
Sim
en Viken G

rini
O

bject D
etection in M

aritim
e Environm

ents

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Simen Viken Grini

Object Detection in
Maritime Environments

Systematic Training and Testing of
Deep Learning-based Detection Methods for
Vessels in Camera Images

Master’s thesis in Engineering Cybernetics
Supervisor: Edmund Brekke

January 2019

Simen Viken Grini

Simen Viken Grini

Object Detection in
Maritime Environments

Systematic Training and Testing of
Deep Learning-based Detection Methods for
Vessels in Camera Images

Master’s thesis in Engineering Cybernetics
Supervisor: Edmund Brekke
January 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

The work presented in this report is the result of the term project for the course ”TTK4900

- Engineering Cybernetics, Master’s Thesis”, conducted in the last semester of the Master

of Science program at the Norwegian University of Science and Technology (NTNU),

Department of Engineering Cybernetics.

I would like to thank my supervisor Edmund Brekke and my co-supervisor Håkon Hagen

Helgesen for their valuable feedback, guidance and support throughout the work with this

project. Edmund Brekke has also contributed with important data, for which I am very

grateful.

The discussions and support from other students with whom I shared office have been very

helpful. While going through thousands of images of slightly different boats with slightly

different rectangles around them, the work environment, chess games and jokes have been

crucial to keep my sanity on an acceptable level.

Last, but not least, I would like to thank my family for their support during my studies

in Trondheim. A special thanks to my father, Frode, who contributed to this thesis with

helpful constructive criticism. A special thanks also goes to my grand parents, Jorunn

and Ronald, for their hospitality during the work with this thesis. Finally, a big thanks to

my brother, Jonas, for his magnificent MS Paint skills, and my uncle, Rolf-Einar, for his

proofreading.

Oslo, 11 January 2019

Simen Viken Grini

Abstract

Machine learning methods based on deep convolutional neural networks (CNN’s) have in

recent years came to dominate the state of the art in object recognition. Huge research

efforts are currently being devoted to this field, and new network architectures are fre-

quently being proposed. For the particular task of detection of ships in images, these

networks must be trained on an appropriate set of annotated images. As these tasks, which

are somewhat labor intensive, will have to be repeated many times as new networks and

improvements appear, a systematic and reusable framework is highly desirable. To develop

this is the goal of this master thesis. In particular, the thesis focuses on the following:

• Conduct a literature survey on methods for detection of ships in camera images. In

particular, the survey should discuss the rationale for the recent popularity of deep

learning techniques, include the most popular CNN approaches, and discuss other

machine learning approaches.

• Develop a complete framework for training and testing, so that both training and

testing on new image sets can be done with minimal efforts for popular networks.

While the training can accept unordered collections of individual images, it is im-

portant that the testing can work on video streams, so that temporal detection metrics

can be investigated.

• Train and test the detection algorithms Yolov3 and SSD Mobilenet on real data

• Write report and discuss strengths and weaknesses for both of the networks, and

also for different training and testing sets.

The results from the tests done in this project are promising, and shows that boat detection

with camera can be reliable in certain situations. Though the results vary for different test

data, tests show that detection algorithms like SSD and Yolo can be able to detect close to

100 percent of the boats in a test set when trained properly.

i

ii

Sammendrag

Maskinlæringsmetoder basert på konvolusjonelle nevrale nettverk (CNNs) har i senere år

tatt over som den dominerende teknikken innenfor objektdeteksjon. Store forskningsres-

surser blir brukt på å utvikle dette feltet videre, og det kommer stadig nye nettverksarkitek-

turer og metoder. For å kunne detektere båter i bilder må disse nettverkene trenes på

et passende sett med merkede bilder. For å kunne sammenligne deteksjonsmetoder og

forskjellig treningsdata bør disse nettverkene kunne trenes enkelt gjennom et gjenbrukbart

og systematisk rammeverk. Å utvikle et slikt rammeverk er målet med denne masteropp-

gaven. Mer spesifikt ser denne opggaven nærmere på følgende:

• Gjennomføre litteraturstudie på eksisterende metoder for deteksjon av båter i bilder,

herunder å diskutere de mest populære CNN-metodene og andre maskrinlæringsme-

toder.

• Utvikle et rammeverk for trening og testing, slik at denne treningen og testingen kan

bli gjort for de mest populære deteksjonsmetodene med med minimal innsats.

• Trene og teste deteksjonsalgoritmene Yolov3 og SSD Mobilenet på relevante data.

• Skrive rapport og diskutere styrker og svakheter for både Yolo og SSD, på forskjel-

lige trenings- og testsett.

Resultatene fra dette arbeidet er lovende, og viser at båtdeteksjon med kamera kan være

pålitelig i gitte situasjoner. Selv om resulatene varierer for forskjellig testdata, viser testene

at deteksjonsalgoritmer som Yolo og SSD kan detektere nærmere 100 prosent av båtene i

et testsett når algoritmene er trent riktig.

iii

iv

Table of Contents

1 Introduction 1

2 Neural Networks 3

2.1 Artificial Neural Networks . 3

2.1.1 Training of Neural Networks . 4

2.2 Convolutional Neural Networks . 4

2.2.1 Convolutional Layers . 5

2.2.2 Pooling Layers . 6

2.3 Transfer Learning . 6

3 Object Detection 9

3.1 Sliding Window (OverFeat) . 9

3.2 R-CNN – Regions with Convolutional Neural Networks 10

3.2.1 Selective Search . 10

3.3 Fast R-CNN . 11

3.4 Faster R-CNN . 11

3.5 Yolo - You Only Look Once . 12

3.6 SSD - Single shot Multibox Detector . 14

3.7 Object Detection in Maritime Environments 15

3.7.1 Traditional Computer Vision Methods 15

3.7.2 Deep Learning-based Methods 15

3.7.3 Challenges in Detection of Maritime Vessels 16

3.7.4 Vehicle Detection for Autonomous Cars 16

3.7.5 Common Challenges in Maritime Object Detection 17

4 Implementation and Datasets 19

4.1 Datasets . 19

4.1.1 Datasets used for pre-trained weights 19

4.1.2 Custom datasets . 21

4.2 Detection framework . 24

4.2.1 Hardware . 25

4.2.2 Google Cloud . 25

4.2.3 Cloud Instance Setup . 25

v

4.2.4 Training Yolo . 26

4.2.5 Training SSD . 28

4.2.6 Testing with Cloud Detection Framework 29

5 Evaluation and Testing Methodology 31

5.1 Precision and Recall . 31

5.2 Bounding Box Evaluation . 32

5.3 Precision/recall Curves . 32

5.4 Average precision . 33

5.5 Confusion Matrix . 34

6 Results 35

6.1 Training Sets and Detection Models . 36

6.2 Results Overview . 36

6.2.1 Average Precision . 36

6.2.2 Confusion Matrices . 37

6.2.3 Main results . 38

6.3 Case Study 1: Effect from training on buildings 40

6.3.1 Tested on MooredBoats . 42

6.3.2 Tested on the BoatsClose and BoatsFar 43

6.3.3 Tested on Trondheimsfjorden 46

6.4 Case Study 2: Effect of Training on Moored Boats While Testing for Sail-

ing Boats . 50

6.5 Case Study 3: Video and Temporal Data 52

6.5.1 Video from Trondheimsfjorden 52

6.5.2 Video from (Kamsvåg, 2018) 56

7 Discussion 59

7.1 Dataset diversity . 59

7.1.1 Non-detected buildings in Trondheimsfjorden 62

7.2 Labeling . 63

7.2.1 Labeling of sail boats . 63

7.2.2 Using several boat classes . 63

7.2.3 Detecting boat parts . 63

7.3 Clustered boats . 64

8 Conclusion and Future Work 65

8.1 Future Work . 66

8.1.1 Test on Video and Real-Time Performance 66

8.1.2 More Data . 66

8.1.3 Tracking . 66

Appendix A Setting up Google cloud 67

A.1 Creating an account . 67

A.2 Setting up an instance . 67

A.3 Setting up and using gcloud command line tool on local computer 70

A.4 Accessing an instance from local computer using Gcloud command line tool 70

A.4.1 SSH in to instance . 70

A.4.2 SCP file to instance . 71

vi

A.4.3 SCP repository to instance . 71

Appendix B Using the Cloud Detection Framework 73

B.1 Training . 73

B.1.1 Adding datasets and directory structure setup 74

B.1.2 Training YOLO . 74

B.1.3 Training SSD . 74

Appendix C Example images 75

C.1 SSDBSM and SSDBSMH on BoatsClose and BoatsFar 76

C.2 YoloBSM and YoloBSMH on BoatsClose and BoatsFar 78

C.2.1 YoloBSM specific misclassifications on BoatsClose and BoatsFar . 78

C.2.2 YoloBSMH better than YoloBSM on BoatsClose and BoatsFar 79

C.2.3 YoloBSM better than YoloBSMH on BoatsClose and BoatsFar 80

C.2.4 YoloBSM and YoloBSMH same misclassifications on BoatsClose and

BoatsFar . 81

C.3 SSDBSM and SSDBSMH on Trondheimsfjorden 82

C.3.1 SSDBSM specific misclassifications on Trondheimsfjorden 82

C.3.2 SSDBSMH better than SSDBSM on Trondheimsfjorden 83

C.3.3 SSDBSM better than SSDBSMH on Trondheimsfjorden 84

C.4 YoloBS and YoloBSM differences . 85

C.4.1 YoloBS overestimating ship size 85

C.4.2 YoloBS detecting same boat multiple times 86

Bibliography 86

vii

viii

Chapter 1
Introduction

In recent years there has been made substantial progress in the field of autonomous vehi-

cles, and companies such as Google, Tesla and Uber are investing heavily in the develop-

ment of autonomous cars. In Norway, with our maritime expertise and long coastline, a

research field of interest has been autonomous ferries. Currently, Kongsberg Gruppen is

developing the world’s first zero emission, autonomous container feeder for Yara, which

could be able to reduce diesel-powered truck journeys by around 40,000 trips per year

(Kongsberg, 2017). In Trondheim, the development of an autonomous passenger ferry is

ongoing (Stensvold, 2016).

A crucial part of an autonomous system is the ability to sense and understand its sur-

roundings. Sensors such as lidars and radars are good at measuring distance, and are used

both in autonomous cars and ferries. This report investigates how cameras can be used to

help an autonomous ferry generate information about its surroundings. The same problem

has already been studied to some extent at the Rolls Royce Singapore Lab (Prasad et al.,

2016b) and (Prasad et al., 2016c), but it is still necessary to investigate this topic further.

This report separates from their research by focusing on detection algorithms based on

deep learning.

In the last years, image classification and object detection have developed rapidly. In

2012 there was a breakthrough in image classification when AlexNet won the ImageNet

Large-Scale Visual Recognition Challenge by a large margin, using a Convolutional Neu-

ral Network (CNN) for the first time in the competition (Krizhevsky et al., 2012). This was

achievable because of easier access to the required computational power and the increased

amount of data needed for training of such networks. In the following years, several CNNs

for image classification were developed, e.g. VGGnet (2014), GoogLeNet (2015) and Mi-

crosoft ResNet (2015). Today the best classification algorithms have surpassed human-

level performance on the ImageNet dataset (He et al., 2015). This technology can be used

for many interesting purposes, e.g. image colorization (Zhang et al., 2016), image cap-

tioning (Karpathy and Fei-Fei, 2016) and to create the worlds best GO player (Silver et al.,

2016).

The advances in image classification have also led to new deep learning based object de-

tection algorithms. Where image classification seeks to classify objects in an image, object

1

Chapter 1. Introduction

detection aims to localize different objects in an image, and classify them. An example of

the output of an object detection algorithm is given in figure 1.1.

Figure 1.1: Output of an image detection algorithm, image from (Redmon et al., 2016).

This project aims to find a starting point for figuring out how well detection of maritime

vessels can be, and to develop a user-friendly system that can be used to test and find statis-

tics for detection algorithms trained on different data. Such a system simplifies identifi-

cation of challenges in deep learning-based methods, and the work on trying to overcome

these challenges can be simplified by having a consistent framework that automates this

process. The scope of this thesis involves setting up a framework for testing and training

of SSD and Yolo, to build a dataset, and to start the process of finding out what makes an

object detector better at identifying maritime vessels in video.

2

Chapter 2
Neural Networks

Object detection using complex machine learning techniques is possible due to the recent

advances in image classification using convolutional neural networks and improvements

in hardware. This chapter aims to give the reader a basic understanding of how a con-

volutional neural network works and how it classifies images, explaining some key con-

cepts, without going into too much detail. A more thorough explanation can be found in

(Krizhevsky et al., 2012). The theory presented in this chapter is inspired by (StanfordUni-

versity, 2018).

2.1 Artificial Neural Networks

A neural network is a group of neurons or nodes connected to each other. Each node

can receive a signal from its input nodes, process it, and pass it on to its output nodes.

In an Artificial Neural Network (ANN), the nodes are structured in layers, where there

is one input layer, one output layer, and one or more hidden layers in between. When a

node receives a signal, it processes it using an activation function, which, given the input,

defines the output of the node. The goal is to get the nodes to work together such that the

network as a whole gives the correct output. A graphical representation can be seen in

figure 2.1.

3

Chapter 2. Neural Networks

Figure 2.1: Illustration of a simple Neural Network with three layers.

2.1.1 Training of Neural Networks

The process of training neural networks is to tune the parameters of the activation function

of each individual node such that the final output of the network is correct. A simple ex-

ample that would conform with figure 2.1, is input nodes where we have different features

of a fish, e.g. its weight, color and age. The input nodes passes on the values of the fish

features to the hidden layer, which processes the values using the activation function and

passes on the value to the output nodes. The output nodes would be the fish type, e.g.

salmon and cod. Ideally, if the input is in fact a salmon, we want the value of the salmon

output node to get the value 1 and the cod output node to get the value 0. Deviations from

this result can be computed as a loss. We want to find the parameters for the activation

functions in all the nodes that minimizes this loss. This is achieved by training the nodes

on data where the class of the input object is known. If we have a data set of 1,000 cods

and 1,000 salmons and their weight, color, and age we can use these as inputs, pass it

through the network, and look at the loss. Then, by using gradient descent, we can change

the parameters in all the activation functions in a way that decreases the loss. This is done

using backpropagation, which is an algorithm that calculates how the parameters in each

activation function should be changed in order to reduce the loss. The idea is that doing

this many times makes the network able to classify fish correctly, also on new data.

2.2 Convolutional Neural Networks

A convolutional neural networks is a type of artificial neural networks, and consist of nodes

with activation functions structured into layers. The main difference is that it is assumed

that the input is an image, and use this assumption to do operations that are tailored for

images, and improve both runtime and accuracy for image classification.

If we want to process an image through an artificial neural network, we would transform

the image into a vector, where each row of the image now is in one large row. That would

mean that color images, which has three channels (RGB) of size 256 x 256 would have

256 x 256 x 3 = 196,608 neurons in the first hidden layer. Convolutional neural networks

reduces the number of neurons by using convolutional layers and pooling layers.

4

2.2 Convolutional Neural Networks

2.2.1 Convolutional Layers

A convolutional layer consists of a set of filters. When a convolutional layer receives

an image input, it slides, or convolves, filters over all the pixels in the input image and

output the dot product of the filter and the image at the filters position. This will create an

activation map, where we can see the response of the filter at different positions. During

training the different filters will change in order to detect different features in the input

image. Imagine we want to classify images of handwritten ones and zeros. Some filters

may aim to detect the rounded shape of the zeros, and will therefore output a large number

if it detects a rounded shape. Figure 2.2 illustrates this.

.

Figure 2.2: Filter and subregion of an image of a handwritten zero, in the Subregion from image the

ones represent pixels that are black, the zeros represent pixels that are white. Filter 1 detects vertical

lines, while filter 2 detects upper left regions of circles.

5

Chapter 2. Neural Networks

The dot product, or the activation of the two filters at this position in the image is (30 ·1)+
(10·1)+(10·1)+(10·1) = 60 for filter 1, and (30·1)+(30·1)+(30·1)+(30·1)+(30·1) =
150 for filter 2. This means that the activation map for filter 2 is much higher than for

filter 1 at this position. For a different subregion the result would be different. When we

have several different filters they will activate at different positions and thus have different

activation maps. Combining the different activation maps for the different filters tells us

something about the image as a whole. During training of a convolutional neural network,

the network is trained to draw conclusions of what is in the image based on which filters

activate at which positions.

2.2.2 Pooling Layers

The pooling layers are downsampling layers. They work by sliding boxes of e.g. 2x2

over the pixels of the image, and process the values to output a single value for those 4

pixels. There are different ways to process the pixels, where max pooling is a commonly

used method. An example of how to downsample an image by a factor of two using max

pooling is shown in figure 2.3.

Figure 2.3: Max pooling, where a 4x4 image is sampled down to a 2x2 image. The highest pixel

value in each 2x2 cell in the left image is the pixel value in the right image.

Max pooling transforms the pixels inside the sliding box into one pixel with the same value

as the highest pixel value in the original box. By downsampling the image the number of

parameters is reduced, which in turn reduces the computational cost of the algorithm.

The pooling layers usually follow a convolutional layer, and can therefore help the next

convolutional layer pick up features the previous layer could not. Pooling layers can also

help preventing overfitting, which is when a classification algorithm performs well on

training data, but badly on test data.

2.3 Transfer Learning

Transfer learning is a machine learning method where a network trained on one task is

repurposed on a second similar task. This is a technique used extensively in this project.

A problem in deep learning is data dependence, meaning that deep learning processes

depends on a massive training dataset to be able to understand the patterns in the data

(Tan et al., 2018). This is especially a problem in deep learning compared to traditional

machine learning methods, since deep learning methods have to learn features from the

dataset, while in traditional machine learning methods the user has to design the features.

6

2.3 Transfer Learning

To counter the data dependence of a neural network one needs a large well-annotated

dataset, which may be both costly and time consuming to acquire (Pan and Yang, 2009).

Transfer learning provides a way of utilizing training data that does not conform with the

test data. This means that e.g. a classifier trained to detect dogs can be retrained to detect

ducks, saving training time and training data requirements compared to training a duck

classifier from scratch.

Figure 2.4: Transfer learning, figure from (Tan et al., 2018). The goal is to transfer knowledge from

a source domain, to a target domain.

Figure 2.4 shows how data from the source domain is used to train a classifier, then using

this knowledge in combination with data from the target domain to train a new classifier.

(Tan et al., 2018) categorized network-based deep transfer learning into the following four

methods.

Instances-based

Supplement the training data in the target domain with relevant instances from the source

domain by assigning fitting weights to the selected values.

Mapping-based

Maps instances from the source domain and the target domain to a new data space. The

reasoning for this is: ”Although there are differences between the two origin domains,

they can be more similar in an elaborate new data space.” (Tan et al., 2018).

7

Chapter 2. Neural Networks

Network-based

Reuses parts of the network that are pre-trained on the source domain. The target domain

retrains the last part of the network on new data while keeping the weights in the other

layers. The idea is that the first layers in neural network find more general features, while

the last layers narrow down to the features specific for the class of interest. A classifier

trained on images of boats and a classifier trained on cars may detect similar features in

the first layers of the network. This is project uses pre-trained weights to further train a

boat detector.

Adversial-based

Finds transferable features that are suitable in both target domain and source domain.

8

Chapter 3
Object Detection

The problem of detecting objects in an image is harder than classifying an image only

containing one object. In object detection, the goal is both to classify objects and locate

the exact location of the object in the image. That makes the problem twofold, first we need

to find subregions in the image, and then we need to classify them. Since the latter part of

the problem has been solved by CNNs, the part that remains is to find these subregions.

An example of detected boats in an image is shown in figure 3.1.

Figure 3.1: Detected boats by Yolov3 on image from Trondheimsfjorden.

3.1 Sliding Window (OverFeat)

The most straightforward solution to find subregions in an image is to use a sliding win-

dow, and OverFeat is a method that applies this technique (Sermanet et al., 2013). The

sliding window is a window that convolves over the image, like the filters explained in

chapter 2.2.1, and looks at small regions of the image one at a time. This region is then

passed through a classification network to determine if this region contains an object of

9

Chapter 3. Object Detection

interest. If the classification network returns a high confidence score, OverFeat considers

it as an object.

The problem with this approach is that it is very computationally exhaustive, and it is also

not scale invariant, meaning we have to try several different scales for the sliding windows

to be able to detect objects of different sizes. This means that OverFeat has to classify

many subregions, and is therefore not a good option for real-time systems.

3.2 R-CNN – Regions with Convolutional Neural Networks

R-CNN (Regions with Convolutional Neural Networks (Girshick et al., 2013)), attacks the

problem differently than OverFeat. Instead of trying arbitrary subregions, they propose a

solution using the Selective Search algorithm for region proposals.

3.2.1 Selective Search

The Selective Search algorithm (Uijlings et al., 2012) groups adjacent pixels based on

color, texture, and intensity together and creates segmented pictures as shown in figure

3.2. It is designed to have a very high recall, meaning that it is acceptable to suggest

several false positives, as long as it gets all the true positives. False positives are incorrect

detections, while true positives are correct detections. Recall is explained further in chapter

5.1.

Figure 3.2: Segmented regions shown in top row, and bounding boxes returned shown in bottom

row. This shows why different scales of segmentation is important, since bigger objects are only

detected when the image is less segmented. Image from (Uijlings et al., 2012).

The Selective Search algorithm takes a segmented image as initial input and performs the

following steps:

1. Add bounding boxes corresponding to segmented parts to the list of region propos-

als. This means that regions with the same color (as shown in figure 3.2) will be

10

3.3 Fast R-CNN

grouped in a bounding box. A bounding box is a rectangular box that surrounds a

potential object.

2. Group adjacent segments based on similarity.

3. Go to step 1.

After Selective search has created the region proposals, R-CNN inputs these to a convolu-

tional neural network. The CNN classifies all the region proposals, and if the confidence of

the classification is high, the bounding box with its class is outputted from the algorithm.

3.3 Fast R-CNN

Two years after the release of R-CNN, Fast R-CNN was released by the same author

(Girshick, 2015). In this time he had discovered two drawbacks with R-CNN and found

solutions to these issues.

1. R-CNN consists of three different models that all have to be trained. In addition to

the CNN, R-CNN consists of a Support Vector Machine (SVM) for classification,

and a bounding box regressor, which tightens the bounding boxes around detected

objects. Since R-CNN consists of three parts that are trained independently, it makes

it harder to train the network as one structure. This is because each submodule is

optimizing for themselves and not for the entire system.

Solution

Instead of training each submodule individually, Fast R-CNN changed the structure

in a way that let the whole system be trained together.

2. The CNN has to run once for every region proposal from Selective Search. Since

Selective Search is designed to have a very high recall, this ends up being a bottle-

neck.

Solution

Instead of calculating the CNN features for every subregion of the image, the CNN

features for the entire image are calculated once. Then the features of every region

can be extracted from this feature map.

3.4 Faster R-CNN

The bottleneck in Fast R-CNN was the region proposals and the Selective Search algo-

rithm. The idea behind Faster R-CNN (Ren et al., 2016) is that the region proposals should

depend on the features calculated by the CNN. So instead of using Selective Search, we

can use the feature maps outputted from the CNN. The feature maps are then sent into

a Region Proposal Network (RPN), which uses a sliding window over the CNN feature

map, and outputs k potential bounding boxes and scores for how correct these boxes are

11

Chapter 3. Object Detection

expected to be. These proposals are then fed into the same classifier as used in Fast R-

CNN. The difference between the two is just that the region proposals depend only on

CNN features in Faster R-CNN. Thus it bypasses the Selective Search algorithm.

3.5 Yolo - You Only Look Once

What separates Yolo (Redmon et al., 2016), (Redmon and Farhadi, 2016) and (Redmon

and Farhadi, 2018) from R-CNN methods is that YOLO only looks once at the picture, and

there is only one network for the entire detection process. ”We reframe object detection as

a single regression problem, straight from image pixels to bounding box coordinates and

class probabilities. Using our system, you only look once (YOLO) at an image to predict

what objects are present and where they are.” (Redmon et al., 2016).

Yolo starts by dividing the input image into a SxS grid. The goal for each cell is to predict

B bounding boxes and confidence scores for these boxes. If an object has its center in

a cell, that cell is responsible for detecting the object. The score of the box says how

confident it is that the bounding box contains an object and how accurate it thinks the box

is.

Confidence score = P (Object) · IoU (3.1)

IoU is the Intersect over Union between the predicted box and ground truth, shown in

figure 3.3. Ground truth is referred to as a manually drawn box over a correct object in the

image.

Figure 3.3: Intersect over Union

Each grid cell also predicts C conditional class probabilities, which are conditional on that

cell containing an object.

P (Class|Object) (3.2)

For each cell, only one set of class probabilities is calculated. To get class specific scores

for each bounding box, we multiply these together.

12

3.5 Yolo - You Only Look Once

P (Class|Object) · P (Object) · IoU (3.3)

This gives a value of how well the predicted box fits the object and the probability of that

class appearing in the box. When we have this value, we can set a threshold, and only use

the results that are probable as output. This is shown in figure 3.4.

.

Figure 3.4: YOLO flow, Top image shows predicted bounding boxes, the thicker the line the higher

the confidence score. The bottom picture shows the class probability map. These combined gives

the output image (Equation 3.3), image from (Redmon et al., 2016)

13

Chapter 3. Object Detection

3.6 SSD - Single shot Multibox Detector

The Single Shot Multibox Detector works similarly as YOLO compared to Faster R-CNN.

SSD does not use a region proposal network, but as YOLO, it discards the proposal gener-

ation step and does all the computation in a single network. A difference between YOLO

and SSD is that SSD uses different aspect ratios and scales when it grids the input image,

which makes it easier to handle objects of different sizes. By circumventing the proposal

generation, SSD saves computational time and runs at a frame rate six to eight times higher

than Faster R-CNN with similar accuracy, according to (Liu et al., 2016).

Figure 3.5 shows how SSD detects objects with different sizes using different aspect

ratios on the feature map. Each cell in the feature maps tries different anchors, that is

proportional to the cell size. The anchors are the default boxes shown with dotted lines in

figure 3.5. The smallest ground truth object in the image was found in the eight by eight

grid, while the bigger object is found using the four by four grid, illustrating how different

grid sizes detects objects of different size. The anchors in each cell are run through a

classifier which gives a confidence score. If multiple boxes predict the same class and have

an intersect over union of more than 0.5 the bounding box that has the highest confidence

score is chosen. This process is called non-maximum suppression.

Figure 3.5: SSD training process, image from (Liu et al., 2016).

14

3.7 Object Detection in Maritime Environments

3.7 Object Detection in Maritime Environments

Several approaches have been proposed for solving the challenge of object detection in

maritime environments. In this thesis, the methods will be divided into algorithms based on

traditional computer vision methods (Traditional CV) and deep learning-based methods.

3.7.1 Traditional Computer Vision Methods

Background Modelling

Background modeling methods aim to model the background to detect foreground or mov-

ing objects. In (Kumar et al., 2015) the authors propose a method for detecting boats using

dynamic background modeling and shadow suppression to detect boats. (Rhodes et al.,

2007) and (Pires et al., 2010) use background modelling for port surveillance. (Tran and

Le, 2016) uses background subtraction to detect moving boats, and saliency detection to

detect non-moving boats. These results are finally fused to generate the detected boats in

the scene. All these methods rely on a stationary camera to model the background, and is

therefore not likely to perform well on an autonomous ferry.

Appearance-based Methods

Appearance-based methods seek to model the vessels appearance and to classify it. These

methods extract features from the boats using edge-detection, or other traditional CV-

based methods, to detect boats. (Eum et al., 2015) uses HOG-like features and background

subtraction together to identify and localize boats. (Bloisi et al., 2011) detects boats from

a rotatable camera using HAAR-like features. (Dulski et al., 2011) detects small, fast-

moving RIBs by using thermal cameras sensitive different bands of the infrared spectre.

While these methods have good results in controlled environments, they are susceptible to

noise like sun glare, lighting conditions and other non-optimal weather conditions.

3.7.2 Deep Learning-based Methods

Earlier in this chapter Faster R-CNN, Yolo and SSD were presented, these are general pur-

pose deep learning-based object detectors. They can be trained on new data, to repurpose

them as specialiszed object detectors, such as a boat detector. There also exist several

similar algorithms, and they all can be separated into two categories:

1. Region proposal based methods, which include R-CNN (Girshick et al., 2013), Fast

R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016), R-FCN (Dai et al.,

2016), Mask R-CNN (He et al., 2018)

2. Regression/classification based methods, which include SSD (Liu et al., 2016), YOLO

(Redmon et al., 2016), (Redmon and Farhadi, 2016), (Redmon and Farhadi, 2018),

MultiBox (Erhan et al., 2014) and RetinaNet (Lin et al., 2018)

(Zwemer et al., 2018) aims to develop a real-time detection and tracking system for surveil-

lance cameras in harbours. They have gathered a dataset of 48,966 images containing

70,513 ships from several viewpoints and trained a detector based on SSD to perform

detection (Liu et al., 2016).

15

Chapter 3. Object Detection

In (Van Etten, 2018), a combination of traditional CV methods and Deep Learning based

methods are used to detect boats in satellite images. Large parts of the satellite images

do not contain boats, while smaller subframes contains many boats. The solution is to

find these subframes by using edge detection methods and then run YOLO. This problem

is to some degree relatable to the issue of detecting boats from ships. However, satellite

images are less prone to background noise, e.g., from waves. Thus, running the same edge

detection algorithms on images taken at sea level returns a lot of noise, and the result is

therefore hard to replicate with the same success.

In (Goring, 2017), deep learning-based detection algorithms are trained and tested on de-

tecting maritime navigational markers. In this work they also review how this can be

implemented on a boat, with hardware specifications.

3.7.3 Challenges in Detection of Maritime Vessels

In (Prasad et al., 2016a) a thorough review of the challenges in video based object de-

tection in a maritime scenario is presented. The paper focuses on challenges regarding

horizon detection, background subtraction, foreground detection and tracking. While this

paper gives a good indication of where traditional CV methods has trouble detecting mar-

itime vessels, it does not address the same problem for deep learning-based methods. It

discusses how noise in the background, like wakes, foams, clouds, etc. can make the de-

tection process hard. It also discusses how the maritime scene is affected by illumination

conditions such as sunlight, twilight conditions, night, rain, haze, fog, etc. and thus mak-

ing a model suitable for one weather condition useless for a different environment. Similar

research done for deep learning-based methods has not been found.

3.7.4 Vehicle Detection for Autonomous Cars

The field of vehicle detection for autonomous cars is in some ways similar to detection

of maritime vessels. While the environment around the object of interest is different and

has their own unique challenges, there are similarities in how the desired finished product

should be.

For vehicle detection a benchmark suite has been developed. (Geiger et al., 2012) pro-

vides a platform to ”develop novel challenging benchmarks for the tasks of stereo, optical

flow, visual odometry / SLAM, and 3D object detection” called KITTI. KITTI simplifies

the process of testing new detection algorithms and evaluating performance against previ-

ously tested algorithms. It also provides data of which scenarios the detection algorithms

perform well, and where it struggles. This gives an indication of how trustworthy the de-

tector will be in a real scenario, also in different environments. On the KITTI website

there are links to the highest performing object detectors, with information on how they

were implemented.

In (Wedel and Franke, 2007) video is used to verify obstacles, and to find obstacle bound-

aries, to supplement radar signals for autonomous cars. (Sun et al.) gives a thorough

review of the detection methods used for autonomous cars.

16

3.7 Object Detection in Maritime Environments

3.7.5 Common Challenges in Maritime Object Detection

Summed up there are many different approaches to the problem of detecting boats in im-

ages. A problem with these articles is that even though they give performance metrics on

their dataset, there is no way of concluding that their solution will perform as well in other

environments. (Zwemer et al., 2018) for instance, trains an SSD detector for detection of

boats, it discusses how the detector performs on boats of different sizes, and it also men-

tions that it detects fewer boats in ”difficult situations such as low light, tiny ships and

clutter from in-harbor ships”. Still, the only performance statistic provided is how well

the detector performs on the entire dataset. This indicates that SSD can be a good option.

However, an object detector meant to supplement other sensors on an autonomous ship

should have known performance statistics in different environments and under different

conditions to be reliable in a real scenario.

For object detectors to be sufficiently trustworthy and implemented on an autonomous

ferry there needs to be well known performance statistics. If the performance statistics in

for instance foggy conditions are unknown, the object detector is practically useless under

these conditions. Even if the detector performs well, there is no way of telling whether the

detections are wrong or right if there is no data supporting the robustness of the output.

A platform such as KITTI (Geiger et al., 2012) for detection of maritime vessels could be

highly useful to get the required performance statistics. Such a system could be used to

investigate how different training data affects the performance of the algorithm in different

environments, how different detection algorithms compare to each other, and to set clear

benchmarks for future research.

17

Chapter 3. Object Detection

18

Chapter 4
Implementation and Datasets

This chapter covers how the cloud detection framework implemented in this project works,

and why it is implemented the way it is. It also covers datasets relevant to this project. A

more thorough walkthrough of how to use the cloud detection framework is attached in

the appendix. A user manual can also be found in the GitHub repository for this project1.

4.1 Datasets

The object detection algorithms used in this report all comes with the possibility of trans-

fer learning and training on pre-trained weights. This means that the network has been

trained on a dataset and thus already has learned to find features in images and classify

them. This is helpful even if the object one wishes to train the algorithm for, is not within

the dataset used when optimizing for the pre-trained weights. Using pre-trained weights

during training saves computational time for training, and it reduces the required number

of training images of the object the detector will be trained on.

4.1.1 Datasets used for pre-trained weights

The detection algorithms used in this project comes with several different pre-trained

weights, where the differences include both network configuration and datasets used in

training. The datasets presented here are some of the most well-known datasets used in

object detection and are also used in the training of the pre-trained weights for both Yolo

and SSD, including Imagenet, VOC Pascal and COCO.

ImageNet

ImageNet is a ”large-scale ontology of images” (Deng et al., 2009a). When (Deng et al.,

2009a) was released in 2009 it stated that the goal of ImageNet was to populate 80,000

subsets of images with 500 to 1,000 pictures. The ImageNet dataset is structured into

subtrees and subsets, in an IS A relationship, meaning that if class A is a subset of class

1https://github.com/simenvg/cloud detection framework

19

Chapter 4. Implementation and Datasets

B, any object that satisfies class A’s specification also satisfies class B’s specification. For

instance would fish be a subset of an animal. ImageNet contains more than 14 million

images that have been annotated by ImageNet with the objects that are in the images. In

more than one million of the images bounding boxes are also provided.

Pascal, VOC2007 and VOC2012

Pascal delivers the datasets for the annual Visual Object Classes (VOC) Challenge. The

datasets relevant for this report are VOC2007 and VOC2012. VOC2007 consists of 5,011

images with 12,608 objects in the training and validation set, while VOC2012 consists of

11,540 images with 27,540 objects. In figure 4.1 and 4.2 an overview of classes, images,

and objects in VOC2007 and VOC2012 can be found. The combination of these two is

denoted as VOC0712.

Figure 4.1: VOC2007 classes and images, image from (Everingham and Winn, 2007).

Figure 4.2: VOC2012 classes and images, image from (Everingham and Winn, 2012).

20

4.1 Datasets

COCO

In 2015 Microsoft released the COCO (Common Objects in Context) dataset, used for

object recognition (Lin et al., 2014). The COCO dataset consists of 2.5 million labeled

instances in 328,000 images, and are ”images of complex everyday scenes containing

common objects in their natural context” (Lin et al., 2014). Each object in the image is

segmented and labeled separately, instead of semantically which is done in many other

datasets. This means that objects of the same class are segmented into different instances.

The COCO dataset has 3,146 images containing boats. An example image from the COCO

dataset is shown in figure 4.3.

Figure 4.3: Example image from the COCO dataset, different objects are segmented at pixel values.

4.1.2 Custom datasets

A big part of the project has been to compile and annotate a dataset of images relevant

to this project. This means that images are captured in environments where the algorithm

should perform well, this being in areas around Trondheimsfjorden or similar areas.

Dataset Number of images

Trondheim 114

Trondheimsfjorden 472

Hovik 1,197

Various 133

Total 1,916

21

Chapter 4. Implementation and Datasets

These datasets were then divided into the following datasets divided into three different

categories.

Category Dataset Number of images Category total

Trondheimsfjorden 472

BoatsFar 1,215

Sailing boats BoatsClose 36 1,723

MooredBoats 108

Moored boats and buildings MooredBoatsHouses 108 108

Buildings Houses 89 89

Table 4.1: In the dataset names houses are used for buildings to let the abbreviation ”h” be used for

buildings ([h]ouses), since ”b” is used for boats later in this work. MooredBoats and MooredBoat-

sHouses contains the same images, in MooredBoatsHouses the buildings in the dataset are labeled

as buildings, in MooredBoats they are not.

In (Tangstad, 2017), the detection algorithm used misclassified buildings as boats, and this

issue has also been observed during testing of Yolo and SSD. For this reason, datasets

consisting images of buildings were compiled, to be able to verify whether training on

these images will reduce these misclassifications. The Trondheimsfjorden dataset has been

kept as is, and not split into the other sub-datasets. The reasoning for this is that how the

algorithm performs in this environment is an interesting performance metric in this project.

All the datasets have been split into test and train directories, where 75 % of the images are

used in training, and 25 % are employed in testing. This is done randomly, but the same

configuration is used in all training and testing to ensure that the detection algorithms have

the same preconditions.

Labeling of Custom Dataset

The custom dataset was annotated using LabelImg 2. LabelImg lets the user choose the

output format and simplifies the labeling process, also for multiclass-labeling. During

labeling the VOC Annotation Guidelines (Everingham and Winn, 2012) have been used,

which are:

• What to label

– All objects of the defined categories, unless:

∗ you are unsure what the object is.

∗ the object is very small (at your discretion).

∗ less than 10-20% of the object is visible, such that you cannot be sure

what class it is. e.g., if only a tyre is visible it may belong to car or truck

so cannot be labeled car, but feet/faces can only belong to a person.

– If this is not possible because too many objects, mark the image as bad.

• Viewpoint

2https://github.com/tzutalin/labelImg

22

4.1 Datasets

– Record the viewpoint of the ‘bulk’ of the object, e.g. the body rather than

the head. Allow viewpoints within 10-20 degrees. If ambiguous, leave as

‘Unspecified.’ Unusually rotated objects, e.g. upside-down people should be

left as ’Unspecified.’

• Bounding box

– Mark the bounding box of the visible area of the object (not the estimated total

extent of the object).Bounding box should contain all visible pixels, except

where the bounding box would have to be made excessively large to include a

few additional pixels (less than 5%) e.g., a car aerial.

• Truncation

– If more than 15-20% of the object lies outside the bounding box mark as Trun-

cated. The flag indicates that the bounding box does not cover the total extent

of the object.

• Occlusion

– If more than 5% of the object is occluded within the bounding box, mark as

Occluded. The flag indicates that the object is not visible within the bounding

box.

• Image quality/illumination

– Images which are poor quality (e.g., excessive motion blur) should be marked

bad. However, poor illumination (e.g., objects in silhouette) should not count

as poor quality unless objects cannot be recognized. Images made up of mul-

tiple images (e.g., collages) should be marked bad.

• Clothing/mud/ snow etc.

– If an object is ‘occluded’ by a close-fitting occluder e.g., clothing, mud, snow,

etc., then the occluder should be treated as part of the object.

• Transparency

– Do label objects visible through glass but treat reflections on the glass as oc-

clusion.

• Mirrors

– Do label objects in mirrors.

• Pictures

– Label objects in pictures/posters/signs only if they are photorealistic but not if

cartoons, symbols, etc.

23

Chapter 4. Implementation and Datasets

4.2 Detection framework

Object detection using deep learning based methods is a field of research which is rapidly

changing, and new algorithms and methods have continously been presented in recent

years. When new methods and articles are released to the public, these algorithms have

performance data which makes it possible to compare them to already existing algorithms.

These statistics are based on the performance of the algorithms on standard datasets, such

as COCO (Lin et al.), VOC Pascal (Everingham and Winn, 2007), (Everingham and Winn,

2012), and Imagenet (Deng et al., 2009b), and gives an estimate of how fast and how

accurate the algorithm is. When trained on these datasets, which include multiple classes,

e.g. persons, cars and dogs, they become general purpose object detectors. In this project,

the object of interest is maritime vessels, and possibly other objects related to navigation

and obstacle avoidance. Thus, the focus in this report is a specialized object detector that

is trained for detecting these objects. The performance statistics from object detection

articles can thus only be used as a guideline for how well it will perform as a specialized

object detector in a maritime environment.

The different, currently existing, object detection algorithms could potentially perform

on a vastly different level depending e.g. on the lighting conditions, how big the object

of interest is in the image, and which data they are trained on. Their performance can

also significantly differ based on how the algorithm is configured. Yolo, for instance,

can perform better on smaller objects by increasing the grid size mentioned in chapter

3.5. The performance of different detection algorithms in maritime environments based

on their configuration and on which data it is trained on, is a landscape that is not explored

fully. This project aims to make it possible to more efficiently and systematically navigate

in this landscape and to begin a heuristic approach to find directions worth continuing to

research.

Figure 4.4: Example image from the Cloud Detection Framework, here the user is prompted which

datasets to test Yolo on.

24

4.2 Detection framework

4.2.1 Hardware

One of the first issues one encounters while trying to train a convolutional neural network

is the need for specific hardware that has the computational capacity to train and test the

network in a reasonable amount of time. All the object detection algorithms mentioned in

this thesis are implemented with support for Graphics Processing Unit (GPU) computa-

tions. According to Nvidia, GPUs alone increased the computational speed by a factor of

1,000 over a span of 10 years, greatly supporting the progress in deep learning (Dettmers,

2015). The most popular library used for GPU processing for neural networks is today

CUDA, which is developed by Nvidia. Hence, the GPU needed for more efficient training

and testing of neural networks has to be a Nvidia GPU.

Another problem that arises when working with the cutting edge detection algorithms is to

get an environment set up correctly. Libraries, programs, and drivers have to be installed

the correct way, and configuration files and paths must be set accordingly. This may sound

trivial, but the road from an annotated dataset to a trained object detector can be long and

frustrating. A goal in this project is to make this process as simple as possible, this enables

future master students or researchers to focus more on the actual problem and not spend

time on creating the system.

4.2.2 Google Cloud

The solution to the hardware problem in this project is to use a cloud computing service, in

this case, Google Cloud. Other cloud computing solutions exist, where some of the most

popular are Amazon AWS and Microsoft Azure. Google Cloud was chosen because it is

an economical choice in a testing phase.

Google Cloud lets you open an instance where you can specify the operating system and

hardware according to the requirements of the user. The instance opens on a clean installa-

tion of the selected operating system, and an object detection environment can, therefore,

be set up the same way for every instance. In this project, the operating system used is

Ubuntu 16.04 and the GPU used is a Nvidia Tesla K80. A detailed explanation of how

Google Cloud was configured can be seen in appendix A.

It should also be noted that this system work on other cloud computing services, as long

as the hardware satisfies the requirements.

4.2.3 Cloud Instance Setup

The Google Cloud instance can be configured by cloning the Cloud Detection Framework

Github repository3. Running the setup.sh file will install and set up the following

• CUDA and cudnn

– Nvidia libraries used to run computations on the GPU.

• Tensorflow

– Google’s software library for dataflow programming

3https://github.com/simenvg/cloud detection framework

25

Chapter 4. Implementation and Datasets

– Tensorflows models directory from GitHub is also downloaded and with it its

object detection API

• Yolo

– Yolo’s GitHub repository is downloaded, modified to have GPU support and

built

• Directory structure

– Directories and subdirectories are made to handle training data input and to

have a consistent system configuration for the different object detection algo-

rithms

• Required Python libraries

• Virtual Environments

– A python3 virtual environment is set up to handle compatibility with different

frameworks.

When the setup file has been executed, data can be uploaded to the Google cloud

instance. When data have been uploaded, and the Google cloud instance has been set up

by running setup.sh, the system is ready to train.

4.2.4 Training Yolo

In this project Yolov3 is used, the latest version of Yolo at the time of writing. To train

Yolo, run the file train_yolo.py, this will:

• Prompt the user and ask which datasets the user wishes to train on.

• Set up a model folder where all files needed for testing is saved.

• Convert annotation files for the images to Yolo format

• Make a train.txt file which contains the path to all the images that are to be used in

training

• Make configuration files based on the training data needed to run YOLO.

• Edit Yolo’s main configuration file (.cfg file) to have the correct batch-size, the num-

ber of classes, subdivision, and filters, based on the number of classes in the training

data and the hardware used on the Google cloud instance.

• Load pre-trained weights

• Begin training.

During training, Yolo will save weights every 400 iterations to the model repository. It

will continue training until the user exits the process, or when it reaches 40,000 iterations.

When the process runs the average loss will be written to the terminal for every iteration,

and training can be stopped when it is sufficiently low. In this project all the detection

models were trained for approximately 24 hours.

26

4.2 Detection framework

Pre-trained weights yolo

Yolo comes with the following pre-trained weights

Model Top-1 Top-5 Ops GPU CPU Weights

AlexNet 57.0 80.3 2.27 Bn 3.1 ms 0.29 s 238 MB

Darknet Reference 61.1 83.0 0.96 Bn 2.9 ms 0.14 s 28 MB

VGG-16 70.5 90.0 30.94 Bn 9.4 ms 4.36 s 528 MB

Extraction 72.5 90.8 8.52 Bn 4.8 ms 0.97 s 90 MB

Darknet19 72.9 91.2 7.29 Bn 6.2 ms 0.87 s 80 MB

Darknet19 448x448 76.4 93.5 22.33 Bn 11.0 ms 2.96 s 80 MB

Resnet 18 70.7 89.9 4.69 Bn 4.6 ms 0.57 s 44 MB

Resnet 34 72.4 91.1 9.52 Bn 7.1 ms 1.11 s 83 MB

Resnet 50 75.8 92.9 9.74 Bn 11.4 ms 1.13 s 87 MB

Resnet 101 77.1 93.7 19.70 Bn 20.0 ms 2.23 s 160 MB

Resnet 152 77.6 93.8 29.39 Bn 28.6 ms 3.31 s 220 MB

ResNeXt 50 77.8 94.2 10.11 Bn 24.2 ms 1.20 s 220 MB

ResNeXt 101 (32x4d) 77.7 94.1 18.92 Bn 58.7 ms 2.24 s 159 MB

ResNeXt 152 (32x4d) 77.6 94.1 28.20 Bn 73.8 ms 3.31 s 217 MB

Densenet 201 77.0 93.7 10.85 Bn 32.6 ms 1.38 s 66 MB

Darknet53 77.2 93.8 18.57 Bn 13.7 ms 2.11 s 159 MB

Darknet53 448x448 78.5 94.7 56.87 Bn 26.3 ms 7.21 s 159 MB

Table 4.2: These models are trained on ImageNet, and the top-1 and top-5 columns show the ac-

curacy of the pre-trained model on the ImageNet dataset. In this project, the Darknet53 448x448

model has been used. Table from (Redmon and Farhadi, 2018).

27

Chapter 4. Implementation and Datasets

4.2.5 Training SSD

In this project Tensorflows implementation of SSD Mobilenet is used. To train SSD run

the file train_ssd.py, this will:

• Prompt the user and ask which datasets the user wishes to train on

• Convert annotations and images to tfrecords. Tfrecords are Tensorflows binary file

format. Binary files uses less storage and are beneficial when working with large

datasets.

• Update SSD’s configuration file with correct paths to training data, classes, and

filters.

• Load pre-trained weights

• Begin training

train_ssd.py will also save all files needed for testing to the model directory. It will

save the weights based on time, and not based on iterations like Yolo. At what iteration

the happens depends on the size of the dataset and the hardware used.

Pre-trained weights SSD

SSD is implemented using Tensorflow’s object detection API. Tensorflow offers several

detection algorithms shown in table 4.3. These are trained on the Coco dataset and comes

with different configurations. The cloud detection framework is designed to be able to

implement other detection algorithms easily. The SSD version chosen in this project is

ssd mobilenet v1 coco. The Cloud Detection Framework is designed such that to imple-

ment any of the other models shown in figure 4.3 one only needs to download another

model and edit a few lines in a configuration file. The models implemented in Tensor-

flow’s object detection API is also rapidly expanding. In the summer of 2017, there were

eight models available, in December of 2018, there are 25. This means that by using the

Cloud Detection Framework one can easily train and test new, cutting-edge models that

Google supply through Tensorflow.

28

4.2 Detection framework

Model name Speed (ms) COCO mAP[ˆ1]

ssd mobilenet v1 coco 30 21

ssd mobilenet v1 0.75 depth coco 26 18

ssd mobilenet v1 quantized coco 29 18

ssd mobilenet v1 0.75 depth quantized coco 29 16

ssd mobilenet v1 ppn coco 26 20

ssd mobilenet v1 fpn coco 56 32

ssd resnet 50 fpn coco 76 35

ssd mobilenet v2 coco 31 22

ssd mobilenet v2 quantized coco 29 22

ssdlite mobilenet v2 coco 27 22

ssd inception v2 coco 42 24

faster rcnn inception v2 coco 58 28

faster rcnn resnet50 coco 89 30

faster rcnn resnet50 lowproposals coco 64

rfcn resnet101 coco 92 30

faster rcnn resnet101 coco 106 32

faster rcnn resnet101 lowproposals coco 82

faster rcnn inception resnet v2 atrous coco 620 37

faster rcnn inception resnet v2 atrous lowproposals coco 241

faster rcnn nas 1833 43

faster rcnn nas lowproposals coco 540

mask rcnn inception resnet v2 atrous coco 771 36

mask rcnn inception v2 coco 79 25

mask rcnn resnet101 atrous coco 470 33

mask rcnn resnet50 atrous coco 343 29

Table 4.3: Pre-trained models SSD.

4.2.6 Testing with Cloud Detection Framework

During testing of the detection algorithms, a problem arose when testing on large datasets.

When testing on hundreds of images containing several objects the data could not be saved

in JSON format as a txt-file due to heavy memory requirements. Thus, a different solution

was implemented where detections were saved in a database using SQL. This divides the

process of testing into two phases. One where the algorithm is run on the test images and

all detections are written to a database. The other phase draws the detections, and the

ground truth bounding boxes onto the test images and saves them, and calculates statistics

on how well the algorithm performed. These results are saved to the ”results” directory.

Both Yolo and SSD will assume that the model is set up as it is after training. This means

that a trained model can be downloaded, and uploaded to new instances in Google Cloud.

This makes it easy to reuse trained models, and to continue working on other’s research.

29

Chapter 4. Implementation and Datasets

30

Chapter 5
Evaluation and Testing

Methodology

This chapter covers the methodology used for evaluating the detection algorithms used, as

well as the dataset used for testing. The goal of this chapter is to show how the two de-

tection algorithms have been tested, and how they can be compared using the performance

metrics defined in this chapter.

5.1 Precision and Recall

Two common performance measures used in object detection are precision and recall.

By using these two measures, both the false negatives and the false positives are taken

into account. Recall measures how many of the true positives in the image are detected,

and precision measures how many of the detections that are correct. This is also shown

graphically in figure 5.1. In detection, theory recall is often referred to as probability of

detection. A high precision would correspond to what detection theory calls a low false

alarm rate.

Figure 5.1: Precision and recall, precision is the number of correct detections (true positives) divided

by the total amount of detections. Recall is the amount of correct detections divided by the number

of ground truth objects.

31

Chapter 5. Evaluation and Testing Methodology

5.2 Bounding Box Evaluation

To be able to calculate the precision and recall, there must be a definition of what a correct

detection is. In (Everingham et al., 2010) this is defined the following way: ”Detections are

considered true or false positives based on the area of overlap with ground truth bounding

boxes. To be considered a correct detection, the area of overlap a0 between the predicted

bounding box Bp and ground truth bounding box Bgt must exceed 50% by the formula:

a0 =
area(Bp ∩Bgt)

area(Bp ∪Bgt)

The area of overlap is the same as intersect over union explained in figure 3.3. The same

definition is used in this report.

5.3 Precision/recall Curves

In the VOC challenge the detection task is judged by a precision/recall curve (Everingham

et al., 2010). The precision/recall curve is made by checking the precision and recall for

the detection algorithm at different confidence score thresholds. The confidence score used

is the score returned from the detection algorithms along with the bounding box, i.e., how

confident the algorithm is in the bounding box. If the confidence score threshold is low,

the detection algorithm will likely detect more objects of interest, but also identify more

false positives. This means that for a low confidence score threshold the recall will be high

and the precision low. In figure 5.2 an example of a precision/recall curve is shown, and

the results in this report will be presented in the same manner.

Figure 5.2: Precision/recall curve from (Redmon et al., 2016)

We want both the recall and the precision to be as high as possible, meaning that in the

precision/recall curve we would like to get as far up in the top right corner as possible. As

shown in figure 5.2, the precision decreases while the recall increases. This is the expected

behavior since more boats are detected when the threshold based on the confidence score

is lowered. More detections also increase the number of false negatives. Sometimes it can

be hard to decide precisely what the optimal confidence score threshold should be, since

this is a trade-off between recall and precision and will be discussed further in the next

chapter.

32

5.4 Average precision

5.4 Average precision

Average precision is a commonly used metric in object detection and is used in the papers

of, e.g. Faster R-CNN, YOLO, and SSD. It is the average of the maximum precision at

different recall levels.

AP =
1

11
Σr∈{0.0,...,1.0}pinterp(r) (5.1)

Where

pinterp(r) = maxr̃≥rp(r̃) (5.2)

This means that for each recall value in 0.0, ... , 1.0 the highest precision level at that recall

level, or a higher recall level, is added to the sum. This is illustrated in figure 5.3, where

the green line shows pinterp(r)

Figure 5.3: p(r) and pinterp(r).

33

Chapter 5. Evaluation and Testing Methodology

5.5 Confusion Matrix

A confusion matrix is another way of presenting the performance of a classification al-

gorithm. The confusion matrix gives a more intuitive representation of the results, and

gives a good indication of how well the detection algorithm would work in a real scenario.

In this project the goal is to identify boats, thus it is a two-class problem with boat and

not-boat as the two classes.

Figure 5.4 shows how the confusion matrix will be used in this project. True positives are

boats detected correctly, false positives are detections that are uncorrect, false negatives

are undetected boats. The detections algorithms developed in this project does not seek to

identify non-boat objects, rather to overlook them, thus true negatives cannot be quantized

and are not relevant in this work.

Figure 5.4: Confusion matrix.

34

Chapter 6
Results

This chapter contains results from testing six different detection models on four test sets.

The six models consists of three SSD models and three Yolo models trained on different

data. This produces a significant amount of results, and makes the task of presenting the

results in an orderly fashion challenging. To try to overcome this challenge this chapter is

structured in the following way:

1. Present training sets and models. Explain abbreviations used later in the chapter.

2. Overview of results.

3. Present case studies covering more interesting aspects of results.

The case studies and test sets were chosen to shed some light on the following research

questions that should be addressed.

• How does training on a building class affect the performance on detection of boats?

• How does training on boats in coast near environments affect detection accuracy in

open sea?

• How does SSD compare to Yolo when trained and tested on the same data?

• In which situations do the detection algorithms struggle, and in which situations is

the performance satisfactory?

In this chapter, datasets are mentioned when referring both to training and testing of mod-

els. All the custom datasets are split into test and training subsets, which are used for

testing and training, respectively.

The terms ”test set” and ”training set” are used widely in this chapter. A test set or a

training set is made up of combinations of one or more datasets.

35

Chapter 6. Results

6.1 Training Sets and Detection Models

Yolo and SSD were trained on three different training sets. The names of the training sets

are given in table 6.1 along with the datasets each training set is composed of, and their

abbreviation.

Training set Datasets

Boats Sailing (BS)

Trondheimsfjorden

BoatsClose

BoatsFar

Boats Sailing and

Moored boats (BSM)

Trondheimsfjorden

BoatsClose

BoatsFar

MooredBoats

Boats Sailing, Moored boats

and Houses (BSMH)

Trondheimsfjorden

BoatsClose

BoatsFar

MooredBoatsHouses

Houses

Table 6.1: Training sets used to train Yolo and SSD models.

These training sets were used to train three SSD models and three Yolo models. Hence-

forth these models will be denoted with the training set abbreviation as subscript: YoloBS,

SSDBS, YoloBSM, SSDBSM, YoloBSMH and SSDBSMH.

6.2 Results Overview

To present an overview of the results two performance metrics have been used. Average

precision is presented in chapter 6.2.1, and confusion matrices in chapter 6.2.2. Chapter

6.2.3 discusses the most important aspects of these results.

6.2.1 Average Precision

The average precision of the models on the different test sets is shown in table 6.2.

Test set YoloBS SSDBS YoloBSM SSDBSM YoloBSMH SSDBSMH

MooredBoats 0.182 0.140 0.707 0.515 0.701 0.586

Trondheimsfjorden 0.885 0.860 0.900 0.750 0.908 0.876

BoatsClose and

BoatsFar
0.509 0.278 0.533 0.239 0.647 0.292

BoatsClose,

BoatsFar and

Trondheimsfjorden

0.577 0.375 0.600 0.329 0.726 0.391

Table 6.2: Average precisions

36

6.2 Results Overview

6.2.2 Confusion Matrices

As explained in chapter 5.5, confusion matrices give a more intuitive understanding of the

results than average precisions. In this chapter two tables are presented, table 6.4 where

the confidence threshold is set to 0.25, and 6.5 with a confidence threshold of 0.5.

The bounding boxes Yolo and SSD outputs comes with a confidence score, indicating how

confident the algorithm is in the detection. A higher confidence threshold could lead to

fewer false positives, but possibly also fewer true positives. Only detections with a higher

confidence score than the confidence thresholds set in table 6.4 and table 6.5 are accounted

for in the tables.

Table 6.4 and 6.5 are composed of the confusion matrices for all six detection models

on the four test sets. Each cell in the table is the confusion matrix for the corresponding

detection model and test set. Table 6.3 explains what the numbers in each cell represent.

Test set(s) (Number of objects in test set)

Model
True positives False positives

False negatives

Table 6.3: Confusion matrix explanation

BoatsClose,

Moored- BoatsClose, BoatsFar,

Boats(58) Tr.fjorden(174) BoatsFar(818) Tr.fjorden(992)

YoloBS
13 21 164 22 551 435 715 457

45 10 267 277

YoloBSM
39 4 167 8 555 263 722 271

19 7 263 270

YoloBSMH
40 6 173 3 611 214 784 217

18 1 207 208

SSDBS
7 15 151 17 359 315 510 332

51 23 459 482

SSDBSM
32 20 146 34 323 437 469 471

26 28 495 523

SSDBSMH
32 13 150 23 365 282 515 305

26 24 453 477

Table 6.4: Confusion matrix with the confidence threshold set to 0.25. Explanation of cells in the

table can be found in table 6.3.

37

Chapter 6. Results

BoatsClose,

Moored- BoatsClose, BoatsFar,

Boats(58) Tr.fjorden(174) BoatsFar(818) Tr.fjorden(992)

YoloBS
11 10 160 15 524 311 684 326

47 14 294 308

YoloBSM
35 1 165 6 498 198 663 204

23 9 320 329

YoloBSMH
36 4 170 2 577 149 747 151

22 4 241 245

SSDBS
6 11 142 11 333 251 475 262

52 32 485 517

SSDBSM
29 9 136 22 299 338 435 360

29 38 519 557

SSDBSMH
31 6 147 14 319 214 466 228

27 27 499 526

Table 6.5: Confusion matrix with the confidence threshold set to 0.5. Explanation of cells in the

table can be found in table 6.3.

6.2.3 Main results

Best results

YoloBSMH has the best overall results. On the Trondheimsfjorden test set YoloBSMH has an

average precision of 0.908, which is impressive. Table 6.4, where the confidence threshold

is set to 0.25, shows that YoloBSMH detects 173 out of 174 boats in this test set, with only

three false positives. When the confidence threshold is set to 0.5, YoloBSMH detects 170

out of 174 boats, with two false positives, as shown in table 6.5. Even though the results

on the other test sets are less impressive than on the Trondheimsfjorden test set, they are

not bad. In (Redmon and Farhadi, 2018), Yolo gets a mean average precision, which is

average precision for multi-class detection, of 0.553 on the COCO dataset. To compare

the average precision on the custom datasets to the results on the multi-class detection

problem on the COCO dataset is not a fair comparison, but it still is worth noting to give a

better intuition for what the average precisions shown in table 6.2 means.

Effect of training differences

The hypothesis before running the tests in this work was that more relevant training data

used in a model would mean better test results. This means that the expected results was

that YoloBSMH would be better than YoloBSM which again would be better than YoloBS,

and the same for the SSD models. Table 6.2 shows this hypothesis to be correct except

for SSDBS and SSDBSM, where SSDBS performs better than SSDBSM. YoloBSM is only

slightly better than YoloBS on all datasets except the MooredBoats test set. This means

that, since YoloBSMH and SSDBSMH have the best results, training on a building class has a

significant effect on the test results on all test sets. This will be further discussed in chapter

6.3. SSDBS and YoloBS detects the least boats on the MooredBoats test set, this is expected

since these are the only models that have not been trained on data similar to this test set.

38

6.2 Results Overview

Yolo vs. SSD

As shown in the tables in chapter 6.2.1 and 6.2.2, Yolo performs better than SSD in this

project. One of the critical differences between Yolo and SSD was discussed in chapter

3.7, where SSD uses grids at multiple scales to detect objects, while Yolo only applies one.

The hypothesis was that this would make SSD better at identifying boats that varied more

in size, while Yolo would only detect boats within a certain size range. This hypothesis

was not confirmed during the work on this project. Yolo detects more boats and has fewer

misclassifications than SSD in all the tests done in this work. Still, it should be noted that

the variations in size of boats used in this thesis, could have been too small for the effect

to be seen.

In this project SSD Mobilenet was used, a lightweight version of SSD meant for real-time

solutions. SSD Mobilenet is faster, but less accurate compared to the original implemen-

tation. The reason for choosing Mobilenet over the original implementation was that it

was used in a project at DNV GL the summer of 2018 with promising results. While Yolo

and the original implementation of SSD has comparable accuracy, the accuracy of SSD

Mobilenet is lower, meaning Yolo’s superior accuracy is not entirely unexpected.

39

Chapter 6. Results

6.3 Case Study 1: Effect from training on buildings

Both (Tangstad, 2017) and (Kamsvåg, 2018) implemented an object detector for mar-

itime vessels using Faster R-CNN. A challenge highlighted in both these projects was

the misclassification of waterfront buildings as boats. To address this problem the datasets

MooredBoatsHouses and Houses were produced. By training the object detector on a

building class, it may be able to detect the buildings as buildings and thus suppress the

classifications of waterfront buildings as boats. As a first step in trying to verify this hy-

pothesis, both Yolo and SSD were trained on two different sets of data. The two datasets

they are trained on contains the same set of images with two exceptions:

1. For YoloBSM and SSDBSM only boats are labeled.

2. For YoloBSMH and SSDBSMH buildings are labeled in the dataset MooredBoatsHouses,

and a dataset containing only waterfront buildings was added to the training set.

Thus, all the models have been trained on the same boat objects, while YoloBSMH and

SSDBSMH also have been trained on a building class. This has been done to try to minimize

the variation in the variables that affect boat detection, and try to only look at how adding

a building class affects the boat detection performance.

In figure 6.1 the precision/recall curves for the models are displayed for the four test cases.

For both SSD and Yolo the model trained on buildings generally performs better than

YoloBSM and SSDBSM. However, the difference is more significant for SSD than for Yolo.

40

6.3 Case Study 1: Effect from training on buildings

(a) Yolo tested on MooredBoats (b) SSD tested on MooredBoats

(c) Yolo tested on BoatsClose and BoatsFar (d) SSD tested on BoatsClose and BoatsFar

(e) Yolo tested on Trondheimsfjorden (f) SSD tested on Trondheimsfjorden

(g) Yolo tested on BoatsClose, BoatsFar and

Trondheimsfjorden

(h) SSD tested on BoatsClose, BoatsFar and

Trondheimsfjorden

Figure 6.1: Precision/recall curves of YoloBSM, YoloBSMH, SSDBSM and SSDBSMH

41

Chapter 6. Results

6.3.1 Tested on MooredBoats

The hypothesis before running the experiment was that the MooredBoats test set would be

the most positively affected by training on a building class. Since MooredBoats consists

of mostly moored boats, where there are images that contain buildings close to sea level

one could suspect could be mistaken as boats, as shown in figure 6.2. The building in

the bottom left corner is close to sea level, while also being relatively close in size to

the boats compared to the other buildings in the image, which makes it a good candidate

for a misclassification. However, neither YoloBSM nor SSDBSM classifies this building

as a boat. All the detectors, YoloBSM, YoloBSMH, SSDBSM and SSDBSMH detects all the

boats in the image. Both SSDBSM and SSDBSMH detects the rightmost boat two times,

and the bounding box differences between YoloBSM and YoloBSMH and between SSDBSM

and SSDBSMH are so insignificant that training on the building class does not seem to help

improve performance on this particular image. Both YoloBSMH and SSDBSMH detects the

buildings in the image well, as can be seen in figure 6.2e and 6.2f.

42

6.3 Case Study 1: Effect from training on buildings

(a) Yolo tested on MooredBoats (b) SSD tested on MooredBoats

(c) YoloBSM (d) SSDBSM

(e) YoloBSMH (f) SSDBSMH

Figure 6.2: YoloBSM, YoloBSMH, SSDBSM, SSDBSMH example image from MooredBoats test set.

Green bounding boxes are ground truth, red bounding boxes are detected boats, blue bounding boxes

are detected buildings.

6.3.2 Tested on the BoatsClose and BoatsFar

The datasets BoatsClose and BoatsFar consists mostly of images taken towards open sea,

of boats that are sailing, i.e., the boats are not moored. It is on this test set the performance

differences between YoloBSM and YoloBSMH and between SSDBSM and SSDBSMH differ the

most, as can be seen in figure 6.3.

By going through the approximately 300 test images, some differences between the models

become apparent. The differences between SSDBSM and SSDBSMH are clearer than the

differences between YoloBSM and YoloBSMH.

43

Chapter 6. Results

(a) Yolo tested on BoatsClose and BoatsFar (b) SSD tested on BoatsClose and BoatsFar

Figure 6.3: YoloBSM, YoloBSMH, SSDBSM, SSDBSMH example image from MooredBoats test set.

Green bounding boxes are ground truth, red bounding boxes are detected boats, blue bounding boxes

are detected buildings

SSDBSM and SSDBSMH on BoatsClose and BoatsFar

In around 10 percent of the test images, SSDBSM detects land as a boat, in none of these

images does SSDBSMH perform the same way. An example of this is shown in figure 6.4.

More examples of this behaviour can be found in appendix C.1

(a) SSDBSM (b) SSDBSMH

Figure 6.4: SSDBSM detects land as boat. Red bounding boxes are boat detections, green bounding

boxes are ground truth.

There are also some examples where SSDBSM misclassifies buildings as boats, while

SSDBSMH does not. One example is shown in figure 6.5.

44

6.3 Case Study 1: Effect from training on buildings

(a) SSDBSM (b) SSDBSMH

Figure 6.5: Leftmost red bounding box in SSDBSM is a detection of a building as a boat, this is not

detected as a boat in SSDBSMH. Red bounding boxes are boat detections, green bounding boxes are

ground truth.

YoloBSM and YoloBSMH on BoatsClose and BoatsFar

As mentioned, YoloBSM and YoloBSMH do not differ as clearly as SSDBSM and SSDBSMH.

There are examples of YoloBSM performing better than YoloBSMH and vice versa. In many

of the misclassifications in the test data both YoloBSM and YoloBSMH mistakes the same

object as a boat. By analyzing the results from both YoloBSM and YoloBSMH, the following

tendencies can be seen:

• YoloBSM and YoloBSMH have the disposition to wrongly classify the same objects as

boats. See appendix C.2.4 for example images.

• YoloBSM performs better in some cases, while YoloBSMH performs better in other. It

is not clear what makes one better than the other in each specific case. See appendix

C.2.2 and C.2.3 for example images

• YoloBSM makes some misclassifications that could imply that training on a building

class makes YoloBSMH more robust to the more incomprehensible misclassifications.

See appendix C.2.1 for example images.

As opposed to the differences between SSDBSM and SSDBSMH, the differences in the results

between YoloBSM and YoloBSMH are hard to pinpoint. Both YoloBSM and YoloBSMH make

misclassifications, but YoloBSM seems to make slightly more than YoloBSMH. YoloBSMH

also avoids making some misclassifications YoloBSM makes in the background, as shown

in figure 6.6.

45

Chapter 6. Results

(a) YoloBSM (b) YoloBSMH

Figure 6.6: YoloBSM misclassifies a cloud as a boat, YoloBSMH does not. Red bounding boxes are

detections, green bounding boxes are ground truth.

6.3.3 Tested on Trondheimsfjorden

The precision/recall curve for YoloBSM, YoloBSMH, SSDBSM, and SSDBSMH on Trond-

heimsfjorden can be seen in figure 6.7. All the models perform very well on this test

set, where YoloBSMH almost gets a perfect score with an average precision of 0.908, mean-

ing it is very close to detect all the objects while having practically no misclassifications.

In table 6.4 it is shown that YoloBSMH detects 173 of 174 boats in the Tondheimsfjorden

test set with a confidence threshold of 0.25.

Both the models trained on the building class, perform better than the model only trained

on the boat class. As for the tests on BoatsClose and BoatsFar the differences between

SSDBSM and SSDBSMH are more evident than the differences between YoloBSM and YoloBSMH.

The performance difference between SSDBSM and SSDBSMH is also more significant than

between YoloBSM and YoloBSMH, as can be seen in figure 6.7

(a) Yolo tested on Trondheimsfjorden. (b) SSD tested on Trondheimsfjorden

Figure 6.7: Precision/recall curves for YoloBSM, YoloBSMH, SSDBSM and SSDBSMH on Trondheims-

fjorden

SSDBSM and SSDBSMH on Trondheimsfjorden

SSDBSM has some of the same behaviour on Trondheimsfjorden as it had on BoatsClose

and BoatsFar. For instance, it sometimes classifies land as a boat, as shown in figure

6.8. This happens in approximately 5 percent of the test images. More examples of this

behaviour can be seen in appendix 6.8.

46

6.3 Case Study 1: Effect from training on buildings

(a) SSDBSM (b) SSDBSMH

Figure 6.8: SSDBSM misclassifies land as boat.

There are examples where SSDBSM detects boats correctly while SSDBSMH don’t and vice

versa. For example images of this behaviour see Appendix C, chapter C.3.2 and C.3.3.

In a few test images, SSDBSMH wrongly classifies buildings as boats, while SSDBSM does

not. This is counter-intuitive since the idea behind training SSDBSMH on buildings was to

make it suppress these detections. An example of this is shown in figure 6.9.

(a) SSDBSM (b) SSDBSMH

Figure 6.9: SSDBSMH misclassifies two buildings as boats

In figure 6.9, SSDBSMH does not detect the buildings as buildings, this will be discussed

further in chapter 7.1.1.

YoloBSM and YoloBSMH tested on Trondheimsfjorden

YoloBSM and YoloBSMH both have outstanding results on Trondheimsfjorden, but YoloBSM

has a few misclassifications that YoloBSMH does not have. In figure 6.10 YoloBSM detects

land as a boat, and in figure 6.11 YoloBSMH detects a boat that YoloBSM does not. There

are not many examples where their performance differs much, but there are a few which

makes YoloBSMH a little more robust than YoloBSM.

47

Chapter 6. Results

(a) YoloBSM (b) YoloBSMH

Figure 6.10: YoloBSM misclassifies land as boat

(a) YoloBSM (b) YoloBSMH

Figure 6.11: YoloBSM does not detect rightmost boat, YoloBSMH does

Summed up, the effect of training on buildings seems to have a positive influence on the

results. YoloBSMH outperforms YoloBSM on all test datasets, and thus, this could indicate

that training on a building class is beneficial for a boat detector. However, training on the

building dataset also provides negative information for boat detection. By training on the

building dataset, where there are no boats, the detector can also extract information about

where there are no boats. YoloBSMH is trained on the same boat objects as YoloBSM, but

YoloBSMH could extract contextual information about the images in the building dataset,

making it more able to identify objects that are not boats. This also conforms with the

plot in figure 6.13, where the YoloBSMH’s precision is higher than YoloBSM’s, meaning

YoloBSMH has fewer misclassifications.

48

6.3 Case Study 1: Effect from training on buildings

Figure 6.13: Precision/recall curves for YoloBSM and YoloBSMH on Trondheimsfjorden.

49

Chapter 6. Results

6.4 Case Study 2: Effect of Training on Moored Boats

While Testing for Sailing Boats

Since YoloBSMH’s results on Trondheimsfjorden are nearly perfect, as shown in figure

6.14b, it is necessary to investigate if the model have been fitted to this type of data to

a larger extent than it should. Therefore, a case study of how training on MooredBoats

affect the results on detection of sailing boats (BoatsClose, BoatsFar, Trondheimsfjorden),

was done. YoloBSM and YoloBSMH performs better on Trondheimsfjorden than YoloBS,

without training on more data from Trondheimsfjorden. This could imply that the im-

porved results is not connected to overtraining. This will be further discussed in chapter

7.1.

(a) YoloBS, YoloBSM and YoloBSMH on

MooredBoats

(b) YoloBS, YoloBSM and YoloBSMH on

Trondheimsfjorden

(c) YoloBS, YoloBSM and YoloBSMH on

BoatsClose, BoatsFar

(d) YoloBS, YoloBSM and YoloBSMH on

BoatsClose, BoatsFar and Trondheimsfjorden

Figure 6.14

In figure 6.14 the precision/recall curves for YoloBS, YoloBSM and YoloBSMH are shown.

YoloBSM and YoloBSMH are better than YoloBS in all the test cases. While this is expected

behaviour when testing on MooredBoats, the results are not obvious for the other test

cases.

Two clear differences between YoloBS and YoloBSM were found while analyzing the results.

The first one being that YoloBS tends to overestimate the size of large ships, as shown in

figure 6.15. More examples of this behaviour can be seen in Appendix C, chapter C.4.1

50

6.4 Case Study 2: Effect of Training on Moored Boats While Testing for Sailing Boats

(a) YoloBS (b) YoloBSM

Figure 6.15: Example of YoloBS over estimating size of ship.

YoloBS also has a penchant to detect the same boat twice, where YoloBSM does not, as

shown in figure 6.16. More examples of this behaviour are shown in Appendix C, chapter

C.4.2.

(a) YoloBS. (b) YoloBSM

Figure 6.16: Example of YoloBS detecting same boat twice.

There seems to be a correlation between training on moored boats and improved perfor-

mance when testing on sailing boats. As mentioned in case study 1, this could be caused

by YoloBSM and YoloBSMH being trained on more data, even when this data is not the exact

same as the test data. YoloBS has seen less boats in training and could therefore be less

robust than YoloBSM and YoloBSMH.

51

Chapter 6. Results

6.5 Case Study 3: Video and Temporal Data

In (Bøhn, 2018) the issue of detections in radar data over time is addressed. For a detector

to work on temporal data, the object of interest must be detected with some frequency.

If a boat is detected every other frame, it could probably be detected consistently using a

tracking algorithm, as done in (Jiang and Singh, 2016). In this work a tracking algorithm

has not been implemented. However, an experiment on how well boats are detected over

time has been done.

6.5.1 Video from Trondheimsfjorden

Three videos of boats in Trondheimsfjorden have been captured, each approximately 30

seconds long. YoloBS was tested on each of them. The three videos are merged and

available on YouTube 1. Frames from each of the videos are shown in figure 6.17.

1https://www.youtube.com/watch?v=kcirhao PQc

52

6.5 Case Study 3: Video and Temporal Data

(a) Video of small boat (videoSB)

(b) Video of big boat (videoBB)

(c) Video of three boat (video3B)

Figure 6.17: Example frames from videoSB, videoBB and video3B. Detections shown as red bounding

boxes.

53

Chapter 6. Results

In videoSB and videoBB the boat is detected correctly in every frame. Thus a tracking al-

gorithm would not be needed to identify undetected boats in these videos. In both videoSB

and videoBB, there is only one boat present. In video3B there are three boats, where one

of the boats passes behind another during the video. YoloBS detects the boats in all frames

where the boats are separated, as shown in figure 6.18a. When the third boat is behind the

second, and beginning to emerge behind it, YoloBS detects the two boats as one. This is

shown in figure 6.18b. When the third boat is only slightly visible by human assessment,

YoloBS only detects two boats as shown in figure 6.18c.

54

6.5 Case Study 3: Video and Temporal Data

(a) Three separated boats

(b) Part of third boat clearly visible

(c) Third boat slightly visible

Figure 6.18: Example frames from video3b showing three different occurring scenarios in the video.

55

Chapter 6. Results

In video3B all parts of boats are detected as boats, though two boats are classified as one

big boat instead of two smaller ones when one is in the shadow of the other. This is a

hard problem to solve for an object detector alone, and will be discussed further in chapter

7.2.3.

6.5.2 Video from (Kamsvåg, 2018)

In (Kamsvåg, 2018) Faster R-CNN was implemented for boat detection. One of the promi-

nent problems encountered in this work was the misclassification of buildings as boats.

This was one of the main reasons to train SSD and Yolo on a building class, to see if this

could help suppress these detections. YoloBS, YoloBSM and YoloBSMH were run on a video

used in (Kamsvåg, 2018), and the results can be found on YouTube 2. Example frames

from the video are shown in figure 6.19.

In this video the images are captured much closer to sea level than the ones used in train-

ing, which may have affected the results. YoloBS, YoloBSM and YoloBSMH do all have some

problems with detecting the boats in every frame, while YoloBS has the poorest prefor-

mance. YoloBSMH and YoloBSM have similar results on boat detection, but YoloBSMH has

more misclassifications of buildings as boats than YoloBSM. YoloBSMH classifies some of

the buildings as buildings, but this does not seem to help suppress the wrong identifica-

tions.

The purpose of training YoloBSMH on a building class was for it to be more robust to

misclassifications of boats as buildings. In the results shown in chapter 6.2, this was not

the case. YoloBSM, which is not trained on the building class, has fewer detections of

buildings as boats than YoloBSMH. YoloBS, YoloBSM and YoloBSMH all have lower accuracy

on this video compared to the results on the rest of the test data. This is not entirely

unexpected, since the video from (Kamsvåg, 2018) is different from the training data in

several ways. First of all, the video from (Kamsvåg, 2018) is captured from a small boat

close to sea level. This makes the angle between the center of the camera and the center

of the boats vastly different compared to the ones in e.g. the Trondheimsfjorden dataset,

where the images are taken from the top of a ferry. While the features of the boat does

not change much due to the change of angle, the background is different, especially in

coast-near environments. When the pictures are captured from a higher point above sea

level the background of the boat will be more uniform, and in some cases consists of only

water, while the background can be buildings or land in images taken closer to sea level as

in figure 6.19. While this can be a factor to the weaker boat detections on the video from

(Kamsvåg, 2018), it does not explain why YoloBSMH classifies more buildings as boats

than YoloBSM. This being said, it should be noted that the detections of buildings as boats

are not consistent over time, and could probably be filtered out in post processing.

2https://www.youtube.com/watch?v=A qETwNuFYI

56

6.5 Case Study 3: Video and Temporal Data

(a) YoloBS.

(b) YoloBSM.

(c) YoloBSMH.

Figure 6.19: Example frames from video from (Kamsvåg, 2018). Red bounding boxes are boat

detections, blue boxes are building detections for YoloBSMH.

57

Chapter 6. Results

58

Chapter 7
Discussion

7.1 Dataset diversity

As mentioned in chapter 6.3.3, Yolo performs almost perfectly on the Trondheimsfjorden

dataset, which could be an indication of overtraining. The Trondheimsfjorden dataset con-

sists of approximately 500 images taken in the Trondheimfjord during a ferry trip back and

forth between Trondheim and Brekstad. The images were all captured the same day, under

the same weather and lighting conditions. Also, due to a limited amount of boats at sea

during the ferry trip, multiple images were captured of the same boats. Thus even though

the images the detection models were tested on and trained on were separated, the images

used in both testing and training had some common features. While this might give the

impression that the results are biased, and not representative of how the algorithm would

perform in a completely new environment, some arguments would suggest otherwise.

First of all, as shown in chapter 6.4, YoloBSM and YoloBSMH perform better than YoloBS

on the Trondheimsfjorden test set. All these detection models are trained on datasets

BoatsClose, BoatsFar and Trondheimsfjorden, while YoloBSM and YoloBSMH are also trained

on other datasets that do not contain similar images as Trondheimsfjorden. This could im-

ply that what improves the results of YoloBSM and YoloBSMH on Trondheimsfjorden, is not

overtraining on the Trondheimsfjorden dataset, but rather the ability to recognize features

in more diverse environments.

All the Yolo models has less accurate results on the BoatsClose and BoatsFar test set com-

pared to Trondheimsfjorden. In BoatsClose on BoatsFar Yolo gets good results on images

that contain separated boats, similar to the photos in the Trondheimsfjorden dataset. What

makes the results less impressing are primarily due to images that include clusters of small

boats, as shown in figure 7.1.

59

Chapter 7. Discussion

Figure 7.1: YoloBSMH on cluttered small boats, red bounding boxes are detections, green bounding

boxes are ground truth.

In the majority of the images, YoloBSMH also gets excellent results in this test set, as shown

in figure 7.2.

Figure 7.2: YoloBSMH on separated boats in BoatsClose BoatsFar, red bounding boxes are detections,

green bounding boxes are ground truth.

In the images in figure 7.1 it is not easy to correctly detect all the boats by human assess-

ment either. When boats are separated, YoloBSMH gets good results consistently. When

vessels are more prominent, cluttering does not seem to be as problematic. This could

partly be because big ships do not tend to stay very close together, and thus, the examples

are fewer. An example of how YoloBS handles three big tow boats close together is shown

in 7.3.

(a) One tow boat partly covered by another. (b) Three tow boats separated.

Figure 7.3: YoloBS on big boat clutter, red bounding boxes are detections, green bounding boxes are

ground truth.

In both figure 7.3a and 7.3b there are three towboats. In figure 7.3a one of the boats is

partly covered by another, and the two boats are detected as one. This is not necessarily a

problem, and as soon as the boats are separated, they are detected as three boats.

One cannot rule out that the results are unaffected by overtraining. To verify if the de-

tection model is overtrained or not one would have to evaluate it in completely unseen

60

7.1 Dataset diversity

environments. At the same time, it does not serve any purpose to test the detection al-

gorithm on a dataset that is nothing alike the Trondheimsfjorden dataset, since this is the

environment the algorithm is meant to perform well in. The Trondheimsfjorden dataset

contains many different types of boats and ships, it contains large camouflaged military

vessels, small motor boats, and ferries, and is diverse relative to how different the boats

and ships in the Trondheimfjord generally is.

The accuracy of the results YoloBSMH has on the Trondheimsfjorden test set might also

be because the detection problem of maritime vessels in the Trondheimfjord is not where

Yolo struggles. It will depend on each case, but the results in this project indicate that Yolo

can robustly detect sailing boats in the Trondheimfjord under good weather conditions. To

verify this claim one would need an even more diverse test set, to ensure that the good

results are not a consequence of overtraining. Still, there is no limit to how diverse a

dataset could be and building a dataset that could verify this claim one hundred percent is

not feasible with limited amount of time.

That being said, the weather conditions do not vary much, neither in the test or training

dataset. Ideally, a dataset with a diverse set of ships and boats under different weather

conditions such as dark lighting conditions, fog and snow should be made. The Cloud

Detection Framework can be easily used to address the different scenarios, but the compi-

lation of a dataset for these conditions should be done in future research on this topic.

61

Chapter 7. Discussion

7.1.1 Non-detected buildings in Trondheimsfjorden

In the Trondheimsfjorden dataset, there are buildings in the background which YoloBSMH

does not detect, even though it is trained on a building class. The building dataset contains

images taken in Trondheim close to Nidelva and a canal, and the buildings are in the

majority of the images close up, as shown in figure 7.4

Figure 7.4: Example images from the buildings dataset.

In Trondheimsfjorden, there are examples where YoloBSMH fails to detect buildings, as

shown in figure 7.5.

Figure 7.5: YoloBSMH fails to detect buildings in the background.

The buildings in figure 7.4 and 7.5 are in different scales. The results in this project

indicate that training on images like the ones in figure 7.4 do not translate well to detecting

buildings like the ones in figure 7.5. Still, the idea behind training a detection model on

a building dataset was not that it should detect all the buildings in test datasets, but rather

learn to not classify buildings as boats.

62

7.2 Labeling

7.2 Labeling

During labeling of the dataset, the guidelines mentioned in chapter 4.1.2 was used. Three

problems were encountered during the work with this project related to how the boats were

labeled

7.2.1 Labeling of sail boats

In figure 7.6 there are examples where sailboats are detected differently. In figure 7.6a the

whole sailboat is detected, with mast, in figure 7.6b the mast is not detected as a part of the

boat. As can be seen in both figure 7.6a and 7.6b sailboats are labeled with mast. Thus, the

correct detection set by the labeling standards would include the mast, however, to detect

the mast may not be necessary for an autonomous vessel. The shape of the sailboat hull

is comparable to the hulls of motor boats and also larger ships. By labeling sailboats with

the mast, instead of only the hull of the boat, the detector might be less likely to be able

to generalize the hull shape. Labeling only the sailboat hull makes the boats more alike,

which may make the detector model more certain when classifying.

(a) YoloBSMH detects whole sailboat. (b) Yolo detects part of sailboat.

Figure 7.6: YoloBSMH detects two sailboats differently.

7.2.2 Using several boat classes

Another option is to train on different boat classes, having one class for motor vessels,

sailboats, cargo ships, kayaks and so on. The features of a kayak will be different from

a military frigate and trying to classify all these as the same object might confuse the

detector. Yet, this would require datasets for each boat class, which would require much

more data than what was possible to collect in this project.

7.2.3 Detecting boat parts

The detection models seem to struggle when boats are partly covered by other boats or

objects, and will either only detect the foremost boat, or detect the two boats as one large

object, as shown in figure 6.18. To be able to correctly classify a boat that is partly covered

by another boat, the detection algorithm has to recognize parts of boats as boats. If large

parts of a boat are covered, a detector trained on non-covered boats will not robustly detect

it. A possible solution could be to train an object detector on parts of boats and post-

process the detections into full boat detections. This does not seem like an easy system to

implement and would require a massive amount of data.

63

Chapter 7. Discussion

7.3 Clustered boats

Both Yolo and SSD have good results when there is a limited amount of boats in the

image, and they are separated. When small boats are clustered together, like in figure 7.1

both detection algorithms have trouble detecting them. This is not surprising as it is hard

to make out the boats individually, also by human assessment.

For Yolo, there are two main ways of approaching this problem. Either the grid can be

resized and that way Yolo can detect smaller objects. This because there will be more

cells in the grid, thereby creating more object proposals. The other solution, which might

work better in this case, is to identify where there might be clusters and run Yolo on this

sub-region of the image. This would require some form of cluster detection, which has

been done in (Van Etten, 2016), though on detection of boats in satellite images.

64

Chapter 8
Conclusion and Future Work

This project consists of two main contributions. First, the Cloud Detection Framework,

which simplifies the process of training and testing of deep learning-based detection algo-

rithms on different data. A considerable amount of the work done in this project has been

spent implementing the Cloud Detection Framework. To verify whether an object detector

is sufficiently robust to be used on an autonomous ferry, tests in different environments,

weather conditions and locations needs to be done. Also, the data used in training of the

object detector greatly affects its performance. Hence, a system which makes the process

of training and testing more efficient may be of great value in the continued research on

this topic.

The other main contribution was the collection and labeling of a relatively large dataset,

and training and testing on this data. The research done in this project gives an indication

of where continued research should be focused, and sets a benchmark for new implemen-

tations. That way training on new data, and implementations of new models can easily

be compared to previous models, and lets the user know if the new model was a step in

the right direction or not. The results from this project shows that both Yolo and SSD has

potential to detect boats robustly. There are some situations where the models does not

perform ideally, but these cases are in most situations connected to the training data. The

detection models respond well to training, and with a sufficiently diverse training dataset

they have potential to contribute to an improved understanding of the surroundings of an

autonomous ferry. However, this is something that needs to be investigated further. The

limitations of the object detector should be discovered further, to better understand its per-

formance in different scenarios. How well the results are in foggy weather conditions, at

night or how close boats has to be before they are detected should be investigated further.

As mentioned in chapter 3.7, there has not been done much research on the limitations

when it comes to deep learning-based object detectors in maritime environments. Neither

has there been done extensive research on how different training data affects the results

in different maritime environments. In this project a starting point for this has been done.

While that datasets in this report does not include datasets in different weather and light-

ing conditions, it sets up a system which makes this easy to test in the future. It also

provides trained models with performance statistics, which can serve as a benchmark for

new implementations.

65

Chapter 8. Conclusion and Future Work

8.1 Future Work

8.1.1 Test on Video and Real-Time Performance

An important aspect that has not been tested in this paper is the processing rate of the

algorithms on live video. While both Yolo and SSD states processing times in their papers,

this should be verified on local hardware. However, since both papers report approximately

the same proccessing rate (between 20-150 FPS depending on version of SSD and Yolo),

it is more trustworthy than if they had reportes differently.

8.1.2 More Data

The most important matter in the future work on this project is to gather more data and

conduct tests that continues to analyze Yolo, SSD and other detections algorithms poten-

tial. The only way to find the limitations of these models are to test and train them on

new data to find what makes them better, and what makes them worse. The data should

be gathered in relevant environments and be as diverse as possible, containing different

weather, boats and locations.

8.1.3 Tracking

There has not been implemented a tracking algorithm in this project. A tracking algo-

rithm could be of used in post processing of the detections and could help create a more

robust understanding of the situation. A tracking algorithm could counter the effect of lost

detections for few frames, as discussed in 6.5.2.

66

Appendix A
Setting up Google cloud

There are several cloud services that provides GPU processing, and cloud computing,

some of the most popular are Amazon AWS, Microsoft Azure and Google Cloud. These

cloud services makes it possible to run code on customisable hardware, and they provide

libraries and documentation that makes it easy to set up. In this project Google Cloud

was chosen because it gives you 300 USD worth of credit when you open an account,

which makes it possible to get to know the framework before you have to pay. That being

said, the code being used in this project should be able to run on cloud services by other

providers as well. This appendix explains how you set up an account on Google cloud,

how you create an instance with the correct hardware, and how one can access a Google

Cloud instance from the command line on your own computer.

A.1 Creating an account

Go to cloud.google.com and sign in using a Google account. Press ”try free”, and

fill out the form. This will set up a project called ”My first project”

A.2 Setting up an instance

After setting up your account, go to the navigation menu in the top left corner, and go to

compute engine. Go to VM instances and press create instance. Your screen should look

like figure A.1.

67

Chapter A. Setting up Google cloud

Figure A.1: Create instance

A configuration that has been tested to work is shown in figure A.2. Here the ”Machine

type” has been configured with one Nvidia Tesla K80 GPU. Boot disk has been set to

Ubuntu 16.04 LTS, and http traffic is allowed. In this example the region is set to ”europe-

west1(Belgium)”, and the zone to ”europe-west1-b”. The region and zone will affect the

hourly price, and some zones and regions does not provide GPUs. There might be different

combinations that serves other projects better than the combination chosen in this project.

Also the size of the hard drive has been changed from its default value of 10 GB to 100

GB. Which might be necessary when uploading data to the instance.

Press ”create instance” and the site will be directed to figure A.3. The green symbol

indicates that the instance is running.

68

A.2 Setting up an instance

Figure A.2: Tested configuration

69

Chapter A. Setting up Google cloud

Figure A.3: Created instance

A.3 Setting up and using gcloud command line tool on

local computer

Install guides for all supported systems can be found on cloud.google.com/sdk/

docs/quickstarts. This guide will take you through the installation process and the

initialization process. The initialization process connects the gcloud command line tool to

your google cloud account, and lets you access your instances easily when set up correctly.

You will be prompted to log in to your Google account, choose project and default zone.

Project can be chosen to be the on Gcloud set up when creating your account, and will be

the only choice if you did not create new projects. The default zone can be chosen based

on your own preference, in this project ”europe-west1-b” was used.

A.4 Accessing an instance from local computer using Gcloud

command line tool

When the gcloud command line tool is installed and set up correctly, it can be used to

access your instance. The way it has been accessed in this project is through SSH, and

with SCP to transfer files.

A.4.1 SSH in to instance

To SSH into an instance the following command can be used. ¡name¿ and ¡zone¿ should

be the name and zone of your created instance, as shown in figure A.3.

70

A.4 Accessing an instance from local computer using Gcloud command line tool

gcloud compute ssh <name> --zone <zone>

gcloud compute ssh instance-1 --zone europe-west1-b

A.4.2 SCP file to instance

To transfer files to an instance the following command can be used.

gcloud compute scp <path/to/local/file> \\

<name>:/path/to/remote/file --zone <zone>

gcloud compute scp /home/data/image.jpg \\

instance-1:/home/images --zone europe-west1-b

This command will transfer the file image.jpg to the images repository on the cloud

instance.

A.4.3 SCP repository to instance

To transfer repositories and their content the following command can be used

gcloud compute scp --recurse </path/to/local/repo> \\

<name>:</path/to/remote/repo --zone <zone>

gcloud compute scp --recurse /home/data instance-1:/home/ \\

--zone europe-west1-b

This command will transfer the ”data” repository and its content to the home directory of

the instance.

71

Chapter A. Setting up Google cloud

72

Appendix B
Using the Cloud Detection

Framework

After accessing an instance with SSH, the instance can be set up using the Github reposi-

tory cloud-detection-framework.

git clone https://github.com/simenvg/cloud_detection_framework

When the github repository has been cloned, run setup.sh with the following command

from your root directory.

./cloud_detection_framework/setup.sh

This will install CUDA, cudnn, tensorflow and other necessary libraries correctly, build

darknet and set up an environment for training and testing both YOLOv3 and SSD. The

setup file will run for approximately 10-15 minutes. There exists other releases of the

libraries installed, that might be advantageous for other projects. The versions chosen

here, are chosen because they are compatible with the hardware used, and work for both

the SSD and YOLO implementation. There is no guarantee that anything will work, even

after the smallest changes to this file or the hardware of the instance, as I have painfully

B.1 Training

Both YOLO and SSD uses pretrained weights, this framework makes it possible to further

train the networks on a custom dataset. The data can be uploaded to the cloud instance

using SCP.

73

Chapter B. Using the Cloud Detection Framework

B.1.1 Adding datasets and directory structure setup

In the cloud instance the following directory structure should be used for datasets

root

data

dataset1

test

img1.jpg

img1.xml

train

img2.jpg

img2.xml

dataset2

dataset3

When adding a new dataset, it should be labelled using the VOC format annota-

tion. This can be done using labelImg, from https://github.com/tzutalin/

labelImg. This will produce an xml file for each jpg file labelled, with the same name.

Put all the xml and jpg files in the same folder, and run the file split dataset.py on the

folder by running the following command.

python split_dataset.py /path/to/dataset

B.1.2 Training YOLO

To train Yolo, run the file train.py in cloud-detection-framework. To run this file you need

to provide the path to darknet, and the path to your data directory.

python train.py /home/user/darknet /home/user/data

This file will ask the user which datasets in the data directory Yolo should be trained on,

and begin training.

B.1.3 Training SSD

To train SSD two files need to be run. The first one being convert tfrecords.py, and the

second being

74

Appendix C
Example images

This appendix contains example images referenced in the thesis. The sub chapters are

divided into different behaviours observed when testing the detection algorithms, and are

connected to the case studies presented in chapter 6.

75

Chapter C. Example images

C.1 SSDBSM and SSDBSMH on BoatsClose and BoatsFar

(a) SSDBSM (b) SSDBSMH

(c) SSDBSM (d) SSDBSMH

(e) SSDBSM (f) SSDBSMH

(g) SSDBSM (h) SSDBSMH

76

C.1 SSDBSM and SSDBSMH on BoatsClose and BoatsFar

(a) SSDBSM (b) SSDBSMH

(c) SSDBSM (d) SSDBSMH

(e) SSDBSM (f) SSDBSMH

(g) SSDBSM (h) SSDBSMH

77

Chapter C. Example images

C.2 YoloBSM and YoloBSMH on BoatsClose and BoatsFar

C.2.1 YoloBSM specific misclassifications on BoatsClose and BoatsFar

(a) YoloBSM (b) YoloBSMH

(c) YoloBSM (d) YoloBSMH

(e) YoloBSM (f) YoloBSMH

Figure C.3: YoloBSM specific misclassifications on BoatsClose and BoatsFar

78

C.2 YoloBSM and YoloBSMH on BoatsClose and BoatsFar

C.2.2 YoloBSMH better than YoloBSM on BoatsClose and BoatsFar

(a) YoloBSM (b) YoloBSMH

(c) YoloBSM (d) YoloBSMH

(e) YoloBSM (f) YoloBSMH

(a) YoloBSM (b) YoloBSMH

Figure C.5: Example images where YoloBSMH performs better than YoloBSM on BoatsClose and

BoatsFar.

79

Chapter C. Example images

C.2.3 YoloBSM better than YoloBSMH on BoatsClose and BoatsFar

(a) YoloBSM (b) YoloBSMH

(c) YoloBSM (d) YoloBSMH

(e) YoloBSM (f) YoloBSMH

(a) YoloBSM (b) YoloBSMH

Figure C.7: Example images where YoloBSM performs better than YoloBSMH on BoatsClose and

BoatsFar

80

C.2 YoloBSM and YoloBSMH on BoatsClose and BoatsFar

C.2.4 YoloBSM and YoloBSMH same misclassifications on BoatsClose
and BoatsFar

(a) YoloBSM (b) YoloBSMH

(c) YoloBSM (d) YoloBSMH

(e) YoloBSM (f) YoloBSMH

(a) YoloBSM (b) YoloBSMH

Figure C.9: Example images where YoloBSM and YoloBSMH misclassifies the same object.

81

Chapter C. Example images

C.3 SSDBSM and SSDBSMH on Trondheimsfjorden

C.3.1 SSDBSM specific misclassifications on Trondheimsfjorden

(a) SSDBSM (b) SSDBSMH

(c) SSDBSM (d) SSDBSMH

(e) SSDBSM (f) SSDBSMH

(a) SSDBSM (b) SSDBSMH

Figure C.11: Example images with SSDBSM specific misclassifications

82

C.3 SSDBSM and SSDBSMH on Trondheimsfjorden

C.3.2 SSDBSMH better than SSDBSM on Trondheimsfjorden

(a) SSDBSM (b) SSDBSMH

(c) SSDBSM (d) SSDBSMH

(e) SSDBSM (f) SSDBSMH

(a) SSDBSM (b) SSDBSMH

Figure C.13: Example images where SSDBSMH performs better than SSDBSM

83

Chapter C. Example images

C.3.3 SSDBSM better than SSDBSMH on Trondheimsfjorden

(a) SSDBSM (b) SSDBSMH

(c) SSDBSM (d) SSDBSMH

(e) SSDBSM (f) SSDBSMH

(g) SSDBSM (h) SSDBSMH

Figure C.14: Example images where SSDBSM performs better than SSDBSMH.

84

C.4 YoloBS and YoloBSM differences

C.4 YoloBS and YoloBSM differences

C.4.1 YoloBS overestimating ship size

(a) YoloBS (b) YoloBSM

(c) YoloBS (d) YoloBSM

(e) YoloBS (f) YoloBSM

(g) YoloBS (h) YoloBSM

Figure C.15: Example images where YoloBS overestimates size of ship, while YoloBSM does not.

85

C.4.2 YoloBS detecting same boat multiple times

(a) YoloBS (b) YoloBSM

(c) YoloBS (d) YoloBSM

(e) YoloBS (f) YoloBSM

(g) YoloBS (h) YoloBSM

Figure C.16: Example images where YoloBS detects boat multiple times, while YoloBSM does not.

86

Bibliography

D. Bloisi, L. Iocchi, M. Fiorini, and G. Graziano. Automatic maritime surveillance with

visual target detection. International Defense and Homeland Security Simulation Work-

shop, DHSS 2011, Held at the International Mediterranean and Latin American Mod-

eling Multiconference, I3M 2011, (c):141–145, 2011.

E. Bøhn. Semantic Segmentation of Radar Data with Deep Learning. 2018.

J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object Detection via Region-based Fully Convo-

lutional Networks. may 2016.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. 2009a.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. Technical report, 2009b.

T. Dettmers. Deep Learning in a Nutshell: History and Training. 2015.

R. Dulski, S. Milewski, M. Kastek, P. Trzaskawka, M. Szustakowski, W. Ciurapinski, and

M. Zyczkowski. Detection of small surface vessels in near, medium, and far infrared

spectral bands. volume 8185, page 81850U. International Society for Optics and Pho-

tonics, oct 2011. doi: 10.1117/12.898272.

D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable Object Detection using Deep

Neural Networks. Technical report, 2014.

H. Eum, J. Bae, C. Yoon, and E. Kim. Ship Detection Using Edge-Based Segmentation

and Histogram of Oriented Gradient with Ship Size Ratio. 15(4):251–259, 2015.

M. Everingham and J. Winn. The PASCAL Visual Object Classes Challenge 2007

(VOC2007) Development Kit. 2007.

M. Everingham and J. Winn. The PASCAL Visual Object Classes Challenge 2012

(VOC2012) Development Kit. 2012.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal

visual object classes (VOC) challenge. International Journal of Computer Vision, 88

(2):303–338, 2010. ISSN 09205691. doi: 10.1007/s11263-009-0275-4.

87

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI

vision benchmark suite. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 3354–3361, 2012. ISSN 10636919.

doi: 10.1109/CVPR.2012.6248074.

R. Girshick. Fast R-CNN. 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. nov 2013.

R. Goring. Feasibility of Neural Networks for Maritime Visual Detection on a Mobile

Platform. Dissertations and Theses, apr 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification. 2015.

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. Technical report, 2018.

L. Jiang and S. S. Singh. Tracking multiple moving objects in images using Markov Chain

Monte Carlo. mar 2016.

V. Kamsvåg. Fusion between camera and lidar for autonomous surface vehicles. 2018.

A. Karpathy and L. Fei-Fei. Deep Visual-Semantic Alignments for Generating Image

Descriptions. 2016.

Kongsberg. Autonomous ship project, key facts about YARA Birkeland - Kongsberg Mar-

itime, 2017. URL https://www.km.kongsberg.com/ks/web/nokbg0240.

nsf/AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convo-

lutional Neural Networks, 2012.

A. Kumar, S. Kushwaha, and R. Srivastava. Maritime Object Segmentation Using Dy-

namic Background Modeling and Shadow Suppression. 2015. doi: 10.1093/comjnl/

bxv091.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,

C. L. Zitnick, and P. Dolı́. Microsoft COCO: Common Objects in Context. Technical

report.

T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick. Microsoft COCO: Common objects in context. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 8693 LNCS(PART 5):740–755, may 2014. ISSN 16113349. doi:

10.1007/978-3-319-10602-1 48.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense Object

Detection. Technical report, 2018.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD:

Single Shot MultiBox Detector. dec 2016. doi: 10.1007/978-3-319-46448-0 2.

88

S. J. Pan and Q. Yang. A Survey on Transfer Learning. 2009. doi: 10.1109/TKDE.2009.

191.

N. Pires, J. Guinet, and E. Dusch. ASV : An innovative automatic system for maritime

surveillance. Navigation, 58(232):1–9, 2010.

D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek. Chal-

lenges in video based object detection in maritime scenario using computer vision.

Technical report, 2016a.

D. K. Prasad, C. K. Prasath, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek. Chal-

lenges in video based object detection in maritime scenario using computer vision.

2016b.

D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, and C. Quek. Video Processing from

Electro-optical Sensors for Object Detection and Tracking in Maritime Environment: A

Survey. nov 2016c.

J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. 2016.

J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. 2018.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified,

Real-Time Object Detection. 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detec-

tion with Region Proposal Networks. 2016.

B. J. Rhodes, N. A. Bomberger, M. Seibert, and A. M. Waxman. SeeCoast: Au-

tomated port scene understanding facilitated by normalcy learning. Proceedings -

IEEE Military Communications Conference MILCOM, 2007. ISSN 2155-7578. doi:

10.1109/MILCOM.2006.302306.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: In-

tegrated Recognition, Localization and Detection using Convolutional Networks. dec

2013.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis. Mastering the Game of Go with Deep Neural Networks

and Tree Search. 2016.

StanfordUniversity. Stanford University CS231n: Convolutional Neural Networks for Vi-

sual Recognition, 2018. URL http://cs231n.stanford.edu/.

T. Stensvold. Verdens første førerløse passasjerferge kan gå over en kanal i Trondheim -

Tu.no, 2016.

Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection: A review. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28(5):694–711. ISSN 01628828. doi:

10.1109/TPAMI.2006.104.

89

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A Survey on Deep Transfer

Learning. Technical report, 2018.

E. J. Tangstad. Visual Detection of Maritime Vessels. 2017.

T. H. Tran and T. L. Le. Vision based boat detection for maritime surveillance. Inter-

national Conference on Electronics, Information, and Communications, ICEIC 2016,

(January 2016), 2016. doi: 10.1109/ELINFOCOM.2016.7563033.

J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders. Selective

Search for Object Recognition. 2012.

A. Van Etten. Object Detection in Satellite Imagery, a Low Overhead Approach, Part I,

2016.

A. Van Etten. You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite

Imagery. Technical report, 2018.

a. Wedel and U. Franke. Monocular Video serves RADAR-based Emergency Braking.

2007 IEEE Intelligent Vehicles Symposium, pages 93–98, 2007. ISSN 1931-0587. doi:

10.1109/IVS.2007.4290097.

R. Zhang, P. Isola, and A. A. Efros. Colorful Image Colorization. 2016.

M. H. Zwemer, R. G. J. Wijnhoven, and P. H. N. De With. Ship Detection in Har-

bour Surveillance based on Large-Scale Data and CNNs. 2018. doi: 10.5220/

0006541501530160.

90

Sim
en Viken G

rini
O

bject D
etection in M

aritim
e Environm

ents

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Simen Viken Grini

Object Detection in
Maritime Environments

Systematic Training and Testing of
Deep Learning-based Detection Methods for
Vessels in Camera Images

Master’s thesis in Engineering Cybernetics
Supervisor: Edmund Brekke

January 2019

Simen Viken Grini

