i < opt_threshold; i++) {

 if (! opt_quiet)

 printf("");

 if(i==0){

 strcpy(buf,tempbuf1);

 //printf("%s",tempbuf1);

 }

 else if(i==1){

 strcpy(buf,tempbuf2);

 }

 else if(i==2){

 strcpy(buf,tempbuf3);

 }

 buf[strcspn(buf, "\r\n")] = '\0';

 if (! (a = strchr(buf, '-')))

 fatal("invalid syntax");

 *a++ = 0;

 if ((b = strchr(a, '-')))

 *b++ = 0;

 else

 b = a, a = buf;

 if (! s) {

 s = 4 * strlen(b);

 if (! field_size_valid(s))

 fatal("share has illegal length");

 field_init(s);

 }

 else

 if (s != 4 * strlen(b))

 fatal("shares have different security levels");

 if (! (j = atoi(a)))

 fatal("invalid share");

 mpz_set_ui(x, j);

 mpz_init_set_ui(A[opt_threshold - 1][i], 1);

 for(j = opt_threshold - 2; j >= 0; j--) {

 mpz_init(A[j][i]);

 field_mult(A[j][i], A[j + 1][i], x);

 }

 mpz_init(y[i]);

 field_import(y[i], b, 1);

 field_mult(x, x, A[0][i]);

 field_add(y[i], y[i], x);

 }

 mpz_clear(x);

 if (restore_secret(opt_threshold, A, y))

 fatal("shares inconsistent. Perhaps a single share was used

twice");

Appendices

89

 if (opt_diffusion) {

 if (degree >= 64)

 encode_mpz(y[opt_threshold - 1], DECODE);

 else

 warning("security level too small for the diffusion layer");

 }

 if (! opt_quiet)

 fprintf(stderr, "Resulting secret: ");

 field_print(stderr, y[opt_threshold - 1], opt_hex);

 for (i = 0; i < opt_threshold; i++) {

 for (j = 0; j < opt_threshold; j++)

 mpz_clear(A[i][j]);

 mpz_clear(y[i]);

 }

 field_deinit();

}

int main ()

{

 char *name;

 int i;;

 #if ! NOMLOCK

 if (mlockall(MCL_CURRENT | MCL_FUTURE) < 0)

 switch(errno) {

 case ENOMEM:

 warning("couldn't get memory lock (ENOMEM, try to adjust

RLIMIT_MEMLOCK!)");

 break;

 case EPERM:

 warning("couldn't get memory lock (EPERM, try UID 0!)");

 break;

 case ENOSYS:

 warning("couldn't get memory lock (ENOSYS, kernel doesn't

allow page locking)");

 break;

 default:

 warning("couldn't get memory lock");

 break;

 }

#endif

 if (getuid() != geteuid())

 seteuid(getuid());

 tcgetattr(0, &echo_orig);

 echo_off = echo_orig;

 echo_off.c_lflag &= ~ECHO;

 FILE *fp1;

 FILE *fp2;

 FILE *fp3;

 static int flag=1;

Appendices

90

 static int key1, key2, key3;

 static int keynum1, keynum2,keynum3;

 key1=0;

 key2=0;

 key3=0;

 keynum1=0;

 keynum2=0;

 keynum3=0;

 char c1,c2,c3;

 fp1=fopen("/home/azfar/Desktop/eadir/testFile1.txt", "r");

 fp2=fopen("/home/azfar/Desktop/eadir/testFile2.txt", "r");

 fp3=fopen("/home/azfar/Desktop/eadir/testFile3.txt", "r");

 char comb1[300], comb2[300], comb3[300], others[400];

 outfp=fopen("/home/azfar/Desktop/eadir/outfile.txt", "w");

 fclose(outfp);

 int w;

 for (w=1; w<=2; w++){

 key1=0;

 key2=0;

 key3=0;

 strcpy(comb1,"");

 strcpy(comb2,"");

 strcpy(comb3,"");

 while(1){

 c1=fgetc(fp1);

 if(c1!=EOF){

 if (c1!='%'){

 comb1[key1]=c1;

 key1++;

 }

 else{

 comb1[key1]='\0';

 break;

 }

 }

 }

 printf("\n");

 while(1){

 c2=fgetc(fp2);

 if(c2!=EOF){

 if (c2!='%'){

 comb2[key2]=c2;

 key2++;

 }

 else{

 comb2[key2]='\0';

 break;

 }

 }

 }

Appendices

91

 printf("\n");

 while(1){

 c3=fgetc(fp3);

 if(c3!=EOF){

 if (c3!='%'){

 comb3[key3]=c3;

 key3++;

 }

 else{

 comb3[key3]='\0';

 break;

 }

 }

 }

 printf("\n");

 printf("%s\n",comb1);

 printf("%s\n",comb2);

 printf("%s\n",comb3);

 combine(comb1,comb2,comb3);

 }

 outfp=fopen("/home/azfar/Desktop/eadir/outfile.txt", "a");

 while(1){

 c3=fgetc(fp3);

 if(c3!=EOF){

 others[key3]=c3;

 key3++;

 fprintf(outfp, "%c",c3);

 }

 else break;

 }

 fclose(outfp);

 return 0;

}

F. Configuration of the CPU Used by the User

Agent

processor : 0

vendor_id : GenuineIntel

cpu family : 15

model : 4

model name : Intel
®

Pentium
®

D CPU 2.80GHz

stepping : 7

cpu MHz : 2793.144

cache size : 1024 KB

physical id : 0

siblings : 2

Appendices

92

core id : 0

cpu cores : 2

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 5

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc pni monitor ds_cpl cid

cx16 xtpr lahf_lm

bogomips : 5591.15

clflush size : 64

processor : 1

vendor_id : GenuineIntel

cpu family : 15

model : 4

model name : Intel
®

 Pentium
®

D CPU 2.80GHz

stepping : 7

cpu MHz : 2793.144

cache size : 1024 KB

physical id : 0

siblings : 2

core id : 1

cpu cores : 2

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 5

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc pni monitor ds_cpl cid

cx16 xtpr lahf_lm

bogomips : 5586.14

clflush size : 64

G. Escrow Database Schema Definition

-- phpMyAdmin SQL Dump

-- version 3.2.2.1deb1

-- http://www.phpmyadmin.net

--

Appendices

93

-- Host: localhost

-- Generation Time: May 09, 2010 at 12:12 PM

-- Server version: 5.1.37

-- PHP Version: 5.2.10-2ubuntu6.4

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

--

-- Database: `escrowDatabase1`

--

CREATE DATABASE `escrowDatabase1` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci;

USE `escrowDatabase1`;

-- --

--

-- Table structure for table `authentication`

--

CREATE TABLE IF NOT EXISTS `authentication` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_name` varchar(100) NOT NULL,

 `password` varchar(100) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_name` (`user_name`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table `sipmasterkey`

--

CREATE TABLE IF NOT EXISTS `sipmasterkey` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `userid` text NOT NULL,

 `key1` text NOT NULL,

 `key2` text NOT NULL,

 `rand` text NOT NULL,

 `signedhash` text NOT NULL,

 `csbID` text NOT NULL,

 `date` datetime DEFAULT NULL,

 `EAnames` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=517 ;

-- --

--

-- Table structure for table `t_lealogin`

--

CREATE TABLE IF NOT EXISTS `t_lealogin` (

 `l_Id` text NOT NULL,

 `l_pass` text NOT NULL

Appendices

94

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--

-- Database: `escrowDatabase2`

--

CREATE DATABASE `escrowDatabase2` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci;

USE `escrowDatabase2`;

-- --

--

-- Table structure for table `authentication`

--

CREATE TABLE IF NOT EXISTS `authentication` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_name` varchar(100) NOT NULL,

 `password` varchar(100) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_name` (`user_name`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table `sipmasterkey`

--

CREATE TABLE IF NOT EXISTS `sipmasterkey` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `userid` text NOT NULL,

 `key1` text NOT NULL,

 `key2` text NOT NULL,

 `rand` text NOT NULL,

 `signedhash` text NOT NULL,

 `csbID` text NOT NULL,

 `date` datetime DEFAULT NULL,

 `EAnames` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

-- --

--

-- Table structure for table `t_lealogin`

--

CREATE TABLE IF NOT EXISTS `t_lealogin` (

 `l_Id` text NOT NULL,

 `l_pass` text NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--

-- Database: `escrowDatabase3`

--

CREATE DATABASE `escrowDatabase3` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci;

Appendices

95

USE `escrowDatabase3`;

-- --

--

-- Table structure for table `authentication`

--

CREATE TABLE IF NOT EXISTS `authentication` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_name` varchar(100) NOT NULL,

 `password` varchar(100) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_name` (`user_name`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table `sipmasterkey`

--

CREATE TABLE IF NOT EXISTS `sipmasterkey` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `userid` text NOT NULL,

 `key1` text NOT NULL,

 `key2` text NOT NULL,

 `rand` text NOT NULL,

 `signedhash` text NOT NULL,

 `csbID` text NOT NULL,

 `date` datetime DEFAULT NULL,

 `EAnames` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=516 ;

-- --

--

-- Table structure for table `t_lealogin`

--

CREATE TABLE IF NOT EXISTS `t_lealogin` (

 `l_Id` text NOT NULL,

 `l_pass` text NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--

-- Database: `escrowDatabase4`

--

CREATE DATABASE `escrowDatabase4` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci;

USE `escrowDatabase4`;

-- --

--

-- Table structure for table `authentication`

Appendices

96

--

CREATE TABLE IF NOT EXISTS `authentication` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_name` varchar(100) NOT NULL,

 `password` varchar(100) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_name` (`user_name`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table `sipmasterkey`

--

CREATE TABLE IF NOT EXISTS `sipmasterkey` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `userid` text NOT NULL,

 `key1` text NOT NULL,

 `key2` text NOT NULL,

 `rand` text NOT NULL,

 `signedhash` text NOT NULL,

 `csbID` text NOT NULL,

 `date` datetime DEFAULT NULL,

 `EAnames` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

-- --

--

-- Table structure for table `t_lealogin`

--

CREATE TABLE IF NOT EXISTS `t_lealogin` (

 `l_Id` text NOT NULL,

 `l_pass` text NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--

-- Database: `escrowDatabase5`

--

CREATE DATABASE `escrowDatabase5` DEFAULT CHARACTER SET latin1

COLLATE latin1_swedish_ci;

USE `escrowDatabase5`;

-- --

--

-- Table structure for table `authentication`

--

CREATE TABLE IF NOT EXISTS `authentication` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_name` varchar(100) NOT NULL,

 `password` varchar(100) NOT NULL,

Appendices

97

 PRIMARY KEY (`id`),

 UNIQUE KEY `user_name` (`user_name`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ;

-- --

--

-- Table structure for table `sipmasterkey`

--

CREATE TABLE IF NOT EXISTS `sipmasterkey` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `userid` text NOT NULL,

 `key1` text NOT NULL,

 `key2` text NOT NULL,

 `rand` text NOT NULL,

 `signedhash` text NOT NULL,

 `csbID` text NOT NULL,

 `date` datetime DEFAULT NULL,

 `EAnames` text NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

-- --

--

-- Table structure for table `t_lealogin`

--

CREATE TABLE IF NOT EXISTS `t_lealogin` (

 `l_Id` text NOT NULL,

 `l_pass` text NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

H. CPU Clock Resolution
 We have used ptime microsec_clock::local_time() function of the Boost Posix time library

to calculate the time duration. This function gets the local time using a sub second resolution

clock. On Unix systems this is implemented using GetTimeOfDay with microsecond

resolution. We calculated the actual resolution of GetTimeOfDay system call with the

following piece of code.

#include <time.h>

#include <sys/time.h>

#include <stdio.h>

int main(int argc, char**argv)

{

 struct timeval tv1, tv2;

 gettimeofday(&tv1, NULL);

Appendices

98

 do {

 gettimeofday(&tv2, NULL);

 }

 while (tv1.tv_usec == tv2.tv_usec);

 printf("Difference: %ld us\n", tv2.tv_usec - tv1.tv_usec + 1000000 *

(tv2.tv_sec - tv1.tv_sec));

 return 0;

}

After executing the code we got the following result.

ccsmoto:/home/azfar/Desktop/measurment/resolution # gcc -o gettime

gettime.c

ccsmoto:/home/azfar/Desktop/measurment/resolution # ./gettime

Difference: 1 us

I. SIP Express Router (SER) Configuration File

debug=3

fork=yes

log_stderror=yes

listen=130.237.209.238 # put your server IP address here

listen=192.168.2.238

port=5060

children=4

dns=no

rev_dns=no

loadmodule "/usr/local/lib/ser/modules/mysql.so"

loadmodule "/usr/local/lib/ser/modules/sl.so"

loadmodule "/usr/local/lib/ser/modules/tm.so"

loadmodule "/usr/local/lib/ser/modules/rr.so"

loadmodule "/usr/local/lib/ser/modules/maxfwd.so"

loadmodule "/usr/local/lib/ser/modules/usrloc.so"

loadmodule "/usr/local/lib/ser/modules/registrar.so"

loadmodule "/usr/local/lib/ser/modules/uri_db.so"

loadmodule "/usr/local/lib/ser/modules/auth.so"

loadmodule "/usr/local/lib/ser/modules/auth_db.so"

#Presence related modules

loadmodule "/usr/local/lib/ser/modules/dialog.so"

loadmodule "/usr/local/lib/ser/modules/pa.so"

loadmodule "/usr/local/lib/ser/modules/presence_b2b.so"

loadmodule "/usr/local/lib/ser/modules/xlog.so"

Appendices

99

----------------- setting module-specific parameters -------------

--

modparam("auth_db|uri_db|usrloc", "db_url",

"mysql://ser:heslo@localhost/ser")

modparam("auth_db", "calculate_ha1", 1)

modparam("auth_db", "password_column", "password")

modparam("usrloc", "db_mode", 2)

modparam("rr", "enable_full_lr", 1)

#presence module related params

modparam("pa", "use_db", 1)

modparam("pa", "db_url", "mysql://ser:heslo@localhost/ser")

modparam("pa", "offline_winfo_timer", 3600)

modparam("pa", "offline_winfo_expiration", 259200)

modparam("pa", "auth", "none")

modparam("pa", "winfo_auth", "none")

modparam("pa", "use_callbacks", 0)

modparam("pa", "accept_internal_subscriptions", 0)

modparam("pa", "max_subscription_expiration", 3600)

modparam("pa", "timer_interval", 1)

modparam("presence_b2b", "on_error_retry_time", 60)

modparam("presence_b2b", "wait_for_term_notify", 33)

modparam("presence_b2b", "resubscribe_delta", 30)

modparam("presence_b2b", "min_resubscribe_time", 60)

modparam("presence_b2b", "default_expiration", 3600)

#modparam("presence_b2b", "handle_presence_subscriptions", 1)

#----Main routing logic--------

route {

 # --

 # Sanity Check Section

 # --

 if (!mf_process_maxfwd_header("10")) {

 sl_send_reply("483", "Too Many Hops");

 break;

 };

 if (msg:len > max_len) {

 sl_send_reply("513", "Message Overflow");

 break;

 };

 # --

 # Record Route Section

 # --

 if (method!="REGISTER") {

 record_route();

 };

Appendices

100

 # --

 # Loose Route Section

 # --

 if (loose_route()) {

 route(1);

 break;

 };

 # --

 # Call Type Processing Section

 # --

 if (uri!=myself) {

 route(1);

 break;

 };

 if (method=="ACK") {

 route(1);

 break;

 } else if (method=="INVITE") {

 route(3);

 break;

 } else if (method=="REGISTER") {

 route(2);

 break;

 } else if(method =="SUBSCRIBE") {

 route(4);

 break;

 } else if(method =="PUBLISH"){

 route(5);

 break;

 };

 /*lookup("aliases2");*/

 if (uri!=myself) {

 route(1);

 break;

 };

 if (!lookup("location")) {

 sl_send_reply("404", "User Not Found");

 break;

 };

 route(1);

}

route[1] {

 # --

Appendices

101

 # Default Message Handler

 # --

 if (!t_relay()) {

 sl_reply_error();

 };

}

route[2] {

 # --

 # REGISTER Message Handler

 # --

--

 sl_send_reply("100", "Trying");

 /*if (!www_authorize("","subscriber")) {

 www_challenge("","0");

 break;

 };

 if (!check_to()) {

 sl_send_reply("401", "Unauthorized");

 break;

 };*/

 /*consume_credentials();*/

 if (!save("location")) {

 sl_reply_error();

 };

}

route[3] {

 # --

 # INVITE Message Handler

 # --

 /*if (!proxy_authorize("","subscriber")) {

 proxy_challenge("","0");

 break;

 } else if (!check_from()) {

 sl_send_reply("403", "Use From=ID");

 break;

 };*/

 /*consume_credentials();

 lookup("aliases2");*/

 if (uri!=myself) {

 route(1);

 break;

 };

Appendices

102

 if (!lookup("location")) {

 sl_send_reply("404", "User Not Found");

 break;

 };

 route(1);

}

route[4] {

 # --

 # SUBSCRIBE Message Handler

 # --

 if (!t_newtran()) {

 sl_reply_error();

 break;

 };

 xlog("L_ERR", "PA: handling subscription: %tu from: %fu\n");

 handle_subscription("registrar");

 break;

}

route[5] {

 # --

 # PUBLISH Message Handler

 # --

 if (!t_newtran()) {

 sl_reply_error();

 break;

 };

 xlog("L_ERR", "PA: handling publish: %tu from: %fu\n");

 handle_publish("registrar");

 break;

}

	Title Page
	Problem Description
	masteroppgave.pdf

