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Abstract— Nowadays, human related issues are the main
causes of accidents in the maritime domain. Among these
issues, mental fatigue is responsible for reducing cognitive
capabilities, situational awareness, and decision-making skills.
Early detection and assessment of mental fatigue can be used to
reduce the number of causalities, to the benefit of crewmembers,
ship owners, and the maritime environment. Although the
use of physiological sensors is the most trusted approach for
measuring mental fatigue, it is a complex task due to the
different ways mental fatigue can manifest in different people.
In this paper, we present the application of deep learning
techniques and physiological sensors to assess mental fatigue in
the maritime domain, using a vessel piloting task as case study.
The results demonstrate that because of their ability to extract
features otherwise hard to recognize from in data, deep learning
techniques in special convolutional neural networks can achieve
high levels of mental fatigue classification accuracy, although
cross-subject classification performance is still not sufficient for
real-life applications.

I. INTRODUCTION

Human related issues and human errors greatly contribute
to accidents in several domains, such as driving [1], aviation
[2], air traffic control [3], nuclear power plants control [4],
and maritime operations [5]. This role of bad cognitive
performance in unsafe behaviors, near-misses, and accidents
is particularly well-established in the maritime domain [6]–
[8].

The concept of operator functional state (OFS) offers a
good approach for analyzing which factors can lead to human
errors. OFS characterizes how well human operators react to
both internal and external operational demands, according to
their psychological and cognitive capabilities [9]. The con-
cept can be divided into three main areas, namely, situation
awareness, mental workload, and mental fatigue (MF). MF
accumulates as the operation progresses and is responsible
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for decreasing the operator’s capacity to react to unexpected
events and understand and solve problems.

We currently lack the tools we need to track and fully
address the role of MF in maritime operations. International
organizations such as the International Maritime Organiza-
tion provide direction as to how to mitigate the effects of MF,
but they do not provide objective ways to track and control
MF [10]. Established MF assessment methods such as Crew
Status Survey [11], the Karolinska Sleepiness Scale (KSS)
[12], and the Chalder Fatigue Scale [13] are subjective. To
the best of our knowledge, there is currently no method to
detect and measure MF in real time in maritime operations
without relying solely on subject evaluation. This paper rep-
resents a step toward using objective methods such as mon-
itoring operators behavior, reaction time, and physiological
signals, such as electrocardiogram (ECG), electromyogram
(EMG), electrooculogram (EOG) and electroencephalogram
(EEG).

Using physiological sensors to detect MF presents com-
plications. The multivariate time series data obtained from
these sensors is usually noisy, highly dimensional, and non-
stationary, have an explicit dependency on the time variable,
and features extracted from the data must be invariant
to translations in time [14]. Also, physiological data can
manifest differently in different individuals, making pattern
recognition and feature extraction complicated. The need for
real time implementation is also a serious constraint and
limits which kind of algorithm and preprocessing can be
performed. The use of deep learning techniques can provide
reasonable accuracy levels together with high efficiency,
reducing the need for data preprocessing.

In this paper we investigate the use of a deep learning
algorithm to perform MF assessment in maritime operations
using physiological sensors. The rest of the paper unfolds
as follows. Section II briefly describes our experimental
approach and the methodology used to MF assessment. Sec-
tion III presents and discusses the obtained results for both
single- and cross-subject classification problems. Section IV
concludes the paper and presents directions for future work.

II. MATERIALS AND METHODS

In order to evaluate the efficiency of different deep learn-
ing methods for MF classification, we performed experiments
in a vessel simulator. The experiment applies a mixed method
approach, where qualitative and quantitative approaches are
used simultaneously, in the form of questionnaires and



Fig. 1. Proposed sensor framework for fatigue assessment.

scenario-based experiments. This section describes our ex-
perimental setup and the proposed sensor framework for MF
assessment.

A. Experimental setup

This experiment was performed in a partnership with Uni-
versity of São Paulo/TPN [15], using their simulator facilities
to conduct the experiments. The case study consisted of
a harbor navigation task with a large vessel (oil tanker,
container ship). The operation required moderate levels of
attention due to sea conditions and vessel traffic near the
harbor. The task took between 60 and 90 minutes to complete
and the operator was monitored with physiological sensors
during the whole duration of the experiment.

The simulated operations were conducted by trained per-
sonnel from the Brazilian navy, in order to make the results
more reliable. In total nine navigation runs were collected.
Six different pilots performed the runs: all of them performed
one simulation run during the morning and three performed
an additional run during the afternoon on a different day. We
ensured that no participant took any kind of drug or stimulant
eight hours prior to the experiment and all participants had at
least eight hours of sleep the previous night. The test subjects
were all men between 19 and 48 years old.

For the qualitative portion of the experiment the Karolin-
ska Sleepiness Scale (KSS) questionnaire was used as a self-
assessment tool. Each participant indicated their MF state at
the beginning and at the end of each of their experiments.
In this research we are not considering intermediate levels
of MF. We are only interested in how the final MF state
compares to the initial one. This information will help us to
label the data obtained during the experiments.

B. Sensor framework

Figure 1 shows the sensor framework used here to assess
the fatigue state of human operators during demanding
maritime operations. Its work-flow has three main phases:
data acquisition, MF assessment, and warning feedback. For
this work we are focusing on the first and second phases.

During the data acquisition phase we used a set of sensors
to collect physiological data from the operator. The data
is collected from disparate sensors and is centralized by a

micro-controller. The possible physiological sensors include
the ECG, EMG, body temperature sensor, EEG, EOG, and
eye tracker. During this phase the data is also preprocessed
to remove noise and unwanted artifacts that can disturb the
data fusion and classification processes. In this experiment,
1 ECG channel and 6 EEG channels were recorded. We
opted for portable sensors in order to interfere as little as
possible in the simulated task. The ECG of choice was
the Electrocardiogram Sensor PRO for MySignals (eHealth
Medical Development Platform) [16] and we opted for the
14 channels EEG headset Emotiv Epoc+ [17].

During the MF assessment phase a sensor fusion algorithm
was applied to the preprocessed data. This algorithm fused
the disparate data channels and outputting a fatigue indicator.
This fatigue indicator was registered and compared to a
specified threshold in order to evaluate the risk level in the
operation. In case the current risk level exceeds the specified
threshold, a feedback system is activated to warn the operator
on the high risk of accident. This alert system can be visual,
sonorous, or tactile. Extreme levels of risk may require the
interruption of the operation or replacement of the operator.

C. Data acquisition and preprocessing

The first phase of our framework consists of recording
sensor data and preprocessing it to input in the MF state
classification algorithm. The preprocessing phase includes
filtering, smoothing, resampling, and discrete wavelet trans-
form (DWT). During the filtering phase, artifact removal
algorithms can be applied to remove unwanted perturbation
from the desired signal. Any noise contaminating the data
can be removed during the smoothing phase. If necessary,
the channels from different sensors can be resampled to a
desired frequency and aligned to ensure temporal correlation
between different signals.

The ECG channel and the six EEG channels were sampled
at 128 Hz. The EEG channels were preprocessed using
DWT to decompose them into their main frequency bands of
clinical interest for MF detection: delta (δ), theta (θ), alpha
(α), and beta (β) [18]. Working with wavelets is advan-
tageous in this case since they merge time and frequency
domain characteristics, decomposing the original time-series
into several time-series on the desired frequency bands.



Fig. 2. DWT filter bank.

This approach allows a frequency domain analysis while
conserving the temporal characteristics of the data.

The DWT of a signal is calculated by passing it through
a series of filters known as a filter bank. First the input
samples are passed through a pair of quadrature mirror
filters, one high pass and one low pass. The convolution
with the high pass filter provides the detail coefficients
that represent the upper half frequencies of the original
input. The convolution with the low pass filter provides
the approximation coefficients that represent the lower half
frequencies of the original input. The process is repeated
with the output of the low pass filter and the signal is further
decomposed. This process is repeated successively until the
desired frequency decomposition is reached. The filter bank
applied on this work is shown in Figure 2, where the location
of the desired EEG sub band coefficients are shown.

D. Input data preparation

We decided to use only four input channels in order to
make the input dimension manageable for the neural network
(NN). We chose the alpha sub-band of the electrodes AF4,
F4 and O2, as they have the greatest relevance for fatigue
detection [18]. We didn’t apply any artifact removal in the
EEG data, since deep learning approaches can extract very
complex set of features from the input data. Although not as
relevant for MF detection as the EEG, the ECG was chosen
as the last input channel, since it brings a completely new set
of features that can help classify the MF states in a situation
where only EEG channels are not enough.

The input data for the deep learning methods was com-
posed using low-level (or raw data) fusion in the selected
data channels from ECG and EEG, after preprocessing. The
preprocessed data is segmented in four-second segments
with no overlap. The segments from different channels were
concatenated as a one-dimensional input vectors for the NN
algorithms.

E. Mental fatigue state classification

In this section we briefly introduce some traditional NN
methods we applied in the MF state classification task.

1) Feed forward neural network (FFN): The FFN is a
type of artificial NN where the connection between nodes
(and layers) is not recursive. The information transmission
is unidirectional, moving only forward, going from the input
layer through the hidden layers (if any) and arriving at the
output layer. An FFN can be a single-layer perceptron or a

multi-layer perceptron with at least one input, one hidden
and one output layers.

2) Convolutional neural network (CNN): The CNN is a
type of deep NN commonly used for imagery classification.
It is composed by one input and one output layer as well as
multiple hidden layers that provide the network its depth. The
hidden layers include convolutional layers, pooling layers,
and fully connected layers. The combination of convolutional
and pooling layers form the feature extraction portion of the
network and a CNN can have as many of those pairs as
desired. A CNN can also have several fully connected layers
and the last one is responsible for the classification task.

3) Deep belief neural network (DBN): A DBN is a type
of NN that can learn relevant features from datasets in an
unsupervised way (with no labeled data), by mean of an
encoding and reconstruction process performed by Restricted
Boltzmann Machines (RBMs). These RBMs are stacked
together to provide depth to the network, allowing it to
learn very complex features. In an ordinary DBN, a fully
connected layer tops the stacked RBM layers, which are
responsible for performing data classification. Each RBM
layer is trained individually using a contrastive divergence
algorithm. Then the whole network (including the fully
connected layer) is fine-tuned using a supervised back prop-
agation algorithm.

III. RESULTS AND DISCUSSION

EEG characteristics are not the same for every person.
Each individual presents different patterns in the EEG data
as the MF state develops. Even for the same person, these
patterns can change depending of factors such as level of
excitement, period of the day, consumption of stimulants,
etc. This makes the classification of fatigue across different
session and across different subjects very hard. In this section
we will present the experimental results obtained by the deep
learning methods when considering single session and single
subject cases and single session and multiple subject cases.

A. Single subject classification

For the single subject case, we trained each NN on the data
for each subject individually. During the training process,
a 20-fold cross-validation approach was used. We divided
each dataset into five equal size parts. These portions were
combined in 20 different sets of training, validation, and test
sets in the proportion 60%-20%-20%. The NN were trained
using the back propagation algorithm for a minimum of 10
epochs. After every epoch the validation set was used to
adjust the dynamic learning rate policy. If the validation
classification didn’t improve after four epochs, the learning
rate was reduced by 20%. If the validation classification
didn’t improve after 10 epochs (indicating trapping in local
minimum or overfitting), the training process was terminated
and the NN internal parameters that yielded to the best
validation accuracy were reloaded in the NN model. Then
the test set was used as new data for the network in order
to assess its classification and generalization capabilities.



TABLE I
HYPERPARAMETERS SELECTION (SINGLE SUBJECT CASE)

Network Parameters range Best configuration

MLP
# layers = [1, 2, 3, 4] {2400, 1024, 512}

# nodes = [256, 512, 1024, 2400]

CNN
# layers = [1, 2, 3, 4]

{64 (3), 128 (5)}# nodes = [32, 64, 128, 256]
filters size = [3, 5, 8, 10]

DBN
# layers = [1, 2, 3, 4]

{2400, 1024, 512}# nodes = [256, 512, 1024, 2400]

The good performance of NN models is intrinsically
related to the correct selection of their hyperparameters.
Hyperparameters are responsible for controlling the learning
process in the NN, and, unlike, for example, nodes weights,
are not learned during the training process. Important hyper-
parameters include the number of layers, number of nodes
per layer, learning rate, etc. Using a grind search approach,
we investigated different sets of hyperparameters for each
NN model applied in our case study since they are network
dependent. The tested values for each hyperparameter for
each NN model and the best configuration selected for the
single subject case study is presented in Table I.

The results obtained with each kind of NN and for each
subject are shown in Table II, where the average accuracy
and its standard deviation obtained in the 20-fold cross-
validation process for each case is presented. The best result
for each subject is highlighted in bold. Analyzing Table II
it is possible to see that none of the networks achieved
outstanding results. The CNN and DBN presented an overall
better classification performance than the FFN. For some
subjects such as Subject 1, all the NNs were capable of
achieving good classification results. For others, such as
Subject 6, all the NNs performed badly. Usually the causes of
this problem are two-fold: bad input data quality or bad data
labeling. These factors affect the classification performance
of the NN by making it difficult to differentiate correctly
between two MF states. These points are discussed in the
next sections.

B. Improving input data

One of the main sources of problems on sensor data
are sources of noise during the data acquisition process.
These sources include hardware-related noises such as power
line interference and electrodes contact and process related
noises such as eye and muscle artifacts in EEG data. We
are handling noise by using DWT to decompose the original
data in frequency bands of interest, as discussed in Section
II. Keeping only slower frequency bands in the data recon-
struction process filters out mid- to high-frequency noises.
Here we ignore the presence of artifacts, since rejecting than
would incur extra computational cost and would require the
acquisition of extra data during the experiment, for example,
EOG data for eye artifact rejection. This could make real-
time applications inviable.

The input data can also be made better by improving the
representation of the desired phenomena to the NN. Since
we are handling time-series data, the temporal dependency
of observations is relevant. We previously defined the rep-
resentation of the MF state at a specific time interval as a
vector composed by sections of the desired sensor channels
concatenated as a single input. This conserves the time
dependent aspect of each channel inside that specific interval,
but it may cause loss of information in the inferior and
superior fringes of the interval if the representation of an
important phenomena is divided between two consecutive
intervals.

We used two approaches to ensure better representation
of the MF state in the input vectors. First, we increased the
size of the time interval evaluated from four seconds to six
seconds. Second, we implemented an overlap of two seconds
between consecutive intervals. The increase in size of the
input vector imposed a significant computational constraint
to FFN and DBN, since the input vector size increase
significantly increases the number or trainable parameters in
these NN. Despite the extra computational requirement, no
significant increase in classification performance was found
when using these two NNs.

On the other hand, the CNN performance wasn’t much
affected, since the size and number of trainable kernels don’t
increase with the increase of the input vector size. The
CNN classification results with the new input configuration is
presented in Table III. With this new configuration the CNN
presented high level of accuracy and consistency across all
test subjects.

C. Mental fatigue state analysis using Functional Principal
Component Analysis

The approach we used for labeling the experiment data
consisted of using the KSS self-assessment fatigue question-
naires. The obtained levels of MF at the beginning and at
the end of the experiment were used to define a relation
between the initial and final MF for every test subject. The
absolute relation between the two states was not important,
only which states were more likely to represent non-fatigue
and fatigue states. These labels were assigned to data on the
first and last thirds of each dataset. The flaw in this approach
is that it assumes no variation in the subject’s MF state during
these periods. The classification results of Subject 6 suggest
that this can be a too strong assumption in some cases.

A more reliable way to label the MF state observa-
tions would be to increase the classification performance
in datasets with complex MF state distribution. For this
end, one can apply principal component analysis (PCA) to
reduce a large set of variables to a smaller one, while still
retaining most of the information present in the original
dataset. Besides working as a dimensionality reduction tool,
PCA can help with interpreting complex data correlation and
underlying phenomena hidden in the data.

Despite its usefulness, PCA doesn’t perform well with
time-series data, since it doesn’t consider temporal correla-
tion among observations. Functional PCA (FPCA) can be



TABLE II
SINGLE SUBJECT CLASSIFICATION RESULTS. (ACCURACY ± STD)

FFN CNN DBN

train validation test train validation test train validation test

Subject 1 0.94 ± 0.02 0.83 ± 0.03 0.82 ± 0.03 0.93 ± 0.09 0.88 ± 0.07 0.86 ± 0.08 0.95 ± 0.02 0.86 ± 0.02 0.84 ± 0.03
Subject 4 0.94 ± 0.03 0.87 ± 0.02 0.85 ± 0.02 0.93 ± 0.04 0.88 ± 0.03 0.86 ± 0.03 0.95 ± 0.02 0.89 ± 0.02 0.89 ± 0.02
Subject 5 0.92 ± 0.04 0.75 ± 0.04 0.71 ± 0.03 0.73 ± 0.16 0.71 ± 0.11 0.68 ± 0.13 0.95 ± 0.03 0.75 ± 0.04 0.75 ± 0.05
Subject 6 0.60 ± 0.09 0.56 ± 0.03 0.52 ± 0.03 0.81 ± 0.15 0.72 ± 0.09 0.71 ± 0.10 0.57 ± 0.07 0.54 ± 0.04 0.50 ± 0.04
Subject 7 0.90 ± 0.04 0.74 ± 0.04 0.73 ± 0.04 0.80 ± 0.14 0.73 ± 0.09 0.70 ± 0.09 0.93 ± 0.02 0.78 ± 0.02 0.76 ± 0.03
Subject 8 0.78 ± 0.06 0.71 ± 0.04 0.68 ± 0.04 0.91 ± 0.11 0.81 ± 0.06 0.78 ± 0.04 0.62 ± 0.06 0.60 ± 0.07 0.58 ± 0.06
Subject 9 0.88 ± 0.04 0.73 ± 0.03 0.71 ± 0.04 0.71 ± 0.20 0.62 ± 0.09 0.61 ± 0.11 0.92 ± 0.03 0.73 ± 0.04 0.70 ± 0.04

TABLE III
SINGLE SUBJECT CLASSIFICATION RESULTS FOR CNN USING NEW

INPUT CONFIGURATION. (ACCURACY ± STD)

train validation test

Subject 1 0.94 ± 0.03 0.91 ± 0.02 0.89 ± 0.02
Subject 4 0.99 ± 0.01 0.97 ± 0.02 0.96 ± 0.02
Subject 5 0.97 ± 0.11 0.89 ± 0.10 0.88 ± 0.09
Subject 6 0.87 ± 0.03 0.83 ± 0.03 0.82 ± 0.02
Subject 7 0.97 ± 0.06 0.88 ± 0.05 0.85 ± 0.07
Subject 8 0.99 ± 0.01 0.94 ± 0.02 0.92 ± 0.02
Subject 9 0.99 ± 0.01 0.91 ± 0.02 0.89 ± 0.03

used to handle functional data such as time-series [19].
FPCA works like the traditional PCA, but instead of handling
discrete observations it takes approximation of variables
observations as functions. For performing the FPCA, we
opted to use the MATLAB package PACE [20].

Figure 3 presents the correlation surface between different
MF states during the duration of the experiment. The yellow
color represents a positive correlation while blue represents
a negative correlation. In this case we can interpret these
correlations as a degree of agreements between two MF
states. Analyzing the correlation for the initial MF state we
can see it is positively correlated with every state from 1 to
1,000 and from 2,500 to 3,500 and negatively correlated to
each state from 1,000 to 2,500 and from 3,500 to 3,800.

Complementing the information obtained from the corre-
lation surface with the information obtained from the KSS
questionnaire during the experiment (MF State Initial > MF
State Final) we can see that even though the final state
represented less MF, it does not span the whole final section
of the experiment. Using this new map of the MF states, we
retrained the NN on the dataset for Subject 6. Table IV shows
a significant improvement in the classification performance
of all the NN after FPCA labeling.

D. Cross-subject classification

The way MF develops and presents itself is likely to vary
from person to person depending on different factors such
as age, specific physiological conditions and predispositions,
period of the day, circadian rhythm, etc. Developing an
algorithm capable of assessing MF state precisely across

Fig. 3. Correlation surface for different MF states.

TABLE IV
CLASSIFICATION RESULTS FOR FPCA-LABELED DATA FOR SUBJECT 6.

(ACCURACY ± STD)

train validation test

FFN 0.84 ± 0.04 0.83 ± 0.04 0.80 ± 0.04
CNN 0.84 ± 0.02 0.84 ± 0.04 0.84 ± 0.04
DBN 0.86 ± 0.05 0.84 ± 0.03 0.83 ± 0.03

multiple subjects is a challenging task. Neural networks are
a viable option to handle this kind of problem since they
offer the possibility of automatic feature engineering. These
features can capture very complex characteristics of the data,
covering angles that could be impossible to approach by
using hand-engineered features.

For the cross-subject classification problem, we applied a
nested cross validation approach. We used one test subjects
data as a test set and the other five datasets to train the NN
using a six-fold cross validation. In each fold, data from
one subject was used as validation and the remaining five
datasets were used as the training set. The training set was
shuffled to ensure that the data for the training process was
subject-independent. This process was repeated until each
subject was evaluated as a test set. We performed analysis
using the three NNs presented previously, with a six second
timespan and two second overlap for the input vectors. The



TABLE V
HYPERPARAMETERS SELECTION (CROSS SUBJECT CASE)

Best configuration

FFN {1024, 512, 256, 128}
CNN {32 (3), 64 (5), 128 (8)}
DBN {2400, 1024, 512, 256}

TABLE VI
CROSS-SUBJECT ANALYSIS. (ACCURACY ± STD)

train validation test

FFN 0.93 ± 0.06 0.70 ± 0.13 0.66 ± 0.05
CNN 0.98 ± 0.17 0.82 ± 0.05 0.75 ± 0.01
DBN 0.89 ± 0.04 0.70 ± 0.02 0.69 ± 0.02

hyperparameters selection was made using grid search using
the same variable and intervals for the single subject case.
For the cross subject case the best configuration for each NN
are deeper models which are more suitable to handle a more
complex set of features from multiple subjects (Table V).

From Table VI, we can see that none of the NN had
a trustworthy performance on the cross-subject case. Even
when using longer input vector, overlap between consecutive
inputs and the help of FPCA to label the data, the complex-
ity added by multiple physiological response patterns was
capable of confusing the NN algorithms. This shows how
relevant the cross-subject problem is when considering the
implementation of such a MF detection system in real life.

IV. CONCLUSION AND FUTURE WORK

In this work we presented a study about the use of a
traditional deep learning algorithm to detect the MF in
vessel pilots. We observed the importance of maintaining
the temporal correlation on the sensor data when inputing
it to the NN algorithm. This can be done by extending the
observed interval when making a classification and by using
time overlap between consecutive MF state observation.

CNN yielded the best classification accuracy while pre-
senting the best computational performance. FFN, a simpler
algorithm, performed well when compared to CNN. DBN
didn’t performed as well as expected, probably due to loss
of information during the RBM compression phase.

We also experimented with FPCA for a more precise
labeling of MF states based on knowledge about the initial
and final states of the operator. FPCA can provide insights
in the dataset that are unavailable otherwise. This resource
proved to be an important tool to improve classification
performance when the original labeling is imprecise.

Future work might improve the performance of the clas-
sification algorithm by optimizing its hyperparameters. The
classification of cross-subject cases needs special attention,
and a reliable way to correlate MF states to different individ-
uals reference frame needs to be developed. The next natural
step is implementation of such an MF detection system in
real-time, so it can see applications in real-life scenarios.
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