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Summary

Randomized controlled trials (RCTs) is a widely used method in medical research. The
method aims to analyze the effect of a treatment over time. This type of research is ex-
posed to missing data. The aim of this report is to compare different methods to analyze
longitudinal RCTs with different assumptions about the missing data. The methods used
to analyze RCTs are: Comparisons of follow-up scores, change score analysis, analysis
of covariance (ANCOVA) and constrained longitudinal analysis (cLDA). The reason for
why data are missing is one of the main challenges associated with missing data. This is
called the missing data mechanism. The different missing data mechanisms are: Missing
completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR). The percentage of missing data is also of importance when analyzing missing
data. Different scenarios of missing data in longitudinal trials are simulated to compare
the methods used to analyze RCTs together with different methods to handle missing data.
The methods are compared with respect to bias, power and confidence interval coverage.
The methods of cLDA and ANCOVA are also applied on a real clinical trial. The methods
of comparisons of follow-up score and change score analysis are most commonly used
on RCTs with only two time points. The results of the method of change score depends
highly on the correlation between the time points, while the method of follow-up does not
take the correlation or the baseline values into account. With low correlation the method
of follow-up is just as good as the method of ANCOVA and cLDA, and superior to the
method of change score. With high correlation the method of change score analysis is
equally good as the method of ANCOVA and cLDA, and superior to the method of follow-
up. In general the methods of ANCOVA and cLDA are superior to the other methods.
With no missing data produces the methods equally good results. When there are miss-
ing data more information is used in the analysis using the method of cLDA compared
to the method of ANCOVA. Thus, the method of cLDA may be regarded as the method
of choice compared to the method of ANCOVA. However, when multiple imputation is
used together with the method of ANCOVA are the results comparable to the method of
cLDA. The missing data mechanisms MAR and MCAR can produce unbiased estimates
when using the methods of ANCOVA and cLDA, but the power decreases when there are
missing data. The power of the methods also decreases when the percentage of missing
data increases. In addition, when the percentage of missing data reaches 20%, the results
may be biased, regardless the choice of method.
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Chapter 1
Introduction

This project aims to describe and compare methods to analyze longitudinal randomized
controlled trials (RCTs) with missing data. RCT is a method to conduct clinical trials
with the aim to identify the effect of a treatment. This is done by measuring an outcome
variable of interest before intervention and by doing several follow-up measurements after
intervention. The outcome variable is assumed to be continuous. The methods for analyz-
ing RCTs that are presented and compared are: Comparison of follow-up score, change
score analysis, analysis of covariance (ANCOVA) and constrained longitudinal data anal-
ysis (cLDA). Missing data in clinical trials are unavoidable. Because of their frequent
occurrence they must be accounted for such that the results will not be affected. The rea-
son behind missing data is called the missing data mechanism, which can highly affect the
results. The missing data mechanism is divided into three types: Missing completely at
random (MCAR), missing at random (MAR) and missing not at random (MNAR). To over-
come the bias potentially caused by the missing data mechanism valid methods to handle
this should be used, depending on the type of missing data mechanism. Invalid methods
for handling missing data are commonly used in medical research. Methods to handle the
missing data mechanisms MAR and MCAR will be the main focus in this project. Espe-
cially the methods of multiple imputation (MI) and mixed-effects models. The different
methods to analyze RCTs are compared by conducting simulation studies with different
missing data mechanisms and where different methods to handle missing data are used.
The methods are in addition used on a real clinical trial with missing data.
The structure of this project is as follows: In Chapter 2 RCTs and methods to analyze
RCTs are introduced. In Chapter 3 the mathematical background of longitudinal data is
presented in addition to the statistical background used in the simulation study. In Chap-
ter 4 the concept of missing data is introduced, including the description of missing data
mechanisms and methods to deal with missing data. In Chapter 5 the methods used to
analyze RCTs are described mathematically. In Chapter 6 the simulation studies that are
conducted are described and the results are presented. In Chapter 7 the real clinical exam-
ple and the results of the analysis are presented. At last, in Chapter 8 the simulations are
discussed.
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Chapter 2
Randomized controlled trials

A randomized controlled trial (RCT) is a scientific experiment with the aim to analyze the
effect of a certain variable introduced in the trial (Matthews, 2006, p. 1). The variable
introduced may be a new type of treatment to improve a certain medical condition for a
patient. Further on, this variable will be referred to as ”the treatment”. Analyzing trials
using the method of RCT is regarded as ”the gold standard” when conducting clinical trials
and is therefore widely used (Schulz et al., 2010). In an RCT, a sample of participants is
collected and randomly divided into different groups, where the type of treatment differs
between the groups. When proper randomization is achieved, the effect of the variable of
interest is possible to compare between the groups. This randomization will minimize the
selection bias (Matthews, 2006, p. 17). Selection bias is defined as the bias introduced if
the selection of individuals in a trial is done in a way such that proper randomization is
not achieved. Thus, the sample used in the trial is not representative for the population
to be studied. The minimization of selection bias is one of the strengths of RCTs and is
also an assumption when analyzing RCTs (Matthews, 2006, p. 17). In many medical trials
confounders could be problematic. A confounder is a known or unknown underlying vari-
able that is associated with both the exposure and the outcome. This is known as a factor
that can have major impact on the results of a trial (Attia, 2005). Since the confounders
are equally distributed between the groups it is not necessary to take it into account when
analyzing RCTs.
Although RCTs often are the method of choice when conducting clinical trials are there
some disadvantages. An RCT can be expensive both in time and cost. The effect of the
treatment can usually only be able to assess the average effect of the whole sample, not on
an individual level. RCTs are also limited by ethical questions. A variable that is known to
be potentially damaging for the patients can never be investigated in an RCT. In addition
it is not allowed to give an inferior treatment to a patient when better options are known
(Matthews, 2006, p. 4-5).
There are different types of RCTs: A crossover RCT is a trial where more than one treat-
ment is given to each participant (Matthews, 2006, p. 193-194). Another example is cluster
randomized trial where individuals are not randomly divided into groups but whole clus-
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Chapter 2. Randomized controlled trials

ters of individuals are (Matthews, 2006, p. 202-203). The most common is RCT with
parallel-group design. This is the type of RCT we are going to look further into.
The structure of the preceding sections of this chapter is as follows: In Section 2.1 is a
presentation on RCTs are carried out. A description of a parallel-group RCT is presented
in Section 2.2. At last, different methods to analyze RCTs are presented in Section 2.3.

2.1 How an RCT is carried out
In an RCT, a sample of participants is collected from a given population of interest de-
pending on the type of the trial. When the sample of participants is found the participants
are randomly divided into different groups. Because of the randomization of the groups it
is not expected to be any differences between the groups at the beginning of the trial (?).
Thus, the variable of interest should be equally distributed between the groups at the first
measurement. After randomization and the first measurement the researcher introduces
the treatment. The introduction of this variable is called the intervention. Since there are
differences between the groups, the effect of the treatment can be analyzed. Examples of a
treatment difference between the groups are getting a treatment or not getting a treatment
(or getting placebo), giving different doses of the treatment or giving different types of
treatments. Each participants is measured several times, where each measurement should
be done in the same way, and should contain the outcome variable of interest. The outcome
variable of interest should represent whether or not the treatment has an effect. The first
measurement is called the baseline measurement, and is the measurement before interven-
tion. At this point, due to randomization, the variable of interest and all other variables
should be equally distributed in all groups. After baseline, the treatment is introduced
and there should be one variable that differ between the groups which can cause an effect
on the parameter of interest. The following measurements are conducted and called the
follow-up measurements. When more time-points than two, i.e. there are more than one
follow-up measurement in addition to the baseline measurement, the trial is called longi-
tudinal RCT. Even though it is possible to have several follow-up measurements, a small
amount of follow-up measurements is normal, typically 2− 4 follow-ups (Coffman et al.,
2016). Trials with baseline measurements are commonly used to analyze the effects of
treatments (Vickers and Altman, 2001; Liu et al., 2009). The differences of the variables
of interest between the groups are analyzed in the end of the trial.

2.1.1 Intention-to-treat and per protocol analysis
When conducting an RCT, an intention-to-treat (ITT) analysis should be conducted. In
an ITT analysis, all the participants that once are assigned to a group in the RCT should
be a part of the group analysis, no matter how much of the trial that is completed (Hollis
and Campbell, 1999). This is important if the proper randomization should be archived
(Schulz and Grimes, 2002). If the participants that did not complete the trial were excluded
in the analysis, or other arrangements for the drop-outs were made, the distributions of the
groups could differ and bias could be introduced (Schulz and Grimes, 2002). Thus, an ITT
analysis should be the primary analysis for the results, and is regarded as the gold standard
(Veieroed et al., 2012). Without ITT the effect of the treatment can be overestimated. As a
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secondary analysis, a per protocol analysis could be conducted. This analysis only includes
the participants that completed the trial given their originally treatment (Sedgwick, 2013).
This type of analysis can tell us something about the maximum potential benefits of the
treatment given. But the results can be biased (Sedgwick, 2013). Therefore, per protocol
analysis should never be presented alone, but only used as a secondary analysis (Schulz
and Grimes, 2002).

2.2 Parallel-group RCT

An illustration of how a parallel-group RCT can be carried out is shown in Figure 2.1.
In a parallel-group RCT, each participant is randomly allocated into one group. During

Figure 2.1: Model design for a parallel-group RCT.

the trial, the participants cannot change to another group, thus each participants is only
introduced to one type of treatment. This is the main difference between parallel-group
RCT and other types of RCTs. The aim of comparing different groups could be to detect
the difference between a new and presumably better treatment compared to a traditional
and more commonly used treatment. This is done by detecting the difference between the
types of treatments and not getting a treatment at all, or by comparing the effect of different
doses of the same treatment. One of the groups is usually a control group. This is the
group not getting any treatment at all, getting placebo or the group getting the traditional
treatment. The other groups are getting different types of treatments, and are called the
treatment groups. In a parallel-group RCT, the following steps are as described in a general
RCT: The participants in the groups are measured with respect to the outcome variable of
interest at baseline, i.e. before intervention. The expected baseline outcome variables are
assumed to be equal between the groups because of randomization. Then, the different
treatments are given to the participants in the different groups. After a certain time, the
first follow-up measurement is conducted in the same way as the baseline measurement
with the same outcome variables of interest measured. This is repeated at several follow-
up times if wanted. By comparing the differences between the groups before and after
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intervention the effect of the treatment can be analyzed. The simplest form of a parallel-
group RCT is an RCT with two groups and two time points. This situation is illustrated in
Figure 2.2.

Figure 2.2: Model design for a parallel-group RCT with two groups and two time points.

The steps using a parallel-group RCT can be summarized as:

1. A population of patients that are of interest for the specific RCT is found.

2. A sample from the population is recruited to be a part of the experiment.

3. The sample is now formally entered in the program and is randomly divided into the
control group and the treatment groups. From now on it is possible to get dropouts
from the trial.

4. When randomized into groups, the first measurement of the variables of interest are
often done at baseline before treatment is given.

5. Treatment is given to the different groups after baseline and before the first follow-
up time point. This is called the intervention.

6. The first measurement after intervention is done at the (first) follow-up time point.
If the RCT consists of several follow-up time points, the measurements are repeated
until the end of the trial.

7. The results are analyzed at the end of the trial.

2.3 Methods to analyze parallel-group RCTs
Parallel-group RCTs can be analyzed by different methods. When analyzing RCTs with
two time-points and two groups, there are more methods that are commonly used com-
pared to analysis of longitudinal RCTs. We are going to look further into four different
methods when analyzing RCTs with two time-points: Comparison of means at follow-up

6



2.3 Methods to analyze parallel-group RCTs

score, change score analysis, ANCOVA and cLDA. When analyzing longitudinal RCTs,
only longitudinal ANCOVA and cLDA can be used, unless only baseline and one follow-
up time point is taken into account in the analysis. In this section, the descriptions of
the methods are given, while the mathematical models and the statistical analysis of the
methods will be presented in Section 5. When analyzing RCTs with two time points,
the difference in mean value between the groups at follow-up is the parameter of inter-
est. When analyzing longitudinal RCTs, the main parameter of interest in our case is the
mean value difference between the groups at the last follow-up time point. There can be
several parameters of interest, at different follow-up time points. The analyses are equal
independent of follow-up time point.

2.3.1 Comparison of mean at follow-up
A simple method to analyze the differences between the groups is to simply look at the
mean differences at the last follow-up time point (Vickers and Altman, 2001). This method
is called the comparison of mean at follow-up, or simply just the method of follow-up.
Using this method, the differences between the groups are measured by comparing the
means at follow-up. In a parallel-group RCT with two time points, only half of the data
are used in the analysis when the method of follow-up is used. One might argue that in a
well conducted RCT the mean values at baseline are assumed to be equal, thus the baseline
values does not make any difference. Still, there is a disadvantage not to control for the
baseline values when the information is available. This method is not recommended to use
in a longitudinal RCT, because too much information is lost in the analysis when only one
time point is taken into account in the analysis. Since the method of follow-up only takes
one measurement into account it is better to use the method when the correlation between
the measurements are low (Vickers and Altman, 2001).

2.3.2 Change score analysis
To extend the method of follow-up by taking the baseline values into account, the dif-
ferences between the follow-up score and the baseline scores between the groups can be
compared (Vickers and Altman, 2001). This method is called the change score analysis,
or just the method of change score. Using this method, all of the data available are taken
into account in a parallel-group RCT with two time points. This method is usually not
used to analyze longitudinal RCTs, because much information is lost when not taking the
other measurements into account. If the mean values at baseline for both groups are equal,
the estimated treatment effect will give the same result as using the method of follow-up
(Vickers and Altman, 2001). This will be shown in the mathematical presentation of the
method of change score in Section 5.2.2. In an RCT, the baseline values are assumed to
be equal in both groups. Thus, both the method of follow-up and the method of change
score are assumed to give the same treatment effect. But the bias and power will differ
depending on the correlation between baseline and follow-up (Vickers and Altman, 2001).
If the correlation is high and the method of follow-up score is used, important information
is lost. In this case, the analysis of the method of change score will result in higher power.
On the other hand, if the correlation is low will the method of change score add variation to
the analysis. In this case will the method of follow-up score result in higher power. Even
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though the method of change score takes the baseline values into account, the method does
not correct for the differences at baseline for the two groups. This is because of the regres-
sion towards the mean (Vickers and Altman, 2001). Regression towards the mean is the
phenomena that if a given baseline score is extreme, the follow-up score is expected to be
closer to the mean of all individuals than the baseline value (Bland and Altman, 1994). If
the correlation between baseline and follow-up is low, the effect will be high and the other
way around. To take this factor into account, other methods than the method of change
score and the method of follow-up should be used.

2.3.3 ANCOVA
Analysis of covariance (ANCOVA) has traditionally been one of the most commonly used
statistical methods for analyzing RCTs (Liu et al., 2009). It is a conditional regression
model which adjust the follow-up measurements to the baseline measurement, thus it is
unaffected by the baseline differences between the groups (Coffman et al., 2016; Vickers
and Altman, 2001). This means that the method of ANCOVA creates unbiased estimates
even if there are differences at baseline in the case of correlation between baseline and
follow-up time points (Liu et al., 2009). The baseline values are treated as covariates in the
model. Thus, missing baseline data are not accepted in the model. In the case of missing
data at baseline, an imputation method can be used to create a complete baseline data set.
When there are RCTs with two time points, the method is called ANCOVA. When there
are more than one follow-up time point, the method is known as longitudinal ANCOVA.
Compared to the methods of follow-up score and change score is the method of ANCOVA
is superior (Frison and Pocock, 1992). For example, the method of ANCOVA has smaller
variance and greater statistical power when analyzing the treatment effect (Vickers and
Altman, 2001; Frison and Pocock, 1992). Thus, to detect the effect of a treatment, a
smaller sample size is needed to get the same effect as for the method of follow-up or the
method of change score. However, the difference between the method of change score and
ANCOVA is low when the correlation between the time points is high (Vickers, 2001).
The correlation is said to be high when ρ > 0.8. In the situation with stable chronic
conditions is the correlation often high (Vickers and Altman, 2001). In practice the bias
of the treatment effect obtained by using the method of ANCOVA is small, and may be
even more reduced if there are more than one follow-up time point (Frison and Pocock,
1992). If there are missing data at baseline or at all follow-up time points, the method of
ANCOVA may give biased results (Vickers, 2001).

2.3.4 cLDA
Constrained longitudinal data analysis (cLDA) is in contrast to ANCOVA an unconditional
analysis method. Both the baseline values and the follow-up values are assumed to be de-
pendent variables, thus modelled as the response variable in a regression model (Coffman
et al., 2016). This is a special case of longitudinal data analysis (LDA) where the baseline
values are constrained to be equal in both groups. This assumption is reasonable when
analyzing RCTs since proper randomization before intervention is assumed. The effect of
including the baseline variable dependent of the group is discussed by Liang and L. Zeger
(2000). The difference between adjusting for baseline or not is described as an example of
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a trade-off between bias and precision in statistical inference.
The advantage of cLDA compared to ANCOVA is that the method of cLDA can be used
even if there are missing values. Thus, there is no need to use imputation methods. This
is because there should be enough information to estimate the model since both the base-
line values and follow-up values are dependent variables even in the case of (a reasonable
amount of) missing data. In both the methods of cLDA and ANCOVA an individual co-
variance matrix can be modelled to take into account the correlation within a subject. The
advantage with the method of cLDA compared to ANCOVA is that this matrix can be dif-
ferent for each treatment group, which makes the method more flexible (Liu et al., 2009).
By comparing ANCOVA and cLDA, we touch into a topic which have been discussed
widely. Should the outcome variable for the baseline values be included as a covariate
or as an outcome variable? The question of how baseline should be modelled was first
introduced by Lord (1967) who presented the paradox where the same data with different
modelling strategies resulted in different statistical inferences. Dinh and Yang (2011) have
presented different articles with different assumptions about this topic. It is plausible to
assume that the baseline values cannot be part of the outcome vector, because the mea-
surement is done before intervention. Thus, it cannot define the treatment effect when the
treatment is not introduced. In addition, the baseline values are often used as an inclusion
criteria. Therefore, the baseline measurements can be truncated compared to the follow-up
scores (Dinh and Yang, 2011). Liu et al. (2009), on the other hand, recommend using the
method of cLDA with baseline values as part of the outcome vector, because implementing
it as a covariate would lead to loss of efficiency. Even if one would assume that the base-
line values should be part of the response vector or modelled as a covariate, Dinh and Yang
(2011) showed that both of the methods of ANCOVA and cLDA were preferable compared
to similar methods. The methods are compared by efficient treatment effect estimates and
the robustness of the statistic inferences. Liu et al. (2009) showed that the mean difference
between the groups in an RCT conditional on baseline using the method of ANCOVA is
equal to the unconditional mean difference between the groups using the method of cLDA.
In addition the maximum likelihood estimators for both methods are equal. This means
that in the case of no missing data the methods of cLDA and ANCOVA should result in
approximately the same results (Coffman et al., 2016; Liu et al., 2009). The variance of the
point estimates of the mean difference between the groups by using the method of cLDA
will always be equal or smaller than in the case of using the method of ANCOVA (equal if
the baseline means are the same for both groups) (Liu et al., 2009). This makes the method
of cLDA more powerful than the method of ANCOVA, but in practice this difference is
small. In the case of the missing data mechanisms MAR and MCAR concludes Coffman
et al. (2016) that the method of cLDA is the method of choice compared with ANCOVA.
The method of cLDA results in unbiased estimates when the missing data mechanism is
MCAR or MAR (Liu et al., 2009).

9



Chapter 2. Randomized controlled trials

10



Chapter 3
Longitudinal data

The theory presented in this chapter is based on the books Analysis of Longitudinal Data
by Diggle et al. (2001) and Regression by Fahrmeir et al. (2013).

A longitudinal trial is defined as a trial with repeated measurements of individuals on the
same parameter of interest over time (Diggle et al., 2001, p. 1). In Figure 3.1, an example
of longitudinal data is illustrated.

Figure 3.1: An illustration of longitudinal data with 20 individuals, each represented with a line.

Longitudinal trials are commonly used in medical research. It is a key feature in RCTs.
The longitudinal data can reveal how the health status changes over time when a treatment
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is introduced. A longitudinal trial is a more powerful method compared to a cross-sectional
study, where the outcome variable is measured only once on each individual since the treat-
ment changes over time. The advantage is that the analysis can separate the analysis of
parameter of interest and how the outcome varies with time (Diggle et al., 2001, p. 1).
Thus, parallel-group RCTs are more powerful than cross-sectional RCTs. When analyz-
ing longitudinal data it is necessary to apply special statistical methods because the data
tends to be intracorrelated. This means that there are correlations between the time points
within each individual but not necessarily between the individuals. If intracorrelation is
not taken into account the statistical inference of the data can be invalid (Diggle et al.,
2001, p. 2). Longitudinal data are distinguished from time series. A time series is defined
as a sequence of observations in order where the ordering is often in time (Wei, 2006, p. 1).
This is also true for longitudinal data but the time series often have much higher number
of observations. In addition longitudinal data consists of observations from several indi-
viduals which can be assumed to be independent (Diggle et al., 2001, p. 2). This makes
the analysis of longitudinal data simpler than time series analysis and more robust. This is
because it is possible to detect patterns across the individuals (Diggle et al., 2001, p. 2).
This chapter is structured up as follows: The notation for longitudinal data is presented in
Section 3.1. The different regression methods for modelling longitudinal data are intro-
duced in Section 3.2 and Section 3.3. Parameter estimators for the different models are
given in Section 3.4 and Section 3.5. At last, the hypothesis tests and confidence interval
for the parameter estimates are presented in Section 3.6.

3.1 Notation

Now follows an introduction of the notation used. Random variables are denoted with big
letters and specific observations are denoted with small letters. In a longitudinal trial there
are several individuals, given as i = 1, 2, ..., n, where n is the total number of individuals.
All individuals are measured at several time points given as t = 0, 1, ..., T , where t = 0
is the time of the first measurement and t = T of the last measurement. The observations
of the outcome variable of interest are given as yit for individual i at time t. In addition
a set of covariates is related to each individual at each time point, given as xijt, where
j = 1, ..., p represents the set of all covariates. The set of covariates is assumed to be equal
for all individuals at all time points, thus xijt = xij ∀ t. An individual in a longitudinal
trial is thus associated with a set of observed outcome variables and a set of covariates.
This is given as

yi =


yi0
yi1
...
y1T

 and xit =


xi10 xi11 . . . xi1T
xi20 xi21 . . . xi2T

...
...

...
xip0 xip1 . . . xipT

 , (3.1)

where yi is a vector of length (T + 1) and xi is a matrix of dimension (p × (T + 1)),
where the elements are often equal for all t. All the individuals can be represented into
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one vector representation. The observed outcome variables for all individuals are given as

y =



y10
...
y1T

...

...
yn0

...
ynT


, (3.2)

and the covariates are given as

x =


x110 x111 . . . x11T . . . . . . xn10 xn11 . . . xn1T
x120 x121 . . . x12T . . . . . . xn20 xn21 . . . xn2T

...
...

...
x1p0 x1p1 . . . x1pT . . . . . . xnp0 xnp1 . . . xnpT

 . (3.3)

3.2 Linear regression
A longitudinal trial is usually modelled by a regression model (Diggle et al., 2001, p. 15).
The linear regression model is an example. Using a regression model it is possible to ana-
lyze the effect of the covariates on the outcome variable (Fahrmeir et al., 2013, p. 12). An
illustration of a simple linear regression model is given in Figure 3.2

Representation for one observation

A linear regression model for an individual at a given time point can be given as

Yit = β0 + β1xi1t + ...+ βpxipt + εit = xTi β + εit, (3.4)

where

β =


β0
β1
...
βp

 and xi =


1
xi1t

...
xipt

 . (3.5)

Here β is a vector of length (p+ 1) representing the unknown regression coefficients with
β0 as the intercept. The design vector, xi, is of length (p+ 1). It consists of all covariates
and in addition an element associated to the intercept, β0. The error term, εit, is a random
variable which represents the deviation of the response from the model. It is assumed to
be distributed as a zero-mean normal variable with constant variance. This is given as

εit ∼ N (0, σ2). (3.6)
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Figure 3.2: An illustration of a simple linear regression model with one covariate. The dots repre-
sents the observations for each individual, and the line represents the linear regression line.

These error terms are independent between the individuals, i, but dependent within each
individual when assumed to be correlation within each individual. The expected value and
variance for each observation in the linear regression model in Equation (3.4) are given as

E(Yit) = E(xiβ + εit) = xiβ,

and

Var(Yit) = Var(xiβ + εit) = Var(εit) = σ2.

Using this regression model, the observed variables, yit, given in Equation (3.1) are as-
sume to be are realizations of the random variable Yit (Diggle et al., 2001), which is
assumed to be multivariate normally distributed as

Yit ∼ N (xiβ, σ
2).

Using a linear regression model, it is possible to extend the model to include interaction
terms. This means that one covariate is dependent of at least on other covariate. As an
example, a linear regression model with two covariates with interaction is given as

Yit = β0 + β1xi1t + β2xi2t + β3xi1txi2t + εit.

Here, β1xi1t and β2xi2t depend only on one covariate while β3xi1txi2t depends on two
covariates (Fahrmeir et al., 2013, p. 98).
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Representation for one individual

The vector representation for all time points for one individual of the linear regression
model given in Equation (3.4) is given as

Y i = Xiβ + εi, (3.7)

where Y i is a vector of length (T + 1), given as

Y i =


Yi0
Yi1

...
YiT

 . (3.8)

The design matrix, Xi, and the vector consisting of the error terms, εi are given as

Xi =

1 xi10 . . . xip0
...

...
...

1 xi1T . . . xipT

 and εi =

εi0...
εiT

 . (3.9)

The design matrix, Xi, is of dimension ((T + 1)× (p+ 1)), while the vector consisting of
the error terms, εi, is of length (T + 1). The error terms are assumed to have a distribution
given by

εi ∼ N (0, σ2V∗),

where V∗ represents the correlation matrix within each individual. This correlation matrix
describes the dependence between each time point for a given individual. The dimension
of V∗ is ((T + 1) × (T + 1)). The correlation matrix can have different structures. In
general, this is given as

Corr(Yit, Yi′t′) =

 1 if i = i′ and t = t′,
ρ(t, t′) if i = i′ and t 6= t′,
0 else.

We are going to describe two different correlation structures that are usual to assume in
the case of longitudinal data. The first correlation structure is the compound symmetry
correlation (or uniform correlation). This is modelled as equal correlation between each
pair of observations independent of time, given as

Corr(Yit, Yi′t′) =

 1 if i = i′ and t = t′,
ρ if i = i′ and t 6= t′,
0 else.

Thus, the compound symmetry matrix, V0, is given as

V0 =


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 . (3.10)
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Here, the time difference between each observation does not affect the correlation. It is
assumed that the correlation is constant within each individual.
The second correlation structure presented is the exponential correlation structure. Using
this structure the correlation is assumed to decay towards zero as time separation increases.
This is given as

Corr(Yit, Yi′t′) =


1 if i = i′ and t = t′,

e−φ|t−t
′| if i = i′ and t 6= t′,

0 else,

where φ represents the speed of the correlation decay. This is given as a number between
0 and 1, where higher values of φ gives faster decay. The correlation matrix for the expo-
nential correlation model is thus given as

Ve =



1 e−φ|t0−t1| . . . e−φ|t0−tT |

e−φ|t1−t0| 1 . . . e−φ|t1−tT |

...
. . .

...

e−φ|tT−t0| e−φ|tT−t1| . . . 1


. (3.11)

Going back to the linear regression representation given in Equation (3.7), the expected
values and the covariance matrix are given as

E(Y i) = E(Xiβ + εi) = Xiβ

and
Cov(Y i) = Cov(Xiβ + εi) = Cov(εi) = σ2V∗.

The outcome variable representing one individual is assumed to be normally distributed,
given as

Y i ∼ N (Xiβ, σ
2V∗).

Representation for all individuals

The overall matrix representation of all individuals at all time points is given as

Y = Xβ + ε. (3.12)

The vector Y is of length n(T + 1) and is given by

Y =



Y10
...

Y1T
...
...
Yn0

...
YnT


. (3.13)
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The design matrix, X , of dimension ((T + 1)n × (p + 1)) and the vector, ε, of length
n(T + 1) are given as

X =



1 x110 . . . x1p0
...

...
...

1 x11T . . . x1pT
...

...
...

...
...

...
1 xn10 . . . xnp0
...

...
...

1 xn1T . . . xnpT


and ε =



ε10
...
ε1T

...

...
εn0

...
εnT


. (3.14)

The vector consisting of the error terms, ε, is distributed as

ε ∼ N (0, σ2V ),

where V is a (n(T + 1)×n(T + 1)) block-diagonal matrix with V∗ on the main diagonal.
The matrix V∗ is the correlation matrix within each individual, as given in either Equation
(3.10) or as in Equation (3.11) depending on what type of correlation structure that is
assumed. Thus, the matrix V is given as

V =


[
V∗
] 0

. . .
0 [

V∗
]
 . (3.15)

This correlation structure represents the situation we assume, where there are correlation
within each individual but not between the individuals. The expected value and covariance
matrix for the vector Y , given in Equation (3.12), are given as

E(Y ) = E(Xβ + ε) = Xβ,

and
Cov(Y ) = Cov(Xβ + ε) = Cov(ε) = σ2V.

The outcome variable Y given in (3.4) is assumed to be normally distributed, given as

Y ∼ N (Xβ, σ2V ). (3.16)

3.3 Linear mixed models
Linear mixed models (LMM) are extensions of the linear regression model, given in Equa-
tion (3.4). The difference between linear regression model and LMM is that there is added
a random effect in the model in addition to the fixed effects in the LMM model. This is
also called the random effects models. Using this random effects the observations can be
modelled in clusters. This way some observations may be modelled more similar than
others, depending on which cluster the individual belongs to. LMM is a commonly used
and popular method when analyzing longitudinal data (Fahrmeir et al., 2013, p. 349).
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Figure 3.3: An illustration of a linear mixed model with 100 individual in each cluster. Each cluster
is represented with its own color and has its own regression line.

Representation for one observation

A linear mixed model can be given as

Yit = β0 + β1xi1t + ...+ βpxipt + γi0 + γi1ui1t + ...+ γiquiqt + εit, (3.17)

or in a more compact notation given as

Yit = xTi β + uTitγi + εit. (3.18)

Here, xi and β are the fixed effects given in Equation (3.5) and εit is given in Equation
(3.6). These are the same terms as in the linear regression model given by Equation (3.4).
The random effects are γik for k = 0, 1, ..., q, which is the cluster specific terms. These
terms are equal for each observation belonging to the same cluster. The cluster specific
term are zero-mean random variables with equal variance within the group. This is given
as

γik ∼ N (0, τ2k )

The random effect vector, γi, is of length (q + 1) and is given as

γi =


γi0
γi1
...
γiq

 . (3.19)

The distribution of γi is given as

γi ∼ N (0, Q),
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whereQ is the covariance matrix of dimension ((q+1)×(q+1)) for the vector of random
effects. If we assume that the random effects are independent of each other,Q is a diagonal
matrix, with τ20 , τ

2
1 , ..., τ

2
q on the main diagonal and zero elsewhere, given as

Q =

τ
2
0 0

. . .
0 τ2q

 . (3.20)

The vector uit is of length (q + 1) and is given by

uit =


1
ui1t

...
uiqt

 .

The elements of the design vector, uikt, is given as

uikt =

{
1 if observation Yit is in cluster k at time t,
0 else.

Often, the observations are in the same cluster at all time points, thus uikt is independent
of time, t. The expected values and variance for the linear mixed model given in Equation
(3.18), are given as

E(Yit) = E(xTi β + uTitγi + εit) = xTi β,

and
Var(Yit) = Var(xTi β + uTitγi + εit) = uTitQuit + σ2.

The correlation between two time points within one individual is called the intraclass cor-
relation (ICC). Given that individual Yit is in cluster k, and that Equation (3.20) holds, the
ICC is given as

ICC = Corr(Yit, Yit′) =

{
1 if t = t′,
σ2

τ2
k+σ

2 if t 6= t′.

The linear mixed model, given in Equation (3.18) is assumed to be normally distributed,
given by

yit ∼ N (xiβ, u
T
itQuit + σ2).

Representation for one individual

Writing the linear mixed model as the total vector representation for one individual yields

Y i = Xiβ + Uiγi + εi. (3.21)

Here, Y i is given as in Equation (3.8), while Xi and εi are given in Equation (3.9). The
design matrix, Ui, for the cluster specific terms is a ((T + 1)× (q + 1)) matrix, given by

Ui =

1 ui10 . . . uiq0
...

...
...

1 ui1T . . . uiqT

 . (3.22)
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The expected value and covariance matrix of yi are given as

E(Y i) = E(Xiβ + Uiγi + εi) = Xiβ,

and

Cov(Y i) = Cov(Xiβ + Uiγi + εi)

= Cov(Uiγi) + Cov(εi)

= UiQU
T
i + σ2V∗,

where V∗ is given by Equation (3.10) or Equation (3.11). If we assume that there are inde-
pendence between the random effects, Q is given as in Equation (3.20) and the covariance
matrix is given by

Cov(Y i) = UiQU
T
i + σ2V∗.

Here, the matrix JT+1 is the matrix of dimension ((T + 1) × (T + 1)) consisting of
only ones. The linear mixed model, given in Equation (3.21) is assumed to be normally
distributed, given as

Y i ∼ N (Xiβ, UiQU
T
i + σ2V∗).

Representation for all individuals

The total vector representation of all individuals at all time points for a linear mixed model
given in Equation (3.17) is given by

Y = Xβ + Uγ + ε. (3.23)

Y is given in Equation (3.13) while X and ε are given in Equation (3.14). The design
matrix U is a (n(T + 1) × n(J + 1)) block-diagonal matrix with the design matrix Ui
given in Equation (3.22) on the main diagonal and zero elsewhere, given as

U =


[
U1

] 0
. . .

0 [
Un
]
 .

The vector of random effects, γ, is of length n(T + 1) and is given as

γ =



γ10
...
γ1q

...
γn0

...
γnq


. (3.24)
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This vector consisting of all the random effects is multivariate normally distributed, given
as

γ ∼ N (0, G),

where G is a block-diagonal matrix of dimensions (n(q + 1) × n(q + 1)) with Q on the
main diagonal and zero elsewhere, given as

G =


[
Q
] 0

. . .
0 [

Q
]
 .

The expected value of the vector and the covariance matrix of Y given in Equation (3.23)
are given as

E(Y ) = E(Xβ + Uγ + ε) = Xβ,

and

Cov(Y ) = Cov(Xβ + Uγ + ε) = Cov(Uγ) + Cov(ε) = UGUT + σ2V.

The outcome variable Y , given in Equation (3.23) is assumed to be multivariate normally
distributed, given as

Y ∼ N (Xβ, UGUT + σ2V ). (3.25)

3.4 Parameter estimators for the linear regression model
When modelling longitudinal data using a linear regression model or a linear mixed effects
model the regression coefficients, β, given in Equation (3.5), are unknown and must be
estimated. For the linear regression model given in Equation (3.4) the predictor for Yit is
given as

Ŷit = β̂0 + β̂1xi1t + ...+ β̂pxipt = xTi β̂.

Here, β̂ is the vector of estimators of the unknown regression coefficients. These esti-
mators may be found by using the method of least squares or the method of maximum
likelihood. The estimators for the error terms, εit, is called the residuals and are given by

ε̂it = yit − Ŷit = yit − xTi β̂,

where yit are the observed variables. To find the estimators for β, and thus also ε, the
vector representation of all observations, given in Equation (3.4) is used. This is given as

Ŷ = Xβ̂

and
ε̂ = y − Ŷ = y −Xβ̂.

Here, y is the set of all observed variables, given in Equation (3.2) and X is the design
matrix given in Equation (3.14).
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Method of least squares for β

A method that is widely used when finding estimators for the regression coefficients β is
the method of least squares (Fahrmeir et al., 2013). This method aims to minimize the
difference between the observed values and the estimated values with respect to β. This is
given as

LS(β) = εTV ε = (y −Xβ)TV (y −Xβ),

where V is the matrix given in Equation (3.15) and is assumed to be known. This equation
can be rewritten as

LS(β) = yV yT − 2yTV Xβ + βTXTV Xβ.

This equation is minimized by setting the derivatives of β equal to zero. By doing this and
rewriting the equation in terms of the estimated regression coefficients, the result is given
by

β̂ = (XTV X)−1XTV y. (3.26)

This is the estimator for the regression coefficients. The expected value of the estimator is
given as

E(β̂) = E((XTV X)−1XTV y)

= ((XTV X)−1XTV )E(y)

= (XTV X)−1XTV Xβ = β.

Since E(β̂) = β the estimator is said to be unbiased. The bias of an estimator is the
deviation of the estimator from the true value. This is given as

Bias(θ̂) = θ − θ̂.

An estimator is unbiased if the bias of the estimator is zero. The covariance matrix of the
estimator is given as

Cov(β̂) = Cov((XTV X)−1XTV y)

= σ2((XTV X)−1XTV )V (V X(XTV X)−1)

= σ2(XTV −1X)−1.

The true covariance cannot be calculated if σ2 is unknown. Thus, an estimator of the
covariance matrix for β̂ is given as

Ĉov(β̂) = σ̂2
ε(XTV X)−1 =

ε̂T ε̂(XTV X)−1

n(T + 1)− (p+ 1)
, (3.27)

where the diagonal elements are the estimated variances of β̂.
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Maximum likelihood estimator for β and σ2

The maximum likelihood estimator (MLE) for Equation (3.12) use the assumption that
the equation is assumed to be normally distributed. The likelihood for Equation (3.12) is
given as

L(β, σ2) =
1

(2πσ2)(n(T+1))/2
e−

1
2σ2

(y−Xβ)TV (y−Xβ).

The log-likelihood is thus given as

l(β, σ2) =− n(T + 1)

2

(
log(2π)− log(σ2)

)
− 1

2σ2
ε

(y −Xβ)TV (y −Xβ). (3.28)

By maximizing the log-likelihood with respect to β and σ2 we find the most likely estima-
tors for β and σ2. This is done by differentiating β and σ2 and solving the set of equations.
This results for β is the same estimator as the estimator found by using the method of least
square, given in Equation (3.26) (Fahrmeir et al., 2013, p. 107). The estimator for the
variance of the error terms, σ2, is given by

∂l(β, σ2)

∂σ2
= −n(T + 1)

2σ2
+

1

σ4
(y −Xβ)TV (y −Xβ) = 0.

By inserting β̂ for β, this results in

∂l(β̂, σ2)

∂σ2
= −n(T + 1)

2σ2
+

1

σ4
(y −Xβ̂)TV (y −Xβ̂)

= −n(T + 1)

2σ2
+

1

σ4
ε̂TV ε̂.

By setting this equation equal to zero the resulting expression for the MLE of σ2
ε is given

as

σ̂2 =
ε̂TV ε̂

n(T + 1)
.

However, Fahrmeir et al. (2013) showed that this estimator is biased because

E(σ̂2) =
n(T + 1)− (p+ 1)σ2

n(T + 1)
6= σ2. (3.29)

An improved estimator for σ2 is the restricted maximum likelihood estimator (Fahrmeir
et al., 2013, p. 109).

Restricted maximum likelihood estimation

Restricted maximum likelihood estimation (REML) is a method which produces unbiased
estimation of the variance for the error terms. Given the expected value given in Equation
(3.29) the REML estimator for σ2, which is unbiased, is given as

σ̂2
ε =

ε̂TV ε̂

n(T + 1)− (p+ 1)
.
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3.5 Model parameter estimators for LMM
Marginal and conditional model

When analyzing RCT by using a linear regression model only the fixed effects, β, is of
interest to estimate. In this case the marginal model can be used, given in Equation (3.16).
Estimating parameters by the marginal model were used in Section 3.4. In the case of
a LMM, the random effects, γ, are also of interest to estimate. For this to be done, the
conditional model is needed (Fahrmeir et al., 2013, p. 371). The marginal model for a
LMM is given in Equation (3.25). The conditional model of Y given the random effects
γ is given by

Y |γ ∼ N (Xβ + Uγ, σ2V ).

Likelihood estimation

In the case of known covariance matrices V and G we rewrite equation (3.25) to

Y ∼ N (Xβ, R),

where R = UGUT + σ2V is known. According to Fahrmeir et al. (2013) the unknown
parameters can be estimated by maximizing the joint log-likelihood of Y and γ with
respect to both β and γ at the same time (Fahrmeir et al., 2013, p. 371). The log-likelihood
is given as

log(p(Y ,γ)) = log(p(Y |γ)p(γ)) =
1

2
(y−Xβ−Uγ)TV −1(y−Xβ−Uγ)+γG−1γ,

where p(·) is the distribution of the given variable. This is the maximum likelihood es-
timator. The maximum likelihood estimator is equivalent to the least square estimator
(Fahrmeir et al., 2013, p. 371). This is given as

∂log(p(Y ,γ))

∂(β, γ)
= (y −Xβ − Uγ)TV −1(y −Xβ − Uγ) + γTG−1γ = 0.

The derivative of the least square estimator is taken on both β and γ. By setting the
derivative of all parameters equal to zero this results in the mixed models equations, given
by (

XTV −1X XTV −1U
UTV −1X UTV −1U +G−1

)(
β̂
γ̂

)
=

(
XTV −1y
UTV −1y

)
.

Which results in the estimators for β and γ, given as

β̂ = (XTR−1X)−1XTR−1y,

and
γ̂ = GUTR−1(y −Xβ̂).

In addition Fahrmeir et al. (2013) has shown that the covariance for the parameter estimates
are given as

Ĉov
(
β̂
γ̂

)
= (CTV −1C +B)−1,
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where

B =

(
0 0
0 G

)
and C = (X,U).

3.6 Hypothesis testing
When estimators for the regression parameters are found, the significance of the estimates
has to be found. This can be done by performing a hypothesis test. A general hypothesis
for a regression model is given as

H0 : Cβ = d vs H1 : Cβ 6= d,

where C is a (p + 1) row vector that represents which elements of β that is tested by the
hypothesis. The hypothesis of significance for only one regression parameter is given as

H0 : βj = 0 vs H1 : βj 6= 0, (3.30)

where the hypothesis is if βj is equal to zero or not. Here, d = 0 and C is a vector with 1
at the (j + 1)-th position and zero elsewhere, given as

C = (0, 0, . . . 0, 1,︸︷︷︸
(j+1)−th position

0, . . . 0)T .

This hypothesis can be evaluated by using the t-statistic. The test statistic for evaluating
the hypothesis is thus given by

tj =
β̂j√

V̂ar(β̂j)
. (3.31)

The null hypothesis is rejected if

|tj | > t(1−α/2),(n(T+1)−(p+1)). (3.32)

Here, α is the significance level of the test. Further on, for simplicity, we define

tt = t(1−α/2),(n(T+1)−(p+1)). (3.33)

If the hypothesis test of interest is to compare two regression coefficients, the hypothesis
is given as

H0 : βj − βk = 0 vs H1 : βj − βk 6= 0. (3.34)

Here, d = 0 as before, while C is now the vector with 1 at the (j + 1)-th position and −1
at the (k + 1)-th position, given as

C = (0, . . . 0, 1,︸︷︷︸
(j+1)−th position

0, 0, . . . 0, −1,︸︷︷︸
(k+1)−th position

0, . . . 0)T .

The hypothesis is evaluated by the t-statistic, where the test statistic now is given by

tjk =
Cβ̂√

Ĉov(Cβ̂)

. (3.35)
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The null hypothesis is rejected if
|tjk| > tt, (3.36)

where tt is given in Equation (3.33).

3.7 Confidence intervals
A (1 − α)100%-confidence interval for a parameter represents the region where we are
(1 − α)100% confident to find the true value of the parameter. This is related to the
hypothesis test given in Equation (3.30) and is found by combining the Equations (3.31)
and (3.32). The confidence interval for the regression coefficients is given by

[β̂j − tt
√

V̂ar(β̂j), β̂jtt
√

V̂ar(β̂j)].

The confidence interval for a difference between two regression coefficients, given in the
Equation (3.34), is given by the Equations (3.35) and (3.36). This is given as

[Cβ̂ − tt
√

Ĉov(Cβ̂), Cβ̂ + tt

√
Ĉov(Cβ̂)].
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Chapter 4
Missing data

This chapter is inspired by the book ”Medical Statistics” by Veieroed et al. (2012).

Missing data are defined as the data that were intended to be collected in a trial but for
some reason were not possible to collect or are lost (Carpender and Kenward, 2007; Dig-
gle et al., 2001). This means that there actually exist meaningful values for the missing
data but there is no available information about the missing data. Thus, if a patient dies
during a trial the data are no longer available and are therefore not regarded as missing
(Veieroed et al., 2012, p. 431). In this case the data are known as censored data. In al-
most every RCT there are missing data. This is a potential source of bias in the results
and will lead to reduced power of the analysis (Altman and Bland, 2007; Sterne et al.,
2009). Many statistical analyses assume complete data and do not take the missing data
into account (Altman and Bland, 2007; Veieroed et al., 2012). Recent studies have shown
that most researchers which conduct an RCT fail to use one of the best approaches to deal
with missing data or do not deal with missing data at all (Zhang et al., 2017; Rombach
et al., 2016). Most of the researchers either take the easy way out and only deal with
the complete cases (i.e. remove all units with missing data) or use methods that are not
valid. A method is said to be valid if both the estimates of the parameters of interest and
the estimated variance of the estimates are approximately unbiased. (Veieroed et al., 2012,
p. 429) In addition, Zhang et al. (2017) showed that only a small amount of the researchers
discussed the risk of bias which may have been caused by missing data in their articles.
Missing data is a bigger problem in studies which are retrospective (Altman and Bland,
2007). If the assumption of missing data is taken into account before the trial is conducted,
a larger sample size could reduce the potential power loss of the study. However, larger
sample size does not control for the potential bias missing data can introduce (Altman and
Bland, 2007). RCTs are prospective studies and should therefore take the assumption of
missing data into account before conducting the study.
The chapter is structured as follows: The different missing data patterns and the conse-
quences of the amount of missing data are presented in Section 4.1. The different types of
missing data mechanisms are introduced and discussed in Section 4.2. Sensitivity analy-
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ses when handling missing data are discussed in Section 4.3. At last, different methods to
handle missing data are presented and discussed in Section 4.4.

4.1 Missing data patterns

4.1.1 Interim and withdrawal missing data
When analyzing missing data we distinguish between interim missing data and withdrawal
missing data (Carpender and Kenward, 2007, p. 4). Interim missing data is defined as
the missing data when a patient has missed one follow-up measurement but has at least
one follow-up measurement available later on. Withdrawal missing data is defined as the
missing data when there are no measurements available after a certain time point. Thus, if
yit is missing, then yit′ is missing for all t′ > t. Withdrawal missing is sometimes referred
to as monotone missingness or just drop-outs. Withdrawal missing data affects the results
to the highest degree (Carpender and Kenward, 2007, p. 5). However, interim missing data
are more difficult to deal with because there is more variation in the missing data patterns
(Diggle et al., 2001, p. 284).

4.1.2 Item and unit nonresponse
Missing data can also be divided into item and unit nonreseponse. Item nonresponse means
that some of the data are available for the items of a subject but not all. Unit nonresponse
is the situation where no information are available for a unit. A unit can for example be an
individual. Unit nonrespons can typically be the case where no questions are filled out in
a questionnaire. Unit nonresponse is typically dealt with by using weighting methods as
direct standardization, while imputation is commonly used when the case is item nonre-
sponse. (Veieroed et al., 2012, p. 431). Item nonresponse is typically the type of missing
data medical studies are exposed for. Unit nonresponse is a bigger problem in observa-
tional studies than in RCTs. Further on, the focus will be on item nonresponse, since this
is most common in RCTs.

4.1.3 How much missing data is too much missing data?
The amount of missing data is of interest when analyzing a trial with missing data. Schulz
and Grimes (2002) and Fielding et al. (2012) present the following assumptions about the
amount of missing data: A trial with less than 5% missing data is regarded as a small
amount and thus the bias will be minimal. Anything between 5% and 20% is an interme-
diate amount of missing data and could cause problems. In this case, missing data should
be discussed and analyzed. More than 20% missing data is problematic and reduces the
validity of the trial (Altman and Bland, 2007). Trials with more than 20% missing data are
refused by some journals (Schulz and Grimes, 2002).
In 2014 Zhang et al. (2017) conducted a study to investigate how researchers handled
missing data in 200 RCTs with continuous outcome. The study showed that 10% was
the average amount of missing data in the trials. The amount of missing data in RCTs is
usually so high that it should always be taken into account when planning the trial.
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4.2 Missing data mechanisms
When there are missing data in a trial, it is important to investigate why the data are
missing. This is called the missing data mechanisms and explains if the probability of
missing data is dependent on some variables or not. When analyzing trials with missing
data, the missing data mechanism is important to include in the analysis to get valid results.
However, according to Zhang et al. (2017) and Rombach et al. (2016) less than 10% of
the RCTs investigated in their trial report what type of the missing data mechanism they
have assumed. The results of the analysis in a trial with missing data can be biased and
the bias may be dependent on the missing data mechanism. A broadly used terminology
is presented by Little and Rubin (2002) where the missing data mechanism is divided
into three types: Missing completely at random, missing at random and missing not at
random. Before presenting the missing data mechanisms we will describe missing data in
mathematical terms.
Consider a data set with n units. For each unit p variables are observed. The response
for unit i = 1, 2, ..., n and variable j = 1, 2, ..., p is given as yij . If the value of yij is
missing, the value of yij is exchanged with a question mark, ”?”. This can be presented
as a matrix, y, of dimensions (n × p), given in Equation (4.1), where the values y12 and
yn2 are missing as an illustration.

y =



y11 ? . . . y1p
y21 y22 . . . y2p

...
...

. . .
...

yn1 ? . . . ynp


(4.1)

We divide this data set into two parts, one with missing data and one with observed data,
given as

y = (yobs,ymis). (4.2)

We now define R as the (n × p) matrix, i.e. the same size as y. The elements in R is
given as Rij , where each element indicates whether there are missing observations or not
in the matrix y. This is given as

Rij =

{
1 if yij is missing,
0 else. (4.3)

Thus, the matrix R, representing the missing values given the matrix in Equation (4.1) is
given as

R =



0 1 . . . 0
0 0 . . . 0

...
...

. . .
...

0 1 . . . 0


.

The relation of howR is dependent of y describes the different missing data mechanisms.
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4.2.1 Missing completely at random (MCAR)
Missing completely at random is defined as the situation where the probability that an ob-
servation is missing is not dependent of neither the observed nor unobserved data (Sterne
et al., 2009). By the model given in Equations (4.1) and (4.3) a MCAR data is given as

P (R|y) = P (R).

Whether the measured data are observed or not observed does not yield any systematic dif-
ferences. This means that the unobserved data are not dependent of any variables observed
in the trial, thus not dependent on the covariates or the parameter of interest. MCAR data
will not affect the results of the analysis in any other way than less precise estimates. In
this case, it is possible to use only the complete cases in the analysis without introducing
bias in the results (Veieroed et al., 2012, p. 437). However, even if the assumption about
MCAR data is fulfilled, it is not sufficient enough to show that the data truly are MCAR.
This is because there may always be some unmeasured variables that are related to the
missing values which we cannot take into account when checking if the data are MCAR.
Thus, we can never be certain that the data are MCAR, and in practical trials data are
seldom MCAR (Zhang et al., 2017). Assuming a MCAR situation when it is not the case
can lead to severe errors on the results. Figure 4.1 illustrates the missing data in a MCAR
situation where there is no systematic difference in the missing data.

Figure 4.1: Illustration of data missing completely at random.

4.2.2 Missing at random (MAR)
Seldom there is no relation between the missing data and the observed or unobserved data
as in the MCAR situation. When there is a systematic difference between the probability
of unobserved data and observed values, the missing data mechanism is called missing at
random (Sterne et al., 2009). This means that it is possible to find a systematic relation be-
tween the unobserved data and the observed data. By the equations given in the Equations
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(4.1), (4.2) and (4.3), a MAR situation is given as

P (R|y) = P (R|yobs).

Unbiased analysis of the data can still be carried out in the case of MAR. However, this
is only true if we know that there are no relation between the unobserved data and the
probability of missing data. If there is a MAR situation, there can for example be a relation
between the missing data and the covariates. If there is a relation between a covariate and
the missing data a true MAR situation is possible to detect. The probability of missing data,
given this particular covariate should have the missing data mechanism MCAR. Thus, the
missing data should be dependent only on the observed covariate and not some unobserved
data. In the case of the missing data mechanism MAR, the analysis of the data should not
be done only on the complete cases (remove all the units with unobserved values). This
is statistically invalid and may produce biased results. The analysis should be done by
conditioning on the observed variables which is related to the probability of missing data.
By not taking the missing data mechanism MAR into account the results may be biased
(Zhang et al., 2017). Assuming MAR when the data are truly not MAR, will often only
have a minor impact on the results. MAR and MCAR data are said to be ignorable missing
data mechanisms (Veieroed et al., 2012, p. 433). Figure 4.2 illustrates the situation with
the missing data assumption MAR.

Figure 4.2: Visualization of data missing at random.

4.2.3 Missing not at random (MNAR)
Missing not at random is the missing data mechanism that is neither MAR nor MCAR.
This means that even after taking the observed data into account, there is still differences
between the probabilities of the missing data. Thus, the probability of missing data is
dependent of unobserved (and observed) data. This is given as

P (R|y) = P (R|(yobs,ymis)).
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Thus, we cannot get all the information needed to find enough information to do the best
analysis. If the patients are lost to follow-up before the end of the study, i.e. withdrawal
missing data, the situation is probably a MNAR situation (Altman and Bland, 2007).
MNAR data are more difficult to analyze than MCAR and MAR data because the distri-
bution differences between participants with missing data and without must be described
to get valid analysis. This information is often not available to us because the information
exists only in the missing data. Thus, there are no best way to deal with MNAR data,
so sensitivity analyses should be conducted to compare the results of the estimates under
different assumptions (Zhang et al., 2017; Sterne et al., 2009). Figure 4.3 illustrates the
situation with MNAR missing data mechanism.

Figure 4.3: Visualization of data missing not at random.

4.3 Sensitivity analysis
A sensitivity analysis is defined by Thabane et al. (2013, p. 2) as ”a method to determine
the robustness of an assessment by examining the extent to which results are affected by
the changes in methods, models, values of unmeasured variables, or assumptions with
the aim of identifying results that are most dependent on questionable or unsupported
assumptions”. In other words, a sensitivity analysis describes how the results differ when
different assumptions are made in a trial. If the assumptions do not affect the results in
a trial, the results are said to be robust (Thabane et al., 2013). A sensitivity analysis is
recommended when missing data occur in RCTs (Fielding et al., 2012; Rombach et al.,
2016; Zhang et al., 2017). This can be done by conducting different strategies to handle
missing data and will be presented in Section 4.4 (Fielding et al., 2012). Another way
to conduct a sensitivity analysis is to assume that the missing data are extreme in one
way or another and to see how the results varies (Zhang et al., 2017; Sterne et al., 2009).
The choice of methods when conducting a sensitivity analysis also depends on the missing
data mechanism (Thabane et al., 2013). When dealing with data that are MCAR and MAR,

32



4.4 Methods to handle missing data

there are good methods to analyze the data to get valid results. In the case of MNAR data,
there is no good way to analyze the data to get valid results. In this case a sensitivity
analysis is a good option to investigate how the results vary according to what methods
are used to deal with missing data (Sterne et al., 2009). According to Zhang et al. (2017),
less that 10% of the researchers investigated in their review had conducted a sensitivity
analysis. They also reported that sensitivity analysis should always be conducted in the
case of MNAR (and MAR) data.

4.4 Methods to handle missing data
There are several methods to deal with missing data, but as Zhang et al. (2017) have shown,
not all methods that are commonly used are valid. Valid methods can be divided into three
groups: Weighting procedures, imputation procedures and direct model based analysis.
Weighting procedures adjust each observation based on the distribution of the sample.
Imputation methods replace missing data with a substitute to make a complete data set.
Direct model based analysis try to model the vairables for the data set with missing data to
find the overall distribution of the data. If missing data depend on the variable of interest,
then imputation procedures and direct model analysis are valid methods. If the missing
data depend on auxiliary variables, then weighting methods are also valid methods that can
be used. Auxiliary variables are variables that are included in the analysis only to improve
the performance of the missing data method (Collins et al., 2002). This information does
not need to be of interest of the trial. The method of choice when analyzing missing data
depends also on whether there is unit or item nonresponse, and of what type of missing
data mechanism there is. For example, weighting procedures are commonly used when
there is unit nonresponse, while item nonresponse is often handled with imputation. Since
item nonresponse is most common in RCTs, the focus will not be on weighting methods,
but rather on imputation methods and direct model based procedures. Even though there
are several methods to handle missing data, there is no solution that substitutes a complete
data set. Thus, Altman and Bland (2007) highlights the importance of maximizing the data
collection. Rombach et al. (2016) presents four commonly used categories of methods for
handling missing data: Complete case analysis, single imputation, multiple imputation and
model based approaches such as mixed effects models. These methods are widely used
to handle missing data (Zhang et al., 2017; Fielding et al., 2012; Veieroed et al., 2012).
Not all of these methods are recommended, but since also the methods that are not valid
are also commonly used, all methods will be presented and discussed in the following
subsections. In addition selection models and pattern mixture models will be presented.

4.4.1 Complete case analysis and available case analysis
The simplest method to deal with missing data is to exclude all units with missing data
from the analysis. This is called complete case analysis. The advantage is that the method
is simple, and most statistical methods can be used. The disadvantage is that the sample
size is reduced, and the point estimates may be less precise. This means that confidence
intervals can be wider and the p-values can be higher, due to higher variance. In addition
the power of the analysis will decrease. Complete case analysis is only valid when the

33



Chapter 4. Missing data

missing data mechanism is MCAR, else bias due to missing data can be introduced. The
percentage of missing data should be small if complete case analysis should be used. If
not, the statistical power may be reduced (Altman and Bland, 2007). Sterne et al. (2009)
makes one exception: If the missing data occur only in the outcome variable and the
outcome variable is only measured once for each individual, then complete case analysis
can be applied to MAR data. Even though complete case analysis is a method which
is only valid under restricted limitations, many researchers use the method to conduct
analysis (Sterne et al., 2009). According to Zhang et al. (2017), 67% of the analyzed RCTs
used available data only in the analysis. An available case analysis takes all the available
information for exactly that analysis and conducts complete case analysis on the subset of
data needed for that specific analysis (Veieroed et al., 2012, p. 437). This means that for
two different analyses, two different subsets can be used to conduct the analysis. Available
case analysis can therefore get higher power and precision on the estimates compared to
complete case analysis, but the analysis is based on different samples and sample sizes.
As in the complete case analysis, the results will be biased if the missing data mechanism
is not MCAR. If not data should be excluded from the analyses, some alternative method
should be used to substitute the elements of the missing data. This can be done by using
imputation methods.

4.4.2 Single imputation

Imputation methods are methods to create complete data sets with the purpose to use sta-
tistical methods where complete data is assumed. This is done by imputing data where
there are missing values. The imputed values should be predicted using the observed data
(Veieroed et al., 2012, p. 442). The values that are imputed should come from the predic-
tive distribution of the data set, conditioning on the observed values. When an imputation
method is used, all variables in the analysis should also be in the the imputation model.
This includes interactions and covariates and in particular the variables that are known to
be related to the missing data (Sterne et al., 2009). Other variables available, but not used
in the analysis could also be included in the imputation model. When single imputation
is done right, unbiased results can be carried out in the case of the missing data mecha-
nism MAR (Zhang et al., 2017). However, the variance is often estimated to be too small
(Sterne et al., 2009). Fielding et al. (2012) do not recommend the usage of simple im-
putation. Single imputation is illustrated in Equation (4.4), where the missing values are
indicated with ”?” and the imputed value for yij are indicated with ŷij .


y11 ? y13 y14
y21 y22 y23 y24
y31 ? ? y34
? ? y43 y44

 Imputation−−−−−→


y11 ŷ12 y13 y14
y21 y22 y23 y24
y31 ŷ32 ŷ33 y34
ŷ41 ŷ42 y43 y44

 (4.4)

We are going to describe a few commonly used imputation methods to illustrate how im-
putation can be done. However, there are several other imputation methods available.
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Last observation carried forward

The method of last observation carried forward (LOCF) is a type of single imputation
that is done by replacing the missing values with the last observed value for the given
participant. Given the situation illustrated in Equation (4.4) where y12 is missing, when
using the method of LOCF then ŷ12 = y11. This method is commonly used in longitudinal
data analysis and for dropouts. This is a popular method to use because of its simplicity, but
it is only valid under very special circumstances, and will never be valid for the multivariate
normal distribution or any of the standard distributions (Carpender and Kenward, 2007,
p. 33). Even though this method is rarely valid, it is still a commonly used method when
analyzing RCTs in medical research (Zhang et al., 2017). It have been showed that the
method leads to biased results and that it is also potentially worse than other methods
(Zhang et al., 2017). Thus, this method should not be used under regular circumstances.

Hot-deck imputation

Using the method of Hot-deck imputation, the observed values constitutes a so called
”donor pool”, from which the imputed values are drawn (Veieroed et al., 2012, p. 443).
The donor size and content of the donor pool can vary. This variation is dependent of
which part of the observed data that are used to construct the donor pool. Each imputed
value is randomly drawn from the donor pool. In the case of the missing data mechanism
MCAR with no auxiliary information available, a missing observation is just imputed by
a randomly drawn value from all of the observed values. If the missing data mechanism
is MAR, the missing data is dependent of some information given in the observed values
(this can for example be a group variable). In this case the donor pool should depend on
the variable related to the probability of missing data. For example, given the situation
where there are more missing data in one group, the donor pool should depend on the
group variable. Hot-deck imputation is only recommended when there are no auxiliary
information available. Auxiliary information are information that is available but not used
in the analysis.

Regression imputation

When auxiliary variables are available, regression imputation is a commonly used method
for item nonresponse (Veieroed et al., 2012). By using regression imputation, each missing
observation is imputed by a predicted variable based on a regression model. In the case of
a one-dimensional Y with one auxiliary variable x, the linear regression model is given by

Y = α+ βx+ ε,

with the expected value and variance given by

E(Y |x) = α+ βx and Var(Y |x) = Var(ε) = σ2.

Assuming the model is predicted by the response sample r and the least squares estimates
given by α̂r and β̂r, the imputed value for the missing observation Yi is given by

Ŷi = α̂r + β̂rxi.
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This regression imputation is called the conditional mean imputation, and is one example
of regression imputations. A drawback with this method is that there is not enough varia-
tion in the model to take into account the variance of the missing data. This problem can
be taken into account by using residual regression imputation. For all the imputed values
given in Equation (4.4.2), the residuals are computed by the equation

ej = Yj − Ŷj = Yj − (α̂r + β̂rxj), j ∈ r.

Thus, each imputed value is given by

Ŷi = α̂r + β̂rxi + e∗i ,

where e∗i is drawn randomly from the complete set of all the residuals. Regression impu-
tation is also a good imputation method when there are withdrawal missing data (Veieroed
et al., 2012, p. 449). Say that the value yt, t > 1 and the succeeding values t+ 1, t+ 2, ...
are missing. The value yt may be imputed based on the value yt−1, and so on.

4.4.3 Multiple imputation
Single imputation can give unbiased results in the case of the missing data assumptions
MCAR or MAR, but the estimation of the variance is often too low (Rubin, 1987, p. 11).
Thus, the method can turn out to be invalid. Multiple imputation (MI) is an improvement
of single imputation. MI produces unbiased results, and the variance is reasonable high.
Thus, it is known as a valid method in the case of MAR data. The interest and usage of the
method have increased over the last years, due to the potential to increase the validity of
the results of the analysis in a trial (Sterne et al., 2009). MI is a very flexible method and
it can mimic a full model based analysis, which is regarded as the gold standard method
(Veieroed et al., 2012, p. 430). By using MI, different imputation procedures are done
several times to find an overall estimate for each imputed value. Thus, the uncertainty for
the imputed values is also taken into account. Since also the imputed values are randomly
drawn from a distribution, the method of MI increases the efficiency of the estimation
compared to single imputation (Rubin, 1987, p. 16). An additional advantage of MI is
that when using the method, m different imputations are generated for the same model.
This means that in itself, the method of MI conducts a sensitivity analysis of the estimates
(Rubin, 1987, p. 16). It is recommended to use MI in the case of MAR and MCAR data,
but in the case of MNAR data MI may lead to biased results that can even be bigger than
for the complete case analysis (Sterne et al., 2009). When conducting MI, each imputed
data set is analyzed by a statistical method assuming complete data, which results in m
estimates of the parameter of interest and m estimates for the variance of the estimates.
This way, the analysis ignores the difference between the observed units with missing
data and without missing data (Rubin, 1987). The number of repeated imputations, m, is
usually set to m = 20 or more (Veieroed et al., 2012; Marshall et al., 2009; Sterne et al.,
2009). Continuous data are assumed to be normally distributed when conducting MI, if
not, transformation can be done before analyzing the data (Sterne et al., 2009).
When conducting MI in a trial, the parameter of interest, θ, is estimated m times. These
estimates are given as

θ̂j , j = 1, ...,m. (4.5)
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The associated estimated variances are given by

σ̂2
j = Var(θ̂j), j = 1, ...,m.

The calculation of the overall estimates of the parameter of interest by using MI was first
presented by Rubin (1987), and is widely used today under the name Rubin’s rule. The
calculation arises from a Bayesian approach. Thus, it is assumed that the imputations are
drawn to simulate a Bayesian posterior distribution of the missing data. By combining the
analysis of each imputed data set, the result will be approximately valid. For complete
data, it is assumed that

(θ − θ̂) ∼ N (0, σ2).

Them sets of repeated imputations are drawn to makem complete data sets, which results
in the estimates for the parameter of interest and the variance, given in the Equation (4.5).
The overall average estimate of the parameter of interest is given by

θ̄ =
1

m

m∑
j=1

θ̂j .

The overall average of the variances is given by

W =
1

m

m∑
j=1

σ̂2
j .

This is the variance within each imputation combined. The variance between the m esti-
mates is given by

B =
1

m− 1

m∑
j=1

(θ̂j − θ̄)2.

The total variance is given by the within imputation variance and between imputation
variance. This is the total variance estimate of (θ − θ̂), and is given by

T = W + (1 +
1

m
)B.

The statistic (θ̄ − θ)/
√
T is approximately distributed as a Student’s t-distribution with ν

degrees of freedom, given as

ν = (m− 1)(1 + r−1)2. (4.6)

Here, r represents the relative increase in variance due to missing data and is given as

r = (1 +m−1)
B

W
.

The 100(1− α)% confidence interval for the estimate θ̄ is given as[
θ̄ − t(1−α/2),ν

√
T , θ̄ + t(1−α/2),ν

√
T
]
.
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The hypotheses for testing the significance of the parameter of interest is given as

H0 : θ = θ0 vs H1 : θ 6= θ0. (4.7)

The test statistic for the hypothesis test is given as

(θ − θ0)2/T,

and will be evaluated by comparing this to the F-statistic with 1 and ν degrees of freedom.
Thus, the hypothesis test given in Equation (4.7) is rejected if

F1,ν < (θ − θ0)2/T.

Both the confidence interval and the p-values cannot be combined using Rubin’s rule,
because they change systematically with the sample size (Veieroed et al., 2012, p. 448).
Statistics that can be estimated by Rubin’s rule are the mean and standard deviation, and
in addition proportions or regression coefficient. When applying Rubin’s rule on the odds
ratio, the parameters should be log-transformed before combining the different analysis.
When calculating the correlation a Fisher’s z-transformation should be used before com-
bining the result. When applying Rubin’s rule, the estimates of the parameters of interest
must be different for each imputed data set. If the interest is to compare different esti-
mates which comes from the same distribution and may be dependent, the same procedure
is used. Rubin’s rule can also be used in the case of k parameters of interest. Then the
estimates from the m imputations are given as

θ̂j , j = 1, ...,m,

where θ̂j is a vector of length k. The associated covariance matrices are given as

Var(θ̂j) = Σ̂j ,

which is of dimension (k × k). It is assumed that

(θ − θ̂) ∼ N (0,Σ),

The estimates found by Rubin’s rule are given by

θ̄ =
1

m

m∑
j=1

θ̂j ,

with the associated variance of the estimates given by

Var(θ̂j) = Σj .

The average within covariance matrix is given by

W =
1

m

m∑
j=1

Σj ,
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The between variance is given as

B =
1

m− 1

m∑
j=1

(θ̂j − θ̄)T (θ̂j − θ̄),

and thus the total variance is given by

T = W + (1 +m−1)B.

The degrees of freedom is given as in Equation (4.6), but with r replaced with rk given as

rk =
1

k
(1 +m−1)Tr(Bθ̄−1),

where Tr(·) is the trace of the matrix, which is the sum of the diagonal elements of a
matrix. The hypothesis for testing the significance of the parameter of interest is given by

H0 : θ = θ0 vs H1 : θ 6= θ0.

When m is large compared with k, say m ≥ 5k, the test statistic for the hypothesis is
given by

D =
1

k
(θ0 − θ̄)T−1(θ0 − θ̄)T .

The hypothesis given in Equation (4.4.3) is rejected if

Fk,ν < D.

Using this model, it is assumed that the covariance matrix, Σj , of the estimates θ̂ is avail-
able. In practice the Σj are not always accessible, especially when k is large. Other
method, which are presented by Marshall et al. (2009), is to use the method to combine
χ2 statistics or to use the method for combining the likelihood ratio χ2 statistics. These
methods are not as good as the one presented by Rubin (1987) and should only be used
when necessary (Marshall et al., 2009).

4.4.4 Mixed-effects models
Mixed-effects models, which were presented in Section 3.3, can be used to analyze the
data in the case of missing data in longitudinal trials (Rombach et al., 2016). This is a
direct model based analysis. Using a mixed-effects model includes the unobserved vari-
ables that characterize the subject which are included in a random effect term different for
the subjects (Diggle et al., 2001, p. 301). Using this method, imputation is not needed
because complete data set is not necessary. Each outcome variable is modelled after sev-
eral variables. Thus, if one observation is missing, the model can still be fitted (although
not as precise) (Rombach et al., 2016). On the other hand, if there are missing data in
the covariates, problems in the analysis could appear. This problem could be handled by
using imputation methods only in the covariates. Using a mixed-effects model, the results
can be unbiased if the missing data mechanism is MCAR or MAR (Sterne et al., 2009).
Both multiple imputation and mixed-effects models have been proved to have good results
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when handling missing data. However, Zhang et al. (2017) showed that these methods
where not used any more frequent than poorer methods like LOCF. In addition Zhang
et al. (2017) showed that the method of complete case analysis was used much more fre-
quently than mixed-effects models. When missing data are MAR, mixed-effects models
have been proved to have good statistical properties (Dinh and Yang, 2011).

4.4.5 Selection models and pattern mixture models
When the missing data mechanism is MNAR, none of the preceding models yield valid
results in the case of missing data. A method that can be used is a model based approach
(Veieroed et al., 2012, p. 425). We are only going to describe it briefly.
When a model based approach is used, assumptions for a model of joint distribution
must be made. The joint distribution should be made for the variables and the response
(Veieroed et al., 2012, p. 425). This can be done either by selection models or pattern
mixture models. Selection models use the information from the missing data mechanism.
The selection model takes into account the information about the missing data mechanism
in the observed data and analyzes how it depends on the missing data. This changes the
probability distribution of the missing data and thus the results from the analysis. Pattern
mixture model is the method that looks at the distribution of the missing data depending
on the observed data. The method of pattern mixture models analyze if the ’pattern’ of the
data differs from those with elements with missing data and those without.
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Statistical models for analyzing
longitudinal RCTs

In Chapter 3 the theory for longitudinal data was introduced. In this chapter, this theory is
used to make statistical models for the methods used to analyze RCTs presented in Section
2.3: Comparison of follow-up score, Change score analysis, ANCOVA and cLDA. These
methods aim to analyze both longitudinal parallel-group RCTs and parallel-group RCTs
with two time points. First, the mathematical model for the parallel-group longitudinal
RCT is presented. Then, the methods to analyze the RCTs will be described mathemat-
ically. The parameter of interest is the expected difference between the two groups at a
certain follow-up time point. This time point should be equal for both groups. For each
method a hypothesis test will be conducted. The null hypothesis is given as ”there are no
difference between the groups”, while the alternative hypothesis is that ”there are differ-
ences between the groups”. When describing the different methods to analyze RCTs, only
the situation with two groups (one treatment group and one control group) is presented. In
the situation with more than two groups, there are several parameter of interest; the pair-
wise differences between all the different groups. The analysis are similar to the situation
with only two groups and is therefore easy to extend to more than two groups.

5.1 Mathematical Model

Notation

In a parallel-group RCT a total of n individuals are included in the trial. These are indexed
as i = 1, 2, ..., n. In a longitudinal RCT, each individual is measured at T + 1 different
time points, given as t = 0, 1, ..., T . Here, the baseline measurement, the measurement
before intervention, is labeled t = 0. The time point t = T is the last follow-up time point
of the study. We assume that the time point of measurements are equal for all individuals.
In addition, the difference between two time points, t and t′, is assumed to be equal for
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all individuals. The observations of the outcome variable of interest are given as yit for
individual i at time t. The n individuals are divided into J different groups, given by
j = 1, 2, ..., J . The first group, j = 1, is given as the control group. The succeeding J − 1
groups, j = 2, ..., J , are given as the treatment groups. The total number of individuals in
group j is given as nj . Thus,

J∑
j=1

nj = n.

The total number of individuals measured at time t in group j are given as njt. If the data
are complete, i.e. no data are missing, we have njt = nj . The total number of observations
for all the groups at all time points is given as

ntot =

J∑
j=1

T∑
t=0

njt.

If the data are complete, the total number of observations is given as

ntot =

J∑
j=1

T∑
t=0

njt =

J∑
j=1

T∑
t=0

nj = (T + 1)

J∑
j=1

nj = (T + 1)n.

A group variable is assigned to each individual. This is given as

xi = j =


1 if i in the control group,
2 if i in treatment group 1,
...
J if i in treatment group J − 1.

(5.1)

This group variable is independent of time, since the individuals cannot change which
group it is allocated to during a trial. The individual i has a set of observations, given as

yi = (yi0, yi1, ..., yiT )T .

Expected values, variance, correlation and covariance

We assume that the observations, yit, are normally distributed and that the expected values
of the elements yit are dependent of group, xi = j, and time, t. This is given as

E(yit|xi = j) = µjt =



µ10 if control group at baseline,
...
µ1T if control group at last follow-up,
...
...
µJ0 if treatment group J at baseline,
...
µJT if treatment group J at last follow-up.

(5.2)
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In some trials the expected values for the control group are assumed to be equal for all
time point, t, because the observed outcome variables, yit, may not vary over time when
no treatment is introduced. In this situation, the expected value is given as

E(yit|xi = 1) = µ1t = µ1 ∀ t.

In other situations, the expected value for the control group is allowed to change over time,
for example due to natural improvement over time. Then, the expected values are given as
in Equation (5.2). The variance is assumed to be equal independent of group, xi = j, and
time, t, and is given as

Var(yit|xi = j) = σ2 ∀ t and j. (5.3)

Since each individual has several measurements over time, the observations within each
individual are assumed to be dependent on each other. Thus, the outcome variables yit
at different time points within the same individual are assumed to be correlated. The
correlation is given by

Corr(yit, yi′t′) =

 1 if t = t′ and i = i′,
ρ(t, t′) if t 6= t′ and i = i′,
0 else.

(5.4)

Here, ρ(t, t′), is the correlation between different time points within an individual, which
can be dependent on time. Thus, each individual can be modelled by a correlation matrix,
V∗, of dimension ((T + 1)× (T + 1)). Examples of different correlation matrix structures
are given in the Equations (3.10) and (3.11). The covariance is given as

Cov(yit, yi′t′) =

 1 if t = t′ and i = i′,
σ2ρ(t, t′) if t 6= t′ and i = i′,
0 else.

(5.5)

Full model

The set of all the observations are assumed to be normally distributed, given as

y ∼ N (µ,Σ), (5.6)

where

y =



y10
...
y1T

...

...
yn0

...
ynT


, µ =



µ10

...
µ1T

...

...
µJ0

...
µJT


and Σ = σ2


[
V∗
]

0
. . .

0
[
V∗
]
 .
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Here, y and µ are vectors of length n(T + 1) consisting of the observations and the
expected values. The covariance matrix Σ, is of dimension (n(T + 1) × n(T + 1)). It is
a block-diagonal matrix with the correlation matrix, V∗, for each individual on the main
diagonal and zero elsewhere.

Model

The total set of observations in a longitudinal parallel-group RCT is given as in Table 5.1.

Id Group Observations
i xi = j yi0 · · · yiT
1 1 y10 · · · y1T
...

...
...

...
n1 1 yn10 · · · yn1T

n1 + 1 2 y(n1+1)0 · · · y(n1+1)T

...
...

...
...

n2 2 y(n2)0 · · · y(n2)T

...
...

...
...

...
...

...
...

n(J−1)+1 J y(nJ−1+1)0 · · · y(nJ−1+1)T

...
...

...
...

n J yn0 · · · ynT

Table 5.1: Observations in a longitudinal trial.

5.2 Methods to analyze RCTs

5.2.1 Comparison of mean at follow-up
The method of comparisons of the means of the follow-up scores can be used at parallel-
group RCTs with two time-points: Baseline and follow-up. However, using this method
only the follow-up scores are used in the analysis. The mean values at follow-up for the
two groups are given by

E(Yi1|xi = j) =

{
µ11 if j = 1,
µ21 if j = 2,

and the variance is given as

Var(Yi1|xi = j) = σ2 ∀ i, j.

The parameter of interest is given as

θf = E(Yi1|xi = 2)− E(Yi′1|xi′ = 1) = µ21 − µ11.
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The hypotheses to be tested are

H0 : θf = 0 vs. H1 : θf 6= 0. (5.7)

The estimators for the expected values are the empirical mean values, given as

µ̂11 =
1

n1

n1∑
i=1

(Yi1|xi = 1) and µ̂21 =
1

n2

n2∑
i=1

(Yi1|xi = 2).

These two equations give us an estimator for the parameter of interest, θf . This is given as

θ̂f = µ̂21 − µ̂11.

The estimators of the variances for the two groups are given by

S2
j =

1

nj − 1

nj∑
i=1

(Yi1 − µ̂j1)2 for j = 1, 2.

A two-sample t-test for two independent groups with assumed equal variance is used to
test the hypothesis given in Equation (5.7). The test statistic is given as

Tf =
θ̂f

Sf

√
1
n1

+ 1
n2

,

and follows a tn−2 distribution under H0. Here is Sf is the pooled standard deviation,
given as

Sf =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

A (1− α)100% confidence interval for the parameter θf is given as[
θ̂f − tα/2,ν

√
S2
f/n, θ̂f + tα/2,ν

√
S2
f/n

]
,

where ν = n− 2 is the number of degrees of freedom and n = n1 + n2.

5.2.2 Change score analysis
The method of comparison of change scores is another method that can be used when
there are only two time points. Here we introduce a new variable, the difference between
follow-up and baseline for each participant. This is given as

Di = Yi1 − Yi0.

The expected mean values for the change from baseline to follow-up are given as

µj = E(Di|xi = j) = E((Yi1|xi = j)− (Yi0|xi = j)).
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Thus,

µj =

{
µ11 − µ10 if j = 1,
µ21 − µ20 if j = 2.

The variance for the change score is independent of group and is given as

Var(Di) = Var(Yi1 − Yi0)

= Var(Yi1) + Var(Yi0)− 2 · Cov(Yi1, Yi0)

= σ2 + σ2 − 2ρσ2 = 2σ2(1− ρ).

The expected difference between the two groups (the parameter of interest) is given as

θc = E(Di|xi = 2)− E(D′i|x′i = 1) = µ1 − µ0.

Since the change score is the difference between two normally distributed variables, the
change score is also normally distributed, given as

D ∼ N (µ,Σ),

where

D =

d1...
dn

 , µ =

µ1

...
µ2

 and Σ =

2σ2(1− ρ) 0
. . .

0 2σ2(1− ρ)

 .

In µ, the first n1 entries are given as µ1, and the last n2 entries are given as µ2. The
hypotheses to be tested for the method of change scores analysis are given as

H0 : θc = 0 vs. H1 : θc 6= 0. (5.8)

The estimates for the expected values are the empirical mean values given as

µ̂j =
1

nj

nj∑
i=1

Di =

{
µ̂1 if j = 1,
µ̂2 if j = 2.

This results in the estimator for the parameter of interest, given as

θ̂c = µ̂2 − µ̂1.

The parameter estimators for the variances of the change score is given as

S2
j =

1

nj − 1

nj∑
i=1

((Di)− µ̂j)2 for j = 1, 2.

A two-samples t-test for two independent groups with assumed equal variance is used to
test the hypothesis given in Equation (5.8). The test statistic is given as

Tc =
θ̂c

Sc

√
1
n1

+ 1
n2

,
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which follows a tn−2 distribution. Here Sc is the pooled standard deviation given as

Sc =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

The (1− α)100% confidence interval for the parameter of interest, θc, is given as[
θ̂c − tα/2,νSc

√
1

n1
+

1

n2
, θ̂c + tα/2,νSc

√
1

n1
+

1

n2

]
,

with number of degrees of freedom equal to ν = n1 + n2 − 2. If the expected value at
baseline for the two groups are equal (µ10 = µ00), as assumed for RCTs, the expected
difference between the two groups by using the method of change score is equal to the
difference found by using the method of follow-up. This is given as

θc = µ21 − µ20 − (µ11 − µ10) = µ21 − µ20 − µ11 + µ20 = µ21 − µ11 = θf . (5.9)

5.2.3 ANCOVA
We are now moving on to the methods that are commonly used to analyze longitudinal
RCTs. When using the method of longitudinal ANCOVA, a linear mixed effect model is
used. Here, the outcome variables are conditioning on the baseline observation. The group
variable and time variable are modelled as interaction terms.
The model for the method of ANCOVA is given as

Yit = αtYi0 + βjtI(time = t)I(xi = j) + εit + ui, t = 1, ..., T, (5.10)

where the error terms, εit and ui, are assumed to be normally distributed with zero-mean
and equal variance. This is given as

εit ∼ N (0, σ2
ε) and ui ∼ N (0, σ2

u).

Here, εit represents the within variance for an individual. The error term ui is the random
intercept, which represents the between individual variance. The marginal mean at time t
conditional on baseline, Yi0, given as

E(Yit|Yi0 = yi0, xi = j) = αtyi0 + βjt t = 1, 2, ..., T.

For each time point, αtYi0 is assumed to be equal (since we assume equal baseline values
in both groups), while βjt is different for the groups. This is the effect of treatment j at
time t after adjusting for baseline effect. The variance of the regression model is given as

Var(Yit|Yi0, xi = j) = Var(αtYi0 + βjtI(time = t)I(xi = j) + εit + ui) = σ2
ε + σ2

u.

The covariance between two outcome variables is given as

Cov(Yit, Yi′t′) =

 σ2
u + σ2

ε if i = i′, t = t′,
σ2
u if i = i′, t 6= t′,

0 else,
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thus the correlation given as

Corr(Yit, Yi′t′) =
Cov(Yit, Yi′t′)√

Var(Yit)
√

Var(Yi′t′)
=


1 if i = i′, t = t′,
σ2
u

σ2
u+σ

2
ε

if i = i′, t 6= t′,

0 else.

The intraclass correlation is given as

ICC =
σ2
u

σ2
u + σ2

ε

.

The Equation (5.10) represents one individual i at one time point t. This equation can be
extended to the set of all individuals at all time points by

Y = Xβ + ε,

where

Y =



Y11
...

Y1T
...
...
Yn1

...
YnT


, ε =



ε11
...
ε1T

...

...
εn1

...
εnT


and β =



α1

...
αT
β11

...
β1T
β21

...
β2T


.

Here, Y and ε are nT -vectors and β is a 3T -vector. The matrix X is of dimensions
(3T × nT ), given as

X =



Y10 . . . Y10 I(x1 = 1)I(t = 1) . . . I(x1 = 1)I(t = T ) I(x1 = 2)I(t = 1) . . . I(x1 = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Y10 . . . Y10 I(x1 = 1)I(t = 1) . . . I(x1 = 1)I(t = T ) I(x1 = 2)I(t = 1) . . . I(x1 = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Yn0 . . . Yn0 I(xn = 1)I(t = 1) . . . I(xn = 1)I(t = T ) I(xn = 2)I(t = 1) . . . I(xn = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Yn0 . . . Yn0 I(xn = 1)I(t = 1) . . . I(xn = 1)I(t = T ) I(xn = 2)I(t = 1) . . . I(xn = 2)I(t = T )


The parameter of interest, θt, is the difference between the groups, at time t, adjusted for
baseline. This is given as

θt = E(Yit|Yi0, xi = 2)− E(Yit|Yi0, xi = 1)

= (αtYi0 + β2t)− (αtYi0 + β1t)

= β2t − β1t.
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The hypotheses for the parameters of interest, θt, are given as

H0 : θt = 0 vs H1 : θt 6= 0, (5.11)

or given in terms of the regression coefficients

H0 : β2t − β1t = 0 vs H1 : β2t − β1t 6= 0.

This can be written in matrix notation as

H0 : Cβ = 0 vs H1 : Cβ 6= 0,

where C is a 3T row vector given as

C =

 −1 if element number T + t in β,
1 if element number 2T + t in β,
0 else.

An estimator for β is found by using the method of maximum likelihood as given in
Equation (3.26). This is given by

β̂ =
(
α̂1 . . . α̂T β̂11 . . . β̂1T β̂21 . . . β̂2T

)T
= (XTVX)−1XTV y.

Here, V is the covariance matrix given in Equation (3.15). The estimator for the parameter
of interest, θt, is thus

θ̂t = β̂2t − β̂1t = Cβ̂ = C(XTVX)−1XTV y.

The estimator of the variance is given as

σ̂2
ε =

1

nT

n∑
i=1

T∑
t=1

ε2it.

The covariance matrix for Cβ̂ is given as

Ĉov(Cβ̂) = σ̂2
εC(XTV −1X)−1CT .

When assuming normal errors under H0, the test statistic is given as

Ta =
Cβ̂√

Ĉov(Cβ̂)

=
β̂2t − β̂1t√

σ̂2
ε(C(XTV −1X)−1CT )

.

The hypothesis in Equation (5.13) is rejected if

Ta > t(1−α/2),1,n−3T .

A confidence interval for Cβ̂ = (β̂1t, β̂2t) is thus given by[
Cβ̂ − t(1−α/2),1,n−3T

√
Ĉov(Cβ̂), Cβ̂ + t(1−α/2),1,n−3T

√
Ĉov(Cβ̂)

]
.
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5.2.4 cLDA
The method of cLDA can also be used on longitudinal data. Here, the baseline values and
follow-up values are assumed to be jointly multivariate normally distributed, and a linear
mixed effects model is used. The parameter estimates when using the method of cLDA are
asymptotically unbiased when based on full likelihood functions (Liu et al., 2009). The
difference between cLDA and ANCOVA is that the method of ANCOVA condition on the
baseline values. Using the method of cLDA, the baseline value is modelled as a part of the
outcome vector similar to all other outcome values. The model for the method of cLDA is
given by

Yit = γ0 + γjtI(xi = j)I(time = t, t > 0) + εit + ui t = 0, ..., T. (5.12)

This is a special case of the linear mixed effects model, where the random effect is a
random intercept. There are two error terms in this model: εit and ui, both are assumed to
be zero-mean normal variables, given as

εit ∼ N (0, σ2
ε) and ui ∼ N (0, σ2

u).

The first error term, εit, represents the within variance in an individual, while ui, is the
random intercept which represents the between individual variance. The expected value of
Yit from Equation (5.12) is given as

E(Yit|xi = j) = γ0 + γjtI(xi = j)I(time = t, t > 0) t = 0, ..., T.

Thus, if t = 0, the expected values are assumed to be equal for all i independent of group,
xi. The variance of the model is given as

Var(Yit|xi = j) = Var(γ0 + γjtI(xi = j)I(time = t, t > 0) + εit + ui) = σ2
ε + σ2

u.

The covariance between two outcome variables is given as

Cov(Yit, Yi′t′) =

 σ2
u + σ2

ε if i = i′, t = t′,
σ2
u if i = i′, t 6= t′,

0 else,

thus the correlation given as

Corr(Yit, Yi′t′) =
Cov(Yit, Yi′t′)√

Var(Yit)
√

Var(Yi′t′)
=


1 if i = i′, t = t′,
σ2
u

σ2
u+σ

2
ε

if i = i′, t 6= t′,

0 else.

The intraclass correlation is given as

ICC =
σ2
u

σ2
u + σ2

ε

.

The Equation (5.12) can be represented in matrix notation for all individuals at all time
points, given as

Y = Xγ + ε+ u,
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where

Y =



Y10
...

Y1T
...
...
Yn0

...
YnT


, ε =



ε10
...
ε1T

...

...
εn0

...
εnT


, u =



u1
...
u1
...
...
un
...
un


and γ =



γ0
γ11

...
γ1T
γ21

...
γ2T


.

The vectors Y , ε and γ are of length (n(T + 1)). Each element in u, ui, is repeated T + 1
times. The vector of regression coefficients, γ, is of length 2T + 1. The design matrix,X ,
is a (n(T + 1)× (2T + 1)) matrix, given as

X =



1 I(x1 = 1)I(t = 1) . . . I(x1 = 1)I(t = T ) I(x1 = 2)I(t = 1) . . . I(x1 = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 I(x1 = 1)I(t = 1) . . . I(x1 = 1)I(t = T ) I(x1 = 2)I(t = 1) . . . I(x1 = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 I(xn = 1)I(t = 1) . . . I(xn = 1)I(t = T ) I(xn = 1)I(t = 1) . . . I(xn = 2)I(t = T )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 I(xn = 1)I(t = 1) . . . I(xn = 1)I(t = T ) I(xn = 2)I(t = 1) . . . I(xn = 2)I(t = T )


The parameter of interest is the difference between the groups at a certain time point, t,
given as

θt = E(Yit|xi = 2)− E(Yit|xi = 1)

= (γ0 + γ2tI(xi = 2)I(time = t, t > 0))− (γ0 + γ1tI(xi = 1)I(time = t, t > 0))

= γ2tI(xi = 2)I(time = t, t > 0)− γ1tI(xi = 1)I(time = t, t > 0)

= γ2t − γ1t.

The hypotheses for the parameters of interest, θt, are given as

H0 : θt = 0 vs H1 : θt 6= 0, (5.13)

or given in terms of the regression coefficients

H0 : γ2t − γ1t = 0 vs H1 : γ2t − γ1t 6= 0.

This can be written in matrix notation as

H0 : Cγ = 0 vs H1 : Cγ 6= 0,

where C is a 2T + 1 row vector given as

C =

 −1 if element number t+ 1,
1 if element number T + t+ 1,
0 else.
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An estimator for γ is found by using the method of maximum likelihood as given in
Equation (3.26). This is given by

γ̂ =
(
γ̂0 γ̂11 . . . γ̂1T γ̂21 . . . γ̂2T

)T
= (XTVX)−1XTV y,

where V is the covariance matrix of Y . The estimator for the parameter of interest, θt, is
thus

θ̂t = γ2t − γ1t = Cγ̂ = C(XT V̂X)−1XT V̂ y.

Here, V̂ , is the REML estimator of V when unknown. The estimator of the variance is
given as

σ̂2
ε =

1

n(T + 1)

n∑
i=1

T∑
t=0

ε2it.

The covariance matrix for Cγ̂ is given as

Ĉov(Cγ̂) = σ̂2
εC(XT V̂ −1X)−1CT .

When assuming normal errors under H0, the test statistic is given as

Tc =
Cγ̂√

Ĉov(Cγ̂)

=
γ̂2t − γ̂1t√

σ̂2
ε(C(XT V̂ −1X)−1CT )

.

The hypothesis in Equation (5.13) is rejected if

Tc > t(1−α/2),1,n−(2T+1).

A confidence interval for Cγ̂ = (γ̂1t, γ̂2t) is thus given by[
Cγ̂ − t(1−α/2),1,n−(2T+1)

√
Ĉov(Cγ̂), Cγ̂ + t(1−α/2),1,n−(2T+1)

√
Ĉov(Cγ̂)

]
.
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Chapter 6
Simulation study

A simulation study have been conducted in this report to reveal result differences between
the different methods to analyze RCTs that are described in Chapter 5.2. The methods are
comparisons of means of follow-up scores, change score analysis, ANCOVA and cLDA.
The different simulated scenarios have been conducted with and without missing data
and with different missing data mechanisms. In addition, different correlation structures
and different percentages of missing data have been simulated. The simulation study is
inspired by the simulation study conducted in the article by Liu et al. (2009). This chapter
is arranged as follows: The model used in the simulations are described in Section 6.1.
The different scenarios for the simulations are presented in Section 6.2. At last, the results
are presented in Section 6.3.

6.1 Model for simulations
In each simulation it is assumed that there are two groups, one control group (xi = 1)
and one treatment group (xi = 2). The aim of the simulations is to find the parameter of
interest, θt, which is the difference between the two groups at time t. The parameter of
interest, θt, is given by

θt = E(Yit|xi = 2)− E(Yit|xi = 1).

Of main interest is the difference in means at the last follow-up time point, θT , but the
differences for t < T are also included in the results of the simulations with longitudinal
data. There are m = 5000 simulations conducted for each simulated scenario. All simula-
tions are conducted with n = 100 individuals, with n/2 individuals in each group. These
numbers are chosen according to the simulation study conducted by Liu et al. (2009), and
should result in approximately 80−90% power in the case of no missing data at the param-
eter of interest at the last follow-up time point. This is a typical requirement in a simulation
study (Vickers, 2001). The power represents the proportion of false negative findings of
the hypothesis, and is an important quantity when analyzing a statistical method (Vickers,
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2001). The result of the simulations are the average bias of the parameter of interest for
each of the m simulations, in addition to the average power of the estimate and the cover-
age of the confidence interval with significance level α = 0.05.
The simulations have been conducted with different types of missing data mechanisms:
No missing data, missing completely at random, missing at random and missing not at
random. The simulations are conducted in R (R Core Team, 2017). The data sets with
missing data have been generated by the function ampute in the package mice (van Buuren
and Groothuis-Oudshoorn, 2011). The missing data are modelled as interim missing data.
The simulations are conducted with a standard amount of missing data of 10%, since this
is reported as the average amount of missing data in RCTs (Zhang et al., 2017). However,
simulation studies with different amount of missing data have also been conducted. When
analyzing data by using the method of ANCOVA, missing data cannot occur at baseline
since this is a part of the design matrix. Thus, both analyses conducted by available case
analysis (analysis of only the data where baseline value exists) and analysis with multiple
imputation at missing baseline values have been conducted. Using the method of cLDA,
all data are used in the analysis. For both the method of change score and the method of
follow-up, complete case analysis is used. Multiple imputation is done with M = 20 im-
putations by the function mice in the mice package (van Buuren and Groothuis-Oudshoorn,
2011). When MI is used, the different outcome variables and the group variable were used
in the imputation model.
Both the method of cLDA and ANCOVA are modeled using the function lme in the pack-
age nlme (Pinheiro et al., 2018). The resulting estimates, p-values and confidence intervals
of the group differences were found by using the function estimable in the package gmod-
els (Warnes et al., 2015). Simulations have been conducted both with longitudinal data
(T = 4) and with only baseline and one follow-up time point (T = 2). The simulations
with two time point are conducted to compare the methods of follow-up score and change
score analysis. The number of time points at longitudinal data equal to T = 4 is also
used in the simulation study conducted by Liu et al. (2009). In addition has Coffman et al.
(2016) stated that 2− 4 follow-up measurements are common in longitudinal RCTs. The
simulated values are drawn from a multivariate normal distribution. The expected values
at baseline are equal for both groups and are given as µj0 = 0 ∀ j. The expected value at
the last follow-up for the control group is also equal to the baseline value, µ1T = 0. While
the expected value for the control group is continuous increasing and given as µ2T = 1.
In the case of two time points, this is given as

µ1 = (0, 0)T and µ2 = (0, 1)T . (6.1)

In the situation with longitudinal data (T = 4) this is given as

µ1 = (0, 0, 0, 0)T and µ2 = (0, 0.333, 0.667, 1)T . (6.2)

The variance is given as σ2 = 4 ∀ t, j. The correlation structure used in the simulations
between the time points is exponential decreasing, where the structure is given in Equation
(3.11). The decay rate given in the simulation is φ = 0.8. This results in the exponential
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correlation matrix are

Ve =


1 0.45 0.20 0.09

0.45 1 0.45 0.20
0.20 0.45 1 0.45
0.09 0.20 0.45 1

 . (6.3)

There have also been conducted simulations with a compound symmetry correlation struc-
ture. This matrix structure is presented and described in Equation (3.10). With correlation
equal to ρ between each time point, this is given as

V0 =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 . (6.4)

The null hypothesis in all simulation studies is that there are no differences between the
groups in the average parameter of interest. The alternative hypothesis is that there is a
difference.

6.2 Simulated scenarios

6.2.1 Simulations with two time points
Simulations with two time points were conducted to look at the performance of the meth-
ods of follow-up score and change score analysis in addition to the methods of ANCOVA
and cLDA. The amount of 10% missing data was used. The expected values for the groups
are given in Equation (6.1). The simulations were done with different values of the corre-
lation, given as

ρ = (0.1, 0.2, ..., 0.9).

The method of follow-up score does not take the baseline values into account, thus the
analysis are not dependent on the correlation. The simulations were only conducted once.

6.2.2 Simulations of different correlation structures
A simulation study was conducted to compare two different correlation structures: Com-
pound symmetry correlation structure and exponential correlation structure. The simula-
tions was conducted on longitudinal data (T = 4) with 10% missing data. The expected
values for the groups are given in Equation (6.2) and the different correlation structures are
given in the Equations (6.3) and (6.4). The analysis were conducted by using the method
of ANCOVA with MI on baseline, the method of ANCOVA without MI on baseline and
the method of cLDA.

6.2.3 Simulations with different percentage of missing data
The last simulation study was conducted to compare the methods with different percent-
ages of missing data. The expected values for the groups are given in Equation (6.2) and
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the exponential correlation structure was used, given in Equation (6.3). The simulation was
conducted with longitudinal data and the analysis was conducted by cLDA and ANCOVA
with and without MI at baseline. The percentages of missing data are given as

Percentage missing data = (5, 10, 15, 20).

6.3 Results of the simulation studies

6.3.1 Simulations with two time points
The results using the methods of ANCOVA and cLDA are given in Table 6.2, while the
results using the methods of change score analysis and follow-up are given in Table 6.1.
The results of the power are visualized in the graphs given in Figure 6.1. The Tables
6.2 and 6.1 shows that the results of the confidence interval coverage are in general the
expected results (0.95) with α = 0.05. The results of the bias are also low for all methods
and all correlations.

ρ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Change score
No missing: Bias -0.039 -0.019 -0.031 0.001 0.059 -0.015 0.030 -0.009 0.015

Power 0.335 0.434 0.530 0.637 0.881 0.811 0.901 0.979 0.999
CI-coverage 0.952 0.959 0.953 0.949 0.997 0.958 0.939 0.934 0.943

MCAR: Bias -0.080 -0.073 -0.027 0.008 0.046 -0.014 0.021 -0.006 0.022
Power 0.147 0.391 0.483 0.567 0.727 0.741 0.806 0.937 0.999
CI-coverage 0.952 0.921 0.974 0.959 0.998 0.948 0.946 0.931 0.933

MAR: Bias -0.020 -0.031 -0.030 0.004 0.109 -0.013 0.010 -0.007 0.020
Power 0.288 0.353 0.466 0.538 0.777 0.723 0.822 0.934 0.999
CI-coverage 0.952 0.939 0.953 0.945 0.997 0.953 0.944 0.930 0.925

MNAR: Bias -0.070 -0.001 -0.046 -0.016 0.016 -0.040 0.033 -0.012 0.011
Power 0.382 0.411 0.445 0.550 0.778 0.712 0.872 0.955 0.999
CI-coverage 0.906 0.957 0.966 0.955 0.997 0.958 0.939 0.937 0.934

Follow-up
No missing: Bias 0.050

Power 0.667
CI-coverage 0.952

MCAR: Bias 0.035
Power 0.667
CI-coverage 0.952

MAR: Bias 0.054
Power 0.714
CI-coverage 0.952

MNAR: Bias -0.010
Power 0.666
CI-coverage 0.953

Table 6.1: Results of simulations with two time points with different types of missing data mech-
anisms and different value of correlation for the method of change score and follow-up score. The
results are given by bias, power and confidence interval coverage.
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ρ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ANCOVA without MI
No missing: Bias 0.038 -0.025 -0.014 -0.012 0.057 -0.006 0.018 -0.006 0.016

Power 0.667 0.673 0.755 0.777 0.937 0.878 0.928 0.996 0.999
CI-coverage 0.952 0.940 0.952 0.952 0.996 0.964 0.938 0.958 0.943

MCAR: Bias 0.011 -0.049 -0.004 -0.004 0.069 -0.001 0.007 -0.003 0.024
Power 0.620 0.573 0.659 0.684 0.783 0.818 0.859 0.975 0.999
CI-coverage 0.952 0.958 0.958 0.953 0.997 0.960 0.950 0.958 0.914

MAR: Bias 0.013 -0.059 -0.028 -0.009 0.096 -0.005 -0.001 -0.007 0.019
Power 0.619 0.611 0.630 0.679 0.883 0.812 0.880 0.962 0.999
CI-coverage 0.952 0.976 0.945 0.956 0.997 0.964 0.930 0.937 0.943

MNAR: Bias -0.042 0.001 -0.040 -0.040 0.035 -0.044 0.001 -0.022 0.010
Power 0.619 0.629 0.617 0.665 0.882 0.789 0.887 0.989 0.999
CI-coverage 0.859 0.939 0.971 0.951 0.996 0.957 0.934 0.948 0.953

ANCOVA with MI
MCAR: Bias 0.022 -0.049 -0.007 -0.001 0.063 -0.007 0.013 -0.001 0.022

Power 0.666 0.576 0.698 0.722 0.835 0.845 0.880 0.982 0.999
CI-coverage 0.952 0.958 0.961 0.965 0.997 0.954 0.951 0.944 0.914

MAR: Bias 0.046 -0.038 -0.020 -0.005 0.093 -0.005 0.009 -0.009 0.023
Power 0.761 0.594 0.694 0.726 0.935 0.849 0.889 0.966 0.999
CI-coverage 0.952 0.920 0.949 0.952 0.997 0.964 0.934 0.937 0.915

MNAR: Bias -0.016 -0.018 -0.039 -0.039 0.041 -0.033 0.015 -0.018 0.015
Power 0.667 0.613 0.696 0.695 0.883 0.817 0.900 0.979 0.999
CI-coverage 0.953 0.939 0.949 0.955 0.996 0.957 0.947 0.951 0.952

cLDA
No missing: Bias 0.038 -0.024 -0.013 -0.011 0.058 -0.006 0.018 -0.007 0.014

Power 0.667 0.675 0.751 0.783 0.889 0.881 0.928 0.993 0.999
CI-coverage 0.952 0.940 0.960 0.951 0.996 0.958 0.938 0.955 0.943

MCAR: Bias 0.023 -0.047 -0.006 -0.001 0.060 -0.006 0.009 -0.004 0.019
Power 0.666 0.596 0.712 0.728 0.786 0.840 0.880 0.982 0.999
CI-coverage 0.952 0.959 0.968 0.961 0.997 0.957 0.960 0.958 0.933

MAR: Bias 0.045 -0.038 -0.021 -0.004 0.094 -0.007 0.005 -0.008 0.020
Power 0.760 0.652 0.693 0.746 0.935 0.847 0.889 0.969 0.999
CI-coverage 0.952 0.920 0.949 0.952 0.998 0.967 0.929 0.937 0.934

MNAR: Bias -0.016 -0.020 -0.038 -0.038 0.047 -0.034 0.008 -0.021 0.013
Power 0.665 0.669 0.704 0.721 0.884 0.838 0.900 0.986 0.999
CI-coverage 0.906 0.939 0.960 0.950 0.996 0.957 0.943 0.951 0.962

Table 6.2: Results of simulation with two time points with different types of missing data mecha-
nisms and different value for the correlation for the method of ANCOVA and cLDA. The results are
given as bias, power and confidence interval coverage.

The results show that the power increases when the correlation increases for the method
of change score analysis. Using the method of follow-up, the power is equal as using the
method of change score when the correlation is between ρ = 0.4 and ρ = 0.5. Both the
method of cLDA and ANCOVA result in higher power than the method of change score
and follow-up. However, when the correlation is high using the method of change score
the power are almost on the same level as using the methods of ANCOVA and cLDA.
The results of the power using method of cLDA are higher than the method of ANCOVA
without MI. With MI the method of ANCOVA and cLDA are almost identical with respect
to power. Also when there are no missing data the method of ANCOVA and cLDA are
almost identical with respect to power. The different missing data mechanisms also affect
the results of the power. No missing data result in higher power than missing data, MCAR
data result generally in higher power than MAR data, and MNAR results generally in
slightly lower power than MAR data. However, the differences between the missing data
mechanisms MCAR, MAR and MNAR are small.

57



Chapter 6. Simulation study

(a) No missing data (b) MCAR

(c) MAR (d) MNAR

Figure 6.1: Graph of correlation and power with two time points using different methods with
different missing data mechanisms.

6.3.2 Simulations of different correlation structures

The results of the simulations are given in Table 6.3. The results of the power and bias are
visualized in Figure 6.2.

(a) Bias (b) Power

Figure 6.2: Graphs of bias and power of two different correlation structures.
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Compound correlation structure
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias -0.002 0.002 -0.007 -0.002 0.002 -0.007

Power 0.182 0.550 0.868 0.185 0.553 0.874
CI-coverage 0.946 0.953 0.946 0.945 0.954 0.943

MCAR: Bias -0.001 0.002 -0.007 -0.001 0.003 -0.008 -0.001 0.002 -0.007
Power 0.171 0.501 0.823 0.153 0.464 0.797 0.172 0.505 0.830
CI-coverage 0.947 0.951 0.944 0.949 0.952 0.946 0.948 0.951 0.945

MAR: Bias -0.002 -0.001 -0.006 -0.002 0.001 -0.005 -0.003 -0.001 -0.007
Power 0.164 0.488 0.823 0.152 0.458 0.792 0.161 0.497 0.833
CI-coverage 0.941 0.950 0.946 0.948 0.953 0.948 0.942 0.951 0.947

MNAR: Bias -0.003 0.001 -0.010 -0.005 -0.002 -0.011 -0.005 -0.001 -0.012
Power 0.165 0.496 0.827 0.154 0.465 0.794 0.163 0.510 0.831
CI-coverage 0.948 0.954 0.946 0.950 0.954 0.947 0.947 0.953 0.945

Exponential correlation structure
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias 0.020 -0.002 0.008 0.021 -0.001 0.009

Power 0.124 0.381 0.729 0.152 0.371 0.712
CI-coverage 0.981 0.939 0.954 0.979 0.945 0.961

MCAR: Bias 0.020 0.008 -0.002 0.019 0.013 0.010 0.025 0.016 0.003
Power 0.120 0.355 0.681 0.119 0.331 0.679 0.157 0.348 0.680
CI-coverage 0.975 0.943 0.932 0.990 0.954 0.938 0.975 0.938 0.938

MAR: Bias 0.017 -0.003 0.012 0.023 0.007 0.017 0.017 -0.005 0.011
Power 0.103 0.376 0.717 0.108 0.326 0.661 0.131 0.349 0.690
CI-coverage 0.985 0.949 0.928 0.976 0.939 0.947 0.984 0.944 0.935

MNAR: Bias 0.013 0.004 0.013 0.005 0.009 0.011 0.009 -0.001 0.012
Power 0.115 0.360 0.709 0.103 0.341 0.668 0.151 0.353 0.692
CI-coverage 0.980 0.959 0.954 0.969 0.950 0.948 0.978 0.954 0.960

Table 6.3: Results of simulations with different correlation structures. The parameter of interests at
different time points are given as θt.

Figure 6.2 shows that the bias is in general higher when using exponential correlation
structure and the power is lower when using exponential correlation structure. The bias
increases when the missing data mechanism MNAR is used for compound correlation
symmetry using all methods. When using exponential correlation structure, the bias varies
more between the methods and between different missing data mechanisms. The results
of confidence interval coverage are all approximately equal to the expected value, 0.95.

6.3.3 Simulations with different percentages of missing data

The results from the simulation study with different amounts of missing data are presented
in Table 6.4. The results are visualized in Figure 6.3. The results from the simulation
with percentage of missing data equal 10% are the same as the results when comparing
the compound correlation structure and exponential correlation structure given in Table
6.3, since all the variables were the same. The results in Figure 6.3a shows that when the
percentage of missing data reaches 20%, the bias is high for all methods and all missing
data mechanisms. Figure 6.3b shows that the power decreases when the percentage of
missing data increases. Figure 6.3c shows how the bias changes when the missing data
mechanism changes for the simulations with missing data percentage equal or lower than
15%. The simulations with missing data percentage equal to 20% are not included in
the figure since the differences were too high. This is shown in Figure 6.3a. The bias is
low when there are no missing data and varies according to method and percentage missing
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data. Figure 6.3d shows that the power decreases when there are missing data, but does not
differ according to what type of missing data mechanism used. The results of confidence
interval coverage are approximately as expected (0.95) for all simulations.

(a) Bias vs. missing percentage. (b) Power vs. missing percentage

(c) Bias vs. missing data mechanisms. (d) Power vs. missing data mechanisms.

Figure 6.3: Results of longitudinal simulations with different percentage of missing data.
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Missing percentage: 5%
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias -0.002 -0.001 0.007 -0.001 -0.001 0.007

Power 0.118 0.421 0.729 0.152 0.407 0.714
CI-coverage 0.955 0.946 0.927 0.940 0.949 0.935

MCAR: Bias -0.002 -0.001 0.007 0.001 -0.001 0.008 -0.003 -0.001 0.007
Power 0.119 0.403 0.715 0.119 0.377 0.690 0.147 0.391 0.696
CI-coverage 0.951 0.940 0.926 0.959 0.946 0.931 0.942 0.949 0.935

MAR: Bias -0.002 0.001 0.009 -0.001 0.001 0.010 -0.002 0.001 0.009
Power 0.121 0.402 0.716 0.115 0.387 0.693 0.149 0.392 0.694
CI-coverage 0.958 0.940 0.920 0.960 0.944 0.930 0.942 0.946 0.935

MNAR: Bias -0.003 -0.010 -0.001 -0.007 -0.012 -0.002 -0.004 -0.011 -0.001
Power 0.124 0.404 0.713 0.120 0.378 0.687 0.153 0.390 0.695
CI-coverage 0.953 0.948 0.926 0.956 0.945 0.932 0.941 0.954 0.940

Missing percentage: 10%
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias 0.020 -0.002 0.008 0.021 -0.001 0.009

Power 0.124 0.381 0.729 0.152 0.371 0.712
CI-coverage 0.981 0.939 0.954 0.979 0.945 0.961

MCAR: Bias 0.020 0.008 -0.002 0.019 0.013 0.010 0.025 0.016 0.003
Power 0.120 0.355 0.681 0.119 0.331 0.679 0.157 0.348 0.680
CI-coverage 0.975 0.943 0.932 0.990 0.954 0.938 0.975 0.938 0.938

MAR: Bias 0.017 -0.003 0.012 0.023 0.007 0.017 0.017 -0.005 0.011
Power 0.103 0.376 0.717 0.108 0.326 0.661 0.131 0.349 0.690
CI-coverage 0.985 0.949 0.928 0.976 0.939 0.947 0.984 0.944 0.935

MNAR: Bias 0.013 0.004 0.013 0.005 0.009 0.011 0.009 -0.001 0.012
Power 0.115 0.360 0.709 0.103 0.341 0.668 0.151 0.353 0.692
CI-coverage 0.980 0.959 0.954 0.969 0.950 0.948 0.978 0.954 0.960

Missing percentage: 15%
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias 0.002 -0.024 -0.001 0.003 -0.024 -0.001

Power 0.131 0.389 0.704 0.161 0.380 0.690
CI-coverage 0.962 0.948 0.951 0.942 0.954 0.954

MCAR: Bias -0.004 -0.028 -0.006 -0.003 -0.025 0.001 -0.003 -0.029 -0.003
Power 0.117 0.340 0.640 0.092 0.285 0.587 0.144 0.337 0.618
CI-coverage 0.960 0.947 0.953 0.953 0.938 0.940 0.951 0.949 0.956

MAR: Bias 0.003 -0.016 -0.004 -0.004 -0.015 -0.006 0.009 -0.015 -0.001
Power 0.135 0.342 0.670 0.103 0.304 0.591 0.158 0.347 0.652
CI-coverage 0.949 0.948 0.929 0.948 0.942 0.914 0.938 0.947 0.940

MNAR: Bias 0.005 -0.026 -0.002 -0.001 -0.030 -0.009 0.006 -0.028 -0.003
Power 0.128 0.356 0.652 0.097 0.295 0.581 0.143 0.352 0.643
CI-coverage 0.957 0.951 0.945 0.959 0.959 0.944 0.948 0.957 0.951

Missing percentage: 20%
ANCOVA MI ANCOVA cLDA

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
No missing: Bias 0.016 -0.030 -0.040 0.017 -0.028 -0.040

Power 0.135 0.361 0.716 0.182 0.357 0.685
CI-coverage 0.981 0.958 0.934 0.963 0.972 0.940

MCAR: Bias 0.003 -0.024 -0.061 -0.001 -0.019 -0.090 0.009 -0.021 -0.066
Power 0.104 0.297 0.611 0.076 0.245 0.461 0.104 0.325 0.593
CI-coverage 0.972 0.953 0.909 0.981 0.954 0.935 0.963 0.954 0.926

MAR: Bias 0.027 -0.037 -0.033 0.040 -0.026 0.001 0.023 -0.030 -0.035
Power 0.121 0.291 0.634 0.102 0.286 0.534 0.131 0.302 0.611
CI-coverage 0.968 0.971 0.935 0.953 0.944 0.948 0.954 0.971 0.939

MNAR: Bias 0.029 -0.008 -0.045 0.039 -0.035 -0.056 0.027 -0.015 -0.049
Power 0.085 0.334 0.623 0.108 0.249 0.483 0.131 0.342 0.619
CI-coverage 0.958 0.976 0.940 0.967 0.962 0.917 0.953 0.967 0.944

Table 6.4: Results from simulations of longitudinal data with different percentages of missing data.
The parameter of interests at different time points is given as θt.

61



Chapter 6. Simulation study

62



Chapter 7
Application

The methods of ANCOVA and cLDA were used to analyze a clinical trial. The trial is
presented in the article ”Effect of high intensity interval training on cardiac function in
children with obesity: A randomised controlled trial” by Ingul et al. (2018). The trial is
presented in Section 7.1. In Section 7.2 the analyses conducted in this report is presented.
At last, the results are presented in Section 7.3.

7.1 The trial
The aim of this trial was to compare the effect of high intensity interval training (HIIT)
to moderate intensity continuous training (MICT) and only getting nutrition advises on
cardiovascular health of obese children. It has earlier been showed that HIIT has superior
effect on cardiovascular health for adults compared to MICT. The hypothesis is thus that
HIIT has better effect than MICT. The trial is an RCT, so the children were randomly
divided into a group and stratified by age and sex. They were measured three times over
12 weeks; One time before intervention, one time after 3 weeks and one time after 12
weeks. The HIIT and MICT groups were the different treatment groups, while the group
of children getting nutrition advice was the control group. The treatment groups also
received nutrition advice. There were 99 children included in the analysis of the trial,
which were measured at least one time after intervention started. The children were in the
age group 7−16 years old, with a body mass index (BMI)≥ percentile curves that passed
through 30kg/m2 at age 18. The trial is a multicenter trial, thus the children were collected
from different universities: The University of Queensland, Brisbane, Australia and The
Norwegian University of Science and Technology (NTNU), Trondheim, Norway. The trial
was conducted between March 2012 and February 2017. The intervention was continuous,
thus both the nutrition advice lessons and the training were continuously conducted during
the trial. The group of HIIT had 4 × 4 min bouts at 85 − 90% of maximal heart rate 3
times/week. The group of MICT had 44 min training at 60 − 70% of maximal heart
rate 3 times/week. At least two of the three exercises each week were supervised. The
nutrition advice lessons were given 4− 6 times during the trial. The baseline mean values
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were assumed to be equal for all groups. For the intention-to-treat analysis, the groups
consisted of the following numbers of participants: HIIT: n = 33, MISC: n = 32 and
nutrition advises only: n = 34. This is the total amount of participants in each group.
For the per protocol analysis, the numbers of participants were: HIIT: n = 17, MICT:
n = 24 and nutrition advice only: n = 21. For the per protocol analysis were the children
assumed to complete at least 80% of the exercise and nutrition sessions. Since an LMM
was conducted, all available data were used in the ITT analysis. The data were assumed
to be missing at random, thus the results were assumed to be unbiased using a LMM. The
results showed that MICT and HIIT were superior compared to nutrition advice only on
the effect of cardiovascular health on obese children, but that there were no significant
difference between MICT and HIIT.

7.2 The analysis
In the analysis of the trial conducted here, only the children with obesity collected from
NTNU were included in the analysis. Thus, 68 children were included. The baseline values
are complete. The analysis are conducted on two different outcome variables: Resting left
ventricular global longitudinal strain (GLS) and resting left ventricular peak systolic tissue
velocity (LVS). Both of these variables are associated with cardiovascular health. The
mean values, variance, size of groups and amount of missing data for the different groups
for the outcome variable GLS are given in Table 7.1. The same values for the outcome
value LVS are given in Table 7.2.

Diet group - GLS
Number of participants Number of missing Mean Variance

Y0 23 0 −17.21 10.49
Y1 23 10 −17.08 6.95
Y2 23 10 −18.57 7.82

MICT group - GLS
Number of participants Number of missing Mean Variance

Y0 22 0 −18.17 8.04
Y1 22 5 −18.98 5.73
Y2 22 10 −20.28 5.93

HIIT group - GLS
Number of participants Number of missing Mean Variance

Y0 23 0 −18.16 7.40
Y1 23 9 −19.67 2.60
Y2 23 14 −19.42 5.13

Table 7.1: Mean values, variance, group size and amount of missing data for the different groups
with the outcome variable GLS.

7.3 Results
Results for GLS

A histogram and a Q-Q plot were carried out of the residuals from the analysis conducted
by using the method of ANCOVA and cLDA. This was done to approve the assumption
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Diet group - LVS
Number of participants Number of missing Mean Variance

Y0 23 0 8.31 0.86
Y1 23 8 8.69 1.64
Y2 23 10 8.94 2.43

MICT group - LVS
Number of participants Number of missing Mean Variance

Y0 22 0 8.61 1.85
Y1 22 5 9.90 3.47
Y2 22 10 10.67 6.69

HIIT group - LVS
Number of participants Number of missing Mean Variance

Y0 23 0 8.49 1.83
Y1 23 8 9.95 2.25
Y2 23 14 9.62 3.45

Table 7.2: Mean values, variance, group size and amount of missing data for the different groups
with the outcome variable LVS.

about normal distributed data on the outcome variable GLS. These are given in Figure
7.1. Perfect normally distributed should lie on a straight line on the Q-Q plot, and the
histogram should look like a normal distribution. The results in Figure 7.1 are approxi-
mately normally distributed, so the assumption is fulfilled. A histogram and a Q-Q plot
were also carried out for each group, with equal results. The results after using the meth-
ods of ANCOVA and cLDA on the outcome variable GLS are given in Table 7.3. The
method of ANCOVA was used without MI, since there were no missing data at baseline.
A compound correlation structure was assumed in the model. An exponential correlation
structure was also tried and the results were almost identical. The change in the variable
of interest for the different groups are visualized in the Figure 7.2. The results shown in
Table 7.3 shows that using both the method of ANCOVA and cLDA results in similar re-
sults. There is a significant difference between the MICT group and the diet group at both
time points. The HIIT group and the diet group have a significant difference at the first
follow-up time point, but not at the last follow-up. The MICT group and the HIIT group
are not significant different at any of the two follow-up time points.

ANCOVA
Estimate Confidence interval p-value

HIIT vs DIET θ1 −2.329 [−3.967,−0.692] 0.0070
HIIT vs DIET θ2 −0.688 [−2.537, 1.160] 0.450
HIIT vs MICT θ1 −0.851 [−2.384, 0.681] 0.263
HIIT vs MICT θ2 1.066 [−0.821, 2.953] 0.255
MICT vs DIET θ1 −1.4910 [−3.0.637, 0.094] 0.064
MICT vs DIET θ2 −1.755 [−3.454,−0.055] 0.0435

cLDA
Estimate Confidence interval p-value

HIIT vs DIET θ1 −2.461 [−4.307,−0.614] 0.010
HIIT vs DIET θ2 −0.641 [−2.702, 1.420] 0.537
HIIT vs MICT θ1 −0.816 [−2.554, 0.923] 0.353
HIIT vs MICT θ2 1.352 [−0.741, 3.444] 0.202
MICT vs DIET θ1 −1.645 [−3.410, 0.120] 0.067
MICT vs DIET θ2 −1.992 [−3.899,−0.086] 0.041

Table 7.3: Results using the methods of ANCOVA and cLDA on the outcome variable GLS.
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(a) Histogram, cLDA. (b) Q-Q plot, cLDA.

(c) Histogram, ANCOVA. (d) Q-Q plot, ANCOVA.

Figure 7.1: Q-Q plots and histograms from the residuals using the methods of ANCOVA and cLDA
on the outcome variable GLS.

Results for LVS

The outcome variable LVS was log-transformed before analyzing the data. A histogram
and a Q-Q plot were carried out of the data to approve the assumption about normal dis-
tributed data. This was done on the residuals from the methods of ANCOVA and cLDA.
Histograms and Q-Q plots for the different groups were also carried out with equal results.
These are shown in Figure 7.4 and confirms the assumption of normality. The change
in the variable of interest for the different groups are visualized in the Figure 7.5. The
results when analyzing the data by the methods of ANCOVA and cLDA are given in Ta-
ble 7.4. A compound correlation structure was assumed in the analysis. The results of
the analysis from the outcome variable GLS given in Table 7.4 shows that the methods of
ANCOVA and cLDA generates similar results. However, the method of cLDA results in
lower p-values. There are significant differences between the control group and the treat-
ment groups at both time points using the method of cLDA. The methods of ANCOVA
results in significant difference between the HIIT group and diet group, and between the
MICT group and the diet group at the last follow-up time point.
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(a) Diet group. (b) MICT group.

(a) HIIT group.

Figure 7.3: Change in the outcome variable GLS.

ANCOVA
Estimate Confidence interval p-value

HIIT vs DIET θ1 0.119 [0.007, 0.231] 0.037
HIIT vs DIET θ2 0.110 [−0.022, 0.242] 0.099
HIIT vs MICT θ1 0.032 [−0.077, 0.141] 0.548
HIIT vs MICT θ2 −0.037 [−0.172, 0.097] 0.570
MICT vs DIET θ1 0.087 [−0.222, 0.197] 0.114
MICT vs DIET θ2 0.148 [0.026, 0.269] 0.019

cLDA
Estimate Confidence interval p-value

HIIT vs DIET θ1 0.123 [0.022, 0.223] 0.017
HIIT vs DIET θ2 0.109 [−0.008, 0.227] 0.067
HIIT vs MICT θ1 0.026 [−0.072, 0.124] 0.600
HIIT vs MICT θ2 −0.040 [−0.159, 0.079] 0.505
MICT vs DIET θ1 0.097 [−0.001, 0.194] 0.051
MICT vs DIET θ2 0.150 [0.041, 0.258] 0.007

Table 7.4: Results using the methods of ANCOVA and cLDA on the outcome variable LVS.
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(a) Histogram, cLDA. (b) Q-Q plot, cLDA.

(c) Histogram, ANCOVA. (d) Q-Q plot, ANCOVA.

Figure 7.4: Q-Q plots and histograms from the residuals using the methods of ANCOVA and cLDA
on the outcome variable LVS.
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(a) Diet group. (b) MICT group.

(c) HIIT group.

Figure 7.5: Change in the outcome variable LVS for the different groups.
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Chapter 8
Discussion and conclusion

In this chapter the results from Chapter 6 are discussed. The methods presented in Sec-
tion 2.3, comparisons of means of follow-up score, change score analysis, ANCOVA and
cLDA are with respect to bias, power and confidence interval coverage compared. The
missing data mechanisms, correlation, correlation structures and differences in percentage
of missing data are the main focus.
This chapter is structured as follows: The results of the simulations with two time points
will be discussed in Section 8.1. The results from the different correlation structures pre-
sented in Section 6.3.2 are discussed in Section 8.2. The results from the simulated sce-
nario with longitudinal data and different missing percentages presented in Section 6.3.3
are discussed in Section 8.3. At last, in Section 8.4 the conclusion is presented.

8.1 RCTs with two time points
The methods used to analyzed RCTs with two time points presented in Section 2.3 are:
Comparisons of means of follow-up score, change scores analysis, ANCOVA and cLDA.
The results of the simulations are given in Tables 6.2 and 6.1, and in Figure 6.1.
The least complex method is the method of follow-up score. A disadvantage of this method
is that only half of the data are used in the analysis. The baseline values are not used in
the analysis. The method of follow-up results in a reasonable amount of power, shown in
Figure 6.1. This confirms the results in the simulation study by Vickers (2001). An men-
tioned in Section 2.3, the method of follow-up will loose variation when the correlation is
high, and show less significant results, while the method of change score will add variation
when the correlation is high (Vickers and Altman, 2001). This is confirmed in Figure 6.1.
The method of follow-up should thus only be considered to be used in situations with low
correlation between observations (ρ < 0.4). In this case the method of follow-up is the
preferred method compared to the method of change score and it can also be comparable
to the method of ANCOVA and cLDA. When there are missing data, using the method
of follow-up all observations with observed follow-up values will be used (available case
analysis). Thus, more data can be used compared to using the method of change score,
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where a complete case analysis is used. This is confirmed in Figure 6.1. Using the method
of change score when there are missing data may result in reduced power, while the dif-
ference between no missing data and missing data for the method of follow-up is smaller.
When there are no missing data, the method of follow-up score is only comparable with
the methods of ANCOVA and cLDA when the correlation is quite low (ρ < 0.2). When
there are missing data, the method of follow-up score is comparable to the methods of
cLDA and ANCOVA with higher value of correlation (ρ = 0.4), as shown in Figure 6.1.
However, in medical research the correlation may be assumed to be reasonable high. For
example, in the case of research on stable chronic diseases, the correlation is assumed to be
high. Thus, the method of change score is the method of choice compared to the method
of follow-up.
The method of change score is the method most sensitive to correlation differences. The
method is comparable to the method of cLDA and ANCOVA when the correlation is high,
but the results when the correlation is low are poor. The method of ANCOVA is the method
of choice compared to the methods of change score and follow-up. This is also found by
Vickers (2001). Liu et al. (2009) stated that the method of ANCOVA and cLDA would es-
timate identical point estimates in the case of no missing data. This is confirmed in Figure
6.1a. In the case of missing data, Coffman et al. (2016) argued that the method of cLDA
is the method of choice compared to the method of ANCOVA, and Dinh and Yang (2011)
argued that using baseline as a covariate would lead to loss of efficiency. The method of
ANCOVA cannot use observations where the baseline value is missing. Thus, using the
method of ANCOVA some information is lost. The point estimates may be less precise
and the variation may increase. This is confirmed in Figure 6.1. The power using the
method of cLDA is higher than the power using the method of ANCOVA. However, using
MI on the missing baseline values results in power almost identical to using the method
of cLDA. Thus, using MI combined with the method of ANCOVA produces equally good
results with respect to power compared to the method of cLDA.

8.2 Different correlation structures
In Section 6.3.2 the results of the correlation structures were presented. A compound sym-
metry correlation structure and an exponential correlation structure were simulated. The
results are presented in Figure 6.2 and in Table 6.3. The figure and the table show the bias
and power differ between the two correlation structures. Using the exponential correla-
tion structure, the results of the bias are more variable and in general higher. The power
is lower compared to the compound symmetry correlation structure. When modelling a
LMM with a correlation structure, the compound symmetry correlation structure is more
stable than the exponential correlation structure. This can explain the differences in the
results. The simulations were not conducted with different values of ρ for the compound
symmetry correlation structure, and φ for the exponential correlation structure. This is a
drawback with the simulations conducted. By varying the variables ρ and φ, more infor-
mation about how the correlation structures differ could be found. When modelling RCTs
in medical research, the exponential correlation structure may be more realistic than the
compound correlation structure. The time points are assumed to be more correlated when
there are less time differences.
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8.3 Longitudinal data with different missing percentages

The results of the bias of the compound symmetry correlation structure visualized in Fig-
ure 6.2a are consistent with the theory for the missing data mechanisms presented in Sec-
tion 4.2. The methods of cLDA and ANCOVA can produce unbiased results when the
missing data mechanism is MCAR or MAR, but bias may be introduced when the missing
data mechanism is MNAR. The results of the power is as expected: The power is stable
independent of missing data assumption, but lower than for no missing data.

8.3 Longitudinal data with different missing percentages

The Figure 6.3 and the Table 6.4 shows the results when longitudinal data are simulated,
and the effect of the bias and power when the missing data percentage and the missing
data mechanisms differ. The power and bias varies when the percentage of missing data
increases. As Figures 6.3a and 6.3b shows, when the percentage of missing data is 0.05
the bias is low and the power high. This amount of missing data have almost no effect on
the results. Thus, missing data ≤ 0.5 does not need to be taken into account, no matter
what type of missing data mechanism there are. When the percentage of missing data
increases, the results of the power decreases. The results of the bias are low when the
missing percentage is ≤ 0.15%, but with higher values of missing percentage the results
of the bias are significantly higher. Schulz and Grimes (2002) and Fielding et al. (2012)
argued that when the amount of missing data was between 5% and 20%, the effect of the
missing data should be discussed. This is confirmed in the simulations presented in Table
6.4. If the missing percentage is equal or lower than 5%, the bias is minimal and the power
is reasonable high. As the missing percentage increases, the bias is varying and the power
is decreasing. Schulz and Grimes (2002) states that trials with more than 20% missing data
is refused by some journals, while Altman and Bland (2007) argues that more than 20%
missing data is problematic. The large increased risk of bias when there are 20% missing
data, visualized in Figure 6.3a confirms this. This is independent of missing data mecha-
nism. In the report by Zhang et al. (2017) was the average missing data percentage found
to be 10%, thus missing data should be a part of the analysis when conducting RCTs.
The missing data mechanism is said to have impact on the results of a trial. When the data
are MAR, using LMM should result in unbiased estimates. This is confirmed by the sim-
ulations. The Figures 6.3a and 6.3b shows that the method of cLDA and ANCOVA with
MI results in almost identical results with respect to power and bias. The method of lon-
gitudinal ANCOVA without MI results in a smaller amount of power and more variation
in the results of the bias. Figure 6.3b shows that the methods and the missing data mech-
anisms varies more when the percentage of missing data increases. Figure 6.3c visualizes
the bias when the missing data mechanism vary. One would expect that the missing data
mechanism MNAR would produce more biased results than the missing data mechanisms
MAR and MCAR but the results differ between the methods used. However, the bias are
in general low (≤ 0.015). Figure 6.3a shows that a high percentage of missing data is a
more severe problem than the missing data mechanism in these simulations.
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Chapter 8. Discussion and conclusion

8.4 Conclusion
When there are missing data, it is necessary to take the information about the missing data
into account. The missing data mechanism should be handled with right type of method
to analyze the data. The methods of change score analysis and follow-up score should
be used when the missing data mechanism is MCAR, while the method of ANCOVA and
cLDA can in addition be used when the missing data mechanism is MAR. The missing
data mechanism affects the bias of the results, while the power is stable no matter what
type of missing data there is. However, the analysis of the missing data is also affected
by the percentage of missing data, which also affects the results of the different missing
data mechanisms. Analysis with more than 20% missing data should be avoided. In this
case the change in the bias is significantly higher, and the power is low. The percentage
of missing data is also affecting the choice of method and the effect of the missing data
mechanism. When the percentage of missing data is lower than 5%, the effect on the
results is low, and it is not necessary to take the missing data into account.
For analyzing RCTs with two time points and missing data several methods are possible
to use, and the choice of method depends on the correlation between the time point and
missing data mechanism. The methods of follow-up score and change score analysis are
shown to have unbiased results when the missing data mechanism is MCAR, while the
methods of ANCOVA and cLDA can also be used in the case of MAR data. The method of
follow-up is comparable with the methods of ANCOVA and cLDA when there are missing
data, and the correlation is low (ρ < 0.4). In this case the method of change score should
be avoided, because of low results of the power. When the correlation is high (ρ > 0.8) the
method of change score is comparable with the methods of ANCOVA and cLDA. In this
case the method of follow-up should be avoided. The methods of ANCOVA and cLDA are
in most cases the methods of choice, and superior to the methods of follow-up and change
score.
When there are missing data, the method of ANCOVA has a drawback compared to the
method of cLDA: Using the method of ANCOVA the baseline values can not be missing.
In this case the entire unit is removed from the analysis. This does not happen to the
method of cLDA, thus more information are available when using the method of cLDA.
The method of cLDA is thus the method of choice. However, applying MI to the missing
baseline values have shown to have good effect on the results. The missing baseline data
can be imputed, and using the method of ANCOVA with MI, no units have to be removed.
Thus, the drawback using the method of ANCOVA is removed. The methods of cLDA and
ANCOVA with MI are comparable, and produces equal results.
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Appendix

R-code

Simulations

# S i m u l a t i o n s w i t h two t i m e p o i n t s and two groups ,
# w i t h d i f f e r e n t c o r r e l a t i o n . Methods : Follow−up score ,
# change s c o r e a n a l y s i s , ANCOVA and cLDA .

l i b r a r y (MASS)
l i b r a r y ( gmodels )
l i b r a r y ( lme4 )
l i b r a r y ( nlme )
l i b r a r y ( l a t t i c e )
l i b r a r y ( mice )
l i b r a r y ( Ma t r i x )
l i b r a r y ( metap )

# Globa l v a l u e s
mis . p e r = 0 . 1 # P e r c e n t a g e o f m i s s i n g da ta
n = 100 # T o t a l number o f p a r t i c i p a n t s
m0 = c ( 0 , 0 ) # E x p e c t e d v a l u e s , c o n t r o l group
m1 = c ( 0 , 1 ) # E x p e c t e d v a l u e s , t r e a t m e n t group
var . sim = 4 # V a r i a n c e f o r bo th groups
a l p h a = 0 . 0 5 # Type 1−e r r o r
m = 5000 #Number o f s i m u l a t i o n s
t h = m1[2]−m0 [ 2 ] # True parame te r o f i n t e r e s t
V = 2 #Number o f t i m e p o i n t s

#Group v e c t o r
gr . 1 = c ( rep ( 0 , n / 2 ) , rep ( 1 , n / 2 ) )

# P a t t e r n used i n ampute − m i s s i n g o n l y a t t h e y ’ s
p a t . 1 = matrix ( data = c ( 1 , 1 , 0 , 1 , 1 , 0 ) , nrow = 2 , nco l = 3)

# Weigh t s MAR da ta . M i s s i n g d e p e n d e n t o f group
w. mar = matrix ( data = c ( 1 , 1 , 0 , 0 , 0 , 0 ) , nrow = 2 , nco l = 3)

# Weight MNAR da ta .
w. mnar = matrix ( data = c ( 0 , 0 , 1 , 0 , 0 , 1 ) , nrow = 2 , nco l = 3)
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# F u n c t i o n g e n e r a t i n g m i s s i n g da ta mechanisms
miss . func2 <− f u n c t i o n ( cor = 0 . 6 ){

s i g = matrix ( data = c ( var . sim , var . sim∗cor , var . sim∗cor , var . sim ) ,
nrow =2 , nco l =2) # Sigma

# S i m u l a t i o n s o f m i s s i n g da ta
gr . a1 <− mvrnorm ( n / 2 , m0 , Sigma = s i g )
g r . b1 <− mvrnorm ( n / 2 , m1 , Sigma = s i g )
y1 = matrix ( 0 , n , ( V+ 1 ) )
y1 [ ( 1 : ( n / 2 ) ) , ( 2 : ( V+ 1 ) ) ] = g r . a1
y1 [ ( ( n / 2 + 1 ) : n ) , ( 2 : ( V+ 1 ) ) ] = g r . b1
y1 [ , 1 ] = gr . 1
y1 . r e s = c ( y1 [ , 2 ] , y1 [ , 3 ] )

# M i s s i n g da ta a s s u m p t i o n s :
#MCAR
mcar1 = ampute ( y1 , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MCAR” ,

b y c a s e s = FALSE , p a t t e r n s = p a t . 1 )
y . mcar1 = c ( mcar1 $amp [ , 2 ] , mcar1 $amp [ , 3 ] )

#MAR − m i s s i n g depends on groups . More m i s s i n g i n c o n t r o l group
mar1 = ampute ( y1 , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MAR” ,

b y c a s e s = FALSE , p a t t e r n s = p a t . 1 ,
t y p e = c ( ”LEFT” , ”LEFT” ) , weight s = w. mar )

y . mar1 = c ( mar1$amp [ , 2 ] , mar1$amp [ , 3 ] )

#MNAR
mnar1 = ampute ( y1 , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MNAR” ,

b y c a s e s = FALSE , p a t t e r n s = p a t . 1 ,
weight s = w. mnar , t y p e = c ( ”LEFT” , ”LEFT” ) )

y . mnar1 = c ( mnar1$amp [ , 2 ] , mnar1$amp [ , 3 ] )

y . t o t 1 = data . frame ( i d 1 = rep ( seq ( 1 , n ) , 2 ) , g r1 = rep ( g r . 1 , 2 ) ,
t d 1 = c ( rep ( 0 , n ) , rep ( 1 , n ) ) , y1 . r e s , 4 ,
y . mcar1 , y . mar1 , y . mnar1 )

names ( y . t o t 1 ) = c ( ” ID ” , ” Group ” , ” Time ” , ” y ” , ”MCAR” , ”MAR” , ”MNAR” )

re turn ( y . t o t 1 )
}

#ANCOVA da ta frame f o r t h e a n a l y s i s
Y1 = c ( rep ( 0 , n ) )
Y0 = c ( rep ( 0 , n ) )
d t a . ancova = data . frame ( Y1 , Y0 , g r . 1 )
d t a . ancova $Y1 = as . numeric ( d t a . ancova $Y1 )
d t a . ancova $Y0 = as . numeric ( d t a . ancova $Y0 )
d t a . ancova $ gr . 1 = as . f a c t o r ( d t a . ancova $ gr . 1 )
cmat = matrix ( 0 , 1 , 3 )
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cmat [ 1 , ] = c ( 0 , 0 , 1 )
colnames ( cmat ) = c ( ” ( I n t e r c e p t ) ” , ”Y0” , ” group11 ” )

#cLDA da ta frame f o r use f o r each s i m u l a t i o n
i d = rep ( seq ( 1 , n ) , 2 )
Y = c ( rep ( 0 , 2∗n ) )
g r . 2 = c ( rep ( g r . 1 , 2 ) )
t ime = c ( rep ( 0 , n ) , rep ( 1 , n ) )
t 1 g r 1 = gr . 2 ∗ t ime
d t a = data . frame ( id , Y, time , t 1 g r 1 )
d t a $ i d = as . f a c t o r ( d t a $ i d )
d t a $ time = as . numeric ( d t a $ time )
d t a $ tVgr1 = as . f a c t o r ( d t a $ tVgr1 )
cmat2 = matrix ( 0 , 1 , 3 )
cmat2 [ 1 , ] = c ( 0 , 0 , 1 )
colnames ( cmat2 ) = c ( ” ( I n t e r c e p t ) ” , ” t ime ” , ” t 1 g r 1 ” )

c o r r e l a t i o n = seq ( 0 . 1 , 0 . 9 , 0 . 1 )

f o r ( j i n 1 : ( l e n g t h ( c o r r e l a t i o n ) ) ) {

c o r r = c o r r e l a t i o n [ j ]

# Data frame w i t h r e s u l t s
r e s <− data . frame ( matrix ( 0 , nrow = 15 , nco l = 4 ) )
names ( r e s ) = c ( ” no m i s s i n g ” , ”MCAR” , ”MAR” , ”MNAR” )
row . names ( r e s ) = c ( ” B ia s ANCOVA” , ” Power ANCOVA” , ” CI ANCOVA” ,

” B ia s cLDA” , ” Power cLDA” , ” CI cLDA” , ” B ia s change ” , ” Power change ” ,
” CI change ” , ” B ia s fo l l ow−up ” , ” Power fo l l ow−up ” , ” CI fo l l ow−up ” ,
” B ia s ANCOVA MI” , ” Power ANCOVA MI” , ” CI ANCOVA MI” )

# S i m u l a t i o n s
f o r ( k i n 1 :m){

df <− miss . func2 ( cor = c o r r )

f o r ( i i n 1 : 4 ){

#cLDA
d t a [ , 2 ] = df [ , 3+ i ]

model = lme (Y ˜ t ime + t 1 g r 1 , random = ˜ 1 | id , data = dta ,
na . a c t i o n =na . e x c l u d e )

e s t 2 = e s t i m a b l e ( model , cmat2 , con f . i n t = (1− a l p h a ) )

r e s [ 4 , i ] = r e s [ 4 , i ] + ( e s t 2 $ E s t i m a t e − t h )
i f ( e s t 2 $ ‘ Pr (>| t | ) ‘ > a l p h a ){

r e s [ 5 , i ] = r e s [ 5 , i ] + 1
}
i f ( t h >= e s t 2 $Lower . CI & t h <= e s t 2 $ Upper . CI ){
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r e s [ 6 , i ] = r e s [ 6 , i ] + 1
}

#ANCOVA
d t a . ancova $Y0 = df [ ( 1 : n ) , 3+ i ]
d t a . ancova $Y1 = df [ ( ( n + 1 ) : ( 2 ∗n ) ) , 3 + i ]

f i t <− lm ( Y1 ˜ Y0 + gr . 1 , data = d t a . ancova , na . a c t i o n = na . e x c l u d e )
e s t <− e s t i m a b l e ( o b j = f i t , cm = cmat , con f . i n t = (1− a l p h a ) )

#ANCOVA w i t h o u t MI
r e s [ 1 , i ] = r e s [ 1 , i ] + ( e s t $ E s t i m a t e − t h )
i f ( e s t $ ‘ Pr (>| t | ) ‘ > a l p h a ){

r e s [ 2 , i ] = r e s [ 2 , i ] + 1
}
i f ( t h >= e s t $Lower . CI & t h <= e s t $ Upper . CI ){

r e s [ 3 , i ] = r e s [ 3 , i ] + 1
}

#ANCOVA w i t h MI
i f ( i ! = 1){

ancova . mice = i s . na ( d t a . ancova )
ancova . mice [ , 1 ] = FALSE
MI = mice ( data = d t a . ancova , m=20 , where = ancova . mice ,

p r i n t = FALSE)
MI2 = summary ( poo l ( w i th ( data = MI ,

exp r = lm ( Y1 ˜ Y0+ gr . 1 , na . a c t i o n = na . e x c l u d e ) ) ) )
e s t = MI2 [ 3 , ]

# Bias
r e s [ 1 3 , i ] = r e s [ 1 3 , i ] + ( e s t $ e s t i m a t e − t h )

#Power
i f ( e s t $p . v a l u e > a l p h a ){

r e s [ 1 4 , i ] = r e s [ 1 4 , i ] + 1
}

#CI ( Rub ins r u l e )
i f ( t h >= ( e s t $ e s t i m a t e −

( qt ((1− a l p h a / 2 ) , e s t $ df ) ) ∗ ( e s t $ s t d . e r r o r ) ) & t h <=
( e s t $ e s t i m a t e + ( qt ((1− a l p h a / 2 ) , e s t $ df ) ) ∗ ( e s t $ s t d . e r r o r ) ) ) {

r e s [ 1 5 , i ] = r e s [ 1 5 , i ] + 1
}

}

#Change s c o r e
t e s t . c <− t . t e s t ( x =

( df [ ( ( n+n / 2 + 1 ) : ( 2 ∗n ) ) , 3 + i ] − df [ ( ( n / 2 + 1 ) : n ) , 3 + i ] ) ,
y = ( df [ ( ( n + 1 ) : ( n+n / 2 ) ) , 3 + i ] − df [ ( 1 : ( n / 2 ) ) , 3 + i ] ) ,
var . equal = TRUE, na . a c t i o n =na . e x c l u d e )
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r e s [ 7 , i ] = r e s [ 7 , i ] + ( ( t e s t . c $ e s t i m a t e [ 1 ] − t e s t . c $ e s t i m a t e [ 2 ] ) − t h )
i f ( t e s t . c $p . v a l u e > a l p h a ){

r e s [ 8 , i ] = r e s [ 8 , i ]+1
}
i f ( t h >= t e s t . c $ con f . i n t [ 1 ] & t h <= t e s t . c $ con f . i n t [ 2 ] ) {

r e s [ 9 , i ] = r e s [ 9 , i ]+1
}

i f ( j ==1){
# Follow−up
t e s t . f <− t . t e s t ( x = df [ ( n+n / 2 + 1 ) : ( 2 ∗n ) , 3 + i ] ,

y = df [ ( n + 1 ) : ( n+n / 2) ,3+ i ] , var . equal = TRUE)
r e s [ 1 0 , i ] = r e s [ 1 0 , i ] +

( ( t e s t . f $ e s t i m a t e [ 1 ] − t e s t . f $ e s t i m a t e [ 2 ] ) − t h )
i f ( t e s t . f $p . v a l u e > a l p h a ){

r e s [ 1 1 , i ] = r e s [ 1 1 , i ] + 1
}
#CI
i f ( t h >= t e s t . f $ con f . i n t [ 1 ] & t h <= t e s t . f $ con f . i n t [ 2 ] ) {

r e s [ 1 2 , i ] = r e s [ 1 2 , i ]+1
}

}
}

}

# R e s u l t s
f o r ( l i n 1 : 4 ){

f o r ( p i n 1 : 1 5 ){
i f ( p ==2 |p ==5 |p ==8 |p ==11 |p ==14){

r e s [ p , l ] = 1− r e s [ p , l ] /m #Power
} e l s e {

r e s [ p , l ] = r e s [ p , l ] /m #CI / Bias
}

}
}
p r i n t ( c o r r )
p r i n t ( r e s )

}

# L o n g i t u d i n a l da ta

# Globa l v a l u e s
a l p h a = 0 . 0 5 # Type I e r r o r
m = 5000 #Number o f s i m u l a t i o n s
n = 100 #Number o f i n d i v i d u a l s i n t h e t r i a l
V = 4 #Number o f t i m e p o i n t s
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mu0 = 0 # E x p e c t e d v a l u e a t b a s e l i n e f o r bo th groups
mu1 = 1 # E x p e c t e d v a l u e a t l a s t f o l l o w−up f o r t r e a t m e n t group
t h = mu1 − mu0 # True d i f f e r e n c e
var . sim = 4 # V a r i a n c e . Equal f o r bo th group and t i m e .
M = 20 #Number o f m u l t i p l e i m p u t a t i o n s
M0 = c ( rep ( mu0 , V) ) # E x p e c t e d v a l u e s group 0
M1 = c ( seq ( mu0 , mu1 , by= 1 / (V−1) ) ) # E x p e c t e d v a l u e s group 1
p h i = 0 . 8 # E x p o n e n t i a l decay r a t e ( h i g h e r v a l u e s , f a s t e r toward z e r o )
Vm = matrix ( rep ( 0 ,V∗V) , nrow = V)

# Decaying e x p o n e n t i a l c o r r e l a t i o n m a t r i x
f o r ( i i n 1 : (V) ) {

f o r ( j i n 1 : (V) ) {
Vm[ i , j ] = exp(−p h i ∗abs ( i−j ) )

}
}
#Compound c o r r e l a t i o n s t r u c t u r e
# cor = 0 . 6
#Vm = m a t r i x ( da ta = c ( rep ( c ( 1 , rep ( cor , V ) ) , ( V−1 ) ) , 1 ) , nrow=V , n c o l=V )

s i g = var . sim∗Vm # Covar iance m a t r i x

# P a t t e r n s and w e i g h t s f o r m i s s i n g da ta a s s u m p t i o n s i n t h e f u n c t i o n ampute
l ong . p a t = matrix ( data = c ( 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 ,

1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 ) , nrow = 4 , nco l = 5)
w. mar . l ong = matrix ( data = c ( 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , nrow = 4 , nco l = 5)
w. mnar . l ong = matrix ( data = c ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,

0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 ) , nrow = 4 , nco l = 5)

g r . s h o r t = c ( rep ( 0 , n / 2 ) , rep ( 1 , n / 2 ) )

#cLDA
gr = rep ( c ( rep ( 0 , n / 2 ) , rep ( 1 , n / 2 ) ) ,V)
t ime = rep ( 0 : ( V−1) , each = n )
i d = rep ( seq ( 1 , n ) , V)

#ANCOVA
i d 2 = rep ( seq ( 1 , n ) , (V−1))
t ime2 = rep ( 1 : ( V−1) , each = n )
t i m e g r o u p = rep ( 1 : ( ( 2 ∗V)−2) , each = ( n / 2 ) )

#ANCOVA MI
i d 3 = seq ( 1 , n )

miss . f unc . l ong . 2 <− f u n c t i o n ( mis . p e r = 0 . 1 0 ){

# S i m u l a t i o n s
gr . a <− mvrnorm ( n / 2 , M0, Sigma = s i g )
g r . b <− mvrnorm ( n / 2 , M1, Sigma = s i g )
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y = matrix ( 0 , n , ( V+ 1 ) )
y [ ( 1 : ( n / 2 ) ) , ( 2 : ( V+ 1 ) ) ] = g r . a
y [ ( ( n / 2 + 1 ) : n ) , ( 2 : ( V+ 1 ) ) ] = g r . b
y [ , 1 ] = g r . s h o r t

y . r e s = as . v e c t o r ( y [ , 2 : ( V+ 1 ) ] )

# M i s s i n g da ta mechanisms
#MCAR
mcar = ampute ( y , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MCAR” ,

b y c a s e s = FALSE , p a t t e r n s = long . p a t )
y . mcar = c ( mcar $amp [ , 2 ] , mcar $amp [ , 3 ] , mcar $amp [ , 4 ] , mcar $amp [ , 5 ] )

#MAR
mar = ampute ( y , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MAR” ,

b y c a s e s = FALSE , p a t t e r n s = long . pa t ,
t y p e = c ( ”LEFT” , ”LEFT” , ”LEFT” , ”LEFT” ) ,
weight s = w. mar . l ong )

y . mar = c ( mar$amp [ , 2 ] , mar$amp [ , 3 ] , mar$amp [ , 4 ] , mar$amp [ , 5 ] )

mnar = ampute ( y , prop = mis . p e r ∗ ( ( V−1) /V) , mech = ”MNAR” ,
b y c a s e s = FALSE , p a t t e r n s = long . pa t ,
weight s = w. mnar . l ong )

y . mnar = c ( mnar$amp [ , 2 ] , mnar$amp [ , 3 ] , mnar$amp [ , 4 ] , mnar$amp [ , 5 ] )

y . t o t = data . frame ( id , gr , time , y . r e s , y . mcar , y . mar , y . mnar )
names ( y . t o t ) = c ( ” ID ” , ” Group ” , ” Time ” , ” y ” , ”MCAR” , ”MAR” , ”MNAR” )

re turn ( y . t o t )
}

# C o n t r a s t m a t r i x f o r cLDA
cmat2 <− matrix ( 0 , 3 , 7 )
cmat2 [ 1 , ] = c ( 0 , −1 , 1 , 0 , 0 , 0 , 0 )
cmat2 [ 2 , ] = c ( 0 , 0 , 0 , −1 , 1 , 0 , 0 )
cmat2 [ 3 , ] = c ( 0 , 0 , 0 , 0 , 0 , −1 , 1 )
colnames ( cmat2 ) <− c ( ” ( I n t e r c e p t ) ” , ” tVgr12 ” , ” tVgr13 ” ,

” tVgr14 ” , ” tVgr15 ” , ” tVgr16 ” , ” tVgr17 ” )

# C o n t r a s t m a t r i x f o r ANCOVA
cmat = matrix ( 0 , 3 , 9 )
cmat [ 1 , ] = c ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 )
cmat [ 2 , ] = c ( 0 , 0 , 0 , 0 , 0 , −1 , 1 , 0 , 0 )
cmat [ 3 , ] = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , −1 , 1 )
colnames ( cmat ) = c ( ” ( I n t e r c e p t ) ” , ”Y0” , ” Y0I t2 ” , ” Y0I t3 ” ,

” t i m e g r o u p 2 ” , ” t i m e g r o u p 3 ” , ” t i m e g r o u p 4 ” ,
” t i m e g r o u p 5 ” , ” t i m e g r o u p 6 ” )

rownames ( cmat ) = c ( ” The ta1 ” , ” The ta2 ” , ” The ta3 ” )
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run . l ong <− f u n c t i o n ( miss . p e r c = 0 . 1 ){

#cLDA da ta frame f o r each s i m u l a t i o n
Y = c ( rep ( 0 , V∗n ) )
tVgr1 = c ( rep ( 1 , n ) , rep ( 2 , n / 2 ) , rep ( 3 , n / 2 ) , rep ( 4 , n / 2 ) ,

rep ( 5 , n / 2 ) , rep ( 6 , n / 2 ) , rep ( 7 , n / 2 ) )
d t a = data . frame ( id , Y, time , tVgr1 )
d t a $Y = as . numeric ( d t a $Y)
d t a $ i d = as . f a c t o r ( d t a $ i d )
d t a $ time = as . f a c t o r ( d t a $ time )
d t a $ tVgr1 = as . f a c t o r ( d t a $ tVgr1 )

#ANCOVA da ta frame f o r each s i m u l a t i o n
Y0 = c ( rep ( 0 , (V−1)∗n ) )
Y1 = c ( rep ( 0 , (V−1)∗n ) )
Y0I t2 = c ( rep ( 0 , (V−1)∗n ) )
Y0I t3 = c ( rep ( 0 , (V−1)∗n ) )
d t a . ancova = data . frame ( id2 , Y0 , Y1 , t imegroup ,

t ime2 , Y0It2 , Y0I t3 )
d t a . ancova $ i d 2 = as . f a c t o r ( d t a . ancova $ i d 2 )
d t a . ancova $Y0 = as . numeric ( d t a . ancova $Y0 )
d t a . ancova $Y1 = as . numeric ( d t a . ancova $Y1 )
d t a . ancova $ t i m e g r o u p = as . f a c t o r ( d t a . ancova $ t i m e g r o u p )
d t a . ancova $ t ime2 = as . f a c t o r ( d t a . ancova $ t ime2 )

#ANCOVA MI da ta frame
Y0 .m = c ( rep ( 0 , n ) )
Y1 .m = c ( rep ( 0 , n ) )
Y2 .m = c ( rep ( 0 , n ) )
Y3 .m = c ( rep ( 0 , n ) )
d t a . mice = data . frame ( id3 , g r . s h o r t , Y0 .m, Y1 .m, Y2 .m, Y3 .m)

# Data frame w i t h r e s u l t s
r e s . l ong = data . frame ( matrix ( 0 , nrow = 3∗ (V−1) , nco l = 1 1 ) )
names ( r e s . l ong ) = c ( ” no m i s s i n g cLDA” , ”MCAR cLDA” , ”MAR cLDA” ,

”MNAR cLDA” , ” no m i s s i n g ANCOVA” , ”MCAR ANCOVA” ,
”MAR ANCOVA” , ”MNAR ANCOVA” , ”MCAR ANCOVA MI” ,
”MAR ANCOVA MI” , ”MNAR ANCOVA MI” )

row . names ( r e s . l ong ) = c ( ” B ia s t h e t a 1 ” , ” CI t h e t a 1 ” , ” Power t h e t a 1 ” ,
” B ia s t h e t a 2 ” , ” CI t h e t a 2 ” , ” Power t h e t a 2 ” , ” B ia s t h e t a 3 ” ,
” CI t h e t a 3 ” , ” Power t h e t a 3 ” )

f o r ( k i n 1 :m){

s e t . s e ed ( sample ( 1 : ( 2 ˆ 2 0 ) , 1 ) )
df <− miss . func . l ong . 2 ( mis . p e r = miss . p e r c )

# A n a l y s i s o f d i f f e r e n t m i s s i n g a s s u m p t i o n s
f o r ( i i n 1 : 4 ){
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#cLDA
d t a $Y = df [ , ( 3 + i ) ]
model = lme (Y ˜ tVgr1 , random = ˜ 1 | id , data = dta ,

c o r r e l a t i o n = corExp ( ( 1 / p h i ) , form = ˜ 1 | i d ) ,
na . a c t i o n = na . e x c l u d e )

#Compound c o r r e l a t i o n s t r u c t u r e
# model = lme ( Y ˜ tVgr1 , random = ˜ 1 | id , da ta = dta ,

#na . a c t i o n = na . e x c l u d e )

e s t 2 = e s t i m a b l e ( model , cmat2 , con f . i n t = (1− a l p h a ) )

f o r ( l i n 1 : ( V−1)){
# Bias
r e s . l ong [ ( 3 ∗ l −2) , i ] = r e s . l ong [ ( 3 ∗ l −2) , i ] +

( e s t 2 $ E s t i m a t e [ l ]−M1[ ( l + 1 ) ] )

#Power
i f ( e s t 2 $ ‘ Pr (>| t | ) ‘ [ l ] > a l p h a ){

r e s . l ong [ ( 3 ∗ l ) , i ] = r e s . l ong [ ( 3 ∗ l ) , i ] + 1
}

#CI
i f (M1[ ( 1 + l ) ] >= e s t 2 $Lower . CI [ l ] &

M1[ ( 1 + l ) ] <= e s t 2 $ Upper . CI [ l ] ) {
r e s . l ong [ ( 3 ∗ l −1) , i ] = r e s . l ong [ ( 3 ∗ l −1) , i ] + 1

}
}

#ANCOVA
d t a . ancova $Y0 = rep ( df [ ( 1 : n ) , 3+ i ] , (V−1))
d t a . ancova $ Y0It2 [ 1 0 1 : 2 0 0 ] = df [ ( 1 : n ) , 3+ i ]
d t a . ancova $ Y0It3 [ 2 0 1 : 3 0 0 ] = df [ ( 1 : n ) , 3+ i ]
d t a . ancova $Y1 = df [ ( ( n + 1 ) : (V∗n ) ) , 3 + i ]

#ANCOVA w i t h o u t MI
model2 = lme ( Y1 ˜ Y0 + Y0I t2 + Y0I t3 + t imegroup ,

random = ˜ 1 | id2 , data = d t a . ancova ,
c o r r e l a t i o n = corExp ( ( 1 / p h i ) , form = ˜ 1 | i d 2 ) ,
na . a c t i o n = na . e x c l u d e )

#Compound c o r r e l a t i o n s t r u c t u r e
# model2 = lme ( Y1 ˜ Y0 + Y 0 I t 2 + Y 0 I t 3 + t imegroup ,

#random = ˜ 1 | id2 ,
# da ta = d t a . ancova , na . a c t i o n = na . e x c l u d e )

e s t = e s t i m a b l e ( o b j = model2 , cm = cmat ,
con f . i n t = (1− a l p h a ) )

f o r ( l i n 1 : ( V−1)){
# Bias
r e s . l ong [ ( 3 ∗ l −2) , (4+ i ) ] = r e s . l ong [ ( 3 ∗ l −2) , (4+ i ) ] +

( e s t $ E s t i m a t e [ l ] − M1[ ( l + 1 ) ] )
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#Power
i f ( e s t $ ‘ Pr (>| t | ) ‘ [ l ] > a l p h a ){

r e s . l ong [ ( 3 ∗ l ) , ( 4 + i ) ] = r e s . l ong [ ( 3 ∗ l ) , ( 4 + i ) ] + 1
}

#CI
i f (M1[ ( 1 + l ) ] >= e s t $Lower . CI [ l ] & M1[ ( 1 + l ) ] <=

e s t $ Upper . CI [ l ] ) {
r e s . l ong [ ( 3 ∗ l −1) , (4+ i ) ] = r e s . l ong [ ( 3 ∗ l −1) , (4+ i ) ] + 1

}
}
i f ( i ! = 1){

d t a . mice $Y0 .m = df [ 1 : n , 3+ i ]
d t a . mice $Y1 .m = df [ ( ( n + 1 ) : ( 2 ∗n ) ) , 3+ i ]
d t a . mice $Y2 .m = df [ ( ( 2 ∗n + 1 ) : ( 3 ∗n ) ) , 3+ i ]
d t a . mice $Y3 .m = df [ ( ( 3 ∗n + 1 ) : ( 4 ∗n ) ) , 3+ i ]

#MI
imp . d t a = i s . na ( d t a . mice )
imp . d t a [ , 4 : 6 ] = FALSE
MI = mice ( data = d t a . mice , where = imp . d ta , m=M,

p r i n t = FALSE)
MI2 = complete ( MI , ” a l l ” )

t o t e = matrix ( 0 , 2 0 , 3 )
t o t v l c = matrix ( 0 , 3 , 3 )

f o r ( j i n 1 :M){
temp <− as . data . frame ( MI2 [ j ] )
d t a . ancova $Y0 = rep ( temp [ , 3 ] , 3 )
d t a . ancova $ Y0It2 [ ( ( n + 1 ) : ( 2 ∗n ) ) ] = temp [ , 3 ]
d t a . ancova $ Y0It3 [ ( ( 2 ∗n + 1 ) : ( 3 ∗n ) ) ] = temp [ , 3 ]

model2 = lme ( Y1 ˜ Y0 + Y0I t2 + Y0I t3 + t imegroup ,
random = ˜ 1 | id2 ,
data = d t a . ancova , c o r r e l a t i o n = corExp ( ( 1 / p h i ) ,
form = ˜ 1 | i d 2 ) , na . a c t i o n = na . e x c l u d e )

#Compound c o r r e l a t i o n s t r u c t u r e
# model2 = lme ( Y1 ˜ Y0 + Y 0 I t 2 + Y 0 I t 3 + t imegroup ,
#random = ˜ 1 | id2 ,
# da ta = d t a . ancova , na . a c t i o n = na . e x c l u d e )

e s t l c = cmat%∗%f i x e f ( model2 ) # E s t i m a t e s
v l c = cmat%∗%vcov ( model2 )%∗%t ( cmat ) # Var iance−c o v a r i a n c e m a t r i x

t o t e [ j , ] = e s t l c
t o t v l c = t o t v l c + v l c

}
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# Rubin ’ s r u l e
meanMI = c ( 0 , 0 , 0 )
b e t v a r = c ( 0 , 0 , 0 )
dfMI = c ( 0 , 0 , 0 )
p v a l = c ( 0 , 0 , 0 )
w i t h v a r = (1 /M) ∗ t o t v l c
t o t v a r = w i t h v a r

f o r ( l i n 1 : ( V−1)){
# E s t i m a t e s
meanMI [ l ] = mean ( t o t e [ , l ] )
# Between v a r i a n c e
b e t v a r [ l ] = ( sd ( t o t e [ , l ] ) ) ˆ 2
# T o t a l v a r i a n c e
t o t v a r [ l , l ] = t o t v a r [ l , l ] + (1+1 /M) ∗ ( b e t v a r [ l ] )
# Degrees o f f reedom
dfMI [ l ] = (M−1)∗ (1 +

w i t h v a r [ l , l ] / ( ( ( 1 +Mˆ( −1) ) ∗ b e t v a r [ l ] ) ) ) ˆ 2
#P−v a l u e s
p v a l [ l ] = 1−pf ( ( ( meanMI [ l ] ) ˆ 2 ) / ( t o t v a r [ l , l ] ) ,

d f1 = 1 , d f2 = dfMI [ l ] )

r e s . l ong [ ( 3 ∗ l −2) , (7+ i ) ] = r e s . l ong [ ( 3 ∗ l −2) , (7+ i ) ] +
( meanMI [ l ] − (M1[ l + 1 ] ) )

i f (M1[ ( 1 + l ) ] >=
( meanMI [ l ]−qt ((1− a l p h a / 2 ) , dfMI [ l ] ) ∗ s q r t ( t o t v a r [ l , l ] ) ) &
M1[ ( 1 + l ) ] <= ( meanMI [ l ]+ qt ((1− a l p h a / 2 ) ,

dfMI [ l ] ) ∗ s q r t ( t o t v a r [ l , l ] ) ) ) {
r e s . l ong [ ( 3 ∗ l −1) , (7+ i ) ] = r e s . l ong [ ( 3 ∗ l −1) , (7+ i ) ] + 1

}
i f ( p v a l [ l ] > a l p h a ){

r e s . l ong [ ( 3 ∗ l ) , ( 7 + i ) ] = r e s . l ong [ ( 3 ∗ l ) , ( 7 + i ) ] + 1
}

}
}

}
}

# R e s u l t s
f o r ( q i n 1 : 1 1 ){

f o r ( z i n 1 : ( ( V−1)∗ 3 ) ){
i f ( z ==3 | z ==6 | z ==9){

r e s . l ong [ z , q ] = 1− r e s . l ong [ z , q ] /m #Power
} e l s e {

r e s . l ong [ z , q ] = r e s . l ong [ z , q ] /m #CI / Bias
}

}
}
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p r i n t ( miss . p e r c )
p r i n t ( r e s . l ong )

}

mp = c ( 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 0 )

f o r ( p i n 1 : l e n g t h (mp ) ) {
run . l ong ( miss . p e r c = mp[ p ] )

}

Example

# Example RCT: Obese c h i l d r e n w i t h d i f f e r e n t t y p e s o f e x e r c i s e s
l i b r a r y ( f o r e i g n )
l i b r a r y ( n o r t e s t )
l i b r a r y ( nlme )

# Data from f i l e
d a t a d i r = ” ˜ / Documents /NTNU / Maste r / Real example ”
d f i l e = ” / 15.11.2017− C h i l d r e n s t u d y−NTNU−mainfileLONG echo−HE . sav ”

#From SPSS t o R
a l l d a t a = read . s p s s ( p a s t e ( d a t a d i r , d f i l e , sep = ” ” ) ,

use . v a l u e . l a b e l s = FALSE , t o . data . frame = T )

#GLS v a r i a b l e

# Data w i t h ID , Y0 , Y1 , Y2 and Group
l ook . data = cbind ( ( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Sub jec t ID ,

( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Res t LV GLS ,
( a l l d a t a [ grep ( ” 2 ” , a l l d a t a $Time ) , ] ) $ Res t LV GLS ,
( a l l d a t a [ grep ( ” 3 ” , a l l d a t a $Time ) , ] ) $ Res t LV GLS ,
( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $Group )

colnames ( l ook . data ) = c ( ” ID ” , ”Y0” , ”Y1” , ”Y2” , ” Group ” )
l d = as . data . frame ( l ook . data )

# D i e t group
dt = l d [ grep ( ” 3 ” , l d $Group ) , ]
n d t = dim ( dt ) [ 1 ]
mdt = c ( mean ( dt $Y0 , na . rm = TRUE) , mean ( dt $Y1 , na . rm = TRUE) ,

mean ( dt $Y2 , na . rm = TRUE ) )
v d t = c ( var ( dt $Y0 , na . rm = TRUE) , var ( dt $Y1 , na . rm = TRUE) ,

var ( dt $Y2 , na . rm = TRUE ) )
c d t = cor ( dt [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
n a d t = c ( sum ( i s . na ( dt $Y0 ) ) , sum ( i s . na ( dt $Y1 ) ) , sum ( i s . na ( dt $Y2 ) ) )
d r e s = data . frame ( nad t , ndt , mdt , vdt , c d t )
p r i n t ( d r e s )

#MICT group
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mc = l d [ grep ( ” 2 ” , l d $Group ) , ]
nmc = dim ( mc ) [ 1 ]
mmc = c ( mean ( mc$Y0 , na . rm = TRUE) , mean ( mc$Y1 , na . rm = TRUE) ,

mean ( mc$Y2 , na . rm = TRUE ) )
vmc = c ( var ( mc$Y0 , na . rm = TRUE) , var ( mc$Y1 , na . rm = TRUE) ,

var ( mc$Y2 , na . rm = TRUE ) )
cmc = cor ( mc [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
namc = c ( sum ( i s . na ( mc$Y0 ) ) , sum ( i s . na ( mc$Y1 ) ) , sum ( i s . na ( mc$Y2 ) ) )
mcres = data . frame ( namc , nmc , mmc, vmc , cmc )
p r i n t ( mcres )

# HIIT group
h t = l d [ grep ( ” 1 ” , l d $Group ) , ]
n h t = dim ( h t ) [ 1 ]
mht = c ( mean ( h t $Y0 , na . rm = TRUE) , mean ( h t $Y1 , na . rm = TRUE) ,

mean ( h t $Y2 , na . rm = TRUE ) )
v h t = c ( var ( h t $Y0 , na . rm = TRUE) , var ( h t $Y1 , na . rm = TRUE) ,

var ( h t $Y2 , na . rm = TRUE ) )
c h t = cor ( h t [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
n a h t = c ( sum ( i s . na ( h t $Y0 ) ) , sum ( i s . na ( h t $Y1 ) ) , sum ( i s . na ( h t $Y2 ) ) )
h t r e s = data . frame ( nah t , nht , mht , vht , c h t )
p r i n t ( h t r e s )

# Check ing f o r n o r m a l i t y i n t h e da ta − o n l y b a s e l i n e v a l u e s
b l = ( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Res t LV GLS
qqnorm ( b l , c o l = ” s l a t e b l u e ” , x l a b = ” ” , y l a b = ” ” , pch = 16 ,

main = ” ” )
q q l i n e ( b l , c o l = ” s l a t e b l u e ” )
h i s t ( b l , main = ” ” , x l a b = ”GLS” , y l a b = ” Freq ” ,

c o l = ” s l a t e b l u e ” )

# P l o t d i e t group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( dt $Y0 [ 1 ] , dt $Y1 [ 1 ] , dt $Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , main = ” D i e t group ” , y l im = c (−25 , −11) ,
x l im = c ( 0 , 2 ) , y l a b = ”GLS” , x l a b = ” ” , x a x t = ’ n ’ ,
pch = 16)

f o r ( i i n 2 : ( n d t ) ) {
l i n e s ( Tp lo t , c ( dt $Y0 [ i ] , dt $Y1 [ i ] , dt $Y2 [ i ] ) ,

t y p e = ” b ” , c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” , ” Follow−up 1 ” ,

” Follow−up 2 ” ) )

# P l o t MICT group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( mc$Y0 [ 1 ] , mc$Y1 [ 1 ] , mc$Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , main = ”MICT group ” , y l im = c (−25 , −11) ,
x l im = c ( 0 , 2 ) , y l a b = ”GLS” , x l a b = ” ” , x a x t = ’ n ’ ,
pch = 16)
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f o r ( i i n 2 : ( nmc ) ) {
l i n e s ( Tp lo t , c ( mc$Y0 [ i ] , mc$Y1 [ i ] , mc$Y2 [ i ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” , ” Follow−up 1 ” ,

” Follow−up 2 ” ) )

# P l o t HIIT group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( h t $Y0 [ 1 ] , h t $Y1 [ 1 ] , h t $Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , main = ” HIIT group ” ,
y l im = c (−25 , −11) ,
x l im = c ( 0 , 2 ) , y l a b = ”GLS” , x l a b = ” ” , x a x t = ’ n ’ ,
pch = 16)

f o r ( i i n 2 : ( n h t ) ) {
l i n e s ( Tp lo t , c ( h t $Y0 [ i ] , h t $Y1 [ i ] , h t $Y2 [ i ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” , ” Follow−up 1 ” ,

” Follow−up 2 ” ) )

# A n a l y s i s o f t h e da ta
#cLDA
Y1 = as . numeric ( a l l d a t a $ Res t LV GLS)
Time = as . f a c t o r ( a l l d a t a $Time )
Group = as . f a c t o r ( a l l d a t a $Group )
ID = as . f a c t o r ( a l l d a t a $ S u b j e c t I D )
TVGR = c ( rep ( 0 , l e n g t h ( Y1 ) ) )

f o r ( i i n 1 : l e n g t h (TVGR) ) {
i f ( Time [ i ] == 1){

TVGR[ i ] = 1
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 3){

TVGR[ i ] = 2
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 2){

TVGR[ i ] = 4
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 1){

TVGR[ i ] = 6
} e l s e i f ( Time [ i ] == 3 & Group [ i ] == 3){

TVGR[ i ] = 3
} e l s e i f ( Time [ i ] == 3 & Group [ i ] == 2){

TVGR[ i ] = 5
} e l s e {

TVGR[ i ] = 7
}

}
TVGR = as . f a c t o r (TVGR)
c l d a = data . frame ( Y1 , ID , Time , Group , TVGR) #cLDA da ta frame

model . c l d a = lme ( Y1 ˜ TVGR, random = ˜ 1 | ID , data = c lda ,
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c o r r e l a t i o n = corCompSymm ( ) , na . a c t i o n = na . e x c l u d e )

# C o n t r a s t m a t r i x f o r cLDA
CMAT2 <− matrix ( 0 , 6 , 7 )
CMAT2[ 1 , ] = c ( 0 , 0 , −1 , 0 , 0 , 0 , 1 )
CMAT2[ 2 , ] = c ( 0 , −1 , 0 , 0 , 0 , 1 , 0 )
CMAT2[ 3 , ] = c ( 0 , 0 , 0 , 0 , −1 , 0 , 1 )
CMAT2[ 4 , ] = c ( 0 , 0 , 0 , −1 , 0 , 1 , 0 )
CMAT2[ 5 , ] = c ( 0 , 0 , −1 , 0 , 1 , 0 , 0 )
CMAT2[ 6 , ] = c ( 0 , −1 , 0 , 1 , 0 , 0 , 0 )
colnames (CMAT2) <− c ( ” ( I n t e r c e p t ) ” , ”TVGR2” , ”TVGR3” , ”TVGR4” ,

”TVGR5” , ”TVGR6” , ”TVGR7” )

a l p h a = 0 . 0 5
EST <− e s t i m a b l e ( model . c l da , CMAT2, con f . i n t = (1 − a l p h a ) )

# R e s u l t s cLDA
c l d a . r e s = matrix ( 0 , 6 , 4 )
row . names ( c l d a . r e s ) = c ( ”HvsD T2” , ”HvsD T1” , ”HvsM T2” , ”HvsM T1” ,

”MvsD T2” , ”MvsD T1” )
colnames ( c l d a . r e s ) = c ( ” E s t i m a t e ” , ” lower CI ” , ” Upper CI ” , ”p−v a l u e ” )

c l d a . r e s [ , 1 ] = EST$ E s t i m a t e
c l d a . r e s [ , 2 ] = EST$Lower . CI
c l d a . r e s [ , 3 ] = EST$ Upper . CI
c l d a . r e s [ , 4 ] = EST$ ‘ Pr (>| t | ) ‘

p r i n t ( c l d a . r e s )

#ANCOVA
Y = c ( l d $Y1 , l d $Y2 )
Y0 = rep ( l d $Y0 , 2 )
Y0IT2 = c ( rep ( 0 , l e n g t h ( Y0 ) / 2 ) , l d $Y0 )
ID2 = rep ( l d $ID , 2 )
GROUP = rep ( l d $Group , 2 )
TIME = c ( rep ( 2 , l e n g t h (Y) / 2 ) , rep ( 3 , l e n g t h (Y) / 2 ) )
TMGR = c ( rep ( 0 , l e n g t h (Y ) ) )

f o r ( i i n 1 : l e n g t h (TMGR) ) {
i f (TIME[ i ] == 2 & GROUP[ i ] == 3){

TMGR[ i ] = 1
} e l s e i f (TIME[ i ] == 2 & GROUP[ i ] == 2){

TMGR[ i ] = 3
} e l s e i f (TIME[ i ] == 2 & GROUP[ i ] == 1){

TMGR[ i ] = 5
} e l s e i f (TIME[ i ] == 3 & GROUP[ i ] == 3){

TMGR[ i ] = 2
} e l s e i f (TIME[ i ] == 3 & GROUP[ i ] == 2){

TMGR[ i ] = 4
} e l s e {
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TMGR[ i ] = 6
}

}

Y = as . numeric (Y)
Y0 = as . numeric ( Y0 )
Y0IT2 = as . numeric ( Y0IT2 )
ID2 = as . f a c t o r ( ID2 )
TMGR = as . f a c t o r (TMGR)

ancova = data . frame (Y, Y0 , Y0IT2 , ID2 , GROUP, TIME , TMGR)

model . ancova = lme (Y ˜ Y0 + Y0IT2 + TMGR, random = ˜ 1 | ID2 ,
data = ancova , c o r r e l a t i o n = corCompSymm ( ) ,
na . a c t i o n = na . e x c l u d e )

# C o n t r a s t m a t r i x f o r ancova
CMAT <− matrix ( 0 , 6 , 8 )
CMAT[ 1 , ] = c ( 0 , 0 , 0 , −1 , 0 , 0 , 0 , 1 )
CMAT[ 2 , ] = c ( 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 )
CMAT[ 3 , ] = c ( 0 , 0 , 0 , 0 , 0 , −1 , 0 , 1 )
CMAT[ 4 , ] = c ( 0 , 0 , 0 , 0 , −1 , 0 , 1 , 0 )
CMAT[ 5 , ] = c ( 0 , 0 , 0 , −1 , 0 , 1 , 0 , 0 )
CMAT[ 6 , ] = c ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 )
colnames (CMAT) <− c ( ” ( I n t e r c e p t ) ” , ”Y0” , ” Y0IT2 ” , ”TMGR2” ,

”TMGR3” , ”TMGR4” , ”TMGR5” , ”TMGR6” )

EST2 <− e s t i m a b l e ( model . ancova , CMAT,
con f . i n t = (1 − a l p h a ) )

# R e s u l t s ANCOVA
ancova . r e s = matrix ( 0 , 6 , 4 )
row . names ( ancova . r e s ) = c ( ”HvsD T2” , ”HvsD T1” , ”HvsM T2” ,

”HvsM T1” , ”MvsD T2” , ”MvsD T1” )
colnames ( ancova . r e s ) = c ( ” E s t i m a t e ” , ” lower CI ” ,

” Upper CI ” , ”p−v a l u e ” )

ancova . r e s [ , 1 ] = EST2$ E s t i m a t e
ancova . r e s [ , 2 ] = EST2$Lower . CI
ancova . r e s [ , 3 ] = EST2$ Upper . CI
ancova . r e s [ , 4 ] = EST2$ ‘ Pr (>| t | ) ‘

p r i n t ( ancova . r e s )

#LVS

# L o g t r a n s f o r m a t i o n o f da ta
a l l d a t a $ Res t LV s mean = l o g ( a l l d a t a $ Res t LV s mean )

94



# Data w i t h ID , Y0 , Y1 , Y2 and Group
l ook . data = cbind ( ( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Sub jec t ID ,

( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Res t LV s mean ,
( a l l d a t a [ grep ( ” 2 ” , a l l d a t a $Time ) , ] ) $ Res t LV s mean ,
( a l l d a t a [ grep ( ” 3 ” , a l l d a t a $Time ) , ] ) $ Res t LV s mean ,
( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $Group )

colnames ( l ook . data ) = c ( ” ID ” , ”Y0” , ”Y1” , ”Y2” , ” Group ” )
l d = as . data . frame ( l ook . data )

# C o r r e l a t i o n be tween t i m e − k a n s k j e i k k e n d v e n d i g ha med?
cor . a l l . data = cor ( l ook . data [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
p r i n t ( cor . a l l . data )

# D i e t group
dt = l d [ grep ( ” 3 ” , l d $Group ) , ]
n d t = dim ( dt ) [ 1 ]
mdt = c ( mean ( dt $Y0 , na . rm = TRUE) , mean ( dt $Y1 , na . rm = TRUE) ,

mean ( dt $Y2 , na . rm = TRUE ) )
v d t = c ( var ( dt $Y0 , na . rm = TRUE) , var ( dt $Y1 , na . rm = TRUE) ,

var ( dt $Y2 , na . rm = TRUE ) )
c d t = cor ( dt [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
n a d t = c ( sum ( i s . na ( dt $Y0 ) ) , sum ( i s . na ( dt $Y1 ) ) ,

sum ( i s . na ( dt $Y2 ) ) )
d r e s = data . frame ( nad t , ndt , mdt , vdt , c d t )
p r i n t ( d r e s )

#MICT group
mc = l d [ grep ( ” 2 ” , l d $Group ) , ]
nmc = dim ( mc ) [ 1 ]
mmc = c ( mean ( mc$Y0 , na . rm = TRUE) , mean ( mc$Y1 , na . rm = TRUE) ,

mean ( mc$Y2 , na . rm = TRUE ) )
vmc = c ( var ( mc$Y0 , na . rm = TRUE) , var ( mc$Y1 , na . rm = TRUE) ,

var ( mc$Y2 , na . rm = TRUE ) )
cmc = cor ( mc [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
namc = c ( sum ( i s . na ( mc$Y0 ) ) , sum ( i s . na ( mc$Y1 ) ) ,

sum ( i s . na ( mc$Y2 ) ) )
mcres = data . frame ( namc , nmc , mmc, vmc , cmc )
p r i n t ( mcres )

# HIIT group
h t = l d [ grep ( ” 1 ” , l d $Group ) , ]
n h t = dim ( h t ) [ 1 ]
mht = c ( mean ( h t $Y0 , na . rm = TRUE) , mean ( h t $Y1 , na . rm = TRUE) ,

mean ( h t $Y2 , na . rm = TRUE ) )
v h t = c ( var ( h t $Y0 , na . rm = TRUE) , var ( h t $Y1 , na . rm = TRUE) ,

var ( h t $Y2 , na . rm = TRUE ) )
c h t = cor ( h t [ , 2 : 4 ] , use = ” na . o r . c o m p l e t e ” )
n a h t = c ( sum ( i s . na ( h t $Y0 ) ) , sum ( i s . na ( h t $Y1 ) ) ,

sum ( i s . na ( h t $Y2 ) ) )
h t r e s = data . frame ( nah t , nht , mht , vht , c h t )
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p r i n t ( h t r e s )

# Check ing f o r n o r m a l i t y i n t h e da ta − o n l y b a s e l i n e v a l u e s
b l = ( a l l d a t a [ grep ( ” 1 ” , a l l d a t a $Time ) , ] ) $ Res t LV s mean
qqnorm ( b l , c o l = ” s l a t e b l u e ” , x l a b = ” ” , y l a b = ” ” ,

pch = 16 , main = ” ” )
q q l i n e ( b l , c o l = ” s l a t e b l u e ” )
h i s t ( b l , main = ” ” , x l a b = ” ” , y l a b = ” ” , c o l = ” s l a t e b l u e 3 ” )

# P l o t d i e t group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( dt $Y0 [ 1 ] , dt $Y1 [ 1 ] , dt $Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” ,
main = ” D i e t group ” , y l im = c ( 1 . 7 , 2 . 7 ) ,
x l im = c ( 0 , 2 ) , y l a b = ” l o g (LVS) ” , x l a b = ” ” ,
x a x t = ’ n ’ , pch = 16)

f o r ( i i n 2 : ( n d t ) ) {
l i n e s ( Tp lo t , c ( dt $Y0 [ i ] , dt $Y1 [ i ] , dt $Y2 [ i ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” ,

” Follow−up 1 ” , ” Follow−up 2 ” ) )

# P l o t MICT group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( mc$Y0 [ 1 ] , mc$Y1 [ 1 ] , mc$Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , main = ”MICT group ” , y l im = c ( 1 . 7 , 2 . 7 ) ,
x l im = c ( 0 , 2 ) , y l a b = ” l o g (LVS) ” , x l a b = ” ” ,
x a x t = ’ n ’ , pch = 16)

f o r ( i i n 2 : ( nmc ) ) {
l i n e s ( Tp lo t , c ( mc$Y0 [ i ] , mc$Y1 [ i ] , mc$Y2 [ i ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” ,

” Follow−up 1 ” , ” Follow−up 2 ” ) )

# P l o t HIIT group
T p l o t = c ( 0 , 1 , 2 )
p l o t ( Tp lo t , c ( h t $Y0 [ 1 ] , h t $Y1 [ 1 ] , h t $Y2 [ 1 ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” ,
main = ” HIIT group ” , y l im = c ( 1 . 7 , 2 . 7 ) ,
x l im = c ( 0 , 2 ) , y l a b = ” l o g (LVS) ” , x l a b = ” ” ,
x a x t = ’ n ’ , pch = 16)

f o r ( i i n 2 : ( n h t ) ) {
l i n e s ( Tp lo t , c ( h t $Y0 [ i ] , h t $Y1 [ i ] , h t $Y2 [ i ] ) , t y p e = ” b ” ,

c o l = ” s l a t e b l u e ” , pch = 16)
}
a x i s ( 1 , a t = 0 : 2 , l a b e l s = c ( ” B a s e l i n e ” ,

” Follow−up 1 ” , ” Follow−up 2 ” ) )
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#cLDA
Y1 = as . numeric ( a l l d a t a $ Res t LV s mean )
Time = as . f a c t o r ( a l l d a t a $Time )
Group = as . f a c t o r ( a l l d a t a $Group )
ID = as . f a c t o r ( a l l d a t a $ S u b j e c t I D )
TVGR = c ( rep ( 0 , l e n g t h ( Y1 ) ) )

f o r ( i i n 1 : l e n g t h (TVGR) ) {
i f ( Time [ i ] == 1){

TVGR[ i ] = 1
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 3){

TVGR[ i ] = 2
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 2){

TVGR[ i ] = 4
} e l s e i f ( Time [ i ] == 2 & Group [ i ] == 1){

TVGR[ i ] = 6
} e l s e i f ( Time [ i ] == 3 & Group [ i ] == 3){

TVGR[ i ] = 3
} e l s e i f ( Time [ i ] == 3 & Group [ i ] == 2){

TVGR[ i ] = 5
} e l s e {

TVGR[ i ] = 7
}

}
TVGR = as . f a c t o r (TVGR)
c l d a = data . frame ( Y1 , ID , Time , Group , TVGR) #cLDA da ta frame

model . c l d a = lme ( Y1 ˜ TVGR, random = ˜ 1 | ID , data = c lda ,
c o r r e l a t i o n = corCompSymm ( ) ,
na . a c t i o n = na . e x c l u d e )

# C o n t r a s t m a t r i x f o r cLDA
CMAT2 <− matrix ( 0 , 6 , 7 )
CMAT2[ 1 , ] = c ( 0 , 0 , −1 , 0 , 0 , 0 , 1 )
CMAT2[ 2 , ] = c ( 0 , −1 , 0 , 0 , 0 , 1 , 0 )
CMAT2[ 3 , ] = c ( 0 , 0 , 0 , 0 , −1 , 0 , 1 )
CMAT2[ 4 , ] = c ( 0 , 0 , 0 , −1 , 0 , 1 , 0 )
CMAT2[ 5 , ] = c ( 0 , 0 , −1 , 0 , 1 , 0 , 0 )
CMAT2[ 6 , ] = c ( 0 , −1 , 0 , 1 , 0 , 0 , 0 )
colnames (CMAT2) <− c ( ” ( I n t e r c e p t ) ” , ”TVGR2” , ”TVGR3” ,

”TVGR4” , ”TVGR5” , ”TVGR6” , ”TVGR7” )

a l p h a = 0 . 0 5
EST <− e s t i m a b l e ( model . c l da , CMAT2, con f . i n t = (1 − a l p h a ) )

# R e s u l t s cLDA
c l d a . r e s = matrix ( 0 , 6 , 4 )
row . names ( c l d a . r e s ) = c ( ”HvsD T2” , ”HvsD T1” , ”HvsM T2” ,

”HvsM T1” , ”MvsD T2” , ”MvsD T1” )
colnames ( c l d a . r e s ) = c ( ” E s t i m a t e ” , ” lower CI ” ,
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” Upper CI ” , ”p−v a l u e ” )

c l d a . r e s [ , 1 ] = EST$ E s t i m a t e
c l d a . r e s [ , 2 ] = EST$Lower . CI
c l d a . r e s [ , 3 ] = EST$ Upper . CI
c l d a . r e s [ , 4 ] = EST$ ‘ Pr (>| t | ) ‘

p r i n t ( c l d a . r e s )

#ANCOVA
Y = c ( l d $Y1 , l d $Y2 )
Y0 = rep ( l d $Y0 , 2 )
Y0IT2 = c ( rep ( 0 , l e n g t h ( Y0 ) / 2 ) , l d $Y0 )
ID2 = rep ( l d $ID , 2 )
GROUP = rep ( l d $Group , 2 )
TIME = c ( rep ( 2 , l e n g t h (Y) / 2 ) , rep ( 3 , l e n g t h (Y) / 2 ) )
TMGR = c ( rep ( 0 , l e n g t h (Y ) ) )

f o r ( i i n 1 : l e n g t h (TMGR) ) {
i f (TIME[ i ] == 2 & GROUP[ i ] == 3){

TMGR[ i ] = 1
} e l s e i f (TIME[ i ] == 2 & GROUP[ i ] == 2){

TMGR[ i ] = 3
} e l s e i f (TIME[ i ] == 2 & GROUP[ i ] == 1){

TMGR[ i ] = 5
} e l s e i f (TIME[ i ] == 3 & GROUP[ i ] == 3){

TMGR[ i ] = 2
} e l s e i f (TIME[ i ] == 3 & GROUP[ i ] == 2){

TMGR[ i ] = 4
} e l s e {

TMGR[ i ] = 6
}

}

Y = as . numeric (Y)
Y0 = as . numeric ( Y0 )
Y0IT2 = as . numeric ( Y0IT2 )
ID2 = as . f a c t o r ( ID2 )
TMGR = as . f a c t o r (TMGR)

ancova = data . frame (Y, Y0 , Y0IT2 , ID2 , GROUP, TIME , TMGR)

model . ancova = lme (Y ˜ Y0 + Y0IT2 + TMGR, random = ˜ 1 | ID2 ,
data = ancova , c o r r e l a t i o n = corCompSymm ( ) ,

na . a c t i o n = na . e x c l u d e )

# C o n t r a s t m a t r i x f o r ancova
CMAT <− matrix ( 0 , 6 , 8 )
CMAT[ 1 , ] = c ( 0 , 0 , 0 , −1 , 0 , 0 , 0 , 1 )
CMAT[ 2 , ] = c ( 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 )
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CMAT[ 3 , ] = c ( 0 , 0 , 0 , 0 , 0 , −1 , 0 , 1 )
CMAT[ 4 , ] = c ( 0 , 0 , 0 , 0 , −1 , 0 , 1 , 0 )
CMAT[ 5 , ] = c ( 0 , 0 , 0 , −1 , 0 , 1 , 0 , 0 )
CMAT[ 6 , ] = c ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 )
colnames (CMAT) <− c ( ” ( I n t e r c e p t ) ” , ”Y0” , ” Y0IT2 ” , ”TMGR2” ,

”TMGR3” , ”TMGR4” , ”TMGR5” , ”TMGR6” )

EST2 <− e s t i m a b l e ( model . ancova , CMAT, con f . i n t = (1 − a l p h a ) )

# R e s u l t s ANCOVA
ancova . r e s = matrix ( 0 , 6 , 4 )
row . names ( ancova . r e s ) = c ( ”HvsD T2” , ”HvsD T1” , ”HvsM T2” ,

”HvsM T1” , ”MvsD T2” , ”MvsD T1” )
colnames ( ancova . r e s ) = c ( ” E s t i m a t e ” , ” lower CI ” ,

” Upper CI ” , ”p−v a l u e ” )

ancova . r e s [ , 1 ] = EST2$ E s t i m a t e
ancova . r e s [ , 2 ] = EST2$Lower . CI
ancova . r e s [ , 3 ] = EST2$ Upper . CI
ancova . r e s [ , 4 ] = EST2$ ‘ Pr (>| t | ) ‘

p r i n t ( ancova . r e s )
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