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i

Problem Formulation

The main objectives are:

• Modeling of the three-legged locomotive robot.

• Analysis of how mass distribution influences the model among other proper-

ties.

• Analyze possible motions relevant for walking purposes for the robot.

• Reveal if particular configurations lead to specific strategies, or if specific

strategies should be avoided for particular configurations.
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Preface

This report describes the analysis of models and motions for a ten-link locomotive

robot. This task was chosen as a master thesis in robotics at NTNU as part of

the study program Engineering Cybernetics, during the autumn 2018 and winter

2019. The author chose this task because of a general interest in locomotive, legged

robots. Also, the author wanted to study a type of robot which does not appear

often in the literature and practical applications.

Trondheim, 2019-17-06

Per Anton Øverseth Olsen
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Abstract

The environment surrounding humans consists of areas where wheels are not opti-

mal for locomotion. Hence, legged robotics has potential to expand the availability

of machines in environmental challenging areas. Some architectures, as bipeds,

quadrupeds and hexapods, have in general been more popular. Analysis of the

dynamics of a three-legged locomotive robot, called the tripod, can reveal benefits

and disadvantages compared to the other architectures. Analyzing the dynamical

properties of a legged locomotive robot consists of modeling of the dynamics and

investigating the possibility and properties of gaits. The robot models were de-

veloped using d’Alemberts principle of virtual work and Euler-Lagrange method

of generalized forces together with impact models based on Newton’s Impact law.

The dynamic models, roughly categorized as the simple model with platform mass

considerably larger than leg masses, the semi-simple model, with platform mass

and masses in the knee joints, and the full complexity model with masses and iner-

tias for each link were calculated and simulated using MATLAB. The specific joint

torques needed for the platform to follow different trajectories, while supported by

all three legs, are presented and simulated for some cases. This is an over actu-

ated system with geometrical dependencies. Motions describing lifting of one leg

is presented, in addition to the dynamics of the following pendulum-like behaviour

of the two-leg stance. A motion generator was developed for the semi-simplified

tripod, under some assumptions, which proved to be undesirable. Some strategies

for repositioning of the leg and especially lifting the leg proved to be more robust

for the simplified model.



0.1. SAMMENDRAG v

0.1 Sammendrag

Miljøet mennesker omgir seg i best̊ar av omr̊ader som ikke er optimale for forflyt-

ning med hjul. Av denne grunnen, har roboter med bein potensiale til å ekspan-

dere fremkommeligheter i utfordrende miljøer. Noen arkitekturer, som tobeinte,

firebeinte og seksbeinte roboter har generelt sett vært mer populære. Analyse af

dynamikken til en trebeint forflytningsrobot , kalt tripod, kan avdekke fordeler

og ulemper sammenlignet med andre arkitekturer. Analyse av de dynamiske egen-

skapene til roboter med bein best̊ar av modellering av dynamikken, undersøkelse av

potensielle gangarter og deres egenskaper. Robotmodellene ble utviklet ved å bruke

d’Alemberts prinsipp omhandlende virtuelt arbeid og Euler-Lagranges metode med

generaliserte krefter, sammen med impulsmodeller basert p̊a Newtons impulslov.

De dynamiske modellene, grovt karakterisert som simplifisert modell med neglisjer-

bare masser til beina, semi-simplifisert modell, med platform-masse og masser i kne,

og den helkompliserte modellen der alle masser om treghetsmomenter er medbereg-

net, ble utledet og simulert ved hjelp av MATLAB. De spesifikke leddmomentene

nødvendige for at platformen skal følge forskjellige baner, i tilfellet der platformen

er holdt oppe av alle tre beina, er pressentert og simulert for enkelte tilfeller. Dette

er et overaktuert system med geometriske betingelser. Bevegelser som beskriver

løfting av et bein er presentert i tillegg til dynamikken til den medførte pendel-

lignende oppførselen ved tobeinstillingen. En bevegelsesgenerator ble utviklet for

den semi-simplifiserte modellen avhengig av noen antagelser, som viste seg å være

uønsket. Noen strategier for reposisjonering av beinet og spesifikt løfting av beinet

viste seg å være mer robuste for den simplifiserte modellen.
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Chapter 1

Introduction

1.1 Relevance and history of legged robotics

In contrast to the continuous contact with the surface resulting from wheels and

belts, legged locomotion uses discrete points on the surface, sequentially, to move

the rest of the body continuously. This has some immediate advantages when it

comes to different challenging surfaces. [36] claims that around fifty percent of the

earth’s surface is inaccessible to traditional wheeled vehicles. Building roads fit

for wheel or belt-transportation can damage vulnerable environments and in many

cases becomes impractically costly. The importance of development of vehicles able

to travel through these areas, without introducing lasting damage, is increasing as

we investigate remote locations on Earth and in space. The surfaces challenging

for wheeled locomotion exists in natural environments, catastrophe-areas and many

areas designed for human walking [36].

Because of technical difficulties regarding legged robotics, successful attempts of

dynamic walking using four or less legs have been rare before the millennium. Still,

most of the legged robots currently in use are connected to research rather than

problem solving in industry. Some examples of recent successful robots designed

for walking dynamically in a variety of environments are Atlas and Spot, devel-

1



2 CHAPTER 1. INTRODUCTION

oped by Boston Dynamics and ASIMO developed by Honda[4]. The main reasons

for the rapid development of walking robots are the computer technology, strong

and precise electric motors, and development of relevant mathematics and motion

studies [36]. Researchers began investigating the field of legged robotics in the

1950’s in a systematic way, and ten years later prototypes began showing up. The

1960’s legged robots used conservative control strategies demanding powerful actu-

ators with high energy consumption, and were hard to steer. The problems at that

time were mostly due to the limited understanding on leg coordination control and

walking gaits, difficulties developing practical machine legs, and limited computing

capability. Today the main problem is not computing power, but rather construc-

tion of practical machine legs1 and integration of different techniques to achieve

robustness in different environments.[2] claims that the third stage of cybernetics

and robotics development, characterized by algebraic progress, is still going on to-

day2. Even if legged locomotion has some advantages when it comes to challenging

terrain, the disadvantages when it comes to speed, control complexity and me-

chanical complexity, compared to different wheel and belt-driven vehicles, makes

walking machines rare in practice. Fast motion of the body requires faster moving

legs and/or long legs. Moving parts usually change direction one or more times

during every step. This causes wear and tear on bearings [3]3. In addition im-

pulse forces damage mechanical components such as bearings and fragile parts. [4]

mentions this was a problem for the testing of the robot called Rabbit, a bipedal

locomotive robot. In [32], a failure matrix summarizes possible bearing failures

due to shock loads and vibrations. These involve fatigue, wear damage, plastic

deformation problems, fracturing and cracking. There are methods to reduce wear

caused by switching directions as well as spring damping systems that can avoid

destructive shock forces, however this increases the system complexity and cost.

Concerning three-legged robotics, the previous research is limited. Despite the fact

1Especially actuators that are strong, accurate, light, and fast.
2At least between 1970 to 2000
3Walking robots which uses wheels with legs are considered to be wheeled robots in this report.
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that three legs provide minimal static stability, only very specialized problems are

solved using three legs. When standing still on an uneven surface with more than

three legs, the benefit of a larger configuration polygon4 is prominent regarding pre-

vention of falling. However, in terms of precision, a small deviation in the length of

one leg, or equivalently an unexpected elevated area of the surface, leads to a tilting

axis, if the other legs does not equalize this difference. For a construction with an

even5 number of evenly distributed legs, the center of pressure usually comes near

the tilting axis, which is an unstable equilibrium. These axes are depicted in figure

1.1. Small disturbances can hence cause tilting. Minimal design together with the

need for high precision is the main reason the NanoWalkers in [22] has three legs.

The NanoWalker’s legs however, differs from usual robotic legs, as they are piezo-

ceramic actuators, and the gaits depend on friction constants and other material

properties. Robots used for demining missions are in some cases quadropeds, but

the risk of unintentional explosion vitalizes development of gaits where one or two

legs are missing. In [17], this problem is addressed, and a solution is presented.

The demining robots use robotic manipulators, more commonly used in general

robotics, and more relevant for this report. The kick-and-swing gait is however,

based on a number of assumptions which limit the controllability and makes the

results less relevant for the general tripod. More specifically, these assumptions

are; massless legs, non-slipping support legs, and the collision of leg with ground is

inelastic. Three-legged robots developed for purely scientific reasons, as the simple

spring-servo actuated robots in [23], comes in different shapes. The purpose of

the latter research is to investigate the reason for lack of animals on three legs in

nature. The simplicity of the robot limits the possibility of many conceptually dif-

ferent gaits, and these gaits are specifically generated by using periodic oscillations

for the muscle-like actuators. The lack of specific research on the general tripod

with insect-like6 legs makes the literature on bipeds relevant.

4CP, (the area spanned between the feet at ground)
5An odd number of legs does not lead to tilting axes directly in the middle.
6Legs with a two-DOF hip joint and a knee, often seen i hexapod toys and similar robots
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Figure 1.1: A platform with four legs standing on a surface. The sections on the

floor depict the tilting axes if one leg is longer or shorter

1.2 Three-legged walkers

The lack of DOF and/or the lack of link complexity of models make the prior

research on tripod limited to certain gait families. Statements regarding why the

mathematical models are simplified and comparisons of the models are lacking.

Often the main goal is not the mathematical model, but rather the methodology,

such as in [23]. In many cases simplifications are either necessary to gain under-

standable information about the system, or a simplified model can be sufficient for

the specific task, not demanding further analysis. As tripedals are so rare in the

robotics literature, a general analysis of the subject is desirable.

Analysis of gaits for a N-DOF three-legged walker, considering realistic impact

models and full dynamics of legs, might introduce other gait patterns that are more

energy effective, faster or more robust than previous gaits for tripedals. Analysis

of gaits and models which uncover weaknesses in terms of these mentioned fac-

tors adds equally important knowledge to the subject. The level of complexity of

the different models depends on many factors. From the previous project [29], a
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high level of complexity is expected for the least simplified models. Restricting the

model will reformulate the problem in various ways. The robot kinematic graph

and parameters of the tripod investigated in this report are tightly embedded in a

larger project consisting of building the physical tripod, its electronic components

and payload. As the physical design procedure has pursued for almost a year,

an early version prototype is under construction with complete electronic modules

and some mechanical parts. The parameters of this prototype is used as a basis

for this study. For the prototype, lots of factors such as joint friction, slack in

gears, elasticity of links and in gears, finite resolution of sensors, and friction forces

between surface and feet can introduce additional complications. Some of these

factors will be addressed in this report. The main goal is however, development

of a mathematical basis. Analysis of a general tripod with associated tripod gaits,

or motions relevant for gaits, is needed, as well as comparisons between different

models.

The tripod robot investigated in this report is a ten-link, triradially symmetric

walker with passive feet, where each leg has three DOF and rotational actuators

connected to the platform. In connection to the surface, when standing still or

moving, the number of degrees of freedom is dependent on which friction assump-

tions are made, and number of legs in contact with ground. A figure depicting the

tripod can be viewed in figure 1.27.

1.2.1 Contributions and structure

In this report, several models are analyzed. Firstly different approaches regarding

coordinate frames are presented. Together with different assumptions and geomet-

rical simplifications, these give rise to a number of models with different number

of DOFs. The full model with masses and inertias of every link is developed, but

7Note that the other representations of the tripod shows a circular platform. This is closer to

the physical tripod
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Figure 1.2: Overview of the ten-link tripod analyzed in this report.
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simplifications are necessary in order to benefit from the information. Different

models and considerations regarding the three-leg stances are analyzed briefly for

various models. Torques as a function of time is derived from these equations. The

dynamics of the three-leg stance leads to a strategy for lifting a leg, leading to the

two-leg stance. A simple model similar to the ones described in [17] and [13], is

analyzed, focusing on the two-leg stance, where the support-leg joints are fixated.

Dependent on where the desired next position of the swing leg foot is, one strategy

was found not to be robust when leg masses and inertias are considered small in

contrast to the platform mass and inertia. For the slightly more complex model,

with added masses to the knee-joints, a similar tendency was detected, suggesting

similar gaits for this model.

This report starts with a brief representation of the key points regarding back-

ground theory. The main part, describing the methodology, shows how the models

were developed, associated motions and assumptions in addition to different limi-

tations. Here, the first part will focus on the different models, and the second part

will focus on their associated motions. As these are tightly connected, there are

some intersection. These mentioned chapters lead to some results presented, before

discussion, conclusion and future work. Lastly, acronyms and some equations are

presented in the appendix.

There are many models with associated findings. The connection and main de-

velopment of these models and motions are depicted as a tree8 in figure 1.3. The

nodes with blue color is also calculated in MATLAB.

8It is actually not a tree, but a simple graph
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Designator Assumption

A1 Leg-masses are eliminated

A2
The platform is a rigid object, not rotated in

pitch and yaw, and the back leg is on the symmetry axis

A3 The joint variables of the stance legs are fixated/constant

A4 There are no sudden changes in velocities at the contact points

A5 The robot is considered a rigid solid

A6 The platform orientation aligns with the initial frame

A7 CP is an equilateral triangle

A8 sin(α) ≈ α

A9 The displacement of CM is sufficiently small

Table 1.1: Description of the assumptions in the tree 1.3
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Figure 1.3: A graph describing the various models and how they developed.
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Chapter 2

Background

This chapter gives a brief overview of the theoretical concepts which lies behind

the development of different models and heuristics.

2.1 About the tripod

The geometric properties of the tripod are not fixated. The robot, called the tripod,

was previously investigated during the introductory project [29], and has a physi-

cal realization which currently1 is under construction. This physical robot will be

called the physical tripod in this report. The mechanical, electrical, and other spec-

ifications of the physical tripod can be found in [30]. Even if the analysis in this

thesis is not restricted to the geometrical and physical properties of the physical

tripod, some of the simulations and calculations will be using these values. For

the total tripod project, which spans a wider purpose than this report alone, a

minimalistic, but not too restricting, design was desirable, because of the projects

economy, available computational power and the model complexity. Hence, differ-

ent N-DOF legs with rotational actuators were considered. Linear actuation was

not desirable as the actuators are in general more expensive, complex to make, or

1in 2019

11
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Figure 2.1: Three-DOF leg referred to as insect-leg.

require many extra components compared to the simple servo motors. A visualiza-

tion of the tripod can be viewed in figure 1.2. This project will be mentioned later

in this report.

2.2 Three-DOF legs

There are many different ways of constructing three-DOF legs. The insect-like

design, as in figure 2.1, was chosen as it is one of the revolute joint realizations,

fit for placing the motors with gear boxes such that the inertia is minimized. The

mass of the motor and gear-box is the main contribution to the total mass of

each link, and the placement of these components are crucial considering the leg

inertias. Note that an additional rotational joint at the hip2 of the robot expands

the configuration space of the tripod.

2The two joints (in this example, three) attached to the platform is called the hip in this thesis.
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2.3 Generalized coordinates

There are several ways of describing the positions and velocities of a multi-link

robot. Important variables are positions and velocities of the centers of mass for

each link, and the rotational equivalents. These variables are needed in order to de-

rive the equations of motion for the system. Coordinates which describes the joint

variables are also needed in order to describe the configuration of the robot. As

both orientation and position of each link in three dimensional euclidean space, is

important, some strategies are better than others. Excessive coordinates (xp, yp, zp)

can describe the centers of mass in the coordinate system p, and similar vectors can

describe the joint positions, and the feet positions. However, this quickly becomes

overly complex. The notion of coordinate frames attached to each separate link

is therefore a more suitable strategy. This can be achieved by using homogeneous

transformations. These are a subset of affine transformations [20] in three dimen-

sional space described with four dimensional vectors and matrices in R4x4. The

homogeneous transformations form a group called Special Euclidean Group [10].

These are specified in greater detail in [37] and in the prior report [29].

The same transformation between frames can be expressed in more than one way

with use of the general rotations. Most robotic joints, including the joints for

the tripod, consist of pistons moving linearly or simple revolute hinge joints. This

makes the description of the positions and orientations of links, as well as the inverse

kinematics, unnecessary complex in the case of the description by general rotations.

A solution to this is the Denhavit-Hartenberg convention. This convention is based

on two rotations, and two translations,

Ai = Rz,θiTz,diTx,aiRx,αi . (2.1)

Even if the D-H convention does introduce generalized coordinates, the description

of position and orientation of a 6-DOF solid still requires six generalized coordi-

nates using D-H. In these cases, the general rotation and translation might be more

intuitive.
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Where D-H convention or general rotations does not represent the different link

positions of a multi-link robot in a intuitive way, excessive coordinates can also

considered. However 3-D space introduces three coordinates for each link, and

rotations often becomes challenging to represent.

2.4 Dynamic equations

This sections will briefly describe which methods are used when deriving dynamic

equations for robot systems. A key concept for a system without dissipative forces

and distributed parameters is the law of conservation of mechanical energy. In

section 2.3 we saw that generalized coordinates can reduce the number of equations

for a system. For example, dynamics of two a link pendulum can be written in

excessive coordinates (x1, y1) and (x2, y2) (Cartesian coordinates of mass centers

of the links), or in generalized coordinates θ1 and θ2 (angles between links and

the vertical plane). For some robotic systems, the usage of generalized coordinates

could introduce extra confusion instead of a simplified dynamics. However, the

Denavit-Hartenberg convention provides generalized coordinates which in many

cases leads to a huge reduction in number of equations.

2.4.1 D’Alembert’s principle of virtual work

In dynamics, the concept of virtual work is important. It helps to bind displace-

ments of a mechanical system in 3D space, forces, torques acting on the system,

and displacements of the generalized coordinates, and generalized torques [8].

Now, consider an example, a system from N freely moving rigid bodies in 3-D

space. The system has 6N degrees of freedom3. However, if geometrical constrains

are present between the rigid bodies (for example, hinges and prismatic joints)

then the system will have fewer degrees of freedom (< 6N). These geometrical

3Note that a rigid body has orientations and positions, meaning 6-DOF if there are no geo-

metrical constraints
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constraints are due to forces of constraints or reaction forces. If the constraints are

ideal, then they must satisfy the principle of virtual work (see [8] for more details)

N∑
k=1

δrk · Fck = 0 (2.2)

, where δr is the vector of virtual displacement and Fc is the reaction force.

When the generalized coordinates are independent, d’Alembert’s principle of vir-

tual work can be expressed as follows,

N∑
k=1

∂rk
∂qi

(
mk

d2rk
dt2
− Fk

)
= 0. (2.3)

Here, qi are the generalized coordinates, mk the mass of the particle, and Fk is the

external force.

2.4.2 Euler-Lagrange equations

In the following part, consider a mechanical system with generalized coordinates

q ∈ Rn, and holonomic constraints φk(q) = 0. The equations of motion for such a

system can be obtained using the Lagrange equations of the I-st kind (see [29] for

more details),

L = K − P, (2.4)

d

dt

[ ∂L
∂q̇i

]
− ∂L
∂qi

=
∑
k

λk
∂φk
∂qi

. (2.5)

In equation 2.5, P is total potential energy of the system, K is total kinetic energy

of the system, qi is the i-th generalized coordinate, λk is the k-th Lagrangian

multiplier, and φk is the k-th holonomic constraint. This is explained in greater

detail in [37].

As 2.5 shows, the method requires one to evaluate the total kinetic and potential

energy of the system. The potential energy can be calculated directly from the

centers of mass of each link and the gravity vector as given in4,

Pi = mig
(

0 0 1
)
·H0

i · li. (2.6)

4If the multi-link system is affected by other conservative forces like magnetic fields or similar

this might be more complicated
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This procedure is described in [37]. Here, mi is the mass of link i, H0
i is the

homogeneous transformation matrix describing position and orientation of link’s

frame with respect to the initial frame, and li is the position of center of mass of

link i given in the link’s frame. The potential energy is a scalar-valued function

Pi ∈ R.

The angular and linear velocities and their velocity Jacobians calculated as in [37]

and [5], can be summarized in the equations below,5

v0n = Jnq̇, (2.7)

ω0
n = Jω q̇, (2.8)

ω0
n =

n∑
i−1

ρiq̇iz
0
i−1, (2.9)

v0n = ȯ0n =

n∑
i−1

∂o0n
∂qi

q̇i, (2.10)

Jω = [ρ1z0 · · · ρnzn−1], (2.11)

Jv = [
∂o0n
∂q0
· · · ∂o

n
n

∂qn
], (2.12)

J =

Jv
Jω

 . (2.13)

From these equations the kinetic energy, and hence the Lagrangian as in equa-

tion 2.5 can be derived as a function of generalized coordinates and generalized

velocities,

K =
1

2
q̇T
[ n∑
i=1

miJ
T
viJvi + JTωiRiIiR

T
i Jωi

]
q̇. (2.14)

The inertia matrix, Ii, of link i, is a symmetric positive definite matrix. Alignment

of the link coordinate system often allows the non-diagonal element to be nullified

[18].

For a system with n generalized coordinates, the method of Euler-Lagrange leads

to n equations, each associated with the generalized coordinate and the generalized

force acting on this coordinate. This system of equations can be quantified in a

5These equations are presented in [29]
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matrix form,

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ. (2.15)

The matrix D corresponds to the kinetic energy of the system (the expression

within the brackets in 2.14). The matrix C can be derived by direct calculation

of the Christoffel symbols. This equation and details regarding these methods are

stated in [37].

2.5 Impact models

When a leg hits the ground, a sudden change of velocities might occur for the

different links of the robot. This change of velocities depends on the elasticity

and mass of the materials and influences designing strategies regarding gaits. The

main considerations is if the impact is completely elastic, completely inelastic or

something in between. In addition, the geometric parameters should be taken into

account. The easiest friction models are those which depict the extremes. These are

for most robots less realistic than na empiric model based on experiments. However,

simple impact models are often used in legged robotics [4], [24]. In this section, the

easiest impact principles are presented in conjunction with Euler-Lagrange, and

lastly alternative empirical approaches for developing realistic impact models are

briefly mentioned. Table 2.1 summarizes the symbols used in this section.
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Symbol Meaning Space

v+ Velocity of a colliding particle after collision R

v− Velocity of a colliding particle before collision R

e Coefficient of restitution 0 ≤ e ≤ 1 ∈ R

t−, t+ Time right before and right after collision R

Sj Generalized applied impacts R

Qj Generalized forces R

Ii Unknown Lagrange multipliers R

rc Impacts at the contact points R

q−, q+ Generalized coordinates right before and right after impact R

xi Center of mass for a body i R3

fi The right hand side of the Euler-Lagrange equation 2.5 R

Dc Constraint matrix Ri×j

Mi,j The mass matrix Ri×j

Table 2.1: Description of the variables and parameters in section 2.5

2.5.1 Inelastic and elastic impacts

A collision is called perfectly inelastic if there is no conservation of mechanical

energy. In principle, this is due to deformation, but significant deformation due

to impact is not a normal case for nondestructive analysis, and is not included in

this thesis. For a robot manipulator relevant for this thesis, mechanical energy will

mainly be absorbed by dynamic friction forces in the gears for the different joints,

and the motors. The perfectly inelastic impact of two objects lead to equivalent

velocities after impact. A moving leg will therefore stand still after impact with

the floor, according to this model. This can be described as follows,

v+ = −ev−. (2.16)

where the constant e is equal to zero in this case.

The opposite of a perfectly inelastic collision is elastic collision. For this case e = 1

(see [21]), and the mechanical energy is fully conserved.
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Even if the elastic or perfectly inelastic models are less realistic than an inelastic

(not perfectly), a combination of these, where 0 < e < 1, can be sufficient, when

developing motions. An inelastic collision depends on the material and geometry,

but can in many cases be modeled by a mass spring damper model.

2.5.2 Impact for a constrained Euler-Lagrange system

For a constrained Euler-Lagrange model such as model 2.5, the impact equations

can be derived using the method described in [19], and are shown below,

Sj = lim
t−→t+

∫ t+

t−
Qjt dt, (2.17)

lim
t−→t+

∫ t+

t−
Ii dt = rc, (2.18)

q−i = q+i (2.19)

where

,

Qj =
∂xi
∂qj

fi. (2.20)

Integration of the equations of motion from t− to t+ yields the impact equations,( ∂L
∂q̇i

)+
−
( ∂L
∂q̇i

)−
= Sj − ri

∂Dc

∂qi
, (2.21)Mi,j Dc,i

Dc,j 0

q̇+j
rc

 =

Mi,j q̇
−
j + Si

−eDc,lq̇
−
l

 . (2.22)

2.5.3 Development of impact models based on experiments

In desire for a better model, material constants and geometry should be included

in the model. The bouncing of a swing leg when it hits the ground can lead to a

faulty positioning of the leg, timing faults, and unreliable friction forces. Hence,

simplistic models can be dependent on controlled environments in order to func-

tion. Analytic models of robotic arms consisting of lots of different materials and
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geometries, with several links interacting through the different joints, can quickly

become impractically advanced, such that testing would be preferred for the spe-

cific robot. The simplest approach is to develop a single spring damper model

based on interpolation of maximum and minimum values of relevant velocities and

joint positions, with nonpassive joint velocities equal to zero. There exists clear

methods for performing such two-level factorial design described in detail in [1]. For

N parameters with a high and a low value, at least 2N experiments are needed.

Repeating the experiment gives information about the variance. This approach is

expandable and can be effective for models where material constants and latent

effects are prominent. To derive a model based on these experiments, different

methods can be used such as MLR6, or more advanced methods such as PCR and

PLSR. For sensing forces, positions, and velocities for a robotic system, the output

is usually a sequence of values, comparable to functions of time, and preprocessing

these signals can be necessary.

Another approach on deriving an impact model based on inputs and outputs of

an unknown system is subspace identification methods such as described in [31]7.

These methods uses input and output matrices for deriving system equations on

the standard form,

xt+1 = Axt +But,

yt = Cxt +Dut. (2.23)

This system can be analyzed using classical control theory such that dampening

constants and elasticity factors can be found, or it can be used directly [2].

6(Multiple Linear Regression), (Principle Component Regression), (Partial Least Squares Re-

gression)
7Different nonlinear variants also exist.
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2.6 Simulation and validation of models

2.6.1 Numeric calculation of solutions to multi-dimensional

ODE

There are different ways of computing the solutions of nonlinear differential equa-

tions. One of the simplest methods is Eulers-method also known as Forward-Euler.

This method is shown in the pseudo code below

Algorithm 1 Forward-Euler in pseudo code

1: xdd = f(xd,x)

2: xd(0) = v0

3: x(0) = x0

4: dt > 0 is sufficiently small

5: for i ≤ nr. of iterations ; i+ = 1 do

6: xddi+1 ← f(xdi,xi)

7: xdi+1 ← xdi + xddi · dt

8: xi+1 ← xi + xdi · dt

9: close;

For computer calculations, round-of errors will increase as dt → 0 [26] [16]. The

error of the solution is impossible to eliminate in practice, but for the more precise

methods, as Runge-Kutta 4 and higher order Runge-Kutta-methods, the approx-

imated solution is still a good indicator of how the overall dynamics will behave.

The numerical solutions of the different ODEs will approximate the solution within

some margin, deviating from the analytical solution for every step. The error rate

should be taken into account when these parameters are set. The error for Euler’s

method for solving the ordinary differential equation, ẋ = f(t, x), is given by the-

orem 13.17 in [26], stated below.
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Theorem 13.17

Suppose f, ft, fx ∈ C are bounded functions on t ∈ [a, b] and x ∈ R. Let εk =

x(tk) − xk denote the error at step k, when applying Euler’s method with n steps

of length h with the condition x(a) = x0. This is described by 2.24

|εk| ≤ h
D

2C

(
e(tk−a)C − 1

)
≤ h D

2C

(
e(b−a)C − 1

)
(2.24)

for k = 0, 1, ..., n. Where the constants C,D are given by

C = max
t∈[a,b],x∈B

|fx(t, x)|,

D = max
t∈[a,b]

|ẍ| (2.25)

where:

fx(tk, θk) =
f(tk, x(tk))− f(tk, xk)

(x(tk)− xk)
θk ∈ (xk, x(tk))

The global fault is important for the understanding of the accuracy of the simula-

tion, especially when approaching unstable equilibrium points. The constant C is

also known as the Lipschitz constant of f [9][11].

2.7 Virtual holonomic constraints

Systems with one or more passive degrees of freedom are called underactuated sys-

tems. One way to reduce the number of passive DOFs is to introduce physical

barriers and/or actuators. For example consider the double pendulum. If the end-

point of the second link is attached to a linear rail, the system loses one passive

degree of freedom as the first link and the linear rail describes the position and

velocity of the second link. In this example, the linear rail is a holonomic con-

straint. These depend only on positions. A system with multiple passive DOFs

can be reduced, even if physical constraints are inactive. A virtual holonomic con-

straint is a position dependent mathematical relation which, when combined with

the equations of motion, reduces the systems number of passive DOFs. Feedback

control laws provide the chosen relation between the coordinates [34].
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2.8 Motion planning for underactuated system

Given an N -DOF system with one passive degree of freedom r, the desired relation

between the coordinate associated with the passive and the non-passive degrees of

freedom can be formulated as,

qi = φi(r), (2.26)

where i = 1, 2,..., n-1, and

q̇i = φ̇i,

q̈i = φ̈i. (2.27)

Here r represents the passive coordinate, and qi represents the N − 1 non-passive

coordinates. The continuously differentiable functions, φi, are called the virtual

constraints. Substituting qi by φi gives the scalar equation,

α(r)r̈ + β(r)ṙ2 + g(r) = 0, (2.28)

(see [35]), where α, β, g are continuously differentiable functions. Let r(t) be a

solution with the initial and end conditions r(t0) = r0, ṙ(t0) = ṙ0, r(t1) = r1

and ṙ(t1) = ṙ1. Then the integral of motion or first integral (2.29) preserves its

zero-value along this solution (see [34]),

I(r, ṙ, r0, ṙ0) = ṙ2 − ψ(r0, r)
[
ṙ20 −

r∫
r0

ψ(s, r0)
2γ(s)

α(s)
ds
]
, (2.29)

where,

ψ(r0, r1) = exp
{
− 2

r1∫
r0

β(τ)

α(τ)
dτ
}
. (2.30)

The robot equation with a suggested motion generator can be used in equation 2.29

or the stability and phase portrait of the system can be analyzed using theorem B.1

in section B.1. Substitution of the virtual constraint into the N −1 equations asso-

ciated with active coordinates makes the system of differential equations solvable

in terms of the generalized forces. Choice of virtual constraint affects the resulting

motion of the passive coordinate.
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Chapter 3

Methodology

3.1 Modeling

In this section the different models and modelling approaches for the tripod are

presented.

3.1.1 Different coordinate system configurations

In general, there are many possible representations of the different joint angels and

positions. The platform on three legs can be considered as a vehicle with NED

coordinate system attached to the platform. The scope for this thesis is not to

derive control laws in order for the robot to follow a path from one location to

another by walking, but rather to find out how walking can be performed. There-

fore, coordinate frames more adjusted to this use are preferable. For the tripod,

both positions and velocities of the platform and feet, relative to the initial frame

at the ground are interesting. A consistent way of describing all joint variables

are desirable. Denavit-Hartenberg convention helps provide such coordinates. The

figures 3.1 and 3.2 show two different variants. Note that a chain of homogeneous

transformations can lead to a long multi-dimensional expression. The coordinate

system 3.1 has been briefly analyzed in [29] and it was found to have the D-H table

25
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Figure 3.1: Coordinate systems: the initial frame, platform frame.

3.1 for each leg, and a general 6-DOF homogeneous transformation from the initial

frame to the platform frame.
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Figure 3.2: Location of the feet coordinate system frames: foot A, foot B, and foot

C.

Link ai αi di θi

0 a0 θ0i

1i l1 −π2 θ∗1i

2i l2 θ∗2i

3i l3 θ∗3i

Table 3.1: Denavit-Hartenberg table of the complete robot from platform to feet

for leg i, from [29]
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Link a α d θ

0.0 θ∗0.0

0.1 α∗0.1

0.2 θ∗0.2

1 α∗1 d3

2 α∗2 d2

3 α∗3 + π
6 d1

π
2

4c α∗4 + π
6 L

5c α∗5 d2 −π2
6c α∗6 d3

Table 3.2: Denavit-Hartenberg table of the complete robot from stance leg to feet

for leg i

3.1.2 Simple model

Consider a tripod robot with ml � mp
1. Eliminating the masses and inertials

of the legs gives a simplified model compared to the full complexity. This is the

simplest model which can still be relevant for a physical implementation. However,

the ability to balance when standing on one or two legs is limited. The dynamics

of the platform is then described by the forces acting on it, which are gravity and

the three forces acting on the hip-platform connection. The symbols used in this

section are described in tables 3.3 and 3.4.

1Mass of the platform is considerably larger than the leg masses.
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Figure 3.3: External forces acting on the tripod
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Symbol Meaning Space

ml leg-mass R

mp,m platform mass R

g Gravitational acceleration R

O0 Initial coordinate frame located at ground R3

Op Platform coordinate frame located at CM of platform R3

F0
tot Total forces acting on platform in O0 R3×1

Tp
tot Total torque acting on platform in Op R3×1

fa, fb, fc Forces acting on platform in O0 at leg attachment points R3×1

ra, rb, rc Constant vectors from CM to leg attachment points in O0 R3×1

qt, q̇t, q̈t Translatory position, velocity and acceleration in O0 R3×1

qr, q̇r, q̈r Angular position, velocity and acceleration in Op R3×1

I Inertia dyadic of the platform R3×3

T Transformation from hip attachment to foot R3×1

n Normal force on a leg R3×1

fp Force acting on the platform in a leg attachment point R3×1

fu Force acting on foot due to desired displacement of CM R3×1

fo The sum of normal force and .... eh R3×1

Θ The vector of angular joint positions on a foot R3×1

Table 3.3: Description of the variables and parameters in section 3.1.2, and their

associated spaces. See figure 3.4 for details on joint parameters and and variables.

Part 1
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Symbol Meaning Space

δΘ The infinitesimal displacement of the angular joint positions R3×1

δA The virtual work R

τ The vector of joint torques R3×1

P Position of foot in Op R3×1

δP The infinitesimal displacement of position of the foot in Op R3×1

Fp Extended total force vector in platform coordinate frame R4×1

H0
p

The homogeneous transformation from the

initial frame, O0, to the platform frame Op
SE(4)

dA, dB , dC
Distance from corner A, B, C to the line parallel

to the opposing side, intersecting CM
R

hA, hB , hC
Height of the configuration polygon

when corner A, B, C is on top
R

fz,A, fz,B , fz,C z-component of the forces acting at the feet R

Table 3.4: Description of the variables and parameters in section 3.1.2, and their

associated spaces. See figure 3.4 for details on joint parameters and and variables.

Part 2

First, the motion of the platform due to these forces can be expressed by 3.1 to 3.3

described below, where Ftot describes total force acting on the platform and Ttot

describes the resulting torque. This is derived by Newton’s second law of motion

for rigid body [37], [33]. Hereinafter the superscript notation is used to define the

coordinate system frame which the vector is represented in. For example, F0
tot is

the total force acting on the platform written in initial frame, while Tp
tot is the

total torque written in the platform frame.

In this notation, the equations of motion of the robot can be written as,

F0
tot = mq̈0

t , (3.1)

Tp
tot = Iq̇p

r + qpr × (Iqpr), (3.2)

dR

dt
= (Rq̇pr )×R, (3.3)
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where R is the rotation matrix defining orientation of the platform with respect to

the initial frame, q̇pr is the angular velocity of the platform given in the platform

frame, q0t is the position of the platform given in the initial frame.

The force F0
tot is just the sum of forces,

F0
tot = f0a + f0b + f0c +mg,

and T0
tot is the torque acting on the platform induced by these forces,

T0
tot = P0

a × f0a + P0
b × f0b + P0

c × f0c ,

where,

Pp
s = Tp

s(Θ) + rps ,

is the position vector of feet s ∈ {a, b, c} in platform frame. For a leg, this vector

T p(θ1, θ2, θ3) can be found geometrically (see figure 3.4)

Tp =


(d1 + d2 cos θ2 + d3 cos (θ2 + θ3)) cos θ1

(d1 + d2 cos θ2 + d3 cos (θ2 + θ3)) sin θ1

−(d2 sin θ2 + d3 sin (θ2 + θ3))

 . (3.4)

To investigate how associated motor torques τi influence the platform forces f , the

D’Alembert’s principle of virtual work is used. In figure 3.4, n is the normal force

at the foot, fu is the tangential component of the force, and f0 is the sum of these

forces, i.e. the total force acting on the foot2. To express the force f through motor

torques τi and angles θi, consider a small displacement δP of a leg influenced by

this force. Within this displacement the angles θi were changed by δθi, then the

total work of the force, f , is equal to

δA =

3∑
i=1

τi · δθi

= τT · δP.

Taking into account that,

δP =

3∑
i=1

∂P

∂θi
δθi,

2The friction between the ground surface and the foot is considered sufficiently large, prevent-

ing sliding.
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Figure 3.4: Transformation vector from hip-platform connection to feet
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will have,

τi = fT
∂P

∂θi
, (3.5)

the Jacobian ∂P
∂θi

in equation 3.5 becomes a matrix in R3×3:

∂P

∂Θ
=

−sθ1(d1 + d2cθ2 + d3c(θ2 + θ3)) cθ1(−d2cθ2 + d3c(θ2 + θ3)) −cθ1(d3s(θ2 + θ3))

cθ1(d1 + d2cθ2 + d3c(θ2 + θ3)) sθ1(−d2cθ2 + d3c(θ2 + θ3)) −sθ1(d3s(θ2 + θ3))

0 −d2cθ2 − d3c(θ2 + θ3) −d3c(θ2 + θ3)


(3.6)

Here P = Pp is the position of the foot from center of the platform. The radius

vector r is a constant.

Note that notations for sine and cosine are simplified in the matrix in equation

3.6. The torques in equation 3.5, are expressing the force acting on the foot due

to both movement of the platform and gravity. In equation 3.8, the extended force

vector in the initial frame is expressed as the product between the homogeneous

transformation from the initial frame to the platform frame, and this force vector

in the platform frame shown below,

Fp =

f

0

 , (3.7)

F0 = H0
pFp. (3.8)

The relation between position of the platform, the position of the feet, and the

normal forces in the initial frame gives us the missing information needed in order

to complete the dynamic model. The size of normal force for each leg is dependent

on the position of center of mass of the robot and the configuration polygon. In

figure 3.5, the distances dI describe the distance from the center of mass to corner

I, parallel to the line running through corner I and being orthogonal to the opposite

side. This distance, hI , is the height of the triangle. Note that in this case the

configuration polygon is considered orthogonal to the gravity vector3. From this,

3Projection might be useful for analysis if otherwise
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Figure 3.5: Configuration polygon with CoP located on the inside

one can derive the forces acting on each foot in the direction parallel to gravity.

As there is nothing keeping the feet on ground, such as attracting forces between

feet and ground, the force at each foot will always be less or equal to zero, when

positive direction is defined to be the opposite of the direction of the gravity vector.

Described mathematically,

fz,A =

 mg(1− dA
hA

) if dA < hA

0 if dA ≥ hA
. (3.9)

Here, foot A is used as an example.

A direct result of this, is that one way to lift a leg is to move the center of pressure

(CoP) outside of the configuration polygon. Even for models which include the link

masses for the legs, this will be true. However, the position of CM and therefore

CoP depends on the joint variables in those cases.
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3.1.3 The Euler-Lagrange models

The full complexity Euler-Lagrange model for the the tripod using the generalized

coordinates showed in the tables 3.1 and 3.2 are not present in this report. The two

approaches gave 15 and 12 equations respectively . These were calculated analyt-

ically using MATLAB R2018a and written to a text document. The 15 equations

derived in [29] are not practical in their symbolic form, and the 12 equations gained

from the same program4 is also extensive beyond practicalities as symbolic equa-

tions. Simplifying the parameters such as mass, inertia and lengths of different

legs, setting them equal to one, simplifies the equations. The main contribution

to the size of the formulas are dimensions. The links described by a long chain of

homogeneous transformations become high dimensional expressions.

4The MATLAB code was extensively reimplemented to fix minor bugs and increase readability

in conjunction with this work.
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Figure 3.6: Leg when platform mass >> leg mass

The Euler-Lagrange model of one leg attached to a stiff platform with mp >> ml,

consists of three generalized coordinates viewed in table 3.1. The equations can be

written in the standard matrix form viewed in equation 2.15. Note that the z-axis

of the platform frame, Op is aligned with the gravity vector in the equations,

D =


Ψ i2 cos2(θ2) + i3 cos2(θ3) i3 cos2(θ3)

i2 cos2(θ2) + i3 cos2(θ3) i2 cos2(θ2) + i3 cos2(θ3) i3 cos2(θ3)

i3 cos2(θ3) i3 cos2(θ3) i3 cos2(θ3)

 , (3.10)
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Symbol Meaning Space

D Inertia matrix R3×3

C Coriolis matrix R3×3

g Gravity terms R3×1

mi Mass of link i R

g Gravitational acceleration R

di Length of link i R

ij Inertias associated with link j R

θi Angles as indicated in figure 3.6 R

τi Torques associated with joints R

Table 3.5: Description of the symbols in the matrix 3.10 and the gravity vector

3.13

where,

Ψ = i1 cos2(θ1) + i2 cos2(θ2) + i3 cos2(θ3) + d22m2 cos2(θ2)

+ d22m3 cos2(θ1) + d23m3 cos2(θ1) + d22m2 sin2(θ1)

+ d22m3 sin2(θ1) + d23m3 sin2(θ1) + 2d2d3m3 cos2(θ1)

+ 2d2d3m3 sin2(θ1), (3.11)

C =


−i1 cos(θ1) sin(θ1)θ̇1 −2i2 cos(θ2) sin(θ2)θ̇2 −2i3 cos(θ3) sin(θ3)θ̇3

i2 cos(θ2) sin(θ2)θ̇1 −i2 cos(θ2) sin(θ2)θ̇2 −2i3 cos(θ3) sin(θ3)θ̇3

i3 cos(θ3) sin(θ3)θ̇1 i3 cos(θ3) sin(θ3)θ̇2 −i3 cos(θ3) sin(θ3)θ̇3,


(3.12)

and,

g =


0

g
2

(
d3m3 sin(θ2)sin(θ3) + d3m3 cos(θ2) cos(θ3)− d2m2 cos(θ2)

)
d3gm3

2

(
sin(θ2) sin(θ3)− cos(θ2) cos(θ3)

 . (3.13)

In equations 3.10 to 3.13 a few simplifications are made for practical reasons. The
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inertia matrices for each link are [ikI
3, k = 1, 2, 3], where ik is a constant and I3

is the identity matrix of dimension 3. The position of centers of mass of each leg

is located on the middle of the link.

The robot equation in matrix form hence becomes,

D(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) =


τ1

τ2

τ3

 . (3.14)

Note that the passive variant of the first equation in 3.14 has an equilibrium at

θ1 = 0, since the gravity vector 3.13 has a zero in its first row.

To express the leg equations more generally, adding realistic link inertia matrices

and adjusting the orientation of the platform, and hence the direction of the grav-

ity vector, can easily be done with slight modifications to the Matlab script called

leg movement calculation.m.

3.1.4 Simplified and semi-simplified model of tripod during

two-leg stance

The simplest model form of the tripod dynamics while in two-leg stance, is an

inverted pendulum with adjustable length, as depicted in figure ??. This robot

has one passive degree of freedom, φ1. Naturally, other joint variables, as the hip

angles, will introduce different possible motions for the robot, but the lack of mass

makes it impossible for it to balance. The forces due to movement of the legs simply

do not affect the platform dynamics, if its not connected to the normal forces from

the feet. Hence, further investigation of this model will not be included in this

report.

The simplified equations of motion for this system is described in equations 3.15

to 3.18. Even if balancing is impossible for the simple model, it can still be used

to find gaits.
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Figure 3.7: Leg when platform mass >> leg mass

P = mgd cosφ1 (3.15)

K =
1

2
m(ḋ2 + φ̇21d

2) (3.16)

md̈+ gm cosφ1 −mdφ̇21 = f(τ) (3.17)

md2φ̈1 + 2mdḋφ̇1 − gmd sinφ1 = 0 (3.18)

As mentioned in the beginning of this section, the full Euler-Lagrange model based

on the D-H tables in section 2.3, leads to an amount of symbolic expressions un-

fit for symbolic analysis. Intuition suggests introduction of mass for the leg-links

would make balancing on two legs possible for the tripod. A semi-simplified model

where some point masses are included are therefore needed. Note that balancing

is not necessary for gaits, but the property permits a huge variety of strategies.

The aim is to develop a relevant5 model for developing gaits. The two dimensional

model where θ1 is fixed such that the rotational axis of knees are parallel has been

described in great detail [12].

5Less realistic models can still be relevant. Often complexity of models are reduced consider-

ably in similar projects. One example is [17]
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Symbol Meaning Field

P Potential energy R

K Kinetic energy R

m Mass of platform R

g Gravitational acceleration R

d length of the inverted pendulum R

φ1 Angle as indicated in figure 3.7 R

Table 3.6: Description of the symbols in equations 3.16 to 3.18

A general fact when constructing robots with long links and heavy motors, is that

motors and other heavy components should not be placed far out on a swinging

arm. This is to reduce needed torque of the motors or other actuators. During the

design of the physical tripod in [30], this was considered. As shown in [4] and other

projects, gears and belts can be used to displace the mass, however these methods

have limitations too. The motors controlling the hip-links do not move consider-

ably for the tripod, because of the in principle shorter hip-link. These masses are

reasonable to eliminate in a simplified model. However, the motors actuating the

outer leg-link is placed at the knee, and will affect the center of mass and inertia

considerably.

For simplicity the model will be considered in 2-D, with no rotation of the platform

in the z or x axis. As before, this forces the stance-leg variables to be symmetric.

Firstly, assume the hip-joint variables of the stance legs θ1A, θ1B are fixated. Due

to the friction between the feet and the ground surface, assumed to always be suf-

ficiently large to prevent sliding, sideways motion of the free leg, in this case leg C,

will not introduce rotation of the platform6

The model is similar to the the one shown in figure 3.8 and the equations become

3.19 and 3.207.

The passive coordinates for this system is α0,0 shown in figure 3.2, which is a good

6The stance-leg joint torques must oppose this torque, but this will not be addressed further.
7The ℵ in these equations represent α in the scalar robot equation 2.28
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Figure 3.8: The semi-simple model includes masses on knees based on 3.2

coordinate representation because of the relation to the angle on the ground sur-

face. However, it is known that the center of mass of the robot will rotate about

the line spanned between the two feet. Hence, slight modifications should be made.

The modifications can be seen in figure 3.8. The generalized coordinate α0 is in

a more direct way connected to the line between feet A and B. This is now the

coordinate associated with the passive dynamics. Note that this representation is

equivalent to the one depicted by table 3.2.

ℵ(α0)α̈0 + β(α0)α̇2
0 + γ(α0) + f(q̈/α̈0, q̇/α̇0,q/α0) = 0 (3.19)

ℵ(q)q̈ + β(q, q̇)q̇ + g(q) = f(τ) (3.20)

All the other generalized coordinates are related to a joint torque or a combination

of joint torques. Note that the constraint due to symmetry of the support legs

makes θ1 dependent on the other joint variables. To analyze the phase-portrait of

this system, some values must be fixated.

A similar approach depicted in figure 3.9, where all leg-joint frames are equiva-

lent to the ones depicted in table 3.1, can be more compact. Here, the coordinate

representing the passive dynamics is φ0. Both the angle of the platform and the

length l0 can be derived by the other joint variables on the support-legs. The vector
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Figure 3.9: The semi-simple model includes masses on knees based on 3.2 and 3.1

function describing the distance between the center of the platform and the CM

can be derived using more accurate models, including masses for each link, and will

depend only on the joint parameters. As the initial coordinate system is placed

on the symmetry line between the two support-legs, a two-dimensional analysis is

desirable.
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Symbol Meaning Field

?/∗ The set ? except the element(s) ∗ ?

α0 The passive degree of freedom in 3.8 R

M Mass of platform R

m Mass of knees R

g Gravitational acceleration R

di Length of link i R

l0 Length of the inverted pendulum R

φ0 Generalized coordinate for system3.9 R

∆dCM vector from CM to center of platform R3

CMp Center of mass in platform frame R3

Op Center of platform in platform frame R3

Hj,i
j,k The homogeneous transformation from frame i to k for leg j R4×4

Table 3.7: Description of the symbols in equations 3.19 to 3.23

For the position angle φ1 and the length l0 to be calculated correctly, the position

of center of mass is crucial. If ∆dCM = 0 in the model, the coordinates φ1 and

l0 are generalized coordinates which can give descriptive intuition as long as the

CM is close to the center of the platform, Op. If however ∆dCM is given by the

vector in equation 3.21, the generalized coordinates φ1 and l0 become key elements

regarding the intuitive understanding of the system. This is shown by,

∆dCM = Op − CMp(q), (3.21)

CMp(q) =
1

M + 3m

( 3∑
i=a,b,c

miH
p
i,2 [d2, 0, 0]T

)
, (3.22)

where,

=
m

M + 3m

(
Hp
a,1H

a,1
a,2 +Hp

b,1H
b,1
b,2 +Hp

c,1H
c,1
c,2

)
[d2, 0, 0]T . (3.23)

As the homogeneous transformations in 3.23, equivalently to those in 3.1, are de-

pendant on joint variables, ∆dCM is a six-dimensional function of positions. Hence,
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φ1 and l0 depend on these additional variables. Similarly, for a generalized version,

where all the link masses are included, these functions will depend on all the joint

variables.

3.1.5 Impact models

In this section, impact for the tripod is briefly presented as an introductory part

only. This report will not derive different impact models for the tripod in detail.

It is however a reasonable task for the future. The different responses due to im-

pact for the tripod is crucial for gait design. First consider the simplest version of

the impact model, namely the perfectly inelastic model. For any impact where a

swing leg hits the ground, the velocity will instantly become equal to zero. Gaits

based on this model will include a stage where the robot lifts the leg without

the impulse-generated velocities on feet. Even if the impulse forces acting on the

colliding leg parallel with the normal force is equal to zero, the moving masses

elsewhere on the tripod can lead to rolling, and yield instantaneous switching of

stance. Assuming that there is at least one leg on the ground at any time, the table

3.8 describes the different outcomes. Note that the indexing of each leg is not fixed.
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Number Initial stance Stance when colliding Resulting stance

1 Two-leg Three-leg Three-leg

2 Two-leg, (A,B) Three-leg Two-leg, (A,B)

3 Two-leg, (A,B) Three-leg Two-leg, (A⊕B,C)

4 Two-leg, (A,B) Three-leg One-leg (C)

5 Two-leg, (A,B) Three-leg One-leg (A⊕B)

6 One-leg Three-leg Three-leg

7 One-leg, (A) Three-leg Two-leg, (B,C)

8 One-leg, (A) Three-leg Two-leg, (A,C⊕B)

9 One-leg, (A) Three-leg One-leg, (A)

10 One-leg, (A) Three-leg One-leg, (B⊕C)

11 One-leg, (A) Two-leg, (A, B⊕C) One-leg, (A)

12 One-leg, (A) Two-leg, (A, B⊕C) One-leg, ( 6A)

Table 3.8: Overview of the different outcomes of impact for the tripod. ⊕ indicates

exclusive or.

3.1.6 Impact models on Lagrange-form

For the tripod, the method indicated in 2.5 can be implemented. It is usual to

assume no sudden change in positions at impact, and that the tripod is a rigid

solid. To keep track of the velocities of the feet, additional coordinates describing

these positions are added to the state vector such that the extended vector of

coordinates are described by qe. The models then become on the form,

De(q
+
e )q̇+

e −De(q
−
e )q̇−e = Fext, (3.24)

(3.25)

with De from 2.15, which denotes the conservation of momentum [12][19].

The expanded velocity vector q̇−e consists of the velocities an infinitesimal moment

before impact. These velocities are known, and hence the velocities just after

impact q̇+
e can be calculated. The assumption implies that qe

+ = qe
−. Using the

principle of virtual work one can describe the external forces by relation 3.26
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Fext =
∂ Pe
∂qe

Ffeet (3.26)

where Ffeet is the forces acting at the swing leg(s)

In 3.26, Pe denotes the positions of the feet in Cartesian coordinates. Using the

non-slip assumption leads to the final relation necessary to represent the model as,

∂ Pe
∂qe

q̇e, (3.27)

The compressed form become,De(qe
−) ∂ Pe

∂qe

∂ Pe
∂qe

0

 q̇+
e

Fext

 =

De(qe
−)q̇−e

0

 . (3.28)

Note that the elasticity in equation 2.22 is equal to zero in this equation due to

the assumption.

3.2 Design of motions for the tripod

3.2.1 Repositioning of a single leg

The motions and models in this report are focused on a few situations. The three-

leg stance where the platform moves, and the configuration polygon, is fixated in

the initial frame, O0, and the two-leg stance, where the swing leg is lifted from the

ground. In figure 3.10, the different alternatives for a new CP. Based on these shown

types of steps, several combinations in a sequence can be functioning strategies of

walking. Note that the repositioning, D, in figure 3.10, describes the situation

where one leg is placed between the two stance legs. The repositioning marked

by A will be most important in this thesis, however B and C are closely related,

considering the simple model, and also due to sufficient friction forces preventing

slipping even if the swing leg leads to roll-torque.



48 CHAPTER 3. METHODOLOGY

Figure 3.10: Overview of four different ways of repositioning the swing leg. The

gray lines indicated the next position.

3.2.2 Analysis of configuration space and trajectories

The configuration space of the tripod is dependant on the type of stance 8 and

the configuration polygon. As stated in [38], singularities in configuration space

can become serious considerations for three-legged platforms. In this context the

singularities are due to sudden loss of DOFs in task-space or if the task frame, the

platform, are able to move although actuators are locked. Considering the contact

points on ground as attached points able to rotate freely in addition to and pas-

sive hip joints, singularities in terms of sudden loss and gain of degrees of freedom

can be problematic, and must be avoided [39][38]. As the joints are actuated this

is not a problem for the tripod. Note that such eventual problems could arise if

inaccuracy in the motors lead to opposing forces greater than the torques of an

individual motor, and if slack in the motors is prominent. When standing on a flat

surface, this is unlikely due to the friction forces that are not infinite in reality. For

simulation purposes, implementation of friction can solve such eventual problems.

Even if the joint variables follow a trajectory T (Θ) within the configuration space

of the tripod, desired motion can be unstable, as shown in [6]. Hence, the sufficient

8three, two or one-leg stance.
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conditions described in Appendix B.1 with equation B.1 is used.

Considering the foot following a trajectory T (Θ), the robot equation on matrix

form, 2.15, for the system is now with the trajectory T (Θ) expressed as generalized

forces.

The following part addresses this case, one leg at a time. The configuration space

is easily described by putting the upper and lower limits for each angle in the trans-

formation 3.4. Assuming trajectories are possible to realize for an under-actuated

dynamical system, can be risky, although it might seem trivial, as indicated by [6].

However, the insect-leg is fully actuated9, such that the motion planning problem

becomes an inverse kinematic problem.

Assuming the platform is moving perpendicular to the line between leg A and B,

as indicated in figure 3.11, with constant height, and with the platform orientation

equivalent to the initial frame,10 the trajectory for leg A must follow the constraints,

A1A2A3


d3

0

0

1

 · [1, 0, 0, 0] = c1, c1 ∈ R, (3.29)

T − T0 ⊥ A−B (3.30)∣∣(Opra − T ) · [1, 0, 0, 0]
∣∣ = c2, c2 ∈ R. (3.31)

Inspecting the transformation 3.4, which is based on the same coordinate frames,

constraint 3.29 becomes,

−(d2sinθ2 + d3sin(θ2 + θ3)) = c1. (3.32)

Likewise, constraint 3.31 becomes,

|(d1 + d2 cos θ2 + d3 cos (θ2 + θ3)) cos θ1| = c2. (3.33)

9The three joints have actuators for each DOF
10This allows us to use the model described in section 3.1.3
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To move the foot backwards relative to the platform, the inequality below is suffi-

cient,

d

dt
[(d1 + d2 cos θ2 + d3 cos (θ2 + θ3)) sin θ1] < 0. (3.34)

The parametrization of a straight line by the generalized coordinates of the insect

leg becomes,

rx,y = d1 + d2 cos θ2 + d3 cos(θ2 + θ3), (3.35)

rx,y(θ1) =
x0

cos(−θ1)
, (3.36)

d2 sin θ2 + d3 sin(θ2 + θ3) = z0. (3.37)

Hence we get,

θ3 = sin−1
(−d2 sin θ2 − z0

d3

)
+ 2πn− θ2, n ∈ Z. (3.38)

(3.39)

Inserting the expression for θ3 in the equation of θ2 and θ1 gives,

x0
cos−θ1

= d1 + d2 cos θ2 + d3(cos θ2 cos θ3 + sin θ2 sin θ3), (3.40)

where

cos θ3 =
(

1−
(d2 sin θ2 − z0

d3

)2) 1
2

cos θ2,

+
(−d2 sin θ2 − z0

d3

)
sin θ2, (3.41)

sin θ3 =
(−d2 sin θ2 − z0

d3

)
cos θ2,

−
(

1−
(d2 sin θ2 − z0

d3

)2) 1
2

sin θ2. (3.42)

Using MapleSoft to get an expression of 3.40 in terms of θ1 gives an extensive

expression. However, this can be numerically solved, and used for the motion of

the leg.
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Parametrization of the back leg, C, with θ1c = 0 gives the equations,.

d1 + d2 cos θ2 + d3 cos(θ2 + θ3) = x0 − f(t), (3.43)

−(d2 sin θ2 + d3 sin(θ2 + θ − 3)) = −z0 (3.44)

θ3(t) =
θ30
t1 − t

− θ31
t1
t, (3.45)

where t1 is stop and

θ2 + θ3(t) = arcsin
(−(z0 + d2 sin(θ2))

d3

)
. (3.46)

Equation 3.46 can be solved for θ2. Note that this is only one particular parametriza-

tion and other parametrizations might be better for this motion.

3.2.3 Movement of platform during three-leg stance using

simplified model

For the simple model developed in section 3.1.2, there are several two-legged gaits,

where one leg moves at a time. In order to move the leg without needing a friction

model, there are two main strategies which can work for general models of the

tripod. Either the CoP can move outside of the CP, or the moving leg can start

by kicking off without adjusting the CoP’s position relative to the CP. The former

strategy has some requirements on the leg lengths and geometry of the CP. A

special case of the latter is that a leg can also simply be lifted, and put down if the

actuators are fast enough. Firstly the dynamics on moving the CoP within the CP

are described by equation 3.9.

A force acting on the platform in the direction towards the middle of one of the sides

of the CP will induce a movement as depicted in figure 3.11. For simplicity, consider

the orientation of the reference frames of the platform and the floor perpendicular

to the front line of the CP, and the z-axis pointing in the direction opposite to

gravity. The initial CP is considered being an equilateral triangle. Equations 3.47

to 3.49 describe the properties of the constant platform vectors, from CM to the
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Figure 3.11: The projection of center of mass in to different positions at two dif-

ferent times

hip joint location.

ra,z, rb,z, rb,z, rc,y = 0 (3.47)

ra,x = rb,x (3.48)

ra,y = −rb,y (3.49)

Ftot =


f

0

0

 (3.50)

Ttot = 0 (3.51)

To prevent rotation of the platform,11 the properties in equation 3.2 must hold.

Note that this is a limiting property in terms of possible θ1a, θ1b, θ1c, as the insect-

legs lacks spherical hip-joints. This property makes the model similar to the semi-

quad in [12], since O1a||O1b.

11This simplifies the calculations.
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ra × fa + rb × fb + rc × fc = 0 (3.52)
ra,yfa,z − ra,zfa,y
−ra,xfa,z + ra,zfa,x

ra,xfa,y − ra,yfa,x

+


rb,yfb,z − rb,zfb,y
−rb,xfb,z + rb,zfb,x

rb,xfb,y − rb,yfb,x

+


rc,yfc,z − rc,zfc,y
−rc,xfc,z + rc,zfc,x

rc,xfc,y − rc,yfc,x

 =


0

0

0


(3.53)

rab,y(fa,z − fb,z) = 0 (3.54)

rab,x(fa,z + fb,z) = −rc,xfc,z (3.55)

rab,x(fa,y + fb,y)− rab,y(fa,x − fb,x) + rc,xfc,y = 0 (3.56)

From equations 3.54 to 3.55, one can derive the following,

fa,z = fb,z = fab,z, (3.57)

fc,z = −2
rab,x
rc,x

fab,z. (3.58)

Avoiding movement in y-direction as in equation 3.50, leads to,

fa =


fa,x

fa,y

fa,z

 =


fb,x

−fb,y
fb,z

 = fb (3.59)

, fc =


fc,x

0

−2
rab,x
rc,x

fab,z

 . (3.60)

Avoiding movement in z-direction as well leads to the relation including the gravity

vector,

∑
fz = 2fab,z − 2

rab,x
rc,x

fab,z −mg = 0, (3.61)

fab,z =
mg

2
(
1− rab,x

rc,x

) . (3.62)

From the solution of ẍ = f(x, ẋ), a simplistic proposal of desirable force on the

platform can be investigated. For a constant k1.k2 ∈ R+, 3.63 start and stop the
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motion in a direction.

f1(t) =


k1 0 ≤ t < t1

0 t1 ≤ t < t2

−k2 t2 ≤ t < t3

(3.63)

If d is the distance from the CM at time t0 = 0 to the side, the time intervals can

be calculated as in 3.72. This is derived as follows, [15][2]

d(t) = d(t0) + ḋ(t0)t+
1

2
d̈(t0)t2, (3.64)

t0 = t | t = 0, (3.65)

d0 = d(t0), (3.66)

ḋ(t0) = 0, (3.67)

d(t1) = d0 +
1

2m
k1t

2
1, (3.68)

ḋ(t1) =
k1
m
t1, (3.69)

d(t2) = d(t1) +
k1
m
t1t2, (3.70)

ḋ(t2) =
k1
m
t1, (3.71)

d(t3) = d(t2) +
k1
m
t1t3 −

1

2m
k2t

2
3, (3.72)

ḋ(t3) =
k1
m
t1 −

k2
m
t3. (3.73)

A movement of CM from d(t0) to d(t3) displaces the center of mass such that the

normal forces on the three legs become as below,

nab,z =
mg

2

(d(t)

hc

)
(3.74)

nc,z = mg
(

1− d(t)

hc

)
(3.75)

These equations are valid for CoP ∈ CP . Note that this changes if the CP is

not an equilateral triangle. Putting the solution, derived in equation3.72, in these

equations gives equations,



3.2. DESIGN OF MOTIONS FOR THE TRIPOD 55

nab,z =
mg

2hc

(
d0 +

1

2m
k1t

2
1 +

k1
m
t1t2 +

k1
m
t1t3 −

1

2m
k2t

2
3

)
, (3.76)

nc,z =
mg

2

(
1− 1

hc
(d0 +

1

2m
k1t

2
1 +

k1
m
t1t2 +

k1
m
t1t3 −

1

2m
k2t

2
3)
)
. (3.77)

Adding the total forces together and calculating the torques leads to the force in

3.63 that can be calculated, given d0, a initial conditions for the joint variables and

a CP. The torques become,

f0i = ni + fpi, (3.78)

=⇒

f0ab = nab +
1

3
fp, (3.79)

f0c = nc +
1

3
fp, (3.80)

τa
T (t) =

[
nab +

1

3
fp
]T

Ja(Θa), (3.81)

τb
T (t) =

[
nab +

1

3
fp
]T

Jb(Θb), (3.82)

τc
T (t) =

[
nc +

1

3
fpp
]T

Jc(Θc). (3.83)

The equations 3.81 to 3.83 are vector differential equations where Ja, Jb and Jc are

the Jacobians from equation 3.6. These equations lead to the torques for each leg

in equations 3.85 to 3.87. Here, fy and fz are zero, as earlier. Note that the force

fpp is expressed in the platform frame.

τa
T (t) =

[
nab + Rφ, 2π3

1

3
fpp
]T

Ja(Θa) (3.84)

Equation 3.84 describes the torques in the same frame as the respective Jacobians.

With the x-component of fp, fx, the final vectors are described,
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τa(t) =


τa,1

τa,2

τa,3


=

[
− 1

2 ((
fx
3 s(θ1)(d1+d3c(θ2+θ3)+d2c(θ2))−(

√
3fxc(θ1)(d1+d3c(θ2+θ3)+d2c(θ2))))

1
2 (
√
3fxs(θ1)(d3s(θ2+θ3)+d2s(θ2))−(fxc(θ1)(d3s(θ2+θ3)+d2s(θ2))−(gmd(t)(d3c(θ2+θ3)+d2c(θ2)))) 1

ha

( 1
2 fxd3s(θ2+θ3)(

√
3s(θ1)−c(θ1))−d3gmc(θ2+θ3)d(t) 1

2ha

]
(3.85)

,τb(t) =


τb,1

τb,2

τb,3


=

[
(
√

3
2 fxc(θ1)(d−1+d3c(θ2+θ3)+d2c(θ2))−(fxs(θ1)(d1+d3c(θ2+θ3)+d2c(θ2))))

1
2 (
√
3fxc(θ1)(d3s(θ2+θ3)+d2s(θ2))−(

√
3fxs(θ1)(d3s(θ2+θ3)+d2s(θ2))−(gmd(t)(d3c(θ2+θ3)+d2c(θ2)))) 1

hb

( 1
2 fxd3s(θ2+θ3)(c(θ1)−

√
3s(θ1))−d3gmc(θ2+θ3)d(t) 1

2hb

]
(3.86)

,τc(t) =


τc,1

τc,2

τc,3



=


fxs(θ1)(d1 + d3c(θ2 + θ3) + d2c(θ2))

fxc(θ1)(d3s(θ2 + θ3) + d2s(θ2)) + gm(d(t)hc
− 1)(d3c(θ2 + θ3) + d2c(θ2))

d3fxs(θ2 + θ3)c(θ1) + d3gmc(θ2 + θ3)(d(t)hc
− 1)

 .
(3.87)

3.2.4 Two-leg stance for tripod model with leg masses <<

platform mass

The assumption of leg masses equal to zero leads to the fact that the motion of the

legs while not supporting the platform is unlimited in different ways. The poten-

tial and kinetic energy becomes zero, and movement of legs does not require forces.

Hence, another approach must be considered.

As the platform mass is considerably larger than the leg masses, the platform is
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assumed to be fixated. Then, the leg movement can be calculated using regular

methods like Euler-Lagrange. For the one-leg system, viewed in figure 3.6, the D-H

table 3.1 is used. The implementation therefore becomes similar to the one from

[29].

The three joints of the insect-like leg is actuated. The motion planning problem

therefore becomes a inverse kinematic problem, and can be expressed similarly to

motion in section 3.2.2 as long as the foot is not in contact with the surface, or is

not affected by any normal force or external forces except gravity. The torques are

described by a function of the joint variables only,

fi(Θ, Θ̇, Θ̈) = τi. (3.88)

The desirable trajectory can be expressed as a continuous function of θ1(t), θ2(t)

and θ3(t).

C1

(
θ1(t), θ2(t), θ3(t)

)
, (3.89)

whereC0
1 : [x0, y0, z0]→ [x1, y1, z1] ∈ O0 such that,

z > 0∀t ∈ (t0, t1), (3.90)

z0, z1 = 0, (3.91)

C0
1 =


0

0

∆z

 , (3.92)

when t = t0 or t = t1.

As described in the beginning of section 3.1.3, the inverted pendulum dynamics

for the platform is relevant. Assume the CoP is located on the interior of the

configuration polygon, CoP ∈ CP/∂CP . Movement of the free leg is possible

during tilting. A sufficiently large force acting on the platform perpendicular to

the line between CM of the platform and the support feet, will lead to tilting,

but if the angular velocity, φ̇1, at the unstable equilibrium φ1 = 0 is negative, the
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robot will fall, due to under-actuation. Hence, the strategy of moving CoP to the

boundary of the CP during three-leg stance, is not desirable for this specific case.

The tilting motion must be limited such that the φ0 > 0 ∀t, except for a special

case12. A kicking-from-motion must be introduced, or a motion accelerating the

CM. Given an initial angle φ1(0) = φ0 > 0 and assume a three-leg stance where the

knee joint θ2 > 0. Then, a force f(τf ) orthogonal to the line between O0 and Op

will generate a motion as in equation 3.18. From the equations of motion described

in equations 3.17 and 3.18, and the joint torques and mass distribution described

in equation 3.9, one can derive a relation describing the swinging motion.

Fixating the length, d, will lead to the standard pendulum equation 3.94. The

relation 3.93 describes the property needed for the force to act tangentially on the

swinging arm.

f(τf ) ·Pa(θ) = 0 (3.93)

φ̈1 −
g

d
sinφ1 =

fp(τf )

md
(3.94)

This nonlinear ODE is analytically solvable, but the common simplification sin(φ1) ≈

φ1 for small φ1 is good enough to give an indication of what the solution of time

is like. Using this approximation, leads to equation 3.95 for the initial conditions

φ1(0) = φ0 and φ̇1(0) = 0,

φ1(t) =
(e
√

g
d t + e−

√
g
d t)φ0

2
+

√
d(I1 − I2)

2md
√
d

, (3.95)

where,

I1 =
(∫ t

0

e−
√

g
d tfp(τ) dτ

)
e
√

g
d t,

I2 =
(∫ t

0

e
√

g
d tfp(τ) dτ

)
e−
√

g
d t.

12D in figure 3.10
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For φ̇1(0) = φ̇0 and fp(t) = 0 and,

φ1(t) =
1

2
√
g

(
(
√
gφ0 +

√
dφ̇0)e

√
g
d t + (

√
gφ0 −

√
dφ̇0)e−

√
g
d t
)
. (3.96)

The torques for the kicking leg becomes similar to the vector 3.87, with fp(τf ) =

[fx, 0, fz]
T , shown in equation 3.99. For the displacement of center of mass, l(t)

this is now a relation between d and φ1,

l(t) = d cos(φ1). (3.97)

The distance d can be expressed by the position in equation 3.1.2 as the Euclidean

distance of the x and z components of the vector,

d =
∣∣∣[ 1 0 0

0 0 0
0 0 1

]
Pp
∣∣∣
2
, (3.98)

and the torque, as a function of time ande the joint variables, become,

τc =


fx sin(θ1)(d1 + d3 cos(θ2 + θ3) + d2 cos(θ2))

(fz + gm( l(t)hc − 1)(d3 cos(θ2 + θ3) + d2 cos(θ2)) + fx cos(θ1)(d3 sin(θ2 + θ3) + d2 sin(θ2))

d3 cos(θ2 + θ3)(fz + gm( l(t)hc − 1) + d3fx sin(θ2 + θ3) cos(θ1)

 .
(3.99)

In order for the expression of forces 3.99 to be associated with the solution of

time 3.95, the external force vector [fx(t), 0, fz(t)]
T should satisfy the relation in

equation 3.93. Hence, they can be expressed as
fx(t)

0

fy(t)

 =


fp(t) cos(φ1)

0

fp(t) sin(φ1)

 . (3.100)

The optimal force-torque ratio can be found using an optimization technique, such

as a gradient method from [27], which takes into account the maximum torques of

the motors.

Another approach is to accelerate the center of mass in the same way as described

in section 3.2.3. Fixating the joint positions of the front legs will, for a sufficiently
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high velocity, lead to tilting if the momentum is preserved. The dynamics will be

similar. Sudden changes in the stance legs torques, changing from a velocity to

fixation in a short period of time, can demand high torque motors.

3.2.5 Motion planning for semi-simple model

There is one passive degree of freedom and several moving masses for the semi-

simple model, which suggests that the motion generators ψi(φ) can be found such

that the system can balance. The desirable motion does include some other re-

strictions,

1. The curve foot on swing leg of must satisfy the condition described in relation

3.89

2. The motion should be independent of time

however these might be hard to satisfy. First consider the case where all joint

variables are fixated except for the swing leg hip-joint θ2 , the one orthogonal to

the platform z axis, and the passive coordinate φ. Assume the hip link is orthogonal

when projected onto the xy-plane to the rotation axis of the two stance legs. θ2

influences the passive degree φ. The conservation of spin and momentum and

Newton’s second law on the CM indicates presence of some degree of controllability.

Assuming the effect from the moving center of mass is small leads to a fixated l0.

Inspecting the equation where the mentioned coordinates are fixated, one gain a

equation on the form,

α(φ0)φ̈0 + ĝ(φ0) + a0(cos(φ0) cos(θ2c)− sin(φ0) sin(θ2c)) = 0, (3.101)

where g(φ) is a trigonometric function of φ, and ai are constants, and

α(φ0) =
a1
a2

+

√
a1
a2

+ a3. (3.102)
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Figure 3.12: Phase portrait of the semi-simple dynamics with fixated values asso-

ciated with equation 3.101. The point (φ0, φ̇0) = (0, 0) can be recognized as an

unstable equilibrium [14].

The part containing θ2c is,

ĝ(φ0) = (a4 − a5 + a6) cos(φ0)− (a7 + a7
√

3 + a8) sin(φ0). (3.103)

For a constant θ2c in equation 3.101 one get the phase portrait depicted in figure

3.12. As expected, this phase portrait can be recognized as the phase portrait of

the inverted pendulum, with an unstable equilibrium in φ0 = 0, φ̇0 = 0. The

constant b1 = 5163.
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A motion generator θ2c = ψ(φ0) can change the phase portrait such that φ0 =

0, φ̇0 = 0 becomes a stable equilibrium, if the integral 2.29 preserves its zero-value

for the initial and end values φ0(t = 0), φ̇0(t = 0), φ0(t = t1), φ̇0(t = t1).

However, solving the integral might not be necessary if the terms it consists of

becomes equal to zero. This is shown in the following equations,

α(φ0) =
b1
b2
M +

b1
5b2

m+
Mr2

2
+ 2d21m

+
d22m

2
+

3mr2

2
+

√
b1d1m

25
+
d2mr

2

−
√

3Mr2

4
+

√
3d22m

4
−
√

3r2m

4
, (3.104)

g = d2gm cos(φ0 + θ2c)−
(
√
b1Mg sin(φ0))

100

− (
√
b1gm sin(φ0))

50
− gmr cos(φ0)− 2d1gm sin(φ0)

+
(3
√

2d2gm cos(φ0))

8
+

(
√

6d2gm cos(φ0))

8

− (
√

2gmr cos(φ0))

4
+

√
6gmr cos(φ0))

4

− (
√

3d2gm sin(φ0))

2
, (3.105)

θ2c = f(φ0). (3.106)

Using the formula for integral of motion 2.29, leads to the integral shown in 3.107.

To avoid confusion φ0 become x, such that x0 = φ0(t = 0).

I(x, ẋ, x0, ẋ0) = ẋ2 −
[
ẋ20 −

2

α

∫ x

x0

g(s)ds
]

(3.107)

This integral should preserve its zero-value along the solution. Inspecting the

formula 3.105, it can be solved for θ2c(φ0). This function is shown in Appendix

equations B.2. According to the solver in MapleSoft the motion generator is only

valid in the interval [φ ≤ 0.1886019406,−0.04520849592 ≤ φ].

The saddle point around φ0 = 0.01, φ̇0 = 0 is possibly skewed due to the assump-

tion considering the center of mass to be equal to the center of the platform. This

result suggests inclusion of the displacement of the center of mass due to movement

of θ2c. Other factors which becomes clear when inspecting the phase plane is the
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Figure 3.13: Phase portrait of the semi-simple dynamics with fixated values as in

3.12, with the motion generator in equation 3.106.
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Figure 3.14: The desired motion for the motion when starting two-legged stance

with initial position of the CoP outside the CP

fact that the desired actuation necessary to return CoP back to the initial CP is

only possible if the angular velocity is already positive, which is a contradiction.

This is relevant for the approach where three-leg stance is active until CoP is out-

side the CP, for lifting of the swing leg.

Another motion generator should be developed. The motion generator derived in

3.106 derived from the integral of motion, was based on finding the function which

makes the integrand equal to zero, not dependent on the initial and end positions.

Not trying to balance, but rather moving the leg from one position to another in

a way that satisfies the conditions 3.89, can be done in the same way as described

for finding 3.106.

Finding the motion generator which leads to the motion depicted in figure 3.14,

requires investigation of the integral of motion with equation,

I(x, ẋ, x0, ẋ0) = ẋ2 −
[ 2

α

∫ x

x0

g(s)ds
]
, (3.108)
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This can for τ = 0 be written as

I = ẋ2 −
[ 2

α

(∫ x

x0

d2gm cos(s+ f(s)) ds + I1

)]
, (3.109)

where I1 can be found in Appendix B.10

The goal is to find the motion generator satisfying,

θ2c(φ0(t = τ1)) = k1 ∈ R−, (3.110)

θ2c(φ0(t = τ2)) = k2 ∈ R+. (3.111)

A possible solution is,

θ2c(φ0) = k1(φ0 − φτ2) + k1(φ0 − φτ1) + k3(φ0 − φτ2)(φ0 − φτ1). (3.112)

Here, the constants k1 , k2 are initial and end values of the joint angle θ2c, and k3 is

an adjustable constant. The values φτi are the angles of φ0 where θ2c should have

specific angles. The design of 3.112 is based on Lagrange’s method of polynomial

interpolation. The goal is to find a k3 which makes the integral preserve its zero-

value, ∫ x

x0

cos(φ0 + θ2c(φ0)) dφ0. (3.113)

The integral, shown in B.10, does not lead to any simple formulation for k3. Fix-

ating the constant values, as well as the end position, gives a indication if this

approach leads to a solution. Another problem with this model is the exclusion

of a varying l0. The Motion generator becomes considerably more complicated to

derive, as shown in the last part of this section. Assume the support/stance legs

have fixated joints,

CMp
x =

m

3m+M

(
2(r + cos(θ2f )(d1 + d2 cos(

π

3
− θ1f ))− (r + d1 + d2 cos(θ2s)

)
,

(3.114)

CMp
z =

−m
3m+M

(
2d2 sin(θ2f ) + d2 sin(θ2s)

)
. (3.115)
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Using these to calculate l and φ, more representative to the actual dynamics of the

system leads to,

l = l0 + CMp
z

= l0 +
−md2(2 sin(θ2f ) + sin(θ2s)

3m+M
, (3.116)

l̇ =
cos(θ2s)θ̇2s
3m+M

, (3.117)

l̈ =
− sin(θ2s)θ̇

2
2s + cos(θ2s)θ̈2s

3m+M
, (3.118)

φ = φ0 − arcsin
(−CMp

x

l0

)
, (3.119)

φ̇ = φ̇0 −
k2θ̇2s sin(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

, (3.120)

φ̈ = φ̈0 −
k2θ̈2s sin(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

)
− k2θ̇

2
2s cos(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

)
− k21 θ̇

2
2s sin2(θ2s)(k1 − k2cos(θ2s)(
−
(
k1 − k2 cos(θ2s)2 + 1

))3/2 , (3.121)

where the constants are,

k1 =
m

3m+M
(2(r + cos(θ2f )(d1 + d2 cos(

π

3
− θ1f )))− r + d1), (3.122)

k2 = d2. (3.123)

It is more useful to substitute l, φ into the robot equation 2.28 of φ0,
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l0 = l − CMp
z (3.124)

l̇0 = l̇ − cos(θ2s)θ̇2s
3m+M

, (3.125)

l̈0 = l̈ +
sin(θ2s)θ̇

2
2s + cos(θ2s)θ̈2s

3m+M
, (3.126)

φ0 = φ+ arcsin
(−CMp

x

l0

)
(3.127)

φ̇0 = φ̇+
k2θ̇2s sin(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

, (3.128)

φ̈0 = φ̈+
k2θ̈2s sin(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

)
+

k2θ̇
2
2s cos(θ2s)√

−
(
k1 − k2 cos(θ2s)2 + 1

)
+
k21 θ̇

2
2s sin2(θ2s)(k1 − k2cos(θ2s)(
−
(
k1 − k2 cos(θ2s)2 + 1

))3/2 , (3.129)

These equations are substituted into the scalar robot equation of φ0 and θ. Deriving

a motion generator based of the scalar robot equation, now on the form presented

in the equation below is not the scope for this thesis,

α(φ, θ2s(φ))φ̈+ β(φ, θ2s(φ), θ̇2s(φ))φ̇2 + g(φ, θ2s(φ), θ̈2s(φ)) = 0 (3.130)

3.2.6 Movement of platform during three-leg stance with

non-zero leg masses

The model presented in section 3.2.3 is still valid for the more realistic model includ-

ing leg masses. However, the CM is now a function of the generalized coordinates

rather than the center of the platform, similar to the semi-simple model,

CMp(Θa,Θb,Θc) =
1

Mtot

10∑
i=1

cmp
i ·mi, (3.131)

Using coordinates for the legs from 3.1 one get the mass distribution in the platform

coordinate system, O0, 3.132. 3.133 shows a more general version where the center

of mass of each link is described by a vector li. These equations assume the legs are
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equal in construction. The matrices Ai refer to the homogeneous transformations

associated with the D-H coordinates listed in table 3.1.

CMp =
1

3m1 + 3m2 + 3m3 +mp

(
mp +m1(A0

aA
1 +A0

bA
1 +A0

cA
1)[
d1
2
, 0, 0]T

+m2(A0
aA

1A2 +A0
bA

1A2 +A0
cA

1A2)[
d2
2
, 0, 0]T

+m3(A0
aA

1A2A3 +A0
bA

1A2A3 +A0
cA

1A2A3)[
d3
2
, 0, 0]T

)
(3.132)

CMp =
1

3m1 + 3m2 + 3m3 +mp

(
mp +m1(A0

aA
1 +A0

bA
1 +A0

cA
1)l1

+m2(A0
aA

1A2 +A0
bA

1A2 +A0
cA

1A2)l2

+m3(A0
aA

1A2A3 +A0
bA

1A2A3 +A0
cA

1A2A3)l3

)
(3.133)

3.3 MATLAB code

This section will briefly describe the main function and modules of the MATLAB

code used for the derivation of the symbolic expressions as well as the simulations as

well as the work put into the introductory work on 3D simulation. The code used

in the thesis can be found at: https://github.com/paolsen/tripod_master_

thesis_code

3.3.1 Setting up simulation framework

A three dimensional robot with multiple moving parts often becomes impractical

analyzing by inspecting two dimensional plots, as both velocities and positions

of multiple joint variable become important. The author therefore used an open

source solution for simulating and visualizing the dynamic system. Gazebo is a

free simulation tool designed for robotics applications. Together with ROS, an

open source library consisting of useful robotics packages, Gazebo was used to

perform three-dimensional simulations. Gazebo uses different file types 13 which

describes the geometric and physical parameters of joints and links. The operative

13.sdf, .urdf, .xacro, .world, .launch and more.
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Name Functionality

DeriveEL
Takes the Lagrangian and n generalized coordinates

and returns n equations of motion

ForwardEulerOrder2D1
Takes analytic acceleration, external force and initial

parameters and returns positions, velocities, and accelerations

DH
Takes the four DH-parameters and

compute the homogeneous transformation

sym expression2value
Takes symbolic expression and substitutes

vector of symbols with vector of other types

GenRot Takes Euler-angles and returns the rotation matrix

linVelocity
Takes symbolic positions and the coordinates,

and return the velocity matrices, used in linear velocity jacobian

model
This program derives the equations of motion

for the full complexity 12-DOF system

leg move-

ment calculation
Derives the dynamics of a single leg with masses and inertias

torque calculation
Derives the torques calculated by using the

principle of virtual work, and simulates

Two leg stance

EL simple

Derives the motion of the

simple inverted pendulum, and simulates

Two leg stance

EL semi simple

Derives the motion of the

semi-simple model, and simulates

InertiaMatrix
Takes mass, velocity jacobians,

rotations and inertia dyadics and derives the inertia matrix

Table 3.9: Overview of the different MATLAB functions and scripts used in this

thesis.
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system used for simulations was Ubuntu Xenial with the ROS Kinetic and Gazebo

7. Other, newer Linux distributions and especially newer versions of Ubuntu was

attempted used, with no success. The robot configuration for the specific tripod

investigated in this report was implemented in a .xacro file, which can be viewed by

following the link mentioned earlier, describes the geometry, inertias, masses and

joint parameters. The .xacro file is a description of the kinematic graph with ex-

tensive information. By default, the built in physics simulator in Gazebo simulates

based on the .xacro or .urdf 14 file. Gazebo uses btRigidBody [7] for simulation.

3.4 The physical tripod

As the building of mechanical and electric components of the physical tripod is

described in another report, [30], this section will only focus on the parts directly

relevant for this thesis. The early prototype of the physical robot covers a extended

set of specifications leading to a design not yet fully optimized for walking. Many

of the properties important for a successful physical robot was unknown at the

time the project started. These parameters are mainly maximum motor torque

needed, optimal length of legs, maximum angular velocity needed for motors all

these factors dependent on the masses of the motors and legs. The usual procedure,

involving years of mathematical modeling and simulation before actual building,

implementation and testing, was not desirable, as the project consists of many

different tasks, which needs several versions to reach desired quality. The overall

project is in conjunction with a student driven hobby workshop called Omega

Verksted, and the people working with the project are not constant and has often

a considerable variety in field of study as well as study year.

3.4.1 The leg construction and design

The robotic leg follows similar characteristics in terms of the lengths of the links

and the masses, as used elsewhere in this report. As length of the different leg links

14.xacro files are a more effective type of .urdf implemented with use of XML syntax
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where considered a key parameter in the dynamics of the robot, these were made

relatively easy to replace, and produce. Figure 3.15 shows the construction of a

almost complete assembled robotic leg. The parts are made of aluminum square

pipes, 3-D printed plastic, and various materials used in the electric modules. The

use of 3-D printed plastic is the main issue considering the deviation from the

optimal leg, as it introduces elasticity. The motors where chosen to be able to lift

the legs an angle θmax for a given torque. In case of insufficient available torque,

methods using springs such as described in [25], was considered. To detect forces on

each leg a series of weight cells are used, here placed from the center of the platform

to the hip of each leg. Note that the relation between the weight cells in such a

configuration can be nontrivial, considering the fact that the center of mass is not

the same at the center of the platform for the more realistic model. Eventually,

weight cells should be integrated into the feet, possibly leading to indications of

angle between floor and leg [28].
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Figure 3.15: Picture of an almost completely assembled robotic leg, attached to

the platform bracket.
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Figure 3.16: Picture of a motor driver designed and produced as part of the overall

project.
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Voltage

[V ]

Weight1

[Kg]

Current1

[A]

Weight2

[Kg]

Current2

[A]

T1

[Nm]

T2

[Nm]

1,00 1,923 0,089 1,914 0,089 0,0382590 0,0426735

2,00 1,812 0,176 1,785 0,176 0,0927045 0,1059480

3,00 1,650 0,260 1,634 0,261 0,1721655 0,1800135

4,00 1,470 0,340 1,472 0,342 0,2604555 0,2594745

5,00 1,280 0,425 1,250 0,430 0,3536505 0,3683655

6,00 1,090 0,500 1,094 0,503 0,4468455 0,4448835

7,00 1,090 0,531 1,106 0,590 0,4468455 0,4389975

8,00 1,020 0,620 1,018 0,655 0,4811805 0,4821615

9,00 0,998 0,710 0,998 0,702 0,4919715 0,4919715

10,00 0,980 0,770 0,986 0,785 0,5008005 0,4978575

11,00 0,885 0,830 0,845 0,851 0,5473980 0,5670180

12,00 0,628 0,790 0,850 1,200 0,6734565 0,5645655

Table 3.10: A description of measured values for the electric motors used on the

early prototype physical tripod. Working torque T1, stall torque T2, voltage and

current were measured and described in [30].
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Results

In this report some of the results are derived in the methodology section, as analytic

equations, some are implemented as programs, and lastly plotted. Some plots of

the main models are presented in this chapter.

4.1 Three-leg-stance

the three-leg-stance was analyzed in different variants. As presented in section

3.2.6 the center of pressure can be computed and the simple relation can be used.

4.1 to 4.7 show the torques of the back leg, aligned with the x-axis of the platform,

with the parametrization described in 3.46. The joint torque τ1 is not included as

it is constant zero when aligned with the x-axis. By studying the plots and the

table 3.10, one can see that the current motors are too weak for such motions with

the current parameters.
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Figure 4.1: Plot of distance between the back foot and the center of pressure for

the simplified tripod, based on the parametrization in equation 3.46. The other

parameters are: M = 1, constant length d2, d3 = 0.4, θ20 = π/6,θ30 = π/3, height

of the configuration polygon hc = 0.5, #Steps = 10000

Figure 4.2: Plot of angles associated, and with same parameters as in 4.1
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Figure 4.3: Plot of the torques for the back leg associated and with the same

parameters as figure 4.1

Figure 4.4: Plot of distance between the back foot and the center of pressure for

the simplified tripod, based on the parametrization in equation 3.46. The other

parameters are: M = 1, constant length d2, d3 = 0.4, θ20 = π/3,θ30 = π/3, height

of the configuration polygon hc = 1, #Steps = 10000
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Figure 4.5: Plot of angles associated, and with same parameters as in 4.4

Figure 4.6: Plot of the torques for the back leg associated and with the same

parameters as figure 4.4
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Figure 4.7: Plot of the torques for the back leg associated and with the same

parameters as figure 4.4, but with an additional constant force of 1 newton in the

negative x axis

Figure 4.8: Plot of the torques for the back leg associated and with the same

parameters as figure 4.4, except for the mass, which is 0.5 kg
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4.2 Two-leg-stance

In this section some of the results regarding the two-leg-stance, are presented. Note

that the angular values exceeds both the physical limits and 2π in some cases.

Figure 4.9: Plot of angle φ1 as the perpendicular force for varies in magnitude,

with duration of half a second. The other parameters are: m = 1, constant length

d = 0.9 meters which is relevant for the physical tripod. #Steps = 10000

We can calculate the error of the simulations plotted in 4.9 and 4.10, by equation

2.24. It becomes |ε5| < 0.4[rad], meaning; less than 0.4 radians after 5 seconds,

when using 5 × 10−4 as step length, h. Note that the absolute value of the error

always should be smaller than the distance to φ1 = 0, as the equilibrium is unstable.
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Figure 4.10: Phase portrait of the simple dynamics with normalized arrows. The

parameters are the same as in plot 4.9
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Figure 4.11: Phase portrait of the semi-simple dynamics with normalized arrows.

The parameters are the same as in plot 4.9, except for the knee mass m = 0.5,

with the motion generator shown in Appendix B.2

.
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Figure 4.12: Angle of the generalized coordinate associated with the position of

center of mass with same parameters as 4.11

.

Figure 4.13: Motion of the actuated coordinate with the initial conditions indicated

and motion generator shown in equation B.2 in Appendix

.



84 CHAPTER 4. RESULTS

Figure 4.14: Phase portrait of the semi-simple dynamics with normalized arrows.

The parameters are the same as in plot, with the motion generator shown in Ap-

pendix B.2. Here the initial velocity is positive in t = 0

.
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Figure 4.15: Angle of the generalized coordinate associated with the position of

center of mass with same parameters as 4.11

.

Figure 4.16: Motion of the active coordinate with the initial conditions indicated

and motion generator shown in equation B.2 in Appendix

.
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4.3 Model in Gazebo

Figure 4.17: Picture from simulation of the passive dynamics simulated by gazebo’s

internal physics motor. t = t0

Figure 4.18: Picture from simulation of the passive dynamics simulated by gazebo’s

internal physics motor. t = t1
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Discussion

5.1 General observations

The method of d’Alemberts principle of virtual work turned out to be a good tool

for developing a simple but powerful method on calculating the joint torques and

designing associated joint torques needed for specific motions for the three-legged

stance. The Euler-Lagrange models using generalized coordinates derived from

the Denavit-Hartenberg method were practical describing positions and velocities,

but additional coordinates was introduced to better describe the passive dynamics.

Parametrization of trajectories and motions for the tripod without adding many

constraints such as fixating joint parameters and use symmetric properties to pre-

vent confounding rotations turned out to be time consuming and more complicated

than initially believed.

5.2 Development of necessary tools

To be able to analyze the dynamics of the tripod, software able to develop symbolic

equations of motion, constraints, and plotting the for given values where crucial.

MATLAB was chosen as the main platform from the start, initially because of
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the possible integration with Gazebo, and possibility to use Simulink, a software

package suitable for control theory. Other possibilities where Python, and various

modeling tools such as Modelica. As the prior preparatory investigation in [29]

led to different MATLAB programs, these where re-implemented and validated at

the beginning of the thesis, and used for most of the calculations, as derivation of

dynamic models, equations of motion, simulation and plotting. The main problems

with using the symbolic tools in MATLAB where simplification of the models, and

time consuming compilation. The latter is partially due to ineffective code. hence,

MapleSoft were used to derive some of the analytic expressions for the proposed mo-

tion generators. As simulations in 3D can be powerful tools analyzing 3-D robots.

However the development working with Gazebo and ROS was time consuming and

demanding, regarding how to provide exact packages. The work on the simulations

stopped when customized plug-in for Python was needed in order to control the

joint parameters. If Python was used as the main programming language from the

beginning, the work on the 3-D simulations would have continued. [16] describes

how to solve most of the problems touched with MATLAB, in Python. Even if the

plug-in was not created and tested for this thesis, the configuration of the robot

was developed and the simulation using the inbuilt physics of Gazebo was tested.

A necessary feature for further testing is a program generating the initial stance

of the robot, as the xacro/urdf/sdf-files are relatively time consuming to create.

Newer versions of Gazebo allow trigonometric functions in these files, in contrast

to the version used in this study.

The programs for deriving the equations of motion as well as simulating, described

in section 3.3, were developed generally, but often includes some formulas derived

using MapleSoft. The functions performing standard tasks as deriving the Euler-

Lagrange equations, were implemented from scratch, since the alternatives, such as

MATLAB Robotics Toolbox, did not provide symbolic equations in a preferable way.
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5.3 Representation of the coordinates

In terms of describing the positions of the ten links for the tripod, several different

approaches where tested. For the complete models as the model analyzed in [29],

and the one defined by 3.2, inspection and analysis of the analytic expression is

not preferred. The two full complexity representations of the dynamic models lead

to the same limitations. Even if the first initially had more equations, with three

redundant, and the other, with 12 equations, resulted in different amount of analyt-

ical data, significant reductions in parameters 1 did not give valuable information.

Numerical analysis would be more relevant for the purpose of simulating the full

complexity model, in 3-D.

Simplification by restricting rotational axes and fixating joint variables to a con-

stant value, as well as removing masses and inertias from the full complexity model

were performed and lead to the most important results in this thesis. For the pur-

pose of describing motions strongly related to inverse pendulum-movement, intro-

duction of length and angle from swinging axis to center of mass became crucial.

For the simplest model these coordinates were trivial. Adding masses to the knees

for a more realistic model, these simple coordinates were still tested, under the

assumption of small displacement due to small angular difference. However, the

generalized coordinate intended to describe the angle from the axis of rotation to

the center of mass, required complex modifications. The assumption therefore, did

not fit the reality, and as expected, the derived motion generator did not lead to a

desired trajectory for the system. The exact representation of the position of center

of mass introduced a need for an additional motion generator as the non-constant

length of the pendulum introduced extra independent variables in the scalar robot

equation.

1Parameters with symbolic values were set to a constant numerical value.
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5.4 Usefulness of a simplified model

The simplified model considering the platform mass sufficiently larger than the

masses of the legs, is often used in previous literature such as [23] and [17]. Even

if the assumption is not realistic, the kick-and-swing gait, can be relatively easy

to describe with this model. The angular acceleration due to swinging of the

free leg can be calculated separately, and a constraint on the kicking force can be

introduced for such a gait to be used for a model deviating from the simple model.

These gaits are similar to [23], [17] and [12], called the kick-and-swing gait, seems

to be a preferable strategy for three-legged locomotive robots. As seen in the plot

4.9, even if a margin is wanted2, the period of the swing leg, from the start of

the lift-of until it lands, is sufficiently long for a realistic robotic leg to manage

repositioning, dependent on the position of the new step. A special case depicted

as (D) in figure 3.10, allows longer periods, or a shorter pendulum length.

5.5 Three-leg motion

As seen in the plots 4.1 to 4.7, the simple model of the three-leg-stance shows

reasonable torque angle ratio. For the tripod the torques while in three-leg-stance

is increasing as the angles on the floor gets slacker, more prominent than the effect

from a CoP moving away from the corner of the CP. By studying the plots and the

table 3.10, one can see that the current motors are too weak for such motions with

the current parameters. However as indicated in 4.8, weight-reduction afflicts the

needed force, as expected. Hence, limiting the weight of the robot is an important

task. For the case of the physical tripod, this can become challenging with current

motors.

2Keeping a safe distance from the unstable equilibrium.
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5.6 Two-leg motion

The two-leg stance introduces a passive DOF, namely the angle between the floor

and the center of mass. For the simplified version the tripod becomes equal to an

inverted pendulum and the dynamics of the tilting motion can be solved analyti-

cally for small angle deviation and numerically for the general case3. The force as

a function of time can be derived solving an integral equation. For the semi-simple

model, adding knee-masses in the model now introducing a angle θ2c influencing

both the center of mass, and hence, the generalized passive coordinate and the

length of the pendulum. The assumptions considering the displacement of the cen-

ter of mass leading to the phase portrait 3.12 did not represent the actual position

of the CM. Hence, he motion generators developed based on this assumption did

not lead to a successful trajectory for the actual system. Relation between the

generalized passive coordinate and the actual angle from the ground to the CM,

was expressed, and lead to a coordinate transform. However, the updated robot

equation substituted with this transform proved to be too complex for this thesis.

This suggests further research on the motions for the semi-simple tripod.

In the plots 4.13 and 4.16, the positions of the actuated coordinate is non-smooth

which can be hard to achieve in practice, as there might be discontinuous derivatives

[15]. The more realistic variant would therefore deviate from the ones presented.

3It can also be solved analytically for the general case, but this is not done in this report.
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Chapter 6

Conclusion

The tripod with platform mass considerably larger than the leg masses was ana-

lyzed for stances where three or two legs were supporting the weight. D’Alembers

principle of virtual work was used to describe the torques associated with the joints

at each leg for different situations. A model describing how the position of center

of pressure affects the expected normal forces, together with other external forces,

was found.

For the simplified model, the strategy of moving center of pressure outside of the

configuration polygon is not desirable except for a special case 1. This is due to

the unstable equilibrium and lack of controllability when the swing leg is lifted

from the ground and the tripod stands on two legs. When the knee masses are

non-zero, a similar behaviour was found. The analysis of the different models and

their associated movements gave rise to a initial description of different strategies

for lifting a leg, and moving the platform in three-leg stance.

1case D in figure 3.10

93



94 CHAPTER 6. CONCLUSION

6.1 Future work

For the tripod project there are several tasks still unsolved. The analysis incor-

porated in this report only scratches the surface of the subject. Even if there are

many various, interesting tasks needing investigation, there are some which are

crucial, and these are the subject for this section.

• Make a 3D-simulation framework for the tripod working such that models

and motions can be tested and verified.

• Development of impact models for impacts described in 2.18. The dynamic

models described in this thesis can be used as a basis.

• The situations for one-leg stance should be modeled and analyzed

• Solving the transverse linearization problem

• Developing feedback laws and a controller for the system
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Appendix A

Acronyms

NED North East Directed coordinate system. (x-axis directed north, y-axis di-

rected east, and z-axis directed down)

DOF Degree(s) of freedom

CP Configuration Polygon

CM Center of Mass

CoP Center 0f Pressure

ROS Robot Operating System

URDF Unified Robot Description Format

XML Extensible Markup Language

ODE Ordinary Differential Equation
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Appendix B

Equations

B.1 Theorems and lemmas

From [35] we have the sufficient conditions for existence of periodic solutions of the

scalar robot equation, 2.28. Theorem 3 in [35] states the following:

When q0 is a equilibrium of 2.28, these sufficient conditions are are:

1. There is a vicinity O of q0 such that the scalar functions α, β, and γ are

continuous on O, i.e. α(q), β(q), γ(q) ∈ C0(O).

2. There exists a continuous time derivative of γ(q)
α(q) at the equilibrium.

3. For any initial conditions q0 ∈ O, q̇0 with |q̇0| < δ, δ > 0, the corresponding

solution of the nonlinear system 2.28 that originates in this point, is well

defined and unique.

Consider the system in equation B.1. If this system has a center at z = 0, then the

nonlinear system 2.28 also has a center at the equilibrium q0.1.

d2

dt2
z +

[ d
dq

γ(q)

α(q)

]
|q=q0 · z = 0 (B.1)

1End of theorem



APPENDIX B. EQUATIONS

B.2 calculated values and relations

θ = −φ+
[ 1

200 d2 m
(100

√
3d2m sin(φ)

− 75
√

2d2m cos(φ)

+ 50
√

2mr cos(φ)− 25
√

6d2m cos(φ)

− 50
√

6mr cos(φ)

+ 2
√

5163M sin(φ) + 4
√

5163m sin(φ)

+ 400 d1m sin(φ)

+ 200mr cos(φ))
]

(B.2)

This function is valid for the values of φ listed in equation

[φ ≤ −6.094583367,−6.328393803 ≤ φ], (B.3)

[φ ≤ −2.952990713,−3.186801150 ≤ φ], (B.4)

[φ ≤ 0.1886019406,−0.04520849592 ≤ φ], (B.5)

[φ ≤ 3.330194594, 3.096384158 ≤ φ], (B.6)

[φ ≤ 6.471787248, 6.237976811 ≤ φ], (B.7)

[φ < 9.496474683, 9.379569465 ≤ φ], (B.8)

(B.9)

with d2 = 0.4, d1 = 0.1,m = 0.5,M = 1, r = 0.12

Motion generator calculation for 2. semi-simple model with start and stop values

ψ0 1.



B.2. CALCULATED VALUES AND RELATIONS

I1 = −
√
bMg cos (ψ0)

100

− 1

50

√
bmg cos(ψ0)

+ gmr sin(ψ0)− 2 d1 gm cos(ψ0)

+ 3/8
√

2d2 gm cos(ψ 0)

+ 1/8
√

2
√

3d2 gm cos(ψ0)

+ 1/4
√

2rgm sin(ψ0)− 1/4
√

2
√

3rgm sin(ψ0)

− 1/2
√

3d2 gm cos(ψ0)

+

√
bMg cos(ψ1)

100
+

1

50

√
bmg cos(ψ1)

+ 2 d1 gm cos(ψ1)− gmr sin(ψ1)− 3/8
√

2d2 gm cos(ψ1)

− 1/4
√

2rgm sin(ψ1) + 1/2
√

3d2 gm cos(ψ1)

− 1/8
√

2
√

3d2 gm cos(ψ1)

+ 1/4
√

2
√

3rgm sin(ψ1) (B.10)
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