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Summary

This thesis explores the technologies that power the tracking and mapping under the hood
of modern Augmented Reality systems, as well as previous iterations of Mobile Aug-
mented Reality. Special attention is given to the so-called Augmented Reality Cloud and
the eco-system around it, a crucial infrastructure piece for enabling persistent, interopera-
ble and multi-user Augmented Reality experiences. Furthermore, by using principals from
Computer Vision, GIS and Information Technology, a real-time system is developed that
visualizes mobile device geopose on a virtual globe running in a WebGL enabled browser.
Technologies applied include OpenCV, WebSockets, Cesium.js and Node.js on in three
different environments; web, server and Android.

i



ii



Table of Contents

Summary i

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Open Augmented Reality Cloud . . . . . . . . . . . . . . . . 2
1.2 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations 5
2.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Fiducial markers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Feature detection and description . . . . . . . . . . . . . . . . . 9
2.2.4 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.6 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.7 Robust techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.8 Visual odometry . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.9 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.3 Visual Simultaneous Location and Mapping . . . . . . . . . . . . . . . . 18
2.3.1 Challenges in Monocular Visual Odometry . . . . . . . . . . . . 20
2.3.2 Tight vs loosely coupled visual-inertial SLAM systems . . . . . . 20
2.3.3 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Android Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Virtual sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Rotational representation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Coordinate systems, reference frames and transformations . . . . . . . . 25
2.7 Real-Time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1 Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Long-polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.3 Server-Sent Event . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.4 WebSockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Related work 29
3.1 Mobile Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Tools for Mobile AR . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Head-Mounted Display . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 GPU acceleration on mobile systems . . . . . . . . . . . . . . . 30
3.1.4 Mobile sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.5 Mobile Pose tracking . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.6 Global Localization SLAM . . . . . . . . . . . . . . . . . . . . . 32
3.1.7 Monocular visual-inertial odometry for Mobile Augmented Reality 35
3.1.8 State-of-the-Art Mobile SLAM . . . . . . . . . . . . . . . . . . 37
3.1.9 CNNs for pose estimation . . . . . . . . . . . . . . . . . . . . . 38
3.1.10 Depth from motion . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 3D Visualization on the web . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Imperative 3D content . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Declarative 3D content . . . . . . . . . . . . . . . . . . . . . . . 41

4 Use-Case 43
4.1 Current state of the AR-Cloud ecosystem . . . . . . . . . . . . . . . . . 44
4.2 Interoperability and standards . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Vulkan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 OpenVX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 StreamInput and OpenKCam . . . . . . . . . . . . . . . . . . . . 48
4.2.4 OpenXR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Visual Positioning standards . . . . . . . . . . . . . . . . . . . . 49
4.2.6 Social implications . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 AR Cloud Vendors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 AR Cloud solutions . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Google ARCore . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Apple ARKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 5G and Edge computing . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



5 Proposed solution 55
5.1 Visualization client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Choosing a Client library . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Geopose client - Android . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Android permissions . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Background services . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Android MainActivity . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Server solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Geodetic space to image pixel space . . . . . . . . . . . . . . . . 61

6 Experiment 65
6.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Approach 1 - IMU-based geopose . . . . . . . . . . . . . . . . . . . . . 67
6.3 Approach 2 - Marker based geopose . . . . . . . . . . . . . . . . . . . . 69

7 Discussion and conclusion 73

Bibliography 75

v



vi



List of Tables

2.1 Descriptor matching metric overview . . . . . . . . . . . . . . . . . . . . 11
2.2 Average denseness of methods. Similar convergence rates for all three

with overlap up to 30% frame overlap . . . . . . . . . . . . . . . . . . . 15
2.3 Overview of common rotational representations. e represents a unit vector. 25

4.1 Location standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Sensor API on the web . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 AR relevant SDO’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Attributions of datasets used by Cesium Ion to generate the World Terrain. 59
5.2 Android client dependencies . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Dependencies in the server implementation . . . . . . . . . . . . . . . . 61

6.1 Details of LG G6 sensor capabilities . . . . . . . . . . . . . . . . . . . . 66
6.2 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



viii



List of Figures

2.1 Mixed Reality spectrum [56]. . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Early schematic of a HUD-based AR system [14] . . . . . . . . . . . . . 6
2.3 The Augurscope, a Mixed reality system [76] . . . . . . . . . . . . . . . 7
2.4 Marker detection process[40]. . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Common markers, including ARTag and ARToolkit. [40] . . . . . . . . . 9
2.6 Various illustrations, taken from their respective papers. . . . . . . . . . . 10
2.7 AKAZE features matching from the Graffiti sequence Oxford Dataset . . 12
2.8 Before and after RANSAC is applied. Yellow dots are original feature

matches, red outliers and finally the green outliers . . . . . . . . . . . . . 14
2.9 Transformation between world frame and camera frame[55] . . . . . . . 16
2.10 The epipolar constraint. The ray of P as from the second camera, (O2, p2),

is projected onto O1 as the epipolar line (e1, p1), greatly reducing the
search-space for point-matching. On represents the respective n’th cam-
era center in physical space, while the matrix T = [R|t] represents the
relative pose of the cameras in the scene. . . . . . . . . . . . . . . . . . . 17

2.11 Plane captured by a camera at a distance d . . . . . . . . . . . . . . . . . 18
2.12 SLAM system architecture from [79] . . . . . . . . . . . . . . . . . . . . 19
2.13 Before and after aligning range scans [53] . . . . . . . . . . . . . . . . . 20
2.14 The layered architecture of Android sensors 1. . . . . . . . . . . . . . . 23
2.15 Different sensors available in a MAR system [15]. Modern smarthphones

contains most of these sensors. . . . . . . . . . . . . . . . . . . . . . . . 23
2.16 East North Up Axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.17 HTTP raw overhead against an echo endpoint [3]. . . . . . . . . . . . . 28

3.1 Fusion of gyroscope and magnetometer for improved sensor readings us-
ing a complimentary filter [48] . . . . . . . . . . . . . . . . . . . . . . . 31
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Chapter 1
Introduction

1.1 Background and motivation

Recent advancements in web technologies, 3D graphics and computational capacities have
made it possible to produce richer and more nature-like visualizations. Three-dimensional
visualizations have the ability to reveal even more than before about our geospatial data,
such as positioning and orientation between different objects. 3D visualization is a inte-
gral part of data visualization in many sectors, including data science, construction, games
and simulations. Traditionally, Geographical Information Systems (GIS) have used the 2D
space of maps to visualize geospatial data. Nowadays, more and more GIS tools ship with
3D capabilites, moving away from traditional 2D maps. Todays smartphones incorpo-
rate cheap and numerous micro-electro-mechanical system (MEMS) sensors, among them
compass, GPS/GNSS, gyroscop, temperature sensor and proximity sensors. These sensors
supply valuable data for applications in localization, mapping, tracking, IoT, navigation
and more. Mobile phone cameras in tandem with machine vision and image processing
techniques play an important role in determining the relative pose between an observed
object and the camera, as well as object detection and mapping. Combining the IMU, GP-
S/GNSS, network chip and digital camera provide large amounts of data that can be used
to solve the for a highly accurate geographical pose of a device, as well as provide data
for cloud based models that can improve localization upon todays GPS based systems,
reducing errors down to the centimeter. The problem of accurate localization is central to
Augmented Reality, which is explored as well.
Norkarts initiative in collaboration with the Norwegian Mapping Authority has shown
great potential in the cross-section between Augmented Reality and geospatial applica-
tions. Other international technology firms also invest heavily in Augmented Reality and
Spatial Computing, preparing for a world in which machines truly can understand its en-
vironment.

1



Chapter 1. Introduction

1.1.1 The Open Augmented Reality Cloud

The Open Augmented Reality Cloud, OARC, is a open-sourced, collaborative, privacy
centered and interoperable vision of the AR Cloud in the future. The amounts of data that
will be needed to build a 1:1 map of the world is staggering, requiring a careful evaluation
of how to best reach a cloud infrastructure for machines to orient in the world. Adoption
of AR applications struggle today. Fundamentally, there are several key issues with most
AR applications:

Lack of persistence - Augmented content does not persist over time and place. No
continuity is maintained in-between AR sessions because the application is not aware of
its geospatial context. Augmented objects are not ensured to appear in the same spot as it
previously was.

Poor immersion - Occlusion is an effect of object obstruction, that is, any augmented
view should be obstructed when camera is moved outside the line of sight. Most AR apps
does not occlude correctly, which ruins the immersive experience. e.g. An augmented
game avatar should vanish if it is moved behind an object.

Synchronization across devices and vendors - Extending the collaborative, shared ex-
perience even further. Several vendors of augmented reality content and various devices
and platforms will co-exist.

Shared experiences - AR cannot exist in a vacuum. AR applications will struggle to
succeed unless experiences can be shared and multi-user interactivity in real-time. Small-
scale and single-user applications will not and cannot usher the adoption of AR.

Poor User experience - AR needs to ”just work”. User experience is ruined if two or
more users are required to any kind of SLAM synchronization before using AR applica-
tions, or other type of set-up.

All of the above issues can be solved by a common infrastructure known as the Aug-
mented Reality Cloud. Research and development for the OARC is defined into three
distinct parts. Object and pose detection on mobile devices, cloud infrastructure and visu-
alization systems for research and development.

1.2 Research goals

What is the current state of mobile Augmented Reality and augmented reality cloud in-
frastructures.

Propose a prototype system to visualize geographical pose in a naturalistic, web-based,
3D environment, using a virtual globe.

Review different techniques and algorithms for representing mobile pose generated by
cameras and sensors commonly found on smartphones.

2



1.3 Structure

Utilize real-time technologies to communicate between components in a multi-component
system.

1.3 Structure
The structure of this project is as as follows. Chapter 2 introduces key concepts for the
reader. The fundamentals of Augmented Reality and the Open Augmented Reality Cloud,
state-of-the-art 3d technologies on the web, real-time technologies on the web, computer
vision concepts of tracking and mapping. Chapter 3 includes a literary review of the
current state in this area of research. Chapter 4 involves exploring key issues in Mobile
Augmented reality with the Open Augmented Reality as a use case. Chapter 5 introduces
a architecture, applications and development of a visualization system, that can be useful
for further research and development on the OARC. Chapter 6 explores two ways of gen-
erating a geographical pose and visualizing the result in real-time. Chapter 7 will round
off this work and discuss the take-aways.

3



Chapter 1. Introduction

4



Chapter 2
Foundations

2.1 Augmented Reality
Augmented Reality (AR) is a real-time direct or indirect view of physical real-world en-
vironment that has been superimposed upon or composed with the real world. Milgram
and Kishino [56] places Augmented Reality along a virtual continuum. The continuum
provides an axis along which we can place concepts similar to AR. We see that it spans
from more reality-like, to more virtual-like. AR has evolved a lot since its first studied in
the 1950s.

One of the fundamental problems of AR is tracking, the calculation of the 6DoF of a
camera i relation to an object of interest. With the relative orientation and position, the AR
system can then render virtual objects precisely.Azuma proposes a technology-agnostic
definition of three characteristics.

• it combines the real and the virtual

• it is interactive in real time

• it is registered in 3D

Milgram and Kishino and Azuma have together provided the taxonomy which is cur-
rently the foundation of modern AR.

Figure 2.1: Mixed Reality spectrum [56].

5



Chapter 2. Foundations

Figure 2.2: Early schematic of a HUD-based AR system [14]

Although central, vision based system are not the only areas where AR can be applied.
Systems based on touch, smell, hearing and other senses have been proposed. Haptic
systems, in which the sense of touch are recreated through forces, vibrations and motions,
are frequently found in gaming or systems for the audio-visually impaired. In the 2002
meta cookie study Narumi et al. [61] proposed a illusion based AR/VR system in which
the perceived taste of a cookie is changed by overlaying visual and olfactory information
onto a real cookie. For the remainder of this work, we will consequently refer to visual
Augmented Reality. Carmigniani and Furht [13] defines four main devices that augmented
reality consists of, as we will discover in the following sections.

2.1.1 Displays
Severel typse of displays are used in AR. The main types are head mounted displays,
handheld displays and spatial displays. Most commonly found today are variants that are
handheld (eg. mobile phones) or headsets (eg. Microsoft HoloLens). Spatial AR rely
on video-projections, optical elements and holograms that physically display graphical
information directly on physical objects. For the remainder of this work, we will mainly
refer to handheld displays.

2.1.2 Input devices
Computer vision, robotics and photogrammetry have over the years developed several
different tracking methods. Researchers divide tracking into categories based on the type
of equipment used. Sensor tracking methods, visual tracking methods and hybrid methods.

2.1.3 Computers
The computers are responsible for processing data from the input devices and tracking
devices. Without the computers, Augmented Reality could not be able to augment data
correctly. The main hurdle regarding computers is the computational load that Augmented

6



2.2 Computer Vision

Figure 2.3: The Augurscope, a Mixed reality system [76]

Reality can impose on a system. The frame-rate is directly tied to the systems ability to
process data, and systems with low or poor framerate are hardly usable. The issue with the
computers of Augmented Reality system is not only computing power, but also the power
consumption and heat production of the system.

2.2 Computer Vision
The field of computer vision is quintessential for the development of AR. The fundamen-
tal problems of localization and mapping is a subset of many disciplines found in CV.
Understanding different concepts from CV is important to grasp how a robot can localize
through visual input.

2.2.1 Fiducial markers
Fiducial markers help resolve the integration of the real world view and the super-imposed,
virtual object. The markers provide a high-contrast background, such as a black square,
that encapsulates a white geometric figure with predefined properties. These properties
range in size, shape and color to make them easy identifiable. Markers are popular because
of the their reliability in varying light conditions. Earlier AR SDK’s, such as ARToolkit
[41], ARTag [25] relied on marker-based tracking to determine camera pose. Easy-to-use
and available toolkits such as ARToolkit and ARTag made marker-based tracking in AR

7



Chapter 2. Foundations

Figure 2.4: Marker detection process[40].

applications very popular. Other methods, such as feature-based and model-based track-
ing are more challenging because the environment is unknown. Pose estimation requires
more data, estimation drift occur and the system is unable to reliably define the coordi-
nate axis orientation. Additionally, the scale is not possible to deduce only through visual
observations. Fiducial markers solve these problems by providing markers that are easily
detected by machine vision techniques such as pattern recognition and image processing.
Markers contain information about scale and orientation. Model-based tracking compares
the images to a predefined model, while feature-based tracking detects patterns and their
movements between image frames.

Kan et al. [40] provides a visual process diagram exemplifying the marker detection
process. A typical marker detection process looks as follows:

• Image Acquisition - acquisition of an intensity image.

• Preprocessing - low level image processing, undistortion, line detection and corner
detection

• Discriminate potential markers - fast rejection of non-markers, fast acceptance of
potential markers.

• Identification and decoding of markers - template matching, decoding.

• Pose Calculation - estimation of marker pose, iterative pose calculation.

AruCo tag, developed by Garrido-Jurado et al. [30], developed a configurable fiducial
marker-based system for camera pose estimations. The library is open-sourced and imple-
mented in OpenCVs extended contributions module. Among improvements introduced in
AruCo tag is:

Occlusion handling - the authors incorporates a color map of the marker board to
compute an occlusion mask by color segmentation. Marker boards contain several marker
in a common reference frame.

Automatic dictionary generation - previous work impose fixed dictionaries. Fidu-
cial markers rely on unique identification by binary codes, and the accompanying markers

8



2.2 Computer Vision

Figure 2.5: Common markers, including ARTag and ARToolkit. [40]

inter-marker distance dictates how error-prone the marker is. A algorithm for maximiz-
ing the inter-marker distance and number of bit transitions of a configurable dictionary is
proposed.

2.2.2 Camera calibration
The pinhole camera model simplifies how images are captured with advanced digital cam-
eras and enables us to map from the world frame to the camera frame. Cameras calibra-
tion is necessary to determine the relation between a cameras natural units (px) and metric
units (mm). Common issues with uncalibrated cameras is distortion, because light passes
through a lens rather than a pinhole. Homography estimation becomes more accurate when
using undistorted images.

K =

fx s px
0 fy py
0 0 1

 (2.1)

The intrinsic parameters are defined by Hartley and Zisserman as fx and fy correspond
to 2D scaling, defined by the focal length. px and py correspond to 2D translation, defined
by the principal point offset. s defines shear. The camera matrix K is a component of
the Projective matrix, which is needed for projective 3D-2D mapping. The algorithm
employed by OpenCV, Matlab and countless others was proposed in the famous 2000
paper A flexible new technique for camera calibration Zhang [88]

2.2.3 Feature detection and description
One of the widely used techniques in determining structure in a image. Feature points, also
referred to as interest points in the literature, are distinct parts of images that can be found
with a certain accuracy, such as edges, corners, blobs and T-junctions. Clusters of points
sharing a set of mathematical constraints can form a virtual plane corresponding to the
real world. Furthermore, the neighbourhood of feature points are examined to distinguish
numerous feature points. Every feature point is assigned a probability, and is regarded as
robust if they are transformation invariant.
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Chapter 2. Foundations

(a) SIFT gradients to descriptor (b) FAST Corner

Figure 2.6: Various illustrations, taken from their respective papers.

The next section presents feature detectors important to CV, covering the ones impor-
tant to AR. Feature detection and tracking have been subject of research for a long time. In
this section we choose to skip edge detection, rather focusing on the chronological order
of important feature detectors and descriptors for CV. Moravec [57] showcased the first
corner detector, defining a corner as a point of low self-similarity using Sum of Squared
Differences (SSD). Self-similarities is measured in a window around 4-neighborhood the
current pixel. Moravecs Corner Detector is non-isotropic, unable to detect edges outside
or across the vertical, horizontal or two diagonals. Harris and Stephens [34] solved this by
regarding the differential intensity in all directions using the first order Taylor polynomial
and partial derivatives in the image. Every window receives a score, according to some
score functionR. Further improvements were made with the Shi-Tomasi good-features-to-
track [78], simply by switching the Harris corner score function R = λ1λ2−κ(λ1−λ2)2

to R = min (λ1, λ2), where λ1,2 is the eigenvalues of the structure tensor matrix from
SSD.
Another breakthrough came with Scale-Invariant Keypoints, SIFT features, from Lowe
[52]. Interest points are detected using the approximate Difference-Of-Gaussian (DoG)
operator, by finding the local extrema in a small window. Each interest point produces a
feature vector, and the local neighborhood is examined at different scales. The keypoint
descriptor contains a 8 bin orientation histogram of each 4x4 sub-block in a 16x16 pixel
neighborhood around a keypoint, yielding a 128 element feature vector as a descriptor.
SIFT is a complex feature detector, but is still one of the most robust feature detectors
today.
Although SIFT is robust and accurate, SIFT suffers from high computational cost. Speeded
Up Robust Features (SURF) from Bay et al. [6] proposed a feature detector based on a Box
Filter rather than Difference-of-Gaussian operator. This approach uses minimal informa-
tion for features. Partly inspired by SIFT, SURF computes features more efficiently and
the resulting 64-dimensional feature vector computes significantly faster. SURF performs
equally good in cases of with blur or rotation, while not so good in viewpoint or illumi-
nation change. Furthermore, SIFT and SURF recently became proprietary technologies
and requires a licence to use. Several derivatives of SIFT and SURF have been developed
since their initial papers, too many to review here. We refer to Salahat and Qasaimeh [73]
for a concise overview.

Real-time applications such as mobile SLAM and VO require even more efficient fea-

10



2.2 Computer Vision

Descriptor Type Distance measure
BRIEF

Binary string Hamming distanceBRISK
AKAZE

SIFT Floating-point vector Euclidean, Chi Square
Intersection, BhattacharyyaSURF

Table 2.1: Descriptor matching metric overview

ture detectors, a requirement that spawned the FAST algorithm [71]. In this scheme, inter-
est points are detected by applying a segmentation test considering a 16-pixel circle around
a interest point p. If a set of n continuous pixels are either darker Ip − t or brighter than
Ip + t the interest point plus some threshold t, the interest point is classified as a corner.
Selecting n = 12, as proposed in the original paper, enables a high-speed test regarding
the four compass directions, in which three of the four pixels must be accepted. This test
quickly discard non-corners, additionally improving the speed of the algorithm. Several
implementations of FAST exists, and the authors suggest applying machine learning to
generalize the algorithm for n < 12 on a domain-specific set of images by use of a deci-
sion tree classifier and entropy minimization.

Binary Robust Independent Elementary Features, BRIEF, described in [12] introduced
binary descriptors, vastly reducing the computation times for feature matching, but per-
forms badly under rotation. ORB, Oriented FAST and Rotated Brief, is a fusion of FAST
keypoints and BRIEF descriptors with performance-enhancing modifications. ORB uses
weighted centroids and moments based on image intensities of a patch around the corner
to give orientation. AKAZE, proposed by Fernández Alcantarilla [23], is a a feature detec-
tor and binary feature descriptor that exploit a diffusion filtering to retain boundaries and
remove noise from blurry images. The detector uses a determinant of Hessian Matrix at
different scale levels to find good feature points. AKAZE is invariant to scale and rotation.
Many more descriptors and keypoint detectors exist, but the ones mention are the main
ones used in SLAM/VO.

2.2.4 Feature Matching

Matching is a key part of vision-based tracking. Generally, tracking is performed by ap-
plying various algorithms on the feature descriptors found after the feature detection step.
The most basic matcher is the Brute-Force Matcher, which greedily matches a feature de-
scriptor in image A to every feature in image B, finding the most similar one by a distance
metric. Typical distance metrics can bee seen in 2.1. As the reader might recall, Hamming
distance constitutes the count of differing elements in a binary sequence, by applying the
XOR operation on all elements. Furthermore, l1 and l2 are the respective 2D and 3D Eu-
clidean distance norms. Vector-based descriptors can also be expressed as histograms, in
this case the other distance metrics exist.

Large datasets and high-dimensional features require optimized methods. Fast Library
for Approximate Nearest Neighbors (FLANN) is a open-sourced library for optimized
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nearest-neighbor search, frequently used for feature descriptor matching 1. The library is
included in OpenCV and is also available as a standalone library in C++, C, MATLAB and
Python.

Figure 2.7: AKAZE features matching from the Graffiti sequence Oxford Dataset

2.2.5 Optical flow

Whereas Feature tracking extracts features and matches across images using correspond-
ing binary or histogram descriptors, Optical Flow estimates motion vectors of patches
around interest points according to some constraints, such as brightness constancy and the
assumption that neighbouring patches move similarly. Mathematically the relation can be
expressed as

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (2.2)

where I corresponds to a intensity measure of pixel (x, y) at time t. The Optical flow
equation is derived from a Taylor expansion of 2.2, yielding

fxu+ fyv + ft = 0 (2.3)

where the terms are the gradient fx = ∂f
∂x , fy = ∂f

∂y , u = ∂x
∂t and v = ∂u

∂t . The
variables (u, v) are the only unknown, producing what is known as the Aperture problem.
This problem is solved by imposing further constraints on the equations, typically solved
with the Lucas-Kanade (LK) method. LK assumes a 3x3 patch around the feature to have
the same motions, supplying 9 equations making 2.3 solvable as a over-determined sys-
tem. LSM is applied for a least-square fit solution.

LK Optical Flow is usually applied to a sparse set of corners such as promoted in the
paper Good-Features-to-Track Shi and Tomasi [78]. Dense methods such as the Farnebck
method [22], which computes Optical Flow for all points also exists, but are not suited for

1http://www.cs.ubc.ca/research/flann/
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real-time applications. Due to the strict assumption of brightness constancy, spatial co-
herence and temporal persistence, the method is highly erroneous in large motion scenes,
varying illumination and other dynamic scene changes. Optical Flow tracking is not de-
pendant on apriori knowledge and does not keep a model of movement, as such it is suit-
able for light-weight tracking in consistent scenes.

When using the the Lukas-KAnade method together with Shi and Tomasi Good-Features-
to-Track, it is referred to as KLT tracking. A popular variant is Pyramid KLT, which relies
on feature detection in different resolution images, starting with a low resolution image at
the top of the pyramid and increasing the resolution level until the bottom, original image
is reached. Pyramid KLT drastically improves performance.

2.2.6 Estimation
All visual tracking is based on Maximum Likelihood Estimation, usually we want to find
the model parameters such as camera pose, camera intrinsics or 3d geometry that maximize
the probability of observing some measurement. Given a set of observations χ = {xi}, a
set of parameters to estimate θ and density function

p(x|θ) (2.4)

the maximum likelihood is given by

p(χ|θ) =

N∏
i=1

p(xi|θ) (2.5)

as the logarithm is monotonic we can get the same result by using the log likelihood l(θ)

− lnL(θ) = l(θ) =

N∑
i=1

ln p(xi|θ) (2.6)

MLE estimates from 2.6 are used in a wide range of statistical analyses and is the basis of
all algorithms in VO/SLAM. If prior knowledge is available, we can apply Bayes theorem

p(θ|χ) =
p(χ|θ)p(θ)
p(χ)

(2.7)

the Maximum a posteriori estimate, MAP, is then composed of the conditional given in
MLE and a prior probability from what is known about the parameter θ beforehand.

θ̂ = max
θ
p(θ|χ) (2.8)

Numerical methods are oftentimes used in estimating MAP, and is the de-facto standard
used in 3D reconstruction and optimization of SLAM. Depending on the distribution of the
prior 2.8 can take various forms such as a non-linear least-squares problem or additional
constraints such as projective conditions in Bundle Adjustment.
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2.2.7 Robust techniques
LSM Pose Estimation techniques are sensitive to outliers, points that do not fit the model
that skew the results. Such points are also known as bad matches or false positives. Fis-
chler and Bolles introduced the RAndom SAmple Consensus algorithm as a general pa-
rameter estimation approach in datasets with a large proportion of outliers. RANSAC is
frequently used in the CV field, especially in homography and fundamental matrix estima-
tion. An iterative approach is used, in which a subset of points in one image is matched
and its transformation is computed by minimizing the reprojection error. The process is
repeated N times and eventually the best-fit subset is chosen with a given statistical con-
fidence. Choi et al. [17] provide a great overview of different variations of the original
RANSAC algorithm.

Figure 2.8: Before and after RANSAC is applied. Yellow dots are original feature matches, red
outliers and finally the green outliers

2.2.8 Visual odometry
Visual Odometry is the process of estimating a robot or device ego-motion by only using
the input of one or more image sequences. VO methods are divided into several categories.
Monocular and stereo are the fundamental classes, according to the number of cameras
used.

Earliest example of estimating robot motion through mono-camera image sequence
was done by Moravec [57]. Nister et al. [63] introduced the term visual odometry, because
of the similarities to the earlier robot motion tracking systems based on wheel odometry.
They proposed groundbreaking methods of camera motion tracking from visual systems,
and employed Fischler and Bolles [26] RANSAC algorithm for outlier rejection. Most
notably, VO used during the Mars space mission as the preferred mapping mechanism
[16].

Currently there are three main ways to formulate VO, namely feature-based, direct and
semi-direct methods. Methods are characterized after what tracking method is used.

Direct method: This class of methods use all pixels or a sub-set of pixels and minimize
error measure based on the image pixel-level intensity and/or depth. Non-linear optimiza-
tion is used for camera pose and pixel depth estimation. Notable sub-classes of direct
methods are dense A. Newcombe et al. [1], semi-dense Engel et al. [21] and sparseEngel
et al. [20] formulations.
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Method Average pixels tracked
DTAM 200.000 px

LSD-SLAM 10.000 px
SVO 2.000 px

Table 2.2: Average denseness of methods. Similar convergence rates for all three with overlap up to
30% frame overlap

Feature-based method: Based on sparse feature-extraction and mapping across several
frames. Furthermore, estimation of pose and depth is done through minimization of re-
projection errors between feature pairs. High computational load due to feature extraction
and matching, limiting amount of features that a system can track. Mur-Artal et al. [59]
based on the ORB (Oriented FAST and rotated BRIEF) features [72] is one of the most
used techniques in feature-based SLAM.

Semi-direct method: A hybrid approach borrowing from the direct methods and the
feature-based methods. SVO, Semi-Direct Visual Odometry [27], is the current state-of-
the-art hybrid methods for semi-direct VO. This method uses feature extraction to establish
a robust area for image alignment. It has been shown to work exceptionally well, while
also running on platforms with limited computational resources.

2.2.9 Pose estimation

Pose estimation is regarded as the ”basic” localization problem of AR, being subject of
multidisciplinary research for a long time. Various different types of sensors can be com-
bined to estimate pose, although vision based techniques provided good results and are
most popular in recent years.

We distinguish the problem into two different cases. Firstly, consider that a 3D model
is readily available or can be produced through SLAM. Then the problem becomes a clas-
sic pose estimation problem known as PnP, n-point correspondence. If no 3D model is
available, the problem resolves to a camera motion estimation process. Both cases are
solved using mathematical optimization.

In photogrammetry pose estimation is known as space resection, from which the prob-
lem originates. We want to compute the position and orientation of the camera given a set
of correspondences between 3D features and their projections in the image plane. Robust
estimation of PnP relies on robust techniques. Many different solutions exists for the PnP-
problem, such as EPnP and POSIT as detailed in Chapter 3 of Marchand et al. [55]. In the
case of an unknown 3D model, SLAM techniques can be applied.

The case of 2D-2D image correspondence, it is also possible to estimate the 3D motion
through the homography. The homography links a point x1 in image I1 to a point x2 in
image I2 through a set of parameters h. 2D motion cannot reconstruct 3D scenes in every
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Figure 2.9: Transformation between world frame and camera frame[55]

case, however if the scene is planar the two scenes are linked through the homography H .

x
′

i = Hxi (2.9)

x
′

i and Hxi are not directly equal, but they share direction and differ by a scale-factor.
Thus the equation can be expressed as

x
′

i ×Hxi = 0 (2.10)

which in turn can be written as a homogeneous linear system

Aih = 0 (2.11)

where Ai is a 3×9 matrix, and h is a 9-vector corresponding to the entries ofH . Only two
entries of Ai is linearly independent, since the third row is obtained from the two others.
If there are more than 4 point correspondences, the system is over-determined and requires
a iterative approach and a cost function to optimize. Both geometrical distance measures
and statistical models such as MLE estimates are used. Robust estimation using outlier
removal with RANSAC, M-estimation, LMedS or Hough-transform is common. Image
stitching is a common domain where the homography is applied. More on the homogra-
phy can be found in Chapter 4 of Multiple View Geometry in Computer Vision, Second
Edition [35].

Theory of epipolar geometry enables the reconstruction of relative pose between im-
ages, by adhering to a geometrical constraint.
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Figure 2.10: The epipolar constraint. The ray of P as from the second camera, (O2, p2), is projected
onto O1 as the epipolar line (e1, p1), greatly reducing the search-space for point-matching. On

represents the respective n’th camera center in physical space, while the matrix T = [R|t] represents
the relative pose of the cameras in the scene.

• Essential Matrix E - Contains data of the Translational and Rotational offset of
the relative camera pose, in global coordinates. The Singular Value Decomposition
(SVD) of E yields the rotation and translation. Retrieved from F or by the 5-
point algorithm; An efficient solution to the five-point relative pose problem [62].
Alternatively, the problem can be solved by the eight-point algorithm.

• Fundamental Matrix F - Contains data of the Translational and Rotational offset in
pixels, in addition to the camera intrinsic parameters. Computed through the 8-point
algorithm.

In brief, the essential matrix stems from the homogeneous relation of the normalized
image point pair x1, x2

x2 = Rx1 + t (2.12)

by simplification, the essential matrix can be expressed as

E = R[t]× (2.13)

where [t]× is the vector cross product, expressed as a skew-symmetric matrix, between
the 3x3 rotational matrix R and the 3-dimensional translation vector t. A key issue of
the triangulation process mentioned above, is that it requires enough translation or it will
introduce large errors. Filtering the reprojected points by minimizing the reprojection error

In the case of 3D-2D motion approach, a third consequent frame is necessary for trian-
gulating the 3D point. Firstly a 2D-2D relative point estimation is applied to the consecu-
tive feature sets (fn−2, fn−1), then triangulating to get the 3D coordinates Xn−1. 3D-2D
point pairs can then be extracted by the PnP algorithm with the input (Xn−1, fn) to get
the transformation from 2D feature points to 3D points.
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Figure 2.11: Plane captured by a camera at a distance d

As the two rays captured in each image never truly intersect, one must estimate the
solution. Three approaches exist, according to what error chosen to minimize over; 3D
error, algebraic error or reprojection error. The reprojection error is most popular, and is
found by minimizing the cost function

T = arg min
T

∑
|z− f(T, X̂i)|2 (2.14)

where T is the estimated transform, z is the observed feature in the current frame Fn,
furthermore f(T, X̂i) is the reprojection function of the corresponding 3D feature point
in the previous frame after applying T. Lastly, i is the number of feature pairs.

Bundle Adjustment is the optimization of both the 3D feature points and 6DoF, while
pose-graph optimization only optimizes the relative 6DoF poses of keyframes.

2.3 Visual Simultaneous Location and Mapping
A popular technique for enabling AR is SLAM, because of the inherent need of a de-
vice to know its position in the world. Visual SLAM is a sub-set of the classical problem
Structure-from-Motion, SfM. Whereas SfM originated from the film-industry and is an
off-line process, V-SLAM tries solve the mapping problem in-real time using sequential
images from the same camera setup. Given an unknown environment, the device must uti-
lize its sensors to build a map, thereafter localizing with respect to that map. Observations
of the real world is not perfect, it is subject to uncertainty. Common sources of error are
systematic errors and random errors. Furthermore, erroneous data compound errors. Es-
timation algorithms such as the pose-graph optimization, EKF, statistical models and BA
are frequently used in AR to estimate positions and poses that contain error. In SLAM,
every sensor observation influence the map, making it a computationally heavy task to
update and maintain the map. As a result, SLAM problems are complex and heavily rely
on strategic decision regarding denseness of features and refinement.
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Figure 2.12: SLAM system architecture from [79]

We divide SLAM into two main categories, filtering-based SLAM and Graph-based
SLAM

• Filter based methods - Classical approach that performs predictions and update steps
recursively, keeping a error covariance matrix to store uncertainties of states. Varia-
tions of the Kalman filter and Particle filter are typical methods.

• Graph optimization methods - Saves keyframes and uses Bundle Adjustment opti-
mization to minimize the errors between camera pose and/or 3D points mapped. The
graph is made up from keyframes with measurements (nodes) and their geomtrical
constraints(edges).

A typical SLAM architecture is divided into two distinct parts, as seen in 2.12. The
front-end part of this architecture is typically handled by a device visual odometry mod-
ule and a mapping module, while the backend, either local or remote, supplies optimiza-
tion. Furthermore, a loop detection module and relocalization module is typically also be
present.

2.13 shows how alignment can be achieved when relative pose constraints are applied
to the problem.
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Figure 2.13: Before and after aligning range scans [53]

2.3.1 Challenges in Monocular Visual Odometry
Modern visual systems have seen a significant progress with regards to algorithmic ac-
curacy, robustness and efficiency. Some low-level issues are not clearly defined how to
resolve. Yang et al. [86] provide an overview to the issues some of the issues. Visual
Odometry also suffers from the classical optical distortions common to cameras.

• Photometric calibration - Pixel intensities of the same 3D point may vary due to
camera optical vignetting, auto gain and exposure controls.

• Motion bias - Visual Odometry methods may produce differing results when run on
a image sequences backwardly or forwardly.

• Rolling shutter - A camera sensor system found in most mobile devices today.
Pixels are exposed at different timestamps due to a rolling shutter system. Rolling
shutter is used because it enables the optic sensor to capture light for a extended
period of time, increasing sensitivity. Systematic errors resulting from the rolling
shutter effect, such as wobble or skew, can be corrected or approximated, although
in practice it can be ignored due to the high computational cost it enforces.

• Distortion - Since camera lenses are not perfect, distortion occurs in images. Sev-
eral types exist, such as pincushion, barrel and mustache distortion. Images can be
undistorted if the distortion parameters are known.

• Motion blur - Images appear smeared due to the long exposure or rapid movement.

2.3.2 Tight vs loosely coupled visual-inertial SLAM systems
Two main approaches exist when integrating IMU and visual data. Calculating visual-
SLAM and IMU independently in separate modules is known as a tightly loosely coupled
system, which suffers from drift problems. A tightly-coupled system incorporates feature
information in the state vector of the sensor fusion to estimate scale. Loosely coupled
systems include IMU readings as independent data in the model. Fast and lightweight
systems typically opt for a loosely coupled integration while systems with more compu-
tational budget or accuracy requirements go for a tightly coupled approach. Multi-State
Kalman Filtering is a traditional way of integrating the IMU, but modern methods rather
use non-linear optimization for the task.
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2.3.3 Loop closure

Also known as cycle closure, is the refinement step required to obtaining a consistent,
global SLAM map. Tracking and mapping done over a significant amount of time is
especially prone to drift, and requires loop closing. Typically done by returning to the
origin, providing non-adjacent frames of the same features to the system. Loop closure is
one of the key distinction between SLAM and VO.

2.4 Android Sensors

Most sensors are so-called Micro Electro Mechanical Sensors(MEMS), many of which are
cheap and small. These devices capture mechanical motion and express them as electric
signals. Sensors commonly found in Android devices are the accelerometer and gyro-
scope. Two main categories of sensors exist, physical and synthetic sensors. Physical
sensors have a hardware component, while synthetic sensors are derived from one or more
sensors. Android sensors generate different sensor values, which can be divided into three
classes. Raw values are the unaltered values, directly passed on from the hardware com-
ponent. The raw values are not directly accessible, only the corrected values. As per the
documentation, the physical sensor must not be confused with the android sensor. Cal-
ibrated values are values subject to correction algorithms, that intends to remove noise.
Fused values are derived from two or more sensors, in process where one sensors strength
is used to cancel out another sensors weakness. This is the process known as sensor fusion
3.1.

The android sensors API consists of Sensor, SensorsManager and the SensorEventLis-
tener interface, which implements a onSensorChangedEvent(event) and onAccuracyChangedEvent(event)
. Each event contains a value array, as described in the documentation 2. The first event is
triggered by every sensor reading, and a switch statement is a good choice for controlling
the data flow here, like checking sensor type.

Next we will review the main sensors relevant for this work.
Accelerometer - Captures acceleration along x, y, and z axes by measuring forces act-

ing on the sensor. Reports in m/s2. As such, a phone lying still on a flat surface should
report the gravitational force acting on it (as the table pushes against the phone) and in free
fall no forces are acting on it.

Gyroscope - Captures angular velocity rad/s around the axes x, y and z. Possible to
find current position in space given an initial position and integrating gyroscope readings.
This process introduces gyroscope drift, which must be compensated for.

Magnetometer - This sensor captures the Earths geomagnetic field strength µT along
x, y, and z axis. Can be used as a compass to find true north.

GPS/GNSS chip - Provides a global position in geographic coordinates and altitude
in meters above the reference ellipsoid. Combined with network data, positional accuracy

2https://developer.android.com/reference/android/hardware/SensorEvent#values
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of 5m can be achieved.

Digital camera - Provides the real-world ”canvas” of AR apps, as well as images for
visual tracking. Modern smart phones often have several cameras, both back-faced and
front-faced.

2.4.1 Virtual sensors

Rotation vector sensor - Synthetic sensor based on sensor fusion. As of the Android
documentation, it employs a EKF-based fusion algorithm.

6DoF pose sensor - Similar to the rotation vector, but includes a delta translation of
an arbitrary reference point. Available in newer Android devices (API level 25). Where
possible, it uses depth sensing and the camera for improved accuracy. Each registered pose
is sequenced, and contains the relative pose of the previous registered pose.

Gravity - Precise sensor of drift-free gravitational magnitude and direction. Product
of gyroscope and accelerometer data.

Linear Acceleration - Produced three-dimensional acceleration, free of gravitational
influence.
As a result, the acceleration sensor reading can be reconstructed by adding gravity and
linear acceleration. Acceleration = Gravity + Linear acceleration.

2.14 reveals the sensor stack found on Android devices. The Hardware Abstraction
Library (HAL) connects hardware to the Android platform through the interface header
file sensors.h and a C++ implementation sensors.cpp from the manufacturer. Device or
chip vendors can choose to supply sensor fusion implementations or Android falls back to
a default implementation, which may not be optimal. The Sensor Hub layer is an optional
module from the manufacturer, providing computing, monitoring and batching of sensor
data.

Because of the various hardware manufacturers and device vendors operating on the
Android platform, performance and accuracy can vary.

3https://source.android.com/devices/sensors/sensor-stack
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Figure 2.14: The layered architecture of Android sensors 3.

Figure 2.15: Different sensors available in a MAR system [15]. Modern smarthphones contains
most of these sensors.

Understanding different types of errors is very important when dealing with sensor
data. Common erroneous readings are a result of a possible combination of systematic
error, noise , drift and bias. Systematic error affect the observation accuracy and can often
times be eliminated with calibration or changing measurement scheme. Noise is a kind
of random error, in which the measured value fluctuates and it be statistically quantified.
Drift describes how measurements, in the long-term, can ”move away” from the real value.
Drift can be caused by sensor decay or integration of sensor data. Bias is simply an offset,
eg. if a device is lying flat on a table and showing anything other than ( 0, 0, −9.80665m/s2 ).
Common techniques to aid these errors are various filters commonly used in signal pro-
cessing. Low-pass, high pass, moving-average for general signal smoothing and compli-
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mentary, Madgewick, Kalman and particle filters.

Popular filters that can be used in sensor fusion, often used in digital signal processing:

• Madgwick filter - Madgwick et al. [54] produced a fusion algorithm that matches
the Kalman filter in accuracy, while using lower computational loads and sensor
frequencies.

• Particle filter - More computationally expensive and Moudlable, can perform better
than the Kalman filter in non-linear systems.

• Kalman filter - Optimal in a linear system with Gaussian noise. Can provide good
results in non-linear systems.

• Extended Kalman filter - De-facto standard in non-linear state estimation. Uses the
derivatives found in the Jacobian to estimate state.

• Complimentary filter - Basic filter for the gyroscope and accelerometer -* to remove
drift, as demonstrated in Figure 3.1.

2.5 Rotational representation

There are several ways to define a rotation in 3D space. Euler angles, rotation vectors,
rotation matrix and quaternions all provide valid representations of a rotation. The indi-
vidual attributes dictate which representation that is the most sensible for a problem.
Following Eulers rotation theorem a 3D coordinate system can be described as a single
rotation about some axis, which is uniquely describred by a minimum of three parameters.

Euler Angles: any orientation can be obtained by combining three rotations about each
of the three axis in the coordinate system. Euler angles are easy for humans to interpret
but has some disadvantages. Most systems use the right hand rule and counter-clockwise
rotations when defining a reference system. Many other systems exist in which the order
multiplication varies.

Axis Angle: Also known as axis-angle representation. Relies on Eulers rotational
theorem to show that any sequence of rotations in 3d space can be expressed as a single
rotation around a single axis, and becomes Θ = θe.

Quaternions are generally represented as q = qxi + qyj + qzk + qw, often viewed as
an extension of the complex number system. In a quaternion number system, i, j,k satisfy
the constraint

i2 = j2 + k2 = ijk = −1 (2.15)

A number of identities makes quaternions suitable to represent spatial rotations, mainly
efficient multiplication and spherical interpolation (SLERP). Applying Eulers Theorem a
quaternion can represent a spatial rotation and will have the form found in ??.
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Representation Mathematical expression

Axis-Angle r = Θe

Rotational Quaternion q = cos(Θ
2 ) + (exi + eyj + ezk) sin(Θ

2 )

Rotation matrix about the Z-axis Rz =

[
cos(Θ) −sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1

]
Table 2.3: Overview of common rotational representations. e represents a unit vector.

2.6 Coordinate systems, reference frames and transfor-
mations

Coordinate systems, reference frames and transformations are heavily used in navigation,
computer graphics, game development, physics, mapping and control theory. Applications
in which different sensors and different platforms are used, need a way to unify observa-
tions. We say that data is observed in a specific frame, therefore we need to understand
various coordinate frames. A frame is a orthonormal basis, that is, a set of three perpendic-
ular vectors of length one. Mathematically speaking, this basis define a space. A rotation
applied to specific reference frame is called an orientation.

The following section explains relevant concepts for this work.

• Extrinsice rotation - A rotation in relation to a fixed, often global, coordinate sys-
tem.

• Intrinsice rotation - A rotation in relation the the rigid bodt itself. It follows that
The intrinsic rotation is the inverse of the extrinsic rotation.

• Geodetic frame - Global reference frame used extensively in geodesy and naviga-
tion for precise locations on the earth, which is composed of a vertical and horizontal
datum. Several datum exist, most notably WGS84 which GPS uses. WGS84 hori-
zontal datum is latitude and longditude and vertical datum is height above or below
the ellipsoid. Coordinates expressed as (φ, λ, h).

• Earth-Centered Earth-fixe - Also known as ECEF or the geoncetrnic frame, is cen-
tered at the earth center of mass. The frame is defined by a orthonormal basis at
the center with coordinates expressed in Cartesian (x, y, z) and spins with the earth.
Reference directions are the equator, the prime meridian and true north.

• East-North-Up frame - A frequently used local frame, often chosen to simplify cal-
culations due to the magnitude of ECEF coordinates. Reference directions are de-
fined as North, East and Up following the right-hand rule.

• North-East-Down - Popular alternative to ENU. Chosen in applications where ob-
jects tend to reside above ground. Two axis are flipped in this configuration, accord-
ing to the right-hand rule.
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Figure 2.16: East North Up Axis.

2.7 Real-Time systems

A system is real-time if the required processing is completed in a given time constraint.
Any necessary processing is done in-between rendering of frames on a screen and the user
experience is not severely inhibited by processing or networking. Local and remote com-
puting time plus latency adds up to a time constraint in which the system must operate to
be regarded as real-time.
Originally, the client/server architecture of the web relied upon the client to initiate re-
quests to the server. Technological advancements have enabled transmission and stream-
ing of large sets of data quickly and efficiently over the internet. Mobile devices today
enjoy sophisticated cellular networks and the newest technologies for transferring data in
real-time over the web. In this work we consider two different means of communicating
bidirectionally in a client server architecture. Bi-directional communication implies com-
munication in both directions over a protocol layer on top of TCP/IP, which is the standard
protocol used by web clients and servers used for communication. Both are a defined in the
HTML standard which is currently maintained by Web Hypertext Application Technology
Working Group [85]

2.7.1 Polling

The polling technique was the first attempt to achieve real time communications. This
involved sending HTTP-requests frequently, to ”poll” to server for updates. If the update-
rate of the server is know beforehand, this can achieve a good result. However, high or low
server update scenarios are not optimal. In the case of low update rate, the server would
be large quantities of empty responses. In a high update scenario, the data might already
be out-dated upon arrival.
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2.7.2 Long-polling
Next step towards proper real-time communication. An extension of Polling, in which the
HTTP connection is held open for a set time frame if a response is not readily available.
Either the connection terminates with no response after the time runs out, or the server
responds. Long-polling ensures that the data is sent immediately after it is ready and
provides almost real-time communications in a asynchronous fashion. Scenarios with a
high data update rate that requires high volumes of requests, long-polling does not improve
upon ordinary polling.

2.7.3 Server-Sent Event
Server Sent Events is a stream-based API that allows for clients to receive pushed data
from a server. Both server and client must implement this event interface. The SSE relies
on streaming partial HTTP responses on a open HTTP connection, after accepting a SSE
initialization over a HTTP GET request. The server response with a HTTP Content-Type
= text/event-stream header. The client processes data through the EventSource javascript
API with a callback function. SSE works akin to a data-stream subscription, where the
client listents for events. SSE is a part of the HTML5 standard.

2.7.4 WebSockets
Persistent connections over the web has provided the current basis for real-time commu-
nications. Websockets was introduced in 2012 as the first protocol to offer bi-directional
data streaming. As a result, the websocket protocol is an independent TCP protocol, its
only relationship to HTTP being the initial handshake request. Default port is 80 for regu-
lar connections and port 443 for secure web socket (WSS). Here follows and excerpt from
page 9 of the protocol specification [24]:

Conceptually, WebSocket is really just a layer on top of
TCP that does the following:

o adds a web origin-based security model for browsers

o adds an addressing and protocol naming mechanism to
support multiple services on one port and multiple
host names on one IP address

o layers a framing mechanism on top of TCP to get back
to the IP packet mechanism that TCP is built on, but
without length limits

o includes an additional closing handshake in-band that
is designed to work in the presence of proxies and
other intermediaries
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Other than that, WebSocket adds nothing. Basically it is
intended to be as close to just exposing raw TCP to script
as possible given the constraints of the Web.

The performance of the different means of bi-directional client server communication
over the web has been thoroughly researched. Regarding the performance, [80] found that
the WS standard was superior to SSE + XHR in terms of speed. Other considerations, such
as networking configurations, browser support, optimized requests or application specific
needs may further favor one or the other technology. Because SSE is purely sent over
traditional HTTP, its feature set is richer by default. WebSockets also require a special
server implementation, giving it less freedom. Socket.IO4, which is a abstraction on top of
WebSockets, is also a very popular library on the web today. It provides transport fallback
for servers that do not support web sockets, among other things.

In any case, WebSockets are chosen as the preferred mean of bi-directional communi-
cation for this case, both because of performance and ease of implementation.

Figure 2.17: HTTP raw overhead against an echo endpoint [3].

4https://socket.io/
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3.1 Mobile Augmented Reality
Modern mobile devices are subject to ever improving hardware components that extend
their capabilities. Accompanying the devices, we find a wide range of applications, that
also increasingly utilize the potential of present-day, multi-sensor smart phone devices.

3.1.1 Tools for Mobile AR
Several companies produce and offer software development kits (SDK) for AR. Of the
most popular ones we find Wikitude1, Vuforia2, Kudan3 among many others. Their feature-
set are ever growing, and will probably merge into the AR . These trackers include func-
tionality as marker-based tracking, slam, cross-platform functionality. Object recognition,
image recognition, face recognition, IMU integration and more. These technologies are
proprietary and cost a considerable amount of money. Mainly focused on industry and
enterprise use. Qualcomm plays an important role as the manufacturer of the most popular
System on Chip for mobile phones, Snapdragon 4.

Of lower level SDKs for development and image processing, we find OpenCV, FastCV
and Point Cloud Library (PCL). OpenCV is a open-source, cross-platform library that is
recommended by the standards organization Khronos for CV, possibly it will its API will
become the standard for CV. The code base is in C++, while wrappers expose the library
to languages such as Python, Java and Matlab, giving flexibility and cross-platform fun-
cionality
FastCV is a CV SDK developed and maintained by Qualcomm. Although FastCV has a
sparser feature-set, their implementations are optimized for the mobile chips they produce.

1https://www.wikitude.com/
2https://www.vuforia.com/
3https://www.kudan.eu/
4https://www.statista.com/statistics/233415/global-market-share-of-applications-processor-suppliers/
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As mathematical optimization plays an important role in estimation, mapping and local-
ization in AR, Ceres can provide tested and efficient algorithms for general optimization
problems. Ceres is a open-sourced, non-linear optimization library developed by Google
written in C++. Libraries such as OpenCV and PCL also provide similar algorithms.

3.1.2 Head-Mounted Display

Mobile Augmented Reality have been around for a long time, but mostly in the defense
industry [5]. These are optical displays worn on the head or as part of a helmet. We
regard to types of tracking for HMDs, inside-out tracking and outside-in tracking. A in-
side out system registers pose by means of internal sensors on the device, yielding better
pose estimates. Outside-in tracking however, applies markers onto the HMD of interest to
track and estimates 6dof by a external system. This type of tracking is limited due to a
static external observations system with a limited field of view. Modern HMD such as the
Magic Leap5 or Microsoft HoloLens6 use inside-out tracking. A disadvantage is the com-
putational load this puts on the system, especially in previously un-mapped environments,
requiring dedicated hardware or offloading computing over a network.

3.1.3 GPU acceleration on mobile systems

Parallel computing is often applied to offload computationally heavy tasks from the CPU
to the GPU or other type of dedicated hardware. In general, GPUs are optimized for cer-
tain computational tasks, such as rendering graphics. The CPU has fewer cores and solves
tasks sequentially, while the GPU contains more cores to efficiently compute massive cal-
culations in parallel. Genereal purpose computing on mobile GPUs (GPGPU) is possible
using graphics APIs such a OpenGL ES, OpenCL, CUDA for Nvidia architectures, An-
droid native RenderScript or iOS native Metal. GPGPU optimized mobile systems have
been shown to increase algorithmic performance [84]. As AR inherently involves image
data, some tasks, such as feature extraction or matching, may be offloaded to the GPU for
increased framerates. Hardware accelerated computer vision and neural networks is in the
works with the OpenVX standard. Qualcomm aims to provide optimized chipsets for CV
tasks in the future, where dedicated hardware can accelerate mobile capabilities7.

3.1.4 Mobile sensor fusion

Achieving a reliable estimation for the device orientation is not an easy task. A mobile
device is equipped with several sensors, many of which can be combined to eliminate
sensor bias. Indoor navigation, autonomous vehicles, GPS/GNSS and other areas of signal
processing heavily use sensor fusion for modelling the environment or process of interest.
Traditionally a filter-based approach is used for estimating system state from multiple
sensor readings.

5https://www.magicleap.com/
6https://www.microsoft.com/en-us/hololens
7https://www.qualcomm.com/products/snapdragon-xr1-platform
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Figure 3.1: Fusion of gyroscope and magnetometer for improved sensor readings using a compli-
mentary filter [48]

Gośliński et al. [32] conducted experiments comparing different algorithms for An-
droid orientation estimation, including both the Extended Kalman Filter (EKF) and the
Adaptive Extended Kalman Filter (AEKF) on sensor readings. Using a industrial rated
orientation sensor, the Xsens MTi orientation sensors, for a truthful reference point the
estimates was mapped onto the same reference for comparison. The experiments showed
that orientation can precisely estimated using EKF and AEKF based algorithms on raw
acceleration, magnetometer and gyroscope data. CPU and battery usage was found negli-
gible for the incorporation of this estimation process on a modern mobile phone running
Android.

Figure 3.2: Estimation process used by Gośliński et al. [32]

Other work such as Piao and Kim [67] have also adapted the front-end of ORB-SLAM
[59] to tightly-couple IMU readings to the VO system. Qin et al. [69] applied both loosely
and tightly coupled approaches in their system. The loosely coupled system was used to
initalize the system, recovering scale, bias, gravity and velocity estimates. After initializa-
tion a tightly coupled system kicked in, providing high-accuracy, robust state estimation.
The authers went with a Bundle Adjustment problem formulation instead of EKF.
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3.1.5 Mobile Pose tracking
Estimating mobile pose is a key task in mobile augmented reality systems, and has been
extensively researched in the field of computer vision, robotics and autonomous systems.
As the computing power, mobile network capabilities and sensors in smartphones improve,
more and more of the traditional computer vision techniques gets available on the smarth-
phone platform.

Schall et al. [75] developed a MAR platform consisting of a ultra-mobile process-
ing unit (UMPC), IMU, GPS, barometer and a camera all mounted together on a mobile
platform. Multi-sensor fusion was performed in real-time. A online modem supplied
networking capabilities such as online corrections for the RTK-GPS. Tracking is done as
2D-2D picture correspondence between the generated map and camera images, matching
with FAST [71] features and a 8x8 pixel normalized cross-correlation (NCC) matching.

Feature tracking is key for obtaining the relative orientation and position of a object and
the device. Traditional mobile tracking mainly use markers or delegating the heavy com-
puting tasks to a remote computer. Newer trends in tracking use either direct or feature-
based approaches, of which either can be dense or sparse. Matching is done either 3D-3D,
3D-2D, 2D-2D accordingly.

Earlier approaches relied heavily on detection of features such as edges [46] and con-
tours [65], but these efforts suffer from occlusion and cluttering. More recent approaches
use techniques such as key-point based tracking [33], where the tracking accuracy and
robustness are notably better. Due to high computational costs, this approach is does not
meet the real-time performance criteria of the mobile platform. Wagner [83] found success
modifying existing methods such as SIFT [52]and Ferns [64].

Figure 3.3: Pipeline of keypoint detection [83]

3.1.6 Global Localization SLAM
Ventura et al. [82] implemented a key-frame-based monocular SLAM with a mobile phone
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supported by a server-side map registration process for global localization. Key-frames are
supplied to the server by a client SLAM system. Upon arrival of new key-frames the server
registration is recomputed and a global estimate returned. The authors expand upon the
idea of loop closing. Instead of detecting overlaps in a single, local SLAM map, they are
interested in detecting overlap of the entire local map and a previously known, global 3D
map.
The client-side SLAM system is based on PTAM [47] and SIFT features, while improving
upon the initialization process using principles from [58]. Global points are represented as
the mean descriptor the corresponding feature on the server.
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Figure 3.4: Global pose estimation using offline key-frame registration [82]

Two different scenarios were tested, small-scale indoor and large-scale outdoor. In
the outdoor experiment, 10, 000m2 reconstruction generated a 3.9GB descriptor database.
Database partitioning based on the three different areas in the experiment, decided accord-
ing to client GPS readings. Initialization took on average 12.6 seconds and time-to-first-
localization was 5.3 seconds.
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3.1.7 Monocular visual-inertial odometry for Mobile Augmented Re-
ality

One of the earliest implementations of a visual, marker-less tracking systems running on
a mobile is [47], porting the PTAM system [45] to an Apple iPhone 3G. The authors used
two simultaneous threads, one to handle frame-to-frame tracking and camera registration,
while a background thread performed BA to optimize the map. Actively removing unnec-
essary key-frames and measurements was key for making it work at acceptable framerates
on a mobile phone. Other measures such as full-frame rotation estimation, due to lack of
native gyroscope, and reduced image resolution (240x320 px). While several limitations
were uncovered, Klein and W. Murray [47] proved that keyframe-based SLAM is feasible
on mobile phones, opening up future work for mobile tracking and mapping.

Leutenegger et al. [50] proposed a system that recently was open-sourced, named
OKVIS (Open Keyframe-based visual-inertial system). OKVIS uses Harris corners [34]
and BRISK descriptors [49], which are extracted along the IMU-generated gravity direc-
tion. The non-linear optimization process proposed demands significant computing times,
lowering its viability on mobile or embedded systems.

Figure 3.5: Original ORB-SLAM architecture [59]

VINS-mobile, based on [69] and earlier works of the same authors, propose a visual-
inertial navigation system based on monocular vision. Advantages of integrating IMU
measurements include stand-in motion tracking in circumstances where the visual part
fails, for instance low-texture areas, changing illumination or motion blur. Features such
as robust initialization, camera-IMU extrinsic calibration, online re-localization and pose
graph optimization, as well as pose graph reuse. Pose graph reuse enables the system to
save, load and merge local pose graphs. System state estimation is highly non-linear, so

35



Chapter 3. Related work

advanced non-linear optimization techniques is applied. In comparison to OKVIS [50],
which is more suited for stereo systems, VINS-mono is especially designed for mono
camera systems.

VINS-mobile is based on KLT sparse optical flow tracking using Good-Features-To-
Track, maintaining a minimum number of 100-300 uniformly distributed features per
image. RANSAC is applied with the fundamental matrix model of motion estimation.
Keyframe selection is based of two criteria, namely a constraint on average feature par-
allax between current image and latest keyframe. Secondly, rotational parallax can also
occur, but can be remedied with short-term Gyroscope data.

Figure 3.6: VINS-mono pipeline [51]

IMU pre-integration can be found in the appendix of the paper, and mainly involves
integrating the IMU sensor measurements in the time frame between images, assigning
each image a rotation, position and velocity, while continuously rep-proagating IMU new
measurements. Backend SLAM, namely the loop closing and pose graph optimization
is based on BRIEF descriptors from the keyframes and DBoW2 [29] for converting the
given description to a bag-of-word representation. Compared to OKVIS [50], VINS-mono
shows better performance and boasts more features.

Delmerico and Scaramuzza [19] tested state-of-the-art, publicly available, algorithms
from both loose/tight and filtering / optimization VIO pipelines. Several hardware plat-
forms were analyzed to discover per-frame processing time, CPU and memory load. Al-
though the study was performed with autonomous flying robots, their results have carry-
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Figure 3.7: Adaptive flowchart execution of [67]

over value to mobile applications due to similar computing constraints.

3.1.8 State-of-the-Art Mobile SLAM

Most noteworthy break-through came with PTAM Klein and W. Murray [47], the first
case of simultaneous tracking and mapping on a mobile device, using different threads.
The tracking thread was responsible for finding features, updating the map and drawing
graphics. Map updates is delegated to a second, parallel thread, which waits for new
keyframes, adds points to the map while optimizing and maintaining the map.

Mur-Artal et al. [59] developed a ORB-SLAM, a feature-based, real-time SLAM sys-
tem for monocular devices, later expanded to support RGB-D and stereo cameras, loop-
closing and re-localizing in [60]. ORB-SLAM open-sourced, making it a very popular
choice for researchers in many different fields. Three parallel threads are utilized, expand-
ing upon PTAM [47]. Tracking and mapping is implemented using ORB features [72]
features in two different threads and bag-of-words place recognition [29] for efficient re-
localization and loop closure in the third thread. Key-frames are generously kept according
to a survival of the fittest approach, while being efficiently discarded if unwanted.

Engel et al. [20] is a direct and sparse method for VO, i.e. it does not rely on feature
detectio and tracking. This approach have been extended to include pose graph optimiza-
tion, loop closure and IMU integration. This approach is not intended for mobile phones.
Requires photometric calibration and a good lens. From the same authors we also have
LSD-SLAM [21], Large-Scale Direct SLAM, is a direct method based on mapping by
depth estimation and minimazation of photometric error. LSD-Slam has been developed
for mobile as MobileSLAM 8 running realtime with 30fps.

8https://github.com/xorthat/MobileSLAM
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[27] proposes a half-way solution between direct and indirect methods, mainly aimed
at drones. It uses both image intensities and features to improve performance. SVO 2.0
improves upon the existing [28] by using edge tracking together with features to improve
tracking in textureless environments.

An adaptive method developed by Piao and Kim [67] utilize different tracking modules
according to observations have been found to increase accuracy. The authors implemented
fast optical-flow-based fast VO module and a adaptive policy, while integrating it with the
existing VIO system ORB-SLAM[59]. If the number of key-points tracked in the previous
frame is adequate and the IMU change in velocity, rotation and position since the last
frame is small since the last frame.

3.1.9 CNNs for pose estimation

The 2015 study PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relo-
calization [42] proposed a deep neural network for monocular cameras to estimate 6DoF
pose. Using GoogLeNet as a basis for the pose regression network, the system achieves
real-time performance of 20fps and localization error of approximately 2m and 3 degrees
for large scale, outdoor scenes and 0.5m and 5 degrees accuracy indoors. The authors also
found that context and field of view was more important than image resolution for relo-
calization based on monocular images. The neural net inputs down-scaled 224x224 pixel
images and regresses the cameras 6DoF pose relative to a scene. This is done by learning
high-level local features that in many cases are more robust to illumination change, motion
blur and changing weather. As an example, they show that blurring a landmark increase
apparent contour size, making the system believe it is closer. For the paper the authors
released a urban localization dataset Cambridge Landmarks, consisting of 5 scenes. The
dataset was created with traditional SfM techniques. PoseNet is the state-of-art pose esti-
mation based on Deep Learning.
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Figure 3.8: PoseNet overview [42]

3.1.10 Depth from motion

Some MAR systems, such as the now abandoned Google Tango devices or the Iphone X,
come with depth sensors, while other devices can be extended with additional hardware
9. These systems use expensive hardware and is not as easily scalable as depth-estimation
from monocular cameras readily available in millions of devices already on the market
today.

Believable AR experiences relies on consistent and robust augmentations. Interacting
realistically with the environment requires precise occlusion of virtual objects. A pre-
requisite for this is a depth map, either by a depth sensor or depth from motion. Extensive
research has been done on depth estimation from cameras in the field of 3D reconstruction,
computer vision, as well as deep learning. State-of-the-art research from Google [81],
showcasing keyframe-based, real-time, dense, depth estimation on a mobile phone using a
planar, bilateral solver (a keyframe selection strategy) on a single CPU core, can be used
to handle occlusion problems efficiently in the future. The system is also independent of
the underlying VIO or SLAM implementation. Other depth-estimators using deep neural
networks Godard et al. [31] and Kendall et al. [43] is outperformed by Valentin et al. [81],
as seen in 3.9.

9https://structure.io/
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Figure 3.9: Side-by-side comparison of depth estimation on the Middlesbury Stereo Dataset from
the Google team [81] paper.
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3.2 3D Visualization on the web
Many studies have been done on 3D visualization on the web. We find a two different
classes of visualization toolkits for 3D web applications, virtual globes and generic graph-
ics engines. The two differ mainly by the level of graphics abstractions and including GIS
tools. A large amount of virtual globes are aimed at 3D GIS applications, and naturally
bring a higher level of abstraction and useful GIS tools. Generic web 3D libraries bring a
lower level abstraction to WebGL.

3.2.1 Imperative 3D content
The emergence of HTML5 and WebGL sparked the development of many different 3D
web visualization libraries. 3D graphics on the web is more available than ever, libraries/API’s
such as Cesium.js 10, three.js 11, X3DOM 12, OSG.js13, WebGlGlobe14, Web World Wind
15 and Google Earth Engine 16 exist today to visualize a broad range of 3D geospatial data.

3.2.2 Declarative 3D content
Behr et al. [7] proposed a unified integration model between X3D and HTML, in a similar
manner that 2D graphics as SVG was integrated with HTML. Achieving a tight integra-
tion, an in-place, declarative, rendering of 3D content on the web that is standardized is
important to evolve and improve HTML. [39] provides a introduction to the state of affairs
of integrating a 3D standard in HTML. X3DOM is still evolving [8].

Online virtual globe-style visualizations have also gained traction over the last years.
Google Earth was once the most popular virtual globe, but is since discontinued in favor
of Google Earth Engine (GEE). GEE leverages cloud-computing services and analysis
capabilities and can be regarded more of a remote sensing platform. A web-based code
editor can be used to access the GEE Javascript API.

NASA World Wind [9] started out as a C# based desktop application, but is today
extended onto Java desktop(2006), Android(2012), iOS(2013) and Javascript(2014) as
pointed out by [68]. Web World Wind is the web-based version, which is based on HTML5
and WebGl. NASA World Wind aims to bring large scale, geographical data and GIS
functionalities to the layman and to foster collaboration between scientists, developers
and other stakeholders.

Cesium virtual globe
Other smaller, open-sourced web globes include the OpenSceneGraph extension os-

gEarth and OpenWebGlobe. Further comparisons of the web globes can be found in [44].
10https://cesiumjs.org/
11https://threejs.org/
12https://www.x3dom.org/
13http://osgjs.org/
14https://experiments.withgoogle.com/chrome/globe
15https://worldwind.arc.nasa.gov/web/
16https://earthengine.google.com/
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Earlier web-based 3D visualizations such as [36], relied on plug-ins and java3D for
persistent and extended functionality in 3D web GIS.
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This chapter presents the Open Augmented Reality Cloud as a use case for Mobile Aug-
mented Reality and spatial computing. We will review the current state of AR-Cloud
vendors and look at the importance of non-proprietary, crowd-sourced AR-cloud. Several
issues arise, such as privacy, interoperability, research and development. We explore these
key issues in the next chapter.
An outline of some specific use cases that are imagined AR Cloud infrastructure and im-
proved positiong:

• Modelling of constructional or architectural components in a virtual environment
based on crowd-sourced point-cloud.

• Deviation of geospatial data. A crowd-sourced sparse point-cloud can be updated
far more frequently than remote sensing, areal imagery or advanced mobile mapping
units can. Geospatial data administrators and managers can find discrepancies in
their data.

• Reliable data source for emergency response vehicles.

• Spatial queries of semantically categorized features.

Figure 4.1: Newly established Open Augmented Reality Cloud organization 1
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• Aid any kind of visual-mapping system on various autonomous robots such as UAV’s,
cars or robots.

4.1 Current state of the AR-Cloud ecosystem
An increasing amount of AR organizations realize that cloud infrastructure is required to
succeed with adoption of both developers and consumers of AR content and AR-driven
applications. Since Ori Inbar coined the term AR Cloud [38], the concept has gained a lot
of attention. Major players such as Apple have publicly stated their interest in succeed-
ing and becoming market leaders in Mobile AR. Although Google scrapped their Tango
project, most of the tech is retained on their ARCore platform. AR as a whole is widely
regarded as a disruptive technology, impacting the core of how we access and share infor-
mation. The capital that is being moved into the AR space is significant, with the latest
reports valuing the total AR market at over 10 billion USD2.

4.2 Interoperability and standards
Interoperability is the degree to which two or more systems can usefully exchange mean-
ingful information via interfaces in a particular context. As a consequence of interop-
erability, systems can exchange syntactic and semantically meaningful information in a
certain context.

In the context of AR, [66] defines Open and Interoperable AR as:

Complete end-to-end systems in which
modular components can be supplied
by multiple vendors and still have the
same workflow and experience quality

Open and interoperable AR provides many benefits. As with ordinary data interoper-
ability, it increases a users discovery, sharing and consuming of AR data

Some work has been done to gather enterprise AR technology such as The Augmented
Reality for Enterprise Alliance (AREA) 3. Founded in 2013, AREA is a global non-profit
organization to help enterprises maximize the impact of AR by sharing resources, research,
dialogue, guiding adoption and clearing the path for interoperable AR-enabled enterprise
systems. Architectural proposals such as [74]
One of tha major challenges of AR aand VR has been the lack of standards for hardware,
software and interfaces. Several SDO’s (Standards Development Organizations) work on
specifications for AR, 4.1 gives an overview of the standards landscape of AR.

A recent report on the interoperability challenges we find in AR can be found in [66].
Several areas of potential for interoperability is recognized, and is highly relevant for the

1https://www.openarcloud.org/
2https://www.marketsandmarkets.com/PressReleases/augmented-reality-virtual-reality.asp
3http://thearea.org/
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Name Governing Body
KML OGC

Web Map Service OGC
GML OGC

GeoLocation API W3C
GeoRSS GeoRSS

GeoJSON
RFC5870 IETF

Table 4.1: Location standards

Name Governing Body
SensorML OGC

Sensor Observation Service OGC
Device Motion Event Specification W3C

Device Orientation Event Specification W3C

Table 4.2: Sensor API on the web

Open AR Cloud. Although this reports is focused on enterprise AR, many points are
highly valid.

Camera Calibration - Cameras is the most important sensor of any AR system, regard-
less of platform. Detecting and tracking the user pose is done mainly through visual input.
Interoperable AR needs a generic pose metadata that can be used by a standardized set of
systems and AR engines. Generic pose metadata is reliant on a vendor-neutral, camera
calibration process and a way of encoding this data. All AR engine should require their
developers to include this camera calibration process. Photometric calibration is also an
issue, as errors amount quicker with uncalibrated cameras. However, online calibration is
both possible for photometric and geometric calibration of cameras [10] is made possible,
a huge win for direct methods.
Interfaces for Vision-Based Tracking Components - Vision-based tracking is highly depen-
dant on optimized algorithms. As a result of the diverse set of AR-platforms, there will
never be a single CV-algorithm to standardize across. However, the field of AR would
benefit form interfaces between AR execution engines and the tracking algorithms.

Khronos group - The Khronos Group develop royalty-free open standards for 3D
graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks, and Vi-
sion Processing. A handful standards are especially relevant for Augmented Reality. Fur-
ther relevant standards for AR can be found in 4.3. The following five standards aim to
provide performance, power and portability to AR, while reducing platform fragmenta-
tion. Khronos standard adopters must pass conformance tests defined by Khronos to be
formally compliant to a specification. conformant products and their vendors can be found
online 5

Open Geospatial Consortium - The Open Geospatial Consortium is a non-profit orga-
nization dedicated to developing open specifications for geospatial services and technolo-

5https://www.khronos.org/conformance/adopters/conformant-products
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gies. OGC specifications is primarily focused on interoperability, management, search,
delivery and presentation of geospatial data. Specifically for AR, OGC provide the Aug-
mented Reality Markup Language (ARML). Currently at version 2.0, it allows description
of virtual objects in a AR scene based on anchors, as well as interactions such as events.
ARML focuses on mapping georeferenced Points-of-Interest and their metadata, and map-
ping between POI content providers and the AR application. The specification itself bor-
rows heavily from other OGC standards such as KML and GML. The object model uses
concepts such as Features, Anchors and VisualAssets. Features alike to GML features with
accompanying anchors. Visual assets describe appearances of digital objects. The An-
chors describe location and spatial relationship between the real world, scene and virtual
object. Similar but independent specifications to ARML are MobAR from Open Mobile
Alliance and ARAF from ISO.

• glTF - GL Transmission Format, run-time asset delivery.

• WebGL - Javascript binding to OpenGL ES graphics API

• Vulkan - Next generation graphics API.

• OpenVX - Vision-based processing acceleration standard.

• OpenKCam - Low-level camera and sensor API (in progress).

• StreamInput - General-purpose framework for advanced sensor discovery (in progress).

glTf serves 3D scenes and models effectively and optimizes run-time processing of in-
teractive 3D applications. With a wide industry support, glTf is analogous to image JPEG
format6.
WebGL provides a hardware acceleration compliant graphics API for web browsers through
the HTML5 canvas element. Binding to OpenGL ES with Javascript, WebGL is responsi-
ble for bringing plugin-free 3D the web 7.

4.2.1 Vulkan

Vulkan was released in 2016 and includes a high-efficiency, platform-agnostic graphics
API, that handles a wider array of platforms compared to OpenGL. Whereas OpenGL
was designed mainly for heavy workstation and CPU work, Vulkan meets the demands
of modern platforms, such as mobile and embedded devices, as well as traditional PC’s.
Vulkan-based AR presentation systems will provide lower overhead, portability, low la-
tency and predictable performance, as is recognized as critical for AR. Vulkan can be
regarded as a lower-level version of OpenGL.

6https://www.khronos.org/gltf/
7https://www.khronos.org/webgl/
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4.2.2 OpenVX
OpenVX was developed to accelerate computer vision and neural networks, ushered by
the need of lower power consumption and high performance on a wide array of execu-
tion architectures. Specifically designed low-power, real-time and embedded systems, it
is ideal for mobile augmented reality. OpenVX uses a graph as its algorithmic pipeline,
consisting of language-angostic nodes. Each node is an instance of a CV function (eg.
KLT Optical Flow implementation), typically provided by the hardware vendor. As such,
a vendor supplies a OpenVX implementation for its The node contains data references,
return values and performance information. The API aims for efficient transfer of execu-
tion nodes between CPU and GPU. User-defined nodes, unlike standard vendor-defined
nodes, can also be developed under certain restrictions. User-defined nodes are necessary
to create advanced CV applications using OpenVX, as the core function set is small. This
framework gives OpenVX flexibility that supports optimization of performance and power
consumption. Currently, there is not yet a OpenVX implementation supplied for Qual-
comms Snapdragon chips, which are commonly found in Android smarthphones. While
OpenVX have overlapping functionality with OpenCV, they are complimentary to each
other. OpenCV is a de-facto standard and a open library for CV algorithms, developed
and maintained by the community without any formal specification. OpenVX is a more
optimized, fully specified and narrower API. A neural network extenson to OpenVX was
introduced in 2018.

Figure 4.2: Khronos OpenVX Graph

4.2.3 StreamInput and OpenKCam
StreamInput aims for a general, low-level, cross-platform advanced sensor API. It should
provide sensor discovery and sensor synchronization for advanced multi-sensor applica-
tions such as mobile AR. Uses standardized UST timestamps on every sensor reading,
simplifying fusion processes. StreamInput also proposes Context awareness in the API,
enabling developers and vendors to query the device contextual queries such as ”am i in a
car” or ”am i in a hand or a pocket”.
OpenKCam is intended as a open standard for low-level control of mobile and embedded
cameras. Proposed by the Khronos group in 2013, it highlights uses-cases such as Image
Signal Process control (ISP), rolling shutter elimination, camera parameter retrieval and
motion sensor synchronization with StreamInput are highly relevant for Augmented real-
ity. The ISP can offload Together with OpenVX, these standards can be used together for
enabling a interoperable AR future. Both standards are not yet fully specified.
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Figure 4.3: OpenVX Framework

4.2.4 OpenXR
The AR and VR industry is highly fragemented. Proprietary solutions induce costs to
port applications from one run-time platform to another. OpenXR is a application-facing
API for and VR, proposed by Khronos at SIGGRAPH 2018. Initially more focused on
VR games standardization, it hopefully can be extended to AR applications running on
different AR engines in the future.

8

4.2.5 Visual Positioning standards
The primary constraint of visual positioning is a map of distinct features. such features
originate from different sources, such as 2D images, 3D point clouds, RGB-D images
and more. Many different platforms supply these images such as mobile phones, robots,
UAV’s and other devices. Fantasmo.io plans to open-source its Camera Positioning Stan-
dard9 (C.P.S.), hoping to unify the next generation of 3D spatial mapping. Built on open
and interoperable principles, C.P.S. supplies a general feature-based map and infrastruc-
ture for data exchange on common CV platforms.

4.2.6 Social implications
Mobile systems are particularly exposed to societal acceptance issues, as the use cases
often arise in social settings. Interactions with AR applications disrupting in the public
space, especially so in small-scale areas such as public transport or at a shopping street.
Researchers have found that interaction with AR systems have to be subtle to be socially
acceptable [18]. Large-scale, outdoor smart phone AR interaction can possibly impose
negative social reactions, as the user interface requires one to point cameras at objects.
Safety concerns such as physical fatigue or reduced awareness arise when using MAR
systems. Physical intrusion imposed on others while holding a smart phone continuously
and over long stretches of time may cause social backlash.

9https://www.camerapositioning.io/about/

49



Chapter 4. Use-Case

4.3 AR Cloud Vendors
The following section contains an overview of vendors and technologies currently sup-
porting AR Cloud solutions or will in the near future. The vision being that all vendors
will participate in a open, interoperable and private cloud eco-system. Business use-case
heavily influences the approach from a technology point-of-view, furthermore most ven-
dors keep their solutions proprietary and only available through APIs and SDK’s.

We only regard vendors based on marker-less methods, as it is most relevant for the
OARC.

4.3.1 AR Cloud solutions
This section provides a brief review of business attempting to innovate with regards to the
AR Cloud and Mobile AR in general. As most of the tech is proprietary, it is very limited
what we know of technical details surrounding their solutions. A summary and reference
is provided for each vendor.

4.3.2 Google ARCore
Have introduced their own process named Concurrent Odometry and Mapping, similar
to SLAM. Google keeps this tech proprietary and patented, and the patent reveals that it
utilized traditional SLAM with IMU integration. Recently announced ”Cloud Anchors” in
an attempt to enabling multi user experiences. These anchors are generated in the cloud on
Google servers, but require a pre-scan of a user that wants to resolve an anchor for others
to use. Other users need to relocalize in that space, that is, point cloud matching.

4.3.3 Apple ARKit
Apple recently acquired Metaio and FlyBy Media, strengthening Apples tech in SLAM/VO,
sensor fusion, 3D tracking and image recognition. ARKit 2.0, released in June 2018, in-
cludes support for the ARWorldMap. The ARWorldMap supports saving and sharing an-
chors, objects and maps, through iOs peer-to-peer framework MultipeerConnectivity.
Other features of ARKit 2.0 is object detection and tracking. Developers can supply ARKit
features describing a given object, and ARKit can in turn track this object. Improved envi-
ronmental texturing with a trained neural network and a new AR 3D object format, USDZ,
also appear in the feature list. Apple takes AR seriously, showcasing that they are the cur-
rent market leaders on the AR mobile development platform.

• Immersal10 - Finnish startup for markerless, multi-user AR with a patent pending
visual positioning system. Expands upon ARKit and ARCore with their own AR
Cloud SDK.

• YouAR11 - Cross-platform, interoperable multi-user AR backed by a Global AR
Cloud database. Tech is based on monocular SLAM with environmental occlusion

10https://immersal.com/
11https://youar.io/
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tech, without the need for extra hardware. Persistence is hosted through Aama-
zon Web Services. Already showcased cross-platform, real-time AR interactivity
between ARCore and ARKit platforms.

• Placenote12 - Previously known as vertical.ai. Provdies a point cloud mapping and
localization persistent in the cloud. Small-scale

• Scape13 - London-based computer vision startup. Provids a AR cloud version of its
Visual Positioning Service and Vision Engine, with the goal of enable visual robots
to understand its surroundings. Currently live in select cities, Scapes tech lets you
query the Visual Engine with images and video to determine position in sub-cm
accuracy. Technology is proprietary, accessed through a SDK. Available on iOs,
Android and Unity platforms.

• 6D.ai14 - Based out the computer lab of Oxford University, 6d.ai have strong aca-
demic ties. Provides a SDK that currently is in beta, currently supporting iOs. On
device computing is done as much as possible, which is great for the privacy aspect.

• Bluevision labs15 - Recently acquired by the ridesharing company Lyft, as a part of
their autonomous vehicle ambitions.

• Project Whare - Newly unveiled project from Samsung. Aims at solving the persis-
tence and multi-user AR problem. Solution is compatible with ARKit and ARCore,
as well as Unity.

• Fantasmo.io16 - Open-sourced approach to map the world in a crowd-sourcing fash-
ion. Will release open standards and tools for capturing and mapping the world in
3D. Fantasmo relies on geo-referenced photos stored in the cloud and using their
proposed Camera Positioning Standard17 (C.P.S) to relocalize. C.P.S aims to be-
come the 6DoF equivalaent of GPS.

• Ubiquity618 -

• Niantic Real World Platform - Rcently acquired the startup Escher Reality 19. Aims
to help Niantic bring persistent, contextualized and semantic AR to its users. Heav-
ily focused on AR and geospatial games. Niantic calls it a world-scale persistent
state engine.

• Selerio.io 20 - Incorporates semantic meaning to their maps, aiming to solve smart
AR. By using neural networks in addition to SLAM, Selerio can infer contextual
meaning and depth prediction through a neural networks. Limited by having to
pre-map an area, and poor performance in large scenes.

12https://placenote.com/
13https://scape.io/
14https://www.6d.ai/
15https://www.bluevisionlabs.com/
16https://fantasmo.io/home
17https://www.camerapositioning.io/about/
18https://ubiquity6.com/
19http://www.escherreality.com/
20https://www.selerio.io/
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• Sturfee21 - Launched SDK with access to city-scale AR cloud services, currently
supporting 10 cities in the US.

4.4 5G and Edge computing

Physical infrastructure is important for the AR Cloud, given that the data must be trans-
mitted, processed in real-time, offload computing resources and re-localize many users at
once. New technological advancements in networking, such as the next generation mobile
network 5G and state of the art Edge Computing. In the literature there is overlap with
the term Fog Computing, which is a more generalized concept than Edge Computing. The
Open FogConsortium 22 defines it as

a system-level horizontal architecture that distributes resources and services of com-
puting, storage, control and networking anywhere along the continuum from Cloud to
Thing.

while The European Telecommunications Standards Institute defines Mobile Edge
Computing as

”offers IT service and cloud-computing capabilities at the edge of the mobile net-
work in an environment that is characterized by proximity, ultra-low latency, and high
bandwidth. Furthermore, it provides exposure to a real-time radio network and context
information.”

Edge computing brings the cloud ”closer” to the user, and is seen as the natural evo-
lution of mobile base stations. Edge servers bring computational resources and services
physically closer, drastically reducing latency. [77] showcases the use of Mobile Edge
Computing in a industry support Augmented Reality system. The authors developed a in-
termediate edge server that received compressed video and IMU data to track with a EKF
based approach. A remote operator would received the video and annotate still frames
which the edge server in turn Augmented matched and registered in 3D for the user. Total
end-to-end latency was 50 ms which can be further improved when 5G technology is fully
realized.

Next generation network technology, 5G, will have larger bandwidth and virtually no
latency, promising speeds 100 times faster than current 4G wireless networks. Once it is
implemented and new generation devices that supports it are on the market, 5G will pro-
vide the possibilities for AR, VR, IoT, autonomous vehicles and many other technologies.
ETSI are currently working on standardizing concept of Mobile Edge Computing (MEC)
[37].

5G and Edge computing are, along with AR, key emerging technologies that will com-
plement each other in the near future.

21https://sturfee.com/
22https://www.openfogconsortium.org/
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4.4.1 Privacy
The problem of privacy and security exist in any modern networked system in which sen-
sitive data is processed, as no system is 100% secure. Especially in visual system, large
amounts of data is captured and processed, and possibly held by third-party services. Coud
services are increasingly used compared to conventional in-house servers, providing stor-
age, computing and other services at demand. MAR applications rely on positional and
image data, while future collaborative MAR applications will expose even more data to
service vendors. Concerns are raised regarding trust [11], devices such as Google Glass
sparked the discussion on facial recognition capabilities of AR applications Acquisti et al.
[2]. Their research proposed openness, use limitation, purpose specification and collection
limitation as a general guideline framework to remedy the issue. Other approaches such
as Shu et al. [79], a system in which privacy disconsent could be expressed with hand
gestures. Edge computing can potentially prove to be a privacy hurdle as offloading high
definition images, video streams or sensor data to a Edge server exposes sensitive data.
Trusted Execution Environments, Public Key Infrastructure and encryption are some tac-
tics that can be utilized as proposed in [87].
Vendors in the AR Cloud space should strive for maximal on-device storage and comput-
ing, where possible. As Edge Computing matures, servers from the cloud-periphery will
hopefully provide services compliant privacy standards. The OARC aspire to uphold the
following core values 23.

• Be open, transparent and interoperable

• Be Guided by immutable values

• Use standards created by consensus of diverse active community

• Ensure authenticity and accountability via distributed data and technology

• Respect and protect the privacy and rights of individuals

• Preserve the real and intellectual property of creators

• Foster innovation and opportunity

• Incentivize users to generate data and content

• Comply with local and global rules and regulations

23 https://www.openarcloud.org/
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Chapter 5
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To solve the general problem of increased mobile localization accuracy through the use
of GPS/GNSS, inertial sensors and CV techniques, we propose a architecture for Android
based smartphones, using block diagrams. Additionally, the system design includes a
client/server based prototype for visualization of geographic pose provided by the Android
client. We do not propose to solve the whole pipeline with object detection, localization
and mapping. Rather, we want to showcase a real-time system for visualizing the pose of
a imagined client providing data to improve a part of the AR Cloud.

Section 5.1 shows the architecture of such system. The mobile client is intended to
run on different mobile platforms, capturing high definition images and video that can be
processed remotely to improve a global map and retrieve its improved positioning through
keyframe matches. The geopose client architecture can be found in Section 5.2.

5.1 Visualization client
The following sections shows how a translation from mobile sensor data, e.g. the geopose,
to the virtual, 3D environment on the browser. The goal is to visually orient and place
the mobile device precisely in the virtual environment. Using mathematical theory and
techniques we recognize a set of transformations to properly align a device in the virtual
environment to the corresponding real-world pose.

5.1.1 Choosing a Client library
We review three different WebGL based libraries to find the most suited for the geopose
visualization. The following table shows a analysis from previous work [70].

The Cesium application programming interface is rich and well-suited for solving
problems in the geospatial domain. At the core, Cesium resembles a generic graphics
engine. Layers such as renderer, scene and primitives compose the graphics stack. The
Cesium API consists of many functions to manipulate WebGL on a reasonably high level,
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5.1 Visualization client

Figure 5.1: Conceptual system of a visualization system for the AR Cloud

while also encapsulating a solid math module that includes vectors and matrix algebra.

A proper GIS 3D visualization includes terrain model. Cesium includes Ion, a cloud
based tile, imagery and terrain services based on free and open data. To access these ser-
vices, a free Cesium Ion account is needed. After signing up a Ion, an access token must be
retrieved and passed on to the Cesium.js implementation. The token gives access to data
residing on users cloud account. Several default dataset are available from the go, with
options to upload own data. We use the default world terrain. Cesium fuses several terrain
providers into a Quantized-mesh terrain tileset that is optimized from streaming over net-
works. A qunatized mesh is simply a multi-resolution quadtree pyramid of heightmaps.
Terrain resolution is varying, from 1-2m in England to 30m in the rest of Europe.

1 Cesium.Ion.defaultAccessToken = config.ionToken;
2 export const viewer = new Cesium.Viewer(’cesiumContainer’, {
3 terrainProvider: new Cesium.CesiumTerrainProvider({
4 url: Cesium.IonResource.fromAssetId(terrainId.WORLD_TERRAIN)
5 }),
6 timeline: false,
7 animation: true,
8 navigationHelpButton: false
9 });

Listing 5.1: Initialization of Terrain resource from Cesium Ion cloud services
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Figure 5.2: Block diagram of Mobile client device
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5.2 Geopose client - Android

Source Attribution
NZ 8m Digital
Elevation Model (2012)

LINZ -
Land Information New Zealand

Digital Elevation Model
(DEM) of Australia
derived from LiDAR 5
Metre Grid

Based on
Geoscience Australia material

LIDAR Composite DTM
- 1m & 2m

Environment Agency
copyright and/or database
right 2015. All rights reserved.

Digital Elevation Model
over Europe (EU-DEM)

Produced using Copernicus data
and information funded by
the European Union - EU-DEM layers

CGIAR SRTM CGIAR-CSI
GTOPO30, SRTM, and
National Elevation Dataset (NED)

Data available from
the U.S. Geological Survey

Table 5.1: Attributions of datasets used by Cesium Ion to generate the World Terrain.

Dependency Version
OpenCV w/ contrib 3.4.1

Socket.IO client 0.5.2
Google Gson 2.5.8

Table 5.2: Android client dependencies

The only dependency needed for the Cesium web visualization client itself is the
Socket.IO-client package, easily retrieved through the node package manager NPM1.

5.2 Geopose client - Android
OpenCV with the contributions module2 was imported as a native module dependency in
our project. Android allows native code (C++) to run and communicate with Java code.
Java Native Interface serves as a wrapper around the native code of OpenCV. This version
includes modules and extra features that are not yet added to the official OpenCV package.
Other dependencies except OpenCV are added normally through the Gradle build system
for Android Studio.

5.2.1 Android permissions
Firstly, the Android requires explicit access to use certain services such as networked
communication, camera location. A simple checkPermissions() on launch which

1https://www.npmjs.com/
2https://github.com/mainvooid/opencv-android-sdk-with-contrib
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loops through an array of permission ID’s, querying the the user for permissions that needs
to be granted. The Android Manifest.xml file, which contains essential information for the
system, also needs to have a declared tag for each permission.

5.2.2 Background services

Two backgroundservices are defined, a SensorService and a LocationService. Each runs
on its own thread in the background, where it continously listens for a change broadcast
by the Android Sensors API or Location API. Sensor readings can be intercepted in the
OnSensorChanged method and processed here. Due to the high frequency, we chose to
compute a running average of the synthetic TYPE ROTATION VECTOR over 0.5s to even
the readings 3.
The location service simply listens for changes in location that crosses a certain threshold.
Both services broadcast their readings further to the main thread, which holds the socket
connection. Braodcasting between threads is done with the Observer pattern implemented
with the LocalBroadcastmanager.

5.2.3 Android MainActivity

This class holds the Android Activity that is launched on start. In short, here is the Socket
client initialized and the OpenCV interface to the camera implemented. The socket itself
only needs the socket.io server URL and handlers for received socket events. Emitting
events is done by simple JSON strings constructed with the Gson Library4.

5.3 Server solution
A server is needed to update the visualization with real-time readings from the geopose
client and fetch high-accuracy height data from a remote API, as well as serving 3D con-
tent. Systems dependencies are listed in figure ??. The server environment chosen is
Node.JS, a JavaScript run-time environment based on Chromium V8 designed to execute
outside of the traditional browser. Node.JS is asynchronous, non-blocking and lightweight,
with loads of modules. We employ the http server framework Express to serve our files, as
a proxy and keep the websocket implementation. Promise based approach is a common
way to implement asycnhronous code that reads like synchronous code. A Promise is a
proxy value that might be fulfilled or rejected according to the response from the remote
service or request. Below is a server code snippet that intends to read a heightmap from
a remote service or file system, with a set bound in UTM coordinates. In our case, the
heightmap is hex encoded png with dimensions 500px by 500px. The ground sampling
distance is 1m, as seen in 5.3. Each asynchronous operation returns a Promise which
in turn executes .then(function()) when the promise resolves. img.scan() and
img.getPixelColor() is supplied by the jimp5 library.

3https://www.johndcook.com/blog/standarddeviation/
4https://github.com/google/gson
5https://www.npmjs.com/package/jimp
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Dependency Version
Express 4.16.14

MongoDB 3.1.10
Socket.Io 2.2.0

Jimp 0.6.0
proj4 2.5.0

Table 5.3: Dependencies in the server implementation

1 const getHeightGrid = (imagePath, west, south, east, north) => {
2 const promise = jimp.read(imagePath).then((img) => {
3 const grid = {
4 north,
5 east,
6 south,
7 west,
8 heights: [],
9 height: img.bitmap.height,

10 width: img.bitmap.width,
11 cellSizeEW: (east - west) / img.bitmap.width,
12 cellSizeNS: (north - south) / img.bitmap.height
13 };
14 img.scan(0, 0, grid.height, grid.width, (x, y) => {
15 const rgb = jimp.intToRGBA(img.getPixelColor(x, y));
16 grid.heights.push(rgbToHeight(rgb));
17 if (x === grid.width - 1 && y === grid.height - 1) {
18 console.log(’img scan complete’);
19 }
20 });
21 return grid;
22 });
23 return promise;
24 };

The height is computed by rgbToHeight which computes the height as from the
combined RGB values. The data is served from a WMS server, encoded as a .png image
file.

1 const rgbToHeight = (rgb) => {
2 const r = rgb.r * (2 ** 16);
3 const g = rgb.g * (2 ** 8);
4 const b = rgb.b * (2 ** 0);
5 return (wmsMaxHeight - wmsMinHeight) * ((r + g + b) / maxRgbAsNumber)

↪→ + wmsMinHeight;
6 };

5.3.1 Geodetic space to image pixel space

Bilinear interpolation is the natural extension of linear interpolation, in which linear in-
terpolation is performed both in the horizontal and vertical direction. Common areas of
application are computer vision and image processing.
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Figure 5.3: Heightmap from the WMS service. Green-like areas signify bodies of water with a
elevation value of 0.
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To be able to use the generated heightmap, we have to transform geodetic coordinates
to pixel coordinates. We firstly transform from Geodetic coordinates to the UTM map
projection plane. The library proj4.js6 provides a open-source implementation of common
coordinate system transformations. Proj4 requires source and target reference systems as a
coded WKT string with a EPSG coded reference system. A map projection to UTM zone
33N from the default WGS84:

1 const targetSrs = ’+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units
↪→ =m +no_defs’;

2 ...
3 const pUtm = proj4(targetSrs, {
4 x: p.lng,
5 y: p.lat
6 });

The resulting javascript object with key (x, y) is furthermore input into a function that
bilinearly interpolates the given (x, y) coordinate pair in the heightgrid. The following
code snippet shows the function that takes a geodetic coordinate pair and produces its
orthometric height according to the heightmap.

1 const getHeightFromLatLng = (lat, lng) => {
2 const gridPromise = getHeightGrid(imgPath, west, south, east, north)
3 .then(grid => {
4 const result = generate2DPoints([{
5 lat,
6 lng
7 }], proj4transformCode);
8 return generateHeightsForPointsFromGrid(result.utmPointArray,

↪→ grid, geoidHeight);
9 });

10 return gridPromise;
11 };

The generateHeightsForPointsFromGrid() function takes a pointArray,
grid and geoidHeight. Since we our visualization software use the WGS84 Ellipsoid
as the height reference to model the earth, we need ellipsoidal heights.

h = N +H (5.1)

Where h is the ellipsoidal height, g the geoidal seperation and H the orthometric height.
Furthermore, the bilinear interpolation step is done as following since we know the grid
cell length and the four corners (h0, hx, hy, hxy) the point (x, y) falls between, yielding

1 const bilinearInterpolation = (h0, hx, hy, hxy, x, y) =>
2 h0*(1 - x)*(1 - y) + hx*x*(1 - y) + hy*y*(1 - x) + hxy*x*y;

The combination of the preceding functions enable us to map Latitude and Longitude
to a high accuracy height.

6http://proj4js.org/
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Chapter 6
Experiment

In this chapter, we explore some approaches to visualize geographic pose in the Geopose
system explained in the previous chapter. For the experiment the following devices was
used. LG G6 smartphone, locally running server and a Cesium visualization client. Server
and visualization clients is running on MacBook Pro with a 2.8 GHzz Intel Core i7, Radeon
Pro 560 dedicated graphics and 16 GB of RAM running macOS High Sierra. Development
IDEs are Android Studio and WebStorm developed by JetBrains 1.

6.1 Camera calibration

We want to perform 3D-2D mapping between the camera frame and global frame. By
obtaining the camera intrinsics and distortion coefficients, pose recovery is made possible.
The coefficients camera matrix K, as defined in 2.1, are found by detecting a circle grid
pattern. which are needed for pose recovery. A camera-calibration program was developed
for Android, based on the OpenCV implementation. In calibration mode, the program calls
findCirclesGrid() on each frame, attempting to detect the grid. If detected, a col-
ored graph shows up on the screen, connecting the circle centers. Touching the screen will
save the circle centers to the CameraCalibrator class instance, which after sufficient
corner captures can be used to calculate the coefficients. 20 or more pattern detections
from different angles is sufficient, each capture supplies one equation. After calibration,
the user can verify the result by choosing a side-by-side view of original and undistorted
images.

The Camera calibration can be improved by removing outliers from the source images
used in the calibration. As we have implemented a phone-based calibration, this option
is not available. An alternative could be using desktop environment a implementation in
Matlab or OpenCV, which can provide greater flexibility.

1https://www.jetbrains.com/
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Figure 6.1: Tracking the calibration board using the geopose calibration activity

Sensor Name Sampling rate Manufacturer Version
Accelerometer LGE Accelerometer ≈ 50MHz BOSCH 2062500

Gyroscope LGE Gyroscope ≈ 50MHz BOSCH 2062500
Magnometer LGE Magnometer ≈ 50MHz AKM 1

Rotation Vector LGE Rotation Vector Sensor ≈ 50MHz Qualcomm 2
Barometer BMP280 Pressure - BOSCH 1040300

Table 6.1: Details of LG G6 sensor capabilities

LG G6 Spec
CPU Qualcomm MSM8996pro
OS Android 8.0 Oreo, SDK level 26

Memory 4GB RAM
Display 5,44”, 1440x2703px
Camera 13MP (IMX258)

Table 6.2: Caption
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After a successfully calibrating the results read

K =

1755.984413656498 0 960
0 1755.984413656498 540
0 0 1


Distortion coefficients:

κ =


0.3192679200839998
−1.219662462985774

0
0
0


A simplified system is proposed as a proof-of-concept, in which a marker-based ap-

proach is used in place of a off-line, pre-captured 3D point map and relocalization.
We start by downloading a free 3D COLLADA model to represent the a mobile phone. In
order to use it in Cesium, it is converted to glTf with an online tool2. Placed on the server,
it is immediately piped through a HTTP stream to the client when requested.

1 router.get(’/3dmodel/phone’, (req, res) => {
2 const model = fs.createReadStream(’src/data/phone.glb’);
3 model.pipe(res);
4 });router.get(’/3dmodel/cesiumMan’, (req, res) => {
5 const model = fs.createReadStream(’src/data/cesiumMan.glb’);
6 model.pipe(res);
7 });

Listing 6.1: HTTP End point on our local server

The .glb format is binary glTf, optimized for streaming over networks. Read- and
writestream lets us process the data as it arrives. In this case, its not necessary to process
the phone model. Piping read and write streams is a typical way of handling data with
Node.js. On the visualization client this data is read as a Promise which we wait for to
resolve by doing a .then(data => doSomething...) once its ready.

6.2 Approach 1 - IMU-based geopose
The first step here is aligning the two frames. As the model itself and the emitted geopose
quaternion are in different frames, they will appear wrong in the visualization. Because of
the non-commutative nature of quaternions, multiplication order matters.

• Establish local ENU frame - Transforms.eastNorthUpToFixedFrame()
supplied with a point returns a 4x4 transformation matrix which transforms from
ENU to ECEF.

To make quaternion multiplication a little easier we implemented a helper function to
find a quaternion rotation between two vectors. The formula is based on linear aglebra,
and results in a normalized rotational quaternion. The dot product between the vectors
yield an axis of rotation, and the magnitude the gives amount of radians to rotate.

2https://blackthread.io/gltf-converter/
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Figure 6.2: 3D models and their reference frames.

1 export const quaternionFromTo = (u, v) => {
2 const kCosTheta = Cartesian3.dot(u, v);
3 const k = Math.sqrt((Cartesian3.magnitude(u) ** 2) * (Cartesian3.

↪→ magnitude(v) ** 2));
4 let rotAxis = new Cartesian3();
5
6 if (kCosTheta / k === -1) {
7 rotAxis = Math.abs(u.x) > Math.abs(u.y)
8 ? new Cartesian3(-u.y, u.x, 0) : new Cartesian3(0, -u.z, u.y);
9 } else {

10 Cartesian3.cross(u, v, rotAxis);
11 }
12 const result = new Quaternion(rotAxis.x, rotAxis.y, rotAxis.z,

↪→ kCosTheta + k);
13 Quaternion.normalize(result, result);
14 return result;
15 };

Furthermore, we have to align the phone model to the correct intrinsic frame as re-
ported by Android studio, that is relative to the natural orientation of the screen when
its held upright with default screen orientation. The X axis points to the right hori-
zontally, the Y axis up, and the z axis completes the system by the right-hand rule.
The code snippet below shows the process of aligning the phone correctly to the lo-
cal ENU frame. q enu ecef is the transform from ENU to ECEF at the point we
are. Quaternion.multiply(q left, q right, destination) is the signa-
ture of the Quaternion multiplication function from the Cesium API.

1 // Phone realigned to Android sensors API frame
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2 const rot1 = quaternionFromTo(Cartesian3.UNIT_X, Cartesian3.UNIT_Z);
3 const rot2 = quaternionFromTo(Cartesian3.UNIT_Z, Cartesian3.UNIT_Y);
4 Quaternion.multiply(initPhoneOrientation, rot1, initPhoneOrientation);
5 Quaternion.multiply(initPhoneOrientation, rot2, initPhoneOrientation);
6 Quaternion.multiply(q_enu_ecef, initPhoneOrientation, phoneOrientation

↪→ );

An IMU-only based pose estimation yields geopose by combining the fused rotation
vector provided by the Android sensors API. The application receives sensor readings and
combines them with the location readings to construct a JSON object. Every sensor update
the geopose is emitted to the server, which further emits it to the visualization client.

6.3 Approach 2 - Marker based geopose
This test will have a more CV approach, by applying the camera calibration to extract
relative pose from fiducial markers. the idea is that relocalization is done through mark-
ers instead of keyframes. Immediately after a marker enters the view of the camera, the
app emits an event. The server then matches the marker ID to (lat, lng, h) coordinate
triplet. The snippet below shows how the server handles events. socket.on() implies
incoming event and io.emit() broadcasts a event.

1 socket.on(’tracking marker’, (data) => {
2 io.emit(’update pose’, data);
3 // Pass rotation and translation on to viewer
4 });
5 socket.on(’tracking changed’, data => {
6 const marker = JSON.parse(data);
7 console.log(’marker id: ’ + marker.id + ’, status: ’ + marker.

↪→ status);
8 if (marker.status === "gained tracking") {
9 getHeightFromLatLng(point.lat, point.lng)

10 .then(data => {
11 io.emit(’marker geolocation’, {
12 id: marker.id,
13 lat: data[0],
14 lng: data[1],
15 h: data[2]
16 })
17 })
18 .catch(err => console.log(err))
19 };
20
21 if (marker.status === "lost tracking") {
22 io.emit(’lost marker’, marker.id)
23 }
24 })

Listing 6.2: Server socket endpoints

We will use the Aruco markers [30] that were specially developed for AR applica-
tions to achieve this. A minimum dictionary of 3X3 bits and 50 total markers is chosen for
the largest inter-marker distance. This approach searches every incoming frame for mark-
ers, by detecting the corners. Images are analyzed by adaptive thresholding to segment
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each marker, and each potential marker contour is extracted from the image. Candidates
with contours that are very unlikely to be markers are discarded, after which the tracker
analyzes the inner codification. The perspective transformation from the camera calibra-
tion now enables us to extract black and white bits after perspective distortion is gone.
Now the bits are counted and matched to the given dictionary. all of this is done in the
detectMarkers() function of the Aruco implementation. The below code snippet
shows the meat in the Aruco tracker.

1 @Override
2 public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame

↪→ inputFrame) {
3 Mat img = inputFrame.rgba();
4 Imgproc.cvtColor(img, rgb, Imgproc.COLOR_RGBA2RGB);
5 img.copyTo(imgCopy);
6 ArrayList<Mat> corners = new ArrayList<>();
7 Mat ids = new Mat();
8 Scalar borderColor = new Scalar(0, 250, 0, 0);
9

10 Aruco.detectMarkers(rgb, dictionary, corners, ids);
11 if(corners.size() > 0) {
12 Aruco.drawDetectedMarkers(rgb, corners, ids, borderColor);
13 Aruco.estimatePoseSingleMarkers(corners, 0.05f, cameraMatrix,

↪→ distortionMatrix, rvecs, tvecs);
14 emitPose(ids);
15 drawMarkerAxis(ids, rgb, rvecs, tvecs, 0.05f);
16 updateTrackedMarkers(ids);
17 } else {
18 for (Marker m : trackedMarkers.values()){
19 String lostMarkerJson = Util.serializeMarker(m.getId(),

↪→ tvecs, rvecs, STATUS_LOST);
20 socket.emit("tracking changed", lostMarkerJson);
21 trackedMarkers.remove(m.getId());
22 }
23 }
24 return rgb;
25 }

Listing 6.3: Android client image pipeline

The application keeps track of which markers are in view at all times, and emitting
those relative poses through the socket. The transmitted tvecs and rvecs contains
vectors of the relative translation and rotation of each marker. The rotation is represented
by a quaternion.
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Figure 6.3: Detected Aruco Markers
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Chapter 7
Discussion and conclusion

Although AR Cloud solutions are receiving attention by established tech firms, start-ups
and the open-source community alike, it is far from being realized as one common ecosys-
tem in which different solutions interact seamlessly.

ARKit seems to deliver the most complete AR platform as per early 2019, with AR-
Core right behind. Start-ups will either succeed on their own or be acquired for their tech,
as Bluvision labs, Escher Reality or Metaio. In any case, AR Mobile tech moves fast and
nobody can really say what will happen in the future. Few would disagree that mobile AR
and the AR Cloud are at a similar stage as the internet was 30 years ago.

Pose estimation on a multi-sensor device such as a mobile phone is a advanced topic
that spans many areas of research. We have reviewed some of the core methods used in
state-of-the-art AR engines today, with the intentions of establishing a open-sourced alter-
native. More specifically, a system for real-time visualization of global poses provided by
mobile devices implemented for further research and development.
Relocalization within a prior point cloud is the one of the biggest issues concerning multi-
user and persistent Augmented Reality, mostly because of ambiguity and computational
cost.
The problem of scale ambiguity remains an issue for re-localizing within the AR cloud. In
the monocular case, there exists two ways to determine scale from images: by using the
dimension of some known objects or by moving the camera. Moving the camera includes
off-line keyframe matching, loop-closing, moving at a fixed height, or fusing data with
external sensors found in the IMU or GPS. Alternativly, external sensors such as a depth
camera or laser ranging can be used, but comes with a power, financial, storage and range
cost.

Much of the reviewed research stems from Robots and computer vision, where the core
problems of AR also are being handled. Classical Geographical Information Technology,
Computer Vision and Deep learning are now converging at the intersection some might
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call Spatial Computing. Spatial computing, combined with crowd-sourced data capturing,
might in the future produce a global 3D semantic map for devices to perceive, taking us
one step further into Hyper-reality.

Determining a state-of-the-art VIO/SLAM system for a open-source crowdsourced
mapping of the world is not easy. The research is only a demonstration of what is possi-
ble, often times done in extremely well-defined or constrained enviroments. As such it is
much left to do after deciding what kind of approach to take when designing such a sys-
tem. The devil is in the details, especially regarding the fine details of exactly how to keep
or discard keyframes, system initialization, relocalization and more. ORB-SLAM[59] and
LSD-SLAM[21] are probably the most suited foundations to build an more complete sys-
tem that can reconstruct the environment semi-densely. These two pipelines do not incor-
porate IMU readings by default, so one must look to variants such as OK-VIS [50] as well.
In the future we will se lots of possibilities with the emergence of MEC and 5G networks,
as well as improved sensors. Standards from Khronos that are especially suited for Mobile
AR is OpenKCam, OpenStream and OpenVX. Adoption of these standards could enable
developers to gain even more juice out of the hardware. In any case, monocular tracking
and mapping suffers from having only one camera, and will always be one step behind
stereo systems or systems with depth sensors.

We have also explored two simple ways of visualizing a real-world pose that we call
the geopose. Ideally, it should have be tested with several connected mobile clients at
once, all connecting to the same server. The Cesium viewer has a wide range of options
for visualizing error metrics or other data, that could be useful in future improvements to
the visualization client.
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HTML5/X3D Integration Model. Proceedings of the 14th International Conference
on 3D Web Technology 1 (212), 127–135.
URL http://portal.acm.org/citation.cfm?doid=1559764.
1559784%5Cnhttp://dl.acm.org/citation.cfm?id=1559764.
1559784

[8] Behr, J., Jung, Y., Franke, T., Sturm, T., 2012. Using Images and Explicit Binary
Container for Efficient and Incremental Delivery of Declarative 3D Scenes on the
Web. In: Proceedings of the 17th International Conference on 3D Web Technology.
Web3D ’12. ACM, New York, NY, USA, pp. 17–25.
URL http://doi.acm.org/10.1145/2338714.2338717

75

http://blog.arungupta.me/rest-vs-websocket-comparison-benchmarks/
https://doi.org/10.1162/pres.1997.6.4.355
http://portal.acm.org/citation.cfm?doid=1559764.1559784%5Cnhttp://dl.acm.org/citation.cfm?id=1559764.1559784
http://portal.acm.org/citation.cfm?doid=1559764.1559784%5Cnhttp://dl.acm.org/citation.cfm?id=1559764.1559784
http://portal.acm.org/citation.cfm?doid=1559764.1559784%5Cnhttp://dl.acm.org/citation.cfm?id=1559764.1559784
http://doi.acm.org/10.1145/2338714.2338717


[9] Bell, D. G., Kuehnel, F., Maxwell, C., Kim, R., Kasraie, K., Gaskins, T., Hogan, P.,
Coughlan, J., 2007. NASA World Wind: Opensource GIS for Mission Operations.
In: 2007 IEEE Aerospace Conference. pp. 1–9.

[10] Bergmann, P., Wang, R., Cremers, D., 2018. Online Photometric Calibration of Auto
Exposure Video for Realtime Visual Odometry and SLAM. IEEE Robotics and Au-
tomation Letters 3, 627–634.

[11] Bermejo, C., Huang, Z., Braud, T., Hui, P., 2017. When Augmented Reality meets
Big Data. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW). pp. 169–174.

[12] Calonder, M., Lepetit, V., Strecha, C., Fua, P., 9 2010. BRIEF: Binary Robust Inde-
pendent Elementary Features. Vol. 6314.

[13] Carmigniani, J., Furht, B., 2011. Augmented Reality: An Overview. In: Furht, B.
(Ed.), Handbook of Augmented Reality. Springer New York, New York, NY, pp. 3–
46.
URL https://doi.org/10.1007/978-1-4614-0064-6_1

[14] Caudell, T., Mizell, D., 2 1992. Augmented reality: An application of heads-up dis-
play technology to manual manufacturing processes. Vol. 2.

[15] Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P., 2017. Mobile Augmented Reality
Survey: From Where We Are to Where We Go. IEEE Access 5, 6917–6950.

[16] Cheng, Y., Maimone, M., Matthies, L., 2005. Visual odometry on the Mars Explo-
ration Rovers. In: 2005 IEEE International Conference on Systems, Man and Cyber-
netics. Vol. 1. pp. 903–910.

[17] Choi, S., Kim, T., Yu, W., 2009. Performance Evaluation of RANSAC Family. In:
BMVC.

[18] Costanza, E., Inverso, S., Pavlov, E., Allen, R., Maes, P., 1 2006. eye-q: eyeglass
peripheral display for subtle intimate notifications.

[19] Delmerico, J., Scaramuzza, D., 5 2018. A Benchmark Comparison of Monocular
Visual-Inertial Odometry Algorithms for Flying Robots.

[20] Engel, J., Koltun, V., Cremers, D., 2018. Direct Sparse Odometry. IEEE Transactions
on Pattern Analysis and Machine Intelligence 40, 611–625.
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[76] Schnädelbach, H., Koleva, B., Flintham, M., Fraser, M., Izadi, S., Chandler, P., Fos-
ter, M., Benford, S., Greenhalgh, C., Rodden, T., 2002. The augurscope: a mixed
reality interface for outdoors. In: CHI.

80

https://doi.org/10.1186/s40965-017-0016-5


[77] Schneider, M., Rambach, J., Stricker, D., 2017. Augmented reality based on edge
computing using the example of remote live support. In: 2017 IEEE International
Conference on Industrial Technology (ICIT). pp. 1277–1282.

[78] Shi, J., Tomasi, 1994. Good features to track. In: 1994 Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 593–600.

[79] Shu, J., Zheng, R., Hui, P., 10 2016. Cardea: Context-Aware Visual Privacy Protec-
tion from Pervasive Cameras.

[80] Słodziak, W., Nowak, Z., 2016. Performance Analysis of Web Systems Based on
XMLHttpRequest, Server-Sent Events and WebSocket. In: Grzech, A., Borzemski,
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