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Abstract

Spintronics, the fundament of this thesis, proposes a way of doing data storage more

e�ciently and faster. The �eld is based on the quantum mechanical property of spin,

which can be transferred through spin waves without moving the particles themselves.

This thesis will consider movement caused by spin waves of stable magnetic structures,

speci�cally domain walls and skyrmions.

The analytical work is based on treating the atomic spins as classical vectors, using de-

scriptions of both classical and quantum mechanical spin interactions. From this, the

Landau-Lifshitz-Gilbert equation is derived, decribing the motion of an ordered spin sys-

tem. This is subsequently combined with thermodynamical concepts, such as to give

expressions for the expected antiferromagetic skyrmion velocity in a temperature gradi-

ent. Importance is here put on the assumptions made during the derivation, so that the

result can be understood and adapted to also consider spin waves generated without the

thermal gradient.

Running micromagnetic simulations, antiferromagnetic skyrmion motion is successfully

obtained using both a temperature gradient and a localised magnetic �eld. The former

gives skyrmion motion with a high variation, due to random thermal �uctuations, with a

mean velcity of 8.9 m/s obtained at the highest. The localised magnetic �eld gives much

higher skyrmion velocities, with the maximum mean velocity observed being 103.2 m/s,

and is deterministic. Demonstrating that the localised magnetic �eld does give signi�cant

antiferromagnetic skyrmion motion is one of most important results of the thesis, as

references of that being done in numerical simulations previously have not been found.

A further signi�cant result is the lack of movement in the y-direction. Neither method

produced any skyrmion motion perpendicular to the spin waves, which is not in accordance

with the analytical predictions. The temperature gradient is prediced to give spin waves of

random polarisation and thus no net transport of angular momentum, with the skyrmion

maintaining a constant position in y. However, the magnetically induced spin waves are

predicted to give di�ering velocities in y, as determined by the polarisation of the magnetic

�eld applied.
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Sammendrag

Spintronikk foreslår en alterativ måte å gjøre datalagring på, som vil kunne være både

mer e�ektiv og raskere. Grunnlaget for forskningsfeltet er den kvantemekaniske egen-

skapen spinn, som gjennom spinnbølger kan for�yttes uten at partiklene selv �yttes på.

Denne masteroppgaven ser nærmere på bevegelse av magnetiske strukturer - spesi�kt

domenevegger og skyrmioner - forårsaket av spinnbølger.

Det analytiske arbeidet baseres på å behandle atomisk spinn som en klassisk vektor,

hvor vekselvirkningene mellom spinnene inkluderer både klassiske og kvantemekaniske

e�ekter. Ut ifra dette vil Landau-Lifshitz-Gilbert-ligningen bli utledet, som beskriver

utviklingen i ordnede spinnsystemer. Denne blir videre kombinert med termodynamikk

for å uttrykke den forventede hastigheten til antiferromagnetiske skyrmioner plassert i

en temperaturgradient. I utledningen blir det lagt vekt på antagelser som gjøres, slik

at uttrykket for hastighet forstås og kan adapteres til spinnbølger generert ved hjelp av

andre krefter enn temperaturgradienter.

I mikromagnetiske simuleringer oppnås bevegelse av antiferromagnetiske skyrmioner, både

ved en temperaturegradient og ved et lokalisert magnetisk felt. Førstnevnte gir bevegelse

med høy variasjon, grunnet tilfelding termiske �uktuasjoner, og høyeste observerte gjen-

nomsnittshastighet er på 8.9 m/s. Det lokale magnetfeltet er deterministisk og gir høyere

hastighet, med høyeste gjennomsnittshastiget observert på 103.2 m/s. Ingen av metodene

viste noen bevegelse av skyrmionene i y-retning.

Blant resultatene kan to trekkes frem som særlig viktige. Demonstrasjonen av bevegelse

i antiferromagnetiske skyrmioner gjennom spinnbølger generert av lokaliserte magnetfelt

sees, og er ikke vist numerisk tidligere, ifølge det forfatteren har funnet. Videre er mange-

len av bevegelse i y-retning et viktig punkt, da dette avviker fra de analytiske beregninene.

En temperaturgradient genererer spinnbølger med tilfeldig polarisering, hvilket i gjennom-

snitt fører til null overført vinkelmoment og at skyrmionet forblir på samme sted i y. De

magnetisk genererte spinnbølgene burde imidlertid gi forskjellige hastigheter i y, bestemt

av polariseringen til det påsatte magnetiske feltet.
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Abbreviations

AFM Antiferromagnetic

DMI Dzyaloshinskii-Moriya Interaction

DW Domain Wall

FM Ferromagnetic

LLG Landau-Lifshitz-Gilbert
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Chapter 1

Introduction

Information has been transferred between people throughout the ages, but the methods for

doing so has been a continuous work in progress. First came spoken communication, with

the cumulative knowledge of mankind being dependent on individuals' cognitive abilities.

Next came various forms of written information, in which the restriction became to the

physical location of the information. We are now in the age of digital information.

The transfer of information is currently restricted primarily through the velocity at which

digital data can move. In some applications, such as large simulations or calculations done

for research purposes, it can also be restricted in the amount of data one is physically

able to store.

A motivation for further improving the technology of data storage can be found in consid-

ering how information storage is used, including both personal, academic and professional

parts of life. Any calculation, any email sent, any simulation, any streaming of a �lm

requires information to be stored and read. Improving how one deals with digital infor-

mation can thus not only speed up the daily encounters people might have with their

cell phones, but can also enable research hitherto hindered by both the speed and the

volume of information to be processed. Furthermore, all digital storage requires energy,

with 2.5× 1018 new bytes of data created every day per May 2018 [1], and the promise

of Internet of Things to wastly increase upon that number. A more e�cient data storage

technology would save a signi�cant amount of electrical power, with Forbes Magazine es-

timating that 3% of the total energy consumption worldwide is used by data centres per

December 2017 [2]. Spintronics could be a necessary part of a more environmental-friendly

future [3].

A di�erent motivation can be found along the lines of fundamental research. The existence

of skyrmions was �rst predicted theoretically by Thomas Skyrme in the late 1950s [4].

The prediction was made as a mathematical way of explaining the existence of subatomic

particles such as neutrons and protons, and was thus discussed along concepts such as

quarks and string theory. The structures were �rst observed through experiments in 2010,

1



using Lorentz TEM [5]. And antiferromagnetic structures, which will be the main focus

of this thesis, has still not been experimentally observed, as antiferromagnetic material

are in general more di�cult to measure due to their insensitivity to magnetic �elds. The

motion of magnetic structures is thus a topic which can be contributed to.

1.1 Outline

Devices which store and process information generally do so by de�ning separate regions,

where each regions saves one of two possible values, such that the information can be stored

using binary code. Each such region is known as a bit of information, and sequences of

bits can store numbers, letters, images. However, in order to make any device which can

do so, there are three main things one needs to be able to do [6]:

∗ Read the value of a bit

∗ Control the value of a bit

∗ Move the bit

The focus of this master thesis will lie on the �nal one of these three points, moving the

information. As such, the plan for the thesis will be to �rst get to know the theoretical

landscape which we will use to describe the materials. This will be done in Part I. More

speci�c systems including magnetic structures will then be studied, both analytically

and numerically. Part II will look at ferromagnetic domain walls and skyrmions exposed

to an electrical current, in which interactions between the electrons in the current and

the electrons in the sample material are expected to cause movement of the magnetic

structures. The material considered in Part II will consequently be conducting, while part

III moves on to insulating antiferromagnetic materials. Skyrmions will here be attempted

moved with both a temperature gradient and a magnetic �eld. Most of the mentioned

situations have been looked at before, but no litterature has been found on the latter one

mentioned. The motion of antiferromagnetic skyrmions caused by a localised magnetic

�eld as illustrated in �gure 1.1, will as such be the results with most importance.
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Figure 1.1: Applying a magnetic �eld to a region of antiferromagnetic material is predicted

to induce travelling coherent spin waves, which will cause a skyrmion located elsewhere

in the sample to move.
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Part I

Theoretical work
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Chapter 2

Theory of magnetic materials

From everyday life, the fact that materials have di�ering magnetic properties is known to

most. Some materials stick to the refridgerator door, others do not. Some pans work on

an induction stove, others do not.

The magnetic properties of materials relate directly to the spin properties of the atoms

making up the material. These spin properties include whether the atoms have a net

amount of spin, and how the spins behave in relation to each other as well as in relation

to applied forces. This chapter will introduce the terminology and theory with which

magnetisation will later be discussed, and mathematical equations which will prove useful.

2.1 The electron spin

The storage of information in electronic devices has traditionally been based on moving

electric charges, in the form of delocalised electrons. The presence of an electron current

signi�es one state, the absence another. The drawback of this is that moving particles

generate heat through Joule heating. The generated heat must be dissipated in the device

to keep the operating temperature su�ciently low - a problem which is often mitigated

with the use of heat sinks. The required area of heat sinks coupled with a higher sensitivity

to heat in the nano-scaled regime demands new methods of engineering.

Spintronics - spin electronics - instead relies on the quantum mechanical property of

electrons known as spin. It was �rst derived in the 1920's , in the interface between

quantum mechanics and special relativity [7, 8]. The name was given on the basis that

its behaviour could be explained by a charge spinning about its own axis. Assuming the

negative charge to be evenly distributed over the volume of the electron, electromagnetics

gives that a magnetic �eld would be created. This �eld could take one of two direction

- as the electron could be spinning either clockwise or counter-clockwise. Although that

physical description has been proven false, it provides a simple intuitive understanding,
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and the name has stuck [9]. The property is nontheless closely related to magnetism

through the intrinsic angular magnetic moment (ms) of electrons, as given in equation

2.1, where γ is the gyromagnetic ratio and S is the spin [10].

ms = γS (2.1)

Spintronics avoids generating heat by di�erentiating between charge currents and spin

currents. The former is the transport of a net amount of electric charge from one place

to another. The most common example of this is electrons moving through a wire, bring-

ing their negative electrical charge with them. The other type of current is one which

transports a net amount of spin, not charge. This can be done by transferring angular

momentum between atoms.

2.2 Magnetic materials

In choosing materials for a spintronics device, the �rst requirement is that the spins

already exist in some order. This allows the magnetisation of the material to be easily

controllable. The two types of magnetic materials used are therefore ferromagnetic and

antiferromagnetic materials, as illustrated in �gure 2.1.

Ferromagnets display a large net magnetisation in their ground state, caused by the

sum of the individual magnetic moments of the atoms. A magnetic �eld is thus present

around the material. In states of higher energy, the spins will �uctuate gradually more

around their relaxed positions. At the Curie temperature, the kinetic energy to overrule

the potential energy and the material behaves as a paramagnet with randomised spin

orientations. The value of the Curie temperature is material dependent.

Antiferromagnets have staggered magnetisation, with neighbouring spins being oppositely

aligned. A bulk of an antiferromagnetic (AFM) material in its ground state will thus

not have a net magnetisation, as the individual magnetic moments from neighbouring

atoms cancel each other out. A common description of an AFM system is having two

interpenetrating ferromagnetic sublattices, A and B. Spins in sublattice A are of the same

strength, but opposite direction, to spins in sublattice B. Equivalently to ferromagnets, a

critical temperature exists above which the AFM material behaves as a paramagnet, here

called the Néel temperature.

The transition from disordered to ferro-/antiferromagnetic is a second order phase tran-

sition [11], and can be observed through an order parameter. An order parameter can be

any measurable property, with the value of which one can determine the phase a mate-

rial is currently in. With m1 and m2 as two neighbouring spins, a magnetisation and a

staggered magnetisation order parameter can be de�ned as
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Figure 2.1: Spin con�guration in uniform ferromagnetic and antiferromagnetic materials.

m =
m2 + m1

|m2 + m1|
and n =

m2 −m1

|m2 −m1|
(2.2)

respectively. It can be seen that, in their relaxed states, a ferromagnet will have |m| = 1

and |n| = 0, while an antiferromagnet will give the opposite. Above the critical temper-

atures, both order parameters will be 0 when averaged over a su�ciently large area.

Both ferro- and antiferromagnets are used in spintronic devices. Ferromagnets have tra-

ditionally been more easily controlled, as their magnetic moment is easy to measure, and

the spins are sensitive to external magnetic �elds. Antiferromagnets do not propagate an

external magnetic �eld to the surroundings, allowing for more compactly packed compo-

nents. However, as such they are also harder to a�ect with external magnetic �elds, and

alternative methods for controlling the spin value are needed. An advantage of antifer-

romagnets is that the switching between spin states is observed to be much faster, with

THz values compared to GHz swithing frequencies in ferromagnets [12, 13].

2.3 A mathematical description of spin interactions

Any physical system will optimally be in its state of minimum free energy. The free

energy of the spins of atoms can be described through the systems Hamiltonian, look-

ing at the sum of the interactions the spins will take part in. This can be done either

through individual spins (atomistically), or by describing the �elds generated by di�erent

types of forces (micromagnetically). As the models both have their advantages in certain

situations, equations describing both will be given [14].

The most dominant interactions present in a general spin system are listed in equation

2.3, and will in the following sections be discussed individually.

H = Hex +HDM +Hani +Hdd +Hext (2.3)

2.3.1 Heisenberg exchange interaction

The Heisenberg exchange interaction - �rst desribed by Heisenberg i 1924 - is a quantum

mechanical e�ect which determines the ordering in ferro- and antiferromagnets. Its origin
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lies in the interaction between electrons in neighbouring atoms, and in the Pauli exclusion

principle [15]. The result of the interaction is that, for some materials, the energy is lower

when the spins are aligned in a parallel/antiparallel manner. This is expressed in equation

2.4 through the dimensionless unit vectors Si and the material dependent exchange pa-

rameter Jij. As shown through the indices, J can take di�erent values depending on the

speci�c interaction looked at, but for this thesis the interaction will be assumed isotropic.

In simulations it will also be restricted to only include nearest neighbour-interactions.

The sti�ness parameter A is the micromagnetic equivalent to Jij, expressed in equation

2.5. It is be proportional to the exchange parameter as well as the atomic spacing.

The Heisenberg exchange interaction is the most dominant of the spin energy interactions.

It determines whether neighbouring spins align parallel or antiparrallel manner through

the sign of the exchange constant. Jij < 0 makes an antiferromagnet, while Jij > 0 makes

a ferromagnet [14].

Hex = −1

2

∑
i,j

JijSi · Sj (2.4)

Hex =

∫
A(∇m)2dr (2.5)

2.3.2 Dzyaloshinskii-Moriya interaction

Some materials, though having a negative exchange constant and consequently being

antiferromagnets, exhibit a weak ferromagnetic behaviour in their ground state. This was

described phenomologically by Dzyaloshinskii, and explained by Moriya as being an e�ect

of the quantum mechanical spin orbit interaction [16]. The magnetic moment of an atom

consists of both the intristic magnetic moment of the elemental particles, and the magnetic

moment created by the electron orbits in space. Dzyaloshinskii-Moriya interaction (DMI)

is related to the interplay between these two. The antiferromagnetic materials which

exhibit this slight ferromagnetic behaviour are described as canted antiferromagnets, as

their spins will all be slightly tilted.

DMI can in equations 2.6 and 2.7 be seen to have a di�erent preferred orientation between

neighbouring moments than the Heisenberg exchange interaction, as the lowest energy is

here obtained with perpendicularly aligned spins. However, DMI only takes e�ect in

systems with reduced symmetry. Reduced symmetry refers to whenever there is an non-

uniformity in the system, such as imperfections in the crystal, or magnetic structures

such as domain walls or skyrmions[10]. A common occurrence of strong DMI is also at

the interface between di�erent materials, such as a magnetic thin �lm being formed next

to heavy elements.
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HDMI = −D12 · (S1 × S2) (2.6)

The orientation of Dij will depend on the considered system. Bulk DMI is parallel to the

vector separating two spins, and exists in some magnetic materials which have lacking

bulk inversion symmetry. A di�erent DMI is the interfacial one, occuring in thin layers

of magnetic materials which lack structural inversion symmetry. This will often take

place with spins located close to a material with high spin-orbit coupling. D will then

be perpendicular to both the vector between the interacting spin and to the plane of the

interface. Considering a ferromagnet with bulk DMI and interfacial DMI in the continuum

limit, equation 2.6 can be rewritten to

Hbulk
DMI =

∫
Dm · (∇×m)dr, (2.7)

Hint
DMI =

∫
Dm · (ẑ×m)dr, (2.8)

respectively [10]. The latter equation is written for a material interface in the xy-plane.

2.3.3 Anisotropy interaction

Atomic spins are located in a crystallographic lattice, and very often the lattice will

have orientations of the magnetic moments which are energetically favourable [17]. The

interplay between crystallography and magnetic moments is referred to as the magnetic

anisotropy interaction, and takes di�erent forms for the di�erent crystal structures. The

simplest form is that given in equations 2.9 and 2.10, which describe a system with uniaxial

anisotropy.

Hani = −K
∑
i

(Si · e)2

(2.9)

Hani = −
∫
K(m · e)2

(2.10)

K is here a material dependent anisotropy constant, while e is an axis referring to the

direction of the anisotropy.

Uniaxial anisotropy occurs for hexagonal and tetragonal crystals, and is de�ned by having

one preferred direction of the magnetisation, known as the easy axis e. The state of lowest

energy will have all spins aligned in the direction of the easy axis. It is also possible for
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a material to have one direction which is least energetically favourable, known as a hard

axis. The di�erence between the two uniaxial anisotropies can be seen in the sign of K,

where a positive value gives an easy axis and a negative value gives a hard axis. It is also

possible for materials to have a combination of di�erent anisotropies.

2.3.4 Dipole interaction

The classical dipole interaction is also present in spin systems, abbreviated as Hdd in the

equation for the total Hamiltonian. In general, dipoles attempt to align themselves in an

antiparallel manner, as to minimise the magnetic �eld surrounding them. This will also

occur with spins. However, the strength of the dipole interaction has been measured to

be on the order of 6.25× 10−2 meV between atomic dipoles kept at a 1 angstom distance

from each other. The Heisenberg exchange interaction in the same situation is on the

order of 6.25 meV [15]. In short ranges, the dipole interaction can thus be considered

negligible.

Considering a longer range, the relation between these strengths changes. While only

including the nearest neighbour interaction will often be su�cient for the Heisenberg

exchange interaction, the strength of the dipole interaction decreases exponentially with

distance from the dipoles. The dipole interaction will thus become increasingly important

in large samples, and is an important driving force in magnetic domain formation [14].

2.3.5 Zeeman interaction

The last mentioned interaction, Hext, is the e�ect on the quantum mechanical energy

levels due to an external magnetic �eld Bext. Eigenstates which are degenerate in their

ground state might have di�erent magnetic moments according to their spins, and the

external magnetic �eld will cause a hyper�ne splitting of the states. This e�ect is known

as the Zeeman interaction [14].

2.4 Deriving the FM equation of motion

Central in the work for this thesis is the ability to describe a dynamic spin system, not

only its ground state. To do so, Lagrangian mechanics will be used with the energy

interactions discussed above. Considering a magnetic moment m, the Lagrangian of a

general spin system can be written as

L0 =

∫
(T − U)dr =

∫
L0dr, (2.11)
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where T = T (m, ṁ) is the kinetic energy of the system, and U = U(m,∇m) is the

potential energy of the system. U will thus here relate to the energy interactions discussed

in the previous section. L0 is the Lagrangian expressed as a density function. Wanting to

�nd the stable state of the system with regard to the order parameter, the Euler Lagrange

equations can be utilised. These give the functional derivative of L, written as

∂

∂xi

∂L
∂(∂q/∂xi)

=
∂L
∂q
. (2.12)

Here q = m, i ∈ 0, 1 and x0,1 = t, r. Furthermore, the order parameter is de�ned to have

a constant length of 1. Including this as a constraint in equation 2.11 gives

L = L0 + λ(m2 − 1), (2.13)

where λ is a Lagrange multiplier.

Some dissipation will occur in the system, in the form of lattice vibrations, spin waves

and electron excitation. Instead of describing each of these in an exact manner, a phe-

nomological energy dissipation term can be added to 2.12. In this way, although the

underlying mechanisms are not speci�cally accounted for, the resulting damping of the

spins is included [10]. The most common such function to use is the Rayleigh dissipation

function, which can here be written as

R =
α

2

∫
ṁ2dr. (2.14)

The phenomological Gilbert damping constant α is the degree of damping in the system,

with values ranging from 0 to 1. The Euler-Lagrange equation, including the dissipation

and being expressed in densities, is

∂L

∂q
− ∂

∂xi

∂L

∂(∂q/∂xi)
+ λ

∂(q2 − 1)

∂q
=

∂R

∂(∂q/∂x0)
. (2.15)

By de�nition it is known that the kinetic energy is independent of∇m, while the potential

energy is independent of ∂tm. This simpli�es the equation to

( ∂T
∂m
− ∂t

∂T

∂ṁ

)
−
( ∂U
∂m
−∇ ∂U

∂∇m
)

+ 2λm = αṁ. (2.16)

With the aim of further simplifying the equation, it can be multiplied with (m×). As the

cross product of any vector with itself is zero, the equation then becomes
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Figure 2.2: The motion of a magnetic moment (M) in an e�ective magnetic �eld density

(Heff ), according to the Landau-Liftshitz-Gilbert equation. a) shows the motion caused

by only the processional term, while b) also includes the damping term [18].

m×
( ∂T
∂m
− ∂t

∂T

∂ṁ

)
−m×

( ∂U
∂m
−∇ ∂U

∂∇m
)

+ 2λm×m = αm× ṁ,

m×
( ∂T
∂m
− ∂t

∂T

∂ṁ

)
−m×

( ∂U
∂m
−∇ ∂U

∂∇m
)

+ 0 = αm× ṁ.

(2.17)

It can be shown that the �rst term, involving the kinetic energy, can be rewritten to

simply ṁ [14]. Furthermore, the e�ective �eld experienced by the magnetic moment m

can be de�ned as

Heff ≡ −
1

γ

δU

δm
, (2.18)

where γ again is the gyromagnetic ratio. The equation of motion then simpli�es to

ṁ = −γm×Heff + αm× ṁ. (2.19)

Using vector identities, an equivalent formulation can be given as

ṁ = − γ

1 + α2
m×Heff −

γα

1 + α2
m× (m×Heff ). (2.20)

Equations 2.19 and 2.20 are both formulations of the ferromagnetic Landau-Liftshitz-

Gilbert (LLG) equation, describing the motion of a magnetic moment in a ferromagnet.

The �rst term in the LLG equation is referred to as the processional term. When consid-

ering only this term, the motion of the order parameter would be an everlasting revolution

around the e�ective magnetic �eld. The second term, known as the damping term, in-

cludes the fact that an undisturbed system will tend gradually towards having the order

parameter aligned with the e�ective magnetic �eld. An illustration of this concept is given

in �gure 2.2.

14



Until now, the discussion has only considered an isolated system. In a more general form,

the LLG equation is often written as

ṁ = − γ

1 + α2
m×Heff −

γα

1 + α2
m× (m×Heff ) + τ , (2.21)

where τ represent the e�ect of any forces applied to the system.

2.5 Deriving the AFM equation of motion

Looking at an antiferromagnet, a slightly di�erent approach to �nding an equation of

motion is used, in which both the magnetisation order parameter and the staggered order

parameter are utilised [10]. Starting from the free energy of a one dimensional chain of

atoms, one can write

U = −J
2N−1∑
i=1

Si · Si+1 −
2N∑
i=1

(−1)iD · (Si × Si+1)−K0

2N∑
i=1

S2
i,z, (2.22)

with J < 0. Si here represents a spin by a classical vector, as much of the treatment has

done before as well. Wanting to express this instead through the order parameters, we

de�ne

mi = (S2i−1 + S2i)/2S, (2.23)

li = (S2i−1 + S2i)/2S. (2.24)

The spins have thus been paired up into antiferromagnetic unit cells. The spin S should

always have a constant magnitude, giving the consequent relations m2 + l2 = 1 and

mi · li = 0. Rewriting the equation above, one can express the spin values as

S2i−1 = S(mi + li), (2.25)

S2i = S(mi − li). (2.26)

Applying these expressions into equation 2.22 and simplifying the result using vector

identities, one is left with
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U =− JS2

N−1∑
i=1

(3m2
i + m2

i+1 − 2)− JS

2

N−1∑
i=1

(
(li+1 − li)

2 − (mi+1 −mi)
2
)

− JS2

N−1∑
i=1

(
mi · (li+1 − li)− li · (mi+1 −mi)

)
− JS2

(
m2

N − l2N
)

+ S2

N−1∑
i=1

D · [mi × (li + li+1)− li × (mi + mi+1)]

+ S2

N−1∑
i=1

D · [mi × (mi+1 −mi)− li × (li+1 − li)]− 2K0S
2

N∑
i=1

(
m2
i,z + li+ 1, z2

)
(2.27)

Looking at a large number of spins N and a small unit cell length 2a, the limit can be

taken in which the sums can be replaced by integrals, and the individual mi by a vector

�eld m(x), done through

N−1∑
i=1

−→ 1

2a

∫
dx and mi+1 −mi −→ 2a∂xm. (2.28)

Using this, and equivalently for l(x), in the expression for free energy, one obtains

U [m, l] =− JS2

2a

∫
[4m2 + 2a2(∂xl)

2 − 2a2(∂xm)2 + 2a(m · ∂xl− l · ∂xm)]dx

+ S2

∫
[
2

a
D · (m× l) + D · (m× ∂xm)−D · (l× ∂xl)]dx

− K0S
2

a

∫
[(m · ẑ)2 + (l · ẑ)2]dx.

(2.29)

Consequences from the continuum model used here are also that the boundary term in

equation 2.27 becomes negligible, and that m(x)2 varies slowly in space. A further model,

the exchange approximation, will also be used. The model states that |J | >> |K|, with
the consequence that the spins will be deviating only slightly from an antiparallel con�g-

uration. In magnetic structures, the domain walls will be wide. In an antiferromagnet,

this also inferres that m2 will be much smaller than l2. Using this we introduce the stag-

gered unit vector n = l/|l|. For small deviations from |m| = 0 and |n| = 1, we still have

m2 + n2 = 1 and m · n = 0. Considering second order terms of the magnetisation as

negligible when in the same term as a staggered order parameter, the free energy can be

written as

U [m,n] =

∫ [ 1

2χ
m2 +

A

2
(∂xn)2 + Lm · ∂xn−

K

2
(n · ẑ)2

]
dx+ UDMI, (2.30)
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where the parameters introduced are de�ned as

χ =
a

4|J |S2
, A = 2a|J |S2, L = 2|J |S2, K =

2K0S
2

a
. (2.31)

Considering an atom with one unpaired electron, which is known to have S = ±1
2
, this

can be simpli�ed into

χ =
a

|J |
, A =

a|J |
2
, L =

|J |
2
, K =

K0

2a
. (2.32)

The free energy of the DMI has been separated out in equation 2.30, as the formulation

used depends on the system one is to consider. The �rst DM term in equation 2.29 is

called the homogeneous Dzyaloshinskii-Moriya interaction, and becomes signi�cant when

D has a component which is parallel to the chain of spins and which is alternating in sign.

Its free energy is given by

Uh
DMI[m,n] =

∫
d · (m× n)dx, (2.33)

where d = (2DaS
2/a)x̂ and Da is the magnitude of the alternating component. The

second DMI term in equation 2.29 is negligible in the continuum limit, and the last term

can be either Ubulk
DMI or U

int
DMI. The former occurs when D||x̂. The second takes place when

close to an interface between the antiferromagnetic material and a material with a strong

spin-orbit coupling, and has D||ŷ. Using D = |D|S2, the two interactions are given by

Ubulk
DMI[m,n] =

∫
Dn · (x̂ · ∂xn)dx, (2.34)

U int
DMI[m,n] =

∫
Dn · (ŷ · ∂xn)dx. (2.35)

Now having an expression for the free energy of the system, the Lagrangian of the system

can be written as

L[m,n] = J
∫
∂tn · (n×m)dx− U [m,n]. (2.36)

The �rst term is here an expression of the kinetic energy in the system, derived Bby Kris-

tiansen [10], while J = S/(2a) is the one-dimensional density of spin angular momentum.

Following the method used in the previous section, with the constraints that |n|2 = 1 and

m · n = 0, we look at the variation of

L[m,n] +

∫
dr
[
λ1(|n|2 − 1) + λ2m · n

]
, (2.37)
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with respect to the order parameters. This gives

J (∂tn× n) =
δU

δm
− λ2n, (2.38)

J [2(m× ∂tn) + (∂tm× n)] =
δU

δn
− 2λ1n− λ2m. (2.39)

The variation with respect to the Lagrange multipliers should also be included, but this

only returns the constraints on n and m as are already given. However, it will be useful

to look at the partial di�erentiation with respect to time of the constraints, which gives

∂tn · n = 0, (2.40)

∂tm · n + m · ∂tn = 0, (2.41)

respectively. We can also de�ne the e�etive �elds

fm = − 1

J
δU

δm
and fn = − 1

J
δU

δn
. (2.42)

Taking the cross product of n and the �rst of the di�erential equations gives

∂tn =− n× fm, (2.43)

and the dot product of the same two vectors gives

λ2 =− Jn · fm, (2.44)

Looking at the second di�erential equation, the equivalent relations give

∂tm = −n× fn −m× fm. (2.45)

The e�ective �elds, de�ned through the potential energy U , can be written out as

J fm =
1

χ
m− L∂xn, (2.46)

J fn = A∂2xn + L∂xm +K(n · ẑ)ẑ. (2.47)

The DMI has here not been included in the potential energy, due to its form depending

on the system. Should it be included for a given situation, the above equations should

be recalculated. Inserting the expression of fm into equation 2.38, it can be seen that m
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is only a ghost variable of n. Using this, the Lagrangian density of the system can be

written

L = J 2χ(∂tn)2 + LJ χn · (∂tn× ∂xn)− A− 2L2χ

2
(∂xn)2 +

K

2
(n · ẑ)2. (2.48)

This can be rewritten in a simpler manner by de�ning ρ = 2J χ and A′ = A − L2χ.

Furthermore, the term n · (∂tn × ∂xn) can be shown to be zero [10]. The resulting

Lagrangian becomes

L =
ρ

2
(∂tn)2 − A′

2
(∂xn)2 +

K

2
(n · ẑ)2. (2.49)

The equation of motion for the staggered order parameter then becomes

n×
[
− ρ∂2t n + A′∂2xn +K(n · ẑ)ẑ

]
= 0. (2.50)
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Chapter 3

Magnetic structures

In their respective ground states, both ferromagnets and antiferromagnets are uniform.

This chapter considers situations in which this is not the case, but which are still stable.

Doing so will aim at �nding suitable magnetic structures for use in data storage technology,

where the suitability is determined primarily by how simple it is to control the motion of

the structure. The last section will also look at one of the ways in which one can control

magnetic structures in insulators, namely spin currents.

3.1 Domain walls

The simplest, and most common, non-uniformity which may occur in magnetic crystals

is magnetic domain walls. The domains here constitute smaller regions in the material

in which the magnetisation is uniform, but with the magnetisation direction di�ering

between the di�erent domains. The formation of such structures occurs to minimise the

free energy of the system.

With the aim of getting an intuitive understanding of domain formation, one can consider

a ferromagnet. Should the material consist of only a single domain, the sum of the mag-

netic moments from the atoms is large, and a large magnetic �eld would be propagating

from the sample. Should instead the material divide into several magnetic domains, each

with a di�erent direction of their magnetic moments, then the external �eld from the

sample would be much smaller. From the discussion of the di�erent interactions it was

also mentioned that the dipole interaction, over long ranges, becomes more prominent

than the Heisenberg exchange interaction. This again favours domain formation, when

the material in question becomes relatively large.

For antiferromagnets, an intuitive understanding can be obtained by considering a system

which is initially in the unordered state, by having a temperature well above the Néel

temperature. Gradually lowering the temperature, ordered regions will appear randomly

21



in several regions throughout the sample. Their orientations will be determined by the

anisotropy of the material, which in many materials have more than one direction which

will minimise the free energy. As the material becomes gradually more ordered, domain

walls will occur between the di�erent regions.

Domain walls are de�ned as the region of transition between two domains, and magnetic

domain walls will hence be a region with gradually changing spin directions. The width

depends on the material speci�c interaction constants, but will in a ferromagnet generally

lie between 10 and 100 nm [19]. A high DMI constant will give a broad DW, while both

high Heisenberg exchange coe�cients and high anisotropy constants will favour a narrow

one.

There are two types of domain walls, Bloch and Néel. The di�erence between the two

is in which plane the rotation occurs, it being either parallel (Bloch) or perpendicular

(Néel) to the domain wall. The type of domain wall which occurs in a given system

will be determined by which has the lowest free energy. Considering only the Heisenberg

exchange interaction and DMI, the energies of the two walls would be equivalent. However,

system anisotropies will often be important, as well as the dimensions of the material and

of the domains. On a general note it has been found that Bloch domain walls occur more

often in bulk, while Néel domain walls are more frequent in thin �lms [20]. A further

classi�cation of domain walls is the angle between the spins of the domains the wall is

separating, where a 180◦ domain wall is what will most often be considered.

Looking at magnetic structures for use in information storage, domain walls are ceratin

to be a part of the unit of information. Either as the domain wall itself being the bit, or

as domains being the bit [21]. Either way, the movement of the bit will be determined by

the movement of domain walls.

3.2 Skyrmions

To acchieve maximum e�ciency, the size of the magnetic structure which is to represent

a bit should be minimised. The structure know as a skyrmion, either a ferromagnetic or

an antiferromagnetic one, is the minimal size of a 180◦ magnetic domain one can have.

A cross section of skyrmions are given in 3.1, where it can be seen to consist of an inner

domain (in the �gure only one spin wide), a domain wall and an outer domain.

The size of a skyrmion, both the inner domain and the domain wall, depend sensitively

on the relative strengths of the Heisenberg exchange interaction, DMI and the anisotropy

interaction. Any applied magnetic �elds will also be important, but has not been consid-

ered here. As both exchange sti�ness, DMI and anisotropy are material properties, the

size of skyrmions will be characteristic for di�erent materials. However, on a general note

they have sizes between 1 and 100 nm in diameter [22]. General trends also show that
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Figure 3.1: Illustration of two skyrmions as seen from the side. a) is ferromagnetic, while

b) is antiferromagnetic.

the size of the inner domain decreases with increasing exchange interaction strength, and

that both the inner domain size and the domain wall width increase with increasing DMI

strength. A derivation of the analytic expression for these sizes based on minimising the

free energy of the system as a function of inner domain size (R) and domain wall width

(w) of a skyrmion is done by Wang et. al. [22], giving as its result

R = πD

√
A

16AK2 − π2D2K
(3.1)

w =
πD

4K
(3.2)

Skyrmions are often described as quasi particles, being topologically stable. This origi-

nates in their quantised topological number, Qm, as given in equation 3.3. A situation

in which the magnetisation is gradually evened out to give a uniform magnetisation is

deemed impossible by the quantisation. Either the skyrmion exists with a topological

number of ±1, or no skyrmion exists [23]. This also holds for an antiferromagnetic

skyrmion, though applying equation 3.3 directly would give 0. A more useful expres-

sion for antiferromagnets is to consider the topological number in each of the sublattices.

This will give Qm
A = −Qm

B = ±1.

Qm =
1

4π

∫
d2rm · (∂xm× ∂ym) (3.3)

A consequence of the topological number is the topological Hall e�ect. When exposed

to an electric current, the motion of ferromagnetic skyrmions is expected to be along the

direction of the current. However, an additional movement in a perpendicular direction

has been observed. The direction of the perpendicular motion will be determined by the

sign of the topological number, equivalently to the classical Hall e�ect [23]. It's been

found that the angle between the electrical current and the path of the skyrmion can
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exceed 30◦, and that the velocity of the perpendicular motion depends on the size of the

skyrmion, as well as the velocity in the direction of the electrical current.

Skyrmions have been observed in various magnetic thin �lms, including MnSi, FeGe and

Fe1−xCoxSi. It has also been shown experimentally that one can cause them to move by

applying electrical currents as low as 10−5 A/m2, much lower than the equivalent value

for domain walls, and that one can write and delete skyrmions in a thin �lm using a

scanning tunnelling microscope [24].

Antiferromagnetic skyrmions appear to be highly equivalent to their ferromagnetic coun-

terparts. They are both stable due to their topological isolation. An important di�erence

is that, due to its zero net topological charge, no topological Hall e�ect will take place.

Each of the sublattices will have a net topological charge, but in the material as a whole

it is cancelled out. This holds a practical consequence in the use of AFM for information

storage purposes, as an AFM skyrmion will travel in a straight line when exerted to an

electrical current.

It should be noted that, when considering skyrmions in thin �lms, they may exist in

two forms. A skyrmions lattice can form, in which skyrmions are regularly spaced out

all throughout the volume. This only occurs in a narrow part of the phase diagrams of

certain materials, and both the external magnetic �eld and temperature must thus be

presicely adapted to acchieve their existence. The other alternative it to have a uniform

spin con�guration, except for one single isolated skyrmion. The latter is what will be

looked at throughout the thesis, both when considering FM and AFM skyrmions.

3.3 Spin waves

Light can be described as travelling electromagnetic waves, sound as travelling waves of

air pressure. An equivalence also exists within magnetic energy, known as spin waves.

In an ordered magnetic material, a spin wave will be observable as a small �uctuation

around the ground state. The �uctuations of one spin will in�uence its neighbours through

exchange interaction, and a similar motion will be induced in the neighbour, only slightly

delayed. This results in a travelling spin wave. Considering wave-particle duality, the

spin wave can also be considered the quasiparticle magnon [11].

In �gure 3.2 c), the properties of a ferromagnetic spin wave is illustrated. Each spin

rotates with the same angular frequency ω, but with a gradually changing phase. It is

also seen that a ferromagnetic spin wave will carry a net angular momentum, which is of

size 1h̄. For an antiferromagnetic lattice, in which both sublattices rotate with the same

frequency, a cancellation of the angular momentums of the two sublattices can occurs for

linearly polarised spin waves. Circularly polarised spin waves do however carry angular

momentum also in antiferromangets [10, 25]. Furthermore, where only right-circulalry
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polarised spin waves can exist, both directions are possible for AFM.

The energy needed to excite the ground system can be introduced to the system through

temperature, or through both electric and magnetic �elds. The method chosen will impact

the magnons formed. Temperature will induce magnons of di�ering energy and polari-

sation (if antiferromagnetic), as random �uctuations in the temperature exist. Using an

oscillating magnetic �eld, with a given frequency, will on the other hand induce coherent

spin waves. The di�erence in these two methods will be illustrated in simulations.

Figure 3.2: Spin wave illustrated in a uniform ferromagnet (c), as compared with the

ground state (a) and a state in which one spin is �ipped. This �gure is reproduced from

[26].
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Chapter 4

Micromagnetic simulations

Numerical simulations is an important tool when considering large spin systems, as an-

alytical solutions are not always possible. Two types of simluations are commonly used,

micromagnetic and atomistic. The basis of these is already given through the mathemat-

ical equations introduced for the di�erent spin interations. An illustation of the two is

given in �gure 4.1.

Micromagnetic simulations are what will be used in this thesis. The models assume a

continuous magnetisation vector �eld m(r, t) in prede�ned �nite di�erence cells. One

thereby says that, within each cell, the exchange interaction makes all spins perfectly

aligned [28]. This is a simpli�cation compared to considering each spin individually. As

such, systems in which the magnetisation changes very rapidly in space are inapt for

micromagnetic simulations. However, when suitable the model yields obvious advantages

in term of simplicity and speed compared to an atomistic one.

One micromagnetic simulation program is mumax3, developed by the DyNaMat group

of professor Van Waeyenberge at Ghent University, available as open-source code [29].

It is GPU-accelerated, and made for simluations of ferromagnetic material. Successful

simulation of antiferromagnetics in micromagntic simulation models has been claimed by

setting a negative value for A, though this is not a mentioned possibility by the creators

of the program. The discussion forum on the mmax3 site also indicates a divided scienti�c

community, as many are sceptical.

Mumax3 utilises Kutte Runga methods for propagating the LLG equation in time. The de-

fault method, and the one recommended using for simulations run at 0K, is the Dormand-

Prince method (RK45). It has a 5th order converence and a 4th order error estimate.

Heun's method is also available, and recommended for use with �xed temperatures.
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Figure 4.1: The di�erence between micromagnetics and atomistics, illustrated grapically.

In this speci�c example, the size of the �nite cell regions in the micromagnetic approach

is set to 3 nm, while the atomic spacing used in the atomistic approach is 0.3 nm. The

�gure is reproduced from [27].

28



Part II

Motion of ferromagnetic topological

solitons
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The aim of the thesis has been mentioned as studying the motion of AFM spin structures.

Even so, some time has been spent on looking at the motion of ferromagnetic topological

solitons, here domain walls and skyrmions. FMs are more thoroughly understood, and

can thus be useful as an introduction to AFMs. This applies to both the theory, and to

the numerical models. Furthermore, looking at the FM structures will provide insights

into situations in which AFM will be better suited.

As such, this part will look at ferromagnetic domain walls, both in a static case and

when an electrical current has been applied. Towards the end of this part of the thesis,

FM skyrmions will be simulated micromagnetically. As a skyrmion consists of a circular

domain wall, the theory from the ferromagnetic domain walls will still be relevant, though

most likely insu�cient to describe the skyrmion motion.

Considering the simulations done, it can generally be assumed that any parameter not

explicitly mentioned when comparing simulations has been keep constant. Furthermore it

should be noted that in all the following simulations, either a domain wall or a skyrmion

is set as the initial con�guration of the spins. The creation of such magnetic structures

has not been considered.
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Chapter 5

Static equilibrium state of FM domain

wall

5.1 Theoretical predictions

The simplest case of a spin system involving a chiral spin texture is the equilibrium state

of a static domain wall, with no externally applied forces. It is therefore suitable as

the initial system to consider. The derivations in this chapter will follow work done by

Enoksen [30].

Repeating the �nal result from chapter 2.4, the ferromagnetic LLG equation can be written

as

dM

dt
= −γM×Heff +

α

MS

M× dM

dt
+ τ . (5.1)

Considering the static case by setting the time derivatives to zero, the equation reduces

to

M×Heff = 0. (5.2)

The potential energy of a system with Heisenberg exchange energy, an easy axis in the

z-direction and a hard axis in the y-direction is

U = A(∇m)2 +Kh(m · ŷ)2 −Ke(m · ẑ))2, (5.3)

where Kh and Ke are the respective uniaxial anisotropy constants, and the DMI has been

disregarded. This makes the e�ective magnetic �eld
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Heff = 2A∇2m− 2Khmyŷ + 2Kemzẑ. (5.4)

Normalised anisotropy �elds can be de�ned as

H⊥ =
2Kh

Ms

and Hk =
2Ke

Ms

, (5.5)

giving

Heff =
2A

M2
S

∇2M− H⊥
Ms

Myŷ +
Hk

Ms

Mzẑ. (5.6)

Looking at the case of a 1D domain wall, a useful parameterisation is

m(x, t) = [ sinθ cosφ , sinθ sinφ , σcosθ ], (5.7)

with m = M/Ms being the magnetisation direction. θ = θ(x) is the angle between the

local magnetisation m and the easy axis, while φ = φ(t) is a measure of the deformation

of the domain wall, referred to as the tilt angle. Equation 5.2, looking at one spatial

component at the time and using the given parameterisation, then becomes

0 =
2A

M2
s

∂2

∂x2
(
sinθ cosφ

)
0 =

2A

M2
s

∂2sinθ

∂x2
cosφ, (5.8)

0 =
2A

M2
s

∂2

∂x2
(
sinθ sinφ

)
− H⊥
Ms

sinθ sinφ

0 =
[ 2A

M2
s

∂2sinθ

∂x2
− H⊥
Ms

sinθ
]
sinφ, (5.9)

0 =
2A

M2
s

∂2

∂x2
(
σcosθ

)
+
Hk

Ms

σcosθ

0 =
2A

M2
s

∂2cosθ

∂x2
+
Hk

Ms

cosθ. (5.10)
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One solution to the above equations occur when no deformation of the domain wall takes

place (φ = 0). While this makes equation 5.9 trivial, the other two equation can be

combined to give

(∂2sinθ
∂x2

)
cosθ −

(∂cosθ
∂x2

)
sinθ =

MsHk

2A
sinθ cosθ (5.11)

De�ning a characteristic length as λ = (2A/MsHk), the second solution can be rewritten

to

(
− sinθ

(dθ
dx

)2
+ cosθ

d2θ

dx2

)
cosθ +

(
cosθ

(dθ
dx

)2
+ sinθ

d2θ

dx2

)
sinθ =

sinθ cosθ

λ2

d2θ

dx2

(
cos2θ + sin2θ

)
=

sinθ cosθ

λ2

d2θ

dx2
=

sinθ cosθ

λ2
.

(5.12)

Integrating over x once gives

∫
d2θ

dx2
dθ

dx
dx =

∫
sinθ cosθ

λ2
dθ

dx
dx(dθ

dx

)2
=

sin2θ

λ2
+ C.

(5.13)

Considering the one-dimensional domain wall, it is de�ned that θ(x) −→ ±1 as x −→ ±∞.

As one considers a region in�nitely far from the domain wall, all spins will be strictly

parallel or antiparallel to the easy axis. Consequently it is known that sinθ −→ 0 as

x −→ ±∞, and the integration constant disappears. Taking the root of the equation, one

gets

dθ

dx
=

sinθ

λ

dx =
λ

sinθ
dθ.

(5.14)

Integrating over x on both sides gives

x+ C = λ ln
(
tan(θ/2)

)
e
x+C
λ = tan(θ/2),

(5.15)

where C again is an undetermined integration constant. Using the trigonometric identities
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cosθ =
tan2(θ/2)− 1

tan2(θ/2) + 1
and sinθ =

2tan(θ/2)

1 + tan2(θ/2)
, (5.16)

one gets

cosθ =
e

2(x+C)
λ − 1

e
2(x+C)

λ + 1
and sinθ =

2e
(x+C)
λ

1 + e
2(x+C)

λ

cosθ =
e

(x+C)
λ − e

−(x+C)
λ

e
(x+C)
λ + e

−(x+C)
λ

and sinθ =
2

e
(x+C)
λ + e

−(x+C)
λ

cosθ = tanh
(x+ C

λ

)
and sinθ = sech

(x+ C

λ

)
.

(5.17)

The integration constant is chosen as the position of the domain wall, X, making the �nal

relations

cosθ = tanh
(x−X

λ

)
and sinθ = sech

(x−X
λ

)
. (5.18)

The de�nition of λ can now be seen to be a measure of the domain wall thickness.

5.2 Simulations

Micromagnetic simulations were run in mumax3, all initialised with a 180◦ Néel DW and

with equal exchange sti�nesses. The anisotropy, when included, was uniaxial with the

easy axis being in the x direction. No hard axis was implemented, and the results here

should thus not be exactly equal to the theoretical predictions. The simulations were run

using the built in mumax3 function for minimising free energy of a system, with cell sizes

of 1 angstrom and only one cell layer included in the z-dimension. The results of di�ering

strengths of DMI and anisotropy are shown in �gure 5.1.

The �rst row of �gure 5.1 shows the relaxed states of the domain wall with di�ering

strengths of the anisotropy constant, while the strength of the DMI is set to zero. The

e�ects shown are thus only due to the changes in the exchange sti�ness to anisotropy

strength ratio. It can be seen that increasing the strength of the anisotropy while keeping

the exchange strength constant decreases the domain wall width, as was predicted. It can

in �gure 5.1 d) to f) further be seen that a higher DMI constant favours a higher volume

fraction of domain wall to uniform con�guration by both increasing the width of the DW

and altering its shape, also keeping in accordance with theory.
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(a) K = 8.5× 104, D = 0. (b) K = 8.5× 105, D = 0. (c) K = 8.5× 106, D = 0.

(d) K= 8.5× 105,

D= 5.5× 10−4.

(e) K= 8.5× 105,

D= 5.5× 10−3.

(f) K= 8.5× 105,

D= 5.5× 10−2.

Figure 5.1: Relaxed spin con�gurations of a ferromagnetic domain wall, with di�ering

DMI and anisotropy strengths. The easy axis is aligned along the x axis. The local

magnetisation is represented both in arrows and colour. Red and blue indicate spin

directions along the x axis, green and yellow along the y axis, white and black regions

along the z axis.
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Chapter 6

Current-induced spin-transfer torque

on FM domain walls

6.1 Theoretical predictions

Electrical currents have been found to be e�cient in moving magnetic textures [14]. When

a current is introduced into a magnetic material, the conservation of angular momentum

combined with the exchange interaction will cause the direction of the spins in both the

introduced electrons and localised spins of the material to alter. This was formulated

quantitatively by Berger in 1970 [19], introducing the spin-transfer torques as written in

equations 6.1 and 6.2. The former equation considers the adiabatic Berger spin-transfer

torque, and the latter the non-adiabatic Berger spin-transfer torque.

τB(r) =
γh̄

2eMs

P (j · ∇)m (6.1)

τBβ(r) =
γh̄

2eMs

βPm× (j · ∇)m (6.2)

Here P is the spin polarisation of the current, j is the electric current density and β is

the non-adiabaticity parameter. Comparing the form of equations 6.1 and 6.2 to that of

the LLG, it appears that the adiabatic equation induces progression-like motion while the

non-adiabatic equation has a damping-like form. β is hence similar to the α previously

discussed in that is can take values between 0 and 1, giving the degree of damping.

Looking at an electrical current in the positive x-direction, the equations simplify to

τB(r) =
γh̄

2eMs

Pj0
dm

dx
= v

dm

dx
(6.3)

τBβ(r) =
γh̄

2eMs

βPj0m×
dm

dx
, (6.4)
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having de�ned v = γh̄Pj0/2eMs as a magnitude of the spin transfer torque. Using the

Berger spin-transfer torques as the additional forces in equation 2.19, and the parame-

terisation of m as given in equation 5.7 with the steady state conditions (considering the

domain wall position X and the tilt angle φ as functions of time), a relation between

the tilt angle and the domain wall position can be found for each of the components.

Integrating this with regard to x, with limits set to ±∞, the relations simpli�es into

− vσ +
K2γλ

2
sin(2φ)− αλ∂tφ = σ∂tX (6.5)

vβσ + ασ
∂X

∂t
= λ

∂φ

∂t
. (6.6)

Combining these equations, as well as introducing dimensionless parameters, gives

σ(1 + α2) ˙̃X = sin(2φ)− σ(1 + αβ)ṽ (6.7)

(1 + α2) ˙̃φ = αsin(2φ)− σ(α− β)ṽ. (6.8)

The dimensionless parameters are here de�ned as ˙̃X = ∂(X/λ) ∂t̃, ˙̃φ = ∂φ/∂t̃, t̃ =

(γH⊥/2)t, ṽ = (2/γλH⊥)v.

It's been mentioned that the tilt angle refers to the deformation of the domain wall. The

process of domain wall deformation occurring when φ̇ 6= 0 is known as Walker breakdown.

A deformed domain wall will no longer be able to contain information, making Walker

breakdown something to be avoided and imposing a constraint on the amount of current

which should be applied [30]. However, it can also be seen that the domain wall velocity

is proportional to the driving forces through the variable ṽ, and an as high as possible

transfer rate of information is desirable. To get the most e�cient system, one must thus

maximise Ẋ while maintaining a zero φ̇. The Walker breakdown is also highly material

dependent through both α and β.

Assuming that a systems avoids Walker breakdown, the above equations yields the domain

wall velocity as
˙̃X = −β

α
ṽ (6.9)

6.2 Simulations

Simulations were done in mumax3 at 0 temperature, with a sample of 51.2×25.6×0.1 nm

and 0.1 nm cell size. The material parameters were β = 0.15, α = 1.0, Msat = 384× 103

A/m, Dbulk = 0, Ku1 = 8.5× 105 J/m3 and Ku2 = 3× 105 J/m3. Surface charges

were removed at x = 0 and x = 25.6 nm to mimic an in�nitely long wire. A domain

wall was initialised equally as in the previous chapter, and an electrical current was
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subsequently applied in the x-direction. The domain wall position was measured with a

built-in function.

6.3 Results and discussion

The result of several simulations run is shown in �gure 6.1 as the average velocity of the

domain wall. In the graph it shows that the average velocity of a domain wall generally

increases with both β and the applied force. This corresponds to the predictions found.

The graph is plotted for a varying polarisation of the electrical current, but all other

factors in the ṽ-parameter used in the derivations are kept constant.

A further point to notice is that the graphs plotted do not appear linear, as they should

have been if no Walker breakdown had been present. The determining of the domain

wall position appears to be an average domain wall position in y, and will thus become

unaccurate with the onset of Walker breakdown. For better control of the process, a new

function should ideally be de�ned in which the tilt angle is also monitored. A limitation

in the results is also the number of runs done, as only eight polarisations were tested. As

the onset of Walker breakdown of the domain wall will ruin the information which might

be stored in the domain/domain walls in a spintronics application, simulations like this

could be practical in determining the value range of the parameters which are optimal.

As the speed of the device will depend strongly on the average velocity of the domain

wall, an optimal position would be one without any breakdown of the wall, while still

maintaining a high velocity.

An illustration of the tilt angle can be seen in �gure 6.2. A current is applied perpendicu-

larly to a ferromagnetic domain wall, and the �gure shows the spin con�guration as time

passes. It can be seen, particularly in image c), that the tilt angle here is non-zero.

A further observation to be taken from �gure 6.2 is that the colour of the domain wall

itself, as well as the directions of the spins close to the domain wall, changes in a cyclic

manner in time. White colour indicates spins pointing in a positive z direction, while

black colour indicates a negative z direction. The �gure therefore shows that the domain

wall is spinning.

Spinning domain walls occur whenever the free energy of the domain wall is independent

on direction of the spins. Both the Heisenberg exchange interaction and the DMI are

nearest-neighbour interactions. The anisotropy interaction, on the other hand, has a

preferred alignment across the entire sample, but as that direction is impossible for the

domain wall, it will not di�erentiate between the domain wall directions in this case. An

unspinning domain wall is obtained in materials with more than one uniaxial anisotropy,

as was the case in the analytical derivation.
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Figure 6.1: Average velocity of domain walls exposed to an electrical current, as a function

of the of the polarisation of the current. All other aspects of the simulations were identical,

with the current density being 1.5× 1013 A m−2.
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(a) t = 15× 10−10 s (b) t = 16× 10−10 s (c) t = 17× 10−10 s

(d) t = 18× 10−10 s (e) t = 19× 10−10 s (f) t = 20× 10−10 s

(g) t = 21× 10−10 s (h) t = 22× 10−10 s (i) t = 23× 10−10 s

Figure 6.2: Images showing of the e�ect of an applied electrical current on a ferromagnetic

domain wall from a micromagnetic simulation. The domain wall is kept centered in the

frame. The system here only has one uniaxial anisotropy, an easy axis aligned in the same

direction as the applied current.
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Chapter 7

Ferromagnetic skyrmions

Ferromagnetic skyrmions, consisting of a circular ferromagnetic domain wall, should in-

tuitively be dependent on many of the same factors as the domain walls. Simulations

were run in which the e�ect of altering the relative strengths of the di�erent material

parameters on ferromagnetic skyrmions are seen, as well as the motion of the skrymion

when applying an electrical current.

7.1 Simulations

Mumax3 o�ers the option of setting a Néel or Bloch skyrmion as the initial spin con�gu-

ration, which was used for all the simulations done in this section. The size of the initial

skyrmion can be altered with a scaling factor, without any more spesi�cations of the func-

tion being given [29]. The material properties were based on a paper considering a thin

�lm of Co on a Pt-substrate [31], and were set as Ms = 580× 103 A/m, A = 15× 10−12

J/m, Ku1 = 0.8× 106 J/m3, α = 0.3, and the DMI constant varying between 0 and

9× 10−3 J/m2.

7.2 Results and discussion

From the theory, it is known that the width of the skyrmion is proportional to the DMI

parameter strength, and that the radius of the inner domain should be dependent in

some more complicated manner. Figures 7.1 and 7.2 con�rm the dependece on the DMI

constant. It can further be seen that there is a minimum value of D for which the

skyrmions will be stable for the di�erent initial conditions, as one condition in �gure 7.1

and two in �gure 7.2 show a purely ferromagnetic sample upon relaxation. The sizes of

the skyrmions in the given �gures can also be noted to be limited in size by the sample

size, as the skyrmions can be seen to adopt a square-like shape.
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(a) D =

1.0× 10−3
(b) D =

2.0× 10−3
(c) D =

3.0× 10−3
(d) D =

4.0× 10−3
(e) D =

5.0× 10−3

Figure 7.1: Stable Néel skyrmions found in mumax3 with di�ering strengths of the inter-

facial DMI parameter. The initial con�guration was here a skyrmion, scaled with a factor

3.

(a) D =

1.0× 10−3
(b) D =

2.0× 10−3
(c) D =

3.0× 10−3
(d) D =

4.0× 10−3
(e) D =

5.0× 10−3

Figure 7.2: Stable Néel skyrmions found in mumax3 with di�ering strengths of the inter-

facial DMI parameter. The initial con�guration was here a skyrmion, scaled with a factor

1.
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Simulations were done in which the value of the damping parameter α was varied. Though

unrealistic in a real material, the value α = 1.0 was found easiest detectable. As such, a

α-value of 1.0 was used for the results presented in �gures 7.3 and 7.4. In 7.3, the aim of

the simulation was to gain some insight as to how fast skyrmions move with respect to

varying material parameters. From the results it can be seen that the relation is not as

simple as with domain walls, if it does exist. The average velocity in the direction of the

applied electric current, varies greatly both in size and in sign.

It should further be noted that the skyrmions also move signi�cantly in the y direction,

i.e. perpendicular to the applied electric current. Referring to the topological Hall e�ect,

this is as expected.

The greatly varying average velocities in both x and y calls for more research, both

theoretical and numerical. However, one possibility is that the fault stems from the

numerical simulation, giving incorrect results. This is especially suspected from the results

found in 7.4, as decreasing the size of time steps of a numerical method should normally

give either the same result, or a more accurate one. Here the two simulations show

completely di�erent movements of the skyrmion, both in direction and velocity. However,

the simulations have here used the Heun method at zero temperature, though it was later

found that this is not recommended [29]. Unfortunately there was not su�cient time to

rerun the simulations with a di�erent method.

A more accurate and reliable measurement of the skyrmion positions should also be im-

plemented, as the measuring for �gure 7.4 was done manually in InkScape. This has also

put a restriction on the amount of data which could be measured.

With the uncertain results shown, no conclution can be drawn regarding the movement

of the skyrmion, other than that motion does in fact occur when an electrical currect is

applied to the material. Also, the formation and stability of the ferromagnetic skyrmion

seems to correspond with the theoretical trends found.
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Figure 7.3: The average skyrmion velocities as a function of the non-adiabaticity param-

eter, β. The velocity in x is parallel to the applied electrical current, while the velocity

in y is perpendicular to it. The average velocities where found from 2× 10−9 second

simulations. The polarisation of the spin current applied was 0.01.

(a) t = 1× 10−12 s (b) t = 2× 10−12 s (c) t = 3× 10−12 s (d) t = 4× 10−12 s

(e) t = 1× 10−12 s (f) t = 2× 10−12 s (g) t = 3× 10−12 s (h) t = 4× 10−12 s

Figure 7.4: The motion of a ferromagnetic skyrmion shown through snapshots from the

simulation. An electrical current applied in the x direction. The di�erence between the

upper and lower row of images lies in the time steps used in the Heun method in mumax3,

respectively 1× 10−14 and 1× 10−15 seconds. Periodic boundary conditions were used in

the simulation.
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Part III

Motion of antiferromagnetic skyrmions
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It's been mentioned that antiferromagnetic materials can provide higher switching fre-

quencies than ferromagnetic materials. This part of the thesis will therefore look at the

motion of magnetic structures in antiferromagnetic materials, speci�cally at antiferro-

magnetic skyrmions. Furthermore, while the previous part considered applied electrical

currents and thus motion which takes place in conducting materials, a motivation for

this thesis was to consider systems in which information is transmitted without the elec-

trons themselves moving. As such, the focus will be shifted to insulating materials, and

therefore the focus will also be shifted from interactions involving electrical currents to

interactions involving spin waves.

Spin waves can be created in several manners, and the method chosed will a�ect the

properties of the wave. This chapter will look at both applying a temperature gradient

and a localised magnetic �eld as methods for creating spin waves, and the subsequent

motion of a skyrmion experiencing the spin waves.
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Chapter 8

Motion of AFM skyrmions by

temperature gradient

At zero temperature, the characteristics of magnetic materials are deterministic. This

is in contrast to looking at systems at �nite temperature, in which case one will be

dealing with random thermal �uctuations, and will as such have to involve theory from

statistical thermodynamcis. It being assumed that the temperature never exceeds the Néel

temperature, the material will still be ordered. The higher energy state can then manifest

itself through spin waves, as demonstrated in �gure 3.2. This chapter will look at the

e�ects of thermally induced spin waves on antiferromagnetic skyrmions, both analytically

and through simulations.

A prerequisite to this work is that temperature gradients generate a �ux of magnons, as

found by Gomonay et. al. [32], where the magnons were found to either re�ect o� or be

absorbed into the AFM skyrmion. Which of these occurred depended on a multitude of

factors, such as the size of the skyrmion, and the energy and polarisation of the magnons.

Furthermore, a recent study by Koshlahni et. al. [33] of antiferromagnetic skyrmions in

a temperature gradient found that the skyrmions move with a topological Hall angle of

zero, and with the magnitude of the motion being particularly dependent on the damping

of the system, and the size of the skyrmions. The simulation method used in that paper

was atomistic, so doing a micromagnetic one here should reproduce equivalent results.

Also, the article contains analytical calculations of the skyrmion motion, which will be

reproduced in section 8.1. The paper written by Koshlahni et. al. should be considered

a reference throughout that entire section.
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8.1 Theoretical predictions

To describe the motion of an antiferromagnetic skyrmion in a temperature �eld, the AFM

Lagrangian in the continuum limit will be considered, with terms

T =

∫
d2r

1

2a
ṅ2, (8.1)

U =

∫
d2r
(A

2
(∇n)2 +

D

d
n · (∇× n)

)
, (8.2)

R =
µsα

γ

∫
d2r

ṅ

2
, (8.3)

where a and A are the homogeneous and inhomogeneous Heisenberg exchange coe�cients,

D is the inhomogeneous Dzyaloshinskii-Moriya coe�cient and d is the atomic spacing.

Working in the continuum limit it will be assumed that d is much smaller than the size of

the magnetic structures. Following the same precedure as when �nding the LLG equation,

the Euler-Lagrange equations give the relation as

1

a
n̈− δU

δn
+
µsα

γ
ṅ + 2λn = 0, (8.4)

with a Lagrange multiplier included to ensure that the length of the staggered order

parameter is one. As before, crossing with n from the left gives

n×
[
n̈− afn +

µsαa

γ
ṅ
]

= 0, (8.5)

where fn = −δU/δn is the e�ective �eld as caused by the potential energy in the spin

interactions.

8.1.1 The Fluctuation-Dissipation Theorem

In statistical mechanics, systems at equilibrium at �nite temperature continuously experi-

ence thermal �uctuations. The �uctuation-dissipation theorem states that the magnitude

of the �uctuations at equilibrium are related to the rate at which the system approaches

equilibrium [34]. This can be incoorporated into our model through Langevin dynamics,

including temperaure e�ects by adding a stochastic noise term f th, which takes the shape

of a Gaussian �eld. This gives us the stochastic LLG equation

n×
[
n̈− a(fn + f th) +

µsαa

γ
ṅ
]

= 0, (8.6)

where the mean value of the �uctuation is zero, and the variance is tied to the temperature

and the damping constants. In statistical mechanics, this is formulated as
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〈f thi (r, t)f thj (r′, t′)〉 = 2ξδijδ(r− r′)δ(t− t′), (8.7)

〈f th(r, t)〉 = 0, (8.8)

where ξ = αkBT (x) is the mentioned correlation. The temperature is assumed to vary

only in x.

As previously mentioned, a spin wave is observable as a fast oscillating motion of the

individual spins. This can be described mathematically as

n =
√

1− δn2n(0) + δn, (8.9)

where δn is the oscillating component, and n(0) is the slowly varying magnetic texture.

Both are functions of time and space, and are de�ned such as to give δn · n(0) = 0, and

〈(δn)2l+1〉 = 0. In this thesis, expectancy values for any fast oscillating components to

an even power higher than 2 have been treated as negligible. Also, as the size of the

�uctuation is small, the simpli�cation (1−〈δn2〉) ≈ 1 has been used. Looking at equation

8.6 averaged over time with 8.9 inserted then gives

n(0) ×
[
n̈(0) − af th +

µs
γ
aαṅ(0)

]
+ τmagn = 0, (8.10)

with the torque created by the thermic energy being

τmagn =− aA
(
〈δn× ∂2i δn〉 − ∂i〈δn2〉n(0) × ∂n(0)

)
,

=− ah̄Jn · ∇n(0) + aA(∂iρ)n(0) × ∂in(0).
(8.11)

The subscripts in the partial derivative here represent the Einstein notation, and as such

represent a sum over i ∈ 1, 2, 3 as the spatial dimensions. The thermomagnonic torque is

rewritten with Jni = (A/h̄)n(0) · 〈δn× ∂iδn〉 as the current of angular momentum carried

by the spin wave and ρ = 〈δn2〉/2 as the magnon number density. The two terms of the

torque which become apparent, one positive and one negative, are known as the reactive

torque and the dissipative torque, respectively.

8.1.2 Thiele's equation

Equation 8.10 describe the motion of a general staggered order parameter, while the

objective in this derivation is to look speci�cally at the motion of a skyrmion. Following

Thiele's approach of collective coordinates [35, 36], and letting the position of the skyrmion

centre be u(t), the staggered order parameter can be written as
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n(0)(r, t) = n(0)
(
r− u(t), t

)
. (8.12)

Multiplying equation 8.10 with (n(0) · ∂in(0)×), and using ṅ = u̇j∂jn and n̈ = −üj∂jn +

u̇ju̇k∂j∂kn, one obtains the relation

−üj(∂in(0)·∂jn(0)) + u̇ju̇k(∂in
(0) · ∂j∂kn(0))− a(∂in

(0) · f th)
− ah̄Jnj n(0) · ∂in(0) × ∂jn(0) + aA(∂jρ)∂jn

(0) · ∂in(0) = 0,
(8.13)

where the constraints |n(0)| = 1 and ∂2n(0) = 0 have been used. Integrating this over

space, the result is the stochastic Thiele's equation for AFM skyrmions,

M ij(üj +
µ

γ
αa) + F th

i + F r
i + F d

i = 0, (8.14)

where one can see that, in addition to the reactive and dissipative terms already found

to be present, a thermal one is also included. The terms in the above equation take the

forms of

F th
i (u, t) =

1

∆2

∫
d2r(∂in

(0) · f th), (8.15)

F r
i =

4πh̄Qn

∆2
εijJnj , (8.16)

F d
i = − c2

∆2
M ij∂jρ, (8.17)

where ∆ = d(A/D) is a measure of the skyrmion size. The topological number is here

de�ned according to the staggered order parameter

Qn =
1

4π

∫
d2r
(
n(0) · (∂xn(0) × ∂yn(0))

)
. (8.18)

While the topological charge of an antiferromagnetic skyrmion de�ned by the magnetisa-

tion parameter has a net value of 0, being de�ned by n it will be more equivalent to the

topological of a ferromagnetic skyrmion de�ned by m, and is here ±1. The mass tensor

in the above equations is given as

M ij =
1

a∆2

∫
d2r(∂in

(0) · ∂jn(0)), (8.19)

which is here symmetric and can be simpli�ed to M ij = Mδij. The e�etive AFM magnon

velocity in an isotropic material is c =
√
aA. Solving equation 8.14 for the steady state

solution, one then obtains the mean velocity of the antiferromagnetic skyrmion as
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u̇i = − γ

Maαµ
(F th

i + F r
i + F d

i ). (8.20)

8.1.3 The Fokker-Planck equation

In general terms, the Fokker-Planck equation describes the time evolution of a Brownian

particle. It can be combined with the Langevin equation, giving

ṁi = gij(Hj + hthj ), (8.21)

where gij is a di�usion matrix, H are deterministic forces and h are stochastic forces.

Considering the probability of �nding the skyrmion in position m at time t to be P [m, t],

the Fokker-Planck equation becomes

∂tP = −∂i(gijHjP ) + ∂i∂j(ξg
ikgjkP ). (8.22)

The situation considered assumes a linear temperature gradient in the x-direction, thus

giving ∂yT = 0, ∂2x = 0, Jmy = 0 and ∂yρ = 0. The assumption that the magnon current

is almost uniform is also done by saying ∂xJ
m
x = 0 and ∂2xρ = 0. This gives

F r
x = F d

y = 0, (8.23)

F r
y = −4πh̄Qn

∆2
Jnx , (8.24)

F d
x = − c2

∆2
M∂xρ, (8.25)

gij = − γ

Mαaµ
δij. (8.26)

This makes the Fokker-Planck equation for a magnetic soliton

∂tP = −(gF d
x − 2g2∂xξ̃)∂xP − gF r

y ∂yP + g2ξ̃(∂2x + ∂2y)P. (8.27)

Looking at only the lowest order terms for AFM skyrmions, the velocity of the skyrmion

is given by

vx =gF d
x − 2g2∂x

aM

∆2
ξ =

γ

αa∆2µ
(c2∂xρ−

2γkB
M

∂xT ) = vnx − vBx , (8.28)
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vy = gF r
y =

4πh̄γQn

Mαa∆2µ
Jnx = vny , (8.29)

where vn are the contributions from the thermally induced AFM magnons, and vB are

the contributions from the Brownian motion.

Considering the motion in the x-direction, both terms have a dependency on ∂xT through

the fact that ∂xρ is created by the temperature gradient. The dependencied however

have di�erent prefactors, of which the most signi�cant di�erence is M , the mass of the

skyrmion. Through equation 8.19, the mass can be seen, in the case of skyrmions, to

more accurately be a measure of the size of the skyrmion. This gives that vn is more

important for large skyrmions, while the Brownian contribution to the velocity becomes

dominant for small skyrmions.

A further interpretation can be found considering Jn, described as the current of spin

angular momentum. Looking at the de�nition of Jn, it can be seen that right-circular and

left-circular spin waves carry the same amount of angular momentum - but with opposite

signs. Linearly polarised spin waves can be seen not to carry any angular momentum.

With the spin waves being induced by random temperature �uctuations, their polarisa-

tions will also be random. The mean current of spin angular momentum when considering

thermal spin waves is therefore zero. This reduced equation 8.29 to vy = 0.

8.2 Simulation method

Micromagnetic simulations were done in mumax3, with an antiferromagnetic skyrmion

being initialised in the centre of the sample. The method used for the initialisation is

described in Appendix A, and the sample was then relaxed to its state of minimal free

energy. The sample was 512 × 128 × 0.4 nm large, and had a cell size in x and y of 1

nm. The material parameters used are A = −15× 10−12 J/m, Ms = 0.58× 106 A/m,

Ku = 0.8× 106 J/m3, Dind = 0.0034 J/m2 and α = 0.1, where the uniaxial anisotropy has

an easy axis in the z-direction. The simulations were run for 10 ns each, and temperature

gradients of either 0.2, 0.4 or 0.6 K/nm were applied in the x-direction. The temperature

at x = 0 nm was 0 K, with the temperatures at x = 512 nm thus being 102.4 K, 204.8 K

and 307.2 K, respectively.

As the simulation is of a stochastic nature, the results which will be presented are the

averages over 10 runs. These all had identical intial parameters, with the only di�erence

being their random thermal seedings. No random number generator was found in mumax3,

no this was done by generating a random number in Matlab, it here being seeded in time,

and manually writing it into the mumax3 input �le. A �xed time step of 10−15 seconds

was used with the Dormand-Prince method [29]. Detecting the location of the skyrmion
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was done as described in Appendix B.

8.3 Result and discussion

The main result, the position of the skyrmions as a function of time, is given in �gure

8.1. To get a measure of the randomness in the simulation, the average velocity and the

standard deviation between the runs are given in table 8.1. It can be seen that two of the

temperature gradients, 0.2 and 0.6 K/nm, cause the skyrmion to move toward the warmer

side of the sample. The intermediate temperature gradients has the opposite e�ect, with

the skyrmion moving towards the colder side, though at a much slower pace. Simulations

were also done with dT = 0.8 K/nm, but often with the result that the skyrmion was

deformed. It was therefor not considered in �gure 8.1, as a deformed skyrmion would no

longer be suited to transfer information.

The average sizes of the skyrmions also appear in the table, and can be seen to increase

evenly with increasing temperature.

dT [K/nm] Diameter [nm] v̄x [m/s] v̄y [m/s] SD(v̄x) [m/s] SD(v̄y) [m/s]

0.2 14.4 6.6 -1.1 6.3 2.1

0.4 18.8 -2.6 -0.6 9.7 2.0

0.6 23.3 8.9 -0.4 11.0 2.7

Table 8.1: The average AFM skyrmion sizes, velocities and standard deviations of velocity.

The strength of the damping constant a�ects the rate of decay of the magnons. In the

paper by Koshlahni et al. already mentioned [33], a lower damping constant has been used.

The velocities obtained there were higher than what is obtained here. Furthermore, the

shape of the trajectories are di�erent. Koshlahni et al. found the motion of the skyrmions

to be more even, and that the skyrmions, upon reaching the wall of the sample, remained

in that area. Such movement could be seen in some individual runs here as well, though

not su�ciently often for the behaviour to appear in �gure 8.1. However, while Koshlahni

et al. have not stated the number of runs their results were averaged over, the number is

likely to be higher than 10.

One behaviour taken from equation 8.28 and 8.29 was that large skyrmions tend to move

towards the hotter side of the sample, while small skyrmions move towards the colder side

[33]. This can be seen not to be a satisfactory explanation, as the intermediate skyrmion

in size moved in opposite direction to the two others.

The skyrmions have, as given in table 8.1, not moved signi�cantly in the y-direction.

This is in accordance with the discussed theory, indicating that the polarisation of the

spin waves obtained are in fact random.
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Figure 8.1: The movement of AFM skyrmions in temperature gradients. The gradient

is applied in the x-direction, increasing with x. The length of the sample was ±256 nm.

The plotted values are the results of 10 runs, averaged.

One possible source of error in the simulation would be if, in the regions with highest

temperatures, the thermal �uctuations were larger than expected. The model on which

the mathematical derivation is based assumes that the �uctuations δn can be described

as linear. This only holds for situations in which sinθ ≈ θ. Should the deviation from

n(0) become large, the models used will no longer be valid. An alternative formulation is

that the variation in each component of the magnetic moment throughout time should be

small. This was checked for by looking at the components of one chosen spin throughout

the simulation, as is plotted in �gure 8.2. The spin looked at was located close to the

right side edge of the sample, thus in the highest temperature. As 〈my〉 ≈ 0.5, it can be

seen that the spin is also in�uenced by stonger DMI as it is close to the edge.

It is clearly visible that the thermal �uctuations increase with increasing temperature,

and the �uctuations also appear much too large for the linear approximation. This holds

the consequence of the mathematical description found no longer being suitable. To �nd

the exact discrepancies one would have to repeat the analytical derivation.
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Figure 8.2: Thermal spin �uctuations throughout the length of the simulations (10−8

seconds), shown for each of the spatial components. The spin looked at was located close

to the hottest region of the sample, and can be seen to be in�uenced by the DMI in the

sample edge in the value of my.
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Chapter 9

Motion of AFM skyrmions by localised

magnetic �eld

The result of the previous analytical derivation showed that the velocity of skyrmions in

a temperature gradient was a competition between Brownian motion and motion induced

by spin waves. That result can be adapted for spin waves created by other methods than

temperature gradients by setting ∂xT = 0, and thus only considering nn. One method

for generating the magnons is to apply a magnetic �eld to the sample, but to a region in

which the skyrmion itself is not located. This has been done by Ding et. al. [37] for a

ferromagnetic system, in which the generated spin waves proved e�cient in moving the

skyrmion. A requirement is that the frequency of the magnetic �uctuations be close to

the spin wave resonance frequency.

Coherent antiferromagnetic spin waves can be either linearly or circularly polarised, both

of which can be created using alternating magnetic �elds. In [25], Tveten et. al. have

found both analytically and through simualtions that antiferromagnetic domain walls

experiencing these two types of polarisation will move in opposite directions. If the

same behaviour is found with antiferromagnetic skyrmions it would allow a more complex

skyrmion control than that found with incoherent spin waves.

9.1 Finding the resonance frequency

The properties of an induced spin wave will, among several factors, be dependent on the

oscillating frequency determined by the frequency of the applied magnetic �eld. This

can be expressed through its dispersion relation, in which the relation between the wave

vector k and the angular frequency ω is given.

Starting from the LLG equation for a uniform AFM, including Heisenberg exchange and

an uniaxial anisoptroy but excluding damping, one has the relation
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n×
[
n̈ + aA(∇2n) + aK(n · ẑ)ẑ

]
= 0. (9.1)

The staggered order parameter, describing a spin wave in the x-direction in a uniform

AFM, can then be written as

n(r, t) =σ(r)ẑ + δn(t)

=σ(r)ẑ + (δnx0 x̂+ δny0ŷ)ei(kx−ωt),
(9.2)

in which σ(r) = ±1, δn is the fast �uctuation of the spin wave taking the form of a

travelling wave. Inserting the expression for n into the LLG then gives

n×
[
n̈− a(A∂2x +

K

n z
ẑ)
]

= 0

n×
[
− ω2(δnx0 x̂+ δny0ŷ)e−iωt − aKnz ẑ

]
= 0 î ĵ k̂

δnx0e
i(kx−ωt) δny0e

i(kx−ωt) σ

(−ω2 + ak2)δnx0e
i(kx−ωt) (−ω2 + ak2)δny0e

i(kx−ωt) −aKσ

 = 0,

(9.3)

thus giving two non-trivial equations which both take the exact same form. Using dimen-

sional analysis to get an expression with meaningful physical signi�cance, one obtains the

dispersion relation

ω =

√
aK + ak2d2

h̄
, (9.4)

with d being the atomic spacing. An interesting feature to be noted about the dispersion

relation is that is is linear in k. This comes in contrast to ferromagnets, where ω ∼ k2. For

the material properties used in mumax3, inserting k = 0 to �nd the resonance frequency

gives ωr = 5.288 THz. In the equivalent ferromagnetic system simulated by Ding et.

al., the resonance frequency of the magnons was 85 GHz [37]. This demonstrates that

antiferromagnetic systems can provide much faster dynamics than ferromagnetic ones, as

has been claimed.

Though the damping normally used in the LLG has been excluded in the above derivation,

damping will occur in the system causing the amplitude of the spin wave to decrease as

it propagates.
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9.2 The predicted skyrmion movement

An assumption made considering the thermal magnons was that the wavelength of the

helix be greater than that of the thermal magnons. This allowed simpli�cations to be

done in which terms of higher orders were considered negligible. Considering the velocity

of a skyrmion interacting with spin waves at zero temperature can therefore conclusively

be said to the exactly equal to vn as found in the previous chapter, but are instead given

as

vx ≈
γc2∂xρ

αa∆2µ
, (9.5)

vy ≈
4πh̄γQn

Mαa∆2µ
Jnx . (9.6)

The coherency of the spin waves is in the skyrmion velocities shown in Jnx and hence the

movement in the y-direction. Considering the value of Jnx it is expected that right-circular

spin waves give vy < 0, left-circular spin waves give vy > 0 and linear spin waves give

vy = 0.

9.3 Simulation model

The simulations run were similar to those in the previous chapter. The size of the sample

and the cells were equal, and the initialisation of the AFM skyrmion occured in the same

manner. The only di�erence in material properties was the damping constant, having

been lowered to α = 0.001 after a di�culty in obtaining stable magnons was observed in

simulations done with α = 0.1.

A single harmonic sinusoidal �eld was applied to the left-most 20 nm of the sample. The

form of the magnetic �eld applied was

HSW =
[
Hx

0 sin(ωt), Hy
0 cos(ωt+ φ), 0

]
(9.7)

Di�erent polarisations were acchieved by varying the amplitudes Hx
0 and Hy

0 , and the

phase of the y component φ. Four polarisations were simulated, demonstrated in �gure

9.1.

The step time was set to have a maximum value of 1× 10−14 seconds, again using the

Dormand-Prince method [29]. The temperature of the system was set to 0 K in the inital

conditions. Detecting the location of the skyrmion was done as described in Appendix B.
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Figure 9.1: The shape of the magnetic �elds which are applied to the antiferromagnetic

material to induce spin waves. These shapes are multiplied with the amplitude H0.

9.4 Verifying the spin waves

Before looking at the motion of the antiferromagnetic skyrmion, equivalent but uniform

systems were investigated.

In an attempt to see the polarisation of the magnons, the magnetic moment of one spin

was followed throughout the simulation. This was done for spins centered in y, and at

�ve evenly spread out positions in x. The results during the �rst 5× 10−12 seconds of

motion at a spin location x = 100 nm are given in �gure 9.2. It can be seen that both

of the circular polarisation are transferred successfully from the applied magnetic �eld

to the spin wave. With the applied linear �elds, the induced spin waves appear linearly

polarised in the opposite direction. With an oscillating magnetic �eld in the x direction

applied, a spin wave polarised in the y-direction is obtained. The frequencies in �gure 9.2

appear similar to the 5.288 THz which is applied.
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The same simulation was also run for 5× 10−11 seconds, as is presented in �gure 9.3.

While the phase di�erences between the x- and y-components maintain as they did in

�gure 9.2, the magnitude of the oscillations do not. For the applied magnetic �elds which

are circular and the x-linear one, the oscillations in y far exceed the oscillations in x,

giving the spin waves a very long, elliptical polarisation. The spin wave induced by the

magnetic �eld linear in y is the only one which signi�cantly di�ers from the other three,

maintaining a linear polarisation in x throughout the 5× 10−11 seconds.

The y-component of the magnetisation for the circular �elds, and at several positions

along x, are shown in �gure 9.4. It can in the �gures be seen that the same frequency and

phase appears to be kept at positions x = 100 − 400 nm. It appears that the sinusoidal

shape is unstable at very low amplitudes, as it can be observed at all positions. The shape

of the wave at x = 500 nm thus might be due to its weak strength.

A further observation from �gure 9.4 is that the �rst peak in the right-circular spin

wave appears to reach x = 100 nm after 2.887× 10−11 seconds, and x = 200 nm after

4.311× 10−11 seconds, when looking at the �rst sign of oscillation in the y-direction.

This gives the velocity of the spin wave to be 7022 m/s. The equivalent value for the

left-circular wave is found to be 7002 m/s.

The amplitude of the peak decreases as it moves from x = 100 nm to x = 200 nm,

indicating the presence of damping, as expected. Considering the amplitude of the peaks,

the decrease in those 100 nm is of 58% and 62% for the right-circular and left-circular

waves respectively.

9.5 Results

Now having an antiferromagnetic skyrmion located in the centre of the sample as the

initial spin con�guration, the skyrmion position when exposed to spin waves is shown in

�gures 9.5, 9.7, 9.8 and 9.6.

In applying di�erent amplitudes of the magnetic �elds, it is seen that a stronger magnetic

�eld induces faster motion. It appears that a maximum velocity is approached with

H0 = 0.8 T for the circular magnetic �elds and the �eld linear in x, as the increase in

velocity from H0 = 0.6 T is small. The graphs also show that the velocity of the skyrmion

decreases as it moves away from the region in which the spin waves are generated. Knowing

from the previous section that the amplitude of the spin waves decays as they travel in

space, this is as expected.

The resonance frequency ωr = 5.288 THz was found theoretically, and has been used

throughout most of the simulations. A test was done with slightly varying input frequen-

cies, as shown in �gure 9.7. This con�rmes that the maximum velocity of the skyrmions

is closer to 5.288 THz than the other frequencies tested. A further factor which has

67



Figure 9.2: The x- and y-components of a magnetic moment located at x = 100 nm

through 5× 10−12 seconds. Di�erent sinusoidal magnetic �elds, both linear and circular,

are applied between x = 0 and x = 20 nm, as is given in �gure 9.1. The amplitude of all

�elds applied was 0.60 T, and the frequency was ω = 5.288 THz.

tested was the width of the region generating the spin waves. The resulting motion of the

skyrmions is shown in �gure 9.8.

Of the four polarisations applied, the only one showing a signi�canty di�erent behaviour

than the others is the �eld linear in the y-direction. The skyrmion motion is for that

�eld much slower than for the others. The average velocities of the skyrmions are given

in table 9.1. For the simulations in which the skyrmions reached the end of the sample,

and subsequently stayed in that position, the velocity is found as the average during the

time in which the skyrmion was in motion. The movement in the y-direction was also

measured in all simulations run. The most movement seen was ±1 nm in the simulations

with H0 = 0.8 T, and for all simulations with lower �eld amplitudes applied there was

zero movement in the y-direction.
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Figure 9.3: The x- and y-components of a magnetic moment located at x = 100 nm

through 5× 10−11 seconds. Di�erent sinusoidal magnetic �elds, both linear and circular,

are applied between x = 0 and x = 20 nm, as is given in �gure 9.1. The amplitude of all

�elds applied was 0.60 T, and the frequency was ω = 5.288 THz.
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Figure 9.4: The y-component of magnetic moments positioned along the length of the

sample, followed through 5× 10−11 seconds. Circular sinusoidal magnetic �elds are ap-

plied between x = 0 and x = 20 nm. The simulation is done with H0 = 0.6 T and

ω = 5.288 THz.
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Polarisation

x-linear y-linear Right-circular Left-circular

H0

0.2 T 25.45 0.69 25.75 25.75

0.4 T 57.45 2.40 58.33 58.33

0.6 T 103.23 4.41 89.30 89.30

0.8 T 88.48 5.61 101.32 101.32

Table 9.1: The average velocities of skyrmions in the x-direction, induced by a localised

magnetic �eld with polarisation as speci�ed in the table. The unit of the velocities is m/s.

The width of the region generating spin waves was 20 nm, and the frequency of the �elds

applied was ω = 5.288 THz.

9.6 Discussion

The lack of movement by the skyrmions in the y-direction show that the spin waves, as seen

from the discussion in section 9.4, were not circularly polarised. Based on the elliptical

shape of the spin waves seen, some movement was expected. A possible explanation to the

complete lack of such movement can be that the spin waves were only observed during the

�rst 5× 10−11 seconds, while the skyrmion motion was measured over 5× 10−9 seconds.

The relative size of the oscillations in the x- and y-components can have continued to

change. Alternatively, the elliptical polarisation may have been similar enough in shape

to a linear polarisation for the amount of transferred spin angular momentum to be zero.

A much further discussion of the e�ect of spin waves on antiferromagnetic skyrmion is

di�cult due to the nature of the spin waves. In comparing the motion caused by the y-

circular �eld to the others, it is clear that the magnitude of the wave is the most signi�cant

factor for the velocity of the skyrmion, and that linear spin wave cause the skyrmion to

move away from the spin wave source.

One suggested reason for the elliptical shape of the spin waves is the e�ect of the interfa-

cial DMI present in the system. The interfacial DMI tilts the spins near boundaries in a

direction perpendicular to the boundary, and thus prevent spin motion in that perpendic-

ular direction. In the simulation, the magnetic �eld is applied to a region with dimensions

20×128×0.4 nm. These dimensions make movement in the y-direction require less force,

and therefore create spin waves with a larger oscillation in the y-direction.

Possible solutions for creating circular spin waves are to apply the magnetic �eld to a

material without DMI. However, the interaction is neccesary for the stabilisation of the

skyrmion, meaning that the spin waves would have to cross some boundary of material

properties successfully. A more simple solution is to apply the magnetic �eld to a quadratic

region, in which oscillations in both directions would be created with equal strength.
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Figure 9.5: The position of AFM skyrmions exposed to spin waves induced by circularly

polarised magnetic �elds. The width of the region generating spin waves was 20 nm, and

the frequency of the �elds applied was ω = 5.288 THz. The amplitude of the �eld was

varied, and is given in the legend, which applies for both plots.

Figure 9.6: The position of AFM skyrmions exposed to spin waves induced by linearly

polarised magnetic �elds. The width of the region generating spin waves was 20 nm, and

the frequency of the �elds applied was ω = 5.288 THz. The amplitude of the �eld was

varied, and is given in the legend, which applies for both plots.
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Figure 9.7: The position of AFM skyrmions exposed to spin waves induced by circularly

polarised magnetic �elds. The width of the region generating spin waves was 20 nm, and

the amplitude of the �elds applied was 0.4 T. The frequency of the �elds was varied, and

is given in the legend, which applies for both plots.

Figure 9.8: The position of AFM skyrmions exposed to spin waves induced by circularly

polarised magnetic �elds. The amplitude of the �elds applied was 0.4 T, and the frequency

was ω = 5.288 THz. The width of the region renerating the spin waves was varied, and

is given in the legend, which applies for both plots.
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Chapter 10

Conclusions and further work

Throughout the work for this thesis, the motion of antiferromagnetic skyrmions exposed

to spin waves has been studied. The motion has been found to be faster with spin waves

induced by a local magnetic �eld than with spin waves induced by a thermal gradient, with

maximum observed velocities of 103.2 m/s and 8.9 m/s, respectively. The former is also

a deterministic process, and thus more reliable than the thermal �uctuations involved in

the latter. Both processes induce signi�cant motion only along the x-direction. Circularly

polarised spin waves have been predicted to induce motion also in the y-direction, but

this was not successfully achieved in simulations

Di�erent damping constants are used in the two simulations. The temperature gradient

simulations have α = 0.1, while the magnetic �eld simulations have α = 0.001. Increasing

the damping constant in the latter is expected to increase the rate of decay of the spin

waves, which in turn should decrease the velocity of the skyrmion.

In considering further work, the generation of spin waves with a localised magnetic �eld in

general requires further studies. The two solutions suggested in 9.5 to obtaining circularly

polarised spin have not been tested numerically due to lack of time, but should be simple

to do in mumax3.

The processes involving magnetically induced spin waves are all done at zero temperature.

In the temperature gradient simulations, the lower temperature in the sample is also

zero kelvin. An important step towards using antiferromagnetic skyrmions in practical

spintronics applications will be to develop the theory for higher temperatures.

Future work should also consider canted antiferromagnetic systems. In this thesis, all

models of antiferromagnets have assumed an antiparallel spin con�guration as the ground

state. The Dzyaloshinskii-Moriya interaction will however not only cause the stabilisation

of the skyrmion, but will be relevant in all considerations of the material.

75



76



Appendices

77





Appendix A

Initialising AFM skyrmions in mumax3

While ferromagnetic skyrmions can be initialised with a mumax3 function, a antiferro-

magnetic one must be created. This can be done by setting the initial magnetisation in

each cell of the sample. The following function was used

for i :=0; i<Nx ; i++{

for j :=0; j<Ny ; j++{

r :=( exp ( sq r t ( ( i−Nx/2+0.5)∗( i−Nx/2+0.5 )+. . .

. . . ( j−Ny/2+0.5)∗( j−Ny/2+0.5))/9.6)−1)/( exp (30/9 .6) −1) ;

phi :=atan2 ( ( j−Ny/2+0.5) , ( i−Nx/2+0 .5 ) ) ;

mzansatz := (1− r ∗ r )/(1+ r ∗ r ) ;
mxansatz := 2∗ r /(1+ r ∗ r )∗ cos ( phi ) ;
myansatz := 2∗ r /(1+ r ∗ r )∗ s i n ( phi ) ;

i f mod( i+j , 2 ) == 0{

m. s e tC e l l ( i , j , 0 , vec to r (mxansatz , myansatz , mzansatz ) )

} else {

m. s e tC e l l ( i , j , 0 , vec to r (−mxansatz ,−myansatz ,−mzansatz ) )

}

}

}

where Nx and Ny are the number of cells in the x and y directions. The magnetisation

of a simulation can also be set by the .ovf-�les produced by previous simulations. The

resulting con�guration from the above function is given in A.1, being a relaxed skyrmion.

The size will is set by the material parameters otherwise de�ned in the input �le, and will
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Figure A.1: An initialised AFM skyrmion in mumax3, here showed through its z com-

ponent. The purple is really alternating red and blue cells, representing ±1. Green

represents the z component being 0.

thus generally not be equal to that in the �gure.
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Appendix B

Determining AFM skyrmion position in

mumax3

For ferromagnetic systems, mumax3 o�ers a built-in function for �nding the position

of skyrmions. However, as mumax3 is not created with antiferromagnets in mind, no

equivalent function for AFMs is available. The follow method was thus used, based

on �nding the approximate position of the skyrmion domain wall while assuming the

skyrmion keeps a circular shape.

1. De�ne the spin values by which the skyrmion domain wall will be de�ned. As

the samples looked have had uniform material de�ned by mz = ±1, spin values

−0.1 < mz < 0.1 have been used.

2. Also de�ne a region in which to look for the skyrmion. This is done to avoid

detecting the walls of the sample, which due to DMI will have spins withing the

abovecreated limits. The region is de�ned through a number l, where the region

searched will then be the previous position of the skyrmion ±l in both x and y.

3. Loop through each cell in the �le. If the cell is within the region as de�ned in point

2, consider its spin value. Save the minimum and maximum positions in which the

spin value is within the domain wall.

4. The skyrmion should now be located with its center in the midpositions between

the minimas and maximas found.
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