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Abstract

The purpose of this thesis is to explore the use of reduced order models for solving para-
metric partial differential equations. This will be done through constructing and analyzing
reduced models within the field of structural mechanics with finite element models as start-
ing point. A special emphasis will be put on the construction and behaviour of reduced
models with respect to geometric parameters. The fundamental aspects of reducible prob-
lems is given in the introductory chapter, describing motivation for reduction and outline
of the thesis.

In order to achieve the thesis goal, a literature review was done. Firstly the theoretical
foundation of the Finite element method is presented in Chapter 2, outlining the key con-
cepts of this approach as well as more practical derivations for the case of linear elasticity
in structural mechanics. The theory of reduced order models is then presented in Chap-
ter 3, explaining the background for reducibility, key assumptions and the approach of
constructing a reduced model through reduced basis projection methods.

Based on this theoretical background a numerical study on two example problems was
implemented which aimed to explore the over all performance of the reduced models. Ex-
plicit expression for the linear elastic case was derived and implemented, and the necessary
python code can be found in Appendix B.

For both examples reduced order models where created with overall satisfactory perfor-
mance, however two key finding from the numerical study emerged. The first being numer-
ical noise in the reduced model that proved to be associated with geometric parametriza-
tion. As geometric variation affected the equilibrium of the supported boundary, the re-
duced model had problems capturing this behaviour. The effect of this turned out to be
negligible, but might prove to be of importance if this approach is applied to more complex
systems.

The second finding revolves around the assumption of affinity with respect to parameters
in order to ensure reducibility, and how this influence the construction of the full order
model. As a result of a complicated connection between finite element model and geo-
metric parameters this meant altering the assembly of the finite element system, diverging
greatly from the general approach usually found in existing finite element software. This
impacts the applications of reduced order models as customized finite element software
becomes a necessity.
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Sammendrag

Formålet med denne oppgaven er å undersøke bruken av reduserte modeller for å løse
parametriske partielle differensialligninger. Dette vil bli gjort ved å konstruere og analy-
sere reduserte modeller innen konstruksjonsmekanikk med elementmetode-modeller som
utgangspunkt. Spesiell vekt legges på hvordan de reduserte modellene skal konstrueres
og dere oppførsel med hensyn til geometriske parametre. De grunnleggende aspektene for
reduserbare problemer er gitt i introduksjonskapittelet, og beskriver motivasjon for reduk-
sjon og en skissering av oppgaven.

For å oppnå målet med oppgaven ble det gjennomført et litteratursøk. Først presenteres
det teoretiske grunnlaget for elementmetoden i Kapittel 2, som beskriver nøkkelbegrepene
samt gir en mer praktisk innføring i lineær elastisitet innen konstruksjonsmekanikk. Teori
om reduserte modeller presenteres i Kapittel 3, som forklarer bakgrunnen for reduksjon,
nøkkelforutsetninger og fremgangsmåten for å bygge en redusert modell gjennom projek-
sjonsmetoder.

Basert på denne teoretiske bakgrunnen ble det gjennomført en numerisk studie på to ek-
sempelproblemer som har som mål å undersøke oppførselen av de reduserte modellene.
Eksplisitt uttrykk for det lineær elastiske tilfellet ble utledet og implementert, og den nød-
vendige Python-koden finnes i tillegg B.

For begge eksemplene ble reduserte modeller konstruert med tilfredsstillende ytelse, men
to nøkkelresultater dukket opp. Den første er numerisk støy i den reduserte modellen som
viste seg å være forbundet med nettopp geometrisk parametrisering. Geometrisk vari-
asjon påvirket likevekt ved grensebetingelsene, og den reduserte modellen hadde proble-
mer med å fange opp denne oppførselen. Effekten av dette viste seg å være ubetydelig i
dette tilfellet, men det kan vise seg å være viktig hvis denne tilnærmingen blir brukt på
mer komplekse systemer.

Det andre funnet dreier seg om hvordan antagelsen om affinitet med hensyn til parame-
tere som muliggjør reduksjon, og hvordan dette påvirker konstruksjonen av elementmod-
ellen. På grunn av det kompliserte forholdet mellom elementmodellen og geometriske
parametre resulterte dette i å forandre hvordan elementsystemet ble konstruert, noe som
divergerte sterkt fra den generelle fremgangsmåten som vanligvis finnes i eksisterende
elementmetode-programvare. Dette påvirker bruken av reduserte modeller ettersom spe-
sialtilpasset elementmetode-programvare blir en nødvendighet.
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1 | Introduction

1.1 Numerical methods in civil engineering

In several engineering disciplines partial differential equations (PDEs) are used to describe
field problems. As practical problems often are quite complex, analytic solutions are usu-
ally not available. This has given rise to the need for numerical approximation. One
of the most common approaches is the finite element method (FEM). The reason for the
wide spread use of FEM is its many advantages over most other numerical methods [1],
and this has lead to FEM being a well known and proven practice. Although there exist
other approaches, like the finite differences method, this thesis will only consider the FEM
which will be introduced in Chapter 2. The FE-approach is a discretization method which
transforms differential equations into first order matrix equations on the form

ANh
dNh

= fNh

ANh
∈ RNh·Nh and dNh

,fNh
∈ RNh

(1.1)

where ANh
and fNh

defines the system and dNh
are nodal values of the unknown field

quantity which the matrix equation is solved for. Also Nh denotes the order of the sys-
tem, and in turn the computational complexity, and the subfix h refers to how fine the
discretization is. In general it can be said that accuracy is increased by increasing nu-
meric complexity Nh, making computational cost a key feature for FEM as for any other
numerical method. As computing power has increased the last several decades, roughly
accordingly to Moore’s law [2], the rise of numerical methods has been possible making
them viable for a wide range of problems. By being able to handle models of higher nu-
merical order due to better computing power and knowledge of the methods, increasingly
complex problems can now be analyzed with better accuracy.

Although technological advancements have been done in the field of computer science, the
computational cost of numerical methods remains a key factor analysts have to address.
For many situations this revolves around constructing a numerical model which is good
enough, meaning that a sufficient accuracy is reached for a manageable numerical order
Nh. But for some problems, considering model order reduction can be highly beneficial.

1.2 Motivation for reduction

The overall motivation for reduced order models (ROMs) is simply to reduce the numerical
order Nh in (1.1) in order to decrease computational cost. Specifically this is done by

1



1.3. Parametric problems

creating a new model based on the original, but with a significantly lower order. It can be
seen as constructing a new numerical model

ANdN = fN

AN ∈ RN ·N and dN ,fN ∈ RN
(1.2)

Solving (1.2) should be relatively easy compared to (1.1) assuming N � Nh. A key
feature of the construction of the reduced model is that it is based on manipulating the
original model, making this a Nh-dependent process. As a result, constructing reduced
order models is computationally costly in itself, as we can assume that Nh becomes rather
large when model order reduction is considered. However the goal of the reduction is all
about the behaviour of the reduced model. If one is able to create a well performing re-
duced model this can be highly beneficial. This can either make up for the time consuming
construction step, or be a pure benefit if the problem can be split into two steps where only
high-speed solving of the final system is of interest. The original or full-order model can
become prohibitively slow when it is applied to repetitive solving of PDEs and expected
to do so quickly and efficiently.

1.3 Parametric problems

The theory of reducible models and the construction of these will be given later in Chapter
3, but initially it is key to introduce the concept of parametric problems. Although model
order reduction may be of interest for problems without any parametric variation, being
able to capture parametric dependencies reveals a new dimension of problems that can
be solved. For example the repetitive solving of PDEs for optimizing with respect to
some quantity by variation of a set of parameters. Introducing the input-parameter vector
µ = [µ1, ..., µp], where each parameter is stored, the parametric counterparts of (1.1) and
(1.2) becomes

ANh
(µ)dNh

(µ) = fNh
(µ)

AN (µ)dN (µ) = fN (µ)
(1.3)

Parametric problems aims to calculate some behaviour or field quantity dependent on a set
of input parameters. As each input parameter is allowed to vary over a given interval the
solution methods used must be able to capture the parameter dependencies on the solution,
as found in the original or physical problem. For this thesis the field of structural mechan-
ics and linear elasticity will be used as framework as numerical studies will consider the
deformation on 2D beams. For this kind of problems there are many candidates for input
parameters such as material properties, loading and geometry. A special emphasis will
be put on geometrical parameter variation and how this influence the construction and
performance of reduced models. Geometric parameters is found as variables that define
the geometry of the system, an easy example being the height and length of a rectangular
beam. Enabling geometric variation leads to a more general solver and a very powerful
tool as changes in geometry usually results in the complete or partial reconstruction of a

2



1. Introduction

Construction of High-fidelity model

Construction of ROM

Offline, Nh-dependent

Assembling ROM

Solve ROM

Online, N -dependent

Parametric PDE µ

Figure 1.1: ROM workflow

model. As will be described further in Chapter 2 and Chapter 3, being able to produce
a reduced model with respect to geometric variation will decide how the finite element
system i constructed, and this will be a major step to overcome.

In Figure 1.1 the computational workflow for redcued order models is outlined. As can be
seen the process is split into two steps, online and offline. This will be discussed in further
detail in Chapter 3, but it is key to understanding the benefits of a ROM. For now it can be
said that the online step is crucial to the sucess of a reduced model, and it is recognized as
defining the input-parameter vector µ and solving the fully N dependent problem.

1.4 Scope of thesis

There exist several fields where reduced order models can be applied, and several ap-
proaches to construct these models. For this thesis however, Galerkin reduced basis
method will be applied to reduce full order finite element models. Some comparisons
with other methods are given, but the main emphasis lies on the construction of reduced
order models with respect to geometric variation.

The overall goal of this thesis therefore becomes creating a reduced order model for a
linear elastic 2D beam with material and geometrical parameters, and analyzing its be-
haviour. This is done through computer implementation and numerical studies in Chapter
4, where emphasis is put on overall performance according to the theory of reduced order
models as well as robustness, applicability of this approach and the construction of the
reduced models.

The necessary theoretical foundation for the computer implementation was obtained through
a literature review of the fields of Finite element method and Reduced order modelling,
represented in Chapters 2 and 3 respectively. This was partly done through a preliminary
project [3] where numerical studies was done for simple 2D beams.

3
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2 | The Finite Element Method

In the following chapter the fundamental theory of finite element analysis (FEA) is given,
as well as a more practical derivation for liner elastic problems which will be implemented
for numerical studies in Chapter 4.

2.1 Theoretical foundation of the Finite Element Method

2.1.1 Formulation of PDEs
The strong formulation of PDEs can be written on the following form [4]

Find u such that

L(u) = l in Ω

K(u) = h on ΓN

u = g on ΓD

(2.1)

In this formulation, Ω is the domain, Γ is the boundary, and L is a differential operator.
The Dirichlet boundary conditions is found as prescribing values of the function u on the
boundary ΓD, and the Neumann boundary conditions is found as prescribing values of the
derivatives, K(u), on the boundary ΓN , K also being a differential operator.

For the derivation of the finite element method, another formulation is needed, namely the
weak formulation. The weak formulation is obtained by multiplying the strong form (2.1)
with a test function v ∈ V and integrating over the domain.

∫
Ω

(L(u))vdΩ =

∫
Ω

lvdΩ (2.2)

Trough integrating by parts it can be shown that the following expression can be obtained

Find u ∈ V such that
a(u, v) = f(v) ∀v ∈ V (2.3)

This is known as the weak formulation and it is the starting point for constructing the FE-
formulation. a(., .) is a bilinear form and f(.) is linear form, both derived from integration
by parts of (2.2) and imposing boundary conditions. V is recognized as the space of
admissible functions u and v. In section 2.2 the weak form is derived for linear elasticity.
For now homogeneous Dirichlet boundaries is assumed, g = 0, but the general case is

5



2.1. Theoretical foundation of the Finite Element Method

treated in section 2.1.6. The space V is described in more detail in the next section, but for
now it can be said that functions v ∈ V needs to meet some requirements of smoothness.

2.1.2 Finite element spaces and discretization
The FEM solution is based on solving an altered form of the weak formulation, mainly by
approximating the functions u and v. This is seen as finding the best approximation of u
by searching in a subset of V , the FE-solution becomes uh ∈ Vh ⊂ V . The finite element
space is a subspace of the solution space, which is called a conforming finite element space
[5]. The FEM solution should be the best approximation in Vh with respect to some norm.

The space V describes the admissible functions u and v for the problem to be well posed,
and some knowledge of V is needed if a subset Vh is to be found. The space is determined
with respect to a(., .) and the Dirichlet boundary conditions. For the problem to have a
unique solution, a(v, v) and f(v) must remain finite for all v, which in turn describes the
space V . By using a(., .) as the inner product a space can be defined

V = {v| a(v, v) < ∞} (2.4)

The bilinear form a(., .) can be impractical to use and the space can also be constructed by
making use of other well known spaces. This is done by choosing a Hilbert space corre-
sponding to the derivative order of the terms in a(., .), and taking the subset of this space
where the Dirichlet boundary conditions are satisfied. For 2D linear elastics, which will
be implemented in this thesis, a(., .) contains first order derivatives in two axis (x1, x2).
This leads to the following space

H1(Ω) ≡ {v|
∫
Ω

v2dΩ < ∞,

∫
Ω

v2x1
dΩ < ∞,

∫
Ω

v2x2
dΩ < ∞}

V = {v ∈ H1(Ω) | v|ΓD
= 0}

(2.5)

It can also be shown that f(.) ∈ V ′ needs to be satisfied for the problem to be well posed,
however this is not as straight forward and is not done here. In the case of linear elastics
this can be interpreted as which loads are allowed to be considered.

From [4], Vh ⊂ V is found by introducing a triangulation Th of the domain Ω. Th is a
union of non-overlapping elements T k

h that cover the domain. This is known as the mesh
of the domain. The meshing of a domain can be done by elements of different polygonal
shapes, for example segments in R, quadrilaterals in R2 and hexahedron in R3. The subfix
h refers to the general size of the elements in the mesh.

The closed domain can then be written as

Ω̄ =

K⋃
k=1

T̄ k
h , k = 1, ...,K : Elements (2.6)

6



2. The Finite Element Method

Figure 2.1 shows an example of a uniform mesh of quadrilaterals for a 2D geometry. The
meshing of the domain is directly related to the performance of the FE solution, and be-
comes challenging as complex geometries are considered. For this thesis however rather
simple geometries are studied, and all meshing will be done by uniform meshes of quadri-
laterals as seen in Figure 2.1.

Figure 2.1: Example of uniform mesh

The most common way to define a finite element space is to consider globally continuous
functions that are polynomials of degree r on the single elements of the triangulation Th.

V r
h = {vh ∈ V | v|Tk

h
∈ Pr(T

k
h ) k = 1, ...,K} (2.7)

By introducing interpolation functions ϕi ∈ V r
h and demanding that ϕi is zero at all other

nodes except xi and
∑n

i=1 ϕi = 1, any function v ∈ V r
h can now be written as

v(x) =

n∑
i=1

ϕi(x)vi

v(xi) = vi

v =
[
v1 ... vn

]T
(2.8)

The number n refers to the number of nodes. The field is now approximated by nodal
values vi and basis functions ϕi. If a function v is of polynomial degree r or less, v ∈
Pr(Ω), the function can be represented exactly by (2.8). If (2.8) is used to represent a
function v of polynomial degree p > r, it will produce an approximation. The quality of
the approximation increases as the difference in polynomial degree ∆p = p− r decreases
and it is also increased by refining the mesh. In practice this means that the FE approach
approximates the weak formulation with suitable basis functions, and accuracy is increased
by refining the mesh or the polynomial order of the basis functions.

7



2.1. Theoretical foundation of the Finite Element Method

By introducing N0 =
[
ϕ1 ... ϕn

]
any field variable can be written on the form

v(x) = N0v (2.9)

This is used to approximate the functions u and v, and discretizes the problem as it is now
dependent on the nodal values of uh and v.

2.1.3 Mapping
To enable irregular an complicated geometry, mapping is introduced as found in [6]. The
concept is based on mapping the physical geometry to a reference geometry with the help
of a set of interpolation functions. There are different approaches for choosing these inter-
polation functions, and two will be discussed here.

Isoparametric mapping is a well known approach for mapping in FE-analysis. In this case
the same set of interpolation functions, N0, used to approximate the field is chosen to map
the geometry. This method is beneficial as it makes use of already created functions.

Another approach, which will be used later in this thesis, is sub-parametric mapping. In
general N0 contains n basis functions, which might be a lot more terms than what is
needed to describe the actual geometry. For this thesis the geometries of interest will only
consist of quadrilaterals, and the interpolation functions needed can easily be derived by
hand, as is done later in section 2.3.3.

The isoparametric approach is the more general solution, while the sub-parametric ap-
proach is usually only suitable for simple geometries. Isoparametric refers to the fact that
the geometry and field variable are sampled at all the same nodes, while for sub-parametric
mapping the geometry is sampled at fewer nodes than the field variables.

The original problem is mapped from the (x, y)-space to a natural coordinate system (ξ, η)
with dimensionless axis. This is shown in Figure 2.2. The interpolation functions are de-
rived in terms of natural coordinates, ϕi(ξ, η) instead of the physical axis of the original
problem. The problem remains the same, but the transformation between the two coordi-
nate systems has to be taken into account.

1

3

2

4 1

3

2

4

1.0

1.0
y

x

η

ξ

⇐⇒
Mapping Φ(x)

Figure 2.2: Illustration of mapping
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2. The Finite Element Method

The geometry as any other field variable can be approximated by interpolation functions.
For a 2D geometry this leads to the following expression

Φ(x) =

[
x
y

]
=

[
Ng 0
0 Ng

] [
X
Y

]
(2.10)

Where X,Y ∈ Rn holds the nodal (x, y) coordinates. The functions Ng and nodal
coordinates are dependent on the mapping approach, either making use of N0 or creating
new ones.

The PDE is dependent on derivation and integration with respect to the Cartesian coordi-
nates (x, y). To obtain a relationship between derivation in the two spaces the Jacobian
matrix is introduced. This is done by establishing the natural derivatives expressed by
Cartesian derivatives, utilizing the chain rule

[
∂
∂ξ
∂
∂η

]
=

[
∂x
∂ξ

∂
∂x + ∂y

∂ξ
∂
∂y

∂x
∂η

∂
∂x + ∂y

∂η
∂
∂y

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

][
∂
∂x
∂
∂y

]
= J

[
∂
∂x
∂
∂y

]
(2.11)

The Jacobian matrix, J , is denoted as

∇Φ = J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
∂Ng

∂ξ
∂Ng

∂η

] [
X Y

]
=

[
J11 J12
J21 J22

]
(2.12)

The inverse relationship yields the derivatives with respect to (x, y).

[
∂
∂x
∂
∂y

]
= J−1

[
∂
∂ξ
∂
∂η

]
(2.13)

For integration the relation dΩ = J∂ξ∂η is applied, where J known as the Jacobian, is
the determinant of the Jacobian matrix.

For the mapping to be applicable to a problem it needs to be unique, meaning that there ex-
ists a one-to-one relationship between each point in the physical and the natural coordinate
system. It can be shown that the condition for unique mapping is [7]

J = det(J) > 0 (2.14)

The mapping of geometry does not come without disadvantages as it introduces compu-
tational complexity, and can lead to lower convergence rates and loss of accuracy. The
quality of the solution is therefore dependent on the level of distortion between physical
and reference geometry, meaning that the more regular the problem geometry is, the better
the performance.

The concept of mapping will prove to be important to enable reduction of the model, and
in section 2.3.3 the implementation is taken further for the linear elastic case.
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2.1. Theoretical foundation of the Finite Element Method

2.1.4 Projection and orthogonality
The FE-problem aims to find the best approximation uh ∈ Vh ⊂ V of the original function
u with respect to some norm. Implementing this in the weak formulation (2.3) yields

Find uh ∈ Vh such that
a(uh, v) = f(v) ∀v ∈ Vh (2.15)

This leads to the following orthogonality

a(u, v) = f(v) ∀v ∈ V

a(u, v) = f(v) ∀v ∈ Vh

a(uh, v)) = f(v) ∀v ∈ Vh

a(u− uh, v) = 0 ∀v ∈ Vh

(2.16)

Meaning that uh is minimizing the error ε = u− uh in the energy-norm (a-norm), defined
as ||v||2a = a(v, v). From Figure 2.3 this can be seen as uh being the orthogonal projection
of u onto Vh, and there is no better approximation of u in Vh with respect to a(., .). This
property is called Galerkin orthogonality [8].

Figure 2.3: Galerkin orthogonality, Figure from [8]

2.1.5 Assembly
The FE solution can be written on the form

uh(x) =

n∑
j=1

ϕj(x)u
j
h

uh(xj) = uj
h

uh =
[
u1
h ... un

h

]T
(2.17)

10



2. The Finite Element Method

Inserting (2.8) and (2.17) into the weak formulation (2.15) yields the following discretized
system

Ahuh = fh

Aij = a(ϕi, ϕj)

fi = f(ϕi)

(2.18)

Proof:

Find uh ∈ Xh such that

a(uh, v) = f(v) ∀v ∈ Xh

a(

n∑
j=1

ϕju
j
h,

n∑
i=1

ϕivi) = f(

n∑
i=1

ϕivi)

n∑
i=1

n∑
j=1

via(ϕi, ϕj)u
j
h =

n∑
i=1

vif(ϕi)

vTAhuh = vTfh

(2.19)

2.1.6 Non-homogeneous Dirichlet boundary conditions
The derivation this far has been based on the assumption of homogeneous Dirichlet bound-
ary conditions. In the more general case it is of interest to be able to solve non-homogeneous
problems as well, u = g 6= 0 on ΓD. However this is not possible to solve with the weak
formulation as it stands as the sum of two admissible functions no longer coincide with
the boundary conditions [9].

This problem can be overcome by introducing a lifting function rg which enforces the
Dirichlet boundary conditions

rg ∈ VE

rg|ΓD
= g

(2.20)

The space VE refers to a subset of the Hilbert space introduced in section 2.1.2 where
the inhomogenous Dirichlet boundary conditions are satisfied. The solution then becomes
u + rg , where u is the homogeneous solution. After a suitable lifting function has been
chosen, a slightly altered problem can be solved for u as

a(u+ rg) = a(u, v) + a(rg, v) (2.21)

the weak formulation becomes

Find u in V such that

a(u, v) = f(v)− a(rg, v), ∀v ∈ V (2.22)

11



2.2. Linear elastic problems

The forms a(., .) and f(.) remain unchanged, and V is still the FE-space with homoge-
neous Dirichlet boundary conditions.

2.2 Linear elastic problems

In structural mechanics many problems can be viewed through the theory of linear elas-
ticity, and FE-analysis is the most common approach to calculate more complex systems
where other methods become impractical.

2.2.1 Setting up the problem

Linear elastic problems is described in terms of the stress tensor σ : Rd → Rd, the
strain tensor e : Rd → Rd·d, the body force f : Rd → Rd and the displacement field
u : Rd → Rd. Here d is the dimensionality of the problem, and d = 2 for a 2D problem
which will be investigated in the following. In Figure 2.4 a linear elastic body is seen with
a domain Ω, a body force f and a traction load gn. The body is fixed along the boundary
ΓD, gn acts along the boundary ΓN and the dashed line shows the deformed state of the
system.

Figure 2.4: Illustration of a linear elastic model, Figure from [10]

The governing equations are as follows [11]

Equilibrium of forces
−∇ · σ = f in Ω (2.23)

Strain-displacement relation

ε(u) =
1

2
(∇u+∇uT ) (2.24)

Constitutive law
σ = 2µε(u)+ λ(div(u))I (2.25)

12



2. The Finite Element Method

Together with Neumann and Dirichlet boundary conditions this yields

−div(µ(∇u +∇uT ) + λ(div(u))I) = 0 in Ω

u = 0 on ΓD

σn = gn on ΓN

(2.26)

2.2.2 Deriving the weak formulation
The weak formulation of linear elasticity is derived, as found in [10], starting by multiply-
ing with a test function v and integration by parts

−∇ · σ = f

−
∫
Ω

∇ · σvdΩ =

∫
Ω

fvdΩ

−
∫
Ω

∇(σv)dΩ+

∫
Ω

σ : ∇vdΩ =

∫
Ω

fvdΩ

Where u,v ∈ R2. Using Green’s theorem together with σn = gn on ΓN , and v = 0 on
ΓD yields ∫

Ω

σ : ∇vdΩ =

∫
Ω

fvdΩ+

∫
ΓN

gnvdΓ

then decomposing ∇v in its symmetric and anti-symmetric part we get∫
Ω

σ : ∇vdΩ =

∫
Ω

σ : (
1

2
(∇v +∇vT ) +

1

2
(∇v −∇vT ))dΩ

The product of the stress tensor and the anti-symmetric part of v is zero, and the symmetric
part of v is recognized as ε(v) as seen in (2.24). Inserting the constitutive law (2.25)
together with I : ε(v) = div(v) yields∫

Ω

σ : ε(v)dΩ =

∫
Ω

(2µε(u)+ λ(div(u))I) : ε(v)dΩ

=

∫
Ω

2µε(u) : ε(v)dΩ+

∫
Ω

λdiv(u)div(v)dΩ

The weak statement then becomes

Find u ∈ V such that
a(u, v) = f(v) ∀v ∈ V

where
a(u,v) =

∫
Ω

2µε(u) : ε(v)dΩ+

∫
Ω

λdiv(u)div(v)dΩ (2.27)

and
f(v) =

∫
Ω

fvdΩ+

∫
ΓN

gnvdΓ (2.28)

13



2.2. Linear elastic problems

2.2.3 Implementing the discrete system
The next step is the discretization of the problem by introducing a triangulation of the
domain and finding the basis functions,ϕi = ϕi(ξ, η), as described in section 2.1.2. This
yields the following expression for field variables

v =

[
v1
v2

]
=

[
ϕ1 ϕ2 ... ϕn 0 0 ... 0
0 0 ... 0 ϕ1 ϕ2 ... ϕn

]
d

v =

[
N0 0
0 N0

]
d = Nd

(2.29)

Before introducing the discretization in the weak form the following notation is introduced
for the derivatives

∂N0

∂i
= N0,i ∈ Rn (2.30)

matrix outer product
N0,i ⊗N0,j = N0,iN0,j ∈ Rn·n (2.31)

and expression through submatrices

M =

[
a1A a2A
a3A a4A

]
=

[
a1 a2
a3 a4

]
A

M ∈ R2n·2n, A ∈ Rn·n, ai ∈ R
(2.32)

The computer implementation of calculating the system matrix and vector is simply im-
plementing (2.18) by inserting (2.29) into (2.27) and (2.28) yielding the following terms.

Part of system matrix dependent on λ

Aλ =

∫
Ω

div(N)⊗ div(N)dΩ

div(N) =
[
N0,x N0,y

]
div(N)⊗ div(N) =

[
N0,xN0,x N0,xN0,y

N0,yN0,x N0,yN0,y

] (2.33)

Part of system matrix dependent on µ

Aµ =

∫
Ω

2ε(N) : ε(N)dΩ

2ε(N) : ε(N) =

[
2N0,xN0,x +N0,yN0,y N0,yN0,x

N0,xN0,y N0,xN0,x + 2N0,yN0,y

] (2.34)

This leads to
(λAλ + µAµ)dh = Ahdh = f (2.35)
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2. The Finite Element Method

Where the left hand side is known as the stiffness matrix

Ah =

4∑
i=1

Ai =

4∑
i=1

∫
Ω

IidΩ

I1 =

[
λ+ 2µ 0

0 µ

]
N0,xN0,x

I2 =

[
0 λ
µ 0

]
N0,xN0,y

I3 =

[
0 µ
λ 0

]
N0,yN0,c

I4 =

[
µ 0
0 λ+ 2µ

]
N0,yN0,y

(2.36)

and the right hand side is known as the load vector

f =

∫
Ω

NTfdΩ+

∫
ΓN

NTgndΓ (2.37)

Only traction forces will be applied in the numerical studies, and the body forces f is
neglected in the following. The vector dh holds the nodal values of the FE-solution while
the entire field is found as

uh = Ndh (2.38)

2.3 Parametric PDEs

2.3.1 Parametric problems
All PDEs are dependent on a set of parameters that define the specific problem. For para-
metric problems however some of these parameters are allowed to vary, as the dependen-
cies between parameter variation and response is of interest. These parameters are stored
in the parameter-input vector µ = [µ1, ..., µp] ∈ P ⊂ Rp. Examples of parameters can be
boundary conditions, geometrical properties, the Reynolds number for fluid mechanics or
the material constants in structural mechanics. This changes the weak formulation (2.3) to

Given µ ∈ P , find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V (2.39)

Both u, as well as a(., .) and f(.) are dependent on µ, and the FEM-expression (2.18)
becomes

Given µ ∈ P , find uh(µ) ∈ Vh such that

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Vh

Ah(µ)uh(µ) = fh(µ)
(2.40)
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2.3. Parametric PDEs

The FE-solution, uh, will in the latter be referred to as the high-fidelity solution. This
comes from the fact that for a given µ the FE-solution can be obtain with a desired ac-
curacy. The desired accuracy is achieved by refining the mesh or the polynomial order of
the basis functions, and thereby increasing the computational cost. This makes solving the
FE-problem accurate at the expense of computing time which can be problematic if the
problem is to be solved numerous times for different inputs µ.

For a problem to be reducible it must be described affinely dependent on the parameters
of interest. This will be described in section 3.2.2, but in the next two sections this affinity
will be achieved for different parameters in linear elasticity.

2.3.2 Material and load parametrization
For the material parameters, affine representation is easily achieved, especially if the prob-
lem is described in terms of Lamè coefficients, µM = [λ, µ]. As only the stiffness matrix
is dependent on the material parameters it can be seen from (2.35) that the stiffness matrix
can be written on the following form

Ah = λAλ + µAµ (2.41)

For the traction forces on the different boundaries it is obvious that the load vectors will
be scaled by the load intensities on each boundary, µn = [µn1, ..., µnk] yielding

f =

k∑
i=1

µni

∫
ΓNi

gniN
T dΓ (2.42)

2.3.3 Geometric parametrization
For geometrical parametrization the nodal coordinates used in the mapping of the phys-
ical geometry found in section 2.1.3, µG = [X,Y ], will be used as parameters. The
examples investigated in this thesis will be of quadrilateral shape, and are therefore de-
scribed uniquely by the (x, y)-coordinates of the four corner nodes and the corresponding
Lagrange polynomials. These functions are used instead of the basis functions of the mesh
as this reduces complexity and allows for hand calculation of some key expressions. By
implementing the mapping introduced in Figure 2.2 it can be showed that this leads to the
following expression

Φ(x) = (1− ξ)(1− η)C1 + ξ(1− η)C2 + (1− ξ)ηC3 + ξηC4

Ci =

[
xi

yi

]
(2.43)

For simplicity C1 = 0 is assumed which yields the following expression for the Jacobian
matrix
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2. The Finite Element Method

∇Φ = J = [C2,C3]
T +

[
η
ξ

]
[C4 −C2 −C3]

T

= C(µ) + x̃S(µ)T

=

[
x2 y2
x3 y3

]
+

[
ηSx ηSy

ξSx ξSy

]
Sx = x4 − x2 − x2, Sy = y4 − y2 − y3

(2.44)

The matrix function t(µ) is introduced

t(µ) = ST (µ)TC(µ)−1 (2.45)

Where C(µ) ∈ R2·2 and S(µ), t(µ) ∈ R2. From this expressions for the Jacobi determi-
nant and the inverse Jacobi matrix can be found

J = det(J) = (1 + t(µ)x̃)detC(µ) = (1 + t1η + t2ξ)detC(µ)

J−1 =
1

J
(

[
y3 −y2
−x3 x2

]
+

[
ξSy −ηSy

−ξSx ηSx

]
)

R =
1

1 + t(µ)x̃
=

1

1 + t1η + t2ξ

(2.46)

For J−1 to be a linear combination scaled by the coordinates in µG, enabling affine repre-
sentation the term R has to be approximated by a series. This can be done by recognizing
R as a geometric series [12], and by utilizing the binomial theorem [13]. This is derived
in the following given |t1η + t2ξ| < 1

R =
1

1 + t1η + t2ξ
=

∞∑
i=0

(−1)i(t1η + t2ξ)
i

=

∞∑
i=0

∞∑
j=0

(−1)i
(
i

j

)
(t1η)

j(t2ξ)
i−j

Rn =

n∑
i=0

i∑
j=0

(−1)i
(
i

j

)
(ξt2)

i(
η

ξ
)j(

t1
t2
)j

(2.47)

For computer implementation, a finite value of n must be chosen to obtain a sufficient
approximation Rn ≈ R. As increasing n introduces computational complexity a reason-
able value must be chosen. It is key to recognize that the series expansion of R alters
the problem as an approximate stiffness matrix is calculated. This will be investigated in
the numerical studies for the different examples, but again it is noted that as the distor-
tion between physical and reference geometry increases, the accuracy of the FE solution
decreases.

With the expressions for the Jacobian matrix as well as the inverse relations, general
quadrilateral shapes can be mapped to the same reference geometry with the same ele-
ment mesh. This makes it possible to utilize the ROM approach which will be introduced
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2.3. Parametric PDEs

in Chapter 3. The affine representation of the problem with respect to the corner nodes
is not as straight forward as for material and load parameters and is not done here. It
should be noted that the general case is quit cumbersome to implement, but if symmetric
conditions can be introduced the expressions become less complex. This is done for two
different examples i chapter 4.
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3 | Reduced order modelling

The use of numerical approximation like FEA to solve PDEs transform the problem into
first order derivation matrix equations. This leads to the order of solving such problems
being equal to the size of the matrix, not the order of the derivatives. Therefore, model
order reduction relates to reducing the size of the matrix and can be useful to improve
efficiency of analysis.

The concepts of model order reduction is mathematically founded in eigen-value problems
[14], and in the following chapter the theoretical foundation for model order reduction and
its algebraic structure is presented.

3.1 Introduction to model order reduction

3.1.1 Motivation
The goal of constructing a reduced order model is to transform the original Nh-dependent
problem to a reduced N -dependent problem, and as N � Nh this should lead to a large
reduction in computational complexity. Here Nh and N refers to the number of degrees
of freedom for the high-fidelity and reduced model respectively.

The idea is that although the construction of the reduced model might be somewhat cum-
bersome and time consuming, the reduced model can afterwards be solved with fairly good
accuracy and much faster than the original problem. This is referred to as offline and on-
line computation as was seen in Figure 1.1. The offline step consist of constructing the
FE-model and from this obtaining a reduced model with the help of eigen-values and vec-
tors. The online phase simply consist of assembling and solving the N -dependent problem
given an input vector µ. The reduction in computational complexity for the online step
gives ROMs a large upside once they are created, as a small reduction in accuracy is traded
for a large reduction in computational cost. The applicability of model order reduction is
therefore dependent on how a problem can be split in offline and online steps and which
factors are of emphasis, two examples are given.

Optimization problems can greatly benefit from ROMs with respect to computational effi-
ciency as a high-fidelity model usually has to be solved numerous times [15], and can be
replaced by a ROM. An example of this is the design process of structural systems where
numerous load cases is simulated in each iteration of the optimization [16].

Another example where ROMs are applicable are problems where real-time solving of a
problem is of interest, which means that solving the high-fidelity problem is too slow. This
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3.2. Galerkin reduced basis method

makes model order reduction highly relevant for the emergence of Digital Twins which is
viewed as an important technology for the future [17].

The types of problems where ROMs are of interest are often characterized by being vari-
ational problems in the sense that some parameter variation is studied, for example the
parametric PDEs described in section 2.3. For ROMs to be applicable they have to be ro-
bust with respect to the parameter changes that are studied. This means that the process of
model order reduction must preserve the parametric dependencies as found in the original
problem.

3.1.2 Reduced order model vs. Response surface methodology
Response surface methodology (RSM) is an area of statistics for model fitting of a response
value to a group of input variables [18]. For a practical problem this means sampling the
parameter space, and building an approximation of the response based on the samples.
This is a well known method for reducing computational complexity. How the variables
are sampled are crucial for the accuracy of this method as there is always the risk of
important parameter dependencies being lost.

Although the term reduced order modelling is used for a variety of approaches in the
literature, in this thesis it is recalled as the reduction of a higher order system through
projection based methods.

The main advantage of ROMs is the coupling with the high-fidelity model, and that it in
some sense "captures the physics" of a problem. Response surface methodology on the
other hand is more of a black box approach and no other relations than input-parameter to
response is captured. This leads to some differences which can be exemplified for FEA in
structural mechanics.

The ROM will be created with the deformations of the system as principal unknowns.
However, as the deformations is solved for by the reduced model, other quantities can be
derived and the physical behavior of the system can be analyzed, for example analyzing
the stress distribution in the domain. The response surface method does not retain these
physical traits and the only way to include relations to other quantities is to include them
as part of the response, thereby increasing the complexity of the approximation.

3.2 Galerkin reduced basis method

A well known approach for constructing reduced order models is by the use of reduced
basis methods (RB-methods). The following derivation of reduced order models is based
on [11].

3.2.1 Theoretical foundation of RB-methods
The Galerkin reduced basis method is in a nutshell a Galerkin projection of the high-
fidelity solution onto a N -dimensional space VN for any µ ∈ P . The reduced basis VN ⊂
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3. Reduced order modelling

Vh is generated from a set of high-fidelity solutions [uh(µ
1), ..., uh(µ

ns)], called snap-
shots which corresponds to a set of ns ≥ N selected parameter vectors [µ1, ...,µns ] ⊂ P .
A set of N functions [ζ1, ...ζN ] is generated to be the reduced basis. This is done by
orthonormalization of the snapshots with respect to a suitable scalar product (., .)X .

We have that
VN = span{ζ1, ..., ζN} = span{u(µ1), ..., u(µns)} (3.1)

This is an important trait for the reduced basis as only dominant directions in the span
of snapshots are identified, and non contributing vectors are neglected. The central as-
sumption being that the solution manifold of the high-fidelity model can be spanned by a
low-dimensional basis [19]. If this is not the case this may lead to large sized models for
fine discretizations of the parameter space [20].

The RB solution, uN (µ) ∈ VN , is then expressed as a linear combination of the reduced
basis functions ζm and RB-coefficients u(m)

N (µ)

uN (µ) =

N∑
m=1

ζmu
(m)
N (µ) (3.2)

This expression is analogue to (2.8) of the finite element approach.

This form of reduction although being a projection method is also a response approxima-
tion as the reduced basis is generated from snapshots of the response. Since this method
depends on responses, just like RSM accuracy is highly influenced by the choice of snap-
shots and there is always a risk of neglecting important parameter dependencies. This
leads to parameter sampling becoming a field in its own. This is given a brief overview in
section 3.5, but is not studied in detail for this thesis.

3.2.2 Algebraic form of the ROM machinery
Given a reduced basis VN , combining (3.2) with weak formulation (2.15) transforms the
high-fidelity problem. The transformation consists of projecting solutions and test func-
tions uh,∈ Vh onto the subspace VN . This leads to

Find uN (µ) ∈ VN such that

a(uN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ VN (3.3)

As was done when deriving the FEM, test functions vN is chosen to be expressed by the
same interpolation functions as uN . By setting v

(n)
N = ζn, 1 ≤ n ≤ N , a set of N linear

algebraic equations emerges

N∑
m=1

a(ζm, ζn;µ)u
(m)
N (µ) = f(ζn;µ), 1 ≤ n ≤ N (3.4)

Which leads to the following discrete system
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3.2. Galerkin reduced basis method

AN (µ)uN (µ) = fN (µ)

(AN (µ))nm = a(ζm, ζn;µ)

(fN (µ))n = f(ζn;µ)

uN (µ) = {u1
N (µ), .., uN

N (µ)}T

(3.5)

Where AN ∈ RN ·N and fN ∈ RN . Since the basis functions ζm belongs to Vh of the
high-fidelity system, representation by the original interpolation functions ϕi and coeffi-
cients ζ(i)m = ζm(xi) is possible

ζm(x) =

Nh∑
i=1

ζ(i)m ϕi(x) 1 ≤ m ≤ N (3.6)

By inserting (3.6) into the expression for AN and fN as found in (3.5), the following is
obtained

AN = a(ζm, ζn) =

Nh∑
i=1

Nh∑
j=1

ζ(j)m a(ϕj , ϕi)ζ(i)n

fN = f(ζn) =

Nh∑
i=1

f(ϕi)ζ(i)n

(3.7)

Introducing the transformation matrix V ∈ RNh·N as

(V )im = ζ(i)m , 1 ≤ m ≤ N, 1 ≤ i ≤ Nh (3.8)

Transforming the system to

V TAh(µ)V uN (µ) = V Tfh(µ) (3.9)

The term reduced basis refers to the set RB functions ζm, but as these are now represented
with interpolation functions ϕi and coefficients ζ(i)m the term is shifted to refer to the trans-
formation matrix V . Also, by using the original interpolation functions ϕi to describe the
basis functions ζm all that is needed to reduce the model is the discrete transformation
matrix V , as Ah(µ) and fh(µ) are known.

This looks promising, but there is one more obstacle that needs to be dealt with. As
described in section 3.1.1 the ROM should be robust with respect to parameter variation.
If parameter changes is introduced to (3.9) the Nh-dependent matrix Ah(µ) ∈ RNh·Nh

and vector fh(µ) ∈ RNh has to be recalculated for each input-vector µ. Construction of
such a model is not viable as it has the same computational complexity as the high-fidelity
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3. Reduced order modelling

model. This is overcome by demanding both a(., .) and f(.) to be affine (or separable)
with respect to µ. This can be written as

a(w, v;µ) =

Qa∑
q=1

θqa(µ)aq(w, v) ∀v, w ∈ V

f(v;µ) =

Qf∑
q=1

θqf (µ)fq(v) ∀v ∈ V

(3.10)

Which in turn leads to the discrete system

Ah(µ) =

Qa∑
q=1

θqa(µ)A
q
h

fh(µ) =

Qf∑
q=1

θqf (µ)f
q
h

(3.11)

Leading to the reduced system

AN (µ)uN (µ) = fN (µ)

AN (µ) =

Qa∑
q=1

θqa(µ)A
q
N =

Qa∑
q=1

θqa(µ)V
TAq

hV

fN (µ) =

Qf∑
q=1

θqf (µ)f
q
N =

Qf∑
q=1

θqf (µ)V
Tf q

h

(3.12)

This is why affine representation of the stiffness matrix and load vector with respect to
different parameters was explored in section 2.3. By doing this the parameter independent
matrices Aq

N and vectors f q
N can be calculated once and stored for assembly of the ROM

which is now a fully N -dependent process. The RB-solution can be calculated for any
µ ∈ P and transformed back to the high-fidelity domain by

uh
N (µ) = V uN (µ) (3.13)

The fact that there exists an affinity as described in (3.10) is a central assumption for
developing a reduced order model. It can be seen from (3.11) that the assembly of the
high-fidelity system can increase vastly in complexity by increasing Qa and Qf . This is
because Aq

h and f q
h are constructed from numerical integration of matrices and vectors of

size Nh. Remembering the splitting of the problem in offline and online steps this should
not be a problem for the ROM. From (3.12) it is seen that the complexity of Qa and Qf

are carried over to the assembly of the ROM, but this is in the form of adding matrices and
vectors of size N which is computationally negligible up to very high values of Qa and
Qf assuming a small N . Although this is usually not a problem it is key to be aware of
that this sets some criterion on how the high-fidelity system is created.

Figure 3.1, inspired by [11], shows the algebraic workflow for the ROM machinery. The
process of choosing N has not yet been discussed, but will be introduced in the following
and discussed in further detail in Section 3.4.
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3.3. Proper Orthogonal Decomposition

Parametric PDE µ

High fidelity discretization:

Ah(µ) =
∑Qa

q=1 Aq(µ)

fh(µ) =
∑Qf

q=1 fq(µ)

Ah(µ)uh(µ) = fh(µ)

Parameter sample [µ1, ...,µns ]

Calculate snapshots uh(µ
i)

Construction of RB vectors ζi

Projection
Choose N → V = [ζ1, ..., ζN ]

Aq
N = V TAq

hV

f q
N = V Tf q

hV

Offline, Nh-dependent

Assembling ROM
AN (µ) =

∑Qa

q=1 A
q
N (µ)

fN (µ) =
∑Qf

q=1 f
q
N (µ)

Solve ROM
AN (µ)uN (µ) = fN (µ)

Error estimation
||uh − V uN ||

Evaluate error and choice of N

Online, N -dependent

Figure 3.1: ROM machinery

3.3 Proper Orthogonal Decomposition

There are multiple ways to create the reduced basis from which the ROM shall be con-
structed. For this thesis, proper orthogonal decomposition (POD) was chosen. POD is
a numerical technique of compressing and approximating a high-dimensional data set by
an orthonormal basis. For the FE-case this means that the original variables uh (dofs),
are transformed into a new set of uncorrelated variables (POD modes), where the first few
modes is expected to retain most of the energy in the system. Before applying POD to
parametric PDEs the concept of singular value decomposition (SVD) is needed.

3.3.1 Singular Value Decomposition

The singular value decomposition is defined for all real matrices, and for a matrix A ∈
Rm·n reads
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3. Reduced order modelling

A = UΣZT

U = [ζ1|...|ζm] ∈ Rm·m Z = [Ψ1|...|Ψn] ∈ Rn·n

Σ = diag(σ1, ..., σr) ∈ Rm·n

σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0, r ≤ min(m,n)

(3.14)

The numbers σi are called singular values listed in decreasing order. ζi are the left singular
vectors and Ψi are the right singular vectors, and both U and Z always form orthogonal
sets [21]. The rank of A equals the number of nonzero singular values r, and in the
presence of numerical noise the numerical rank is taken as the number of singular values
larger than some suitable fraction of the first (largest) singular value [22]. From (3.14) the
following can be obtained

AΨi = σiζi AT ζj = σjΨj , i, j = 1, ..., r (3.15)

The goal of SVD is low rank approximation. For a matrix A ∈ Rm·n with rank equal to
r, it can be written as the sum of r rank-1 matrices based on (3.15)

A =

r∑
i=1

σiζiΨ
T
i (3.16)

This becomes very useful as the sum the first k ≤ r matrices captures as much of the
energy as possible. In this context energy refers to either the Frobenius norm or the 2-
norm, defined as [23]

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =

√√√√ r∑
i=1

σ2
i

||A||2 = σmax

(3.17)

From (3.16) and the norms (3.17) the following minimization statements of the rank-k
approximation of A can be derived.

Ak =

k∑
i=1

σiζiΨ
T
i

||A−Ak||F = min
B∈Rm·n

||A−B||F =

√√√√ r∑
i=k+1

σ2
i

||A−Ak||2 = min
B∈Rm·n

||A−B||2 = σk+1

rank(B) ≤ k

(3.18)

Meaning there is no better rank-k approximation with respect to the energy of the system.
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3.3. Proper Orthogonal Decomposition

3.3.2 POD for parameterized problems

The starting point for the POD approach is a parameter sample set [µ1, ...,µns ] ⊂ P
for which high-fidelity solutions uh(µ

i) are calculated. The high-fidelity solutions are
defined by the degrees of freedom u

(i)
h ∈ RNh which in turn define the snapshot matrix

S ∈ RNh·ns as

S = [u
(1)
h |...|u(ns)

h ] (3.19)

Utilizing SVD (3.14) on S yields

S = UΣZT

U = [ζ1|...|ζNh
] ∈ RNh·Nh Z = [Ψ1|...|Ψns

] ∈ Rns·ns

Σ = diag(σ1, ..., σr) ∈ RNh·ns

σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0, r ≤ min(Nh, ns)

(3.20)

As before r denotes the rank of S and the following relations can be introduced

SΨi = σiζi and ST ζi = σiΨi, i = 1, ..., r (3.21)

STSΨi = σ2
iΨi and SST ζi = σ2

i ζi, i = 1, ..., r (3.22)

The singular values squared σ2
i and singular vectors Ψi and ζi are recognized as the eigen-

values and eigenvectors of matrices STS ∈ Rns·ns and SST ∈ RNh·Nh . The goal now
is to obtain the best N -dimensional basis V where the projection error is calculated in the
Frobenius norm. The set of all N -dimensional orthonormal bases is introduced as

VN = {W ∈ RNh·N : W TW = IN}

and the projection of any vector v ∈ RNh onto span(W ) as

PWv = WW Tv

From SVD the best rank-N approximation of S becomes

SN =

N∑
i=1

σiζiΨ
T
i (3.23)

Inserting (3.21) into to (3.23), and introducing V = [ζ1, ..., ζN ] yields

SN =

N∑
i=1

σiζi
1

σi
(ST ζi)

T =

N∑
i=1

ζi(ζ
T
i S) = V V TS (3.24)
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3. Reduced order modelling

For a matrix A ∈ Rm·n the Frobenius norm can be rewritten with respect to each column
vector ai, yielding ||A||2F =

∑n
i=1 ||ai||22. The sum of squared errors between each

snapshot and its projection by a basis W reads

ns∑
i=1

||u(i)
h −WW Tu

(i)
h ||22 = ||S −WW TS||2F (3.25)

Recalling (3.18) the following minimization statement for the POD basis is obtained

||S − V V TS||2F = min
W∈VN

||S −WW TS||2F =

r∑
i=N+1

σ2
i (3.26)

The POD basis is orthonormal by construction, but it is also the minimization of the
squares of errors between each snapshot vector u(i)

h and its projection onto the subspace
spanned by any N-dimensional orthonormal basis W ∈ RNh·ns .

A POD basis for any N ≤ min(ns, Nh) can now be constructed by the first N left singular
vectors. The singular values and vectors is calculated from either STS or SST as seen
from (3.22), and the smallest one should be chosen for the eigenvalue problem to avoid
unnecessary computational complexity. This results in the following algorithm

If ns ≤ Nh

• Form matrix C = STS ∈ Rns·ns

• Solve eigenvalue problems CΨi = σ2
iΨi, i = 1, ..., r

• Set ζi = 1
σi
SΨi

• V = [ζ1, ...., ζN ]

Else if Nh < ns

• Form matrix C = SST ∈ RNh·Nh

• Solve eigenvalue problem Cζi = σ2
i ζi, i = 1, ..., r

• V = [ζ1, ...., ζN ]

As the need for a ROM usually arises when there is a high number of dofs, ns ≤ Ns is
more likely to be the case. How the number N is chosen is described further in section 3.4,
but a sufficient number of modes should be present to capture the majority of the systems
energy.

With this approach a reduced basis can be constructed for any snapshot matrix S mini-
mizing the projection error in the Frobenius norm, however a more general approach is
desirable for constructing a reduced basis minimizing different norms.
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3.3. Proper Orthogonal Decomposition

3.3.3 POD with respect to energy inner product

The snapshot functions uh(µ
i) belong to the space Vh ⊂ V , and it becomes natural to

seek a POD basis minimizing the norm defined by the inner product of V which is usually
referred to as the energy norm and energy inner product . This is done by introducing a
matrix

(Xh) = (ϕi, ϕj)V , Xh ∈ RNh·Nh

||vh||2V = vTXhv, ∀vh ∈ Vh

(3.27)

For a FE problem this is the same norm as defined in section 2.1.2, and the inner product
is the same as a(., .). In general other inner products may be used instead as long as it is
bounded by the original one. For linear elastic problems where the a-form is dependent
only on the first derivatives the H1-seminorm can be chosen to describe Xh

(Xh)ij =

∫
A

∇φi∇φjdΩ (3.28)

The problem becomes finding a N -dimensional basis V ∈ VXh

N where

VXh

N = {W ∈ RNh·N : W TXhW = IN} (3.29)

which should minimize the error between each snapshot and its Xh-orthogonal projection
onto the subspace spanned by W . The Xh-orthogonal projection of any v ∈ RNh onto
span(W ) is written as

PXh

W v = WW TXhv (3.30)

yielding the minimization statement

ns∑
i=1

||u(i)
h − PXh

V u
(i)
h ||2Xh

= min
W∈VXh

N

ns∑
i=1

||u(i)
h − PXh

W u
(i)
h ||2Xh

(3.31)

The norm in the minimization statement (3.31) is transformed in the following

ns∑
i=1

||u(i)
h −WW TXhu

(i)
h ||2Xh

=

ns∑
i=1

||X
1
2

h u
(i)
h −X

1
2

h WW TXhu
(i)
h ||22 = ||X

1
2

h S −X
1
2

h WW TXhS||2F

(3.32)

The transformation to the Frobenius norm is introduced to make use of the low rank ap-
proximation obtained by SVD (3.18). The approach for finding a POD basis is similar to
what was done in the previous section, but SVD is done one an altered snapshots matrix,
S̃ = X

1
2S
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3. Reduced order modelling

S̃ = ŨΣZ̃T

Ũ = [ζ̃1|...|ζ̃Nh
] ∈ RNh·Nh Z̃ = [Ψ̃1|...|Ψ̃ns ] ∈ Rns·ns

Σ = diag(σ1, ..., σr) ∈ RNh·ns

σ1 ≥, σ2 ≥ ... ≥ σr ≥ 0, r ≤ min(Nh, ns)

(3.33)

Some useful relations are introduced

S̃T S̃Ψ̃i = σ2
i Ψ̃i, S̃T S̃ = STXhS

S̃S̃T ζ̃i = σ2
i ζ̃i, S̃S̃T = X

1
2

h SS
TX

1
2

h

(3.34)

Again, the singular values squared σ2
i and the singular vectors ζ̃i and Ψ̃i can be found from

solving eigenvalue problems. The POD basis is now found as V = [X
− 1

2

h ζ̃1|...|X
− 1

2

h ζ̃N ],

with N ≤ r. Substituting in S̃ = X
1
2

hS, W̃ = X
1
2

hW , Ṽ = X
1
2

hV and (3.32) into
(3.31), and again recalling (3.18) yields the following minimization statement

||S̃ − Ṽ Ṽ T S̃||2F = min
W∈VXh

N

||S̃ − W̃W̃ T S̃||2F =

r∑
i=N+1

σ2
i (3.35)

A N -dimensional POD basis for any N ≤ min(ns, Nh) can now be constructed by the
first N column vectors ζi. As in the previous section, matrix dimensions should be taken
into consideration resulting in the following algorithm

If ns ≤ Nh

• Form matrix C̃ = STXhS

• Solve eigenvalue problem C̃Ψ̃i = σ2
i Ψ̃i, i = 1, ..., r

• Set ζi = X
− 1

2

h ζ̃i =
1
σi
SΨ̃i

• V = [ζ1, ..., ζN ]

Else if Nh ≤ ns

• Form matrix C̃ = X
1
2

h SS
TX

1
2

h

• Solve eigenvalue problem C̃ζ̃i = σ2
i ζ̃i, i = 1, ..., r

• Set ζi = X
− 1

2

h ζ̃i

• V = [ζ1, ..., ζN ]

As noted earlier ns ≤ Nh is most likely the case, and this also has the beneficial property
of not having to form matrices X

1
2

h and X
− 1

2

h . With this approach a reduced basis can be
constructed for any snapshot matrix S minimizing the norm described by Xh.
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Figure 3.2: Spectrum of singular values

3.4 Retaining modes and error analysis

The last step in construction of the reduced basis and in turn the reduced model is deter-
mining the number of POD modes which should be retained, and evaluating the overall
performance of the ROM. Among other things this means choosing the number N , the
number of retained POD modes. This is done after solving the eigenvalue problem, when
all singular values σi and column vectors ζi have been calculated. Just as the construction
of a FE model requires expertise by the analyst in order to construct a robust and usable
high-fidelity model, the same can be said for the construction of ROMs. Setting the high-
fidelity model and parameter sampling aside, the construction of the reduced model up to
this point has been completely algorithmic. However the choice of which modes to retain
requires key insight by the analyst to obtain a valid ROM.

3.4.1 Singular value spectrum analysis
The first step in this process should be to analyze the spectre of singular values σi. This is
done because it gives a quick and easy estimate of which POD modes should be retained
in the reduced basis. The singular values are listed in decreasing order, and from the min-
imization statements, (3.26) and (3.35), it is clear that the projection error reduces with
the sum of squared singular values not included in the basis. This means that POD modes
associated with small singular values can usually be neglected as they do not capture much
of the energy in the system. To evaluate the threshold for neglecting values, a good ap-
proach is to plot the spectrum of singular values. The singular values on the logarithmic
y-axis is plotted against their index number i on the x-axis in Figure 3.2.

As mentioned earlier a central assumption behind the POD approach is that most of the en-
ergy in the system would be retained by the first few POD modes. This should be reflected
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3. Reduced order modelling

Figure 3.3: 2D beam with distributed and axial load

in the spectre of singular values where the values are expected to drop of after the first few
indexes. From this the analyst hopes to find a threshold value for which all singular values
below this threshold and their corresponding POD modes are neglected.The expected be-
haviour is seen in Figure 3.2 as the trailing singular values are negligible compared to the
first few. This is a good estimate of which modes to retain, and the overall performance of
the ROM, but this is not sufficient on its own to determine which modes to retain.

3.4.2 POD Mode analysis
Each column vector ζi in the reduced basis corresponds to a POD mode, and describes this
mode by the high-fidelity degrees of freedom. This means that each column vector in the
reduced basis can be compared to the responses of the high-fidelity model. This is further
explained in terms of a linear elasticity.

For a linear elastic problems the dofs of the system are the nodal displacements, which in
turn means that the POD modes make up different displacement patterns. For a 2D beam
as seen in Figure 3.3, illustrating a beam with distributed and axial load, the response
consist of bending and axial deformation. Therefor the POD modes should make up both
bending axial deformation patterns. Plotting the POD modes is no different from plotting
the solution from a high-fidelity calculation and should usually be a simple process, and
an example is given in Figure 3.4. Insight in the expected response can be used to control
the validity of the POD modes. Listed below are two attributes that should be checked.

• Can the POD modes describe the high-fidelity response sufficiently?

• Does there exist POD modes containing large amounts of numerical noise?

The first point refers to the fact that if a ROM should be able to represent a type of be-
haviour it must be present in the reduced basis. For the beam in Figure 3.3 it is obvious
that the reduced basis must contain both bending and axial deformation modes. Typical
for linear elastics is that the energy related to bending is much higher than for axial defor-
mation and if this is not treated axial modes can easily be neglected by the POD approach.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5

Figure 3.4: Illustration of mode shapes for a 2D beam

As seen in Figure 3.4 modes 1, 2 and 5 are bending modes while modes 3 and 4 are axial
modes. An important fact to note is that the response of a ROM is the combination of all
retained POD modes and the response from a single POD mode might look non-physical
even though it captures important behavior of the model. This can be seen by mode 4 as it
displays symmetric axial and transverse contraction which by itself looks faulty with the
given load case, but still proves to increase the accuracy of the model.

Numerical noise is always something to look out for dealing with numerical approxima-
tion methods. Assuming that the high-fidelity response is free of numerical noise seeing
numerical noise in the POD modes is a warning sign. The numerical noise can stem from
different places in the ROM construction, but it should be investigated as it leads to poorer
performance, and usually modes affected by numerical problems will be omitted. Figure
3.5 illustrates a POD mode displaying numerical noise, and such behaviour is undesirable
to retain in the reduced basis. It is however not uncommon that faulty modes containing
large amounts of noise can occur for the smallest singular values due to round-off error.

The process of analyzing the POD modes becomes increasingly difficult by increasing
complexity in the high-fidelity response. Many modes and different types of behaviour
can be difficult comprehend. However, seeing the physical behaviour of each POD mode
can be of great value for evaluating the reduced basis, and should always be done to some
extent.
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Figure 3.5: Mode with numerical noise

3.4.3 Error analysis
The last and most important evaluation of a ROM is of course analyzing the error between
RB-solutions and high-fidelity solutions. There are different ways to go about this, but for
this thesis the following approach for error analysis was chosen.

As both the high-fidelity model and ROM are discrete systems on the form Ad = F ,
where displacements d are the unknowns, the energy of each system can be calculated by

E =
1

2
dTAd (3.36)

and the relative error of the ROM with respect to the high-fidelity model calculated in the
energy norm can be found as

ε =

√
|Eh − EN |

Eh
(3.37)

Remembering the parameter sample set [µ1, ...,µns ] and snapshot matrix
S = [u

(1)
h , ...,u

(ns)
h ], the energy of the high-fidelity snapshots can easily be found as

Eh(µ
i) =

1

2
(u

(i)
h )TAhu

(i)
h

(3.38)

The ROM is then solved for each parameter vector µi and the energy is found as

EN (µi) =
1

2
(u

(i)
N )TANu

(i)
N

(3.39)

The relative error can now be calculated for each parameter sample ε(µi) to give an
overview of the performance. A more interesting quantity however is the averaged ag-
gregated error

εag =
1

ns

ns∑
i=1

ε(µi) (3.40)
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Figure 3.6: Averaged error plotted against number of retained modes

To decide which modes to retain, successive ROMs are constructed by increasing the num-
ber of retained modes i. Plotting the averaged aggregated error against the number of re-
tained modes i, as seen in Figure 3.6 makes for a great visualization of the contribution
from each mode. From this the performance of the ROM becomes quite obvious, and the
final decision on which modes to include can be made. In line with the assumption of
POD, including the first few modes should capture most of the energy in the system, and
just as for the spectrum of singular values the error is expected to drop under a tolerable
value after including the first few modes.

As the ROM was constructed by minimizing the projection error of the snapshots the
measure of accuracy obtained above cannot be ensured for all parameter vectors µ ∈
P . Generally the error for parameter vectors not corresponding with the sample set will
be higher than those of the sample set. Therefore the error calculated by this method
should be taken as a lower bound, and viewed as best performance. In spite of this, the
aforementioned approach of error analysis is usually sufficient for evaluating the ROM. A
more general approach would be to make a new sample of parameters including parameter
vectors not included in the original sample, and evaluating the averaged aggregated error.
A key benefit however of the first approach is that it makes use of the already calculated
snapshots, meaning that high-fidelity solutions need not be calculated. This is not the case
for the latter approach.

The main idea of ROMs is that a small reduction in accuracy is traded for a large reduc-
tion in computational complexity. It is however worth mentioning that the accuracy of
the high-fidelity model should be controlled before starting the construction of a reduced
model. As the reduced model introduces more error, starting of with a model that is al-
ready not sufficiently accurate will in all likelihood lead to a bad approximation of the
original problem. A proposed rule of thumb is that the high-fidelity model should have a
relative error εh ≤ 1% in order to enable a relative error of the reduced model εN ≤ 10%.

34



3. Reduced order modelling

Enable is a key word as even though the high-fidelity model might be sufficiently accurate
this does not ensure satisfactory performance from the reduced model.

3.5 Parameter sampling

As discussed earlier in this chapter the accuracy of a ROM is highly dependent on the
snapshots. The snapshots themselves are dependent on the set of parameter samples,
{µ1, ...,µns} ⊂ P , and these parameter samples are selected by the analyst. Assum-
ing p different parameters µi ∈ Rp the goal of the parameter sample becomes spanning a
p-dimensional space as accurate and efficiently as possible with respect to the high-fidelity
solution. Although the computational cost of constructing the ROM is assumed to be of lit-
tle interest it is beneficial to seek snapshots that will increase the accuracy, and it would be
highly ineffective to calculate more high-fidelity solutions than necessary. There are sev-
eral different methods for parameter sampling, and only a brief overview of three methods
is given here. In Figure 3.7 the three methods are illustrated in a 2-dimensional parameter
space for visibility.

The easiest method is uniform sampling in each dimension of the parameter space. This
methods works for moderate parameter spaces, p ≤ 5, as the number of samples grows ex-
ponentially making this method highly inefficient for higher order parameter spaces. This
method is the easiest to implement and works for simpler problems. The number of sam-
ples in each dimension should be chosen to capture parameter dependencies sufficiently.
This method was chosen for the numerical studies of this thesis.

Another method to be used is random sampling of the parameter domain. This can either
be done by fully random sampling, or by some near random method like Latin hypercube
sampling. Usually the latter method is preferred as a fully random sample can produce
very misleading results, and a poor span of the entire parameter space.

The last method introduced here is the use of sparse grid quadrature, which is a set of
advanced sampling methods enabling high-dimensional parameter spaces to be spanned
efficiently with relatively few sampling points. These methods seek to overcome the curse
of dimensionality and the approach is theoretically based on combining tensors products
of one-dimensional quadrature rules [24]. The use of more advanced sampling methods
becomes necessary for more complex problems and the choice of sampling method is a
critical part of the construction of reduced models.

Since the response is directly dependent on the parameter sample there is always a chance
that some important parameter dependencies can be neglected. However this risk can be
mitigated by knowing the characteristics of the problem of interest and choosing a suitable
sampling method.

For low dimensional parameter spaces and problems where the parameter dependencies
is thought to be of lower polynomial order, uniform sampling can safely be used. The
number of the sampling points in each direction is a critical decision where a higher density
of sampling points should be used in directions and intervals where parameter sensitivity
is thought to be higher.
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Figure 3.7: Illustration of different sampling methods in a 2-dimensional parameter space
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In this chapter the theory of FEM and ROM is applied for two linear elastic example
problems. The main focus is on geometric variation, but material variation is also present.

The examples was implemented using the Python library Nutils [25], and a simple FE
solver was constructed for linear elastic 2D problems assuming plane strain for each of
the examples. The solver maps quadrilateral shapes to a reference square where a uniform
mesh of rectangles are used, and the field is approximated by bilinear interpolation func-
tions. This approach is equal to that of using Q4 elements. Although Q4-elements display
a disadvantageous behaviour in bending due to spurious shear strain this mesh was chosen
to simplify computer implementation as accuracy of the high-fidelity solutions is not a
critical result for this thesis. The FE-solver is therefore not as accurate as one would want
for solving an actual problem, but it has the necessary properties for applying the theory
of reduced order models. The complete python code for both examples can be found in
Appendix B.

For the full order model to be reducible when geometric parameters are studied, the dif-
ferent geometries has to be mapped to the same mesh in the natural coordinate system.
The approach for each of the examples becomes choosing a mesh, with ne,ξ, ne,η number
of elements in ξ and η direction respectively, and then defining the mapping between the
physical and natural coordinates. An instance of a mesh in the natural coordinate system
is seen in Figure 4.1

4.1 Example 1 - Rectangle

4.1.1 Problem description and modelling
For the first example a rather simple geometric shape was chosen, as seen in Figure 4.2,
and it is recognized as the linear elastic response of a rectangular cantilever beam with a
transverse normal load. For this example the parameters of interest where chosen to be the
Young’s modulus, and the height and length of the beam. Meanwhile the load intensity
and Poisson ratio was chosen to be kept constant, f = 0.8 N

mm and ν = 0.3. This lead to
the following parameter space

µ ∈ R3

µ1 = E = [10, 90] GPa

µ2 = x4 = L = [2000, 4000] mm

µ3 = y4 = H = [150, 250] mm

(4.1)
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ne,ξ

ne,η

η

ξ

1.0

1.0

Figure 4.1: Mesh in natural coordinate system

Uniform sampling in each direction in the parameter space was used, with 5 samples for
each parameter resulting in ns = 53 = 125 parameter samples which the high-fidelity
system must be solved for. As the shape of the beam remains a rectangle through the
geometric variation there is no distortion to speak of between the physical and reference
geometry. For the high-fidelity solution this means that there is no loss of accuracy through
irregular geometry.

Mapping as described in section 2.1.3 and 2.3.3 is introduced, and the geometry from
Figure 4.2 leads to the following relations between coordinates

x1 = x3 = y1 = y2 = 0

x4 = x2, y4 = y3
(4.2)

This means that the geometry is uniquely described by two parameters µG = [x4, y4],
inserting this in (2.44) and (2.46) the mapping is obtained as

C(µ) =

[
x4 0
0 y4

]
, S(µ) =

[
x4 − x2

y4 − y3

]
= 0

J = C(µ), J = detC(µ) = x4y4 = L ·H

J−1 = C(µ)−1 =
1

detC(µ)

[
y4 0
0 x4

]
=

[
x−1
4 0
0 y−1

4

] (4.3)

Introducing this to (2.13) the following expression for derivatives with respect to Cartesian
coordinates is derived

∂

∂x
=

1

L

∂

∂ξ

∂

∂y
=

1

H

∂

∂η

(4.4)
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Figure 4.2: Example 1 - Physical model

The same relations is used for transforming the integrals

dΩ = ∂x∂y = J∂ξ∂η

dΓi : ∂x = L∂ξ, ∂y = H∂η
(4.5)

As seen from (4.4) and (4.5) the mapping is simply based on scaling the axis with the
parameters µG. Combining this with the discrete equations for the stiffness matrix (2.36),
the expression for Ah can be written as a linear combination

Ah =

4∑
i=1

θi(µ)Ai =

4∑
i=1

θi(µ)

∫
Ω

Iid∂ξ∂η

θ1(µ) =
H

L

[
λ+ 2µ 0

0 µ

]
I1 = N0,ξN0,ξ

θ2(µ) =

[
0 λ
µ 0

]
I2 = N0,ξN0,η

θ3(µ) =

[
0 µ
λ 0

]
I3 = N0,ηN0,ξ

θ4(µ) =
L

H

[
µ 0
0 λ+ 2µ

]
I4 = N0,ηN0,η

(4.6)

As the four integrals Ii can be calculated without knowing µ, assembly of the stiffness
matrix is simply a linear combination of constant matrices Ii multiplied with the scaling
functions θi(µ), ∀µ ∈ P . This has to be implemented in the FE solver, and although not
being particularly challenging this diverges from the general construction of the stiffness
matrix.

The load vector can be found from implementing the mapping (2.37)

f =

∫ 1

0

f

[
0

NT
0

]
Ldξ, η = 1 (4.7)
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(a) Reference geometry with mesh
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200

(b) Instance of physical geometry with mesh

Figure 4.3: Example 1 - Reference and physical geometry with mesh

Where f is the load intensity.

As the parameters space and sample (4.1), stiffness matrix (4.6) and load vector (4.7)
are defined, a ROM can be constructed following the approach of Chapter 3. A mesh
with (40, 20)-elements in ξ and η direction was chosen. The problem before reduction
consisted of Nh = 1722 dofs and ns = 125 parameter samples, and in Figure 4.3 the
reference geometry and an instance of the physical geometry is plotted.

4.1.2 Results
A reduced basis was calculated by the POD approach for energy inner product as described
in section 3.3.3. This resulted in a reduced basis with 64 modes which would create a
ROM with 64 dofs. Even though this might seem as vast reduction from 1 722 dofs the
reduced basis should be analyzed to only consist of the most contributing modes, and the
performance must also be controlled.

The spectrum of the first eight singular values is plotted in Figure 4.4. From this it can be
seen that the singular values quickly decreases in magnitude. This is in line with the first
modes capturing most of the energy. It is however not enough to conclude which modes
should be retained.

Next the POD modes is analyzed. The first eight modes can be found in Appendix A, and
in Figure 4.5 the first four modes are plotted. Since the geometry varies the modes are
plotted in the natural coordinate system against the reference geometry. As can be seen
all modes display different bending dependent displacement patterns, but the fourth mode
displays some unexpected behaviour, which is also true for all trailing modes. The plotted
modes are vastly scaled for visibility, but the behaviour seen in fourth mode is a warning
sign and this is related to numerical issues due to the stiffness of the boundary conditions.
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Figure 4.4: Example 1 - Singular value spectrum

From this, one would want to only retain the first three modes.

From studying similar problems without geometric variation it should be noted that the
dominating modes corresponds with mode 1 and 3, while mode 2 is not present. This
implies that the geometric variation introduces the need for this mode, but does not mean
that mode 1 and 3 are independent of the geometric variation.

To check the accuracy of the reduced model the averaged aggregated error in the energy
norm is calculated for RB’s with different numbers of retained modes. This is seen in Fig-
ure 4.6 and there is now sufficient information to decide which modes should be retained
in the basis.

From analyzing the spectrum of singular values, the plotted POD modes and the error plot,
it becomes natural to create a reduced basis by including the first three modes. This should
lead to a sufficiently accurate reduced model, as the error is bounded ε = O(10−3). It is
worth repeating that this is the error relative to the high-fidelity model, and that accuracy
of the ROM relative to the original problem in general will be worse. For visualization a
high-fidelity solution is plotted over a RB solution in Figure 4.7, and there is no visible
difference between the two.

By choosing a RB consisting of the first three POD modes a ROM can be constructed with
only 3 dofs. This leads to a reduction from 1 722 to 3, or 574:1.

4.1.3 Discussion
From this first example a ROM was created from the snapshots of a high-fidelity model.
This was done by retaining the first three POD modes. The accuracy of this reduced
model proved to be quite good as error bounded ε = O(10−3) usually is sufficient for
most practical problems.
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4.1. Example 1 - Rectangle

(a) Example 1 - Mode 1 (b) Example 1 - Mode 2

(c) Example 1 - Mode 3 (d) Example 1 - Mode 4

Figure 4.5: Example 1 - First four POD modes
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Figure 4.6: Example 1 - Averaged aggregated error
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Figure 4.7: Example 1 - High-fidelity vs. RB solution
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4.1. Example 1 - Rectangle

(a) Completely stiff end
(b) Less rigid implementation

Figure 4.8: Two alternatives of implementing boundary conditions

Overall the ROM behaved just as expected as the singular values dropped of in magni-
tude, the POD modes displayed bending patterns, and only including the first few modes
captured most of the systems energy.

Also important to note is the behaviour of the latter modes, which all displayed unexpected
behaviour close to the fixed boundary as can be seen from Mode 4. The significance of
these modes turned out to be negligible, it is however of interest why this behaviour occurs.
From analyzing different parameter spaces it became evident that this issue did not stem
from load and material variation, but emerged when geometric variation was considered.
As changing the height and length of the beam affects the equilibrium at the fixed end,
the faulty modes is recognized as the reduced basis not being able to correctly capture this
effect. Two implementations of the fixed end was explored to overcome this problem, the
first being restraining all dofs at the left boundary horizontally and vertically. The second
was done by applying a parabolic vertical load, equal to the loading of the beam, together
with horizontal clamping and only fixing some of the dofs in the vertical direction. Both
implementations can be seen in Figure 4.8. Although the second approach gave better
results overall, the first being overly stiff, the undesired behaviour in Mode 4 and trailing
was still present. Compared to similar problems it should be noted that a total of 64
POD modes is higher than expected. This means that not only has this problem lead to
erroneous modes, but a high number of them. This becomes an interesting result from
geometrical variation in ROMs even though the modes where not of significance in this
example. It is quite possible that there exists ways to implement the fixed boundary which
do not lead to the erroneous modes, however this implies that the geometric variation
introduces restrictions on how BC’s should be implemented, and this is not seen when
other parameters are considered.

The reduction factor of 574:1 can be viewed as not that impressing, but this also stems
from the fact that the high-fidelity model was constructed with a fairly small number of
dofs. For larger models the reduction will usually be more significant. The reduced model
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Figure 4.9: Example 2 - Physical model

itself ended up consisting only of three dofs which is very small and gives for extremely
fast solving of the reduced problem. When the number of dofs is in this range the prac-
tical difference in computing time of retaining or neglecting a few extra modes is usually
insignificant.

The computer implementation of the affine expression of the problem proved to be quite
easy as all parameter dependencies were linear. The assembly of the ROM was depen-
dent on four matrices making the assembly computationally effortless. A key takeaway
however is that although this being quite easy it diverges from the general implementation
in regular FE-software. The affinity demands the construction be split in four matrices
which makes the use existing FE-solvers difficult as they only construct and save the com-
plete matrix. For an example as easy as this, with just three parameters each with a linear
dependency on the stiffness matrix, it would be possible to obtain the parameter indepen-
dent matrices by interpolating between stiffness matrices with different input parameters.
However this is not possible when parametric dependencies becomes many and of higher
order.

4.2 Example 2 - Trapezoid

4.2.1 Problem description and modelling

For this example a cantilever beam shaped as a trapezoid was chosen as shown in Figure
4.9. In this example the Young’s modulus and the height at the end of the cantilever are
the parameters, while the load intensity and Poisson ratio are kept constant, f = 0.8 N

mm
and ν = 0.3, as well as the other geometric properties L = 3000mm and H0 = 350mm.
This lead to the following parameter space
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4.2. Example 2 - Trapezoid

µ = R2

µ1 = E = [35, 65] GPa

µ2 = H1 = [150, 350] mm

θ0(µ) = µ2 −H0

(4.8)

Uniform sampling in each direction in the parameter space was used, with 4 samples
in each direction resulting in ns = 42 = 16 parameter samples which the high-fidelity
system must be solved for. When H1 = 350mm the beam is shaped as a rectangle, but
as H1 → 150mm the shape of the beam transforms into an increasingly steep trapezoid
and the physical geometry is distorted from the reference square. This leads to a loss of
accuracy for the high-fidelity solutions. The variable θ0 is introduced to ease notation later
on.

Introducing the mapping from section 2.1.3 and 2.3.3 the geometry in Figure 4.9 leads to
the following relations between coordinates

x1 = x3 = y1 = 0

x4 = x2 = L

y2 =
1

2
(H0 −H1) =

−θ0
2

y3 = H0

y4 =
1

2
(H0 +H1) =

θ0
2

+H0

(4.9)

For this example there is only one geometric parameter, µG = H1, as opposed to the
two from Example 1, but in the following it becomes obvious that the mapping in this
problem is more complex despite having fewer geometric parameters. By introducing this
into (2.44), (2.45) and (2.46) we obtain the matrices C(µ), S(µ) and t(µ) as

C(µ) =

[
x2 y2
x3 y3

]
=

[
L −θ0

2
0 H0

]

S(µ) =

[
x4 − x2 − x3

y4 − y2 − y3

]
=

[
0
θ0

]
C(µ)−1 =

1

LH0

[
H0

θ0
2

0 L

]

t(µ) =
θ0
H0

[
0 1

]
(4.10)

This allows us to write the Jacobian matrix and its determinant as

J =

[
L θ0(η − 1

2 )
0 H0 + θ0ξ

]
J = L(H0 + ξθ0)

(4.11)
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And the inverse relations can be found as

J−1 =
1

J

[
H0 + θ0ξ θ0(

1
2 − η)

0 L

]

=
1

L

[
1 0
0 0

]
+

R

LH0

[
0 θ0(

1
2 − η)

0 L

]

R =
1

1 + θ0
ξ
H0

=
1

J
LH0

(4.12)

With the inverse relations at hand together with (2.13), the derivatives with respect to
Cartesian coordinates is derived

∂

∂x
=

1

L

∂

∂ξ
+

Rθ0(
1
2 − η)

LH0

∂

∂η

∂

∂y
=

R

H0

∂

∂η

(4.13)

The expressions above in (4.13) are obviously more complex than those for Example 1
seen in (4.4). This complexity increases during the construction of the stiffness matrix
therefore some notation should be introduced before moving on.

∂N0

∂x
=

1

L

∂N0

∂ξ
+

Rθ0(
1
2 − η)

LH0

∂N0

∂η
= B1 + θ0B2R

∂N0

∂y
=

R

H0

∂N0

∂η
= B3R

Bi ∈ Rn

(4.14)

As seen from (2.36) the stiffness matrix is dependent on four submatrices which can now
be expressed as

∫
Ω

N0,xN0,xJdΩ =

LH0

∫
Ω

(B1B1 + θ0(
ξ

H0
B1B1 +B2B1 +B2B1) + θ20RB2B2)dΩ∫

Ω

N0,xN0,yJdΩ = LH0

∫
Ω

(B1B3 + θ0RB2B)dΩ∫
Ω

N0,yN0,xJdΩ = LH0

∫
Ω

(B3B1 + θ0RB3B2)dΩ∫
Ω

N0,yN0,yJdΩ = LH0

∫
Ω

RB3B3dΩ

(4.15)

The load vector can be found by introducing the mapping to (2.37), but as the expres-
sion does not contain any derivation, the load vector is instead obtained by considering a
projection load yielding
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f =

∫ 1

0

f

[
0

NT
0

]
·
√

L2 +
θ20
4
dξ, η = 1 (4.16)

By utilizing the behavior of geometric series [12], R in (4.12) can be written as

R =
1

1 + θ0
H0

ξ
=

∞∑
i=0

(−1)i(
θ0
H0

ξ)i

for | θ0
H0

ξ| < 1

(4.17)

R is represented as a geometric series to enable an affine representation of the submatrices
above with respect to the geometric parameter, but as some symmetrical conditions have
been enforced it is reduced from what was seen in (2.47). For computer implementation a
finite number n is chosen so that Rn ≈ R. This ads major complexity to the construction
of the stiffness matrix which is illustrated with the last submatrix in (4.15)

∫
Ω

N0,yN0,yJdΩ =

n∑
i=0

(−1)i(
θ0
H0

)iLH0

∫
Ω

ξiBBdΩ (4.18)

Meaning that for this submatrix alone, n scaling functions θi = (−1)i( θ0
H0

)iLH0 and n

matrices Ai =
∫
Ω
ξiBBdΩ has to be calculated and stored. By doing this for all four

submatrices the assembly becomes quite cumbersome. The final assembly can be slightly
simplified by adding together all matrices with equal scaling functions as the assembly
should consist only of a set of unique scaling functions, however this assembly has trans-
formed quite a bit from the original expression (2.36). As for Example 1 this has to be
implemented in the FE solver.

Remembering (3.11) it is clear that the offline step becomes much slower, and also from
(3.12) the computational cost of assembling the ROM must be checked. This will only be
problematic if a very large number of terms in R is needed to achieve sufficient accuracy.
The relative error of Rn is plotted against n and for different heights H1 in Figure 4.10.
The error is calculated against the exact R for ξ = 1 as this maximizes the error.

Introducing the series approximation of Rn leads to a change in the stiffness matrix mean-
ing the high-fidelity problem has been altered, but from Figure 4.10 it can be seen that a
sufficient accuracy can be obtained for manageable values of n. By analyzing the error
plot it can be seen that the approximation looses accuracy as the geometry is being in-
creasingly distorted from the reference geometry, H1 → 150mm. This will influence the
quality of the ROM relative to the original problem and even though a large number of
sampling heights are used the accuracy of increasingly distorted geometry is highly de-
pendent on Rn. To ensure an approximation error of Rn bounded εR = O(10−4), n = 20
was chosen. This lead to the assembly of the stiffness matrix being a summation of 120
parameter independent matrices.

Again, as the parameter space (4.8), stiffness matrix (4.15) and load vector (4.16) are
defined, a ROM can now be constructed. The second alternative for implementation of
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Figure 4.10: Example 2 - Relative error of Rn

the fixed end, as seen in Figure 4.8, was implemented also for this example. A mesh
with (40, 20)-elements in ξ and η direction was chosen. The problem before reduction
consisted of Nh = 1722 dofs and ns = 16 parameter samples, and in Figure 4.11 the
reference geometry and an instance of the physical geometry is plotted.

4.2.2 Results
A reduced basis was calculated by the POD approach with respect to the energy inner
product. This resulted in a reduced basis with 10 modes, which would give ROM with 10
dofs, but again the reduced basis should be analyzed so that only the most critical modes
are retained.

The spectrum of the first 8 singular values is plotted in Figure 4.12. The singular values
quickly drop to negligible values which indicates that a well performing ROM can be con-
structed by the first few modes, which modes specifically will be decided in the following.

As for the first example the POD modes are plotted in the natural coordinate system. All
the first 8 modes can be found in Appendix A, and in Figure 4.13 the first four modes can
be seen. All modes display bending patterns as expected, and it can be seen that the modes
occur in an increasing hierarchy of bending patterns. There is no numerical issues or
unexpected behaviour in any of the modes, meaning they can all be applied in the reduced
basis.

To control the accuracy of the model the averaged aggregated error in the energy norm
is calculated for RB’s with different number of retained modes, and this is plotted Figure
4.14. There is now sufficient information to decide which modes should be retained in the
reduced basis.
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(a) Reference geometry with mesh
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(b) Instance of physical geometry with mesh

Figure 4.11: Example 2 - Reference and physical geometry with mesh
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Figure 4.12: Example 2 - Singular value spectrum
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(a) Example 2 - Mode 1 (b) Example 2 - Mode 2

(c) Example 2 - Mode 3 (d) Example 2 - Mode 4

Figure 4.13: Example 2 - First four POD modes
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Figure 4.14: Example 2 - Averaged aggregated error

From analyzing the spectrum of singular values, the plotted POD modes, and the error plot
it becomes natural to create a reduced basis by including the first four modes. One could
argue that an acceptable accuracy is achieved already for retaining just the two first modes,
and that including the two trailing modes effectively doubles the matrix size. However,
there is no practical difference between solving matrix equations of such small sizes as
they are extremely fast. Therefore the added accuracy of retaining all four modes is easily
chosen as there is no added benefit of retaining more modes. All the trailing modes are
higher order bending patterns which are not activated for the given loading and boundary
conditions, and can therefore be neglected. The reduced basis should result in a sufficiently
accurate model , as the error is bounded ε = O(10−4). For visualization a high-fidelity
solution is plotted over a RB solution in Figure 4.15, and there is no visible difference
between the two.

By choosing a RB consisting of these modes a ROM can be constructed with 4 dofs. This
leads to a reduction from 1 722 to 4, or 431:1.

4.2.3 Discussion
A ROM has been constructed for this example by retaining the first four POD modes. The
accuracy of this model proved to be quite satisfactory as an error bounded ε = O(10−4)
is sufficient for most practical problems.

The construction of the ROM went just as expected as the singular values dropped of in
magnitude, the POD modes displayed bending patterns, and including the first few modes
captured most of the systems energy.

As opposed to the first example the POD modes did not display any unwanted behaviour,
the difference being the boundary remained the same for all instances of the geometry.
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Figure 4.15: Example 2 - High-fidelity vs. RB solution

This means that every mode could be included in the basis if need be.

Just as for Example 1 the reduction factor, 430:1, can be viewed as not that impressing, but
as the original number of dofs where low this is not surprising. Even though the reduction
factor was unimpressive a ROM was constructed with a low number of modes which is
exactly what the POD approach aims to do.

For this example problem it became more evident that the affine expression of the system
can be problematic. The high-fidelity model and the ROM matrices was created by a
linear combination of 120 matrices each. This made for much more cumbersome computer
implementation than for the general case and Example 1. The computer code can be
found in Appendix B. For this thesis the necessary expressions was obtained through hand
calculation although it should be possible to obtain the same results through symbolic
manipulation of the original expression, but this is not as straight forward. It should be
noted that this representation of the system matrices would not easily be achieved with
the use of general FE-solvers as base point as the final result is quite complex. This again
underlines the fact that affine representation for complex parameter dependencies renders
the need for custom assembly of the high-fidelity system matrices and vectors.
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5 | Conclusion

After conducting numerical studies on two examples of linear elastic problems with geo-
metric variation, two well performing reduced order models was constructed. Both mod-
els behaved well in line with the assumptions and expectations of reduced order models
through Galerkin projection, and dislayed how computational cost can be greatly reduced
by constructing reduced order models. The models where robust with respect to both ma-
terial and geometric parameters, but there are however two main findings, each emerging
in separate examples.

Numerical issues was present in the first example. Although a robust reduced model was
constructed, it became evident that the effect of geometric variation on the fixed boundary
was not captured without problem by the reduced basis. This presented itself in the form of
a high number of erroneous modes in the reduced basis, and can be seen in the fourth mode
in Figure 4.5. However this problem was not present in the dominant modes, meaning a
valid reduced model could still be obtained. The significance of this would be of interest
to analyze in further work, as it influence the applicability of ROMs on more complex and
general problems than that of this thesis. The effect of this behaviour should be studied
both in terms of different implementations of boundary conditions in order to avoid this
problem, as well as for complicated systems containing several structural elements and
boundaries. Being robust with respect to parametric variation is one of the key attributes
should reduced order models become a viable approach for parametric problems.

Affine representation of the weak statement with respect to the parameters of interest,
which is a key assumption for construction of reduced order models, turned out to be a
major challenge in the second example. This determines how the system matrices and
vectors of the full order model, Finite element model in this thesis, is assembled and in
turn also how the reduced model is assembled. The finite element model is intricately
dependent on geometric parameters resulting in a complex expression in order to achieve
the aforementioned affinity. This had little effect on the assembly of the reduced model,
but made a major difference for the full order model. As the construction diverged highly
from that of the original problem, it made for a highly customized Finite element solver
for this example. This underlines how the use of existing Finite element software can be
challenging depending on the parameters of interest. For reduced order models to be viable
with respect to geometric parameters a key challenge in further work becomes obtaining a
general way of deriving the weak statement affinely dependent on all geometric parameters
of the problem, without a prohibitive computational cost. Software which is able to express
the system matrices and vectors of a problem affinely dependent on the parameters would
significantly lower the threshold for applying reduced order models.
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(a) Example 1 - Mode 1 (b) Example 1 - Mode 2

(c) Example 1 - Mode 3 (d) Example 1 - Mode 4

Figure A.1: Example 1 - First eight POD modes
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(e) Example 1 - Mode 5 (f) Example 1 - Mode 6

(g) Example 1 - Mode 7 (h) Example 1 - Mode 8

Figure A.1: Example 1 - First eight POD modes
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(a) Example 2 - Mode 1 (b) Example 2 - Mode 2

(c) Example 2 - Mode 3 (d) Example 2 - Mode 4

Figure A.2: Example 2 - First eight POD modes
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(e) Example 2 - Mode 5 (f) Example 2 - Mode 6

(g) Example 2 - Mode 7 (h) Example 2 - Mode 8

Figure A.2: Example 2 - First eight POD modes
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B | Appendix 2

In this chapter the Python code for the numerical studies as presented. The code is orga-
nized in the following hierarchy.

• Analyze - Scripts running each of the examples

• Assembly - Necessary functions for FEM calculation called by the scritpts

• ROM - Necessary functions for ROM construction called by the scripts

• Postprocessing - Functions for plotting the results of high-fidelity and RB solutions

The code requires the instalation of the Nutils library [25].
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List of Python code

B.1 Example 1 - script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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B.3 Test script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.4 Evaluation of geometric series representation of R . . . . . . . . . . . . . 73
B.5 Example 1 - FEM functions . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.6 Example 2 - FEM functions . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.7 Genereal FEM functions . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.8 General ROM functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.9 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1 # I m p o r t i n g l i b r a r i e s
2 i m p o r t numpy as np
3 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
4 from m a t p l o t l i b 2 t i k z i m p o r t s ave as t i k z _ s a v e
5

6

7 # I m p o r t i n g f u n c t i o n s
8 from r e c t a n g l e _ a s s e m b l y i m p o r t e l a s t i c _ a s s e m b l y _ r e c t a n g l e , Xvec
9 from e l a s t i c _ a s s e m b l y i m p o r t seminorm

10 from p l o t i m p o r t d p l o t , plot_POD_Modes , g p l o t
11 from ROM_assembly i m p o r t genera te_RB , r e t a in_RBs , generate_ROM ,

g e n e r a t e _ s n a p s h o t s _ r e c t a n g l e , r e t a i n _ M o d e s
12

13 # geometry , number o f e l e m e n t s must be m u l t i p l e s
14 n e l _ l e n g t h = 40 # number o f e l e m e n t s i n l e n g t h d i r .
15 n e l _ h e i g h t = 20 # number o f e l e m e n t s i n h e i g h t d i r .
16

17

18 # number o f sa m p l i n g p o i n t s i n each d i r e c t i o n
19 n = 5
20

21 # g e o m e t r i c p a r a m e t e r s
22 l = np . l i n s p a c e ( 2 0 0 0 , 4 0 0 0 , n )
23 l 0 = 0 . 5 * ( l [ - 1 ] + l [ 0 ] )
24 h = np . l i n s p a c e ( 1 5 0 , 2 5 0 , n )
25 h0 = 0 . 5 * ( h [ - 1 ] + h [ 0 ] )
26

27 X0 = np . a r r a y ( [ [ 0 , 0 , l0 , l 0 ] , [ 0 , h0 , 0 , h0 ] ] ) # ( [ x1 , x3 , x2 , x4 ] , [ y1 , y3 , y2 , y4 ] )
mean geomet ry

28

29 # M a t e r i a l p a r a m e t e r s
30 E = np . l i n s p a c e ( 1 0 , 9 0 , n ) *1 e3 # Young ’ s modulus [N/mm^2]
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31 nu = 0 . 3 # P o i s s o n ’ s r a t i o
32

33 #Load
34 L1 = - 0 . 8 # Normal l o a d t o p boundary [N/mm^2]
35

36 # p a r a m e t e r i n d e e n d e t as sembly
37 domain , geom , b a s i s , LHS_lam_i , LHS_mu_i , RHS_i , c o n s t r a i n =

e l a s t i c _ a s s e m b l y _ r e c t a n g l e ( n e l _ l e n g t h , n e l _ h e i g h t )
38 Model = [ LHS_lam_i , LHS_mu_i , RHS_i , c o n s t r a i n ]
39

40 #H1- seminorn f o r t h e high - f i d e l i t y sys tem
41 X = seminorm ( b a s i s , geom , domain )
42

43 # G e n e r e a t e s n a p s h o t s
44 s n a p s h o t s , EnergyFEM = g e n e r a t e _ s n a p s h o t s _ r e c t a n g l e ( LHS_lam_i , LHS_mu_i ,

RHS_i , c o n s t r a i n , E , l , h , nu , L1 )
45

46 # G e n e r a t i n g t h e r e d u c e d b a s i s wr t . t h e en e r gy i n n e r p r o d u c t and r e t a i n i n g
e s s e n t i a l RB- modes

47 w, RB = genera te_RB ( s n a p s h o t s , X. c o r e )
48 i o = w. s i z e # o r i g i n a l number o f POD modes
49 w, RB = r e t a i n _ R B s (w, RB)
50

51 # G e n e r a t i n g t h e r e d u c e d model by m u l t i p l y i n g t h e h i g h f i d e l i t y model wi th
t h e r e d u c e d b a s i s

52 LHS_lam_iR , LHS_mu_iR , RHS_iR , c o n s t r a i n R = generate_ROM ( Model , RB)
53 ROM = [ LHS_lam_iR , LHS_mu_iR , RHS_iR , c o n s t r a i n R ]
54

55 # C a l c u l a t i n g s n a p s h o t s and c o r r e s p o n d i n g en e r gy f o r t h e p a r a m e t e r sample
56 snapshotsRB , EnergyRB = g e n e r a t e _ s n a p s h o t s _ r e c t a n g l e ( LHS_lam_iR , LHS_mu_iR

, RHS_iR , c o n s t r a i n R , E , l , h , nu , L1 )
57

58 # - - - - - - - - - - - - - - - - - - - - pos t - p r o c e s s i n g - - - - - - - - - - - - - - - - - - - - - -
59 b e z i e r = domain . sample ( ’ b e z i e r ’ , 2 ) # sa m p l i n g of domain
60 p t s = b e z i e r . e v a l ( geom ) # r e f e r e n c e geomet ry
61

62 # C a c l u l a t i n g mean e r r o r i n energy - norm f o r d i f f e r e n t RBs
63 e r r o r = np . z e r o s (RB . shape [ 1 ] )
64 f o r i i n r a n g e (RB . shape [ 1 ] ) :
65 LHS_lam_temp , LHS_mu_temp , RHS_temp , c o n s t r a i n _ t e m p = r e t a i n _ M o d e s (ROM

, i +1)
66 _ , Energy_temp = g e n e r a t e _ s n a p s h o t s _ r e c t a n g l e ( LHS_lam_temp , LHS_mu_temp

, RHS_temp , c o n s t r a i n _ t e m p , E , l , h , nu , L1 )
67 e r r o r [ i ] = sum ( ( abs ( EnergyFEM - Energy_temp ) / EnergyFEM ) * * 0 . 5 ) /

EnergyFEM . s i z e
68

69 #numer o f r e t a i n e d modes
70 x = np . l i n s p a c e ( 1 , e r r o r . shape [ 0 ] , num = e r r o r . shape [ 0 ] )
71

72 # p l o t t i n g a g g r e g a t e d r e l a t i v e e r r o r f o r d i f f e r e n t RBs
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73 p l t . f i g u r e ( )
74 p l t . s e m i l o g y ( x , e r r o r )
75 # t i k z _ s a v e ( " E x 1 _ a g g _ e r r o r . t e x " )
76

77 # P l o t t i n g t h e s p e c t r u m of s i n g u l a r v a l u e s ( s igma ) o f t h e r e t a i n e d RB- modes
78 p l t . f i g u r e ( )
79 p l t . s e m i l o g y ( x ,w)
80 # t i k z _ s a v e ( " Ex1_spect rum . t e x " )
81

82 # p l o t t i n g POD- modes on r e f e r e n c e geomet ry
83 plot_POD_Modes (RB, b a s i s , b e z i e r , p t s )
84

85 # P l o t t i n g high - f i d e l i t y ( 1 ) - vs . RB( 2 ) - s o l u t i o n f o r c o m p a r i s s o n f o r
p a r a m e t e r sample i

86 i = 7
87 a = i n t ( i%n )
88 b = i n t ( ( i - a ) / n )
89

90 l i = l [ b ]
91 h i = h [ a ]
92 Xi = np . a r r a y ( [ [ 0 , 0 , l i , l i ] , [ 0 , h i , 0 , h i ] ] ) # ( [ x1 , x4 , x2 , x3 ] , [ y1 , y4 , y2 , y3 ] )

f o r samle i
93 Xi = Xvec ( n e l _ l e n g t h , n e l _ h e i g h t , Xi )
94 geomi = b a s i s . d o t ( Xi )
95

96 s o l 1 = s n a p s h o t s [ : , i ]
97 d i s p 1 = b a s i s . d o t ( s o l 1 )
98

99 s o l 2 = snapsho tsRB [ : , i ]
100 s o l 2 h = RB@sol2
101 d i s p 2 = b a s i s . d o t ( s o l 2 h )
102

103 p t s i , dp t s1 , d p t s 2 = b e z i e r . e v a l ( [ geomi , d i sp1 , d i s p 2 ] )
104 d p t s 1 += p t s i
105 d p t s 2 += p t s i
106

107 d p l o t ( b e z i e r , dp t s1 , d p t s 2 )
108 # t i k z _ s a v e ( " Ex1_hf_vs_rb . t e x " )
109

110 # P l o t t i n g i n s t a n c e o f p h y s i c a l geomet ry and r e f e r e n c e geomet ry
111 g p l o t ( b e z i e r , p t s i )
112 # t i k z _ s a v e ( " Ex1 - i n s t a n c e . t e x " )
113

114 g p l o t ( b e z i e r , p t s )
115 # t i k z _ s a v e ( " Ex1 - r e f e r e n c e . t e x " )
116

117

118

119 # p l o t t i n g POD- modes on mean geomet ry
120 #X0 = Xvec ( n e l _ l e n g t h , n e l _ h e i g h t , X0 )
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121 #geom0 = b a s i s . d o t ( X0 )
122 # p t s 0 = b e z i e r . e v a l ( geom0 )
123 #plot_POD_Modes (RB, b a s i s , b e z i e r , p t s 0 )

B.1: Example 1 - script

1 # I m p o r t i n g l i b r a r i e s
2 i m p o r t numpy as np
3 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
4 from m a t p l o t l i b 2 t i k z i m p o r t s ave as t i k z _ s a v e
5

6 # i m p o r t i n g f u n c t i o n s
7 from e l a s t i c _ a s s e m b l y i m p o r t seminorm
8 from t r a p e z e _ a s s e m b l y i m p o r t e l a s t i c _ a s s e m b l y _ t r a p e z e
9 from r e c t a n g l e _ a s s e m b l y i m p o r t Xvec

10 from p l o t i m p o r t d p l o t , plot_POD_Modes , g p l o t
11 from ROM_assembly i m p o r t genera te_RB , r e t a in_RBs , generate_ROM ,

g e n e r e a t e _ s n a p s h o t s _ t r a p e z e , r e t a i n _ M o d e s
12

13 # geometry , number o f e l e m e n t s must be m u l t i p l e s and n e l _ h e i g h t s h o u l d be a
even number

14 n e l _ l e n g t h = 40 # number o f e l e m e n t s i n l e n g t h d i r .
15 n e l _ h e i g h t = 20 # number o f e l e m e n t s i n h e i g h t d i r .
16

17 # number o f sa m p l i n g p o i n t s i n each d i r e c t i o n
18 n = 4
19

20 # number o f t e r m s i g e o m e t r i c s e r i e s R
21 k = 20
22

23 # g e o m e t r i c p a r a m e t e r s
24 L = 3000 #mm
25 H0 = 350 #mm
26 H1 = np . l i n s p a c e ( 1 5 0 , 3 5 0 , n )
27

28 H1m = 0 . 5 * ( H1[ 0 ] + H1 [ - 1 ] )
29 X0 = np . a r r a y ( [ [ 0 , 0 , L , L ] , [ 0 , H0 , 0 . 5 * ( H0-H1m) , 0 . 5 * ( H0+H1m) ] ] ) # ( [ x1 , x4 , x2 , x3

] , [ y1 , y4 , y2 , y3 ] ) Mean geomtry
30

31 # M a t e r i a l p a r a m e t e r s
32 E = np . l i n s p a c e ( 3 5 , 6 5 , n ) *1 e3 #Young ’ s modulus [N/mm^2]
33 nu = 0 . 3 # P o i s s o n ’ s r a t i o
34

35 #Load
36 L1 = - 0 . 8 # Normal l o a d t o p boundary [N/mm^2]
37

38 # p a r a m e t e r i n d e p e n d e t as sembly
39 LHS_lam , cof f_ lam , LHS_mu , coff_mu , RHS, coff_RHS , c o n s t r a i n , domain , geom

, b a s i s , mu2 = e l a s t i c _ a s s e m b l y _ t r a p e z e ( n e l _ l e n g t h , n e l _ h e i g h t , L , H0 ,
k )

40 Model = [ LHS_lam , LHS_mu , RHS, c o n s t r a i n ]
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41

42 #H1- seminorn f o r t h e high - f i d e l i t y sys tem
43 X_norm = seminorm ( b a s i s , geom , domain )
44

45 # I t e r a t i n g t h r o u g h t h e p a r a m e t e r s e l e c t i o n c r e a t i n g s n a p s h o t s and
c o r r e s p o n d i n g en e r gy

46 s n a p s h o t s , FEM_Energy = g e n e r e a t e _ s n a p s h o t s _ t r a p e z e ( LHS_lam , cof f_ lam ,
LHS_mu , coff_mu , RHS, coff_RHS , c o n s t r a i n , mu2 , E , nu , L , H0 , H1 , L1 )

47

48 # G e n e r a t i n g t h e r e d u c e d b a s i s wr t . t h e en e r gy i n n e r p r o d u c t and r e t a i n i n g
e s s e n t i a l RB- modes

49 w, RB = genera te_RB ( s n a p s h o t s , X_norm . c o r e )
50 i o = w. s i z e # o r i g i n a l number o f POD

modes
51 w, RB = r e t a i n _ R B s (w, RB)
52

53 # G e n e r a t i n g t h e r e d u c e d model by m u l t i p l y i n g t h e h i g h f i d e l i t y model wi th
t h e r e d u c e d b a s i s

54 LHS_lamR , LHS_muR , RHS_R , c o n s t r a i n R = generate_ROM ( Model , RB)
55 ROM = [ LHS_lamR , LHS_muR , RHS_R , c o n s t r a i n R ]
56

57 # C a l c u l a t i n g RB s n a p s h o t s and c o r r e s p o n d i n g en e r gy f o r t h e p a r a m e t e r
sample

58 snapshotsRB , RB_Energy = g e n e r e a t e _ s n a p s h o t s _ t r a p e z e ( LHS_lamR , cof f_ lam ,
LHS_muR , coff_mu , RHS_R , coff_RHS , c o n s t r a i n R , mu2 , E , nu , L , H0 , H1 ,
L1 )

59

60 # - - - - - - - - - - - - - - - - - - - - - - - p o s t p r o c e s s i n g - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
61 b e z i e r = domain . sample ( ’ b e z i e r ’ , 2 ) # sa m p l i n g of domain
62 p t s = b e z i e r . e v a l ( geom ) # r e f e r e n c e geomtry
63

64

65 # C a c l u l a t i n g mean e r r o r i n energy - norm f o r d i f f e r e n t RBs
66 e r r o r = np . z e r o s (RB . shape [ 1 ] )
67 f o r i i n r a n g e (RB . shape [ 1 ] ) :
68 LHS_lam_temp , LHS_mu_temp , RHS_temp , c o n s t r a i n _ t e m p = r e t a i n _ M o d e s (ROM

, i +1)
69 _ , Energy_temp = g e n e r e a t e _ s n a p s h o t s _ t r a p e z e ( LHS_lam_temp , cof f_ lam ,

LHS_mu_temp , coff_mu , RHS_temp , coff_RHS , c o n s t r a i n _ t e m p , mu2 , E , nu ,
L , H0 , H1 , L1 )

70 e r r o r [ i ] = sum ( ( abs ( FEM_Energy - Energy_temp ) / FEM_Energy ) * * 0 . 5 ) /
FEM_Energy . s i z e

71

72 #numer o f r e t a i n e d modes
73 x = np . l i n s p a c e ( 1 , e r r o r . shape [ 0 ] , num = e r r o r . shape [ 0 ] )
74

75 # p l o t t i n g r e l a t i v e e r r o r f o r f o r d i f f e r e n t RBs
76 p l t . f i g u r e ( )
77 p l t . s e m i l o g y ( x , e r r o r )
78 # t i k z _ s a v e ( " E x 2 _ a g g _ e r r o r . t e x " )
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79

80 # P l o t t i n g t h e s p e c t r u m of s i n g u l a r v a l u e s ( s igma ) o f t h e r e t a i n e d RB- modes
81 p l t . f i g u r e ( )
82 p l t . s e m i l o g y ( x ,w)
83 # t i k z _ s a v e ( " Ex2_spect rum . t e x " )
84

85 # p l o t t i n g POD- modes on r e e r e n c e geomet ry
86 plot_POD_Modes (RB, b a s i s , b e z i e r , p t s )
87

88 # P l o t t i n g high - f i d e l i t y ( 1 ) - vs . RB( 2 ) - s o l u t i o n f o r c o m p a r i s s o n f o r
p a r a m e t e r sample i

89 i = 0
90 a = i n t ( i%n )
91

92 h i = H1[ a ]
93 Xi = np . a r r a y ( [ [ 0 , 0 , L , L ] , [ 0 , H0 , 0 . 5 * ( H0 - h i ) , 0 . 5 * ( H0 + h i ) ] ] ) # ( [ x1 , x3 , x2

, x4 ] , [ y1 , y3 , y2 , y4 ] ) f o r sample i
94 Xi = Xvec ( n e l _ l e n g t h , n e l _ h e i g h t , Xi )
95 geomi = b a s i s . d o t ( Xi )
96

97 s o l 1 = s n a p s h o t s [ : , i ]
98 d i s p 1 = b a s i s . d o t ( s o l 1 )
99

100 s o l 2 = snapsho tsRB [ : , i ]
101 s o l 2 h = RB@sol2
102 d i s p 2 = b a s i s . d o t ( s o l 2 h )
103

104 p t s i , dp t s1 , d p t s 2 = b e z i e r . e v a l ( [ geomi , d i sp1 , d i s p 2 ] )
105 d p t s 1 = d p t s 1 *3 # s c a l i n g f o r v i s i b i l i t y
106 d p t s 2 = d p t s 2 *3 # s c a l i n g f o r v i s i b i l i t y
107 d p t s 1 += p t s i
108 d p t s 2 += p t s i
109

110 d p l o t ( b e z i e r , dp t s1 , d p t s 2 )
111 # t i k z _ s a v e ( " Ex2_hf_vs_rb . t e x " )
112

113

114 # P l o t i n s t a n c e o f p h y s i c a l and r e f e r e n c e geomtry
115 g p l o t ( b e z i e r , p t s i )
116 # t i k z _ s a v e ( " Ex2 - i n s t a n c e . t e x " )
117

118 g p l o t ( b e z i e r , p t s )
119 # t i k z _ s a v e ( " Ex2 - r e f e r e n c e . t e x " )
120

121 # p l o t t i n g POD- modes on mean geomet ry
122 #X0 = Xvec ( n e l _ l e n g t h , n e l _ h e i g h t , X0 )
123 #geom0 = b a s i s . d o t ( X0 )
124 # p t s 0 = b e z i e r . e v a l ( geom0 )
125 #plot_POD_Modes (RB, b a s i s , b e z i e r , p t s 0 )

B.2: Example 2 - script
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1 i m p o r t numpy as np
2 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
3 from m a t p l o t l i b 2 t i k z i m p o r t s ave as t i k z _ s a v e
4

5 # i m p o r t i n g f u n c t i o n s
6 from p l o t i m p o r t d p l o t , plot_POD_Modes , g p l o t
7 from e l a s t i c _ a s s e m b l y i m p o r t e l a s t i c _ a s s e m b l y , seminorm
8 from ROM_assembly i m p o r t genera te_RB , generate_ROM , re t a in_RBs ,

g e n e r a t e _ s n a p s h o t s , r e t a i n _ M o d e s
9

10 # geomet ry
11 n e l _ l e n g t h = 40 # number o f e l e m e n t s i n l e n g t h d i r .
12 n e l _ h e i g h t = 20 # number o f e l e m e n t s i n h e i g h t d i r .
13

14 L = 3000
15 H0 = 350
16 H1 = 150
17 Xgeom = np . a r r a y ( [ [ 0 , L , 0 , L ] , [ 0 , 0 . 5 * ( H0- H1) ,H0 , 0 . 5 * ( H0+H1) ] ] ) # ( [ x1 , x2 , x3 ,

x4 ] , [ y1 , y2 , y3 , y4 ] )
18

19 # G e n e r a t i n g t h e high - f i d e l i t y model
20 domain , geom , b a s i s , lhs_ lam , lhs_mu , rhs_b , r h s _ t , r h s _ r , r h s _ l ,

c o n s t r a i n = e l a s t i c _ a s s e m b l y ( Xgeom , n e l _ l e n g t h , n e l _ h e i g h t )
21 r h s _ t = r h s _ t
22 r h s _ l = r h s _ l
23 Model = [ lhs_ lam , lhs_mu , rhs_b , r h s _ t , r h s _ r , r h s _ l , c o n s t r a i n ]
24

25 # p a r a m e t e r s
26 E = np . a r r a y ( [ 1 , 5 , 9 ] ) *1 e4 # Young ’ s modulus [N/mm^2]
27 nu = np . a r r a y ( [ 0 . 2 5 , 0 . 3 3 5 , 0 . 4 2 ] ) # P o i s s o n ’ s r a t i o
28 l _ b = np . a r r a y ( [ - 0 . 4 , 0 , 0 . 4 ] ) # [MPa]
29 l _ r = np . a r r a y ( [ - . 4 , 0 , . 4 ] ) # [MPa]
30

31

32 #H1- seminorn f o r t h e high - f i d e l i t y sys tem
33 X = seminorm ( b a s i s , geom , domain )
34

35 # C a l c u l a t i n g t h e s o l u t i o n s f o r a l l p a r a m e t e r samples , and t h e
c o r r e s p o n d i n g s t r a i n en e r gy

36 s n a p s h o t s , EnergyFEM = g e n e r a t e _ s n a p s h o t s ( E , nu , l_b , l _ r , lhs_ lam , lhs_mu
, r h s _ t , rhs_b , r h s _ r , r h s _ l , c o n s t r a i n )

37

38 # G e n e r a t i n g t h e r e d u c e d b a s i s wr t . t h e en e r gy i n n e r p r o d u c t and r e t a i n i n g
e s s e n t i a l RB- modes

39 w, RB = genera te_RB ( s n a p s h o t s , X. c o r e )
40 i o = w. s i z e # o r i g i n a l number o f POD modes
41 w, RB = r e t a i n _ R B s (w, RB)
42

43 # G e n e r a t i n g t h e r e d u c e d model by m u l t i p l y i n g t h e h i g h f i d e l i t y model wi th
t h e r e d u c e d b a s i s
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44 lhs_lamR , lhs_muR , rhs_bR , rhs_ tR , rhs_rR , rhs_ lR , c o n s t r a i n R =
generate_ROM ( Model , RB)

45 ROM = [ lhs_lamR , lhs_muR , rhs_bR , rhs_ tR , rhs_rR , rhs_ lR , c o n s t r a i n R ]
46

47

48 snapshotsRB , EnergyRB = g e n e r a t e _ s n a p s h o t s ( E , nu , l_b , l _ r , lhs_lamR ,
lhs_muR , rhs_ tR , rhs_bR , rhs_rR , rhs_ lR , c o n s t r a i n R )

49 # - - - - - - - - - - - - - - - - - - - Pos t - p r o c e s s i n g - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
50 b e z i e r = domain . sample ( ’ b e z i e r ’ , 2 )
51 p t s = b e z i e r . e v a l ( geom )
52

53 # T e s t i n g a c c u r a c y mean a c c u r a c y i n energy - norm f o r r e t a i n i n g POD- modes
54 e r r o r = np . z e r o s (RB . shape [ 1 ] )
55 f o r i i n r a n g e (RB . shape [ 1 ] ) :
56 lhs_ lam_temp , lhs_mu_temp , rhs_b_temp , rh s_ t_ t emp , rhs_ r_ t emp ,

rh s_ l_ t emp , c o n s t r a i n _ t e m p = r e t a i n _ M o d e s (ROM, i +1)
57 _ , Energy_temp = g e n e r a t e _ s n a p s h o t s ( E , nu , l_b , l _ r , lhs_ lam_temp ,

lhs_mu_temp , rh s_ t_ t emp , rhs_b_temp , rhs_ r_ temp , rh s_ l_ t emp ,
c o n s t r a i n _ t e m p )

58 e r r o r [ i ] =sum ( ( abs ( EnergyFEM - Energy_temp ) / EnergyFEM ) * * 0 . 5 ) /
EnergyFEM . s i z e

59

60 x = np . l i n s p a c e ( 1 , e r r o r . shape [ 0 ] , num = e r r o r . shape [ 0 ] )
61

62 p l t . f i g u r e ( )
63 p l t . s e m i l o g y ( x , e r r o r )
64 # t i k z _ s a v e ( " a v g _ e r r o r . t e x " )
65

66 # P l o t t i n g t h e s p e c t r u m of s i n g u l a r v a l u e s ( s igma ) o f t h e r e t a i n e d RB- modes
67 p l t . f i g u r e ( )
68 p l t . s e m i l o g y ( x ,w)
69 # t i k z _ s a v e ( " s p e c t r u m . t e x " )
70

71 # p l o t t i n g POD- modes
72 plot_POD_Modes (RB, b a s i s , b e z i e r , p t s )
73

74 # P l o t t i n g high - f i d e l i t y ( 1 ) - vs . RB( 2 ) - s o l u t i o n f o r c o m p a r i s s o n f o r
p a r a m e t e r sample i

75 i = 2
76 s o l 1 = s n a p s h o t s [ : , i ]
77 d i s p 1 = b a s i s . d o t ( s o l 1 )
78

79 s o l 2 = snapsho tsRB [ : , i ]
80 s o l 2 h = RB@sol2
81 d i s p 2 = b a s i s . d o t ( s o l 2 h )
82

83

84 p t s , dp t s1 , d p t s 2 = b e z i e r . e v a l ( [ geom , d i sp1 , d i s p 2 ] )
85 d p t s 1 += p t s
86 d p t s 2 += p t s
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87

88 d p l o t ( b e z i e r , dp t s1 , d p t s 2 )
89

90 # P l o t geomet ry
91 g p l o t ( b e z i e r , p t s )

B.3: Test script

1 # I m p o r t i n g l i b r a r i e s
2 i m p o r t numpy as np
3 i m p o r t sympy as sp
4 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
5 from m a t p l o t l i b 2 t i k z i m p o r t s ave as t i k z _ s a v e
6

7 # Geometry
8 x i = 1
9 H0 = 450

10 mu = sp . symbols ( "mu" )
11 t h e t a = mu- H0
12

13 # He i gh t v e c t o r
14 m = 5
15 H1 = np . l i n s p a c e ( 1 5 0 , 3 5 0 , m)
16

17 l a b e l s = [ ]
18 f o r k i n r a n g e ( H1 . s i z e ) :
19 l a b e l s . append ( s t r ( H1 [ k ] ) )
20

21 #max number o f t e r m s
22 n = 70
23

24 x= np . l i n s p a c e ( 1 , n , n )
25

26 # r e f e r e n c e R
27 R s _ r e f = 1 / ( 1 + t h e t a / H0 )
28

29 R = - np . ones ( [ n ] ) * ( t h e t a * x i / H0)
30

31 f o r i i n r a n g e ( n ) :
32 R[ i ] = R[ i ]** i
33

34 e r r o r = np . z e r o s ( [ n ,m] )
35

36 f o r i i n r a n g e ( n ) :
37 f o r j i n r a n g e (m) :
38 temp = sum (R [ : i + 1 ] )
39 temp = temp . subs (mu , H1[ j ] )
40 Rs_re f_ temp = R s _ r e f . subs (mu , H1 [ j ] )
41 e r r o r [ i , j ] = abs ( ( Rs_ref_ temp - temp ) / Rs_re f_ temp )
42

43 # P l o t t i n g r e s u l t s
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44 p l t . f i g u r e ( )
45 p l t . s e m i l o g y ( x , e r r o r )
46 p l t . gca ( ) . l e g e n d ( l a b e l s )
47 p l t . y l im ( 1 0 * * ( - 1 5 ) , 1 )
48

49 # t i k z _ s a v e ( ’ e r r o r _ R . t e x ’ )

B.4: Evaluation of geometric series representation of R

1 from n u t i l s i m p o r t mesh , ma t r ix , f u n c t i o n as fn
2 i m p o r t numpy as np
3

4 d e f e l a s t i c _ a s s e m b l y _ r e c t a n g l e ( n e l _ l e n g t h , n e l _ h e i g h t ) :
5 # C r e a t e domain and r e f e r e n c e geomet ry
6 x p t s = np . l i n s p a c e ( 0 , 1 , n e l _ l e n g t h + 1)
7 y p t s = np . l i n s p a c e ( 0 , 1 , n e l _ h e i g h t + 1)
8 domain , geom = mesh . r e c t i l i n e a r ( [ xp t s , y p t s ] )
9 z e t a , e t a = geom

10

11 # C r e a t e a b a s i s
12 b a s i s = domain . b a s i s ( ’ s p l i n e ’ , d e g r e e =1)
13 b a s i s 2 = fn . v e c t o r i z e ( [ b a s i s , b a s i s ] )
14 n = b a s i s . l e n g t h
15

16 # c a l c u l a t i n g s u b m a t r i c e s
17 grad = b a s i s . g r ad ( geom )
18 m1 = domain . i n t e g r a t e ( fn . o u t e r ( g r ad [ : , 0 ] , g r ad [ : , 0 ] ) * fn . J ( geom ) ,

i scheme = ’ gau s s 5 ’ ) . c o r e
19 m2 = domain . i n t e g r a t e ( fn . o u t e r ( g r ad [ : , 0 ] , g r ad [ : , 1 ] ) * fn . J ( geom ) ,

i scheme = ’ gau s s 5 ’ ) . c o r e
20 m3 = domain . i n t e g r a t e ( fn . o u t e r ( g r ad [ : , 1 ] , g r ad [ : , 0 ] ) * fn . J ( geom ) ,

i scheme = ’ gau s s 5 ’ ) . c o r e
21 m4 = domain . i n t e g r a t e ( fn . o u t e r ( g r ad [ : , 1 ] , g r ad [ : , 1 ] ) * fn . J ( geom ) ,

i scheme = ’ gau s s 5 ’ ) . c o r e
22

23 #Lambda d e p e n d e n t as sembly
24 K_lam_1 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 1 , 0 , 0 , 0 ,m1) )
25 K_lam_2 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 0 , 1 , 0 , 0 , m2) +

m u l t i p l y _ I _ m a t ( n , 0 , 0 , 1 , 0 ,m3) )
26 K_lam_3 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 0 , 0 , 0 , 1 , m4) )
27

28 #mu d e p e n d e n t as sembly
29 K_mu_1 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 2 , 0 , 0 , 1 , m1) )
30 K_mu_2 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 0 , 0 , 1 , 0 , m2) +

m u l t i p l y _ I _ m a t ( n , 0 , 1 , 0 , 0 ,m3) )
31 K_mu_3 = m a t r i x . NumpyMatrix ( m u l t i p l y _ I _ m a t ( n , 1 , 0 , 0 , 2 , m4) )
32

33 LHS_lam_i = [ K_lam_1 , K_lam_2 , K_lam_3 ]
34

35 LHS_mu_i = [ K_mu_1 , K_mu_2 , K_mu_3 ]
36
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37 # RHS v e c t o r
38 # C o n s t r u c t a v e c t o r - v a l u e d f u n c t i o n and i n t e g r a t e i t f o r a l l

b o u n d a r i e s
39 boundary_b = domain . boundary [ ’ bot tom ’ ]
40 b o u n d a r y _ t = domain . boundary [ ’ t o p ’ ]
41 b o u n d a r y _ r = domain . boundary [ ’ r i g h t ’ ]
42 b o u n d a r y _ l = domain . boundary [ ’ l e f t ’ ]
43 r h s _ n = fn . matmat ( b a s i s 2 , geom . normal ( ) )
44 r h s _ x = fn . matmat ( b a s i s 2 , [ 1 , 0 ] )
45 r h s _ y = fn . matmat ( b a s i s 2 , [ 0 , 1 ] )
46 y_pa r = 6* e t a * (1 - e t a )
47

48 r h s _ b = boundary_b . i n t e g r a t e ( r h s _ y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
49 r h s _ t = b o u n d a r y _ t . i n t e g r a t e ( r h s _ y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
50 r h s _ r = b o u n d a r y _ r . i n t e g r a t e ( r h s _ x * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
51 r h s _ l = -2* b o u n d a r y _ l . i n t e g r a t e ( r h s _ y * y_pa r * fn . J ( geom ) , i scheme = ’

gau s s 5 ’ )
52

53 RHS_i= [ r h s _ t , rhs_b , r h s _ r , r h s _ l ]
54

55 # D i r i c h l e t boundary c o n d i t i o n s
56 # Fix t h e d i s p l a c e m e n t on t h e l e f t s i d e
57 z e r o = fn . z e r o s ( ( 2 , ) )
58 boundary = domain . boundary [ ’ l e f t ’ ]
59 c o n s t r a i n = boundary . p r o j e c t ( ze ro , on to = b a s i s 2 , geomet ry =geom , i scheme

= ’ gau s s 5 ’ )
60 nan = c o n s t r a i n [ - 1 ]
61 c o n s t r a i n [ n +1: n+ i n t ( n e l _ h e i g h t / 2 ) ] = nan
62 c o n s t r a i n [ n+ i n t ( n e l _ h e i g h t / 2 ) +1 : n+ n e l _ h e i g h t ] = nan
63

64 # r e t u r n model , l h s , r h s and c o n s t r a i n t s
65 r e t u r n domain , geom , b a s i s 2 , LHS_lam_i , LHS_mu_i , RHS_i , c o n s t r a i n
66

67 d e f t h e t a _ c a l c ( l , h ) :
68 t h e t a _ 1 = h / l
69 t h e t a _ 2 = 1
70 t h e t a _ 3 = l / h
71 t h e t a = [ t h e t a _ 1 , t h e t a _ 2 , t h e t a _ 3 ]
72 J = l *h
73 r e t u r n t h e t a , J
74

75 d e f m u l t i p l y _ I _ m a t ( n , a1 , a2 , a3 , a4 , m) :
76 I_0 = np . eye ( n )
77 I = np . z e r o s ( [ 2 * n , 2 * n ] )
78 I [ : n , : n ] = a1 *I_0@m
79 I [ : n , n : ] = a2 *I_0@m
80 I [ n : , : n ] = a3 *I_0@m
81 I [ n : , n : ] = a4 *I_0@m
82 r e t u r n I
83
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84 d e f Xvec ( n e l _ l e n g t h , n e l _ h e i g h t ,X) : # r e t u r n i n g a v e c t o r o f g e o m e t r i c a l n o d a l
v a l u e s f o r t h e g i v e n g r i d

85 # r e f e r e n c e e l e m e n t
86 x0 = np . l i n s p a c e ( 0 , 1 , 2 )
87 y0 = np . l i n s p a c e ( 0 , 1 , 2 )
88 domain , geom = mesh . r e c t i l i n e a r ( [ x0 , y0 ] )
89

90 # b a s i s f u n c t i o n ove r r e f e r e n c e domain
91 b a s i s = domain . b a s i s ( ’ s p l i n e ’ , d e g r e e =1)
92 b a s i s = fn . v e c t o r i z e ( [ b a s i s , b a s i s ] )
93

94 # sa m p l i n g u s i n g a b e z i e r r u l e c o r r e s p o n d i n g t o t h e mesh of t h e g l o b a l
domain

95 b e z i e r = domain . sample ( ’ b e z i e r ’ , ( n e l _ l e n g t h +1 , n e l _ h e i g h t +1) )
96

97 # c r e a t i n g t h e f i e l d ( n , g ) from t h e c o r n e r nodes
98 X = b a s i s . d o t (X. f l a t t e n ( ) )
99

100 # e v a l u t i n g wi th r e s p e c t t o t h e b e z i e r sample
101 x = b e z i e r . e v a l (X)
102 Xvec = x . T . f l a t t e n ( )
103 r e t u r n Xvec

B.5: Example 1 - FEM functions

1 from n u t i l s i m p o r t mesh , f u n c t i o n as fn
2 i m p o r t numpy as np
3 i m p o r t sympy as sp
4

5

6 d e f e l a s t i c _ a s s e m b l y _ t r a p e z e ( n e l _ l e n g t h , n e l _ h e i g h t , L , H0 , k ) :
7 # C r e a t e domain and r e f e r e n c e geomet ry
8 x p t s = np . l i n s p a c e ( 0 , 1 , n e l _ l e n g t h + 1)
9 y p t s = np . l i n s p a c e ( 0 , 1 , n e l _ h e i g h t + 1)

10 domain , geom = mesh . r e c t i l i n e a r ( [ xp t s , y p t s ] )
11 z e t a , e t a = geom
12 mu2 = sp . Symbol ( ’mu2 ’ )
13 t h e t a = mu2 - H0
14 r0 = t h e t a / H0
15

16 # C r e a t e a b a s i s
17 b a s i s = domain . b a s i s ( ’ s p l i n e ’ , d e g r e e =1)
18 b a s i s 2 = fn . v e c t o r i z e ( [ b a s i s , b a s i s ] )
19 n = b a s i s . l e n g t h
20

21 # d e r i v a t i v e s o f b a s i s
22 grad = b a s i s . g r ad ( geom )
23

24 B1 = grad [ : , 0 ] / L
25 B2 = grad [ : , 1 ] * ( 0 . 5 - e t a ) / ( L*H0)
26 B3 = grad [ : , 1 ] / H0
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27

28 # s u b m a t r i c e s and t h e i r c o r r e s p o n d i n g c o e f i c c i e n t s
29 N0_xx = i n t e g r a t e _ m a t r i x ( [ fn . o u t e r ( B1 , B1 ) , ( z e t a / H0) * fn . o u t e r ( B1 , B1 )

+ fn . o u t e r ( B2 , B1 ) + fn . o u t e r ( B1 , B2 ) ] , L , H0 , geom , domain )
30 c o f f x x = [ 1 , t h e t a ]
31 N0_xxR = [ fn . o u t e r ( B2 , B2 ) ]
32 cof fxxR = [ t h e t a **2]
33 N0_xxR , cof fxxR = a s s e m l e _ i n t e g r a t e _ R _ t e r m s ( N0_xxR , coffxxR , geom ,

domain , L , H0 , z e t a , r0 , k )
34 N0_xx . e x t e n d ( N0_xxR )
35 c o f f x x . e x t e n d ( cof fxxR )
36 # c o f f x x = [ 1 , t h e t a *R , t h e t a ^2*R]
37

38

39 N0_xy = i n t e g r a t e _ m a t r i x ( [ fn . o u t e r ( B1 , B3 ) ] , L , H0 , geom , domain )
40 c o f f x y = [ 1 ]
41 N0_xyR = [ fn . o u t e r ( B2 , B3 ) ]
42 cof fxyR = [ t h e t a ]
43 N0_xyR , cof fxyR = a s s e m l e _ i n t e g r a t e _ R _ t e r m s ( N0_xyR , coffxyR , geom ,

domain , L , H0 , z e t a , r0 , k )
44 N0_xy . e x t e n d ( N0_xyR )
45 c o f f x y . e x t e n d ( cof fxyR )
46 # c o f f x y = [ 1 , t h e t a *R]
47

48 N0_yx = [ N0_xy [ 0 ] . T ]
49 c o f f y x = [ 1 ]
50 N0_yxR = [ fn . o u t e r ( B3 , B2 ) ]
51 cof fyxR = [ t h e t a ]
52 N0_yxR , cof fyxR = a s s e m l e _ i n t e g r a t e _ R _ t e r m s ( N0_yxR , coffyxR , geom ,

domain , L , H0 , z e t a , r0 , k )
53 N0_yx . e x t e n d ( N0_yxR )
54 c o f f y x . e x t e n d ( cof fyxR )
55 # c o f f y x = [ 1 , t h e t a *R]
56

57 N0_yy = [ fn . o u t e r ( B3 , B3 ) ]
58 c o f f y y = [ 1 ]
59 N0_yy , c o f f y y = a s s e m l e _ i n t e g r a t e _ R _ t e r m s ( N0_yy , co f fyy , geom , domain ,

L , H0 , z e t a , r0 , k )
60 # c o f f y y = [R]
61

62 # assembly o f s u b m a t r i c e s c o n s t r u c t i o n o f t h e s t i f f n e s s m a t r i c e s
63 # t e r m s d e p p e n d e n t on lambda
64 axx = [ 1 , 0 , 0 , 0 ]
65 axy = [ 0 , 1 , 0 , 0 ]
66 ayx = [ 0 , 0 , 1 , 0 ]
67 ayy = [ 0 , 0 , 0 , 1 ]
68

69 LHS_lam , c o f f _ l a m = a s s e m b l e _ t e r m s ( N0_xx , co f fxx , axx , N0_xy , co f fxy ,
axy , N0_yx , co f fyx , ayx , N0_yy , co f fyy , ayy , n )

70 LHS_lam , c o f f _ l a m = o r g a n i z e ( LHS_lam , c o f f _ l a m )
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71

72

73 # t e r m s d e p p e n d e n t on mu
74 axx = [ 2 , 0 , 0 , 1 ]
75 axy = [ 0 , 0 , 1 , 0 ]
76 ayx = [ 0 , 1 , 0 , 0 ]
77 ayy = [ 1 , 0 , 0 , 2 ]
78 LHS_mu , coff_mu = a s s e m b l e _ t e r m s ( N0_xx , co f fxx , axx , N0_xy , co f fxy ,

axy , N0_yx , co f fyx , ayx , N0_yy , co f fyy , ayy , n )
79 LHS_mu , coff_mu = o r g a n i z e (LHS_mu , coff_mu )
80

81 # RHS v e c t o r
82 # C o n s t r u c t a v e c t o r - v a l u e d f u n c t i o n and i n t e g r a t e i t f o r a l l

b o u n d a r i e s
83 boundary_b = domain . boundary [ ’ bot tom ’ ]
84 b o u n d a r y _ t = domain . boundary [ ’ t o p ’ ]
85 b o u n d a r y _ r = domain . boundary [ ’ r i g h t ’ ]
86 b o u n d a r y _ l = domain . boundary [ ’ l e f t ’ ]
87 r h s n = fn . matmat ( b a s i s 2 , geom . normal ( ) )
88 r h s y = fn . matmat ( b a s i s 2 , [ 0 , 1 ] )
89 r h s x = fn . matmat ( b a s i s 2 , [ 1 , 0 ] )
90 y_pa r = 6* e t a * (1 - e t a )
91

92 r h s _ b = L* boundary_b . i n t e g r a t e ( r h s y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
93 r h s _ t = L* b o u n d a r y _ t . i n t e g r a t e ( r h s y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
94 r h s _ r = b o u n d a r y _ r . i n t e g r a t e ( r h s x * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
95 r h s _ l = - b o u n d a r y _ l . i n t e g r a t e ( r h s y * y_pa r * fn . J ( geom ) , i scheme = ’

gau s s 5 ’ )
96

97 RHS= [ rhs_b , r h s _ t , r h s _ r , r h s _ l ]
98 coff_RHS = [ ( L**2 + ( t h e t a **2) / 4 ) * * 0 . 5 / L , ( L**2 + ( t h e t a **2) / 4 ) * * 0 . 5 / L

*0 ,mu2*0 ,L ]
99

100 # D i r i c h l e t boundary c o n d i t i o n s
101 # Fix t h e d i s p l a c e m e n t on t h e l e f t s i d e
102 z e r o = fn . z e r o s ( ( 2 , ) )
103 boundary = domain . boundary [ ’ l e f t ’ ]
104 c o n s t r a i n = boundary . p r o j e c t ( ze ro , on to = b a s i s 2 , geomet ry =geom , i scheme

= ’ gau s s 5 ’ )
105 nan = c o n s t r a i n [ - 1 ]
106 c o n s t r a i n [ n +1: n+ i n t ( n e l _ h e i g h t / 2 ) ] = nan
107 c o n s t r a i n [ n+ i n t ( n e l _ h e i g h t / 2 ) +1 : n+ n e l _ h e i g h t ] = nan
108

109

110 r e t u r n LHS_lam , cof f_ lam , LHS_mu , coff_mu , RHS, coff_RHS , c o n s t r a i n ,
domain , geom , b a s i s 2 , mu2

111

112

113 d e f i n t e g r a t e _ m a t r i x (M, L , H, geom , domain ) :
114 MI = [ ]
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115 f o r e l e m e n t i n M:
116 MI . append ( L*H* domain . i n t e g r a t e ( e l e m e n t * fn . J ( geom ) , i scheme = ’

gauss10 ’ ) )
117 r e t u r n MI
118

119

120 d e f d o t _ I m a t ( n , a , m) :
121 I_0 = np . eye ( n )
122 I = np . z e r o s ( [ 2 * n , 2 * n ] )
123 I [ : n , : n ] = a [ 0 ] * I_0@m . c o r e
124 I [ : n , n : ] = a [ 1 ] * I_0@m . c o r e
125 I [ n : , : n ] = a [ 2 ] * I_0@m . c o r e
126 I [ n : , n : ] = a [ 3 ] * I_0@m . c o r e
127 r e t u r n I
128

129 d e f a s s e m b l e _ t e r m s ( N0_xx , co f fxx , axx , N0_xy , co f fxy , axy , N0_yx , co f fyx ,
ayx , N0_yy , co f fyy , ayy , n ) :

130 LHS = [ ]
131 c o f f = [ ]
132 f o r i i n r a n g e ( l e n ( N0_xx ) ) :
133 LHS . append ( d o t _ I m a t ( n , axx , N0_xx [ i ] ) )
134 c o f f . append ( c o f f x x [ i ] )
135 f o r j i n r a n g e ( l e n ( N0_xy ) ) :
136 LHS . append ( d o t _ I m a t ( n , axy , N0_xy [ j ] ) + d o t _ I m a t ( n , ayx , N0_yx [ j ] ) )
137 c o f f . append ( c o f f x y [ j ] )
138 f o r k i n r a n g e ( l e n ( N0_yy ) ) :
139 LHS . append ( d o t _ I m a t ( n , ayy , N0_yy [ k ] ) )
140 c o f f . append ( c o f f y y [ k ] )
141

142 r e t u r n LHS , c o f f
143

144 d e f a s s e m l e _ i n t e g r a t e _ R _ t e r m s ( N0_R , coffR , geom , domain , L , H0 , z e t a , r0 ,
k ) :

145 M = [ ]
146 c o f f = [ ]
147 f o r j i n r a n g e ( l e n ( N0_R ) ) :
148 temp = N0_R [ j ]
149 c o f f _ t e m p = cof fR [ j ]
150 f o r i i n r a n g e ( k ) :
151 M. append ( temp * ( ( - z e t a ) ** i ) )
152 c o f f . append ( c o f f _ t e m p *( r0 ** i ) )
153 MI = i n t e g r a t e _ m a t r i x (M, L , H0 , geom , domain )
154 r e t u r n MI , c o f f
155

156 # Equal c o e f i c c i e n t s a r e d e t e c t e d and t h e c o r r e s p o n d i n g m a t r i c e s i s added
t o g e t h e r

157 d e f o r g a n i z e (M, c o f f ) :
158 Mo = [ ]
159 n = l e n ( c o f f )
160 c = c o f f
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161 i = 0
162 w h i l e i < n :
163 i n d e x = [ j f o r j , e i n enumera t e ( c ) i f e == c [ i ] ]
164 Mo. append (M[ i n d e x [ 0 ] ] )
165 d e l i n d e x [ 0 ]
166 i n d e x . r e v e r s e ( )
167 i f l e n ( i n d e x ) >0:
168 f o r k i n i n d e x :
169 d e l c [ k ]
170 Mo[ i ] += M[ k ]
171 d e l M[ k ]
172 n = l e n ( c )
173 i +=1
174 r e t u r n Mo, c o f f
175

176

177 d e f e v a l u a t e _ l i s t ( l s , var , v a l u e ) :
178 Ls = [ ]
179 f o r e l e m e n t i n l s :
180 i f t y p e ( e l e m e n t ) != i n t and t y p e ( e l e m e n t ) != f l o a t :
181 Ls . append ( e l e m e n t . subs ( var , v a l u e ) )
182 e l s e :
183 Ls . append ( e l e m e n t )
184 Ls = np . a s a r r a y ( Ls , d t y p e = np . f l o a t )
185 r e t u r n Ls
186

187 d e f m u l t i p l y _ c o f f ( c o f f , M) :
188 K = np . z e r o s (M[ 0 ] . shape )
189 f o r i i n r a n g e ( l e n ( c o f f ) ) :
190 K = K+ M[ i ]* c o f f [ i ]
191 r e t u r n K
192

193 d e f geomet ry ( z e t a , e t a , Xgeom ) :
194 N0Q4 = [ z e t a * (1 - e t a ) , ( 1 - z e t a ) * e t a , z e t a * e t a ]
195 NQ4 = fn . v e c t o r i z e ( [ N0Q4 , N0Q4 ] )
196 geom = NQ4 . d o t ( Xgeom )
197 r e t u r n geom

B.6: Example 2 - FEM functions

1 from n u t i l s i m p o r t mesh , f u n c t i o n as fn
2 i m p o r t numpy as np
3

4 # r e t u r n s LHS m a t r i c e s which can be s c a l e d by lame - c o e f i c i e n t s , and
l o a d v e c t o r s f o r normal l o a d s on a l l t h r e e s u r f a c e s

5 d e f e l a s t i c _ a s s e m b l y (X, n e l _ l e n g t h , n e l _ h e i g h t ) :
6 # C r e a t e a domain and a geomet ry
7 x p t s = np . l i n s p a c e ( 0 , 1 , n e l _ l e n g t h + 1)
8 y p t s = np . l i n s p a c e ( 0 , 1 , n e l _ h e i g h t + 1)
9 domain , geom0 = mesh . r e c t i l i n e a r ( [ xp t s , y p t s ] )

10 z e t a , e t a = geom0
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11

12 # C r e a t e a b a s i s
13 # Like t h e geometry , a b a s i s i s a l s o a f u n c t i o n
14 b a s i s = domain . b a s i s ( ’ s p l i n e ’ , d e g r e e =1)
15 n = b a s i s . shape [ 0 ]
16

17 # V e c t o r i z e t h e b a s i s ( we need two components )
18 b a s i s = fn . v e c t o r i z e ( [ b a s i s , b a s i s ] )
19

20 # C r e a t i n g n o d a l v a l u e s o f t h e geomet ry ( x , y )
21 Xgeom = X [ : , 1 : ] . f l a t t e n ( )
22 geom = geomet ry ( z e t a , e t a , Xgeom )
23

24 # LHS m a t r i x
25 # C o n s t r u c t a ma t r i x - v a l u e d f u n c t i o n and i n t e g r a t e i t
26 # s e p e r a t e d i n two m a t r i c e s d e p e n d e n t on each lamè p a r a m e t e r
27 l h s _ l a m = fn . o u t e r ( b a s i s . d i v ( geom ) )
28 l h s _ l a m = domain . i n t e g r a t e ( l h s _ l a m * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
29

30 lhs_mu = fn . o u t e r ( b a s i s . symgrad ( geom ) ) . sum ( [ - 1 , - 2 ] )
31 lhs_mu = domain . i n t e g r a t e (2* lhs_mu * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
32

33 # RHS v e c t o r
34 # C o n s t r u c t a v e c t o r - v a l u e d f u n c t i o n and i n t e g r a t e i t f o r a l l

b o u n d a r i e s
35 boundary_b = domain . boundary [ ’ bot tom ’ ]
36 b o u n d a r y _ t = domain . boundary [ ’ t o p ’ ]
37 b o u n d a r y _ r = domain . boundary [ ’ r i g h t ’ ]
38 b o u n d a r y _ l = domain . boundary [ ’ l e f t ’ ]
39 r h s _ n = fn . matmat ( b a s i s , geom . normal ( ) )
40 r h s _ x = fn . matmat ( b a s i s , [ 1 , 0 ] )
41 r h s _ y = fn . matmat ( b a s i s , [ 0 , 1 ] )
42 y_pa r = 6* e t a * (1 - e t a )
43 r h s _ b = boundary_b . i n t e g r a t e ( r h s _ y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
44 r h s _ t = b o u n d a r y _ t . i n t e g r a t e ( r h s _ y * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
45 r h s _ r = b o u n d a r y _ r . i n t e g r a t e ( r h s _ x * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
46 r h s _ l = -2* b o u n d a r y _ l . i n t e g r a t e ( r h s _ y * y_pa r * fn . J ( geom ) , i scheme = ’

gau s s 5 ’ ) *Xgeom [ 0 ] / Xgeom [ - 2 ]
47

48 # D i r i c h l e t boundary c o n d i t i o n s
49 # Fix t h e d i s p l a c e m e n t on t h e l e f t s i d e
50 z e r o = fn . z e r o s ( ( 2 , ) )
51 boundary = domain . boundary [ ’ l e f t ’ ]
52 c o n s t r a i n = boundary . p r o j e c t ( ze ro , on to = b a s i s , geomet ry =geom , i scheme =

’ gau s s 5 ’ )
53 nan = c o n s t r a i n [ - 1 ]
54 c o n s t r a i n [ n +1: n+ i n t ( n e l _ h e i g h t / 2 ) ] = nan
55 c o n s t r a i n [ n+ i n t ( n e l _ h e i g h t / 2 ) +1 : n+ n e l _ h e i g h t ] = nan
56

57 # r e t u r n model , l h s , r h s and c o n s t r a i n t s
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58 r e t u r n domain , geom , b a s i s , lhs_ lam , lhs_mu , rhs_b , r h s _ t , r h s _ r ,
r h s _ l , c o n s t r a i n

59

60 # r e t u r n s lames f i r s t p a r a m e t e r
61 d e f lame_lambd ( E , nu ) :
62 r e t u r n ( E*nu ) / ( ( 1 + nu ) *(1 - 2* nu ) )
63

64 # r e t u r n s lames second p a r a m e t e r
65 d e f lame_mu ( E , nu ) :
66 r e t u r n E / ( 2 * ( 1 + nu ) )
67

68 d e f geomet ry ( z e t a , e t a , Xgeom ) :
69 N0Q4 = [ z e t a * (1 - e t a ) , ( 1 - z e t a ) * e t a , z e t a * e t a ]
70 NQ4 = fn . v e c t o r i z e ( [ N0Q4 , N0Q4 ] )
71 geom = NQ4 . d o t ( Xgeom )
72 r e t u r n geom
73

74 # C a l c u l a t e s H1- seminorm / energynorm
75 d e f seminorm ( b a s i s , geom , domain ) :
76 X = fn . o u t e r ( b a s i s . g r ad ( geom ) ) . sum ( [ - 1 , - 2 ] )
77 X = domain . i n t e g r a t e (X * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
78 r e t u r n X
79

80 d e f energynorm ( b a s i s , geom , domain , my , lam ) :
81 X = lam * fn . o u t e r ( b a s i s . d i v ( geom ) ) + 2*my* fn . o u t e r ( b a s i s . symgrad ( geom ) )

. sum ( [ - 1 , - 2 ] )
82 #X = fn . o u t e r ( b a s i s . d i v ( geom ) ) + 2* fn . o u t e r ( b a s i s . symgrad ( geom ) ) . sum

( [ - 1 , - 2 ] )
83 X = domain . i n t e g r a t e (X * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
84 r e t u r n X
85

86 d e f e n e r g y n o r m _ s t r a i n ( b a s i s , geom , domain ) :
87 X = fn . o u t e r ( b a s i s . symgrad ( geom ) ) . sum ( [ - 1 , - 2 ] )
88 X = domain . i n t e g r a t e (X * fn . J ( geom ) , i scheme = ’ gau s s 5 ’ )
89 r e t u r n X
90

91 d e f Xvec ( n e l _ l e n g t h , n e l _ h e i g h t ,X) : # r e t u r n i n g a v e c t o r o f g e o m e t r i c a l n o d a l
v a l u e s f o r t h e g i v e n g r i d

92 # r e f e r e n c e e l e m e n t
93 x0 = np . l i n s p a c e ( 0 , 1 , 2 )
94 y0 = np . l i n s p a c e ( 0 , 1 , 2 )
95 domain , geom = mesh . r e c t i l i n e a r ( [ x0 , y0 ] )
96

97 # b a s i s f u n c t i o n ove r r e f e r e n c e domain
98 b a s i s = domain . b a s i s ( ’ s p l i n e ’ , d e g r e e =1)
99 b a s i s = fn . v e c t o r i z e ( [ b a s i s , b a s i s ] )

100

101 # sa m p l i n g u s i n g a b e z i e r r u l e c o r r e s p o n d i n g t o t h e mesh of t h e g l o b a l
domain

102 b e z i e r = domain . sample ( ’ b e z i e r ’ , ( n e l _ l e n g t h +1 , n e l _ h e i g h t +1) )
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103

104 # c r e a t i n g t h e f i e l d ( n , g ) from t h e c o r n e r nodes
105 X = b a s i s . d o t (X. f l a t t e n ( ) )
106

107 # e v a l u t i n g wi th r e s p e c t t o t h e b e z i e r sample
108 x = b e z i e r . e v a l (X)
109 Xvec = x . T . f l a t t e n ( )
110 r e t u r n Xvec

B.7: Genereal FEM functions

1 from s c i p y . l i n a l g i m p o r t f r a c t i o n a l _ m a t r i x _ p o w e r as f r a c _ p o w e r
2 i m p o r t numpy as np
3 from n u t i l s i m p o r t m a t r i x
4

5 from e l a s t i c _ a s s e m b l y i m p o r t lame_lambd , lame_mu
6 from r e c t a n g l e _ a s s e m b l y i m p o r t t h e t a _ c a l c
7 from t r a p e z e _ a s s e m b l y i m p o r t e v a l u a t e _ l i s t , m u l t i p l y _ c o f f
8

9 # S o l v i n g t h e e i g e n v a l u e problem and r e t u r n i n g t h e r e d u c e d b a s i s on
d e s c e n d i n g o r d e r

10 d e f genera te_RB ( s n a p s h o t s , X) :
11 ns = s n a p s h o t s . shape [ 1 ] # number o f samples
12 Nh = s n a p s h o t s . shape [ 0 ] # number o f d o f s
13

14 i f ns <=Nh :
15 A = s n a p s h o t s . T@X@snapshots # Ma t r i x wich we a r e s o l v i n g t h e

e i g e n v a l u e problem f o r
16 w, v = np . l i n a l g . e i g h (A)
17 w, v = o r d e r e d (w, v )
18 w = w** 0 .5 # s i n g u l a r v a l u e s f o r t h e RB
19 RB = ( snapshots@v ) * ( 1 /w) # m u l t i p l y i n g t o c o n s t r u c t t h e r e d u c e d

b a s i s
20 e l s e :
21 x5 = f r a c _ p o w e r (X, 0 . 5 ) . r e a l
22 x_5 = np . l i n a l g . i n v ( x5 )
23 A = x5@snapshots@ ( s n a p s h o t s . T )@x5 # Mat r i x wich we a r e s o l v i n g t h e

e i g e n v a l u e problem f o r
24 w, v = np . l i n a l g . e i g h (A)
25 w, v = o r d e r e d (w, v )
26 w = w** 0 .5 # s i n g u l a r v a l u e s f o r t h e RB
27 RB = x_5@v # m u l t i p l y i n g t o c o n s t r u c t t h e r e d u c e d

b a s i s
28 r e t u r n w, RB
29

30 # o r d e r i n g t h e RB and t h e e i g e n v a l u e s i n d e c r e a s i n g o r d e r , n e g l e c t i n g a l l
n e g a t i v e e i g e n v a l u e s

31 d e f o r d e r e d (w, v ) :
32 i n d e x = np . where (w>0) [ 0 ] # removing n e g a t i v e e i g e n v a l u e s
33 w = w[ i n d e x ]
34 v = v [ : , i n d e x ]
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35 y = np . z e r o s ( v . shape ) # o r d e r e d RB ’ s
36 x = - np . s o r t ( -w) . T # o r d e r e d e i g e n v a l u e s
37 i n d e x = ( -w) . a r g s o r t ( ) # s o r t i n g i n d e x e s f o r RB ’ s
38 y [ : , i n d e x ] = v [ : , : ]
39 r e t u r n x , y
40

41 # r e t a i n i n g RB modes
42 d e f r e t a i n _ R B s (w, RB) :
43 n =8 # number o f r e t a i n e d modes , l i m i t a t w i l l f o r s i m p l i c i t y
44 RB = RB [ : , : n ]
45 w = w [ : n ]
46 RB = n o r m a l i z e (RB)
47 r e t u r n w, RB
48

49 d e f n o r m a l i z e (RB) :
50 l e n g t h s = 1 / sum (RB)
51 RB = RB* l e n g t h s
52 r e t u r n RB
53

54 # g e n e r a t i n g t h e ROM by m u l t i p l y i n g high - f i d e l i t y model wi th r e d u c e d b a s i s
V

55 d e f generate_ROM ( L i s t , RB) :
56 R l i s t = [ ]
57 f o r e l e m e n t i n L i s t :
58 i f t y p e ( e l e m e n t ) == m a t r i x . NumpyMatrix :
59 R l i s t . append ( m a t r i x . NumpyMatrix (RB . T@element . core@RB ) )
60 e l i f t y p e ( e l e m e n t ) == l i s t :
61 l i s t _ t e m p = [ ]
62 f o r i i n np . a r a n g e ( 0 , l e n ( e l e m e n t ) ) :
63 i f t y p e ( e l e m e n t [ i ] ) == m a t r i x . NumpyMatrix :
64 l i s t _ t e m p . append ( m a t r i x . NumpyMatrix (RB . T@element [ i ] .

core@RB ) )
65 e l i f t y p e ( e l e m e n t [ i ] ) == np . n d a r r a y :
66 i f e l e m e n t [ i ] . shape [ 0 ] == e l e m e n t [ i ] . s i z e :
67 l i s t _ t e m p . append (RB . T@element [ i ] )
68 e l s e :
69 l i s t _ t e m p . append (RB . T@element [ i ]@RB)
70 e l s e :
71 l i s t _ t e m p . append ( m a t r i x . NumpyMatrix (RB . T@element [ i ] ) )
72 R l i s t . append ( l i s t _ t e m p )
73 e l s e :
74 R l i s t . append ( ( RB . T@element ) )
75 r e t u r n R l i s t
76

77 # g e n e r a t i n g s n a p s h o t s f o r t h e p a r a m e t e r s e l e c t i o n , a s s w e l l a s t h e en e r gy
f o r each sample

78 d e f g e n e r a t e _ s n a p s h o t s ( E , nu , l_b , l _ r , lhs_ lam , lhs_mu , r h s _ t , rhs_b ,
r h s _ r , r h s _ l , c o n s t r a i n ) :

79 s n a p s h o t s = np . z e r o s ( ( r h s _ b . s i z e , E . s i z e * nu . s i z e * l _ b . s i z e * l _ r .
s i z e - l _ b . s i z e * l _ r . s i z e ) )

84



LIST OF PYTHON CODE

80 Energy = np . z e r o s ( s n a p s h o t s . shape [ 1 ] )
81 i = 0
82 f o r E_temp i n E :
83 f o r nu_temp i n nu :
84 lam = lame_lambd ( E_temp , nu_temp )
85 mu = lame_mu ( E_temp , nu_temp )
86 LHS = lam * l h s _ l a m + mu* lhs_mu
87 f o r l_b_ temp i n l _ b :
88 f o r l _ r _ t e m p i n l _ r :
89 i f l_b_ temp == 0 and l _ r _ t e m p == 0 :
90 i = i
91 e l s e :
92 RHS = l_b_temp *( r h s _ b + r h s _ t + r h s _ l ) + l _ r _ t e m p *

r h s _ r
93 so l _ t e m p = LHS . s o l v e (RHS, c o n s t r a i n = c o n s t r a i n )
94 s n a p s h o t s [ : , i ] = s o l _ t e m p
95 Energy [ i ] = 0 . 5 * so l _ t e m p .T@LHS. core@sol_temp
96 i +=1
97 r e t u r n s n a p s h o t s , Energy
98

99 # g e n e r a t e s n a p s h o t s and en e r gy f o r t h e r e c t a n g l e c a s e
100 d e f g e n e r a t e _ s n a p s h o t s _ r e c t a n g l e ( LHS_lam_i , LHS_mu_i , RHS, c o n s t r a i n , E , l ,

h , nu , L1 ) :
101 s n a p s h o t s = np . z e r o s ( ( RHS [ 0 ] . s i z e , E . s i z e * l . s i z e *h . s i z e ) )
102 Energy = np . z e r o s ( s n a p s h o t s . shape [ 1 ] )
103 i = 0
104 f o r E_temp i n E :
105 lam = lame_lambd ( E_temp , nu )
106 mu = lame_mu ( E_temp , nu )
107 f o r l_ temp i n l :
108 RHS_temp = (RHS[ 0 ] + RHS[ 1 ] + RHS [ - 1 ] ) * l_ temp *L1
109 f o r h_temp i n h :
110 t h e t a , J = t h e t a _ c a l c ( l_temp , h_temp )
111 LHS = mu*( t h e t a [ 0 ] * LHS_mu_i [ 0 ] + t h e t a [ 1 ] * LHS_mu_i [ 1 ] +

t h e t a [ 2 ] * LHS_mu_i [ 2 ] ) + lam *( t h e t a [ 0 ] * LHS_lam_i [ 0 ] + t h e t a [ 1 ] *
LHS_lam_i [ 1 ] + t h e t a [ 2 ] * LHS_lam_i [ 2 ] )

112 so l _ t e m p = LHS . s o l v e ( RHS_temp , c o n s t r a i n = c o n s t r a i n )
113 s n a p s h o t s [ : , i ] = so l _ t e m p
114 Energy [ i ] = 0 . 5 * so l _ t e m p .T@LHS. core@sol_temp
115 i +=1
116 r e t u r n s n a p s h o t s , Energy
117

118 # g e n e r a t e s n a s h o t s and e n e e r g y f o r t h e t r a p e z o i d c a s e
119 d e f g e n e r e a t e _ s n a p s h o t s _ t r a p e z e ( LHS_lam , cof f_ lam , LHS_mu , coff_mu , RHS_i ,

coff_RHS , c o n s t r a i n , mu2 , E , nu , L , H0 , H1 , L1 ) :
120 s n a p s h o t s = np . z e r o s ( ( RHS_i [ 0 ] . s i z e , E . s i z e *H1 . s i z e ) )
121 Energy = np . z e r o s ( s n a p s h o t s . shape [ 1 ] )
122 i = 0
123 f o r E_temp i n E :
124 lam = lame_lambd ( E_temp , nu )
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125 mu = lame_mu ( E_temp , nu )
126 f o r H_temp i n H1 :
127 # c a l c u t a t i n g c o e f f i c i e n t s
128 c o f f _ l a m 1 = e v a l u a t e _ l i s t ( co f f_ lam , mu2 , H_temp )
129 coff_mu1 = e v a l u a t e _ l i s t ( coff_mu , mu2 , H_temp )
130 coff_RHS1 = e v a l u a t e _ l i s t ( coff_RHS , mu2 , H_temp )
131

132 # m u l t i p l y i n g c o e f f i c i e n t s w i th c o r r e s p o n d i n g m a t r i c e s
133 RHS_temp = m u l t i p l y _ c o f f ( coff_RHS1 , RHS_i ) *L1
134 l h s _ l a m 1 = m u l t i p l y _ c o f f ( co f f_ lam1 , LHS_lam )
135 lhs_mu1 = m u l t i p l y _ c o f f ( coff_mu1 , LHS_mu)
136 LHS = l h s_ l a m 1 * lam + lhs_mu1 *mu
137 LHS = m a t r i x . NumpyMatrix (LHS)
138

139 so l _ t e m p = LHS . s o l v e ( RHS_temp , c o n s t r a i n = c o n s t r a i n )
140 s n a p s h o t s [ : , i ] = s o l _ t e m p
141 Energy [ i ] = 0 . 5 * so l _ t e m p .T@LHS. core@sol_temp
142 i +=1
143 r e t u r n s n a p s h o t s , Energy
144

145

146 d e f r e t a i n _ M o d e s (ROM, i ) :
147 ROMi = [ ]
148 f o r e l e m e n t i n ROM:
149 i f t y p e ( e l e m e n t ) == m a t r i x . NumpyMatrix :
150 ROMi . append ( m a t r i x . NumpyMatrix ( e l e m e n t . c o r e [ : i , : i ] ) )
151

152 e l i f t y p e ( e l e m e n t ) == l i s t :
153 l i s t _ t e m p = [ ]
154 f o r j i n np . a r a n g e ( 0 , l e n ( e l e m e n t ) ) :
155 i f t y p e ( e l e m e n t [ j ] ) == m a t r i x . NumpyMatrix :
156 l i s t _ t e m p . append ( m a t r i x . NumpyMatrix ( e l e m e n t [ j ] . c o r e [ : i

, : i ] ) )
157 e l i f t y p e ( e l e m e n t [ j ] ) == np . n d a r r a y :
158 i f e l e m e n t [ j ] . shape [ 0 ] == e l e m e n t [ j ] . s i z e :
159 l i s t _ t e m p . append ( e l e m e n t [ j ] [ : i ] )
160 e l s e :
161 l i s t _ t e m p . append ( e l e m e n t [ j ] [ : i , : i ] )
162 e l s e :
163 l i s t _ t e m p . append ( m a t r i x . NumpyMatrix ( e l e m e n t [ j ] [ : i ] ) )
164 ROMi . append ( l i s t _ t e m p )
165 e l s e :
166 ROMi . append ( e l e m e n t [ : i ] )
167 r e t u r n ROMi

B.8: General ROM functions

1 from m a t p l o t l i b i m p o r t p y p l o t a s p l t , c o l l e c t i o n s
2 from m a t p l o t l i b 2 t i k z i m p o r t s ave as t i k z _ s a v e
3

4 d e f p l o t ( b e z i e r , p t s , func , f i l e n a m e ) :
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5 # P l o t t h e f u n c t i o n
6 p l t . t r i p c o l o r ( p t s [ : , 0 ] , p t s [ : , 1 ] , b e z i e r . t r i , func , s h a d i n g = ’ gouraud ’ ,

r a s t e r i z e d =True )
7

8 # Add e l e m e n t l i n e s
9 p l t . gca ( ) . a d d _ c o l l e c t i o n ( c o l l e c t i o n s . L i n e C o l l e c t i o n ( p t s [ b e z i e r . h u l l ] ,

l i n e w i d t h = 0 . 1 , c o l o r = ’ b l a c k ’ ) )
10

11 p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )
12 p l t . gca ( ) . s e t _ a s p e c t ( ’ e q u a l ’ )
13 p l t . gca ( ) . a u t o s c a l e ( e n a b l e =True , a x i s = ’ bo th ’ , t i g h t =True )
14 p l t . a x i s ( ’ o f f ’ )
15 p l t . s a v e f i g ( f i l e n a m e , d p i =200 , b b o x _ i n c h e s = ’ t i g h t ’ )
16 p l t . c l f ( )
17

18

19 d e f f p l o t ( b e z i e r , p t s , f unc ) : # c o l o r p l o t o f f u n c t i o n ove r geomet ry
20 # P l o t t h e f u n c t i o n
21 p l t . t r i p c o l o r ( p t s [ : , 0 ] , p t s [ : , 1 ] , b e z i e r . t r i , func , s h a d i n g = ’ gouraud ’ ,

r a s t e r i z e d =True )
22

23 # Add e l e m e n t l i n e s
24 p l t . gca ( ) . a d d _ c o l l e c t i o n ( c o l l e c t i o n s . L i n e C o l l e c t i o n ( p t s [ b e z i e r . h u l l ] ,

l i n e w i d t h = 0 . 1 , c o l o r = ’ b l a c k ’ ) )
25

26 p l t . c o l o r b a r ( o r i e n t a t i o n = ’ h o r i z o n t a l ’ )
27 p l t . gca ( ) . s e t _ a s p e c t ( ’ e q u a l ’ )
28 p l t . gca ( ) . a u t o s c a l e ( e n a b l e =True , a x i s = ’ bo th ’ , t i g h t =True )
29 p l t . a x i s ( ’ o f f ’ )
30

31

32 d e f d p l o t ( b e z i e r , p t s , d p t s ) : # p l o t s two g e o m e t r i e s ove r e a c h o t h e r , f o r
example deformed ove r o r i g i n a l geomet ry

33 p l t . f i g u r e ( )
34 p l t . gca ( ) . s e t _ a s p e c t ( ’ e q u a l ’ )
35 t r i a n g = b e z i e r . t r i
36 p l t . t r i p l o t ( p t s [ : , 0 ] , p t s [ : , 1 ] , t r i a n g , ’ ko - ’ , lw =0 , m a r k e r s i z e =0)
37 p l t . t r i p l o t ( d p t s [ : , 0 ] , d p t s [ : , 1 ] , t r i a n g , ’ bo - ’ , lw =0 , m a r k e r s i z e = 0)
38 p l t . gca ( ) . a d d _ c o l l e c t i o n ( c o l l e c t i o n s . L i n e C o l l e c t i o n ( p t s [ b e z i e r . h u l l ] ,

l i n e w i d t h = 0 . 5 , c o l o r = ’ b l a c k ’ ) )
39 p l t . gca ( ) . a d d _ c o l l e c t i o n ( c o l l e c t i o n s . L i n e C o l l e c t i o n ( d p t s [ b e z i e r . h u l l ] ,

l i n e w i d t h = 0 . 5 , c o l o r = ’ b l u e ’ ) )
40

41 d e f g p l o t ( b e z i e r , p t s ) : # p l o t s a geomet ry
42 p l t . f i g u r e ( )
43 p l t . gca ( ) . s e t _ a s p e c t ( ’ e q u a l ’ )
44 t r i a n g = b e z i e r . t r i
45 p l t . t r i p l o t ( p t s [ : , 0 ] , p t s [ : , 1 ] , t r i a n g , ’ ko - ’ , lw =0 , m a r k e r s i z e =0)
46 p l t . gca ( ) . a d d _ c o l l e c t i o n ( c o l l e c t i o n s . L i n e C o l l e c t i o n ( p t s [ b e z i e r . h u l l ] ,

l i n e w i d t h = 0 . 5 , c o l o r = ’ b l a c k ’ ) )
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47

48

49

50 d e f plot_POD_Modes (RB, b a s i s , b e z i e r , p t s ) : # p l o t s each POD mode i n t h e
r e d u c e d b a s i s ove r a geomet ry

51 Ex = ’Ex2_POD_mode ’
52 t e x = ’ . t e x ’
53 f o r i i n r a n g e (RB . shape [ 1 ] ) :
54 u = RB [ : , i ]
55 d i s p = b a s i s . d o t ( u )
56 d p t s = b e z i e r . e v a l ( d i s p )
57 c = abs ( p t s ) . max ( ) / abs ( d p t s ) . max ( ) * 0 . 2
58 d p t s = - d p t s * c
59 d p t s += p t s
60 d p l o t ( b e z i e r , p t s , d p t s )
61 s t r i n g = Ex + s t r ( i +1) + t e x
62 # t i k z _ s a v e ( s t r i n g )

B.9: Postprocessing
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