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Abstract

Echocardiography is a noninvasive and safe imaging modality which uses ultrasound for
assessment of the heart. As in many other fields, deep learning methods and convolu-
tional neural networks (CNNs) in particular are being applied to tasks previously only
performed by people. In comparison to many other fields, learning from echocardiog-
raphy is difficult due to smaller data sets, higher noise levels and the complexity of the
human heart. Methodologies for training CNNs in echocardiography are therefore typi-
cally based on results from other fields where more data is available. The effect is that
domain-specific methodologies which might improve CNN performance have not been
explored in depth.

The thesis is divided in two parts. First, a pipeline for automatic quality assurance of two-
dimensional echocardiography is applied. Data quality is measured for each heart cycle
using the output of CNNs trained for quantification in echocardiography. Samples with
estimated poor quality are discarded.

Models are trained to predict the age from two-dimensional echocardiography. The ben-
efit of this is that age is available for nearly all echocardiography studies, and the effects
of aging on the heart is similar to several heart diseases. This means that methodologies
for age estimation can be evaluated on almost all available echocardiography data, and
that the acquired knowledge can be transferred to other approaches for automated quan-
tification and disease detection. Heart cycles passing the automatic quality assurance are
used. Several methodologies are attempted, including pretraining, optical flow, coordinate
input channels and training with data from different standardized probe positions simulta-
neously.

Three studies are considered, one containing over a thousand patients from a normal pop-
ulation, and two data sets each containing more than two hundred patients with left ven-
tricular dysfunction and coronary artery disease.

Visual inspection suggests that the prevalence of low quality data is higher among the
discarded data, although objectively evaluating the automatic quality assurance step is dif-
ficult due to no available labels of data quality. More importantly, standardized data is
generated containing heart cycles without requiring human intervention. The age esti-
mation methodologies achieve at best a mean absolute error of 4.7 years per patient in
the normal population. For comparison, linear regression using several clinical indices
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achieves a mean absolute error of 7.2 years. The accuracy of the models are dependent
on the distribution of ages in the training data, resulting in worse performance for data
sets where ages are differently distributed. A model using optical flow input data performs
most consistent on all data sets. Inspection of the optical flow model reveals that salient re-
gions in the input cycles are known to be affected by aging. There are little or no observed
difference between the estimates of healthy and diseased patients, suggesting that learned
features are not affected by left ventricular dysfunction or coronary artery disease.
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Sammendrag
Ekkokardiografi er en ikke-invasiv og sikker metode som bruker ultralyd for avbildning av
hjertet. Som på mange andre felt, utfører metoder for dyp læring, spesifikt Convolutional

neural networks (CNNs), oppgaver som tidligere kun ble oppnådd av mennesker. I forhold
til flere andre felt er det vanskelig å lære fra ekkokardiografi på grunn av mindre datasett,
høyere støynivåer og kompleksiteten til det menneskelige hjerte. Metodikker for trening av
CNNs i ekkokardiografi er derfor vanligvis basert på resultater fra andre felt der mer data
er tilgjengelig. Effekten er at domenespesifikke metoder som kan forbedre CNN-ytelsen,
ikke er utforsket i detalj.

Avhandlingen er delt i to deler. Først blir det brukt en metode for automatisk kvalitetssikring
av 2D ekkokardiografi. Datakvaliteten måles for hver hjertesyklus ved bruk av CNNs trent
for kvantifisering i ekkokardiografi. Kvalitetsmålene brukes til å forkaste data som anslås
å ha dårlig kvalitet.

Modeller er opplært til å estimere alder av mennesker i den vanlige befolkningen. Forde-
len med dette er at alder er tilgjengelig for nesten alle ekkokardiografistudier, og virknin-
gen av aldring i hjertet kan minne om flere hjertesykdommer. Dette betyr at metoder for
aldersestimering kan evalueres på all tilgjengelige ekkokardiografidata, og at kunnskapen
kan overføres til andre tilnærminger for automatisert kvantifisering og sykdomsdeteksjon.
Hjertesykluser som passerer den automatiske kvalitetssikringen brukes til aldersestimer-
ing. Flere metoder blir forsøkt, inkludert pretraining, optical flow, egne inputkanaler
med koordinater og trening med data fra forskjellige standardiserte probeposisjoner sam-
tidig.

Tre datasett brukes, ett som inneholder over tusen pasienter fra en vanlig befolkning og
to datasett som hver inneholder rundt to hundre pasienter med dysfunksjon i venstre ven-
trikkel og koronar hjertesykdom.

Visuell inspeksjon antyder at utbredelsen av data med lav kvalitet er høyere blant den
forkastede dataen, men objektiv evaluering er vanskelig på grunn av manglende fasit for
datakvalitet. Viktigere er det at standardiserte data blir generert som inneholder hjertesyk-
luser av todimensjonal ekkokardiografi uten å kreve menneskelig inngrep. Aldersestimer-
ingsmetodikkene oppnår i beste fall en gjennomsnittlig absolutt feil på 4.7 år per pasient i
den vanlige befolkningen. Til sammenligning oppnår lineær regresjon med flere kliniske
mål en gjennomsnittlig absolutt feil på 7.2 år. Modellens nøyaktighet er avhengig av
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fordelingen av aldre i treningsdataen, noe som resulterer i dårligere ytelse for datasett
hvor aldre er annerledes fordelt. En modell som bruker optical flow er mest konsistent
på alle datasett. Inspeksjon av den optical flow-modellen viser at fremtredende områder
i syklusene er regioner som er kjent for å bli påvirket av aldring. Det er liten eller ingen
observert forskjell mellom estimatene for friske og syke pasienter, noe som tyder på at
lærte egenskaper ikke påvirkes av dysfunksjon i venstre ventrikkel og koronar hjertesyk-
dom.
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1 | Introduction

1.1 Motivation

Cardiovascular diseases (CVD) are the main cause of deaths in the world. In the United
States, the cost of CVD was estimated to $330 billion dollars in 2013 [1]. In Norway
approximately 515 000 people under the age of 74 consulted primary care due to CVD
in 2016 [2]. One of the most important methods for assessing CVD and heart function
in general is transthoractic echocardiography, further only referred to as echocardiogra-
phy. Echocardiography is a noninvasive imaging modality that allows for safe and easy
real-time imaging of the heart using ultrasound. To assist the echocardiographer, a vari-
ety of algorithms for computer processing and vision have been developed and applied.
These algorithms allow for automated analysis and improved workflow for the practition-
ers.

Feature learning methods based on a hierarchy of transformations known as deep learning
have had widespread success in computer vision in the recent years, and medical imaging
is no exception. Disease detection with deep learning, especially using convolutional neu-
ral networks (CNN) have reached the level of specialists in multiple fields. Examples are
detection of diabetic rhetinopathy in fundus imaging [3], skin cancer from dermoscopy
and photographic images [4], pneumonia from X-rays [5], and arrhytmias in electrocar-
diogram (ECG) [6]. Deep learning has also been applied successfully to echocardiography
in tasks such as segmentation of the myocardium [7], [8] and quantification of function
and structure [8]–[10]. Detecting diseases automatically from echocardiography is diffi-
cult due to noise, limited data sets and variability in acquisition and pathologies. CNNs for
disease detection in echocardiography therefore typically focus on diseases which can be
detected with 2D CNNs using selected frames from the cardiac cycle and spatial features
only. This includes CNNs for detection of hypertrophic cardiomyopathy, cardiac amyloid
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Chapter 1. Introduction

and pulmonary arterial hypertension [8], all affecting the structure of the heart.

One of the most important factors for the success of deep learning is large amounts of
available data. Although echocardiography data sets can be small and focus on a subset of
diseases or measurements, patient information such as gender and age is present in most
data sets. The effects of aging on the human heart shares many similarities to several types
of heart disease, and aging is the dominant risk factor for the development of CVD [11].
By treating age as the dependent variable, more data can be used for training CNNs than
what is available in single, specific data sets. The accuracy of models for age estimation
can be used to evaluate the performance of methodologies aimed at performing automated
quantification.

Every decade, the largest population based study of adults in Norway takes place in the
North-Trøndelag area. The studies include echocardiography examinations of a sizable
number of healthy patients, and are used to define normal ranges for clinical indices, di-
vided into age group if necessary. A related idea is whether deep learning models trained
to predict age on a healthy population data can be viewed as learning an estimate of "car-
diovascular age", relative to the normal population. In this case, a CNN trained on healthy
patients for estimating cardiovascular age might be used to define normal ranges for car-
diovascular age. An estimated cardiovascular age relative to the chronological age outside
normal ranges could warrant further inspection and/or lifestyle changes to improve cardio-
vascular health. One might also expect the difference between estimated and chronological
age to increase for patients with signs of CVD related to aging, so called "unsuccessful"
aging [12]. If the separation is large for healthy patients compared to unhealthy patients,
the difference can in itself indicate disease. This method does not require explicitly la-
beled disease as training data, in contrast to supervised deep learning methods for disease
detection.

Data cleaning and preprocessing is an important step for the quality of a deep learning
model. An echocardiography exam can consist of several imaging modalities (e.g. M-
mode, B-mode, Doppler imaging), taken from several probe postures (views). The du-
ration, frame rate and image dimensions of each recording can also vary. Variations can
also occur within a single recording, due to factors like changing acquisition settings and
image plane. All of these effects makes deep learning a more challenging task. Stan-
dardization of the data is therefore beneficial to simplify the learning task. For many of
the studies, data is unsufficiently labeled for standardizing all desired dimensions without
human intervention. For example, the view, cycle phase and quality of a recording is usu-
ally not labeled, as an experienced echocardiographer can determine this by inspection.
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1.2 Contributions

Manual inspection of each recording is cumbersome in a machine learning setting, where
data sets are large and manual inspection can have high variability for an inexperienced
evaluator. Automating the standardization of echocardiography data sets will decrease the
time required for performing deep learning experiments in echocardiography.

1.2 Contributions

The presented contributions are divided into two steps. First, a pipeline for automatically
standardizing 2D echocardiography video is presented, denoted automatic quality assur-
ance (QA). Secondly, methods for estimating the age directly from 2D echocardiography
is presented and evaluated, using data extracted from automatic QA.

In automatic QA, recordings are divided into heart cycles, using accompanying electro-
cardiogram (ECG) measurements. The view of each cycle is classified by a CNN [13].
Measurements of the data quality for each cycle is generated using pretrained CNNs for
quantification in echocardiography. Based on the distribution of quality measurements,
thresholds are set for which cycles with worse estimated quality are discarded before be-
ing used for age estimation.

Given the rapid development in deep learning from video, the aim of proposed methods
is to be compatible with the inevitable changes in state of the art deep learning models.
Age is estimated from cycles using a state of the art CNN architecture known as I3D [14].
Compared to the standard 2D CNN, which only learns spatial features, the 3D CNN is also
able to learn temporal features in all layers of transformation. This is well suited for the
echocardiography domain, where not only still image features but also motion can provide
useful information.

Parameters of the selected 3D CNN pretrained on photographic video is available. This
allows evaluation of whether transfer learning from natural video to echocardiography is
beneficial, or if the difference between domains is too large for successful transfer. To
increase the ratio of training examples to the number of model parameters, training the
models with several views simultaneously is attempted.

HUNT 3 [15], a fairly large data set in terms of echocardiography with 1266 patients is
used for automatic QA and age estimation. Two newer data sets each containing approxi-
mately two hundred patients examined for left ventricular dysfunction (LVD) or coronary
artery disease (CAD) are mainly used for testing.

3



Chapter 1. Introduction

1.3 Related Work

1.3.1 Automatic QA

As one of the most common methods for storing echocardiography data is in large databases,
some level of preprocessing must usually take place. This involves conversion to formats
more suited for machine learning. However, quality assessment has usually been per-
formed by inspection [16] or not at all. CNNs for view classification have nearly reached
levels of human annotators in the recent years [13], [17]. This allows for the use of view
classification CNNs to replace human annotation as part of an automated pipeline. Østvik
et. al [9] use a view classification CNN to extract apical four chamber frames. The confi-
dence of the view classification network is used to evaluate whether the frame is applicable
for further quantification. Smistad et al. [18] use a view classification network to acquire
valid apical views for calculation of mitral annular systolic excursion (MAPSE). Zhang et.
al [8] train CNNs for quantification, segmentation and disease classification trained us-
ing views classified by a CNN. The average confidence of the view classification network
is also used to generate a measure of quality for each study, named the View Probability

Quality Score. Abdi et. al [19] train a CNN for generating quality scores of apical four
chamber end systolic frames. The model accurately learns quality as a number between 0
and 5 labeled by an expert echocardiographer. Although this method works well for the
end-systolic apical four chamber view, further manual labeling is required to extend the
method to other parts of the cycle or other views.

1.3.2 Age Estimation

Several calculators for "heart age" based on risk factors such as cholesterol, systolic blood
pressure, smoking and diabetes have been made publicly available. Heart age prediction
is typically a byproduct from tools intended to predict absolute risk of heart disease [20].
However, there is no universally agreed upon definition of the heart age concept. The
heart age calculation based on the Framingham heart study [21] defines heart age as “the
age of a person with the same predicted risk but with all other risk factor levels in normal
ranges”. In countries such as the US, UK and New-Zealand the heart age is used for
communicating the risk of heart disease [22]. However, the use of heart age is disputed,
due to concerns of overmedication and difficulties in making treatment decisions based on
heart age estimates.
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1.3 Related Work

Age estimation directly from echocardiography is a relatively unexplored concept. The
medical ultrasound company Quipu provides an online vascular age calculator based on
automated tracking in 2D ultrasound of the carotid intima media thickness [23]. Estima-
tion is made by comparison to normal values in a healthy population. Age estimation from
face images is a more common task, with applications in law enforcement. Deep learn-
ing methods have been proposed for this domain. Rothe et. al [24] collect 523,230 face
images from IMDB and Wikipedia, along with corresponding age. Three problem formu-
lations are proposed, regression, classification or expectation. Age expectation is given as
a classification problem in 0, 1, ..., 100 followed by a soft-max expected value operation
over the 101 discrete outputs. This approach performs better than standard classification
and slightly better than regression.
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2 | Background

This section presents a brief introduction to the background material used throughout.
Parts about the heart, echocardiography, deep learning and optical flow are adapted from
the background section of the project thesis [25].

2.1 The Human Heart

2.1.1 Anatomy and Cardiac Cycle

The heart consists of four chambers. The upper two are named atria, and the bottom two
are the ventricles. The chambers are surrounded by three layers of tissue, with the heart
muscle known as myocardium being the largest. An illustration with chambers and valves
indicated, together with the flow direction, is shown in Figure 2.1.

Venous, deoxygenated blood enters the right atrium. From there, it flows through the
tricuspid valve into the right ventricle [27, Chapter 7]. Blood from the right ventricle exits
through the pulmonary valve towards the lungs. Arterial blood from the lungs flow into
the left atrium. From the left atrium, blood flows into the left ventricle through the mitral
valve, and out through the aortic valve, to the aorta and into the body. This cycle, known as
the cardiac cycle, is divided into two phases, diastole and systole. During diastole, higher
pressure in the atria than the ventricles causes the mitral and tricuspid valves, together
called the atrioventricular (AV) valves, to open. At the same time the aortic and pulmonary
valves are closed, leading to filling and increased volume of the ventricles. In the first stage
of the diastole, volume increases rapidly in the ventricles, before slowing down. In the
second stage of the diastole the atria contract, leading to additional ventricular expansion
before slowing down.
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Figure 2.1: An illustration of the human heart [26].

The systole phase constitutes contraction of the ventricles. The contraction increases pres-
sure rapidly in the ventricles, leading the AV valves to close. For a short while, the pressure
in the aorta is still higher than in the left ventricle and the aortic and pulmonary valves are
closed. This leads to a period of constant volume in the ventricles, known as isovolumetric
contraction. When the pressure in the left ventricle is greater than that of the aorta, the
aortic valve opens. This causes the left ventricular volume to rapidly decrease. Towards
the end of the systole, the muscles in the ventricles relaxes, and the pressure in the ven-
tricles decreases. A short while after this, the pressure from the aorta is much higher than
the left ventricular pressure. This leads to the aortic valve closing. The AV valves are still
closed at this point, as the pressure in the atria is lower than in the systole. This makes the
volume remain the same even though the muscles are relaxing, named the isovolumetric
relaxation. When the pressure in the ventricle decreases below that of the atria, the AV
valves open and the cycle repeats.
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2.1.2 The Effects of Aging

The structure and function of the heart changes with age in several ways. Changes at
the cellular and molecular level are not easily visible using echocardiography, and are
therefore ignored. The impact of aging on heart function is evident in the left ventricle
during diastole [11]. The heart fills more slowly with age, in the early passive filling
phase of the diastole. This is mainly caused by an increase in the isovolumic relaxation
time [28]. At the age of 80 years, the reduction in LV filling rate is on average halved
from that of the average 20 year old [29]. To compensate for reduced early filling, filling
increases during the atrial contraction phase later in diastole. The difference can be seen
as a decrease in the E/A ratio, which is the ratio of the filling rate at early diastole (E) to
the filling rate during atrial contraction (A).

Systolic function is also affected during aging. The variability in heart rate between beats
declines with age. There is on the other hand an increased prevalence of abnormal motion
patterns by age, such as premature ventricular contractions [30]. Overall systolic function
is unchanged at rest for healthy patients[28], as measured by the ejection fraction. The (left
ventricular) ejection fraction is the difference in left ventricular volumes at end-diastole
and end-systole, divided by the volume at end-diastole. During exercise, the overall func-
tion changes more noticeably. The maximum heart rate during exercise are both reduced
with age. This impacts the ejection fraction as well as the cardiac reserve [29], which is
the difference between the rate of pumping blood to the maximum capacity.

Several changes occur to the structure of the heart. Most noticeably, the thickness of the
LV walls increase, and the prevalence of LV hypertrophy increases significantly with age
[31]. A possible cause for this is reduced contractility and increased vascular stiffness
during aging. However, the effects on total LV mass does not appear to change during
aging for women, and either decreases or remains constant in men during aging [28].
Instead, cardiac muscle appears to be redistributed, with an asymmetrical increase near
the interventricular septum compared to the free outer. The volume of the left ventricle
decreases during aging [28], [32]. The left atrium also changes structure during aging, as
the decrease in E/A ratio can cause atrial hypertrophy and enlargement.

2.1.3 Coronary Artery Disease

Coronary artery disease (CAD) is the build up of plaque inside the coronary arteries, sup-
plying blood to the cardiac muscle. The plaque limits blood flow, which can cause blood
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clots that further reduces the flow. This can lead to irreversible damage of the heart muscle
(myocardial infarction). In addition, CAD can weaken the heart muscles (myopathy) and
cause heart failure over time. Cardiomyopathy can cause a variety of changes to the heart,
such as hypertrophy, enlarged or stiffened ventricles. Other effects of CAD are abnormal
heart motion patterns (arrhytmias). Early diagnosis and treatment can significantly reduce
the impact of CAD. Several procedures are available for diagnosis, including echocardio-
gram and coronary angiogram, the use of contrast dye and X-ray for imaging.

2.1.4 Left Ventricular Dysfunction

Left ventricular dysfunction (LVD) is a general term for several disorders involved in dys-
function of the LV and can be described as reduced ability of the LV to provide blood.
It can be divided into systolic and diastolic dysfunction. Systolic dysfunction, or heart
failure with reduced ejection fraction, can be defined as reduction of the ejection fraction
below 50% [16]. Diastolic dysfunction, or heart failure with preserved ejection frac-
tion, is dysfunction in the filling phase while the ejection fraction is above 50%. Diastolic
dysfunction is typically caused by impaired LV relaxation and increased heart muscle stiff-
ness. Other indicators than ejection fraction must therefore be used to determine diastolic
dysfunction, especially markers of increased pressures over the left ventricle during fill-
ing [33]. The prevalence of diastolic dysfunction increases with age due to factors like
vascular stiffening and increased left ventricular wall thickness.

2.2 Echocardiography

Echocardiography is a non-invasive method to study the heart using ultrasound. The
method uses a probe known as the transducer which produces pressure waves, normally
with frequencies between 1.5 - 10 MHz for a short period [34, Chapter 1]. The transducer
then acquires the returning echoes. The velocity of sound in tissue is nearly constant,
and by measuring the duration between transmit and receive, the distance to the reflection
points is estimated.

To prevent previous transmitted pulses from affecting the current acquirement, a delay
must be placed between the transmitted pulses. The delay is dependent on the depth of
the object being imaged. The lower the frequencies, the deeper the ultrasound beam is
able to penetrate. Spatial resolution increases with frequencies as objects smaller than
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approximately half of the wave-length are not imaged. This results in a trade off between
the sampling rate, resolution and maximal depth of an echocardiography recording.

The wavefront can be focused straight forward for a while before spreading, such that a
majority of the reflecting objects coincide along the center-line of the wavefront. The po-
sition of the reflecting object can then assumed to be in the direction of the wave. When
traveling through the body, the energy of the waves decrease due to absorption and reflec-
tion. Clearest reflections are produced when the waves travel between mediums of differ-
ent density with a well defined boundary, such as the interface of tissue and blood.

Not all energy is reflected directly back to the transducer. The more well defined the
reflection boundary is, the closer the reflection is to being specular. This means that the
more perpendicular the wave front is to the reflecting surface, the less energy is reflected
directly back to the transducer. In regions with more homogeneous tissue, the waves tends
to scatter in several directions. Some of the energy reflect off multiple scatterers before
reaching the transducer. This increases the time taken for the wave to reach the scanner,
resulting in artifacts in the acquisition. Other common artifacts include the sound wave
bending or reflecting sideways from the central beam, known as side lobes. Waves can also
reflect multiple times back and forth in echo chambers, known as reverberations.

2.2.1 Views

Sound waves are rapidly dampened when traveling through bone and air. To circumvent
this, echocardiograms are generally obtained through acoustic windows between bones.
From these windows, different image planes through the heart, called views, can be gen-
erated by positioning the transducer appropriately. Standard views from the apical and
parasternal windows are considered further.

The apical window is located at the apex (bottom) of the left ventricle. In the apical 4-
chamber (A4CH) view, the ventricles can be seen in the top of the image, and the atria
on the bottom. The right ventricle and atrium is in the left of the image, and left ventricle
and atrium on the right. By rotating the transducer approximately 60◦ counter-clockwise
from the A4CH view, the apical 2-chamber (A2CH) view is obtained. In A2CH, the left
ventricle and atrium is seen, as well as the anterior and inferior walls. Further clockwise
rotation of the transducer yields the apical long-axis view (ALAX), also known as the
apical 3-chamber view. In addition to showing the left ventricle and atrium, the aortic
valve and aortic root is visible.

The parasternal view is adjacent to the left side of the sternum, near the 4th or 5th inter-
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costal space between the ribs. In the parasternal long axis view (PLAX), the left and right
ventricle, left atrium, mitral and aortic valves, and the aortic root is seen. The paraster-
nal short axis views (PSAX) are obtained by rotating the transducer 90◦ clockwise from
PLAX. Different PSAX levels can be acquired by tilting the probe, as it is typically di-
vided into three levels. In the aortic level, the aortic valve is seen in the middle, with the
RV, RA, LA, PV and TV surrounding the aorta. On the mitral valve level, the right ventri-
cle is still seen, and the mitral valve is in the center of the image. The midpapillary level
shows the left and right ventricle, as well as the interventricular septum and the papillary
muscles.

It is important to note that these are general categories of some views, and that variability
exists within a single view. Differences can occur depending on which structure is im-
aged in the view, for example, by focusing on the right or left chamber versus the right.
Modifications can also be made to work around to patient-specific difficulties [34].

2.2.2 Modes

There are multiple ways to gather and visualize the measurements. In M-mode, a wave-
front with constant direction is imaged over time. The envelope of one reflected pulse
yields a single scan-line of reflection amplitude at different depths. This is repeated in
time, generating an image where the vertical axis represents depth and the horizontal axis
is time. The benefit of M-mode is high frame rates. To instead achieve a 2D cross-section,
scan lines are sampled in the plane in rapid succession. The scan-lines are sampled in
rapid succession by sweeping the angle of the wavefront. The resulting scan-lines are
spatially interpolated, and a 2D sector image is generated, with depth along one axis and
the other axis in the plane of the wavefront sweep. The envelope of the reflecting echoes
determines the brightness of the pixels in the image, known as brightness mode (B-mode).
Resolution decreases with depth, due to the spread between each scan-line. In general,
the resolution is higher in the axial direction than in the lateral direction, which generates
non-square pixels. Other imaging modalities include 3D echocardiography, and Doppler
imaging which uses the phase shift of generated waves to measure the velocity of blood or
tissue.
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2.3 Optical Flow

When objects in the real world moves relative to an imaging device, the projection of
the objects on the image sensor also moves. This results in movement of the brightness
patterns in the images. Optical flow is the apparent motion of these brightness patterns
between consecutive images. This yields a vector field, where the optical flow vector
u(x, t) describes the displacement of the brightness pattern in consecutive images at pixel
index x. The estimated movement of certain key points is denoted the sparse optical flow.
When motion is estimated for pixel, the result is denoted dense optical flow. Further, only
two-frame dense optical flow in 2D is considered. Two consecutive frames are denoted
I0(x), I1(x), where x are the image coordinates in the image space Ω ⊆ R2 and u ∈
R2. To calculate optical flow, assumptions must be made about the movement of the
brightness patterns. The most common assumption is the brightness constancy assumption
[35]. By assuming that the brightness patterns are constant during motion, the following
holds:

I0(x) = I1(x + u(x)). (2.1)

Under the additional assumption that the motion field is smooth, a first order Taylor ap-
proximation can be made around some nearby point u0:

I1(x + u) ≈ I1(x + u0) + 〈∇I1(x + uo),u− u0)〉, (2.2)

where 〈·, ·〉is the inner product. These assumptions result in an ill-posed problem, as there
can be multiple or no points with the same intensities.

2.3.1 Variational Approach

One method for finding a solution is to formulate the task as an minimization problem,
where the deviations from the assumptions are to be minimized. By minimizing a global
loss function over all pixels, a dense flow field can be acquired. Additional regularizing
terms can also be included in the loss function to introduce effects such as smoothing of
the flow fields. Thus, the flow field is a minimizer of

min~u

∫
Ω

{λφ(I0(x)− I1(x + u(x))) + ψ(u(x),∇u(x), ...)} dx, (2.3)
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where φ(·) penalizes the deviation from brightness constancy, ψ(·) is a regularization term,
and λ a weighting between the two terms [36].

2.3.2 Multiscale Approaches and Warping

The loss function is usually non-convex and highly nonlinear. In order minimize this func-
tion efficiently, a possible solution is linearization of the cost functional. The issue with
linearization methods is that they are only accurate in a neighborhood of the linearization
point. Therefore, the estimated flow will be inaccurate for large motions. To overcome
this issue, optical flow can be calculated and combined at multiple scales. When down-
sampling, aliasing patterns can occur due to undersampling of high frequency content.
Therefore, low-pass filtering is commonly applied before each downsampling step. The
set of images at different scales is called an image pyramid.

A related approach is known as warping [37], [38]. Here, assuming an initial estimate of
the flow field u0, iterative calculations of an increment du to the flow estimate are found.
Starting with I0(x) and I1((x), a first flow increment du0 is found. The first flow estimate
is then u1 = u0 + du0, where u0 is commonly assumed to be zero. u1 is then used to
warp one of the images towards the other image.

At the next iteration, optical flow is calculated between the first image and the warped
second image. By repeatedly performing the warping operation, the differences between
the first and the warped second image becomes smaller, such that smaller flow increments
can be calculated at each step. In [39], it is shown that the warping step is equivalent to
solving the non-linearized constancy equations.

When warping is combined with image pyramids, the algorithm is known as a coarse-to-
fine approach. Here, large motions are found at the coarsest scales, between the maximally
downsampled images. The optical flow estimate is then upsampled to the next scale and
used as an initial flow estimate for that scale. As a result, large motions are detected at
coarse scales, while smaller motions are detected at the finer scales.
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2.4 Deep Learning

2.4.1 Supervised Deep Learning

Supervised learning is the task of learning a mapping between inputs and outputs from
examples. Inputs are often called data, samples or x, and corresponding outputs are known
as targets, labels or y. Formally, the goal of supervised learning is to find values for the
parameters θ of the model f(x; θ), such that the output ŷ = f(x; θ) approximates the
relationship between x and y. For supervised learning to be applicable, the trained model
should approximate the input-output relationship for unseen data, and perform well on
relevant tasks. Inputs and outputs can be in arbitrary dimension, and dimensionality will
further be described as the shape. Shape is denoted as dim1 × dim2 × ... × dimn. For
example, video data has the shape length × height × width × channels], where the
channel axis are omitted when it is implicit.

Mathematical operations of a model are commonly arranged sequentially in layers. When
the model consists of many layers, the task can be denoted deep learning. Some of the
operations have parameters, such as matrix multiplication, while others are parameter-
free, such as the sigmoid activation function. A separation is made between trainable
parameters of a model (weights) and the parameters describing the set up of the model
and learning task (hyperparameters). Parameters or weights refers to the values inside the
model that are learned.

Loss Functions

The learning task is framed as an minimization problem over the loss function J

arg min
θ

J(y, f(x; θ)). (2.4)

Which loss function to minimize depends on the task at hand. When the output y is in R1

a common loss function is the mean absolute error (MAE)

JMAE (y, ŷ) =
1

N

N∑
n=1

|yn − ŷn|. (2.5)

Here, N is the number of samples, yn is the target for sample n and ŷn is the model
prediction for sample n, i.e. ŷn = f(xn; θ). The smallest loss occurs when yn = ŷn for
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all n.

Gradient Based Optimization

Deep learning models are typically nonlinear and only piecewise differentiable, making
optimization non-convex. This means that the learning task is not guaranteed to find opti-
mal parameters for the samples. Additionally, deep learning models can consist of millions
of parameters, such that using global or high order solvers is intractable for most problems.
For these reasons, most deep learning algorithms use gradient based optimization.

Gradient based optimization depends on the gradient of a function pointing in the direction
of steepest ascent. When the loss is nonzero and differentiable in a region around the
current parameters, the loss is non-increasing along the direction opposite of the gradient,
for a small step size in parameter change. Evaluating the gradient of the loss function
with respect to the model parameters yields a direction in parameter space along which the
loss generally decreases. The gradient descent rule for updating parameters can then be
formulated,

θk+1 = θk − α∇θJ(y, f(x; θ)). (2.6)

θk is the value of θ after k iterations of gradient descent. The hyperparameter α is the
learning rate, controlling the magnitude of the weight update.

Calculating ∇θJ of a large model is feasible when each layer used in the model has a
known derivative. The functions in the model can be considered nodes in a computational
graph. This allows for finding the gradient as a sequence of repeated applications of the
chain rule. Gradients with respect to parameters in a layer are found by traversing the
graph backwards from the loss to the layer. The algorithm for doing this is called back-
propagation.

The loss should be minimized over all possible data generated from the considered process.
For most real world tasks, only a limited number of samples are available. Under the
assumption that the data set represents the underlying process fairly well, the true gradient
over the distribution can be approximated by calculating it on the data set. Evaluating
the gradient over the entire data set for each update is too computationally expensive for
most applications. In practice one calculates the gradient using a subset of the data for
each iteration. This is known as stochastic gradient descent (SGD), and the number of
samples used per update is called the batch size. Increasing the batch size will produce a
more accurate estimate of the true gradient, but for non-convex problems, noisy gradient
estimates can allow the training algorithm to step out of a local minima.
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2.4 Deep Learning

A common modification to SGD is to change the gradient update to a weighted sum of the
previous update and the current gradient, denoted momentum. The updated SGD formu-
lation becomes

vk+1 = βvk + α∇θJ(y, f(x; θ)),

θk+1 = θk − vk+1.
(2.7)

Here, β is the momentum coefficient.

Overfitting and Regularization

If a model is accurate on data used for training, while performing worse on new, unseen
data, the model is said to be overfitting. The more parameters a model contains the more
likely it is to overfit, as the model has more parameters that can be used to recognize each
sample in the training data. A model might base its predictions on some uncorrelated
feature in the samples of the data set, which is not present in general. In the context of
ultrasound imaging, a model might learn to recognize an image artifact, and memorize the
target output for the sample containing the artifact. On the other hand, if a model has not
learned the relationship from input to output well, the model is underfitting. This can occur
if a model has too few parameters to represent the desired mapping, or if the parameters
generated by the learning process are not good enough.

Selecting suitable hyperparameters for a deep learning model is difficult. Problems are
often high dimensional and models consists of multiple layers each with their own hyper-
parameters. Therefore, a good choice is often to use a larger model than necessary and
enforce constraints on the parameters using regularization.

Regularization is a collective term for methods that increase the generalizability of the
model. Regularization often makes the model perform worse on the data set used for
training, while retaining accuracy on unseen data. Instead of only minimizing loss as a
function of target and predicted values, an extra term to the loss function,

J(θ;X, y)total = J(θ;X, y) +
∑
k

α(k)Ω(k)(θ(k)). (2.8)

Here, Ω(k) is a regularization loss penalizing the parameters θ(k) in layer k, and α(k)

weights the regularization loss for this layer. The most common way to perform regular-
ization for deep learning models is to penalize the norms of the parameters in the model.

17
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Most common is using the L2 norm, called L2 regularization:

Ω(k)(θ(k)) = ||θ(k)||2 =

√∑
i

θ
(k)
i

2
(2.9)

Due to large weights being heavily penalized by the square term, the parameters of the
model are pushed closer to zero. For computational efficiency, taking the square root in
the L2-norm is usually omitted.

The models should not be evaluated on the same data that is used for training. To evaluate
the generalizability of a model, a portion of the data set can be held out from the learning
process until the final evaluation is performed. One should also avoid evaluating the model
on the test data when searching for model hyperparameters. This will increase the risk of
overfitting, and result in overestimation of the performance on unseen data. To evaluate
how well a model is performing during training, a third part of the data set can be left out
for evaluation and validating hyperparameters.

2.4.2 Deep Learning Layers

Activation Functions

An activation function is a nonlinear function designed to threshold the input, only keeping
parts of its domain unchanged. Activation functions are typically applied to each scalar
in the input. Sigmoidal functions are typical activation functions. The disadvantage of
sigmoidal functions is that the gradient approaches zero for large negative and positive
inputs. In these flat areas of the sigmoid curve the derivative of the sigmoid function ap-
proaches zero. This means that the gradient can become diminishingly small for earlier
layers in the model, and a gradient update does not modify the model noticeably. This
is called the vanishing gradient problem and makes training the networks harder. A sim-
ple activation function avoiding the vanishing gradient problem is the rectified linear unit
(ReLU),

ReLU(x) = max(0, x). (2.10)
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2.4 Deep Learning

Convolutional Layers

Convolutional layers are important operations to consider when locally connected data
points are correlated, such as images. The output of the convolutional layer at a position
is a combination of a few samples in the input. A model with several convolutional layers
as the main component is denoted a CNN.

The convolutional operation can be applied to inputs of arbitrary dimensionality. The sim-
plest form is 1D convolution. For 1D convolution, the operation will consist of sliding
matrices called kernels along one axis in the 2D input. An explanation to why the N-
dimensional operates on (N+1) dimensional inputs, is that convolutional layers are com-
monly applied to images, where it is often implicit that the data has an additional channel
dimension (e.g. RGB). Consider an input x of shape WX ×C and convolutional kernel K
of shape WK × C. The formula for 1D-convolution can be written as

yi =

WK∑
w=1

C∑
c=1

xi+w, c ·Kw, c. (2.11)

The output of a convolutional operation is referred to as a feature map. Notice from Equa-
tion 2.11 that the output at index i is the sum of the input at all channels. This results in
the operation removing the channel axis. By performing the convolutional operation with
different kernels, a set of feature maps are acquired. Each feature map is stacked, such
that the output of a convolutional layers has number of channels equal to the number of
kernels in the layer.

Most deep learning software also center the cross-correlation. For simplicity this is omitted
in the equations, but it is important to know when the operation is centered because it leads
to non-causal filtering if one of the dimensions represents time.

In order for the convolutional operation to be valid, the kernel must fully overlap with the
input. For data points at the borders of the input there are two options. One is to only
perform convolution where the kernel and input is overlapping. This reduces the input
data byWK−1 in each dimension, whereWK is the width of the kernel. The other option
is to pad the input data at the borders such that the shape of the output is equal to the input
shape.

It is also possible have larger strides for a convolutional layer. A stride of s means that the
convolutional kernel skips s steps in the input for every output, as in Equation 2.12
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Chapter 2. Background

yi =

WK∑
w=1

C∑
c=1

xi·s+w, c ·Kw, c. (2.12)

This is a common way to downsample the data. The spatial extent of the original input
affecting a convolutional layer is called the field of view of the layer. Striding is an efficient
way to increase the field of view of later layers.

Extending the convolution to an arbitrary dimensionality is trivial. 3D convolution oper-
ates on four dimensional data of shapeLX×HX×WX×C and slides the 4D-convolutional
kernelK of shape LK×HK×WK×C] along three axes in the input. This is often applied
to video data and to volumetric data, where the fourth axis represents either another spatial
dimension or time. The noncentered formula with unit strides is

yi,j,k =

LK∑
l=1

HK∑
h=1

WK∑
w=1

C∑
c=1

xi+l, j+h, k+w, c ·Kl, h, w, c. (2.13)

Convolution is a linear transformation, such that repeating the convolutional operation
still results in a linear transformation. In order to approximate more complex functions,
convolutional layers are also followed by an activation function.

Pooling Layers

A method for downsampling the data is to use pooling layers. Pooling is similar to con-
volutional layers as a function is slid along the axes of the input. The difference is that
the pooling function typically does not have learnable weights and the main purpose of
pooling is downsampling. Similar to convolutional layers, pooling is usually centered, can
be extended to inputs with any number of axes, and padding can be performed along the
borders. Most common is the max-pooling operation. For 2D input data of shapeWx×C,
with a stride of s and width of Wp, 1D max-pooling can be written as

yi,c = max{xi·s+w, c}Wp

w=1 (2.14)

The advantage of max pooling is that the largest inputs are kept, while weaker activations
are discarded. This enhances the position invariance of a model with convolutional lay-
ers followed by pooling. For example, if one convolutional kernel implements an edge
detection filter, performing max pooling on the feature map zeroes pixels in the output
containing less edges than neighbouring pixels.
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2.4 Deep Learning

Another commonly used method is average pooling. This returns an average of inputs,
which is equivalent to strided convolution with a box filter.

Dropout

Dropout is a layer used for regularization. Dropout intends to approximate the averaging
all possible parameters of a model [40]. During training, each unit in the input to the
dropout layer has the probability p of being set to zero,

ri ∼ Bernoulli(p)

yi = ri · xi
(2.15)

At test time, the output is scaled by p.

yi = p · xi (2.16)

The effect of dropout is that models must learn a mapping from input to output even when
some features are missing.

Batch Normalization

When a layer is updated, the distribution of its outputs changes. This makes training
deep neural networks difficult, because as the distribution of inputs for the next layer
changes, the next layer must adapt to the new distribution. To address this problem, the
Batch Normalization (BN) layer normalizes the data to zero mean and unit variance [41].
Each dimension of the input is normalized individually. During training, normalization is
performed by estimating mean and variance on each data batch. This is given by

µB =
1

m

m∑
i=1

xi,

σ2
B =

1

m

m∑
i=1

(xi − µB)2,

x̂i =
xi − µB√
σ2
B + ε

,

yi = γx̂i + β.

(2.17)
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Here, xi is the scalar i-th input for some layer of the network from the mini-batch B =

{x1...m}, and yi is element i in the output. As can be seen in Equation 2.17, inputs are
passed through an affine transformation defined by γ, β. The affine transform is added
such that the BN layer can represent the unit transformation. The parameter ε is added to
avoid singularities if the variance σ2

B is small.

When the model is used at test time, the batch normalization layer is modified to use
estimates of mean and variance over the training set. This is shown in Equation 2.18. E[·]
takes the the expected value.

E[x] = EB[µB]

V ar[x] =
m

m− 1
EB[σ2

B]

y =
γ√

V ar[x] + ε
· x+ (β − γE[x]√

V ar[x] + ε
)

(2.18)

2.4.3 Inception Blocks and Inception-v1

When designing a CNN, the kernel size of convolutional layers must be determined. In-
stead of at each layer setting only one filter size, [42] propose to apply several convolu-
tional layers of different sizes in parallel. 2D convolutional layers of size 1 × 1, 3 × 3

and 5 × 5, in addition to a Max pooling layer with a kernel of 3 × 3 and unit strides are
all applied to the same input. The feature maps are concatenated into a single output with
an increased number of channels. To be able to concatenate the feature maps, padding is
applied at the borders to keep the feature map size constant.

The large number of feature maps in the output results in an increasing number of floating
point operations (flops) at the next layer. Therefore, before the 3×3 and 5×5 convolutions,
and after the Max pooling layer, 1 × 1 convolutions with fewer output feature maps than
the input is applied. The result is a substantial decrease in number of flops, which is
important because image recognition models can contain millions of parameters. The
resulting operation is named the Inception block (Figure 2.2). The network consisting of
Inception blocks was denoted GoogLeNet/Inception v1. Several variations of the original
Inception network were later proposed.
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Figure 2.2: Inception-block as defined in [42]

2.5 Statistical Evaluation

This section describes plots and measurements used for evaluation in later chapters.

2.5.1 Coefficient of Determination

The coefficient of determination, also known as R2, is a measure of how much of the
variance in the dependent variable is described by the predictions. It is an indicator of how
well a model has learned the distribution of the data. The coefficient of determination is
defined as

R2 = 1−
∑N
n=1(yn − ŷn)2∑N
n=1(yn − ȳ)2

,

where ȳ is the mean value of y. An R2 score of one corresponds to zero error, and all
variance of the data is explained. On the other hand, when predicting the mean of the
dependent variable for all samples, i.e. ŷn = ȳn∀n ∈ N , R2 becomes zero. This means
that an R2 score of zero corresponds to performing equal to random guessing based on the
prior distribution without the use of any predictors. A negative R2 score could even occur,
for example due a large bias between measurements and predictions.
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2.5.2 Pearson Correlation Coefficient

Pearson correlation (Pearson’s r) measures the linear relationship between two variables.
It is given by

r =

∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − x̄)2

√∑N
n=1(yn − ȳ)2

(2.19)

This is between [−1, 1], where 1 represents a perfect positive linear relationship, -1 repre-
sents a perfect negative linear relationship, and 0 represents no linear increase.

2.5.3 Bland-Altman Plot

The Bland-Altman plot [43] is common in medicine and biology, where it is used to
visually assess the agreement between two measurements as a function of magnitude.
The horizontal axis shows the mean of the two variables, and the vertical axis shows the
difference between the two variables. When one of the variables is a reference value,
one might consider replacing the mean value with the reference on the horizontal axis.
However [44] show that this can lead to a correlation between the difference and the
magnitude, even when there is no correlation.
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Three different data sets are considered, containing patients in rest. All data generated
from the scanners is stored in the Digital Imaging and Communications in Medicine (DI-
COM) format, a standard for storage of medical images. B-mode scan-lines are stored in
the θ × d space, where the θ axis is the angle of the beam to the transducer head, and d is
depth. Custom software developed at the Department of Circulation and Medical Imaging,
NTNU, is used to load the data in Python. Linear interpolation with RegularGridInterpo-

lator from the scipy-package [45] is used to transform from θ× d to spatial d×w coordi-
nates. The DICOM files contain several attributes (tags) in addition to the pixel data. This
includes the patient ID and acquisition settings such as sector size, sample times, and ECG
recordings. Labels and measurements that are not recorded on the scanners is stored either
in comma separated value (csv) format or in Excel-files and exported to csv. This includes
information such as patient data, echocardiographic indices and disease status.

3.1 The Nord-Trøndelag Health Study 3 (HUNT 3)

HUNT 3 is a population based study, containing adults from Nord Trøndelag in Norway.
Out of 93210 invited, 49827 participated in the study [46]. Randomly selected partic-
ipants without known cardiovascular disease, diabetes or hypertension were invited for
echocardiography examinations, which 1296 consented to participate to. For 30 of these
participants significant pathologies were found, resulting in exclusion and a total of 1266
examinations of healthy patients. Acquisitions were made between 2006-2008.

One experienced echocardiographer performed the examinations. A Vivid 7 scanner (GE
Vingmed Ultrasound, Horten, Norway) were used. All patients are examined during quiet
respiration in the left lateral position. Examinations consist of parasternal long- and short
axis views, as well as three apical views (two-chamber, four-chamber, apical long axis).
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Figure 3.1: Age of participants in the training split of the HUNT 3 echocardiography study.

B-mode second harmonic images and color tissue Doppler are acquired, as well as ECG
alongside the recordings. B-mode recordings are optimized for evaluation of the left ven-
tricle. Each recording contains three heart cycles.

Several publications have been made on the HUNT 3 echocardiography study. Dalen et.
al [46] studied segmental and global longitudinal strain using both speckle tracking and
tissue doppler imaging, and found that strain decreases with increasing age. They also
showed changes in mitral and tricuspid annular velocities with age and sex [47]. Støylen
[48] et. al studied the relationship between global longitudinal strain (GLS) and mitral
annular plane systolic excursion (MAPSE) and showed that MAPSE is also negatively
correlated with age. Støylen et. also studied left ventricular geometry (length, diameter,
and relative wall thickness) using M-mode and showed that ventricular dimensions vary
with age and gender [49].

Out of the 1266 patients, 673 are female and 623 are male. Age distributions in HUNT3
is close to normally distributed, with a low age of 19 and a high age of 88. The mean and
standard deviation is 47.8± 13.6 years for women and 50.6± 13.7 years for men. HUNT
3 is randomly split into a training, validation and test set containing 70%/15%/15% of
the patients respectively. Age distributions for the data splits is seen in Figures 3.1, 3.2
,3.3.
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3.1 The Nord-Trøndelag Health Study 3 (HUNT 3)
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Figure 3.2: Age of participants in the validation split of the HUNT 3 echocardiography study.
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Figure 3.3: Age of participants in the testing split of the HUNT 3 echocardiography study.
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Figure 3.4: Age of patients in the NTNU-LVD (H) data set.

3.2 Left Ventricular Dysfunction Study (NTNU-LVD)

The study [16] consists of patients above 18 years old, referred for echocardiographic ex-
amination at the Department of Cardiology, St. Olavs hospital. Acquisition was performed
between 2013 and 2015. Vivid E7 and Vivid E9 systems were used for acquisition. Pa-
tients were excluded if the image quality of the recordings are too poor for evaluation by
cardiologists. Reference examinations are performed on all patients by experienced car-
diologists or experienced sonography techicians. 204 patients are included in the study
(62%/38% male/female). 47 patients were diagnosed with left ventricular dysfunction,
whereof 47 were systolic and 11 were diastolic. Systolic dysfunction is defined as ejection
fraction < 50. Diastolic dysfunction is determined by ejection fraction ≥ 50 along with
findings of increased LV filling pressure. The data set is split into healthy and diseased
patients. A patient is considered to be diseased if either systolic or diastolic dysfunction
is labeled. The data split consisting of healthy patients is denoted NTNU-LVD (H), while
the diseased split is denoted NTNU-LVD (D). Age distributions for the patients in NTNU-
LVD is seen in Figures 3.4 and 3.5.
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Figure 3.5: Age of patients in the NTNU-LVD (D) data set.

3.3 Tromsø Coronary Arterty Disease Study (UNN-CAD)

The study was performed at the University Hospital of North Norway (UNN), and consists
of patients referred to a CT-scan due to symptoms of ischemic heart disease. All patients
underwent coronary angiography to detect narrowing of the blood vessels (stenosis). The
data set is denoted UNN-CAD. Out of 250 patients, 48 had findings significant enough
to undergo stenting, the placement of metal tubes to expand the arteries. Acquisition is
performed by an experienced cardiologist and a doctoral research fellow between 2016
and 2017, using a Vivid E9 system. The aim of the study is to determine whether regional
measurements of heart function from echocardiography in rest can be used to identify
CVD.

The age distribution of men is similar to that of HUNT 3 with a mean age of 56.2 years,
while female ages are skewed to the right and has a mean age of 61.2 years.

Equivalently to the NTNU-LVD dataset, the data set is split into healthy and diseased
patients, denoted (H) and (D). Age distributions of the data sets are seen in Figure 3.6 and
3.7.
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Figure 3.6: Age of patients in the UNN-CAD (H) data set.
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Figure 3.7: Age of patients in the UNN-CAD (D) data set.

30



4 | Automatic Quality Assurance

An echocardiography exam includes a variety of different views and imaging modali-
ties, with different measurements being taken in each modality and view. Even for the
same view and mode, there are large variations in data. This can be due to differences in
transducer positions, image settings, noise-characteristics and artefacts, echocardiography
hardware and software as well as patient variations. The more variability in the data unre-
lated to the task in consideration, the more difficult the learning task becomes. Learning
from data with little diagnostic value can result in an inferior model, as the model might
instead fit to other features such as noise. From a practical point of view, the time usage
for training the models decrease when fewer samples are used.

Defining the diagnostic value of a sample is difficult, as it is dependent on the task. Global
image statistics such as signal to noise (SNR) ratios might indicate a poor acquisition, but
SNR also differs with imaging settings and patient conditions and is not directly related to
the information attainable from a recording. Although high noise levels in general makes
interpretation more difficult, samples with high noise levels can still contain useful infor-
mation, and samples with low noise levels can contain no useful information at all.

Supervisedly training a model to generate quality measurements from pixel data is a pos-
sible way to perform quality assessment, but it requires a large set of labeled data covering
different views, imaging settings and patient, which is unavailable. The difficulty of learn-
ing quality scores is seen in [19]. Although the model learns quality well for most samples,
atypical cases are difficult. An example of this is that patients with artifacts caused by pros-
thetics were marked as acceptable quality by the expert, but poor by the classifier which
had not learned to ignore the effect of prosthetics on imaging.

To achieve some coherence between the selected quality measures and the value of a sam-
ple for echocardiography assessments, CNNs trained for tasks in echocardiography are
considered. As the models are fairly accurate, the model outputs should be dependent on
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whether useful features are present.

4.1 Initial Removal

Only recordings optimized for 2D B-mode are considered further. This includes removal
of modalities such as M-mode, color Doppler and 3D imaging. Although many of these
modalities also contain accompanying B-mode recordings, imaging properties are altered
compared to standard 2D B-mode recordings. For HUNT3, 59 Patients with pathologies
within healthy ranges were removed, with the aim of increasing the difference between
estimates for healthy and diseased patients. DICOM-files causing errors during loading or
scan-converting with pydicom are discarded. This is for example caused by erroneous tags
or missing beam data.

4.2 Cycle Separation

Several heart cycles are stored in a recording, although often only some are intended for
quantification. To avoid the quality measurements being affected by variation in quality
between cycles, the quality assurance scheme is applied to each cycle. Cycle separation
is performed using ECG, where an event in the ECG signal known as the QRS-complex
is easily detectable in most cases. The time of the QRS complex can be automatically de-
tected by the scanners and included in the DICOM-files, which is the case for the NTNU-
LVD and UNN-CAD datasets, but it was not with pydicom for HUNT 3. Therefore, QRS-
complexes for HUNT 3 are detected using an algorithm inspired by the Pan-Tompkins
algorithm [50]. Automatically detected QRS were used when available.

The algorithm is based on detecting large slopes in the ECG signal during the QRS-wave,
and proceeds as follows. First, the ECG signal is differentiated and squared, which atten-
uates the large differences between the Q, R and S peaks. Secondly, a moving average
smooths out the squared difference signal, to produce a single peak for each QRS. A rect-
angular window with a size of 50 samples is used for this, which is approximately equal
to the width of QRS complexes encountered in the HUNT 3. The signal is normalized be-
tween zero and one, and only peaks above 0.5 are included. A minimum distance between
detected peaks is set to 60% of the average heart cycle time, as given in the DICOM-data.
The Python package PeakUtils [51] is used for the peak detection.

Figure 4.1 shows an ECG signal from HUNT 3, the filtered signal and the detected QRS

32



4.3 View Classification and the View Error
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Figure 4.1: Peak detection algorithm from ECG inspired by the Pan-Tompkins algorithm [50].

peaks. Notice that there is a slight delay between peak R values to the detected peaks due
to time lag from the moving average. This can be compensated for by subtracting the time
lag, which is not considered here as finding the exact time of end-diastole is unimportant.
The echocardiography and ECG signal are sampled at different frequencies. To acquire a
frame for each detected QRS, the timestamps of the echocardiography recording is con-
sidered. The frame with time stamp closest in time to a detected QRS is selected.

Cycles containing fewer than 5 frames are discarded, as this is likely caused by false
positives from the QRS detector. Cycles longer than 150 frames are discarded as they are
caused by false negatives of the QRS detector.

4.3 View Classification and the View Error

In the data sets considered, no information is available about the view of each recording.
To label the view of each cycle, a CNN for view classification is used. The model is
trained to classify apical two, four and long-axis, parasternal long and short-axis, and an
unknown class. Any recording not belonging to the apical or parasternal window should
therefore be classified as unknown. The accuracy of the view classifier is reported to
be (96 ± 0.9)%. The view classification network operates on individual frames, giving
the probability of the frame belonging to each of the six classes. Formally, the model
output is P (V |I ∼ f(I; θview) ∈ R6 and

∑
v P (V = v|I) = 1, where I is an image,

θview is the parameters of the view classification CNN, and v is one of the fiew views or
unknown.
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Figure 4.2: Classification of views for frames in HUNT 3, with probabilities.

To reduce variability in the view predictions, probabilities are averaged over a cycle. The
view maximizing the average probability of a cycle is selected as the view of the cycle.
This is given as

arg maxv

T∑
t=1

P (V = v|I(x, t)), (4.1)

where T is the length of the cycle.

The view classification network is also used to generate an automatic view quality mea-
sure. This probability should decrease as a sample deviates more and more from a standard
view. Therefore, if the model cannot be certain of the view, it is possibly caused by data
with poor quality.

This is used to generate a measure of deviation from quality of a cycle. The measure is
denoted the view error, ev:

ev = 1−max
v

T∑
t=1

P (V = v|I(x, t)/n. (4.2)

The smaller ev the better, with 0 being the lowest possible error.

Figure 4.2 shows examples of views and view errors for four randomly selected patients
from the data. By averaging the probabilities for each frame in a cycle, one view and
corresponding view error is acquired.

4.4 The Timing Error

The view classification network operates on each frame separately, and does therefore
not take motion into account. Poor quality due to motion can occur because of excessive
movement of the patient or the transducer during acquisition. For a quality measure based
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Figure 4.3: Frames from a cycle in HUNT 3 alongside the output of the timing model and the
corresponding entropy per frame. The timing error (average entropy) for the cycle is 0.38.

on spatio-temporal features, the 3D CNN for detecting cardiac cycle phase from the project
thesis is used [52]. The model gives one output for each frame, where 0 represents systole
and 1 represents diastole. The model was trained to minimize the binary cross-entropy
between the model output and the label for each frame, where the binary cross-entropy is
given by

Lce(y) = −y log2(ŷ)− (1− y) log2(1− ŷ). (4.3)

A2CH and A4CH views were used for training. During the project thesis, it was noticed
that the output of the cardiac cycle phase models were less certain for samples with poor
quality. To measure the uncertainty of the model output, the entropy function is used. The
entropy H at timestep t is defined as

Ht = −ŷt log2(ŷt)− (1− ŷt) log2(1− ŷt), (4.4)

where ŷ is the prediction of the timing model for a given frame. The timing error is
averaged over all frames in a cycle, given by

et =
1

T

T∑
t=1

Ht, (4.5)

where T is the number of frames in the cycle. Figure 4.3 shows the output of the timing
model on a cycle. The timing error is averaged over all frames in the cycle.
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4.5 Automatic QA Results

As no ground truth labels are available to evaluate the automatic QA measurements, no
quantitative results of the steps are given. Instead, statistics of the measurements are sup-
plied and visual inspection is performed. For an objective analysis of automatic data selec-
tion, reference values of data quality should be used. More examples of timing and view
errors are given in Appendix 8.1.

When using the proposed cycle separation algorithm alongside automatically generated
QRS triggers from the scanner, a bias in detected QRS could make a difference for the deep
learning models trained using a different start time. To evaluate the difference between the
custom QRS algorithm and the QRS-detector of the scanner, the time of the detected QRS
complexes from both methods are compared using the NTNU-LVD dataset. Comparison
is difficult due to the possibility of false positives and negatives in both methods. False
positives occur due to noise, while negatives occur most frequently due to recordings being
cut at the time of QRS. To be able to compare QRS measurements, only recordings with
the same number of detected QRS complexes are compared. If this is satisfied, each QRS
complex of the custom algorithm is assigned to the closest QRS complex from the scanner.
This excludes false positives or negatives that occur only for one of the methods.

6831 out of 7966 recordings in NTNU-LVD have an equal amount of detected QRS-
complexes. The resulting Bland-Altman plot is seen in Figure 4.4. 96 out of 19880
detected QRS complexes are outside the plot boundaries. The bias between the meth-
ods is low, and the variance of 0.02 seconds is fairly low compared to the length of a heart
beat.

The distribution of view errors for all B-mode cycles in HUNT 3 is shown in Figure 4.5.
As the model is trained for classification, the timing error is heavily skewed towards 0,
with only some larger errors. To be able to visualize the distribution, a histogram with
logarithmic scale on the vertical axis and uneven bin sizes is used. From inspection, view
scores appear to be highly dependent on how clearly visible the heart walls are.

Figure 4.6 shows the distribution of the timing errors for HUNT 3. The timing errors is
less skewed, and a regular histogram is used for visualization. Unsurprisingly, the model
has lower timing error for apical views compared to parasternal, as it is trained on apical
views. Almost no cycles have below 0.1 timing error. The reason for this is that the output
must switch between 0 to 1 when going from systole to end-diastole, as seen in Figure
4.3. The switch usually requires a few steps, which results in increasing the error slightly.
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Figure 4.4: Bland-Altman plot comparing the times of QRS detection by the custom algorithm
based on Pan-Tompkins [50] to the QRS detection algorithm on the scanners.
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Figure 4.5: Distribution of view errors for cycles in the HUNT 3 dataset, as measured by a CNN for
view classification. Uneven bin sizes and a logarithmic scale on the y-axis is used, as an excess of
errors are close to zero.
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Figure 4.6: Distribution of timing errors (entropy of the timing model output) over all cycles in
HUNT 3.

From inspection, the timing error appears to be mostly dependent on the visibility of the
contraction of the chambers and movement of various valves. This is shown in more detail
in the Appendix 8.1.

To discard cycles based on timing and view error, a simple approach is used. All cycles
with timing errors above the 90th percentile of timing errors or above the 90th percentile of
view errors errors is discarded. The thresholds and number of cycles kept versus discarded
is shown in Table 4.1.

To mitigate data leakage from automatic QA, only HUNT 3 is used for generating quality
score thresholds. The HUNT 3 thresholds are then applied to the other data sets. Some
leakage still occurs due to using all HUNT 3 data splits for calculating the quality score
distributions. This is because the QA scores were calculated before the HUNT 3 data
splits were generated. Due to the large size of HUNT 3 -train, the effect of including the
validation and test sets in the distributions should be small.

If quality scores differ between healthy and diseased patients, discarding data based on
fixed thresholds from HUNT 3 result in discarding a larger fraction of data from one of
the groups. A large separation between the distributions of quality measures can also be to
classify disease directly. To evaluate this, view and timing scores are evaluated for healthy
and diseased patients in the UNN-CAD-dataset. Normalized histograms are plotted as
there are fewer diseased patients than healthy patients. The results are summarized in
Figure 4.7. A two-sample T-test for the healthy versus diseased patients result in a p-value
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Table 4.1: Statistics for automatic QA on B-mode cycles in HUNT 3

View Kept Discarded View error threshold Timing error threshold
A4CH 3418 671 0.0030 0.21
ALAX 3177 637 0.052 0.24
A2CH 4480 879 0.0060 0.22
PLAX 3252 641 0.00010 0.39
PSAX 7338 1542 0.00020 0.41
Unknown 0 34 0 0
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Figure 4.7: QA scores for patients with CAD vs healthy patients from the Tromsø dataset.

for different means of 0.75, meaning that there likely is no difference. For the timing error,
the mean is different (p = 2.7×1e−5). The mean error for healthy patients is 0.17 and the
mean error for diseased patients is 0.18, and the difference is too small to separate between
healthy and diseased in practice.

Another concern is whether timing or view errors vary with age. In this case, data is
discarded differently based on age. The Pearson correlation between timing error and age
is 0.0089. The Pearson correlation between view error and age is 0.050. This indicates
little or no difference with age. Interestingly, there is also little correlation between view
errors and timing errors, with a Pearson correlation of 0.0259. An interpretation for this is
that the errors does not capture a shared concept of quality. However, the low correlation
is most likely caused by the uneven distribution of the view error, which result in small
differences between most kept and discarded cycles.
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5.1 Problem Formulation

Age estimation can be formulated both as a regression and a classification problem. The
time since birth is a continuous measure, and age estimation can therefore be considered
a regression problem. Age can also be categorized, for example as the integer number of
years since birth or into age groups. It is common practice to specify normal ranges in
echocardiography by age, such as <40 years, 40-60 years, and >60 years [46], [48]. In this
sense, age prediction is a classification problem.

Each way of posing the problem has its own of advantages and disadvantages. From the
modeling perspective, there is little difference between the regression and the classification
task. Classification can be achieved by normalizing the output of a CNN by a logistic
activation function such as soft-max or sigmoid. In other words, a classification and a
regression model can be separated only by a single parameter-free layer. In [24], where a
CNN for age estimation from human faces is proposed, classification of each year followed
by a soft-max results in slightly improved performance. However the authors note that this
increases the possibility of overfitting.

An easier classification problem can be achieved by discretizing age into larger categories.
At the coarsest level, age can be divided into young versus old, with some boundary be-
tween young and old. With one output category for each year, perfect accuracy can be
achieved when age is labeled in integer years. This results in a large number of classes,
making the classification problem more difficult. With the large and complex models used,
finding a suitable number of classes and its boundaries increases the number of hyperpa-
rameters to search for. Finally, categorical loss functions do not capture the relationship
between classes, such that modification of the loss must be performed, e.g. with the soft-
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max approach. For example, predicting an age of 50 when the truth is 51 should result in
a lower loss than predicting an age of 20 for the same patient.

For simplicity, only regression of age is performed.

5.2 Weighted Averaging for Patient Estimates

Multiple cycles from several views are available for most patients, resulting in multiple
estimates. To utilize this information the estimates for a patient are averaged. Averag-
ing is commonly performed in echocardiography to reduce variability between cycles and
measurements.

An unweighted average is simple, but does not take into account the difference in accuracy
for the views, or the dependence between samples from the same recording and view. This
is likely to be suboptimal in echocardiography, where some views are more appropriate
for a given task. Instead, estimates can be combined based on this knowledge. This can be
considered a new estimation problem, where optimal averaging weights can be found using
any desired optimization algorithm, for example ordinary least squares [53]. Regression
models typically require a constant number of regressors. In the age estimation case, there
is a variable number of estimates to be combined. This makes the regression averaging less
straightforward as a fixed number of regressors must be generated from a variable number
of cycles.

Instead, an approach inspired by boosting [54] is presented. In boosting, multiple esti-
mates for a sample is generated by multiple models. The estimates are weighted using a
function decreasing with the error of each model. Although most commonly applied to
classification, boosting methods can also be applied to regression models. Granitto et. al
[55] propose the following weighting for regression:

wi =
e−αi∑
j e
−α
j

. (5.1)

Where wi is the weight for estimator i, ei is the error for estimator i, and α is a param-
eter set to 2. In other words, the weights are inversely proportional to the square of the
error.

To also take into account that estimates from the same recording and view are less indepen-
dent, a weighting inversely proportional to the number of cycles in the recording and the
number of recordings for the given view is also introduced. The resulting unnormalized

42



5.3 CNN Architectures

weight wc for a cycle is given by

wc =
1

eα1
v nα2

r nα3
c

(5.2)

Here, ev is the MAE of the validation set for the view of the cycle, nr is the number of
recordings of the same view for the patient and nc is the number of cycles in the recording
of the cycle. The weights for a patient are then normalized to one by dividing by the sum
of the weights.

The larger α becomes, the smaller the weight becomes. Setting α2 or α3 to zero corre-
sponds to regular averaging. Setting α2 or α3 to one corresponds to one cycle having the
same influence as n cycles. α2 and α3 should therefore be set to a value between zero
and one. For simplicity, α2 and α3 are simply set to 0.5, indicating that the influence of
multiple samples from the same view or recording decreases by the the square root of the
number of samples. As in [55], α1 is set to two.

5.3 CNN Architectures

A variety of approaches have been proposed for machine learning from video inputs. Tra-
ditional machine learning models for video classification have mostly followed the same
pipeline as in image classification. First, spatial or spatio-temporal features are extracted
from the videos, sparsely or densely. These features are then pooled into a fixed size rep-
resentation of each video, which is used to train a shallow classifier. As in many other
computer vision fields, CNNs have surpassed shallow counterparts in accuracy. Common
architectures are Long-term Recurrent Convolutional Networks [56], Two-Stream CNNs
[57] and 3D CNNs [58].

Video learning is significantly more difficult than learning from still images because of the
increased dimensionality, requiring both spatial and temporal features, and 2D CNNs are
inherently unable to learn spatio-temporal features. If motion is an important aspect of the
problem, such as is often the case in echocardiography, including the temporal dimension
in the model is preferable. This is seen from the domain of human action recognition [14],
[59]. The disadvantage of 3D CNNs is that with increased model size, even more data and
computational resources are required for successful learning.
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Figure 5.1: One stream of the I3D Inception model [14]. Layers in bold are modified for echocardio-
graphy, while other layers are equal. The first convolutional layer has 1 input channel with weights
equal to the sum over RGB input channels of the pretrained layer weights, but is unchanged between
the optical flow models. Random initialization of the weights are used for the last layer, and the final
sigmoidal activation function is removed.

5.3.1 Base Model: I3D

Selecting the ideal model for age estimation from echocardiography is time-consuming.
Instead of attempting different architectures, a state-of-the-art architecture from human
action recognition is selected as a base model, the Two-Stream Inflated 3D ConvNet (I3D)
[14]. When published, it outperformed LRCN, 2D Two-Stream and plain 3D CNNs in a
comparison on large video data sets. The architecture is a result of inflating filters of the
Inception-v1 model into 3D. Inflation refers to stacking 2D convolutional filters of shape
N × N × C along a temporal dimension and dividing weights by N , resulting in 3D
convolutional filters of shape N ×N ×N ×C. A benefit of this inflation is the possibility
of pretraining on image datasets such as ImageNet [60].

Drawing from two-stream networks, two equal models (streams) are defined, one using
standard video inputs and the other using optical flow inputs. Each stream is trained
separately, and at testing time the two streams are averaged. The only difference be-
tween the two streams is the first convolutional layer, which has 3 channels (kernel size of
7×7×7×3) for the RGB stream, and 2 channels (kernel size of 7×7×7×2) for the flow
stream. The overall layout of a single stream is seen in Figure 5.1, where 3D Inc. refers to
an inflated Inception block (Figure 2.2). Each stream consists of 3 convolutional layers at
the input, 9 Inception modules, and a fully connected layer at the end. Max pooling layers
are distributed throughout, where the first two pooling layers only apply along spatial axes
to avoid discarding temporal structure early on. Unlike Inception-V1, there is no local
response normalization, and each convolutional layer is followed by batch normalization
before the activation function. Additionally, 5× 5 convolutions are replaced by 3× 3× 3
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convolutions. The resulting stream has 12 million parameters.

5.3.2 Modifications for Age Estimation

Three input modalities are attempted: B-mode cycles, B-mode cycles with additional co-
ordinate channel input data, and optical flow inputs.

To reduce the amount of data required for training, model weights pretrained on the Kinet-
ics dataset containing 240 000 videos of human actions are used as initialization. Although
there is a considerable difference between human actions and echocardiography, visualiza-
tion of the first convolutional layer reveals that the pretrained model has learned generic
features like edges, rectangles and blobs. Some filters are changing along the temporal
dimension, while others are fairly constant in time, suggesting that both spatial and spa-
tiotemporal feaures are utilized. These filters are not specific to human action recognition
and hopefully applicable to echocardiography as well.

The original model has 3 input channels, while standard B-mode only has one bright-
ness channel, such that the convolutional operation cannot be applied. One solution is
to repeat the channel axis of the B-mode cycles three times, resulting in the correct in-
put shape. While this requires no modifications to the pretrained network, unneccessary
computation is performed. To reduce the number of operations, the kernels of the first
convolutional layer are reduced into one channel by summation along the channel axis.
Reducing convolutional kernels by summing along the channel axis is equivalent to the
original convolution operation the channels are constant, due to the linearity of the con-
volutional operation. By this modification, B-mode images can be input directly to the
network. Color information contained in the pretrained I3D is discarded by this step, but
B-mode does not contain color information regardless.

To perform classification, the final layer of I3D uses a sigmoidal activation function. This
is not applicable for age regression, and the activation function is removed.

The model is implemented in Keras 2.2.4 [61] with the TensorFlow 1.10 backend [62],
expanding from a Keras implementation of I3D [63].

5.3.3 Using Multiple Views

Two options are explored for training with data from multiple views. The first is to train
a stream for each considered view. resulting in five models and 5 · 12 = 60M million
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parameters.

Alternatively, the same stream is reused for all views. In previous work [25], accuracy was
improved by using both A2CH and A4CH data. The simplest way of reuse is to apply the
same operations to all inputs. This might be suboptimal as there are distinct differences in
the structures that are visible in each view.

To achieve a difference in the operations while reusing early layers, the final layer of the
model is set have five outputs, one for each view. The output corresponding to the view of
a cycle is then used as the age estimate for the cycle. To achieve this, a one-hot encoding
of the view is input to the model along the video data, e.g. the encoding is [1, 0, 0, 0, 0] for
an A4CH cycle and [0, 0, 0, 1, 0] for an ALAX cycle. A dot product between the encoding
and the outputs is taken to select the corresponding output.

5.3.4 Coordinate Channels

The physical sector width and depth of a recording varies between recordings. This results
in a variable pixel spacing when resizing every recording to 224× 224 pixels. Knowledge
of the physical spatial dimensions is required to perform quantification, unless dimensions
are constant for all samples. Inspired by [64], physical dimensions are input into the net-
work alongside the images, by appending two coordinate channels to the B-mode channel.
The first channel represents the horizontal positions of each pixel, and the second position
along the depth direction.

I3D is not pretrained with input coordinates. Therefore, channels corresponding to coordi-
nate inputs in the first convolutional layer are randomly initialized, while the channel cor-
responding to B-mode inputs is still the sum of the pretrained RBG channels. Appending
coordinate channels results in inputs deviating further from the data used for pretraining,
and the advantage of pretraining is likely to diminish. To evaluate whether pretraining is
useful in this case, a smaller model is also trained with randomly initialized weights for
all layers. The smaller I3D is defined by removing the last 3 Inception blocks, reducing
the number of kernels in the Inception blocks, and removing one branch of the inception
block consisting of 1 × 1 followed by 3 × 3 convolutions. The resulting smaller I3D has
2.5M parameters. The initialization of Glorot [65] is used.
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5.3.5 Saliency

This part is adapted from previous work [25]. An issue with deep learning is that under-
standing the path from input to output is difficult due to the millions of parameters and
operations. Understanding the model is especially important in echocardiography.

In order to improve understanding of the model, saliency maps [66] are generated by
taking the derivative of the model output with respect to the input video. This yields a
video where intensities correspond to the change in output when each individual pixel is
changed.

Normal saliency has a tendency to produce noisy results. This is because both pixels that
increases and decreases the output the most are found. To obtain more visually pleasing
results, the method of guided backpropagation [67] sets negative gradients to zero when
backpropagating through ReLU-layers. This removes gradients that changes the output
towards the saturated region of the ReLU layers. The effect is that pixels that does not
contribute to a change in the output are suppressed.

5.4 Preprocessing

After automatic quality assurance, a set of recordings remain. There is still variability
between recordings that is unrelated to aging. For example, videos are sampled at different
frame rates and with different resolutions. To reduce this variability, preprocessing of the
data is performed.

5.4.1 Input Shape

Choice of input shape for each sample has a major impact on memory and computational
costs, as well as the performance of the model. The optimal input shape depends on the
task and the model of choice. Downsampling reduces the memory and computational
costs at the expense of discarding potentially useful information. Down to a certain spatial
size, downsampling mostly suppresses high frequency content, e.g. noise and speckles.
A higher resolution is useful for data augmentations, as there are more data to interpolate
from. In Madani et al. [17], studies of the effect of input size are performed. Here,
the accuracy of a CNN for LV hypertrophy classification increases with input size up
to 120 × 160, where improvements does not occur when doubling the dimensions. For
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Figure 5.2: Length of cycles in HUNT3

Zhang et al. [8] an input size of 224 × 224 is selected to accurately detect hypertrophic
cardiomyopathy and cardiac amyloidosis.

Following this, spatial dimensions of 224 × 224 pixels are selected, which by visual in-
spection preserves the structure most tissue.

The temporal dimension is treated separately from the spatial dimensions. The input length
is instead set to a fixed number. Cycles longer than the input length are cut at the end, and
videos shorter than the input length are padded with zeros. To determine an appropriate
batch length, the lengths of cycles in HUNT 3 is considered, seen in Figure 5.2. Setting a
fixed batch length of 50 frames keeps the number of padded cycles low, with most cycles
being fully included, reducing computational and GPU memory usage. With a mean frame
rate of 44 Hz in HUNT 3, cycles with heart rate above 60 · 44 · 50 = 52.8 BPM are fully
included in a batch.

The number of cycles in a batch is set to 6, as is done for the original I3D.

5.4.2 Temporal Normalization

In HUNT 3, the frame rate has a low variability, but the mean frame rate is different from
that of NTNU-LVD and UNN-CAD. For the age estimation model to learn features related
to velocity, the sample time should be known or fixed.

Having data with variation in sampling rates also introduces some practical issues. A
difference in sampling rate results in variations in the duration of each recording, such
that the length of each cycle deviates more from 50 frames. This results in an increased
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temporal padding or cropping.

Two approaches are considered for resolving these issues. The least computationally ex-
pensive solution is to downsample by an integer factor, whenever the resulting sample rate
is closer to the reference sampling rate by downsampling. For a video with sampling rate
f , the integer downsampling ratio r and new sample rate fnew is given by

r = nint(
f

fref
) fnew =

f

r
(5.3)

where nint(·) rounds to the nearest integer. Cycles with a downsampling ratio of zero
did can be discarded. The start frame of downsampled frames is randomized to avoid
discarding r − 1 out of r frames from cycles during training.

The alternative is to perform video frame interpolation, allowing for setting an exact sam-
ple rate at the expense of possible errors from interpolation and increased preprocessing
time. By considering a video as a 3 dimensional volume (t×h×w), new temporal values
can be interpolated at a fixed time step. Linear interpolation is performed using the Reg-

ularGridInterpolator in scipy [45]. Automatic QA is reapplied to the interpolated values,
resulting in minor differences in quality scores.

For both approaches, a target sample rate is set to the mean sample rate in HUNT 3, 44
Hz. This results in downsampling 859 cycles in HUNT 3 by a factor of 2, while no cycles
had a downsampling ratio of zero.

5.4.3 Optical Flow

Just as optical flow inputs frequently appear as inputs to CNNs in various domains, echocar-
diography is no exception. Gao et. al [68] apply the variational optical flow of Brox et.
al [39] twice to achieve the apparent acceleration of pixels in the B-mode cycles. The ac-
celeration images are input into a 2D two-stream network performing view classification.
Østvik et. al [9] acquire the motion of the myocardium using a CNN to estimate optical
flow, and filter inaccurate motions by masking estimates with a segmentation of the left
ventricle. The estimates are used as part of a pipeline to automatically calculate left ven-
tricle strain. Optical flow from 2D echocardiography were also used in [25]. Here, a 2D
CNN for automatic timing of cardiac cycle phase was greatly improved by using optical
flow inputs.

With a dataset of over 1 × 105 frames, calculating optical flow is costly computationally
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and storage wise. One optical flow algorithm is therefore selected for further usage. Both
accuracy and computational cost is considered. The accuracy is determined visually by
inspection of a subset of the available data, giving a coarse estimate of the quality of the
different algorithms. To keep processing time reasonable, optical flow is calculated on the
resized frames. The time to calculate optical flow is benchmarked using a 30× 256× 256

video, using 4 Intel(R) Xeon E5-2637.

In this work, two coarse-to-fine variational algorithms are considered. The first is TV-L1
optical flow [36], which is used in the original I3D flow stream. The second is a Python
version of [69] named pyflow, a closely related algorithm. pyflow improved performance
of a 2D CNN for timing of ED and ES in the project thesis.

The properties of the optical flow estimates depends on the selected parameters. Optimal
parameters depends on the scale of the motions involved in the images, and the noise level
of the data. With a target frame rate of 44 Hz, motions in echocardiography are small
relative to the image size. By increasing the size of the smallest pyramid and using a low
downsampling ratio between pyramids, smaller motions can be detected in favour of larger
motions.

The heart is nonrigid, and motion estimates should vary along tissue regions for healthy
patients. This is seen in strain imaging, where akinetic motion can indicate an infarction.
This is different from many data sets used to evaluate optical flow, which contains large and
rigid motion. Using parameters proposed for these data sets can result in too regularized
flow estimates. Therefore lower regularization than proposed might be more suitable. On
the contrary, too low regularization results in noisy and discontinuous optical flow due to
the noise present in echocardiography. A tradeoff between noisy and small displacement
estimates must be found.

TV-L1

TV-L1 is a variational optical flow formulation with the aim of minimizing∫
Ω

{λ|(I0(x)− I1(x + u(x))|+ |∇u(x)|} dx. (5.4)

To find a solution, the brightness constancy assumption is linearized, and the equation
is approximated by a convex function. The convex function is minimized using fixed-
point iteration. Due to the linearization, a coarse-to-fine warping approach is used to find
solutions at the coarsest scales first. The downsampling factor is fixed at 0.5 per pyramid
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level, i.e. spatial dimensions are halved at each pyramid.

The Python bindings for OpenCV [70] contains a CPU implementation of TV-L1. To
better estimate small-scale motions, the number of pyramids is decreased from the default
of five to three. The default value of λ = 0.15 is kept, resulting in more visually pleasing
results than larger or smaller values. Calculating optical flow takes 33.7s ± 132ms using
all CPU cores on the test sequence.

pyflow

pyflow is a variational optical flow algorithm based on [69]. The energy functional to
minimize is∫

Ω

{φ(|I0(x)− I1(x + u(x))|2) + αψ((
∂u

∂x
)2 + (

∂u

∂y
)2 + (

∂v

∂x
)2 + (

∂v

∂x
)2)} dx. (5.5)

Here, u = (u, v) and ψ(x) = φ(x) =
√
x2 + 10−5. The brightness constancy equation

is then linearized, and the optical flow estimates are found using coarse-to-fine warping.
Unlike TV-L1, multiple warping steps are applied at each scale, and a different numerical
approach is used for solving.

A downsampling ratio of 0.8 is used, and three pyramids are constructed. The regulariza-
tion parameter α is set to 0.02, much lower than the default value of 1. Calculation time
of Pyflow is 7.27s± 25.2ms.

Comparison

Four pairs of consecutive frames are presented for visualization of the optical flow algo-
rithms (Figure 5.3). Frames in Figure 5.3a (A4CH) is from the time of mitral valve closure,
while Figure 5.3b (A4CH) shows the rapid inflow phase. Figure 5.3c (PLAX) shows the
ejection phase of systole. Figure 5.3d (ALAX) shows atrial systole phase during diastole.
These frames contain different issues for optical flow, such as large movements of small
regions, small movements of larger regions and noisy pixel intensities.

Optical flow for the frames is shown in Figure 5.4. The estimates are quite similar in
appearance, which is not surprising given the similarities in the algorithms. It is seen that
both methods capture the general motion of heart walls accurately. This is most clearly
visible in Figure 5.3b, where the left ventricle expands. Estimated motions also points
in right direction in general for the noisy PLAX view. The motion of the mitral valve
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(a) A4CH, mitral valve closure (b) A4CH, rapid inflow phase

(c) PLAX, ejection phase (d) ALAX, atrial systole

Figure 5.3: Pairs of consecutive frames used to evaluate optical flow.

is not as accurate, especially for the TV-L1 algorithm (Figure 5.4b), first column). This
can be expected, as the mitral valve is small in the A4CH view and has a relatively high
velocity. The TV-L1 algorithm also has flow estimates outside the sector. This likely is
due to the larger downsampling for TV-L1, such that estimates from the coarse levels are
set as initial values outside the sector. Decreasing the number of pyramids reduces the
leakage flow.

Due to the slight improvements of pyflow compared to TV-L1 in terms of accuracy, and
considerably lower processing times, pyflow is selected for further use. To reduce storage
and preprocessing further, only valid cycles after automatic QA are preprocessed, as deter-
mined by thresholds in Table 4.1. Preprocessing of these cycles took 2 days for HUNT 3
using 14 CPU-cores. Storage of 8145 recordings in HUNT3 which passed automatic QA
uses 409 GB using gzip compression.

5.4.4 Intensity Normalization

The original I3D normalizes the intensities of the input data. To minimize the difference
between the original input data and B-mode cycles, the same intensity normalization is
used here. This constitutes normalizing B-mode intensities and optical flow vectors to
[−1, 1].

The origin of the coordinate system for the coordinate channels is set 5 cm from the trans-
ducer tip along the vertical axis, and centered on the horizontal axis. Both dimensions are
measured in decimeters. This results in the domain of coordinates close to [−1, 1] in the
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5.4 Preprocessing

(a) Optical flow color coding, hue indicates direction while saturation indicates magnitude.

(b) openCV implementation of TV-L1 [36].

(c) pyflow, implementation of [69].

Figure 5.4: Optical flow calculations of the frames in Figure 5.3 using two different algorithms.
Images from left to right are calculated on 5.3a, 5.3b, 5.3c and 5.3d respectively.
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Figure 5.5: Normalized B-mode and coordinate channels.

same order of magnitude as the B-mode intensities. The normalized B-mode intensities
and coordinate channels are seen in Figure 5.5.

5.5 Learning Details

5.5.1 Loss Function

Regression methods commonly minimize the sum of the squared errors. One of the moti-
vations for the squared error is that has a simple derivative. Squaring the error results in a
large loss for outliers. Outliers can occur both due to bad data and due to large variations
in "heart age". To avoid outliers having too large impact, MAE is used instead such that
errors are no longer squared.

5.5.2 Optimizer

Similar to the original I3D, the model is trained using SGD with momentum of 0.9. L2

regularization is enforced in the optimizer by setting a weight decay of 10−7. Different
learning rates are attempted, but a final learning rate of 102 is used.

5.5.3 Training and Model Selection

Training is performed for 100 epochs, where an epoch is defined as an iteration through all
the training data. This allows the model to converge on the training data. Checkpointing
is done at the end of each epoch if the MAE is reduced on the validation data, such that

54



5.6 Data Augmentations

the model with the lowest MAE on the validation data is selected as the final model. The
training data is shuffled at the end of each epoch.

Two nVidia Titan V GPUs with 12 GB ram are used.

5.6 Data Augmentations

The purpose of data augmentations is to increase the training data set size by modifying
the data. This is especially useful when the number of samples is small. A set of aug-
mentations is performed, some of which resulted in improved performance in the project
thesis.

Augmentations are performed on the CPU in parallel to training the model on the GPUs.
Care is taken to reduce the time usage of augmentations, to avoid this becoming a bottle-
neck during training. The augmentations are:

• Random additive noise
• Random rotation
• Random pad or crop

Augmentations are applied in the given order. Finally, the augmented data is resized to the
model input size (224× 224× c).

Random Additive Noise

Echocardiography data has a high noise level compared to photographic video. With the
aim making the models more robust to noise, and to reduce the chance of overfitting to
speckle patterns, random noise is added during training. Speckle noise has been modeled
in several ways, both additive and multiplicative, from different distributions such as the
Rayleigh distribution [71]. Here, an ad hoc method for generating noise is used.

In an attempt to produce both temporally stationary noise caused by various scatterers, and
completely random noise in all dimensions, the augmentation consists of adding two noise
layers. One is stationary random noise, equal for all frames in a cycle. The other changes
for each frame. Both are sampled from a Rayleigh distribution. The Rayleigh scale pa-
rameter is randomly selected from an exponential distribution with scale λ = 0.05, and
clipped to [0, 0.3]. This ensures that low noise levels are most frequently produced. Each
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(a) Before (b) After

Figure 5.6: Augmenting the training data with noise.

pixel is sampled individually from the Rayleigh distribution. To introduce spatial correla-
tion in the noise, a Gaussian filter is applied. The standard deviation of the Gaussian filter
is sampled randomly in [0.8, 1.5], which determines the spatial spread of each speckle.
The stationary and changing noise is then added to regions within the sector.

Noise is only added to B-mode inputs, as optical flow frames does not contain the same
high frequent noise. An example of a frame before and after noise is shown in Figure 5.6.

Random Rotation

CNNs are not rotation equivariant, meaning that a rotation of the input does not result in
equal rotation of the output, while changes in viewpoint occur naturally in echocardiog-
raphy. The tilt of the transducer can vary slightly in relation to the patient, resulting in
different orientations of B-mode image. To make the model more robust to changes in
orientation, recordings are rotated by a random angle during training, a common augmen-
tation in computer vision. The angle is randomly sampled uniformly from ±25 degrees.
The image size is increased to fit the rotated image, and avoid discarding pixels at the
edges.

When rotating optical flow frames, extra steps must be taken to ensure that the flow vectors
still describe the same displacement. Image rotation rotates the content of each frame,
while preserving intensities. This results in the optical flow vectors pointing in the same
direction as before rotation. To adjust for the rotation, each optical flow vector is rotated
by the same angle as the image. The formula for counterclockwise image rotation with
angle θ is given in Equation 5.6.
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(a) Before (b) After (c) Before (d) After

Figure 5.7: Example of rotation by 25 degrees of B-mode and optical flow. The optical flow vectors
are also rotated by 25 degrees in the same direction, as seen by changes in color.

[
urot

vrot

]
=

[
cos θ sin θ

− sin(θ) cos θ

]
·
[
u

v

]
(5.6)

This is a transposed rotation matrix compared to the standard rotation matrix used counter-
clockwise rotations, due to the optical flow axes [u, v]T forming a left handed coordinate
system.

Example of rotated frames for B-mode and flow is shown in Figure 5.7. Rotation is a
computationally expensive operation involving interpolation. To reduce training time, the
Python pillow [72] library is used for B-mode, with nearest neighbour interpolation. This
package does not handle images with two channels, and expects the range of each frame
to be in floating points with range [0, 1] or unsigned integers in [0, 256]. This option is
therefore unsuited for optical flow. For optical flow, the scikit-image package [73] is used
with bilinear interpolation.

Random Padding or Cropping

The final augmentation considered is cropping followed by zooming. The purpose of this
augmentation is twofold; to enforce focus on different features in a cycle by removing
regions, and to improve robustness to variations in input dimensions.

The random pad or crop augmentation randomly removes or pads pixels at the borders of
each frame. The pad or crop amount is sampled uniformly in [−20, 20] for each edge,
where negative equals padding, and positive equals cropping. The pad/crop amount is
constant for all frames in a cycle.

Padding or cropping is followed by resizing to the fixed model input size. Resizing is
performed in pillow with nearest neighbour interpolation for B-mode, and skimage with
Bilinear interpolation for optical flow. An example is shown in Figure 5.8.
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Figure 5.8: Random cropping followed by resizing.

When resizing optical flow images, the optical flow magnitudes must be corrected by the
changing scale. The correction is given by

[
ures

vres

]
=

[
wres

w u
hres

h v

]
, (5.7)

where h, w are the height and width of the images, and (res) indicates the new values after
resizing (res).

5.7 Comparison Model: OLS Linear Regression

HUNT 3 has been thoroughly analyzed, and a large number of measurements are available
for each patient. To have a reference for comparing the accuracy of the deep learning mod-
els, a multiple linear regression is fit to predict age from these measurements. Ordinary
least squares (OLS) with statsmodels [74] is used to fit the regression, i.e. minimizing
the sum of squared residuals. A subset of the available variables is manually selected, for
which the effects of age is well documented. To ensure fair comparison with the deep
learning model, only variables acquired through echocardiography are used. The selected
variables with units and image modalities used for measurements are:

IVSs Systolic interventricular septum thickness (mm), M-mode

IVSd Diastolic interventricular septum thickness (mm), M-mode

IVRT Average isovolumic relaxation time (ms), PW-Doppler

LVPWd Diastolic LV posterior wall thickness (mm), M-mode

LVPWs Systolic LV posterior wall thickness (mm), M-mode

E/A Mitral valve early E/A ratio (1), PW-Doppler
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5.7 Comparison Model: OLS Linear Regression

GLS 16 segments model absolute longitudinal systolic global strain (%), speckle tracking
and PW tissue Doppler

DT Mitral valve deceleration time (ms), PW-Doppler

e’ 4 wall mean early diastolic mitral annular velocity (cm/s), PW tissue doppler

a’ 4 wall mean late diastolic mitral annular velocity (cm/s), PW tissue doppler

MAPSE 4 wall mean Mitral annular plane systolic excursion (cm), M-mode

All measurements except global strain have been calculated previously using EchoPAC
(GE Vingmed, Horten, Norway). Global strain was calculated in [46] using customized
software. The Pearson correlation between different variables is shown in Figure 5.9. All
features correlate with age to some extent, with the largest absolute correlations being the
E/A ratio and the e’ velocity. The E/A ratio is also highly correlated with the e’ and a’
velocities. Measurements of the same dimension at diastole or systole (IVSs, IVSd and
LVPWs, LVPWs) are also highly intercorrelated. The correlations between the indepen-
dent variables results in multicollinearity, such that the effect of the correlated variables
becomes entangled. However, this is not an issue for the accuracy of the regression.

The HUNT 3 training is used for model fitting, while the testing set is used for evaluation.
Patients missing one or more of the variables are removed. Each feature is scaled to zero
mean and unit variance as calculated on the training set.
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Figure 5.9: Pearson correlation between variables used for linear regression of age in HUNT 3.
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The error is defined as chronological age minus estimated age, i.e. e = y − ŷ. The mean
and standard deviation of the error is denoted µe, σe respectively. Errors (MAE, µe, σe)
are given in years. MAE and R2 is calculated using scikit-learn [75].

Results per patient for different approaches are presented. For comparison, mean value
prediction using ages from from HUNT 3 represents the lower bound on performance,
as all models are trained on HUNT 3. Although estimates are generated from individual
cycles, reporting results for each view and model produces too many results to feasibly
compare. Results are therefore only presented for the averaged estimates as described in
Section 5.2. One model is selected for further analysis. Results for each individual cycle
are presented in the Appendix.

6.1 Model Descriptions

The approaches with abbreviations are as follows:

HUNT3-Mean Predicting the mean age of cycles in the HUNT 3-training set.

OLS Ordinary least squares linear regression from clinical indices in HUNT 3.

Single Five single view I3D models (one for each view), B-mode inputs and integer tem-
poral downsampling.

Multi Multiple view I3D, B-mode inputs and integer temporal downsampling.

Multi-Random Multiple view I3D with randomly initialized weights, B-mode inputs and
integer temporal downsampling.

Multi-Flow Multiple view I3D, optical flow inputs, integer temporal downsampling.
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Multi-Coords Multiple view I3D, B-mode and xy-coordinate channel inputs, temporal
interpolation.

Multi-Coords-Small Smaller multiple view I3D, randomly smaller weights, B-mode in-
puts and xy-coordinate channel inputs, temporal interpolation.

All models are trained using HUNT 3-train only. The MAE on the validation set of HUNT
3 for each view are given in Table 6.1. These are not used for further analysis, but are
intended for weighing each estimate as described in Section 5.2.

Table 6.1: MAE of models on HUNT 3-validation for the different views. This is used to weight
each prediction when averaging estimates for a patient.

Model A4CH ALAX A2CH PLAX PSAX
Single 5.42 5.58 5.74 4.96 6.43
Multi 5.15 5.71 5.58 4.89 6.45
Multi-Random 5.90 6.21 5.90 5.30 6.67
Multi-Flow 5.62 6.04 5.60 5.00 6.30
Multi-Coords 5.16 5.57 5.49 5.33 6.36
Multi-Coords-Small 6.02 6.37 6.06 6.44 6.94

6.2 Model Comparisons on all Datasets

Here, results for each model and each dataset is presented.

Table 6.2 shows how the models performs on the HUNT 3-test split, including mean value
prediction and OLS regression.

Table 6.2: Results for different models on the HUNT3-test split. µe is the mean of the error, σe is
the standard deviation of the error.

Model N MAE µe σe R2

HUNT3-Mean 186 12.5 2.11 14.6 -0.0212
OLS 172 7.21 0.826 9.03 0.605
Single 186 4.93 1.85 6.25 0.801
Multi 186 4.89 0.802 6.25 0.815
Multi-Random 186 5.29 2.61 6.48 0.77
Multi-Flow 186 4.77 0.0665 6.12 0.825
Multi-Coords 186 4.66 1.80 5.94 0.820
Multi-Coords-Small 186 5.88 0.943 7.30 0.747
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6.2 Model Comparisons on all Datasets

All models perform significantly better than mean value prediction, i.e. using only prior
information. The HUNT 3-mean MAE of 12.5 is reduced to 7.21 with linear regression
using age-affected indices. Further reductions in MAE are seen in all deep learning mod-
els. The non-pretrained small I3D performs significantly better than the OLS regression
model, and an R2 of 0.747 already suggests a good fit, considering the variation in the
data. Pretrained models perform even better than the randomly initialized models. This
suggests that there is a benefit in using weights pretrained on photographic videos for
echocardiography, even though there are large differences between the domains. Inter-
estingly, the small randomly initialized model with coordinate channel inputs performs
noticeably worse than the large randomly initialized model, while the large pretrained co-
ordinate channel model appears to improve performance. Even though echocardiography
recordings are sparse in information and spatio-temporally correlated, 12M parameters are
not too much to represent aging.

Results for NTNU-LVD are given in Table 6.3 and 6.4. All models perform significantly
worse for this dataset. This can in part be explained by the difference in age distribu-
tion between the datasets. With an older distribution of patients in NTNU-LVD, models
are interpolating with little data for some patients, and extrapolating for patients older
than the highest age in HUNT 3. Models have similar MAE and standard deviations for
NTNU-LVD (H) and (D), while the mean error is increased and the R-squared is lower
for the healthy patients with LVD. This can be explained by the differences in age distri-
butions seen in Figures 3.4 and 3.4. The healthy patients has a higher mean age than the
diseased patients, increasing the difference between the HUNT 3 train split. In addition,
there is a smaller standard deviation in the age of the healthy patients, further reducing
the R2. However, considering the significantly higher standard deviation of models on
NTNU-LVD, there might be some other differences between the data sets resulting in
higher errors. HUNT 3 and NTNU-LVD has a large overlap in the scanners used and the
sector widths and depths, such that the coordinate channel models should perform similar
for the two data sets. The fact that the coordinate channel models perform worst of all
models on this data backs the suspicion of differences in the input data.

Also note that the number of patients used are different for the coordinate channel models.
This is most likely caused by the automatic QA scores being different because of temporal
interpolation, resulting in differences in automatically discarded data. The differences in
test data makes comparison less straight forward, and training a model using coordinate
channels on the same data as the other models would be better for comparison.

All models still perform significantly better than predicting the mean value of the training
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Table 6.3: Patient results on NTNU-LVD (H).

Model N MAE µe σe R2

HUNT3-Mean 82 19.9 17.2 14.2 -1.46
Single 82 11.2 7.88 11.2 0.06
Multi 82 9.54 5.79 10.5 0.294
Multi-Random 82 10.6 5.33 12.0 0.14
Multi-Flow 82 9.90 4.87 11.7 0.206
Multi-Coords 73 11.4 8.44 12.0 0.00756
Multi-Coords-Small 73 12.8 9.73 13.3 -0.250

data. The multiple view B-mode and optical flow models continue to be the better per-
forming models on NTNU-LVD. Again, pretrained models perform better than randomly
initialized models. This suggests that models have learned features that describe aging to
some extent for NTNU-LVD.

Table 6.4: Patient results on NTNU-LVD (D).

Model N MAE µe σe R2

HUNT3-Mean 94 17.8 12.6 16.3 -0.599
Single 94 10.3 5.67 11.1 0.414
Multi 94 8.91 2.85 10.3 0.572
Multi-Random 94 10.3 3.45 12.0 0.406
Multi-Flow 94 9.54 2.84 11.2 0.500
Multi-Coords 80 10.6 6.72 11.2 0.360
Multi-Coords-Small 80 12.3 8.11 12.8 0.133

Results for UNN-CAD is shown in Table 6.5 and 6.6. All models perform better predicting
the HUNT3-mean value. However, standard B-mode models perform much worse than
the coordinate channel and optical flow models here. This might be due to the differences
in scanners used and sector sizes between the data sets. The optical flow input is more
regularized, leaving less room for overfitting to a specific data set. Also, note that most
methods perform worse than predicting the mean value of UNN-CAD (D) on UNN-CAD
(D), with a negative R2. In addition, the MAE of models is smaller than NTNU-LVD.
The negative R2 is again partially explained by a small variation in the age of UNN-CAD
(D).
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6.3 Further Analysis of Selected Model

Table 6.5: Patient results on UNN-CAD (H).

Model N MAE µe σe R2

HUNT3-Mean 198 11.4 9.21 10.1 -0.825
Single 198 7.85 6.49 6.88 0.131
Multi 198 8.19 6.68 7.21 0.0624
Multi-Random 198 9.11 7.64 7.86 -0.166
Multi-Flow 198 5.89 3.20 6.88 0.441
Multi-Coords 193 5.87 3.84 6.59 0.421
Multi-Coords-Small 193 6.03 3.26 7.32 0.360

Table 6.6: Patient results on UNN-CAD (D).

Model N MAE µe σe R2

HUNT3-Mean 48 13.0 12.3 8.78 -1.96
Single 48 8.04 7.35 7.85 -0.49
Multi 48 8.00 7.44 7.34 -0.415
Multi-Random 48 9.33 9.06 7.43 -0.779
Multi-Flow 48 6.55 5.05 7.39 -0.0363
Multi-Coords 47 6.88 5.26 7.90 -0.144
Multi-Coords-Small 47 6.87 5.71 7.61 -0.150

6.3 Further Analysis of Selected Model

The Multi-flow I3D is selected for further analysis, which performed well on most datasets.
Other models were also inspected, but similar trends as the ones presented here were
observed.

6.3.1 Results per View

Measurements for each cycle of the data sets are shown in Table 6.7 to 6.11. The most
consistently performing view is PLAX, which maintains a positive R2 for all data sets.
This is followed by A4CH and A2CH views. Interestingly, the ALAX view performs well
on HUNT 3, but poorly on all other datasets. The opposite occurs for the PSAX view,
performing fairly well on the UNN-CAD datasets. It must be noted that results reported
on individual cycles do not have sample independence due to multiple cycles coming from
each recording and patient. This could be mitigated by only selecting one measurement
per patient or cycle, at the expense of fewer samples for evaluation.

The averaging method for each patient improves performance when considering the ac-
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curacy for most cycles. However, averaging performs slightly worse than using PLAX
esimates for NTNU-LVD and UNN-CAD, due to poor performance of other views.

Table 6.7: Multi-flow model on cycles in the HUNT 3-test set

View Num. cycles MAE µe σe R2

A4CH 477 5.57 -0.393 6.86 0.771
ALAX 475 5.50 0.224 7.04 0.751
A2CH 655 5.84 -0.592 7.41 0.716
PLAX 481 4.82 -0.482 6.24 0.816
PSAX 1078 6.01 0.407 7.57 0.707

Table 6.8: Multi-flow model on cycles in NTNU-LVD (H)

View Num. cycles MAE µe σe R2

A4CH 484 10.3 3.02 13.3 0.202
ALAX 143 11.6 7.19 12.8 -0.0914
A2CH 373 10.1 4.66 12.5 0.158
PLAX 119 8.84 2.27 11.3 0.276
PSAX 237 12.5 6.2 14.18 0.0707

Table 6.9: Multi-flow model on cycles in NTNU-LVD (D)

View Num. cycles MAE µe σe R2

A4CH 481 9.26 2.25 11.1 0.476
ALAX 140 10.5 3.95 11.9 0.301
A2CH 339 10.5 4.36 12.2 0.421
PLAX 130 8.32 -0.703 10.4 0.516
PSAX 220 10.8 4.15 13.0 0.317
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Table 6.10: Multi-flow model on cycles in UNN-CAD (H)

View Num. cycles MAE µe σe R2

A4CH 340 6.59 3.12 7.71 0.293
ALAX 423 7.27 4.70 7.98 0.134
A2CH 538 7.12 3.65 8.24 0.190
PLAX 453 6.09 1.40 7.95 0.372
PSAX 12 4.91 -1.26 5.35 0.325

Table 6.11: Multi-flow model on cycles in UNN-CAD (D)

View Num. cycles MAE µe σe R2

A4CH 76 7.78 6.56 8.50 -0.727
ALAX 87 7.44 6.17 8.31 -0.390
A2CH 121 7.63 6.12 8.53 -0.370
PLAX 90 5.79 3.30 6.32 0.502
PSAX 3 2.13 -0.962 2.44 0.00

6.3.2 Bland-Altman for Patient Estimates

Bland-Altman plots are generated for patient estimates, shown in Figures 6.1 to 6.5. It can
be seen that chronological age correlates with estimated age, and that the model has a low
bias for patients aged between 50 and 60. However, the bias increases with age, a trend
seen in all Bland-Altman plot, as the correlation is not strong enough to accurately predict
age for older patients.

It is difficult to say how much of the error is due to cardiovascular differences between
patients and how much is caused by differences in data acquisition or by modeling errors.
The resolution of imaging that can be achieved is limited, resulting in an upper bound on
age estimation accuracy, but the increasing error with age seen in the Bland-Altman plots
show that this is not reached yet.
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Figure 6.1: Bland-Altman plot for each patient in the HUNT 3 test-set
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Figure 6.2: Bland-Altman plot for each patient in NTNU-LVD (H)
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Figure 6.3: Bland-Altman plot for each patient in NTNU-LVD (D)
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Figure 6.4: Bland-Altman plot for each patient in UNN-CAD (H)
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Figure 6.5: Bland-Altman plot for each patient in UNN-CAD (D)

6.3.3 Guided Backpropagation

Examples of sequences with saliency and age estimates are shown in Figure 6.6. Guided
backpropagation (red) is overlayed on the B-mode frames, with saturation indicating saliency
magnitude. Saliency reveals that the regions of heart valves are important. Especially
salient are the regions near the mitral valve, as can be seen in the plots of A4CH, ALAX,
PLAX and to a lesser extent A2CH. This corresponds to the well established effects of
aging on the mitral region, which is also seen in the correlation between age and measure-
ments in the mitral region (E/A, DT, e’, a’, MAPSE, Figure 5.9). The mitral valve is not
clearly visible in the aortic and midpapillary level of the PSAX view, which might help
explain why the models perform worse in this view. The tricuspid valve is slightly high-
lighted in the A4CH sequence, while the same is true for the aortic valve in the ALAX and
PLAX views. For the PSAX view, which to the authors knowledge is from the midventri-
cle level, the IVS is the salient region. This corresponds with the effects of aging on the
IVS (IVSs, IVSd, also seen in Figure 5.9). Similar saliency patterns were also observed
for other models. Appendix 8.3 shows guided backpropagation for the Multi-I3D.

Guided backpropagation, especially saliency magnitudes must not be overinterpreted. As
deep CNNs are highly nonlinear, the results are only valid for a small increase in pixel
intensities. As saliency is the gradient of the output with respect to every input pixel,
saliency shows the effect of changing each individual pixel independently from the effect
on neighbouring pixels. The effect of changing multiple pixels simultaneously is not re-
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vealed. Saliency is therefore likely to be larger for small objects such as the valves, where
a change in pixels results in a larger relative change in the image compared to a pixel
change in larger regions such as the walls.

6.3.4 Sex Differences

Due to not inputting any other information than the pixel data and cycle view, sex has not
been considered as a feature. To assess whether sex related differences occur in the age
estimates, estimated age versus chronological age of patients in HUNT 3-test are plotted
and colored by sex. The result is shown in Figure 6.7. There is little difference in estimates
between men and women for most age groups. This makes sense, as the models does not
have information about sex during training, and must therefore learn features that work
for both men and women It could also suggest that differences in aging between sexes are
not prominent. For the oldest patients, consisting solely of women, an underestimation of
chronological age is made. There are few male patients in this age group for comparison,
such that assessing whether this is a random pattern or due to some sex-specific differences
is difficult.

6.3.5 Healthy vs. Diseased Patients

To explore whether there is a difference between predicted age and chronological age for
patients with diagnosed LVD or CAD, the estimates for healthy versus diseased patients is
plotted. This is seen in Figures 6.8 and 6.9.

The large deviation in estimates for NTNU-LVD in comparison to HUNT 3 and UNN-
CAD also suggest that there is a difference in terms of the input data for NTNU-LVD. The
differences might be methodological, for example a focus on the left ventricle in NTNU-
LVD compared to the other data sets. The differences in data is apparent in the results for
each cycle, Tables 6.7 to 6.8, where each data set has a different distribution of views. For
NTNU-LVD there is an overweight of A2CH and A4CH views, as labeled by the view
classifier. This is not to say that the difference in distributions of views is the reason for
the decline in performance, but it indicates that there are substantial differences in the
acquisition of the different different data sets.

Both plots show little or no separation between healthy and diseased patients in terms
of estimated age. The hypothesis of differences in estimated age between healthy and
diseased patients is therefore not correct with the data and setup used here. This means
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(a) View: A4CH, Age: 66 years, Predicted age: 65.9 years

(b) View: ALAX, Age: 24 years, Predicted age: 31.4 years

(c) View: A2CH, Age: 70.5 years, Predicted age: 75 years

(d) View: PLAX, Age: 20 years, Predicted age: 23.9 years

(e) View: PSAX, Age: 56 years, Predicted age: 57.2 years

Figure 6.6: Predictions and guided saliency (red) for the Multi-flow I3D on cycles in the HUNT3
test set. B-mode frames are shown instead of the optical flow input frames.
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Figure 6.7: Chronological vs. estimated age by sex in HUNT 3 for the multi-flow model.
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Figure 6.8: Chronological vs. estimated age in NTNU-LVD.
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Figure 6.9: Chronological vs. estimated age in UNN-CAD.

that the models have learned mappings to age that are not impacted by disease. For systolic
dysfunction, the largest group of diseased patients, this can be explained by the inclusion
criteria. As ejection fraction does not change with age, there is no difference in diagnosed
patients based on the inclusion criteria alone. This does not explain the lack of distinction
for patients with diastolic dysfunction. Key points to be made here is that the model is
either using other features to learn age than used for diagnosing diastolic dysfunction (a’,
e’, etc.) or that the variance of the NTNU-LVD estimates is too large to accurately separate
the groups.

For UNN-CAD, the lack of separation between healthy and diseased patients can be ex-
plained by signs of stenosis not being apparent enough in the echocardiography recordings
to make a difference between healthy and diseased patients. This is supported by the aim
of UNN-CAD, being to determine exactly if the diseased patients can be accurately diag-
nosed from echocardiography.

Due to little separation between the patients, no further analysis is performed to quantify
the separability between healthy and diseased.
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7.1 Data Sets

Differences in age distributions between the data sets impacts the results substantially.
Results, especially R2, is highly sensitive to the distribution of the chronological age con-
tained in the data sets. As models are trained to minimize the MAE over the age dis-
tributions of HUNT 3-train, the models are less accurate for patients far from the mean
age. The explanation for this is that with a close to normally distributed age distribution, a
lower emphasis is placed on younger and older patients.

Differences in data acquisition between the data sets can be caused by several factors.
HUNT 3 is highly standardized, with one echocardiographer performing all examinations
using the same scanner, each recording containing 3 cycles, and the five views considered
here being recorded for all patients. Acquisition in NTNU-LVD was performed by mul-
tiple experts, using both Vivid E9 or Vivid 7 scanners, although all data were approved
by a single cardiologist. In addition, the study was designed to detect left ventricular
dysfunction, which might change the regions imaged compared to a general examination.
UNN-CAD is acquired using a Vivid E9, a newer scanner than used in HUNT 3, likely re-
sulting in differences in data quality. In addition, UNN-CAD contains different frame rates
and sector sizes. This affects the pixel spacing, likely contributing in worse performance.
In HUNT 3, the general population is invited to participate, selecting an approximately
random sample of the population in North Trøndelag. For the other data sets, patients are
not a random sample of the population, but are referred to echocardiography examinations
due symptoms of disease. In other words there is a bias in the data sets, even between
healthy patients in HUNT 3 and healthy patients in NTNU-LVD and UNN-CAD.

Both disease studies contain general diseases, with many possible symptoms. In NTNU-
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LVD, patients are also labeled with more specific types of dysfunction, such as systolic,
diastolic, or high blood pressure related effects. A more detailed separation of patients
could be performed, for example by only considering patients with diastolic dysfunction.
This however reduces the number of patients considered, while increasing the number of
tested hypotheses tested.

7.2 Automatic QA

As automatic QA is the first step of data selection, the results of the age estimation models
is evidently affected by the choices here. The method presented has several possibilities
for alteration.

7.2.1 Cycle Separation

Only ECG was considered for cycle separation. For recordings where ECG is unavailable,
the cycle separation algorithm will not work. Instead, methods for cardiac cycle phase
separation from echocardiography can be used, such as the timing model used to generate
a timing score. Developing an algorithm without the use of ECG is not required for the
data sets considered, but will likely introduce more variance in the cycle separation.

7.2.2 View Classification

Performing view classification is a well justified step, as it is done intuitively by the practi-
tioners and as a data selection step in other deep learning approaches. View classification
likely positively affected the results, considering the increased accuracy of the multiple
view models and differences in accuracy by view. On the contrary, the view classification
model is small compared to the I3D models, such that the age estimation models might
be able to determine the view of the input as part of the computation. This also removes
errors caused by misclassified views. One can therefore argue that the view classification
step is unnecessary. However, the misclassification rate is low, and the view classification
step makes the learning task easier as the age estimation model does not have to learn view
classification simultaneously. This is important given limited amounts of data.
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7.2.3 Quality Measures

The models used are only two out of many possible domain-specific models that can be
used to extract quality measures. Other examples include segmentation CNNs, or even
the error of the age estimation models. With any quality score based on machine learning,
the usefulness of the quality score depends on how accurate the model is. This in turn is
dependent on the model architecture, and the size and quality of the training data.

The view classifier quality score is unevenly distributed, due to the model being trained to
minimize cross-entropy. In this case, basing scores on percentiles resulted in small thresh-
olds for the quality scores, e.g. 0.00010 for the ALAX view. A more evenly distributed
view classification quality score might be more suitable for increasing the separation be-
tween good and poor quality. Another interpretation of the skewness of the quality scores
is that most cycles in HUNT 3 already have a high quality, which is why the confidence of
the view classifier is high.

The use of the timing model for generating quality scores is a novel idea. The timing
quality score is more evenly distributed. Saliency for the timing model in [25] also show
similar regions as the models for age estimation, especially the mitral valve and inner heart
walls. Therefore, using the timing model as a quality score is likely to remove samples
where the mitral valve or wall motion is poorly represented, which increases the focus of
the age estimation model on these regions.

Quantile Thresholds

Using fixed thresholds at the 90th percentiles in both quality measures might seem overly
cautious. As discarding is performed if any error measure is above the given threshold,
the fraction of discarded data lies between 0.1 and 1 − 0.92 = 0.19 depending on the
correlation of the measures. The fraction for HUNT 3 is approximately sixteen percent,
as the quality scores are uncorrelated. This is a significant reduction in sample size, and
is likely to remove many useful samples, especially when considering that HUNT 3 is
already standardized. However, finding optimal thresholds is difficult without data where
the quality is labeled. The upside is that a high discard rate reduces the time required
for training, allowing for faster experimentation. Thresholds can then be relaxed once an
appropriate model has been found. The importance of removing data with lower quality is
more apparent for optical flow where computational and storage constraints increase, and
flow estimates are worsened by noisy data.
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An alternative to discarding samples at a fixed threshold is to weight the estimates and
losses as a function of the quality score. This way, all data can be used, but data with an
estimated high quality has a larger impact on the loss than poor data. This increases data
set size, and can possibly improve the performance and generalizability of the models us-
ing the data. In this case, an appropriate weighing function must be found from the quality
scores. The time usage of training and testing would also increase, and it is not guaran-
teed that the additional data contains enough useful information to yield any significant
improvements in performance.

7.3 Age Estimation Setup

A large number of alternatives are available to the methods presented here. Although
the data sets are fairly large, the number of hypotheses tested must be limited to reduce
the chance of making hypothesis testing errors. The differences between the models are
intentionally very small to only evaluate the effect of the modification, but optimal hyper-
parameters will also change as a result of the modifications. This means that the observed
differences in performance can be partially caused by the selected hyperparameters. To
exemplify, randomly initialized models might achieve better performance than the pre-
trained models when using another optimizer, learning rate or batch size. This makes it
harder to draw conclusions, especially if the differences in performance is small. Given
the time and resources, each change could be cross-validated evaluated over a wide range
of hyperparameters.

7.3.1 OLS Linear Regression Model

Due to aging being a complex process which likely does not affect the measurements
linearly, nonlinear feature transformations or more complex regression models could have
improved the results of the OLS model. In addition, only a small set of measurements are
used. More measurements correlating with age could also have been included to increase
the accuracy. These options increase the chance of overfitting.

7.3.2 Averaging Patient Estimates

Averaging reduces the impact of outliers, which can occur due to a number of factors such
as poor data quality, errors in the automatic QA step, and inability to accurately model the
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given sample. As seen in the various plots of the multi-flow model, there are few consider-
able outliers. The value of weighted averaging is seen in the results for the different views,
for example Table 6.7. There are more than twice as many cycles in the PSAX view for
HUNT 3, while the errors are significantly larger. With unweighted averaging, the PSAX
cycles would affect the estimates more due to quantity. The averaging method however
has several parameters which could be optimized. Further averaging could also have been
used, for example by averaging estimates from multiple models.

7.3.3 Multiple View Models

It might not be surprising that the multiple view models performs better than the five single
view models, considering the fivefold reduction in parameters. For a smaller model, where
the number of parameters are too few to learn a mapping for all views, or the number of
samples from a single view is sufficient, it might be better to only use a single view.

A middle ground between the single model per view and the multiple view models was
also considered. By splitting the model into separate branches for each view somewhere
in the network, more parameters are available for learning view-specific transformations
while reusing early layers. A split was attempted after the 5th Inception block, i.e. the
weights until the last row of Figure 5.1 are shared between views. Unfortunately, the
whole model with five branches was not able to fit into GPU memory during training. To
avoid computing the output for all branches and thereby reducing memory consumption,
only the output of the correct branch could be dynamically calculated. To avoid switching
to a dynamic graph framework such as PyTorch or Eager Tensorflow or writing custom
training loops, this was not performed.

The disadvantage of the multiple view model is that it does not extend nicely to inputting
multiple features, such as gender, age or weight. As discussed previously, this issue can
be avoided by simply having a single output for all views as in [25]. Another alternative
is to input the view as a feature somewhere in the network. 3D convolutional layers are
not ideal for scalar features, such that in this case the features should likely be input into a
more suitable layer such as a fully-connected layer.

7.3.4 Optical Flow Models

The optical flow models perform better than B-mode, although optical flow is generated
from B-mode. In other words, no new information is present in the optical flow data.
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This show that data representation does matter in deep learning for echocardiography, and
that using raw inputs are not always the best option. One might however argue that the
optical flow models perform better due to the data being more similar to the task of the
pretrained weights, compared to B-mode. Considering the success of the optical flow
model, a possible option for improvement is using strain imaging instead of optical flow
inputs.

The task is close to speckle tracking, which is commonly used in echocardiography quan-
tification. Speckle tracking typically involves human interaction and manual finetuning
over the regions of interest, and could therefore result in better motion estimates compared
to unsupervised optical flow algorithms. However, speckle tracking typically requires
high quality data for accurate tracking, and manual interaction is cumbersome for large
data sets.

7.3.5 Coordinate Channels

Convolutional layers are position equivariant, such that translation of an input results in
equal translation of the output. This equivariance might not be optimal for standardized
views in echocardiography, where structures are normally found in a limited image region.
By including coordinates, the convolutional layers can learn position dependent transfor-
mations. For example, in the A4CH view, the septum is most likely contained within a
small region. This means that convolutional layers can learn features specific septum ear-
lier by using the position to infer that the pixels in the input is from the right wall, instead
of requiring a large field of view to determine position.

A temporal coordinate channel can also be appended. This enables each convolutional
layer to easier determine which part of the cycle the current data belongs to. This is
likely even more useful for data that is not temporally interpolated. This is left to further
work.

In addition to coordinate channels, resizing recordings to a fixed pixel spacing was also
considered. In this case, a target pixel spacing must be set. With a fixed spacing, a trade-off
occurs between the amount of cropping of data with larger sector sizes and the amount of
padding to apply to data smaller than the fixed input shape. For smaller sector sizes where
padding is used, less information than what is possible is input to the network. This is also
true for larger sector sizes where cropping is used such that data is removed. Secondly,
data augmentations involving resizing can no longer be applied, as it would break the fixed
spacing assumption.
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7.3.6 Checkpointing

It might have been useful to apply a similar weighting as performed in testing while train-
ing. This would result in improving accuracy per patient in the validation set, as models
would be selected based on minimizing the error per patient, instead of improving average
performance over all cycles. However, batches consist of randomly selected cycles such
that more than one cycle from the same patient in a batch is not the norm.

Although checkpointing results in the best performance for cycles in the validation set, it
likely reduces generalizability as 100 evaluations of the validation data are taken for each
model. In fact, the optical flow model performing best on average has higher validation
error than the other pretrained models. This might not have been the ideal way to select
model parameters in retrospect. Hopefully, with nearly 200 patients for validation, the
effect is mitigated.

7.3.7 Data Choices

Input Length

An alternative to zero padding shorter cycles is to loop the input data. This is appropriate
given that the start and end frame of the input to be looped are the most similar. Looping
still results in a discontinuity between the start and end frames, due to cycle variability and
the motion of the transducer and patient. Alternatives which prevents temporal disconti-
nuities is to use other padding operations common in image processing, such as reflection
or replication. Finally, given that more frames are available before the start of or after the
end of the cycle, these frames can be included. However, as the convolutional layers of
I3D already use zero padding to obtain equal input and output shapes, the discontinuity
will occur in the model either way.

Optical Flow Calculations

Although the optical flow model performs better than the other approaches, the computa-
tional cost of estimating optical flow increases the latency significantly. If computational
cost or time usage is important, one of the B-mode alternatives might be preferable.

Whether the optical flow magnitudes are correct is difficult to evaluate. The selection of
optical flow algorithm and parameters is based on visual inspection. A more rigorous
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but time consuming method would be to acquire ground truth motion of some regions for
comparison, either by manual labeling or speckle tracking.

The optical flow assumptions of smooth motion does not hold for echocardiography due
to the nonrigid movements. This might make an optical flow algorithm without these
assumptions work better. Recently, deep learning approaches have also promised state-of-
the-art results for optical flow estimation. Therefore, PWC-Net, one of the best performing
deep optical flow algorithms was also briefly tested [76]. This algorithm yielded promising
results in terms of computational time, but the optical flow estimates were highly regular-
ized. The differences in performance might be explained by the model being trained on
the Flying-Chairs data set, purely rigid motion at large scales, highly different from 2D
echocardiography. On the other hand, the pretrained I3D uses variational optical flow such
that a variational algorithm might be more suitable when using the pretrained I3D.

7.3.8 Augmentations

Discussion of the rotate and crop augmentations are adapted from the project thesis.

While hopefully improving the invariance to rotated features in the CNNs, rotation of
the transducer does not yield the same result as rotating the B-mode image. Rotating
the transducer yields a rotated view of the heart, by including features in the direction of
the rotation, and discarding features at the direction opposite of the rotation. Rotating the
images themselves yields an image with the same features, but the sector rotated in relation
to the image axes. For small rotation angles the discrepancy is small.

Cropped versions of the images is another augmentation that generates unrealistic data,
as the ultrasound images always contains the whole sector. On the other hand, cropping
followed by resizing generates features of slightly different size and aspect ratio, corre-
sponding to how objects vary from patient to patient and transducer positioning. Cropping
also makes the model focus on different parts of the videos at each epoch. For example,
one crop might exclude parts of the heart walls or the AV valves. This should make the
models more robust to unseen data from other scanners or acquisition methods. For the
models performing quantification, padding or cropping means that there is more variation
in the dimensions of the input.

Although noise augmentation have not seen much use in echocardiography, similar aug-
mentations have been used frequently in deep learning, for example the color augmentation
of [77]. Compared to rotation, padding or cropping, the noise augmentation generates data
that is difficult to visually distinguish from real data. One could argue that adding random
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noise degrades the data, making the models less capable of learning finer details. This is
where the exponentially decreasing distribution of the added noise intensity is useful. As
low intensity noise is most probable, there is little chance of data degradation resulting in
worsened overall performance. The noise model is however still quite simplistic, and more
realistic noise could have been generated for example by taking into account the changes
in noise properties by frame rate, depth and width.
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7.4 Conclusion

Whether a deep learning model would be able to learn the concept of aging directly from
echocardiography was unknown, but models proposed were all able to learn age estimation
to some degree of accuracy. This is valid for the normal population which the models were
trained on, and to some extent for patients referred to examinations due to suspicion of
heart disease. The models were not able to learn an accurate mapping for patients far from
the mean age of HUNT 3. This is to be expected, as interpolation and extrapolation with a
nonlinear model and high dimensional features is difficult.

There were little or no separation between healthy and diseased patients in terms of esti-
mated age in the data sets considered. Possible reasons are that healthy patients referred
to examination are more similar to the diseased patients than patients in the normal popu-
lation used for training, or simply inaccurate models with too high variation in estimates.
However, models were accurate for two out of three data sets, which suggest that the mod-
els have learned age estimation using features not affected by the diseases in consideration.
Supporting this view is the inclusion criteria for systolic dysfunction, and that the aim of
the UNN-CAD study is to determine how applicable echocardiography is for detecting the
disease of the patients.

Deep learning models trained for echocardiography tasks can be used to estimate quality
in a semi-supervised manner. Inspection suggest that samples with poor quality are found
at a higher rate in the removed data than what is otherwise observed. These results are
only indicative, and labels of data quality should be generated before quantifiable results
can be provided.

Key takeaways from the results of age estimation are as follows:

• Small displacement optical flow is a viable input modality, on average outperform-
ing models operating on standard B-mode.

• Appending coordinate channels to the inputs improved results for two out of three
data sets, but decreased performance on the third. This suggests possibly added
value, but that more investigation into how to best use coordinate channels is needed.

• Reusing pretrained parameters from the photographic domain improves accuracy
significantly compared to random initialization.

• Training a model with data from several views is beneficial for age estimation, as
the amount of data available for training is increased. This is in contrast to most
current models, training with only one or a few views at a time.
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• Deep learning performed better than clinical measurements followed by linear re-
gression. Here, it must be noted that the clinical measurements are not originally
intended for age estimation.

• Saliency studies suggest that models are looking at regions of the heart known to
change with age, such as the atrioventricular valves and interventricular septum.

7.5 Further work

Further research into data quality assurance will enable faster experimentation without
manual inspection. Unsupervised or semi-supervised methods are beneficial as little or no
labeled data is required, but labeled data is still desireable for evaluating the feasibility of
the methods.

Inputting physical dimensions to the CNNs important for automated quantification. Co-
ordinate channels or interpolation to fixed dimensions are possible approaches which can
be developed further. Additionally, embedding models with other features such as gender,
height and age in a suitable way allows for more accurate models with access to other
information available to the practitioner. In this work, a simple approach was proposed
to embed the view of each cycle, but this method does not scale well to several features
without modifications.

When it comes to age estimation, finding a way of enforcing models to learn features
affected by disease can still be a viable option for disease classification without requiring a
large data set of diseased patients for training. Comparison between other types of CVD is
needed to determine if the approach is applicable for classifying any kinds of disease. The
methods proposed can also be used as a starting point for automated disease classification
from B-mode cycles.

The next HUNT study is currently in the finalizing stage. Taken 10 years later and inviting
HUNT 3 patients for participation, HUNT 4 likely contains more old patients than HUNT
3. Evaluation of the effects of estimated age can therefore be evaluated, by comparing
estimated age and patient health ten years later.
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8 | Appendix

8.1 Examples of Cycles With Quality Measurements

Here, randomly extracted cycles from HUNT 3 with automatic QA measures are pre-
sented. Numbers in green indicates errors below automatic QA thresholds, and numbers
in red indicating errors above the QA thresholds.
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Chapter 8. Appendix

(a) View error: 0.00, Timing error: 0.099

(b) View error: 0.00, Timing error: 0.40

(c) View error: 0.40, Timing error: 0.19

(d) View error: 0.52, Timing error: 0.33

Figure 8.1: Automatic quality assurance scores for cycles predicted to be the A4CH view.
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8.1 Examples of Cycles With Quality Measurements

(a) View error: 0.00, Timing error: 0.17

(b) View error: 0.00, Timing error: 0.32

(c) View error: 0.44, Timing error: 0.14

(d) View error: 0.40, Timing error: 0.31

Figure 8.2: Automatic quality assurance scores for cycles predicted to be the ALAX view.
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(a) View error: 0.00, Timing error: 0.18

(b) View error: 0.00, Timing error: 0.35

(c) View error: 0.45, Timing error: 0.15

(d) View error: 0.61, Timing error: 0.37

Figure 8.3: Automatic quality assurance scores for cycles predicted to be the A2CH view.
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8.1 Examples of Cycles With Quality Measurements

(a) View error: 0.00, Timing error: 0.17

(b) View error: 0.00, Timing error: 0.55

(c) View error: 0.48, Timing error: 0.15

(d) View error: 0.39, Timing error: 0.54

Figure 8.4: Automatic quality assurance scores for cycles predicted to be the PLAX view.
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(a) View error: 0.00, Timing error: 0.20

(b) View error: 0.00, Timing error: 0.75

(c) View error: 0.41, Timing error: 0.17

(d) View error: 0.47, Timing error: 0.56

Figure 8.5: Automatic quality assurance scores for cycles predicted to be the PSAX view.
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8.1 Examples of Cycles With Quality Measurements

(a) View error: 0.01, Timing error: 0.39

(b) View error: 0.02, Timing error: 0.53

(c) View error: 0.48, Timing error: 0.15

(d) View error: 0.45, Timing error: 0.60

Figure 8.6: Automatic quality assurance scores for cycles predicted to be the unknown view. All
cycles from the unknown view are discarded.
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8.2 Results for Each View

Descriptions of the models are found in Section 6.1.

8.2.1 HUNT 3 - Mean

The mean ages are calculated from cycles in the HUNT 3 training set, separately for each
view. The mean ages for training splits of all data sets are given in Table 8.1. The differ-
ences in mean age by view are caused by unevenly distributed number of cycles in each
view for a patient.

Table 8.1: Mean chronological age [years] for cycles in the HUNT 3-train split and NTNU-LVD
and UNN-CAD datasets for each view.

Dataset A4CH ALAX A2CH PLAX PSAX
HUNT 3 48.7 48.2 48.4 48.6 48.2
NTNU-LVD (H) 64.5 67.7 66.0 65.85 62.6
NTNU-LVD (D) 61.9 64.4 62.7 60.2 58.5
UNN-CAD (H) 56.7 56.8 57.2 57.3 55.7
UNN-CAD (H) 61.0 59.5 60.3 61.0 58.0

Results for predicting the HUNT 3 mean cycle age for patients in HUNT3-test, NTNU-
LVD and UNN-CAD is given in Tables 8.2 to 8.6.

Table 8.2: Predicting the HUNT 3-train mean cycle age on the HUNT 3-test

View N MAE µe σe R2

A4CH 477 12.3 1.28 14.4 -0.00800
ALAX 475 12.1 2.22 14.1 -0.0248
A2CH 655 11.8 0.620 13.9 -0.00198
PLAX 481 12.5 1.46 14.6 -0.00999
PSAX 1078 11.7 0.728 14.0 -0.00271
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8.2 Results for Each View

Table 8.3: Predicting the HUNT 3-train mean cycle ages on NTNU-LVD (H)

View N MAE µe σe R2

A4CH 484 19.5 15.8 15.3 -1.08
ALAX 143 21.5 19.5 14.1 -1.91
A2CH 373 20.2 17.6 14.5 -1.47
PLAX 119 19.8 17.3 13.5 -1.64
PSAX 237 19.1 14.4 16.1 -0.808

Table 8.4: Predicting the HUNT3-train mean cycle ages on NTNU-LVD (D)

View N MAE µe σe R2

A4CH 481 17.8 13.2 15.7 -0.709
ALAX 140 19.8 16.2 15.0 -1.17
A2CH 339 19.7 14.3 17.0 -0.703
PLAX 131 16.2 11.6 14.9 -0.608
PSAX 220 16.8 10.3 16.5 -0.391

Table 8.5: Predicting the HUNT3-train mean cycle ages on UNN-CAD (H)

View N MAE µe σe R2

A4CH 340 10.7 7.99 9.89 -0.652
ALAX 423 10.9 8.59 9.95 -0.746
A2CH 538 11.1 8.75 10.0 -0.763
PLAX 453 11.1 8.72 10.2 -0.734
PSAX 12 7.83 7.47 6.69 -1.25

Table 8.6: Predicting the HUNT3-train mean cycle ages on UNN-CAD (D)

View N MAE µe σe R2

A4CH 76 12.8 12.3 8.17 -2.27
ALAX 87 12.4 11.3 8.78 -1.65
A2CH 121 12.7 11.9 8.97 -1.75
PLAX 90 13.5 12.4 10.1 -1.49
PSAX 3 9.80 9.80 0.0 0.0
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8.2.2 Single I3D models

Table 8.7: Results of the single I3D models on cycles in the HUNT 3 test-set.

View N MAE µe σe R2

A4CH 477 6.28 1.73 7.73 0.695
ALAX 475 5.28 1.74 6.67 0.762
A2CH 655 5.83 2.65 7.10 0.710
PLAX 481 5.32 0.863 6.67 0.787
PSAX 1078 6.34 1.00 7.92 0.675

Table 8.8: Results of single view B-mode I3D models on cycles in NTNU-LVD (H)

View N MAE µe σe R2

A4CH 484 12.8 8.79 14.0 -0.166
ALAX 143 12.5 8.50 13.9 -0.339
A2CH 373 13.3 10.2 11.9 -0.173
PLAX 119 8.09 1.49 10.2 0.414
PSAX 237 15.6 10.5 15.4 -0.341

Table 8.9: Results of the single I3D models on cycles in NTNU-LVD (D)

View N MAE µe σe R2

A4CH 481 11.8 7.34 12.5 0.143
ALAX 140 10.8 6.89 10.9 0.259
A2CH 339 12.4 9.15 12.0 0.218
PLAX 131 7.18 -0.356 9.09 0.626
PSAX 220 11.8 6.57 13.3 0.191
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8.2 Results for Each View

Table 8.10: Results of the single I3D models on cycles in UNN-CAD (H)

View N MAE µe σe R2

A4CH 340 9.73 8.70 7.73 -0.383
ALAX 423 8.49 6.13 8.80 -0.0162
A2CH 538 8.49 6.63 7.86 -0.054
PLAX 453 7.38 4.69 7.73 0.212
PSAX 12 4.89 -1.39 5.73 0.223

Table 8.11: Results of the single I3D model on cycles in UNN-CAD (D)

View N MAE µe σe R2

A4CH 76 11.6 11.0 9.62 -2.18
ALAX 87 7.31 5.89 8.98 -0.497
A2CH 121 8.89 7.78 9.00 -0.760
PLAX 90 6.77 5.62 6.15 0.3282
PSAX 3 8.88 -8.88 3.39 0.00

8.2.3 Multi I3D

Table 8.12: Results of the multi I3D on cycles in the HUNT 3-test set.

View N MAE µe σe R2

A4CH 477 5.42 0.204 6.96 0.765
ALAX 475 5.29 2.21 6.36 0.772
A2CH 655 5.38 0.158 6.87 0.757
PLAX 481 5.50 0.441 7.07 0.764
PSAX 1078 6.36 0.0203 7.90 0.682
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Table 8.13: Results of the multi I3D on cycles in NTNU-LVD (H)

View N MAE µe σe R2

A4CH 484 10.4 4.15 12.2 0.289
ALAX 143 11.6 9.07 11.3 -0.0553
A2CH 373 11.1 7.11 11.2 0.166
PLAX 119 8.75 2.67 10.9 0.313
PSAX 237 11.9 4.79 13.7 0.179

Table 8.14: Results of the multi I3D on cycles in NTNU-LVD (D)

View N MAE µe σe R2

A4CH 481 8.76 2.64 10.2 0.547
ALAX 140 10.1 5.28 10.8 0.351
A2CH 339 10.1 5.93 10.9 0.466
PLAX 131 7.23 0.0405 9.17 0.620
PSAX 220 10.1 1.88 12.3 0.433

Table 8.15: Results of the multi I3D on cycles in UNN-CAD (H)

View N MAE µe σe R2

A4CH 340 8.58 6.66 7.88 -0.0881
ALAX 423 10.0 8.64 8.41 -0.469
A2CH 538 8.99 7.24 8.18 -0.190
PLAX 453 6.96 4.28 7.71 0.250
PSAX 12 5.83 1.10 6.62 -0.00702

Table 8.16: Results of the multi I3D on cycles in UNN-CAD (D)

View N MAE µe σe R2

A4CH 76 10.4 9.70 9.00 -1.63
ALAX 87 9.58 8.79 8.97 -1.05
A2CH 121 8.88 7.86 7.84 -0.533
PLAX 90 6.53 5.09 6.54 0.328
PSAX 3 2.26 -2.26 1.63 0.00
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8.2 Results for Each View

8.2.4 Multi-Coords I3D

Table 8.17: Results of the Multi-coords I3D on cycles in the HUNT 3-test set

View N MAE µe σe R2

A4CH 479 5.78 1.46 7.22 0.739
ALAX 478 5.73 2.67 6.91 0.726
A2CH 662 5.46 0.801 6.92 0.752
PLAX 481 5.57 2.07 7.11 0.745
PSAX 1081 6.19 1.09 7.52 0.704

Table 8.18: Results of the Multi-coords I3D on cycles in NTNU-LVD (H)

View N MAE µe σe R2

A4CH 470 12.75 8.32 14.2 -0.120
ALAX 120 15.6 13.4 14.4 -0.931
A2CH 331 11.1 7.65 12.8 -0.00173
PLAX 112 10.14 6.69 11.6 0.0633
PSAX 208 12.45 7.68 13.4 0.0411

Table 8.19: Results of the Multi-coords I3D on cycles in NTNU-LVD (D)

View N MAE µe σe R2

A4CH 460 11.9 8.16 12.6 -0.104
ALAX 137 14.1 10.2 12.8 -0.0676
A2CH 325 12.3 7.68 12.6 0.304
PLAX 117 8.59 3.14 10.2 0.473
PSAX 201 10.7 4.37 12.4 0.369
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Table 8.20: Results of the Multi-coords I3D on cycles in UNN-CAD (H)

View N MAE µe σe R2

A4CH 354 6.04 3.71 6.99 0.341
ALAX 430 6.67 4.46 7.67 0.226
A2CH 523 6.54 3.49 7.83 0.246
PLAX 460 6.15 3.30 7.30 0.349
PSAX 10 2.58 -1.49 3.69 0.651

Table 8.21: Results of the Multi-coords I3D on cycles in UNN-CAD (D)

View N MAE µe σe R2

A4CH 83 8.04 6.14 9.63 -0.714
ALAX 84 7.81 6.58 8.76 -0.680
A2CH 117 7.34 4.76 9.17 -0.337
PLAX 91 6.42 4.11 6.96 0.361
PSAX 0 - - - -

8.2.5 Multi-Coords-Small I3D

Table 8.22: Results of the Multi-coords-small I3D on cycles in the HUNT 3-test

View N MAE µe σe R2

A4CH 479 6.28 0.00833 7.79 0.709
ALAX 478 6.66 2.52 8.01 0.648
A2CH 662 6.11 0.380 7.65 0.699
PLAX 481 6.52 -1.03 8.14 0.687
PSAX 1081 7.24 1.95 8.78 0.587
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8.2 Results for Each View

Table 8.23: Results of the Multi-coords-small I3D on cycles in NTNU-LVD (H)

View N MAE µe σe R2

A4CH 470 14.0 8.63 15.8 -0.343
ALAX 120 17.3 15.01 16.0 -1.41
A2CH 331 12.7 8.21 15.2 -0.342
PLAX 112 11.7 7.39 13.1 -0.18
PSAX 208 15.2 11.3 14.8 -0.395

Table 8.24: Results of the Multi-coords-small I3D on cycles in NTNU-LVD (D)

View N MAE µe σe R2

A4CH 460 12.6 8.72 12.9 -0.197
ALAX 137 17.0 13.0 14.7 -0.518
A2CH 325 13.9 8.99 14.7 0.0550
PLAX 117 9.90 3.43 11.8 0.284
PSAX 201 12.9 8.17 13.6 0.0750

Table 8.25: Results of the Multi-coords-small I3D on cycles in UNN-CAD (H)

View N MAE µe σe R2

A4CH 354 5.88 1.92 7.61 0.352
ALAX 430 7.71 5.33 8.59 -0.00475
A2CH 523 6.76 3.31 8.13 0.207
PLAX 460 6.12 1.70 7.70 0.369
PSAX 10 4.44 -0.08 5.14 0.399

Table 8.26: Results of the Multi-coords-small I3D on cycles in UNN-CAD (D)

View N MAE µe σe R2

A4CH 83 6.84 4.97 8.27 -0.220
ALAX 84 8.61 7.48 8.78 -0.864
A2CH 117 7.90 6.42 8.56 -0.434
PLAX 91 7.16 3.63 7.95 0.252
PSAX 0 - - - -
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8.3 Examples of Predictions and Saliency: Multi-I3D

(a) View: A4CH, Age: 59 years, Predicted age: 62.6 years

(b) View: ALAX, Age: 37 years, Predicted age: 38.8 years

(c) View: A2CH, Age: 30 years, Predicted age: 27.1 years

(d) View: PLAX, Age: 48 years, Predicted age: 47.9 years

(e) View: PSAX, Age: 66 years, Predicted age: 59.1 years

Figure 8.7: Predictions and guided saliency (red) for the multi-I3D on cycles in the HUNT3 test set.
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