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Abstract

As the occurrence of extraordinary weather events such as major storms increases due to global

warming, it is important to include weather data to probabilistic reliability analysis methodologies.

To do so, a suitable model for implementing weather effects must be developed.

This thesis is based on the OPAL methodology and prototype which is an analytic contingency

enumeration method for meshed power systems. Contingencies are chosen based on the Minimal

Cut Set Method. First and second order transmission line outages are studied.

Two methods are developed to generate reliability indices from a time-series of hourly probabilities

of failure for transmission lines based on historic weather data and wind-related contingencies. The

aim of the methods is to reproduce results from a more complex benchmark method, while reducing

computational complexity and capturing failure bunching effects.

The first method is a three weather state approximate equations method. Thi is an extension of a

previously developed method which was based on a fictional case. This is altered and adapted to

handle historic failure data. The second method is a timestep method.Similar to the benchmark

method, the timestep method calculates unavailability at every hour of the input data-series. A

MATLAB implementation to calculate reliability indices, both with and without weather impact,

is developed as a part of this work.

The focus of the thesis is the effect on ENS when including weather. The studies show that

the approximate equations method is most suitable for the task. A deviation to the benchmark

method of 0.15 MWh/year is acheved for the system as a whole, and a deviation of 7-9% at cut

set level when only studying weather-related ENS. This corresponds to a deviation of 0.3-2 % at

each cut when including both weather and non-weather related ENS. The timestep method is not

suitable due to overestimation increasing with weather impact.



Sammendrag

Forekomsten av ekstraordinære værfenomener som ekstremvær og store stormer øker p̊a grunn av

global oppvarming. Derfor er det hensiktsmessig å inkludere værdata til probabilistiske p̊alitelighets-

analyse-metoder for elektriske kraftsystemer. For å gjøre det m̊a en egnet modell for å inkludere

værdata utvikles.

Denne masteroppgaven er basert p̊a OPAL- metodikken og prototypen, som er en analytisk p̊alitelighets-

analyse-metodikk. OPAL fokuserer p̊a utfallskombinasjoner som fører til avbrudd for elektriske

maskenett, ogs̊a kalt contingency enumeration approach. Utfallskombinasjonene er valgt basert p̊a

Minimal Cut Set-metoden. Første- og andreordens samtidige utfall er studert.

To metoder er utviklet for å generere p̊alitelighetsindekser fra en tidsserie best̊aende av sannsyn-

ligheten for feil for hver time p̊a overføringslinjer, basert p̊a historiske værdata og vindrelaterte

utfall. Målet med metodene er å reprodusere resultater fra en mer komplisert referansemetode,

samtidig som de skal redusere kompleksiteten i modellen og fange værrelaterte feil.

Den første metoden kalles the approximate equations method og er en tilnærmet matematisk modell

med tre værtilstander.

Metoden er en videreutvikling av en tidligere metode som var basert p̊a fiktive data, tilpasset

til å h̊andtere historiske feildata. Den andre metoden er kalt timestep-metoden. I likhet med

referansemetoden beregner timestep-metoden utilgjengelighet for hver time fra tidsserien med feil-

sannsynligheter. En MATLAB-implementering for å beregne p̊alitelighetsindekser, b̊ade med og

uten værp̊avirkning, utvikles som en del av dette arbeidet.

Målet med oppgaven er å modellere effekten p̊a ILE n̊ar værdata inkluderes. Resultatene viser

at the approximate equations method er mest egnet for form̊alet. Den avviker fra referansemeto-

den med 0,15 MWh/̊ar for systemet som en helhet, og har et avvik p̊a 7-9 % p̊a kuttesett-niv̊a n̊ar

en kun studerer værrelatert ILE. Dette tilsvarer et avvik p̊a 0.3-2 % ved hvert enkelt kuttesett n̊ar

det inkluderes b̊ade vær og ikke-værrelatert ILE. Timestep-metoden er ikke egnet p̊a grunn av en

økning i overestimering som følge av økt værp̊avirkning.
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1 Introduction

1.1 Background

Modern society is highly dependent on a secure and reliable power system. With the pressing issue

of reducing carbon emissions, critical infrastructure like transportation is becoming increasingly

dependent on electric power. Critical communications systems which society depends on, are also

dependent on energy supply. The increase in distributed generation and renewable energy sources

increases the complexity of the system. This results in the utilities being highly pressured to main-

tain a secure supply.

Power system reliability analysis is conventionally used in power system planning to predict inter-

ruptions of supply to end-users. This has commonly been conducted using the N-1 criterion. The

development of probabilistic reliability methodologies are on the rise, with international standards

being developed and improvement of methodologies being conducted. With increasing complexity

of the power system, rapid increase in computing power and increasing availability of sensor data

from the power grid, probabilistic methods are becoming easier to utilize.

Due to climate change the occurrence of extraordinary weather events and storms are on the

rise. This is a threat to the reliability of the power system. Implementation of weather data in

reliability analysis is therefore necessary to improve the accuracy of the indices. This will give a

more holistic and comprehensive impression of the necessary mitigation.

Several studies have been conducted and methods have been developed to implement weather data

in reliability analysis. However, these methods are either based on general cases not directly based

on historic weather data, like the two and three state weather model or highly input-data specific.

These data specific methods are not easily transferable to other cases and input data.

1.2 Scope of Thesis

The scope of this thesis is to develop and implement weather models for reliability analysis of power

systems using the OPAL Methodology. The models must handle an input time-series of hourly prob-

abilities of component failure based on historic wind-data and wind-related failure statistics. There
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are two main objectives with the weather models implementation. To study the models ability

at capture failure bunching and to reproduce the indices of a more computational extensive and

complex benchmark weather model by developing a weather model with reduced complexity.

The result of this thesis is a MATLAB implementation of the developed weather models and a

recommendation of the most suitable weather model for the cause.

1.3 Structure of Thesis

Section 2 contains the background and theory used in the work with this thesis. The weather

models are also presented here. Section 3 presents the input data-series used and the benchmark

model which is to be reproduced. The work conducted in the thesis is presented here, and so is

the structure of the developed MATLAB implementation. Section 4 presents and explains results.

Section 5 conducts further discussion on the reasoning behind the results and compares models. In

Section 6 the thesis is concluded and further work is presented.
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2 Background

2.1 Reliability Analysis

The reliability of a power system is a measure of its ability to cover all end-user demand of electric

power. The definition of reliability (in a bulk power electric system) from the North American

Electric Reliability Counsel (NERC) is the degree to which the performance of the elements of that

system results in power being delivered to consumers with accepted standards and in the amount

desired. This definition is used by CIGRE and IEEE in [9].

To supply electric power to customers the power system must be resilient and able to withstand

scheduled and unscheduled component outages and failures to avoid interruption of customer de-

mand. There are two important aspects of defining the reliability of a power system, adequacy and

security [2]. Adequacy is described as the systems ability to satisfy consumer demand and possess

adequate facilities to do so. The adequacy aspect is therefore considered a steady state reliability

assessment. Security is the systems ability to respond to dynamic disturbances within the system.

This includes transient instabilities caused by transition between states which is ignored in the

adequacy aspect. In this thesis only adequacy is considered.

Power system planning and operation to achieve a robust power system can be conducted by

deterministic or probabilistic methods. The deterministic approach, which is the most utilized by

transmission and distribution system operators (TSO/DSO) is the N-1 criterion. This approach

secures no interruption of consumer demand if one component in the power system experiences a

contingency. A contingency is an unscheduled failure of a major component in the system. If the

N-1 criterion is fulfilled, any one contingency can occur.

Probabilistic methods utilizes statistical theory and methods in decision making. The power system

has a stochastic behaviour which can not be perfectly predicted. However the behaviour can be

estimated using statistics of previous system behaviour to locate the components most probable to

experience contingencies. The methods can be used in both planning and operation of the power

system. In the planning segment, analysis can be conducted to locate the combination of contin-

gencies that cause demand interruptions and find the interruption magnitude. The results can be

used to optimize resources for mitigation of critical sections of the power system. This may reduce

the mitigation cost while increasing the reliability of the system. Probabilistic approaches can also
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account for simultaneous contingencies of several components, which gives a better overview of the

mitigation needs of the system as a whole. Planning methodologies are OPAL, MECORE, Sincal

and PowerFactory [3]. This is starting to be implemented by transmission system operators(TSO)

and international standards has recently been introduced [10].

Probabilistic reliability approaches can also be used in real-time operation of the power system.

By utilizing real-time data of demand, supply and external influence the most probable compo-

nent failure can be calculated in real-time and preventive measures to avoid load interruption

can be initialized. External influences that can be monitored is weather, temperature, vegetation

management, planned outages and expected repair time. By implementing probabilistic reliability

methodologies in real-time, preventive measures may be conducted to reduce or avoid consequences

related to contingencies. This has been studied in [11],[12]. However this is not possible to imple-

ment for all power grids with today’s technology. The necessary computations are too complex and

it will need an extent of real-time data input from sensors which does not exist today.

Reliability methodologies are commonly divided in two categories: Monte Carlo Simulations or

analytical methods. If utilizing Monte Carlo Simulation the power system behaviour can be repre-

sented through random sampling using a Monte Carlo algorithm. This can be a good representation

of the natural behaviour of the system, but is computationally extensive. Analytical methods rep-

resent the power system behaviour with a mathematical model where combinations of component

failures to study are chosen. There are two main approaches for choosing failure combinations in

analytical methods: state space enumeration method and contingency enumeration method. In

the state space method all states causing interruptions are studied, while in the contingency enu-

meration approach only critical contingencies causing interruption are studied. In this thesis an

analytical contingency enumeration methodology is used.

2.1.1 Hierarchical Levels

A realistic power system is large and complex. Analysis of the system as a whole is computation-

ally extensive and time consuming. Therefore it is helpful to define the analysis in hierarchical

levels(HL) as depicted in Figure 1. Level one includes generation facilities only and their capacity

to supply consumer demand. The second level includes transmission facilities. Here the combi-

nation of transmission and generation contingencies are studied. This is often referred to as the
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bulk transmission system. The third level also includes contingencies of components within the

distribution facilities.

Figure 1: Hierarchical levels [2]

The system does not only consist of generators, transmission- and distribution lines. It also includes

substations and substation components, interconnected tie-lines and protection systems. Reliability

assessments can be conducted including all or some of these components depending on wanted depth

and HL of the analysis [2]. In this thesis HLII studies are conducted.

2.2 Continuous Markov Process

The following section is based on [2], [3] and [13]. The continuous Markov process is a common

representation of the behaviour of the power system in reliability analysis. This is because it is

discrete in space and continuous in time. This means that a component in the system can only be

in one state at a given time. The component remains continuously in the specified state until a

transition takes the component to another discrete state. The system is represented as a stationary

Markov process which means the expected failure and repair of components are constant in a fixed

interval of time.

The conditional probability of failure and repair is considered constant, and the behaviour can

be represented as an exponential distribution. Independent components can then be represented
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by their failure and repair rate. A component is commonly represented by two possible discrete

states, up and down. In the up-state the component is functioning as required and in the down-

state the component has experienced a contingency and is in need of repair. The transition between

the states are represented by the failure rate and repair rate, denoted λ and µ respectively. This is

shown in Figure 2.

Figure 2: Two-state Markov model with the failure and repair process [3]

The transition rate of each component is calculated using statistics of previous component be-

haviour. This is conducted by calculating the mean time to failure (MTTF), mean time to repair

(MTTR) and the mean time between failures (MTBF) based on historical data. MTBF is the sum

of MTTF and MTTR. A component operation cycle is shown in Figure 3. A conceptual explanation

of a transition rate is the number of transitions from a specified state to another specified state in

a given time interval. This results in the failure rate λ = 1
MTTF and the repair rate µ = 1

MTTR ,

both with the unit failures/year. A mathematical proof of this is shown in [6].

Page 6 of 114



2. BACKGROUND Department of Electric Power Engineering

Figure 3: Component operations cycle [3]

The resultant probability of being in the up-state and down-state is shown in equation (1) and (2).

Pup =
µ

λ+ µ
Probability of up state (1)

P0down =
λ

λ+ µ
Probability of down state (2)

When one component is studied there are two possible states. If the system contain two compo-

nents the number of states are increased to four as shown in Figure 4 when component failures are

considered independent. A modern power system consists of hundreds of crucial components and

the number of states will be 2n with n components. Computing the probability of every possible

state in the system will require a huge amount of computations and have an inconveniently long

computational time. It is therefore beneficial to reduce the number of states evaluated. This will

be further discussed in Section 2.6.
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Figure 4: Two component state transition [2]

The following sections 2.3-2.8 are slightly altered sections taken from my project thesis [14].

2.3 Frequency and Duration Techniques

Frequency and duration of states are essential values when computing reliability indices. Frequency

is the number of times during a given time interval we encounter a specified state. This is calculated

in two ways, either with the basis of being in the state and then leaving it, or by being out of the

state and entering it. E.g the frequency of encountering the up state is [3]:

f = P1 · λ = (Probability of being in the state)·(rate of departure from the state) (3)

OR

f = P0 · µ = (Probability of not being in the state)·(rate of entry to the state) (4)

A common assumption used in most reliability studies is that MTTF equals MTBF. As the value

of MTTF is often in the range of months or years between the failure of a component, the average

repair time of a component is hours. This makes the average duration of the component being in

down-state significantly smaller than the average duration of the component being in the up-state.

The frequency of failure (f) then becomes approximate to the failure rate (λ) as shown in Equation
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(5).

MTBF = MTTF +MTTR

MTTF >> MTTR

MTBF ≈MTTF

1

f
≈ 1

λ

f ≈ λ

(5)

This assumption is used when calculating the unavailability (U) of a component or a minimal cut

set. U is the expected number of hours a component is unavailable for operation on an annual

basis. This means the expected number of hours per year a component or cut set is in down-state,

in outage and in need of repair. U is also called the annual interruption duration. U is the product

of expected number of failures in a given time period(f ≈ λ) and the average outage duration or

repair time of each failure (r) as shown in (6).

U = fr = λr [hours/year] (6)

Equations (1)-(4) and (6) are all for single component only.

2.4 Approximate Evaluation

To ease calculation for larger and more complex systems some approximations can be made. Com-

ponents can be combined to one equivalent component with equivalent parameters [13]. The ex-

pressions can also be somewhat reduced to ease computations. The approach is dependent on if

the system is considered in series or parallel.

2.4.1 Series Systems

If a system consists of two components the components are considered in series if the failure of

one component causes failure of the system. The series structure is shown in Figure 5. The two

component parameters are then combined to create equivalent parameters for the series system as
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a whole. The letter s is used to denote ”series”.

Figure 5: Series system

Probability of up-state for a two component system is:

Pup =
µ1µ2

(λ1 + µ1)(λ2 + µ2)
(7)

The probability of an equivalent one component system being in the up-state is:

Pup =
µs

λs + µs
(8)

Equivalent failure rate:

λs = λ1 + λ2 (9)

Because the probability of the up-state for the system and for one component must equal, the

resultant equivalent repair time is:

rs =
λ1r1 + λ2r2 + λ1λ2r1r2

λs
(10)

A common assumption is that λ1λ2r1r2 << λ1r1 and λ2r2 and can be neglected. The resultant

equivalent repair time is:

rs =
λ1r1 + λ2r2
λ1 + λ2

(11)
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2.4.2 Parallel Systems

For a two component parallel systems the failure of one component is not affected by the failure of

the other. This means that both components must fail for the system to fail. The letter p is used

to denote ”parallel”.

Figure 6: Parallel system

The probability of a two component system shown in Figure 4 being in the down state is:

Pdown =
λ1λ2

(λ1 + µ1)(λ2 + µ2)
(12)

When transforming two separate components to one equivalent component the probability of the

system being down is equal equation (2) as:

Pdown =
λp

λp + µp
(13)

Equivalent repair time:

rp =
1

µp
=

1

µ1 + µ2
=

r1r2
r1 + r2

(14)

The probability of the down-state for the equivalent component must be equal to the down state
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of the two component system:

λp
λp + µp

=
λ1λ2

(λ1 + µ1)(λ2 + µ2)
(15)

By substituting the equivalent repair time as µp = 1
rp

into equation (15) the resultant equivalent

failure rate is:

λp =
λ1λ2(r1 + r2)

1 + λ1r1 + λ2r2
(16)

It can be assumed that λ1r1 and λ2r2 is a lot smaller than unity. The resultant simplified failure

rate is:

λp = λ1λ2(r1 + r2) (17)

Parameters are usually implemented with the unit per year. If annual rates are desired the failure

rate expressions given above must be divided by 8760 to convert the unit to per year. This applies

to both the series and parallel system. This is due to the fact that the repair time has the unit of

hours and there is 8760 hours in one year.

2.5 OPAL Methodology

The OPAL Methodology is developed by SINTEF Energy Research and is a part of the SAMREL

methodology [3]. SAMREL combines a market analysis [15], a contingency analysis and a reliability

analysis. An OPAL prototype has been developed to perform the calculations of the contingency

and reliability aspects. There exists a MATLAB and a PSSE/Python version. In this thesis the

MATLAB version is used which is an implementation of the OPAL methodology consisting of a

MATPOWER contingency analysis together with a reliability analysis.

OPAL is based on the contingency enumeration approach and selects contingencies based on the

minimal cut set method. It is based on a continuous Markov process, frequency and duration

techniques and approximate evaluation. It seeks to combine a load model, reliability model and

cost model to produce delivery point reliability indices. The structure of the contingency enumer-

ation approach used by OPAL i shown in Figure 7. Section 1 and 2 in the figure constitutes the

contingency analysis and section 3 is the reliability analysis. The extent of the analysis defines the
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number of simultaneous contingencies studied, also called the depth of analysis, and which power

flow algorithm to be used. Operating states are defined as the system state for a given period of

time, characterized by the demand and generation composition [16]. The contingency list is cre-

ated, which is all possible combinations of component outages in the defined depth of the analysis.

However this can be altered to reduce the number of combinations in a large power system or if

something of special interest is to be studied. This can reduce the computational time significantly.

Figure 7: Flow chart of the contingency enumeration approach

The contingency list is run through an optimal power flow(OPF) algorithm to determine if any

constraints of the system is violated[17]. These constraint are dependent on if the power flow al-
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gorithm is AC or DC. Typical constraints are voltage or current restrictions, generation limits or

overloaded transmission lines. If constraints are violated, allowed remedial actions are taken to

keep the system within restriction bounds. If system constraints are still violated, one or more

delivery points will be interrupted. The interrupted delivery point will be chosen based on system

topology and the objective function of minimizing interruption cost. In OPAL an interruption is

defined as a situation when the total available capacity after the occurrence of a given contingency

is unable to match the load at the delivery point: [3]

P > SAC + LG (18)

Where P is the demand at the given load point, SAC is system available capacity and LG is local

generation [3].

When all contingencies and operating states are studied, the reliability indices are calculated. The

ones commonly used are interrupted power (Pinterr) energy not supplied (ENS), Unavailability (U)

and interruption cost(IC). These are only calculated for minimal cut sets that causes interruption.

Annual indices for each delivery point can also be calculated.

2.6 Minimal Cut Set Method

An essential task of an analytic reliability analysis based on the contingency enumeration approach

is the selection of contingencies to be modelled. In OPAL, the Minimum Cut Set Method is used.

A minimal cut set is a combination of failures that will cause load interruption if they occur, but no

subset of the minimal cut set will alone cause interruption [3]. The power system can be displayed

as a block diagram consisting of minimal cut sets as shown in Figure 8.
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Figure 8: Reliability model for a load point using minimal cut sets [3]

Each block is represented by an unique equivalent failure and repair rate. These are calculated

using the failure and repair rates for each component in the set based on equations from Section

2.4. The benefit of using the minimal cut set method is that the number of equations needed is

reduced. Instead of calculating every possible state combination, only the minimal cut sets are

used to calculate reliability indices. High order contingencies, which are several simultaneous con-

tingencies, have a small probability of occurrence and may be neglected in most cases without

large consequences for the calculated indices. If a cut set is denoted as first order, it contains a

single contingency. A second order minimal cut set contains two contingencies to cause interruption.

2.7 Reliability Indices

Reliability indices are the results of the reliability analysis. They are a representation of the

interruptions in the system and their severity. Reliability indices are calculated for every minimal

cut set that causes interruption, as described in Section 2.5. The indices can be calculated for each

interruption or as annual values. Annual indices for each delivery point can also be calculated.

The indices are calculated using the equivalent failure rate(λ), repair time(r) and unavailability(U)

calculated for each minimal cut based on equations from Section 2.3. Section 2.7.1 to 2.7.3 is taken

from my project thesis [14].
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2.7.1 Interrupted Power

Interrupted power is denoted Pinterr and is the negative margin when the available capacity cannot

match the load. The indicator is calculated for each delivery point and cut set. When annualized

it is calculated as:

Pinterr,j = λj(P − SACj − LG) [MW/interruption] (19)

Where j denotes the minimal cut set j, λj is equivalent failure rate, P is produced power, SAC is

system available capacity and LG is local generation.

2.7.2 Energy Not Supplied

Energy not supplied (ENS) is the indices in focus in this report. It is as the name implies an

indicator of energy not supplied at the delivery point in focus. It is calculated for each minimal

cut set at each delivery point and are normally determined on an annual basis.

ENSj = UjPinterr,j = λjrjPinterr,j [MWh/year] (20)

Where j denotes the minimal cut set j, λj is the equivalent failure rate, rj is equivalent repair time

and Pinterr is the interrupted power.

2.7.3 Interruption Cost

Interruption Cost (IC) is the cost of ENS for the customer and is calculated as annual values. It is

calculated for each minimal cut set, load point and operational state.

ICj = c(rj)ENSj [NOK/year] (21)

c(rj) is the cost of the customer as a function of the duration of the fault. The function c(rj) is

given as an input value in OPAL.
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2.7.4 Delivery Point Indices

To calculate delivery point indices the indices of every minimal cut set causing interrupted power

to the delivery point in focus is summed. This results in the annual indices for each delivery

point

Pinterr,a =

J∑
j=1

λjPinterr,j (22)

ENSa =
J∑
j=1

λjrjPinterr,j (23)

ICa =

J∑
j=1

c(rj)λjrjPinterr,j (24)

2.8 Effects of Weather

Standard reliability analysis methodologies does not account for the increased probability of failure

due to weather. As shown in Figures 9-12, environmental impact is the biggest cause of failures

and ENS in Norway between 2009 and 2016. With climate change, the number of storms and

adverse weather situations are due to increase, and weather impact will become a greater problem.

Large storms like Dagmar in 2011 [18] and the outage at Steigen, Norway in 2007 [19] will occur

more frequently. Therefore it is important to include and study weather impact and High-Impact

Low-Probability (HILP)-events in reliability analysis of power systems. Including weather data in

planning purposes can help in building a stronger, more reliable system by achieving more accu-

rate indices of interruption cost and ENS. This gives power system planners a more comprehensive

overview of socioeconomic needs. Weather data can also help in real time operations to plan pre-

ventive and restorative actions when needed. The weather data from Figure 9-12 includes the storm

Dagmar from 2011, which affects the ENS. However, this substantiates the importance of weather

inclusion and its impact on ENS.
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Figure 9: Fault causes, 33-420 kV, 2009-2016 [4]

Figure 9 shows the triggering fault causes in the Norwegian transmission system with voltages of

33-420 kV. The percentages are average values in the time interval 2009-2016. The largest con-

tributor of faults are environmental impact, causing 42% of all faults. Figure 10 shows how the

faults caused by the environment category from Figure 9 are grouped based on weather phenomena

and other environmental causes. It shows that lightning and wind cause the largest number of

interruptions.
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Figure 10: Distribution of fault cause in category Environment[4]

Figure 11: Cause of energy not supplied, represented by cause [4]

Figure 11 depicts which categories that affects ENS. The figure shows that 75% of ENS in the trans-
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mission system in Norway are due to environmental causes in the period 2009-2016. As mentioned

earlier, the storm Dagmar in 2011 is included in the data, which makes them higher than other

intervals, but these are still average values of the period. In Figure 12 the category environment

from Figure 11 is divided in subcategories. It shows that wind is the clearly largest environmental

impact, causing 72% of ENS from the environmental category. This results in the total ENS caused

by wind being 75% · 72% = 54%. The reason wind is the major cause of ENS is due to association

with long outage duration. Lightning causes a large number of interruptions, but the duration of

contingencies are often short.

Figure 12: Distribution of energy not supplied in category Environment [4]

The total general percentage of wind-related failures are lower than 54% if studying a longer time

period. In [5] all contingencies in the Norwegian power system from 1989 to 2011 has been studied.

This report also implies that environmental causes is the largest contributor to ENS in this time

period. The contributions within the environmental category from 1998 to 2011, missing 2006, is

shown in Figure 13. Here wind is depicted in blue, lightning/thunderstorms in grey and vegetation

in green. Wind is clearly a large contributor, but not as large as previous data indicates. This is

probably because of the very large contributor to wind failures in 2011 caused by the storm Dagmar

which highly affects the results. The total percentage of wind related failures are probably around
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20%.

Figure 13: Percentage of ENS in category ”Environment” from 1998-2011 (missing data from 2006)
[5]

2.9 Capturing Failure Bunching

Failure bunching is normally referred to as the phenomenon of increased probability of overhead

line failures due to increased stress on the system, i.e when exposed to bad weather [20]. This

section will present some existing models developed with the purpose of capturing weather effects

in reliability analysis of power systems.

The probability of failures of transmission lines are dependent on several factors. As shown in

Section 2.8, weather, and wind in particular, is a large contributor to transmission line failures.

The weather is continuously changing, so is the probability of system failure due to weather[1]. In

most reliability analysis methodologies the failure rate, λ, is considered constant. This is highly

misleading in respect to weather. By including weather dependent failure rates the resulting indices

may capture failure bunching and improve the representation of the situation.
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There are several developed models for inclusion of weather related contingencies in literature.

The most developed and frequently used is the two- and three state weather models developed

by Roy Billinton [21]. [22] also presents the use of multi-state weather models and show that

the effect of increasing the number of states after 3 is small. The addition of states increases the

computational time significantly. Therefore only the two- and three state model are presented here.

2.9.1 Two State Weather Model

The two state weather model utilizes the Markov approach to capture weather impact on the failure

rate of components. This is done by classifying weather impact in two states; normal and adverse.

If the system is in normal weather the failure rate of the system is not affected. However in adverse

weather, the failure rate of the system is increased due to weather impact. The two state weather

model is shown in Figure 14. [6].

Figure 14: Two state weather model

na and an is the transition rates from normal to adverse and adverse to normal respectively. A

transition rate is the expected number of transitions for a given state transition in a given period

of time. Every weather state is represented by a failure and repair rate. This is λn and µn for

the normal weather and λa and µa for adverse weather. This results in the following state space

diagram for two components, which is a continuation of the diagram in Figure 2.
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Figure 15: State space diagram with two components and two weather states[6]

2.9.2 Three State Weather Model

The three state weather model is based on the same principles as the two state model, however it

includes an extreme weather state in addition to normal and adverse weather [7]. This extreme

state is equivalent to the major adverse state used in literature. The extreme state is suitable for

capturing HILP events which can be caused by extraordinary weather phenomenon. The effect of

including the additional extreme weather state is significant as shown in [23].
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Figure 16: Three state weather model [7]

na, ne, an, ae, en and ea is the transition rates between the weather states and can be found using

historical data of weather behaviour. As with the two state model, the three weather states has a

failure and repair rate for each weather state, λn, λa, λe and µn, µa, µe for normal, adverse and

extreme categories respectively. The resulting state space diagram for a two component system is

shown in Figure 17.
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Figure 17: State space diagram of two components with three weather states [7]

As the figure shows, the number of possible states with two components and three weather categories

are 12. The number of possible states in a real and complex power system will explode, and the

computational time will increase significantly. Therefore it is beneficial to optimize the number

of components and weather states studied to minimize the computational time and maximize the

accuracy of results.
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2.9.3 Other Models in Literature

Many different approaches are studied and published in literature. However these are often specif-

ically constructed for å cause or to fit a certain input data. Hence, many of the models are not

easily adapted to fit other causes. Some other weather models and studies in literature are:

[24] presents an overview of existing weather models which are divided in three categories. These

are weather related component outage forecast models, outage spatial distribution prediction mod-

els and risk models. The fist model focuses on prediction of component outages using Markov

processes and the two and three state Billinton weather models are mentioned. The second model

uses historical data to predict outages in geographic areas. Like using machine learning algorithms

to predict outages. In the third model combination of contingencies are in focus. This category

represents use of state enumeration methods and Monte Carlo simulation.

[25] has developed a holistic simulation tool based on Monte Carlo simulation, weather depen-

dent failure probabilities and contingency analysis conducted using Power Transfer Distribution

Factors. [26] is developed by the same authors and describe the basis of calculating the weather

dependent failure probabilities.

[27] and [28] presents an overview of important aspects in power system resilience studies. Re-

silience is the ability of a power system to withstand extraordinary and high-impact low-probability

events. It discusses weather regions, fragility curves, restoration time and human impact. Possible

mitigation for all aspects are presented. One case study is conducted in each paper. [29] by the

same authors continuous to study the severity of HILP events in power systems on power system

resilience. It utilizes a fragility curve model for components, OPF and sequential Monte Carlo

simulations to present a resilience model for transmission lines and towers. It presents a model

utilizing both temporal and regional aspects, and a case study is conducted.

[30] presents a qualitative framework for analyzing HILP events. It emphasizes the importance

of understanding all uncertainties and important aspects of the analysis to maximize the detail of

the result and minimize the computational time. It presents how, through the Bow-Tie model.

[31] studies two techniques of acquiring weather related failure rates of distribution lines. One

is Poisson regression model. The other uses Bayesian network model and conditional probability
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based of failures dependent on the weather phenomena.

[32] studies the correlation between wind speed and probability of overhead transmission line fail-

ures in the Great Britain Transmission Network. It focuses on failure rate and finds some similar

correlations of weather behaviour which is studied in this thesis.

2.10 Approximate Equations Method for the Three State Weather Model

The approximate equations method is first presented in [33] for normal and adverse weather. This

method is then used by R. Billinton and M.S. Grover in [34] and compared to the Markov approach.

By Markov approach the method of finding the equivalent failure rate as described in Section 2.2,

2.3 and 2.4. Where every possible state combination of the system is included in the analysis, called

the state space enumeration method. In [1] the model is further developed to fit the three state

weather model by Billinton et.al presented in Section 2.9.2. The following section is based on the

Approximate equations method presented in [1].

[1] Presents application of the two- and three state weather models both using the Markov ap-

proach and the approximate equations method to find an average failure rate of the systems. The

equivalent failure rates of the two methods are compared and it can be seen that the results are

similar, proving the approximate equations method being a good substitute for the Markov ap-

proach.

In this thesis the approximate equations method is a mathematical representation of the prob-

ability of second order contingencies of a two-component system based on the three state weather

model. It is, as the name implies, an approximation of the Markov approach to reduce the number

of calculations and computational time. This model is a suitable implementation of weather in

combination with the minimal cut set method in this thesis because the depth of analysis is second

order contingencies and the reliability indices are calculated for each minimal cut set separately.

When studying three weather states, normal, adverse and extreme, there are nine possible failure

combinations. These combinations are NN, NA, NE, AN, AA, AE, EN, EA and EE. These refer to

failures in a specified weather category. The model represents the nine scenarios by approximate

equations for their probability of occurrence. One important assumption in this method is that

repairs can only be conducted during normal weather conditions.
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Given a system with two components and three weather states the parameters are as follows:

Pn, Pa and Pe is the probability of being in the normal, adverse and extreme weather condi-

tions respectively.

λn1 is the expected failure rate of component one in normal weather.

λn2 is the expected failure rate of component two in normal weather.

λa1 is the expected failure rate of component one in adverse weather.

λa2 is the expected failure rate of component two in adverse weather.

λe1 is the expected failure rate of component one in extreme weather.

λe2 is the expected failure rate of component two in extreme weather.

All failure rates has the unit failures per year.

r1 and r2 is the average repair time of component one and two respectively with the unit 1/year.

N, A and E is the expected average duration of the normal, adverse and extreme weather cat-

egory respectively.

2.10.1 Transition Rates

A transition rate is the expected number of transitions from one specified state to another specified

state in a specified time period. This can be explained as:

Transition rate =
1

MTTT
(25)

With MTTT = Mean Time To Transition for the state transfer in focus. The transition rates

between the weather categories are:

na = Transition rate from normal to adverse weather.

ne = Transition rate from normal to extreme weather.

an = Transition rate from adverse to normal weather.

ae = Transitions from adverse to extreme weather.

en = Transition rate from extreme to normal weather.

ea = Transition rate from extreme to adverse weather.
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Figure 18: Transition between states

All transition rates has the unit of occurrences/year.

Figure 18 shows an example of how the weather can transition between weather states. Here N

is normal, A adverse and E is extreme. ni is the duration of normal weather before the transition

to an other state for the i-th observed normal weather period. ai is the duration of the adverse

weather state for the i-th observation of adverse weather. The same concept applies to ei. The

input datasets used in this thesis consists of thousands of similar observed transitions. The MTTT

is found by averaging the duration of every observed specified state before the transition to another

specified state occur. This is demonstrated for the transition rate na in Equation 26. It should

be emphasized that only duration of normal weather before the transition of adverse weather is

included. Not the duration of normal weather before the transition to extreme weather.

na =
1

(
∑N

i=1 ni

N )
=

1

MTTT
(26)

2.10.2 Scenarios

Every scenario contain two segments. The first one represents the failure of component one fol-

lowed by the failure of component two during the repair of component one or during the duration
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of the weather state in focus. Then the same probability is calculated if component two fail before

component one. This is conducted to calculate all possible sequences of component failure. These

are then added and multiplied with the probability of being in the initial weather state. The nine

possible scenarios are:

1) First and second failure occur in normal weather(NN):

λ1 = Pn[λn1(1− e−λn2r1) + λn2(1− e−λn1r2)] (27)

Where (1− e−λn2r1) is the probability of failure of the second component during the repair of the

first component.

2) First failure occur in normal weather, and second in adverse weather(NA):

λ2 = Pn[λn1(1− e−nar1)e−λn2r1 (1− e−λa2A) + λn2(1− e−nar2)e−λn1r2(1− e−λa1A)] (28)

(1 − e−nar1) is the probability of the weather changing from normal to adverse during the repair

time of the first component. e−λa2r1 is the probability that the second component does not fail in

the normal state during the repair of the first component. (1− e−λa2A) represents the probability

that the second component fails during adverse weather.

3) First failure occur in normal weather, the second in extreme weather(NE):

λ3 = Pn[λn1(1− e−ner1)e−λn2r1(1− e−λe2E) + λn2(1− e−ner2)e−λn1r2(1− e−λe1E)] (29)

(1 − e−ner1) represent the probability that the weather changes from normal to extreme during

the repair time of component one. e−λn2r1 is the probability that the second component does not

fail during the repair time of the first component. (1− e−λe2E) represents the probability that the

second component fails during extreme weather.

4) First failure occur in adverse weather, the second in normal weather(AN):
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λ4 = Pa[λa1(1− e−anA)e−λa2A(1− e−λn2r1) + λa2(1− e−anA)e−λa1A(1− e−λn1r2)] (30)

(1− e−anA) is the probability of the weather changing from adverse to normal. e−λa2A is the prob-

ability that component two does not fail during adverse weather. (1 − e−λn2r1) is the probability

that the second component fail during the repair of the first.

5) Both failures occur in adverse weather(AA):

λ5 = Pa[λa1(1− e−λa2A) + λa2(1− e−λa1A)] (31)

(1− e−λa2A) is the probability that the second failure occur in adverse weather.

6) First failure occur in adverse weather, the second in extreme weather(AE):

λ6 = Pa[λa1(1− e−aeA)e−λa2A(1− e−λe2E) + λa2(1− e−aeA)e−λa1A(1− e−λe1E)] (32)

(1 − e−aeA) is the probability of the weather to change from adverse to extreme during the ad-

verse period. e−λa2A is the probability that the second component does not fail during the adverse

weather period. (1− e−λe2E) is the probability of the second component failing during the extreme

weather period.

7) First failure occur in extreme weather, the second in normal weather(EN):

λ7 = Pe[λe1(1− e−enE)e−λe2E(1− e−λn2r1) + λe2(1− e−enE)e−λe1E(1− e−λn1r2)] (33)

(1−e−enE) is the probability that the weather changes from extreme to normal during the expected

duration of the extreme weather. e−λe2E is the probability of the second component not failing

during the extreme weather. (1− e−λn2r1) is the probability of the second failure occur during the

repair time of the first component.
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8) First failure occur in extreme weather, the second in adverse(EA):

λ8 = Pe[λe1(1− e−eaE)e−λe2E(1− e−λa2A) + λe2(1− e−eaE)e−λe1E(1− e−λa1A)] (34)

(1 − e−eaE) is the probability that the weather changes from extreme to adverse during the ex-

treme weather period. e−λe2E is the probability of the second component not failing in the extreme

weather. (1−e−λa2A) is the probability of failure of the second component during adverse weather.

9) Both failures occur in extreme weather(EE):

λ9 = Pe[λe1(1− e−λe2E) + λe2(1− e−λe1E)] (35)

Where (1− e−λe2E) is the probability of the second component to fail during the extreme period.

Lastly all the λ values for each possible scenario presented above is added to find the total approxi-

mate failure rate of the system. Because every scenario is multiplied with the respective probability

of being in the original state, the failure rates are weighed and can be simply added.

λapprox = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 (36)

2.10.3 Input Parameter Correlation

[1] states some important correlations between the input parameters of the method. Given the

transition rates of the system other parameters like the average duration of weather, probability of

weather states and weather related failure rates can be calculated.

N =
1

na + ne
(37)

A =
1

an + ae
(38)

E =
1

ea + en
(39)
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Equation (37)-(39) say that the average duration in each weather state is one over the average time

it resides in that state before leaving it. This is a reasonable statement which is exemplified by

the calculation of one transition rate in Equation (40). When calculating the average duration for

the system using the three state weather model, the situation is more complex because a state can

be left by two possible transitions, as shown in Equation (37)-(39). However the logic behind the

correlation is still valid.

Average duration =
1

transition rate
=

1
1

MTTT

= MTTT (40)

From the transition rates the probability of residing in either weather state can also be calculated

as:

Pn =
eaan + enan + enae

D
(41)

Pa =
eana + eane + enna

D
(42)

Pe =
naae + nean + neae

D
(43)

Where D = eana +mane + eaan + naaenean + neae + enan + enan + enae + enna.

From the acquired information of transition rates, average duration and probabilities it should

be possible to calculate the weather dependent failure rates. However this is not described for

the three state model in [1]. For the two state model, the equations are presented in Equation

(44)-(46).

λavg = λn(
N

N +A
) + λa(

A

N +A
) (44)

This results in the λ at each weather state to be:

λn = λavg
N +A

N
(1− Fa) (45)

λa = λavg
N +A

A
Fa (46)

Where λavg represents the total average failure rate of the component. Fa is the ratio of faults

occurring in adverse weather. When calculating the failure rate for the three weather state model

it would be natural to believe a similar approach is reasonable. This is presented and used in [35]
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and shown in equation (47)-(50).

λavg = λn
N

N +A+ E
+ λa

A

N +A+ E
+ λe

E

N +A+ E
(47)

Which would result, by following the same principal, in the weather dependent failure rates as:

λn = λavg
N +A+ E

N
(1− Fa − Fe) (48)

λa = λavg
N +A+ E

A
Fa (49)

λe = λavg
N +A+ E

E
Fe (50)

Here Fe is the ratio of failures occurring in the extreme weather category. However, this is not a

correct method due to the extreme category being misrepresented. This will be further discussed

in Section 3.3.

[21] presents a different method of calculating the failure rates of each weather category shown

in equation (51)-(53). Here the average failure rate is multiplied with the ratio of failures in each

category and divided by the probability of being in the weather state in focus.

λn = λavg
(1− F )

Pn
(51)

λa = λavg
F (1− Fe)

Pa
(52)

λe = λavg
F · Fe
Pe

(53)

Here, F is the ratio of ”bad weather” which is the sum of the ratio of failures in adverse and extreme

weather; F = Fa + Fe.

2.11 The Timestep Method

The timestep method is a method disregarding the categorization of weather, and calculating un-

availability(U) at each time step of a time series. Unavailability is the probability of a component

being unavailable i.e in the down-state. The data-series does not require categorization into weather
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categories based on probability of failure due to weather phenomena. This results in no data lost

due to categorization of weather states. The method assumes a constant repair time(r) which needs

to be a integer.

The time series used in this thesis contain the hourly probability of failure due to wind. This

is a unit less probability, but can be interpreted as the hourly failure rate λt with the unit probabil-

ity of failure per hour [1/hour]. The objective is to calculate the probability of the component being

in the down-state in every time step. To do this, the probability of the component having already

experienced a previous failure and being in outage at the time step in focus must be included. This

can be done in two ways:

p(Ut) = 1−
−r∏
t=1

(1− p(λt)) (54)

p(Ut) =
−r∑
t=1

p(λt) (55)

Equation (54) calculates the probability of the component being in the up-state, also called the

availability for the time step in focus and all previous time steps within the given repair time.

These are then multiplied to calculate the availability for the time-section in focus. This results

in the probability of the component having experienced a previous failure and being in repair at

the time-step in focus to be included. Next the unavailability, or the probability of the component

being in the down-state of the time-step in focus, is calculated by U = 1 − availability. This is

the correct approach according to probability theory making certain the probability of component

outage or component up-state never exceeds unity. However the hourly probability of failure of an

component is very small. In this thesis the repair time is constant at 11 hours and in that time

period, with the data set used, the summation of the probability of failure for 11 hours will never

exceed unity. Therefore a simplification of summing the probabilities as shown in Equation (55)

can be used.

This method is similar to the normal calculation of the unavailability as shown in Equation (6).

In Equation (6) a constant failure rate is multiplied with a repair time. In the timestep method,

a time-series of varying probabilities of failure, or failure rates for every hour. These failure rates

has the unit 1/hour. When these fluctuating failure rates over the timespan of the repair time are

summed, the same concept as in (6) is followed. When the sum of the hourly failure rate and the

repair time is multiplied, the resultant unavailability becomes unitless. This allows for the multi-
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plication of unavailabilies of separate lines to produce the equivalent unavailability of a cut set as

shown in Equation (56). This multiplication is viable whether Equation (54) or (55) is used.

Ueq,t = p(Ut)1 · p(Ut)2 (56)

To be able to use this equivalent unavailability to calculate reliability indices, the expression must

equal the equivalent unavailability when using the standard Equation (6), and match the unit

of [hours/year]. This is achieved by summing the equivalent unavailability of every hour in the

time series divided by the number of years. In the case in this thesis with a span of 25 years

the calculation will be as shown in Equation (57). In this equation the unit calculation of the

summation is also shown, assuming constant Ueq, t to exemplify and show that the unit notation

matches.

Ueq =

∑T
t=1(Ueq,t)

years
≈
Ueq,t[1] ∗ 24[hoursday ] ∗ 365[daysyear ] ∗ 25[years]

25[years]
= Ueq[

hours

years
] (57)

The timestep method can only calculate unavailability for repair times which are integers. This

causes a problem if the repair time of the system is a decimal number. To adjust for this, the

method must be slightly altered. A weighing constant is introduced to include the remaining repair

time element shown in Equation (58). Where ractual is the actual repair time of the system, and

rinteger is the integer repair time used in Equation (54) and (55). The weighing factor is included

as shown in Equation (59) and (60).

w =
ractual
rinteger

(58)

p(Ut) = 1− w ·
−r∏
t=1

(1− p(λt)) (59)

p(Ut) = w ·
−r∑
t=1

p(λt) (60)
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3 Method

3.1 The Data Material

The data material used in this thesis is a time-series of hourly probabilities of failure of an overhead

transmission line due to wind. The time-series contain failure probabilities for a time span of 25

years and is developed for 12 overhead transmission lines located in Norway.1

The failure probabilities are developed according to the method in [26], however all wind-related

transmission line failures are included, not only those caused by wind speeds above 15 m/s. His-

torical average failure rates due to wind in an area and actual contingencies due to wind of selected

transmission lines are used in a Bayesian updating scheme to develop line specific failure rates.

Next a historic wind-exposure measure is produced for each line segment. The historic wind-data

implemented is hourly wind speeds from a 1-km grid around each line-segment. This historic wind-

data is collected from [37].

The line-specific failure rates and the historic wind-exposure measure is combined to construct

a fragility curve for each line-segment. A fragility curve is the cumulative log-normal distribution

function of the failure probability of a line with the wind-exposure as the input variable [26]. This is

used to find the probability of failure for each segment for every hour given the historic wind-data.

The probability of failure for each line-segment can be considered as in series to find the probability

of failure for the line as a whole. Lastly the probability of every line is estimated based on this series

calculation with the limitation that the results of the series calculation must be consistent with

the total number of line failures found through the Bayesian updating scheme. This results in a

time-series of hourly probabilities of failure for each line. The time-series with hourly probabilities

of failure for line 1 is shown in Figure 19.

1The data is developed by and used in collaboration with PhD candidate Erlend Sandø Kiel and the method is
presented in [36].
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Figure 19: Probability of failure time-series for line 1

3.1.1 Benchmark Method

Throughout the results section all methods will be compared to benchmark results. These ENS

results are calculated for the RBTS system utilizing the method presented in [36] with the same

input line failure probabilities as presented above.

The aim of this method is to calculate an unavailability time-series of a line based on the probability

of failure time-series and probabilistic outage duration. Outage duration is defined the time from

a contingency occur to the component is again ready to operate, also called the repair time. In the

benchmark method an outage duration curve is constructed to represent the probability of the com-

ponent being in the down-state a given number of hours after the occurrence of a contingency. This

curve is constructed based on historic failure data from the Norwegian transmission grid from the

database FASIT [38]. This data is used to find the log-normal probability density function(PDF)
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where some measures are conducted to assure that the mean and variance of the original data are

preserved. The cumulative distribution function(CDF) of the time-period in focus from the PDF

is utilized to find the survival function of the outage data for each line. The survival function is

the probability of the component being in the down-state a given number of hours after the contin-

gency. Lastly the probability of unavailability is calculated by combining the survival function and

the probability of failure at each time-step. An inflation factor due to an assumed outage duration

cut off is also included. The resultant unavailability is then used to calculate reliability indices. A

more detailed description of the benchmark method can be found in [36]. All reliability indices of

the benchmark method can be found in the Appendix.

The benchmark method is similar to the timestep method described in Section 2.11. However

the outage duration or repair time is considered constant at 11.42 hours. This outage duration

equals the average outage duration calculated in the benchmark method. The simplifications in the

timestep method reduces computational time significantly, but also reduces the accuracy of results.

This will be further discussed.

3.2 Roy Billington Test System

The test system used to analyze the models are the Roy Billington Test System (RBTS) [8]. This

is a power system developed for educational purposes to study the adequacy aspect of reliability

analysis. It contains 6 buses in total, with 4 PQ load buses and 2 PV generation buses. There are

a total of 9 lines containing both single lines and lines on a common tower or right of way.
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Figure 20: Roy Billington Test system [3] based on [8]

All generation units are placed at bus 1 and bus 2, where the generation is thermal and hydro pow-

ered respectively. Their ratings are shown in Figure 20. Generators are not affected by increased

wind speeds and are therefore considered 100% reliable in this analysis. The total generation ca-

pacity is 240 MW. The delivery point demand is also depicted in the figure with their respective

consumption and placement. They are considered price independent. The annual peak demand of

the system is 185 MW, and this demand is price-independent.

The voltage level of the system is 230 kV and line data is shown in Table 1. Where R, X and

B are the resistance, impedance and susceptance respectively. λ is the permanent outage rate with

unit outages per year. Transient failure rates for the lines are not included in the analysis due to

the fact that transient failures does not affect the adequacy of the system because of short duration.

r is the average repair time. It should be noted that the repair time is altered from the original

RBTS data to match the average repair time from the historical input data. This is to achieve

consistency in results.
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Line nr From Bus To Bus R X B λ r [h] length [km]

1,6 1 3 0.0342 0.18 0.0212 1.5 11.4209 75
2,7 2 4 0.1140 0.6 0.0704 5 11.4209 250
3 1 2 0.0912 0.48 0.0564 4 11.4209 200
4 3 4 0.0228 0.12 0.0142 1 11.4209 50
5 3 5 0.0228 0.12 0.0142 1 11.4209 50
8 4 5 0.0228 0.12 0.0142 1 11.4209 50
9 5 6 0.0228 0.12 0.0142 1 11.4209 50

Table 1: Line input data

Contingencies of circuit breakers, buses and transformers may occur and cause consequences for the

reliability of the system. However, in this analysis these are assumed to be 100% reliable. Buses

and transformers are not significantly affected by increased wind speeds and are therefore not con-

sidered. The circuit breakers may be affected, however inclusion of circuit breakers are considered

to complicate the computations more than it contributes to the illustration of increased wind.

There are several costs related to the operation of a power system. In this analysis the generation

cost and interruption cost are included. The generation cost is the fuel- and operating expenses

of the generators. This is used to find the optimal generation dispatch. Generation cost used in

the analysis is shown in Table 2. These are from the RBTS model [8] with a small alteration. The

hydro powered generators and 40 MW thermal generators originally have equal cost. This might

result in variations of the optimal dispatch of generation in each simulation. To avoid this, equal

generation costs are slightly increased resulting in no equal cost.
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Bus Type MW Cost

Bus 1 Thermal 40 1.2
Bus 1 Thermal 40 1.21
Bus 1 Thermal 20 1.225
Bus 1 Thermal 10 1.25

Bus 2 Hydro 40 0.05
Bus 2 Hydro 20 0.051
Bus 2 Hydro 20 0.052
Bus 2 Hydro 20 0.053
Bus 2 Hydro 20 0.054
Bus 2 Hydro 5 0.055
Bus 2 Hydro 5 0.056

Table 2: Generation cost

The interruption cost is the cost of the customer if desired delivery point demand is not met. The

OPF algorithm in the simulation tool has an objective function to minimize total interruption cost

when prioritizing delivery points and distributing power flow. Therefore the input interrupted cost

is important for the resultant reliability indices. The delivery point interruption costs are taken

from the ”Priority order policy” from [39] and are shown in Table 3.

Load point Bus Priority order IC

LP 1 Bus 2 1 9.6325
LP 2 Bus 3 5 4.3769
LP 3 Bus 4 3 8.0267
LP 4 Bus 5 2 8.6323
LP 5 Bus 6 4 5.5132

Table 3: Interruption Cost

3.2.1 Pairing of Lines from Dataset

It is desirable to pair the real transmission lines from the time-series data set with comparable lines

in the RBTS system to get the most realistic results. This was conducted by studying the distance

between lines, line length and weather correlation of lines, shown in Table 4 and Figures 21 and 22.

The original dataset consist of 12 lines in a random order. 9 of these lines are chosen to be paired

with the RBTS system.
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Line nr 1 2 3 4 5 6 7 8 9 10 11 12

Length (km) 9 14 37 16 16 42 4 44 90 102 86 56

Table 4: Line Length

Figure 21: Distance between center of lines in km (By Erlend Sandø Kiel)

Figure 22: Weather correlation between center of lines (By Erlend Sandø Kiel)

Figure 21 show the distance between transmission lines evaluated from the center point of each

line. Figure 22 show the correlation between the probability of failure due to wind for each line.

1 denotes total correlation and 0 is no correlation. Firstly, line number 9 was disregarded as it is

located in another climate zone and has no correlation to other lines. Next it can be seen that line

4 and 5 has no distance between and almost perfect correlation of failure probabilites due to wind.

This means that the lines are on a common tower and is chosen to represent line 1 and 6 in the

RBTS system due to short length.
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RBTS Dataset

1 4
2 10
3 11
4 3
5 6
6 5
7 12
8 2
9 8

Table 5: Resultant line pairing relationship

The correlation of failure probability between line 10 and 12 is strong at almost 0.9, and dis-

tance between the lines are small considering total length. Therefore line 10 and 12 are chosen as

line 2 and 7 in RBTS which have the same right of way. Next, line 11 is chosen to represent line 3

in RBTS due to its length and because it has a decent correlation to all adjacent lines, especially

line 10 and 12.

Due to short line lengths of line 1 and 7 with 9 km and 4 km respectively, they were consid-

ered non-representative of the RBTS system. The remaining lines are then line 2, 3, 6 and 8 from

the time-series data set and are closely the same length. From Figure 22 it can be seen that line

6 has the best overall correlation to other lines and are chosen to represent RBTS line 5. It is

also observed that line 2 has a better correlation to other lines than line 8 and 3, and is therefore

chosen to represent line 8 in the RBTS system. Lastly it is observed that line 3 has a better overall

correlation to other lines than line 8 and is therefore chosen as RBTS line 4 which leaves line 8 to

represent RBTS line 9. This results in the line pairing shown in Table 5.

The excluded lines from the data-set are line 1, 7 and 9. When using the developed code for this

thesis and the input file ”f lines rbts.csv”, the lines are arranged in the correct order. With line 1

in the data-set matching line 1 in the RBTS and so on. Therefore no active adjustments are needed

to implement this input data-set when running the simulations.

3.3 Validation of the Approximate Equations Method

The approximate equations method presented in Section 2.10 need to be validated to ensure correct

implementation of the method. This can be done by reproducing results presented in [1], which
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will also substantiate the statements in the paper. An MATLAB implementation was built based

on Equation (27)- (36) to conduct the validation.

[1] calculates approximate equivalent failure rates for a two-component system with different de-

grees of weather impact and three weather states. The input data used to recreate the paper are

shown in Table 6 and 7. Table 7 shows the transition rates where the vertical weather state axis

shows the ”from” state, and the horizontal is the ”to” state. For all input parameters, except the

probabilities, it is important to convert the unit to per year. This results in all transition rates

multiplied by 8760 and weather duration and repair time is divided by 8760 which is the number

of hours in one year.

Parameter Value

λavg 2

Pn 0.989875
Pa 0.010011
Pe 0.000114

N 195.54 hours
A 1.9995 hours
E 1 hour

r1 7.5 hours
r2 7.5 hours

Table 6: Input data for method validation

N A E

N - 1
200

1
8760

A 1
2 - 1

8760
E 1

2
1
2 -

Table 7: Input transition rates for method validation

[1] does not specify the equations used to calculate the weather dependent failure rates for the three

weather state model. From literature two possible methods were found. One is the method pre-

sented in [35] with formulas presented in equation (47)-(50) from now called the duration method.

The second possible method is the one presented in [21] and equations (51)-(53), from now called

the probability method. In both methods, the ratio of bad weather was increased from 0% to
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100%. This percentage includes both adverse and extreme weather. In all scenarios 5% of the bad

weather occur in the extreme category. E.g for the case of 50 % bad weather this results in 47.5 %

in adverse and 2.5 % in extreme.

For the duration method the resultant failure rates are shown in Table 8. Here F is the per-

centage of failures occurring in bad weather, which is the sum of failures in adverse and extreme

states.

F λn λa λe
0 2.03068 0 0
10 1.82761 18.86516 1.98535
20 1.62454 37.73031 3.97071
30 1.42148 56.59547 5.95606
40 1.21841 75.46062 7.94141
50 1.01534 94.32578 9.92676
60 0.81227 113.19093 11.91212
70 0.60920 132.05609 13.89747
80 0.40614 150.92124 15.88282
90 0.20307 169.78640 17.86817
100 0 188.65156 19.85353

Table 8: Weather dependent failure rates using duration method

It can be seen that the failure rate of the extreme category is lower than the adverse category, which

is illogical. In [1] one example of failure rates are given. This is when 5 % of the total failures occur

in the extreme category, corresponding to the 100 % case in Table 8. In the paper the weather

dependent failure rate of extreme weather is λe = 876. This is a huge deviation from the results of

the duration method, which implies that the method is erroneous.

Another way of testing if the results are correct is by calculating λavg for each step which should

equal 2, as defined in the article. This is done using equation (61) [1]. As seen in Table 9, none of

the calculated average failure rates are equal 2, which is a confirmation of the method being invalid.

The calculated average is decreasing due to the missing effect of the extreme weather category. The

resultant calculation of λapprox is shown in Table 26 in the Appendix. It also shows that the authors

of [1] did not use this method in their calculations.

λavg = Pnλn + Paλa + Peλe (61)
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F λavg
0 2.01012
10 1.99819
20 1.98627
30 1.97434
40 1.96241
50 1.95049
60 1.93856
70 1.92663
80 1.91471
90 1.90278
100 1.89085

Table 9: Resultant λavg for the duration method

By utilizing the probability method it was possible to calculate the correct weather dependent

failure rates for each state which are shown in Table 10. When calculating λavg based on the

calculated failure rate and Equation (61) it is equal 2 in every state of F. The resultant λapprox is

shown in Table 11, and is almost exactly equal to the benchmark results from [1]. This proves that

the probability method was used to calculate the weather dependent failure rates in [1].

F λn λa λe
0 2.02046 0 0
10 1.81841 18.97912 87.71930
20 1.61637 37.95825 175.43860
30 1.41432 56.93737 263.15789
40 1.21227 75.91649 350.87719
50 1.01023 94.89561 438.59649
60 0.80818 113.87474 526.31579
70 0.60614 132.85386 614.03509
80 0.40409 151.83298 701.75439
90 0.20205 170.81211 789.47368
100 0 189.79123 877.19298

Table 10: Weather dependent failure rates, probability method
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F λapprox Benchmark Deviation

0 0.00691 0.00691 0
10 0.00846 0.00846 0
20 0.01366 0.01366 0
30 0.02248 0.02247 0.00001
40 0.03488 0.03488 0
50 0.05086 0.05085 0.00001
60 0.07037 0.07036 0.00001
70 0.09339 0.09338 0.00001
80 0.11990 0.11988 0.00002
90 0.14986 0.14985 0.00001
100 0.18326 0.18325 0.00001

Table 11: λapprox and deviation of reconstruction and original paper

By finding the missing formulas and information used in this method it has been possible to recreate

the results. This proves that the created MATLAB implementation is correct. It also increases the

credibility of the approximate equations method being a good supplement for the more extensive

Markov approach.

3.4 Implementation of Time-series to the Approximate Equations Method

The input parameters must be found to apply the approximate equations method with the time-

series data-set. All inputs are correlated as shown in Section 2.10.3, and a starting point must be

chosen. Here the starting point is chosen to be the probability of residing in each weather state.

This probability is taken from the works of R. Billinton [7][1][23]. It is based on the assumption

that the average weather duration is 200 hours in normal, 2 hours in adverse and 1 hour in extreme.

This results in the following input probability of weather states:

Pn Pa Pe
0.989875 0.010011 0.000114

Table 12: Input probability of weather states

The probabilities are used to categorize every hour in the time-series of each line into weather states

based on their magnitude. The 98.99% lowest percentile of failure rates are categorized as normal

weather, the next 1% are categorized as adverse weather and the highest thousandth is sorted as
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extreme weather. This is shown in Figure 23. I.e the extreme category represents approximately

the one hour each year with the highest probability of component failure. In the figure this is the

last vertical section of the curve. The failure rate of each state is calculated by averaging all failure

rates of the state. These are the weather dependent failure rates λn, λa and λe

Figure 23: Loglog representation of the categorization of failure probability

The boundary values between weather states are used to find the transition rates between each states

and the average duration of every state between transitions. The time-series is looped through and

every change between states and the number of hours the system resided in the previous state

before the transition is recorded. This data is saved in the duration matrix, and the placement in

the matrix is based on the weather states involved in the transfer. An example of this matrix is

shown in Table 13. Where the ”from” states are on the vertical axis and ”to” on the horizontal.
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N A E

N - [] []
A [] - []
E [] [] -

Table 13: Duration matrix structure

Initially the transitions rates were calculated by following the concept of MTTT from Equation

(25). The MTTT was calculated from the matrix and used to find the transition rates. The tran-

sition rates were then used to calculate the average duration of a weather state using Equations

(37)-(39). In the input time-series data some transitions are rare, especially transitions between the

extreme and normal weather states. By further examination of the recorded data in the duration

matrix, these rare transitions occur in periods of unstable, and fast-changing weather. In almost

all occurrences of transitions from the normal to extreme state, the duration of normal weather

before the transition to extreme is one hour. When using the transition rates to calculate the

average duration of each weather state using Equation (37) the transition from normal to adverse

and normal to extreme is equally weighed. This is despite there being hundreds of observations of

normal to adverse and one or two from normal to extreme. This results in the average duration of

the normal weather state being shorter than what is the actual situation.

Problems arise with the transition rates due to the scarcity of some transitions too. Scenario

3 in the approximate equation method, where the first failure occur in normal weather and second

in extreme weather, is highly over-represented. This is due to the transition rate, and the prob-

ability of this transition to occur, being illogically large because the observed duration of normal

weather before a transfer to the extreme state is short.

A new approach for calculating transition rates and average duration of weather states were im-

plemented. Using the duration matrix, the average duration of each state is calculated directly

from the matrix. This reduces the necessary computations and resolves the misrepresentation of

transition rates. E.g for the average duration of the normal weather state:

N =
sum of hours in na + sum of hours in ne

total number of observed transitions from normal weather

Here the number of all hours in the normal state before a transition to the adverse state, and

the number of all hours in the normal state before the transition to the extreme state is added.
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This is then divided by the number of total observed transitions from the normal weather state.

The transition rates are now found through the actual number of observed transitions and not the

MTTT. The correct unit of transition rates are occurrences per year. Hence, the number of all

observed transitions from a specified state to another specified state are divided by the number of

years in the time-series. E.g calculation of the transition rate na:

na =
Number of observed transitions from normal to adverse

Number of years in time− series

This change in calculation of the transition rates and average duration results an improvement in

how the approximate equations method represents the actual behaviour of the weather. The method

presented in [1] is correct if there are enough observations of every transition in the system. When

implemented on real historic weather data, the infrequent transitions get misrepresented. When

implementing and testing this change, the contribution from the scenarios in the approximate

equations method are following the same pattern as the contributions found when recreating the

original paper. By using this method the relationship between the input parameters presented in

Section 2.10.3 are no longer valid, however due to the changes the method is implementable using

historic weather data.

3.5 Contingency Analysis

The contingency analysis is not affected by weather impact. It is therefore conducted separately

and the results are used as input to the code developed in this thesis. The OPAL prototype version

2.1, last updated November 2018, is used.

3.5.1 Input

In the OPAL prototype, the MATLAB file contanalysis RBTS Benchmark.m is used to run the

simulation. The excel input file is RBTS Benchmark.xls placed in the subfolder CaseStudies.

The line, generation and load data presented in Figure 20 and Tables 1, 2 and 3 are used as

input data to the contingency analysis. The base MVA is set to 100 and the analysis depth in-

cludes second order branch outages. Generators, buses and protection system is considered reliable

and are not included as possible contingencies. The common mode functionality is not activated.
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The detailed description of line ratings and voltage limits can be found in [8].

The power flow algorithm chosen is DC optimal power flow(OPF). This is to emphasize the con-

tributions to ENS caused by weather impact to the adequacy of the system. By assuming lossless

lines using DC, fewer parameters affect results, and essential changes in the system due to failure

bunching are easier to analyze. When running AC power flow more minimal cut sets are causing

interruption an must be studied. These extra cut sets often have an interrupted power of less than

0.5 MW. It is considered sufficient to study the weather impact using DC power flow.

In the excel sheet ”actions” in RBTS benchmark.xls the corrective actions settings are set. The

activated corrective actions are allow islanding, distr slack, opf, all pot swing,

collapse infeasible, distr by max cap. Not all these are used when running DC OPF, however it

allows for successful use of the file for AC OPF without any changes. The number of iterations are

set to 10.

3.5.2 Results

The contingency analysis return several results. The one used further to calculate the reliability

indices is the struct cont results. From this struct the SAC matrix and the full version of the

component out matrix is used. The component out matrix shows the contingency list that causes

interruption. Every component in each cut set is denoted either 1 or 0. If a component is denoted

1 it is experiencing a failure, if 0 it is operating normally. The SAC matrix shows the system

available capacity for every cut set in the contingency list. The rows in the component out matrix

and in the SAC matrix represent the same cut set. Both matrixes returned from the contingency

analysis and used as input to the reliability analysis can be found in the Appendix.

The contingency analysis can be conducted in any simulation tool which provides it. However

the code structure developed in this thesis require a SAC and component out matrix on the format

presented in the Appendix.
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3.6 MATLAB Implementation

SINTEF Energy research has developed a simulation tool for contingency and reliability analysis

[40]. This tool is complex and not easily altered. To be able to easily add and test alternative

methods of calculating reliability indices including weather impact a new reliability analysis im-

plementation was constructed in MATLAB as a part of this thesis. This code is based on the

assumption of constant repair rates and inclusion of 1st and 2nd order minimal cut sets. In the

RBTS system, only parallel cut sets cause delivery point interruption, therefore only equivalent

equations for parallel systems are included.

3.6.1 OPAL Methodology Including Average Weather

The structure of the code calculating reliability indices based on the OPAL methodology is shown

in Figure 24. The standard calculation of reliability indices, based on the OPAL methodology,

can be simulated both with and without weather impact. If standard reliability analysis without

weather is wanted, the indices are calculated as described in Sections 2.3, 2.4.2 and 2.7. If average

weather is desired the structure of the code is as described in Figure 24.

The script Main.m is common for all described methods, and the desired weather model for calcula-

tion is chosen here. The input parameters, λrbts, delivery point demand and repair time is defined.

The results from the contingency analysis is loaded to workspace.

Next the LP_cutset function finds the minimal cut sets at every delivery point in the system. This

function compares the demand of each delivery point with the system available capacity matrix

matching a combination of component failures from the component out matrix. If a combination

results in energy not supplied at the delivery point, the transmission lines experiencing a failure

and is in the down-state, is registered as a cut set. All cut sets at each delivery point are then

compared to see if any cut set is a subset of another cut set. If this is the case, the largest cut set

is removed due to it not being minimal.

Equivalent indices of each cut set is calculated in equivalents_weather.m. The indices calcu-

lated are equivalent failure rate, repair time, interrupted power and unavailability. When average

weather is included, the equivalent failure rate is calculated as shown in Figure 24. Here the sum
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of the failure probabilities for a line from the input time-series is divided by the number of years of

the input data to find the average contribution of wind per year. This average is added to λrbts for

the line in focus. The average weather impact is added to each line separately before the equivalent

failure rate is calculated using Equation (16).
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Figure 24: Code structure for the implementation of the OPAL Methodology and average weather.
Arrows indicate control flow.
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In the script cut_set_indices.m the ENS is calculated for each cut set using Equation (20). The

annual interrupted power for every cut set is also calculated. These indices are then used in the

script annual_indices.m where the annual delivery point indices are calculated by summing cut

set indices related to the delivery point as described in Section 2.7.4. Indices for every cut set and

load point is lastly returned as output in the form of a struct and as a table.
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3.6.2 The Approximate Method

Figure 25: Code structure for the implementation of the approximate equations method
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The code structure of the approximate equations method implementation is shown in Figure 25.

main.m is the same as described above and defines all necessary input variables. The probabilities

of residing in each weather state is defined here. To activate the approximate method, the param-

eter ”approx” must be set to 1.

The script LP_cutset.m finds the minimal cut sets of the system as earlier described. However more

input is needed to calculate the equivalent parameters of the cut sets following this method. These

are calculated in the script transition_rates.m. This script calculates transition rates, duration

matrix and the average failure rate for each weather state of each line. transition_rates.m has

three sub-scripts conducting different tasks. find_cat_bounds.m finds the boundary values be-

tween the weather states in the time-series. This is done by sorting the probability of failure in

increasing order, and applying the given probabilities of weather states. This is illustrated in Figure

23. It then sorts every hour of the time-series to the correct state and calculates λn, λa and λe for

every line. The normal weather state in the code is denoted 1, adverse 2 and extreme is numbered 3.

The bounds of each category, which is unique for every line, is then used in find_transitions.m

to register every transition that occur between each weather state and the duration of time within

each state before the transition is made. This is registered in a duration matrix for each line with

the format as illustrated in Table 13. Each placements in the matrix is an array of the number of

hours the weather resided in the ”from” state before the transition. find_rates.m then calculates

the transition rates based on the duration matrix as described in Section 3.4.

The script find_approx_lambda.m calculates the equivalent failure rate of every minimal cut set.

If the minimal cut set only contain one component the equivalent value is calculated as the λrbts

added to the average wind-dependent failure rate from the time series. This is the same calcula-

tion as used for the average method. If the minimal cut set contain two components the equiva-

lent failure rate is calculated using the approximate equations method implemented in the script

three_state_approx.m. Here the base failure rate λrbts is added to the wind-dependent failure

rates λn, λa and λe for each line. The average duration of weather states for each minimal cut set is

calculated using the duration matrix of the two components. The minimal cut set transition rates

are found by taking the average of the transition rates of the lines included in the set. λapprox is

then calculated using the scenario equations from Section 2.10.2.
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Next approx_equivalents.m calculates the remaining equivalent values for each minimal cut set.

This is Pinterr, req and Ueq. All equivalent values are then transferred to cut_set_indices.m to

calculate cut set indices as earlier described. These are then used to calculate delivery point indices

in annual_indices.m.

3.6.3 The Timestep Method

Figure 26: Code structure for the implementation of the timestep method

Here the code structure of the timestep method, utilizing the sum-equation from Equation (60), is

shown. The code structure utilizing the more complex product-function from Equation (59) has the

exact same code structure. The only difference is the calculation of the equivalent unavailability.

The script run to use the product-function is called unavailability_prod.m and can be chosen

from main.m. All scripts can be found in the Appendix.

The timestep method utilizes the same main.m, LP_cutset.m and annual_indices.m as earlier
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described. The remaining actions are conducted by unavailability_sum.m. It loops through ev-

ery hour of the time-series, adds λrbts to the weather dependent failure probability and calculates

the unavailability of the minimal cut set at every hour as described in Equation (55) and (56). The

average unavailability value, Ueq, for every cut set is then calculated as in Equation (57). In the

same script the equivalent repair time, failure rate, interrupted power and ENS is calculated.
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4 Results

4.1 Line Results

The resultant wind dependent failure rates from the time series are shown in Table 14. It contain

the average failure rate of the time series, and the failure rates of each weather state when applying

the three state weather model. It can be seen that line 3 has the highest wind impact, by a

significant margin. Line 8 and 6 has the lowest weather impact with line 8 having the smallest

average, but higher extreme impact than line 6.

Average N A E

Line 1 0.1182 0.08 3.5 17.3
Line 2 0.2292 0.15 7.8 40.3
Line 3 1.1345 0.84 28.2 145.8
Line 4 0.3747 0.26 11.4 52.3
Line 5 0.2490 0.15 9.3 50.5
Line 6 0.0167 0.01 0.6 3.6
Line 7 0.1225 0.08 3.9 17.0
Line 8 0.0128 0.006 0.6 4.9
Line 9 0.1206 0.08 4.0 17.9

Table 14: Line weather related failure rates [ 1
year ]

4.2 Timestep Method

The timestep method has two possible calculation approaches. The sum method and the product

method. The results for both methods are shown in Table 15. It can be seen that the results

are equal until the third or fourth decimal of ENS for the second order minimal cut sets and

after 2 decimals for cut set 9. This difference is considered neglectable, which shows that the

simplification made in the sum method is viable. In the remainder of the thesis the Timestep

method is represented by using the sum of the failure probabilities as in Equation (60). The sum

method is chosen because it is less computationally demanding.
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Sum method Product method

Delivery Point Cut set ENS ENS

DP 2 6,7 1.99013282 1.99005696
DP 2 2,6 2.03640827 2.03616983
DP 2 1,7 2.15046542 2.15012693
DP 2 1,6 0.84895923 0.84888364
DP 2 1,2 2.22338230 2.22261063

DP 4 5,8 0.39500584 0.39464729

DP 5 9 255.94807982 255.92216303
DP 5 5,8 0.39500584 0.39464729

Table 15: Timestep method results

4.3 Failure Bunching

Figure 27 shows the ENS per year for the total system from each method. Here the interrupted

power from every minimal cut set is included. The bar from the figure called Base shows the ENS,

in blue, when no weather impact is included. This base is the result of the general RBTS input

parameters, and is equal for every method studied. The red section of the bar chart depicts the

impact of the weather dependent ENS. This varies from method to method, however it can be seen

that the difference between methods including weather are small. The Base bar has a resultant

ENS of 237.38 MWh/year. The Average bar represents ENS for the average method, which is

described in Section 3.6.1. Remaining bars represents the other studied methods as labeled. It can

be seen that the effect of including wind impact in reliability analysis is large, and increases total

ENS with approximately 28 MWh each year which is significant.
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Figure 27: Total system ENS

To better see the difference between the methods including wind impact, Figure 28 shows the same

data as Figure 27 focusing on the deviations. The black line indicates ENS for the benchmark

indices. It can be seen that there is little difference in the resultant ENS of the four methods

studied. The timestep method is furthest from the benchmark results with a difference of 0.15

MWh per year, however this is a relative difference of only 0.06% when comparing the total ENS

with the benchmark results as the reference. The average method and approximate equations

method are very close to the benchmark results, with a difference of 0.07 MWh and 0.03 MWh

respectively, which can be considered neglectable. This shows that when studying the system as

a whole, with the magnitude of weather impact from the input data-series, all methods calculate

ENS within a reasonable error margin.
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Figure 28: Total system ENS with weather impact included

The ENS for each delivery point is distributed as shown in Table 16. It can be seen that delivery

point 1 and 3 never experience any interruption. DP 4 has the lowest ENS of the interrupted

delivery points. DP 2 has a large yearly interruption and DP 5 has the significantly largest ENS.

This distribution of interruption is consistent with the priority order interruption cost policy im-

plemented and the system topology. DP 1 is the highest prioritized delivery point and is therefore

never interrupted. DP 4 is the second highest prioritized, however if the minimal cut set 5,8 oc-

cur, DP 4 is separated from the system and is interrupted. The probability of this second order

minimal cut set to occur is low, resulting in a low ENS of DP 4. Next, DP 3 is prioritized and

never interrupted due to several alternative supply options. DP 5 is the fourth highest prioritized

delivery point, however this delivery point is the only one not being N-1 secure. This results in

an interruption if line 9 experiences a contingency. This is expected to occur once per year, which

results in a high, unavoidable ENS. DP 2 has the second largest ENS due to the fact that it is the

delivery point with the lowest IC. Whenever the system cannot supply the total demand of the

system, delivery point 2 is cut due to the objective function of the OPF. It can also be seen that

cut set 1,6 has a higher Pinterr than the other cut sets at DP 2. This is because of the transfer

capacity of line 1 and 6.
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Delivery Point Base Average Approx Timestep Benchmark

DP 1 - - - - -
DP 2 8.36640846 9.05405826 9.09984451 9.24934803 9.165171938
DP 3 - - - - -
DP 4 0.29702668 0.37563399 0.37385642 0.39500584 0.381929969
DP 5 228.71499064 256.33443007 256.33265249 256.34308567 256.2879098

Table 16: ENS at every delivery point [MWh/year]

The delivery point ENS is also given for each method studied. It can be seen that every method

follows approximately the same magnitude and correlation of the delivery point. The base case

without wind included is overall lower than the other methods, which show the importance of in-

cluding weather. The effect of the methods on ENS will be exemplified by the minimal cut sets.

Every delivery point has ENS caused by minimal cut sets. These cut sets, and their corresponding

DP, are shown in Table 17, with the interrupted power (Pinterr) for each occurrence of the minimal

cut. Detailed results of ENS, repair time and equivalent failure rate for every minimal cut set can

be found in the Appendix. It can be seen from Figure 17 that DP 2 has the largest number of

minimal cut sets. This is, as mentioned, due to this delivery point being interrupted whenever

there is a general shortage of power in the system. This is due to the objective function of the OPF

to minimize interruption cost.

Delivery Point Cut Set Pinterr[MW]

DP 2 6,7 17,1552
DP 2 2,6 17,1552
DP 2 1,7 17,1552
DP 2 1,6 23
DP 2 1,2 17,1552

DP 4 5,8 20

DP 5 9 20
DP 5 5,8 20

Table 17: Minimal cut sets and interrupted power
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4.3.1 First Order Minimal Cut Set

There is one first order minimal cut set in the system as seen in Table 17. This is a contingency

on line 9 causing 20 MW of interrupted power on DP 5. The resultant ENS for each method is

shown in Figure 29. Here the average and approximate method has the exact same ENS. This is

due to the fact that the exact same method is used for both cases. The approximate method is

only presented for second order cut sets. Therefore it has been chosen to calculate the first order

cut set of the approximate equations method by utilizing the average method.

Figure 29: Cut set 9 ENS

The black line represents the ENS from the benchmark method as reference. It can be seen that all

methods overestimate the ENS compared to the benchmark. The average method is slightly higher

than the timestep method. The difference in the average method and the benchmark method is

only approximately 0.05 MWh/year which is an neglectable difference with a total ENS of 255.96

MWh/year for the average method.
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4.3.2 Second Order Minimal Cut Sets

There are several second order minimal cut sets in the system. In this section three cut sets are

chosen for further analysis of results. These are cut set 6,7 1,2 and 5,8. Every cut set has unique

characteristics which make them interesting to study closer. Cut set 6,7 and 1,2 has the exact same

RBTS base situation, however cut set 1,2 experiences a large impact from wind-related failures

and 6,7 has a small impact from wind-related failures. Cut set 5,8 is chosen because it has a small

base ENS, but large weather impact. Results for all remaining cut sets can be found in the appendix.

Two aspects will be studied in this section; the ability of the method to capture failure bunch-

ing, and the calculation of ENS compared to the benchmark results. When studying the methods

ability to capture failure bunching, the approximate, timestep and benchmark results will be com-

pared to the standard calculation of indices including average wind impact wich is the method

described in Section 3.6.1. This shows how the method captures wind-related failure bunching

compared to the average method. The average method is chosen as reference because it is the eas-

iest possible, and least computationally extensive method to include weather-related failure rate.

The scope of this thesis includes the objective of recreating the benchmark results in a simplified

method. Therefore the results from the average, approximate and timestep methods are shown for

the cut sets compared to the benchmark data.

The plots indicate the deviation of the methods studied to the reference case. The black line

in each plot indicates the reference value. Every bar is depicting a percentage for each method.

This percentage is the relative deviation of the method compared to the reference method from

the plot. Here it is important to highlight that the calculated percentage deviation is for the ENS

caused by wind-related contingencies only. Every method has a base ENS caused by the general

input parameters of the RBTS system. This ENS is equal independent of method chosen to imple-

ment failures caused by weather impact. If the percentage deviation was calculated including the

RBTS base, the deviation would be misleadingly small.
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Figure 30: Cut set 6,7 compared to average weather

Figure 30 shows how the methods of cut set 6,7 capture failure bunching with the average method

as reference. The black line shows the resultant ENS of the reference. It can be seen that all three

methods capture significantly more wind-related ENS than the average method. Especially the

timestep and benchmark method, with a relative deviation of 33% and 29% respectively, are able

to improve the capture of failure bunching.
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Figure 31: Cut set 6,7 compared to Benchmark

Figure 31 shows the same cut set 6,7 with the benchmark as the black line reference. It can be

seen that the average method is furthest from recreating the benchmark results with a negative

relative deviation of 21%. The timestep method is closest to benchmark results for cut set 6,7 with

an overestimation of 5%. The approximate equations method has an underestimation of -7%. This

is significantly better than the average method, however if the ENS of the cut set is large this may

cause a prominent deviation of ENS.
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Figure 32: Cut set 1,2 compared to average weather

Figure 32 shows how failure bunching is captured for each method when applied to cut set 1,2.

All methods capture more wind-related ENS than the average method. The approximate method

captures almost 6% more, which is the smallest deviation from the average method. This results

in a deviation of 0.014 MWh/year. The largest deviation is for the timestep method with more

than 33% relative deviation. The benchmark method resides in between, with almost 16%. Except

for the timestep method, the more complex methods has a smaller deviation in capturing failure

bunching when weather impact increases when compared to the average method
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Figure 33: Cut set 1,2 compared to benchmark

Figure 33 shows the weather-related ENS compared to the benchmark results. It can be seen

that the approximate method is closest benchmark with an underestimation of almost 9%. This

is a slightly higher deviation than for cut set 6,7, but the deviation remains stable. The average

method is significantly closer to the benchmark method when the wind-impact of the lines in the

cut set increases. The timestep method deviation to benchmark is significantly increased, now with

a deviation of 15%. This shows that the accuracy of the timestep method worsens as the ratio of

wind-related failures increase.
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Figure 34: Cut set 5,8 compared to average weather

Cut set 5,8 can not directly be compared to cut set 1,2 and 6,7. This is because it has a different

RBTS base case and are affecting an other delivery point. The cut set is still interesting to study

due to its high priority in the system and low probability of occurrence. It also has highly weather

impacted lines as seen in Table 14 and a small RBTS failure rate. The methods ability to capture

failure bunching is shown in Figure 34. It can be seen that the timestep method clearly captures the

most wind-related ENS. The benchmark method has a relative increase of almost 19% wind-related

ENS, which will constitute a large deviation if the weather impact is increased. It can be seen that

the approximate method captures 2%less wind-related ENS than the average method. The reasons

behind this will be discussed further.

Page 72 of 114



4. RESULTS Department of Electric Power Engineering

Figure 35: Cut set 5,8 compared to Benchmark

Figure 35 shows the results compared to the benchmark results. It can be seen that the average

method actually has the best fit with a 7% underestimation and 0.006 MWh difference. Here the

timestep method again overestimates and the approximate method underestimates with 9.5%. This

is consistent with the magnitude of the deviation of previously discussed cut sets.

4.4 Approximate Equations Method

In this sections the contribution to λapprox from each weather category and scenario in the approx-

imate equations method will be discussed. The same minimal cut sets as above will be studied.

This is conducted to further understand the approximate equations method, and see which sce-

narios contributes to the equivalent failure rate and ENS. It will also give an indication of which

weather scenario which may be neglected to reduce computational time.

Table 18 shows the contribution to λapprox for cut set 6,7. These are shown in actual value and

in percentage of total λapprox. It can clearly be seen that the scenario NN, where both failures

occur in normal weather, is the largest contributor with almost 98%. The NA scenario is also a

large contributor due to the large occurrence of the transition from normal to adverse weather, and
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the large probability of initially residing in the normal category. The AA and EE scenarios, where

both contingencies occur in adverse and extreme weather respectively, contribute to the resultant

λapprox, however not by a large percentage due to the small weather impact on this minimal cut

set. The scenarios NE, AN, AE, EN and EA has neglectable impact due to the small number of

observed transitions, or the unlikeliness of weather states.

Scenarios λapprox Percentage

NN 0.019771595 97.834 %
NA 2.98E-04 1.477 %
NE 6.69E-07 0.003 %
AN 6.69E-07 0.003 %
AA 1.32E-04 0.654 %
AE 3.57E-08 0.000 %
EN 7.71E-11 0.000 %
EA 4.06E-10 0.000 %
EE 5.66E-06 0.028 %

Total 0.0202

Table 18: Cut set 6,7

Table 19 shows the contribution to equivalent failure rate for cut set 1,2 when applying the approx-

imate equations method. As previously mentioned, this cut set has the exact same base situation

as cut set 6,7, but with larger weather impact of lines. It can be seen that this is reflected in

the equivalent equations results due to the increased percentage of contribution from adverse and

extreme categories. In scenario NN, the impact from this state is higher than the impact from NN

in cut set 6,7, even though the percentage of total λapprox is smaller. This is due to the increased

failure rate of normal weather as shown in Table 14. In this cut set the NA scenario has the second

largest contribution to λapprox with 2.6%. AA and EE has increased impact compared to cut set

6,7 and AA in particular has a significant increase and contribution to results. The scenarios NE

and AN also has an increased impact compared to cut set 6,7 and with increased weather, these

scenarios may have an notable impact on ENS. However they are still small compared to total

equivalent failure rate. AE, EN and EA are still neglectable.
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Scenarios λapprox Percentage

NN 0.020971205 95.297 %
NA 5.71E-04 2.597 %
NE 2.64E-06 0.012 %
AN 5.87E-06 0.027 %
AA 4.15E-04 1.888 %
AE 1.53E-07 0.001 %
EN 3.03E-10 0.000 %
EA 1.74E-09 0.000 %
EE 3.95E-05 0.179 %

Total 0.0220

Table 19: Cut set 1,2

Table 20 shows the resultant contributions to cut set 5,8 when applying the approximate equations

method. As previously mentioned, this cut set has a small base ENS and failure rate from the

RBTS system, but a large weather impact as shown in Table 14. This is confirmed in Table 20.

It can be seen that λapprox is small due to the small RBTS failure rate, however the percentage in

NN is significantly smaller than in previous cut sets. This is highly influenced by the small con-

stant failure rate of the base RBTS input values in combination with the high wind-impact of the

lines. This is because the wind-related failure rate constitutes a larger portion of the total failure

rate. E.g. a wind-related failure rate of 4 has a larger relative impact on the system if the RBTS

base-failure rate is 1 in the case of lines 5 and 8 than for line 2 with the RBTS-base failure rate of 5.

With a small base failure rate, the large weather dependent λ will be more prominent and have

a relative larger impact. It can be seen that the NA and AA scenarios are almost doubled in

percentage, while the EE scenario constitutes 0.39% which is more than double of the cut set from

1,2. The results of cut set 5,8 mirror the pattern of cut set 1,2, where both have large weather

impact, with a small contribution from NE and AN and with neglectable impact from AE, EN and

EA.
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Scenarios λapprox Percentage

NN 0.00298841 91.293 %
NA 1.52E-04 4.636 %
NE 1.66E-06 0.051 %
AN 1.56E-06 0.048 %
AA 1.17E-04 3.583 %
AE 5.21E-08 0.002 %
EN 1.28E-10 0.000 %
EA 6.14E-10 0.000.%
EE 1.27E-05 0.389 %

Total 0.0033

Table 20: Cut set 5,8

Computing the results of the approximate equations method for a three state system is more com-

putational extensive than for a two state system. The two state system will consist of 5 scenarios

compared to the 9 scenarios of the three state system. Extra computations of transition rates,

failure rates and durations are also necessary. As seen in Table 18-20, the only contribution from

the extreme category is scenario EE, where both contingencies occur in the extreme weather state.

Therefore it can be debated if the extreme weather state is necessary to include when using historic

data.
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5 Discussion and Comparison

The aim of this master thesis is to capture failure bunching in reliability analysis of power systems

due to increased weather impact, by including wind-related failures. It can clearly be seen from

Figure 27 that the inclusion of wind related failures increases the total ENS of approximately 28

MWh/year. This is a significant increase which is important to include in power system planning

methodologies to optimize mitigation.

The results when analyzing the ENS of the system as a whole shows that all methods studied

are within an acceptable error margin and can be used. However, is only certain for the case with

the input data-series studied for the RBTS system and not as a general fact. If the weather im-

pact of the input data is increased, the characteristics of each method, as studied for each cut set,

will become more prominent. The input data-series used in this thesis has approximately 10% of

contingencies due to wind. As discussed in Section 2.8, the environmental impact on the system is

much larger. If more wind-impact is included in the input data-series and more data is available

for several environmental phenomena, the weather impact will increase, and the choice of weather

implementation method is important.

5.1 Average Method

The average method is used as a reference, and is the easiest possible way of capturing weather

impact. It gives a decent representation, however it does not capture failure bunching as well as

the other methods. When studying cut set 6,7 and 1,2 which has the same base, it can be seen

that the average method has a decreasing percentage error when weather impact increases. In the

cut set 5,8, which has large weather impact, but small RBTS base, the average method is the most

accurate. The average method has proven to be more accurate than initially expected, however it

is unstable in deviation to the RBTS method, and captures less weather-related ENS than other

methods in general. The reason is because the method does not differentiate between a large storm

or a day with no wind. A lot of information and detail is lost when only including the average of

the time-series of each line.
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5.2 The Approximate Equations Method

The approximate equations method captures failure bunching better than the average method. This

is because it includes weather states which are able to capture more variances in the time-series

input data, and less information is lost. It is also the method which is closest to the benchmark

results for the system as a whole as seen in Figure 28. It consistently underestimates results when

compared to benchmark, and the deviation is consistent whether lines in the cut set has a large or

small probability of failure.

The approximate equations method has a consistent contribution to λapprox from the scenarios

for all minimal cut sets. The NN scenario has the largest contribution due to the long duration of

normal weather and large probability of initially residing in this state. The NA scenario has the

second largest contribution to λapprox due to the high probability of the transition from normal to

adverse state, and the high probability of the first contingency to occur in the normal state.

It is interesting to study the relationship between the probability of residing in the weather state

of the initial contingency, and the probability of transfer between states. The NA scenario is the

second largest with both high probability of residing in the initial state, and a high probability of

transition. With AN, the probability of transition is high and with NE the probability of residing in

the initial state is high, but the probability of transition is very low. E.g the probability of residing

in each weather state initially is given by Table 12. For line 1, the expected number of transitions

for AN is almost 30 transitions per year, for comparison, the transition rate of NA is equal. For

NE only one transition is recorded for the whole period of 25 years resulting in a transition rate

of 0.04 per year. For cut set 6,7 the contribution to λapprox is equal. In cut set 1,2, AN has a

higher contribution than NE, while for cut set 5,8 NE is slightly higher. The ratio between the

probabilities of initially residing in normal or adverse weather states are approximately 1%. The

ratio between the transition rates for AN and NE for line 1 is 0.01%. Still the results of the two

scenarios are very similar, which shows that the probability of residing in the initial state of the

first contingency is more important for results than the probability of transition between states.

Here it should be noted that the relationship between transition rates are very similar for each line.

The scenarios EN and EA has very few expected transitions during a year, and the extreme weather

state has a low probability of initially occurring. Therefore these scenarios can easily be neglected

to reduce computational time.
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All scenarios containing the extreme weather state does not affect ENS much. In the cut set

5,8, which has the largest contribution outside NN, the total contribution from scenarios contain-

ing failure in the extreme state is 0.442% which is very small. Including the extreme weather state

in the method entails increased computational time in every step. The sorting of the time-series

requires an additional possible state, transition rates are increased from 4 to 9 and so is the num-

ber of scenarios calculated. [1] shows an significant increase in ENS when the extreme category is

included. In the article, the input data are based on a fictional case with an assumed reality, and

this may not be correct and over estimate the importance of the extreme category.

[1] calculated the λapprox for different cases containing an increasing percentages of failures oc-

curring in bad weather. By reproducing the approach in Section 3.3 it was possible to find the

failure rates for each case as shown in Table 10. From this table the case where 10% of failures

occur in bad weather is coherent with the historic time-series data used in this thesis. It should be

noted that the input data and method of calculating the failure rates in the paper and in this thesis

are not equal, and these failure rates can not be directly compared to calculated line failure rates in

Table 14. However, it is possible to see some similarities in the scale of the values. Billinton often

uses an error factor in his work[2][7]. This error factor is the ratio of increase in the failure rate

when including failure bunching compared to it not being included [1]. For the 10% bad weather

case in the paper, the error factor is 1.27, as a reference no change in failure rate has an error

factor of 1. This indicates an increase in failure rate of 27%. The same paper presents the error

factor when only two states are used, and with the two state model, the error factor is also 1.27 for

the case with 10% weather impact. This indicates that there is no difference in the two and three

state model with a small percentage of failures occurring in bad weather. As discussed in Section

2.8, the historic wind impact on the Norwegian power grid is approximately twenty percent. In

the Billinton paper, when 20% of failures occur in ”bad weather”, the error factor for the three

state system is 2.06. For the two-state model the same case has an error factor of 2.04, which is

a 2% deviation when the extreme weather state is included. With increasing number of failures

occurring in the extreme weather case, the error factor is also increasing. It is natural to assume

this is also the case with the use of the approximate equations method on historic data.

When developing methodologies for reliability analysis of power systems, there is always a bal-

ance between computational time and accuracy of results. With the time-series input of historic

wind data used in this thesis, which accounts for approximately 10% of contingencies occurring due
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to wind, a two state method should suffice. However, with increasing number of environmentally

related contingencies and extraordinary weather phenomena the three state weather model is most

likely necessary to capture failure bunching because the contribution from the extreme categories

are increasing with weather impact. This should be further studied by testing the method on data

with increased ratio of weather-related failures.

5.3 The Timestep Method

The timestep method consistently overestimates the resultant ENS for every cut set. The over-

estimation also increases when the weather impact of the lines in the cut set increase. With the

increase of weather related contingencies, the error and overestimation will become larger, making

this method unsuitable. This method is also the one furthest from the benchmark for the overall

system. The capture of failure bunching is larger, however it is not desirable to capture failure

bunching effects that are non-existent in the real system.

The timestep method is a simplified implementation of the benchmark method, where the dif-

ference is the consideration of the outage duration. In the benchmark method the outage duration

is found through a survival function which is based on probabilistic methods and historic data as

described in Section 3.1.1. The timestep method assumes a constant outage duration for all cut

sets which are chosen as the average of the benchmark survival function. The oscillations of the

unavailability in the time-series are amplified compared to the benchmark method. This can be

seen for line 9 in Figure 38 in the Appendix. All lines follow this pattern. When the unavailability

of the line has a peak, the peak of the timestep method is elevated compared to the benchmark

method. This is also the case for the dips in the unavailability. When the unavailability drops, the

timestep method gets a lower unavailability than the benchmark method. Because the peaks result

in a higher unavailability and deviation to the benchmark results, the equivalent unavailability of

the line overestimates compared to the benchmark result. This again results in an overestimated

ENS. This also explains why the overestimation increases with increased wind impact.

5.4 Comparison of Methods

All methods can be used on the RBTS system with results within an acceptable margin of error.

However, the methods do have significant relative deviations when studying the minimal cut sets.
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With the input data and system studied in this thesis, the absolute deviation in MWh/year for

the methods has been small. This is somewhat due to the large ENS caused by the base RBTS

system indices. When only studying the contribution from the weather-related indices, the relative

deviation is larger. If the weather-impact of the input data increases, these deviations will result

in notable changes in ENS for the system as a whole too.

The average method has proven to be more accurate than previously envisioned, especially when the

weather impact was increased. However, the deviation to the benchmark method is non-consistent.

Data is lost in the process, and it is unsuitable to capture and distinguish HILP events.

The timestep method consistently overestimates the ENS of each minimal cut set, and the sys-

tem as a whole. The fact that the deviation to benchmark results increase with increased weather

makes the method unsuitable. The timestep method was constructed based on the benchmark

method, with constant outage duration. This shows the importance of how the outage duration is

included in analysis.

The approximate equations method underestimates the ENS compared to the benchmark method.

This under estimation is stable between 7-9% deviation. The deviation of the total system is less

than 1%. For some cut sets other methods are closer than the approximate equations method, how-

ever this method is consistent. It looses less data than the average method due to utilizing weather

states. It also has the ability to capture HILP events through the extreme weather state. It also

has the ability to study which weather states and scenarios that contribute to λapprox. Scenarios

and weather states can also be reduced to further reduce computational time based on the scope

of analysis and the weather impact of the input data.
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6 Conclusion

In this thesis two methods of implementing weather data in reliability analysis has been developed

and studied. This is the three state approximate equations method, which is altered to fit historic

weather data as input, and the timestep method. These are tested and compared to standard reli-

ability methodologies, a method including average weather impact and a more complex benchmark

method.

An implementation in MATLAB based on the OPAL prototype has been developed for each method

and tested. Results have been studied to find the most suitable approach. This has been based on

two criteria, the methods ability to capture failure bunching and its ability to recreate results from

the benchmark method with reduced computational complexity.

The approximate equations method has proved to be implementable on historic weather data

with some changes, and is recommended as the most suitable approach. It captures more failure

bunching than the average approach. The deviation to the benchmark method is the overall closest

with a difference of 0.15 MWh/year. Out of a total ENS of 265.84 MWh/year this deviation is

minimal. On minimal cut set level, the deviation when only considering weather-related ENS is

7-9% when compared to the benchmark method. This is a absolute deviation of 0.025 MWh/year

for cut set 1,2 which has the largest deviation. This magnitude is considered neglectable.

With the input data-series used in this thesis for the RBTS system the extreme category is not

highly affecting results, and the two state method can be used. This is because the input data

series has 10% of failures occurring due to wind. With several weather phenomena included in the

input data series with a higher overall percentage of weather-related failures, the extreme weather

category may be more prominent. The extreme category may be suitable to capture HILP events,

however more studies on the method with input data containing higher degree of weather-impact

is necessary. Some scenarios can be removed to ease computational time and complexity further.

The timestep method consistently overestimates ENS and is the furthest from benchmark results.

It captures more failure bunching than the approximate method, however capturing non-existent

weather impact is not desirable. The overestimation increases with increasing weather impact,

which makes this method unsuitable.
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6.1 Further Work

Several observations has been done through working with this thesis that has been outside the

scope. One is the importance of outage duration or repair time. The major difference between

the timestep method and the benchmark method is the handling of the outage duration. The

importance of the assumption that repair is only conducted in the normal weather state in the

approximate equations method is also interesting to study further.

Most parameters are based on the input time-series of the hourly failure probabilities. However,

the probability of residing in each weather state is taken from literature. It is important to study

the affects of this probability which is not based on the historic weather data. This can be con-

ducted through a sensitivity analysis. It is also interesting to optimize the categorizing the input

time-series in weather states.

The methods have only been tested on one set of input data. Further testing with other input

data sets are necessary. Especially more information about the necessity of the extreme weather

state in the approximate equations method when the ratio of weather related failures is increased

is interesting to study further.

The duration matrix used to find the average duration and transition rates of the system and

weather states was observed to be very symmetric. This is interesting to study further. There is

also potential in utilizing the conditional probability table(CPT) in a model based on Bayesian

networks. Where observed transitions from the duration matrix can be used as the basis of the

CPT.
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7 Appendix

7.1 All Results

7.1.1 ENS

DP Min Cut Set λeq Annual ENS

Load 1 - - -

Load 2 6,7 0,01939200 1,89971251
Load 2 2,6 0,01939200 1,89971251
Load 2 1,7 0,01939200 1,89971251
Load 2 1,6 0,00584404 0,76755842
Load 2 1,2 0,01939200 1,89971251

Load 3 - - -

Load 4 5,8 0,00260073 0,29702668

Load 5 9 1,00000000 228,41796396
Load 5 5,8 0,00260073 0,29702668

Total 237,37842577

Table 21: All results for base case. No weather included

DP Min Cut Set λeq Annual ENS

Load 1 - - -

Load 2 6,7 0,02008435 1,96753784
Load 2 2,6 0,02049964 2,00822185
Load 2 1,7 0,02142541 2,09891318
Load 2 1,6 0,00637330 0,83707164
Load 2 1,2 0,02186844 2,14231375

Load 3 - - -
Load 4 5,8 0,00328901 0,37563399

Load 5 9 1,12057209 255,95879608
Load 5 5,8 0,00328901 0,37563399

Total 265,76412233

Table 22: Results for the average method
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DP Min Cut Set λeq Annual ENS

Load 1 - - -

Load 2 6,7 0,02021165 1,98000844
Load 2 2,6 0,02058829 2,01690596
Load 2 1,7 0,02154045 2,11018275
Load 2 1,6 0,00637226 0,83693462
Load 2 1,2 0,02200623 2,15581274

Load 3 - - -

Load 4 5,8 0,00327344 0,37385642

Load 5 9 1,12057209 255,95879608
Load 5 5,8 0,00327344 0,37385642

Total 265,80635341

Table 23: Results for the approximate equations method

DP Min Cut Set λeq Annual ENS

Load 1 - - -

Load 2 6,7 0,02027270 1,985992927
Load 2 2,6 0,02070657 2,028496372
Load 2 1,7 0,02171775 2,127555086
Load 2 1,6 0,00641680 0,842784466
Load 2 1,2 0,02225660 2,180343086

Load 3 - - -

Load 4 5,8 0,00334413 0,381929969

Load 5 9 1,12034087 255,9059798
Load 5 5,8 0,00334413 0,381929969

Total 265,83501172

Table 24: Results of the benchmark method
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7.1.2 Deviations

Figure 36: Deviations to the average method

Figure 37: Deviations to the benchmark method

7.2 contingency analysis results

Component out matrix must be included as input without the header.
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Line 1 Line 2 Line 3 LIne 4 Line 5 Line 6 Line 7 Line 8 Line 9

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0

Table 25: Component out matrix

The SAC matrix must be included with the header, as the code removes the first two rows. OS is

Operational State, where only one is included in this thesis. DP is Delivery Point.

OS1 OS1 OS1 OS1 OS1

DP 1 DP 2 DP 3 DP4 DP5

Inf Inf Inf Inf 0
Inf Inf Inf Inf 0
Inf Inf Inf Inf 0
Inf Inf Inf Inf 0
Inf 67,8448275862068 Inf Inf Inf
Inf Inf Inf Inf 0
Inf Inf Inf 0 0
Inf Inf Inf Inf 0
Inf Inf Inf Inf 0
Inf Inf Inf Inf 0
Inf 67,8448275862069 Inf Inf Inf
Inf Inf Inf Inf 0
Inf 67,8448275862068 Inf Inf Inf
Inf 61,9999999999996 Inf Inf Inf
Inf 67,8448275862069 Inf Inf Inf
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7.3 Reproduction of [1]

F λapprox Benchmark Deviation

0 0,00698 0,00691 1 %
10 0,00822 0,00846 -3 %
20 0,01263 0,01366 -8 %
30 0,02017 0,02247 -10 %
40 0,03083 0,03488 -12 %
50 0,04459 0,05085 -12 %
60 0,06144 0,07036 -13 %
70 0,08135 0,09338 -13 %
80 0,10430 0,11988 -13 %
90 0,13029 0,14985 -13 %
100 0,15929 0,18325 -13 %

Table 26: Duration method approximate failure rate results.

7.4 Timestep method

Figure 38 shows the unavailability of the time-series of line 9 when using the timestep method and

the benchmark method. The blue line, here called Line 9 - Rolling shows the timestep method

results. The red line shows the benchmark results.
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Figure 38: Line 9 unavailability for timestep vs benchmark method (By Erlend Sandø Kiel)

7.5 MATLAB Implementation

In the following section some of the most central scripts from the MATLAB implementation is

added. Due to the large volume of code, not all is included. The zip file with all developed code is

submitted with this thesis.

7.5.1 Main.m

1 %Only one method can be run s imul tanuos ly .

2 %I f the approximate equat ions method − approx = 1

3 %I f base case method with no weather i s wanted a l l parameters = 0

4 %I f Average method i s wanted − weather = 1

5 %I f t imestep sum method i s wanted − t imestep = 1
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6 %I f t imestep product method i s wanted − t imestep = 1 and prod = 1

7

8

9 approx = 0 ;

10 weather = 0 ;

11 p r i n t s e t s = 1 ;

12 pr in t annua l = 0 ;

13 t imestep =1;

14 prod = 1 ;

15

16 %Check that only one method i s run :

17 num method = approx + weather + t imestep ;

18

19 i f num method > 1

20 di sp ( ’ Only one method can be run at a time . Try again ’ )

21 re turn

22 end

23

24 P n = 0 .989875 ;

25 P a = 0 .010011 ;

26 P e = 0 .000114 ;

27

28 %Loads r e s u l t s o f the cont ingency a n a l y s i s

29 load ( ’ RBTS cont results . mat ’ ) ;

30 demand = [ 2 0 , 8 5 , 4 0 , 2 0 , 2 0 ] ;

31 lambda rbts = [ 1 . 5 , 5 , 4 , 1 , 1 , 1 . 5 , 5 , 1 , 1 ] ;

32 r = 11.420898198198216 ;

33

34

35

36 %Finds minimal cut s e t s f o r each load po int

37 c u t s e t s=LP cutsets ( c o n t r e s u l t s , demand) ;

38

39 %I f approximate equat ions method i s chosen :
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40 i f approx

41 %Find t r a n s i t i o n r a t e s from inputdata :

42 [ t r a n s r a t e s , lambda avg , a l l d u r a t i o n s ] = t r a n s i t i o n r a t e s ( P n , P a ,

P e ) ;

43 %Find approximate f a i l u r e ra t e at each cut s e t :

44 lambda approx = find approx lambda ( c u t s e t s , t r a n s r a t e s , lambda avg ,

P n , P a , P e , lambda rbts , a l l d u r a t i o n s ) ;

45 %Calcu la te equ iva l en t va lue s at each cut s e t :

46 approx eq va lues = approx equ iva l en t s ( c u t s e t s , c o n t r e s u l t s ,

lambda approx , demand) ;

47 %Calcu la te i n d i c e s f o r each cut s e t :

48 c u t s e t r e s = c u t s e t i n d i c e s ( approx eq va lues ) ;

49

50 %I f the OPAL methodology i s chosen :

51 e l s e

52 i f weather

53 eq va lue s = equ iva l en t s wea the r ( c u t s e t s , c o n t r e s u l t s ,

lambda rbts , demand) ;

54 c u t s e t r e s = c u t s e t i n d i c e s ( eq va lue s ) ;

55 e l s e

56 %Cal cu l a t e s equ iva l en t va lue s at each cut s e t :

57 eq va lue s = e q u i v a l e n t s ( c u t s e t s , c o n t r e s u l t s , lambda rbts ,

demand) ;

58 %Cal cu l a t e s i n d i c e s at each cut s e t :

59 c u t s e t r e s = c u t s e t i n d i c e s ( eq va lue s ) ;

60 end

61 end

62

63 i f t imestep

64 f l i n e s = csvread ( ’ f l i n e s r b t s . csv ’ , 1 , 1 ) ;

65 years = s i z e ( f l i n e s , 1 ) /8760 ;

66 i f prod

67 c u t s e t r e s = t imestep prod ( c u t s e t s , f l i n e s , years , c o n t r e s u l t s ,

demand , lambda rbts , r ) ;
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68 e l s e

69 c u t s e t r e s = timestep sum ( c u t s e t s , f l i n e s , years , c o n t r e s u l t s ,

demand , lambda rbts , r ) ;

70 end

71

72 annua l r e s = a n n u a l i n d i c e s t i m e s t e p ( c u t s e t r e s ) ;

73

74 e l s e

75 %Cal cu l a t e s annual r e s u l t s at each load po int :

76 annua l r e s = a n n u a l i n d i c e s ( c u t s e t r e s ) ;

77

78 end

79 %Pr int s cut s e t i n d i c e s i f chosen :

80 i f p r i n t s e t s

81 w r i t e c u t s e t i n d i c e s ( c u t s e t r e s ) ;

82 end

83

84 %Pr int s annual load po int i n d i c e s i f chosen :

85 i f p r in t annua l

86 w r i t e a n n u a l i n d i c e s ( annua l r e s ) ;

87 end
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7.5.2 LP cutsets.m

1 f unc t i on c u t s e t s = LP cutsets ( c o n t r e s u l t s , demand)

2

3 %Retr i eve nece s sa ry v a r i a b l e s from the cont ingency a n a l y s i s :

4 SAC=c o n t r e s u l t s .SAC( 3 : end , 1 : end ) ;

5 comp out=f u l l ( c o n t r e s u l t s . comp out ) ;

6 c u t s e t s=s t r u c t ;

7

8 %Loop through a l l load po in t s :

9 f o r i = 1 : s i z e (SAC, 2 )

10 l o a d p o i n t =s t r c a t ( ’ load ’ , num2str ( i ) ) ;

11 load = s t r u c t ;

12 s e t s= {} ;

13 SAC id={};
14

15 %Loop through every f a u l t combination :

16 f o r j = 1 : s i z e (SAC, 1 )

17

18 %Check i f the re i s l o s s o f load :

19 i f demand( i ) > SAC( j , i )

20

21 %Find components in the cut s e t and add at the end o f

the

22 %c e l l ” s e t s ” :

23 s e t s {end+1} = f i n d ( comp out ( j , : ) ) ;

24 SAC id{end+1} = j ;

25 end

26 end

27

28 %I f a load po int has no l o s s o f load . Add to s t r u c t :

29 i f isempty ( s e t s )

30 c u t s e t s = s e t f i e l d ( cut s e t s , l oad po int ,{} ) ;

31 cont inue
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32 end

33

34 %check i f any cut s e t i s not minimal :

35 combinat ions = combnk ( [ 1 : l ength ( s e t s ) ] , 2 ) ; %every p o s s i b l e

combination

36 index = ones ( l ength ( s e t s ) , 1 ) ;

37

38 %Loops thorough every combination o f cut s e t s to check i f a

cut

39 %s e t i s a sub s e t o f another cut s e t :

40 f o r k = 1 : l ength ( combinat ions )

41 s e t 1 = s e t s { combinat ions (k , 1 ) } ;

42 s e t 2 = s e t s { combinat ions (k , 2 ) } ;

43 i f l ength ( s e t 1 ) < l ength ( s e t 2 )

44 s h o r t e s t= s e t 1 ;

45 l o n g e s t = s e t 2 ;

46 id=combinat ions (k , 2 ) ;

47 e l s e

48 s h o r t e s t=s e t 2 ;

49 l o n g e s t = s e t 1 ;

50 id=combinat ions (k , 1 ) ;

51 end

52 %Checks i f the s h o r t e s t subset i s a subset o f the

l o n g e s t

53 %subset . ( f . eks 1 . order cont ingency i s a subset o f the

54 %cut s e t o f a 2 . order cont ingency :

55 a = ismember ( sho r t e s t , l o n g e s t ) ;

56 i f sum( a ) == length ( a )

57 index ( id ) = 0 ;

58 end

59 end

60

61 %Removes a l l s e t s that are not minimal :

62 min cut = s e t s ( index == 1) ;
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63 SAC id = SAC id ( index==1) ;

64

65 %Adds r e s u l t s to load s t r u c t .

66 load = s e t f i e l d ( load , ’ min cut ’ , min cut ) ;

67 load = s e t f i e l d ( load , ’ SAC id ’ , SAC id ) ;

68

69 %Add load s t r u c t to cut s e t s s t r u c t

70 c u t s e t s = s e t f i e l d ( cut s e t s , l oad po int , load ) ;

71 end

72

73 end
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7.5.3 find approx lambda.m

1 f unc t i on lambda approx = find approx lambda ( c u t s e t s , t r a n s r a t e s ,

lambda avg , P n , P a , P e , lambda rbts , a l l d u r a t i o n s )

2

3 %Def ines nece s sa ry data s t r u c t u r e :

4 c u t s e t s = s t r u c t 2 c e l l ( c u t s e t s ) ;

5 lambda approx = s t r u c t ;

6

7 %Loops through each load po int :

8 f o r i = 1 : l ength ( c u t s e t s )

9 l o a d p o i n t =s t r c a t ( ’ load ’ , num2str ( i ) ) ;

10 s e t s = {} ;

11 %I f no l o s s o f load at load point , keep empty :

12 i f isempty ( c u t s e t s { i })

13 lambda approx = s e t f i e l d ( lambda approx , l oad po int ,{} ) ;

14 cont inue

15 end

16

17 min cut = c u t s e t s { i } . min cut ;

18 %Loop through each minimal cut s e t :

19 f o r j = 1 : l ength ( min cut )

20 %F i r s t order minimal cut s e t :

21 i f l ength ( min cut{ j }) == 1

22 s e t s { j } . lambda = lambda rbts ( min cut{ j } (1) )+ P n∗
lambda avg{ j } (1) ∗8760 + P a∗ lambda avg{ j } (2) ∗8760 +

P e∗ lambda avg{ j } (3) ∗8760 ;

23 s e t s { j } . s e t = min cut{ j } ;

24 %Second order minimal cut s e t :

25 e l s e

26 s e t s { j } . lambda = t h r e e s t a t e a p p r o x ( min cut{ j } (1) ,

min cut{ j } (2) , t r a n s r a t e s , lambda avg , P n , P a , P e ,

lambda rbts , a l l d u r a t i o n s ) ;

27 s e t s { j } . s e t = min cut{ j } ;
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28 end

29 end

30 %Add r e s u l t s to s t r u c t :

31 lambda approx = s e t f i e l d ( lambda approx , l oad po int , s e t s ) ;

32 end

33

34

35

36 end
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7.5.4 three state approx.m

1 f unc t i on lambda approx = t h r e e s t a t e a p p r o x ( l i n e 1 , l i n e 2 , t r a n s r a t e s ,

lambda avg , p n , p a , p e , lambda rbts , a l l d u r a t i o n s )

2

3 %Def ine f a i l u r e ra t e f o r both l i n e s f o r a l l weather s t a t e s :

4 lambda n 1 = lambda rbts ( l i n e 1 ) + lambda avg{ l i n e 1 } (1) ∗8760 ;

5 lambda n 2 = lambda rbts ( l i n e 2 ) + lambda avg{ l i n e 2 } (1) ∗8760 ;

6 lambda a 1 = lambda rbts ( l i n e 1 ) + lambda avg{ l i n e 1 } (2) ∗8760 ;

7 lambda a 2 = lambda rbts ( l i n e 2 ) + lambda avg{ l i n e 2 } (2) ∗8760 ;

8 lambda e 1 = lambda rbts ( l i n e 1 ) + lambda avg{ l i n e 1 } (3) ∗8760 ;

9 lambda e 2 = lambda rbts ( l i n e 2 ) + lambda avg{ l i n e 2 } (3) ∗8760 ;

10

11 %Set expected r e p a i r time :

12 r 1 = 11.420898198198216/8760;

13 r 2 = 11.420898198198216/8760;

14

15

16 %Def ine a l l p o s s i b l e t r a n s i t i o n r a t e s :

17 n a 1 = t r a n s r a t e s { l i n e 1 } (1 , 2 ) ;

18 n a 2 = t r a n s r a t e s { l i n e 2 } (1 , 2 ) ;

19 n e 1 = t r a n s r a t e s { l i n e 1 } (1 , 3 ) ;

20 n e 2 = t r a n s r a t e s { l i n e 2 } (1 , 3 ) ;

21 a n 1 = t r a n s r a t e s { l i n e 1 } (2 , 1 ) ;

22 a n 2 = t r a n s r a t e s { l i n e 2 } (2 , 1 ) ;

23 a e 1 = t r a n s r a t e s { l i n e 1 } (2 , 3 ) ;

24 a e 2 = t r a n s r a t e s { l i n e 2 } (2 , 3 ) ;

25 e n 1 = t r a n s r a t e s { l i n e 1 } (3 , 1 ) ;

26 e n 2 = t r a n s r a t e s { l i n e 2 } (3 , 1 ) ;

27 e a 1 = t r a n s r a t e s { l i n e 1 } (3 , 2 ) ;

28 e a 2 = t r a n s r a t e s { l i n e 2 } (3 , 2 ) ;

29

30 %The f o l l o w i n g part c a l c u l a t e s t r a n s i t i o n r a t e s f o r each t r a n s i t i o n and

31 %takes in to account i f one or both are zero :
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32

33 %From Normal to Adverse

34 i f n a 1 == 0 && n a 2 == 0

35 di sp ( ’ no t r a n s i t i o n on n a ’ ) ;

36 n a = 0 ;

37 e l s e i f n a 1 == 0

38 n a = n a 2 ;

39 e l s e i f n a 2 == 0

40 n a = n a 1 ;

41 e l s e

42 n a = ( ( n a 1 + n a 2 ) /2) ;

43 end

44

45 %From Normal to Extreme :

46 i f n e 1 == 0 && n e 2 == 0

47 di sp ( ’ no t r a n s i t i o n on n e ’ ) ;

48 n e = 0 ;

49 e l s e i f n e 1 == 0

50 n e = n e 2 ;

51 e l s e i f n e 2 == 0

52 n e = n e 1 ;

53 e l s e

54 n e = ( ( n e 1 + n e 2 ) /2) ;

55 end

56

57

58 %From Adverse to Normal

59 i f a n 1 == 0 && a n 2 == 0

60 di sp ( ’ no t r a n s i t i o n on a n ’ ) ;

61 a n = 0 ;

62 e l s e i f a n 1 == 0

63 a n = a n 2 ;

64 e l s e i f a n 2 == 0

65 a n = a n 1 ;
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66 e l s e

67 a n = ( ( a n 1 + a n 2 ) /2) ;

68 end

69

70 %From Adverse to Extreme :

71 i f a e 1 == 0 && a e 2 == 0

72 di sp ( ’ no t r a n s i t i o n on a e ’ ) ;

73 a e = 0 ;

74 e l s e i f a e 1 == 0

75 a e = a e 2 ;

76 e l s e i f a e 2 == 0

77 a e = a e 1 ;

78 e l s e

79 a e = ( ( a e 1 + a e 2 ) /2) ;

80 end

81

82 %From Extreme to normal :

83 i f e n 1 == 0 && e n 2 == 0

84 di sp ( ’ no t r a n s i t i o n on e n ’ ) ;

85 e n = 0 ;

86 e l s e i f e n 1 == 0

87 e n = e n 2 ;

88 e l s e i f e n 2 == 0

89 e n = e n 1 ;

90 e l s e

91 e n = ( ( e n 1 + e n 2 ) /2) ;

92 end

93

94

95

96 %From Extreme to Adverse :

97 i f e a 1 == 0 && e a 2 == 0

98 di sp ( ’ no t r a n s i t i o n on n a ’ ) ;

99 e a = 0 ;
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100 e l s e i f e a 1 == 0

101 e a = e a 2 ;

102 e l s e i f e a 2 == 0

103 e a = e a 1 ;

104 e l s e

105 e a = ( ( e a 1 + e a 2 ) /2) ;

106 end

107

108

109

110 %Cal cu l a t e s weather durat ions :

111 N = ( ( sum( a l l d u r a t i o n s { l i n e 1 }{1 ,2}) + sum( a l l d u r a t i o n s { l i n e 1

}{1 ,3}) + sum( a l l d u r a t i o n s { l i n e 2 }{1 ,2}) + sum( a l l d u r a t i o n s {
l i n e 2 }{1 ,3}) ) . . .

112 / ( l ength ( a l l d u r a t i o n s { l i n e 1 }{1 ,2}) + length ( a l l d u r a t i o n s {
l i n e 1 }{1 ,3}) + length ( a l l d u r a t i o n s { l i n e 2 }{1 ,2}) + length (

a l l d u r a t i o n s { l i n e 2 }{1 ,3}) ) ) /8760 ;

113

114 A = ( ( sum( a l l d u r a t i o n s { l i n e 1 }{2 ,1}) + sum( a l l d u r a t i o n s { l i n e 1

}{2 ,3}) + sum( a l l d u r a t i o n s { l i n e 2 }{2 ,1}) + sum( a l l d u r a t i o n s {
l i n e 2 }{2 ,3}) ) . . .

115 / ( l ength ( a l l d u r a t i o n s { l i n e 1 }{2 ,1}) + length ( a l l d u r a t i o n s {
l i n e 1 }{2 ,3}) + length ( a l l d u r a t i o n s { l i n e 2 }{2 ,1}) + length (

a l l d u r a t i o n s { l i n e 2 }{2 ,3}) ) ) /8760 ;

116

117 E = ( ( sum( a l l d u r a t i o n s { l i n e 1 }{3 ,1}) + sum( a l l d u r a t i o n s { l i n e 1

}{3 ,2}) + sum( a l l d u r a t i o n s { l i n e 2 }{3 ,1}) + sum( a l l d u r a t i o n s {
l i n e 2 }{3 ,2}) ) . . .

118 / ( l ength ( a l l d u r a t i o n s { l i n e 1 }{3 ,1}) + length ( a l l d u r a t i o n s {
l i n e 1 }{3 ,2}) + length ( a l l d u r a t i o n s { l i n e 2 }{3 ,1}) + length (

a l l d u r a t i o n s { l i n e 2 }{3 ,2}) ) ) /8760 ;

119

120 %Both f a i l u r e s occur in normal weather :

121 lambda 1 = p n ∗( lambda n 1∗(1−exp(− lambda n 2∗ r 1 ) ) + lambda n 2
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∗(1−exp(− lambda n 1∗ r 2 ) ) ) ;

122

123 %F i r s t f a i l u r e in normal , second in adverse :

124 lambda 2 = p n ∗( lambda n 1∗(1−exp(−n a∗ r 1 ) ) ∗exp(− lambda n 2∗ r 1 )

∗(1−exp(− lambda a 2∗A) ) . . .

125 + lambda n 2∗(1−exp(−n a∗ r 2 ) ) ∗exp(− lambda n 1∗ r 2 )∗(1−exp(−
lambda a 1∗A) ) ) ;

126

127 %F i r s t f a i l u r e in normal , second in extreme :

128 lambda 3 = p n ∗( lambda n 1∗(1−exp(−n e ∗ r 1 ) ) ∗exp(− lambda n 2∗ r 1 )

∗(1−exp(− lambda e 2 ∗E) ) . . .

129 + lambda n 2∗(1−exp(−n e ∗ r 2 ) ) ∗exp(− lambda n 1∗ r 2 )∗(1−exp(−
lambda e 1 ∗E) ) ) ;

130

131 %F i r s t f a i l u r e in adverse , second in normal :

132 lambda 4 = p a ∗( lambda a 1∗(1−exp(−a n∗A) ) ∗exp(− lambda a 2∗A)∗(1−
exp(− lambda n 2∗ r 1 ) ) . . .

133 + lambda a 2∗(1−exp(−a n∗A) ) ∗exp(− lambda a 1∗A)∗(1−exp(− lambda n 1∗
r 2 ) ) ) ;

134

135 %Both f a i l u r e in adverse :

136 lambda 5 = p a ∗( lambda a 1∗(1−exp(− lambda a 2∗A) ) + lambda a 2∗(1−
exp(− lambda a 1∗A) ) ) ;

137

138

139 %F i r s t f a i l u r e in adverse , second in extreme :

140 lambda 6 = p a ∗( lambda a 1∗(1−exp(−a e ∗A) ) ∗exp(− lambda a 2∗A)∗(1−
exp(− lambda e 2 ∗E) ) . . .

141 + lambda a 2∗(1−exp(−a e ∗A) ) ∗exp(− lambda a 1∗A)∗(1−exp(− lambda e 1 ∗
E) ) ) ;

142

143

144 %F i r s t f a i l u r e in extreme , second in normal :

145 lambda 7 = p e ∗( lambda e 1∗(1−exp(−e n ∗E) ) ∗exp(− lambda e 2 ∗E)∗(1−
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exp(− lambda n 2∗ r 1 ) ) . . .

146 + lambda e 2∗(1−exp(−e n ∗E) ) ∗exp(− lambda e 1 ∗E)∗(1−exp(− lambda n 1∗
r 2 ) ) ) ;

147

148

149 %F i r s t f a i l u r e in extreme , second in adverse :

150 lambda 8 = p e ∗( lambda e 1∗(1−exp(−e a ∗E) ) ∗exp(− lambda e 2 ∗E)∗(1−
exp(− lambda a 2∗A) ) . . .

151 + lambda e 2∗(1−exp(−e a ∗E) ) ∗exp(− lambda e 1 ∗E)∗(1−exp(− lambda a 1∗
A) ) ) ;

152

153 %Both f a i l u r e occur in extreme weather :

154 lambda 9 = p e ∗( lambda e 1∗(1−exp(− lambda e 2 ∗E) ) + lambda e 2∗(1−
exp(− lambda e 1 ∗E) ) ) ;

155

156 %Cal cu l a t e s approximate f a i l u r e ra t e f o r the system :

157 lambda approx = lambda 1 + lambda 2 + lambda 3 + lambda 4 +

lambda 5 + lambda 6 + lambda 7 + lambda 8 + lambda 9 ;

158

159 lambda = [ lambda 1 , lambda 2 , lambda 3 ; lambda 4 , lambda 5 , lambda 6 ;

lambda 7 , lambda 8 , lambda 9 ] ;

160

161 end
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7.5.5 timestep sum.m

1 f unc t i on c u t s e t r e s = timestep sum ( c u t s e t s , f prob , years , c o n t r e s u l t s ,

demand , lambda rbts , r )

2

3

4 c u t s e t s = s t r u c t 2 c e l l ( c u t s e t s ) ;

5 SAC = c o n t r e s u l t s .SAC( 3 : end , 1 : end ) ;

6 conv fprob = conv2 ( ones (11 ,1 ) ,1 , f prob , ’ v a l i d ’ ) ;

7 c u t s e t r e s = s t r u c t ;

8

9 %Loops through each load po int

10 f o r i = 1 : s i z e (SAC, 2 )

11 load = {} ;

12 l o a d p o i n t =s t r c a t ( ’ load ’ , num2str ( i ) ) ;

13

14 %I f no l o s s o f load at load point , keep empty .

15 i f isempty ( c u t s e t s { i })

16 c u t s e t r e s = s e t f i e l d ( c u t s e t r e s , l oad po int ,{} ) ;

17 cont inue

18 end

19

20 %Retr i eve minimal cut s e t s from input :

21 min cuts = c u t s e t s { i } . min cut ;

22 SAC id = c u t s e t s { i } . SAC id ;

23

24 %Loops through each minimal cut s e t :

25 f o r j = 1 : l ength ( min cuts ) %each cut s e t

26 s e t s=s t r u c t ;

27 P int = demand( i )−SAC( SAC id{ j } , i ) ;

28 comp = min cuts { j } ;

29 U sum=0;

30 w=r /11 ;

31
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32 %I f f i r s t order minimal cut s e t :

33 i f l ength (comp) == 1

34 U rbts 1 = lambda rbts (comp (1) ) ∗ r /8760 ;

35 f o r k = 1 : s i z e ( conv fprob , 1 )

36 U sum = U sum + ( U rbts 1 +(conv fprob (k , comp

(1) ) ) ∗w) ;

37 end

38

39 %Second order minimal cut s e t :

40 e l s e

41 U rbts 1 = lambda rbts (comp (1) ) ∗ r /8760 ;

42 U rbts 2 = lambda rbts (comp (2) ) ∗ r /8760 ;

43 %Cal cu l a t e s U at each t imestep

44 f o r k = 1 : s i z e ( conv fprob , 1 )

45 U sum = U sum + ( U rbts 1 +(conv fprob (k , comp (1) ) ) ∗
w) ∗( U rbts 2 + ( conv fprob (k , comp (2) ) ) ∗w) ;

46 end

47 end

48

49 %Cal cu l a t e s yea r l y i n d i c e s :

50 U eq = U sum/ years ;

51 ENS = U eq ∗ P int ;

52 %Def ines i n d i c i e s in the s t r u c t :

53 s e t s . cut = comp ;

54 s e t s . U eq = U eq ;

55 s e t s .ENS = ENS;

56 s e t s . P int = P int ;

57 load {end + 1} = s e t s ;

58 end

59 c u t s e t r e s = s e t f i e l d ( c u t s e t r e s , l oad po int , load ) ;

60 end

61

62 end
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7.5.6 equivalents.m

1

2 f unc t i on eq va lue s = e q u i v a l e n t s ( c u t s e t s , c o n t r e s u l t s , lambda rbts ,

demand)

3

4 %RBTS har kun p a r a l l e l l e minimale kut t e s e t t , og det er kun det t e som

er

5 %i n k l u d e r t i denne utregn ingen

6

7 %Retr i eve neccesary data from the cont ingency a n a l y s i s .

8

9 r = 11.420898198198216 ;

10 c u t s e t s = s t r u c t 2 c e l l ( c u t s e t s ) ;

11 eq va lue s = s t r u c t ;

12 comp out = f u l l ( c o n t r e s u l t s . comp out ) ;

13 SAC = c o n t r e s u l t s .SAC( 3 : end , 1 : end ) ;

14

15 %Loops through a l l load po in t s :

16 f o r i = 1 : s i z e ( c u t s e t s , 1 )

17 l o a d p o i n t =s t r c a t ( ’ load ’ , num2str ( i ) ) ;

18 load ={};
19 P int = 0 ;

20 lambda eq = 0 ;

21 r eq = 0 ;

22 U eq = 0 ;

23

24 %Adds load po in t s with no l o s s o f load to s t r u c t .

25 i f isempty ( c u t s e t s { i })

26 eq va lue s = s e t f i e l d ( eq va lues , l oad po int ,{} ) ;

27 cont inue

28 end

29

30 %Retr i eve minimal cut s e t s from input :
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31 min cuts = c u t s e t s { i } . min cut ;

32 SAC id = c u t s e t s { i } . SAC id ;

33

34 %Loops through every minimal cut s e t

35 f o r j = 1 : s i z e ( SAC id , 2 )

36 s e t s = s t r u c t ;

37 comp = min cuts { j } ;

38 P int = demand( i ) − SAC( SAC id{ j } , i ) ;

39

40

41 % 1 . order minimal cut :

42 i f l ength (comp) == 1

43 lambda eq = lambda rbts (comp (1) ) ;

44 r eq = r ;

45 U eq = lambda eq ∗ r eq ;

46

47 % 2 . order minimal cut :

48 e l s e

49 lambda 1 = lambda rbts (comp (1) ) ;

50 lambda 2 = lambda rbts (comp (2) ) ;

51 lambda eq = ( lambda 1 ∗ lambda 2 ∗ ( r + r ) )

/(8760 + lambda 1∗ r + lambda 2∗ r ) ;

52 r eq = ( r ∗ r ) /( r + r ) ;

53 U eq = lambda eq ∗ r eq ;

54

55

56 %Adds r e s u l t s to the s e t s s t r u c t

57 s e t s . P int = P int ;

58 s e t s . lambda eq=lambda eq ;

59 s e t s . r eq = r eq ;

60 s e t s . U eq = U eq ;

61 s e t s . s e t= comp ;

62

63 %Adds s e t s to the load c e l l
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64 load {end+1} = s e t s ;

65 end

66

67 %Adds the load c e l l to the eq va lue s s t r u c t

68 eq va lue s = s e t f i e l d ( eq va lues , l oad po int , load ) ;

69

70 end

71

72

73 end

Page 112 of 114



7. APPENDIX Department of Electric Power Engineering

7.5.7 cut set indices.m

1 f unc t i on c u t s e t r e s = c u t s e t i n d i c e s ( eq va lue s )

2

3 %Cal cu l a t e s ENS f o r each minimal cut s e t

4 %Only one o p e r a t i o n a l s t a t e i s inc luded

5

6 %Ret r i eve s cut s e t parameters in a c e l l s t r u c t u r e :

7 c u t s e t = s t r u c t 2 c e l l ( eq va lue s ) ;

8

9 %Loops through every load po int :

10 f o r i = 1 : l ength ( c u t s e t )

11

12

13 %I f no l o s s o f load at load point , keep empty .

14 i f isempty ( c u t s e t ( i ) )

15 cont inue

16 end

17

18 %Loops through every minimal cut s e t :

19 f o r j = 1 : s i z e ( c u t s e t { i } , 2 )

20

21 %Ret r i eve s known parameters from cut s e t :

22 P int = c u t s e t { i }{ j } . P int ;

23 lambda eq = c u t s e t { i }{ j } . lambda eq ;

24 r eq = c u t s e t { i }{ j } . r eq ;

25

26 %Cal cu l a t e s i n d i c e s :

27 ENS = lambda eq ∗ r eq ∗ P int ; %[MWh/ year ]

28 P i n t c = P int ∗ lambda eq ;

29

30 %Inc lude s c a l c u l a t e d i n d i c e s to r e s u l t s :

31 c u t s e t { i }{ j } .ENS = ENS;

32 c u t s e t { i }{ j } . P i n t c = P i n t c ;
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33

34 end

35

36 end

37

38 %Returns r e s u l t s to s t r u c t and names each loadpo int :

39 c u t s e t r e s = c e l l 2 s t r u c t ( c u t s e t ( 1 : 5 ) ,{ ’ Load1 ’ , ’ Load2 ’ , ’ Load3 ’ , ’

Load4 ’ , ’ Load5 ’ } , 1 ) ;

40

41 end
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