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PART I 

THE GRANULAR BED STABILITY PROBLEM 

INCLUDING: 

- AN INTRODUCTION TO THE SUBJECT 

- A CLASSIFICATION OF BED FEATURES 

- A SURVEY OF EXISTING STABILITY THEORIES 



1. INTRODUCTION 

1.1. An engineering and scientific subject.  

The subject under study is related to the processes of erosion and 

sediment transport - both processes of paramount importance to human 

activities in many countries. They are met in a variety of civil engi-

neering disciplines, thus mentioning 

- structural protection against underscour offshore and on the 

coast, in harbours and rivers 

- planning and management of waterways and navigation channels 

- coastal and harbour engineering 

- irrigation engineering 

- flood control in rivers and reservoirs 

- hydropower development in tunnels, rivers and canals. 

Introductory books on the subject are for example the one by Engelund 

and Hansen and the one by Raudkivi. The books by Bruun and 

Gerritsen are written to meet more directly the needs of the coastal 

engineer. Several other books exist both for general purpose and for 

the various specialised application fields. 

Be it also mentioned that basically the same or closely related processes 

are met in many other branches of engineering, such as the physical, 

chemical, metallurgical and agricultural branches. 

Erosion and sediment transport are present as natural processes in the 

hydrologic, the coastal and the ocean environments. Even the movement 

of desert sand by wind is a similar process and - very likely - of the 

same basic nature as those found in wet environments. Thus researc-

hers in both theoretical and descriptive natural sciences are also 

interested in the phenomena of erosion and sediment transport. 
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1.2. Erosion, Bed Forms and Stability 

What is then the basic nature of erosion and sediment transport? More 

specifically we may ask: 

- Under given flow and bed conditions when and where do 

we get erosion? 

- How large will the sediment transport be? 

- Where will the transported material settle down? 

- What kind of dynamic processes are responsible for bringing 

heavy solid particles into suspension and kept suspended in a 

flowing fluid? 

- What is the explanation for wave forms seen on a bed under 

erosion? 

These and other questions have been asked and investigated by rese-

archers from the fields of science and engineering mentioned. The work 

has gone on for several decades and the research activity at present is 

probably higher than ever. The amount of published literature on the 

subject is overwhelming as a consequence. Many questions have tound 

their answers. Others remain partly or fully unanswered. 

The question to be taken up in the tollowing is the last one, and to a 

lesser extent the second last one: 

- How do bed forms develop, and 

- What is the connection between the erosion process and the 

generation of bed forms? 

The important and interesting problems of suspension and transport of 

solid particles will then be left out of discussion. When a granular bed 

is eroded, wave forms, termed ripples, dunes or antidunes, are 

observed on the bed. In coastal areas and rivers also other forms 

(named shoals, bars, meanders etc.) are seen, but our concentration 

will be on the rirst three. A more comprehensive description and 

classification of granular bed wave forms will follow shortly. Before we 

do so we will address the question of the engineering significance of 
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the bed wave problem. We also regard somewhat closer the nature of 

the problem. 

1.3. Engineering importance and hydrodynamic character of the bed 

form generation problem.  

The wave forms enter the engineering problems in determining the flow 

conditions which in turn are needed to determine erosion and sediment 

transport. 

Ripples act basically as roughness elements. However, as such they are 

several orders of magnitude larger than the grains that build them. So 

their influence on the flow is the more important. Adding to this is the 

fact that flow conditions that generate ripples are frequently occurring 

in engineering projects. 

Dunes, being of the same extent and amplitude as the mean flow depth, 

on an order of magnitude scale, are as "roughness elements" of major 

influence on the flow. Their form drag influences the main flow as well 

as the tree surface. And in addition a further influence comes from 

possibly coexisting ripples. Dunegenerating flows are also typical for 

those met in engineering. 

Antidunes are less frequent both in nature and in engineering works 

since they occur only at supercritical flow conditions. However, when 

existing they interact strongly with flow and free surface and even 

cause the surface to break in some cases. So the flow can not be 

determined before the distribution and size of bed torms are known. On 

the other hand the bed forms are generated by the flow interacting 

with the bed. In other words: Flow and bed forms are parts of one and 

the same problem. 

This is a situation very often met in hydrodynamics. But our problem is 

complicated further by the fact that the subjects under study - the 

granular materials - are composed of solid grains, i.e. particles not 

behaving as fluid elements. The particles themselves may vary by 

3 
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density, size and shape. And when considering larger amounts one also 

may have to take the statistical distribution of the different qualities 

into account. 

The laws of motion of single grains and grain ensembles are hard to 

establish. A large amount of the theoretical and empirical work confirms 

this. And in the attempt to handle the subject in hydrodynamic or 

hydraulic terms one also meets the question of relevance and usefulness 

of concepts and laws established for pure water flow. A general 

agreement, however, seems to exist between researchers on the subject: 

Bed waves are the result of a dynamic instability set up by water 

flowing over the bed. 

A.J. Reynolds in 1974 gave a review paper at the Euromech 48 Sym-

posium, where he placed the bed stability analysis in the general field 

of problems associated with erosion and transport of granular materials 

by the following figure. 

The figure supplements earlier characterisation of the problem and 

emphasises the role of stability analysis as a central one. At the same 

time it pictures a more or less generally agreed opinion at that time 

about what type of principles or fields of knowledge that should form 

the basis of a granular bed stability analysis. 

t hus, in summing up, we may state that we are facing a subject of 

wide engineering and scientific interest and of a high degree of 

descriptive and analytical complexity. In the following the most 

important contributions to the solution of the bed stability problem 

hitherto will be surveyed. First, however, the classification of bed 

forms as done by the ASCE Task Force on Bed Forms in Alluvial 

Channels will be reviewed and commented. 
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Fig.1.1. The place of bed stability analysis in the general field of 

problems associated with the erosion and transport of granular 

materials, after A.J. Reynolds, 1974. 



2. CLASSIFICATION OF BED FORMS 

2.1. The ASCE classification. 

The classification of bed forms in this work is done according to the 

proposed nomenclature in the report of the Task Force on Bed Forms in 

Alluvial Cnannels of the ASCE Committee on Sedimentation, 1966: 

Bed Form. - Any deviation, from a flat bed, that is readily 

detectable by eye or higher than the largest sediment size 

present in the parent bed material, generated on the bed of an 

alluvial channel by the flow. 

Ripples. - Small bed forms with wave lengths less than approxi-

mately 1 tt and heights less than approximately 0.1 ft. Kipples 

occur at flow velocities slightly higher than those required for 

initiation of sediment motion, but at lower velocities than flat 

bed or antidunes. Parts of the upstream slopes of dunes are 

occupied by ripples under some flow conditions. In plan view, a 

ripple configuration can vary from an irregular array of three -

dimensional peaks and pockets to a regular array of continuous 

parallel crest and troughs transverse to the direction of flow. In 

longitudinal section, ripple profiles vary from approximately 

triangular, with long gentle upstream slopes and downstream 

slopes approximately equal to the angle of repose of the bed 

material, to symmetrical nearly sinusoidal shapes. The triangular 

ripples commonly observed in alluvial channels move downstream 

with velocities that are small compared to the mean velocity of 

the generating flow. They are observed to occur only rarely in 

sediments coarser than approximately 0.6 mm. 

Dunes. - Bed forms larger than ripples that are out of phase 

with any water surface gravity waves that accompany them. 

Dunes generally occur at larger velocities and sediment 

transport rates than ripples, but smaller velocities and transport 

rates than antidunes; however, ripples do occur on the 
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upstream slopes of dunes at the lower velocities in the dune 

regime. The lengths of dune crests are usually of the same 

order as the wave length. The longitudinal profiles of dunes are 

approximately equal to the angle of repose of the bed material. 

Dunes move slowly downstream with velocities that are small 

compared to the mean velocity of the generating flow. The large 

lee eddies that occur in dune troughs often cause surface boils 

of intense turbulence and high sediment concentration to occur 

above and slightly downstream from dune crests. 

Transition. - A bed configuration consisting of a heterogeneous 

array of bed forms, primarily low-amplitude ripples or dunes 

and fiat areas. The transition bed is a configuration generated 

by flow conditions intermediate to those producing dunes and 

flat bed. In laboratory flumes, the transition configuration has 

been observed in some cases to consist of dunes or ripples over 

a reach covering part of the channel length, and a flat bed over 

the remainder. The flow in the flat-bed reach is shallower than 

in the reach with ripples or dunes, and the discontinuity in the 

bed between the two reaches moves slowly downstream. In other 

instances, the bed configuration has been observed to consist of 

small, widely separated ripples or dunes over the entire bed. 

Antidunes. - Bed forms that occur in trains and that are in 

phase with and strongly interact with gravity water surface 

waves. Antidunes can move upstream or downstream or can 

remain stationary, depending on the properties of the flow, 

fluid, and sediment. The free-surface waves have larger ampli-

tudes than the antidunes. At higher velocities and Froude num-

bers, the surface waves usually grow until they become unstable 

and break in the upstream direction. The agitation accompanying 

breaking obliterates the antidunes, and the process of antidune 

initiation and growth is then repeated. At lower velocities, the 

antidunes will grow and then diminish in amplitude without the 

surface waves ever breaking. In longitudinal section, antidune 

profiles vary with flow and sediment properties from approxi-

mately triangular to sinusoidal, the latter occurring at larger 
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Froude numbers than the former. However, the sharp-crested, 

triangular-shaped antidunes have been observed only in labora-

tory flumes, and always move downstream. I he crest lengths of 

antidunes are usually of the same order as the wavelength. 

According to the description of the three classes of bed forms above we 

may illustrate the different flow states and associated bed forms by 

simplified twodimensional sketches as done in fig. 2.1. a-h. 
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a. F<<1. Ripples at weak b. F<1. Dunes with ripples 

flow. Surface unaffected. on upstream slope. 

Surface out of phase 

with dune. 

c. F<1. Dunes of differing d. F<1. Flow slightly 

size. Surface out of subcritical. 

phase with dunes. Dunes are washed out. 



e. . Plane bed or standing f. F>1. Supercritical 
waves in phase with surface. flow. Antidunes in 

Slightly supercritical phase with tree 

flow. surface. 

r. 

g F>1. Supercritical 

flow. Antidunes and 

iyiphase breaking 

surface wave. 

h. F>>1. Strongly 

supercritical flow. 

Chutes and pools i.e. 
extreme antidune forms. 

1-1g. 2.1. Bed forms and associated surface wave pattern for increasing 

hydraulic Froude number according to a generally agreed 

classification. 
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Engelund and Hansen illustrate the occurrence of ditterent bed forms 

and qualitatively the influence on the flow by a diagram of the following 

type 

Fig.2.2. Bed forms affecting bed shear in different flow regimes, after 

Engelund and Hansen. 

2.2. Some comments on the classification. 

It appears from the preceding classification and illustrations that dunes 

and antidunes interact with the free surface but with different phase 

relationship. The two types are separated by a state where the bed as 

well as the surface is fiat. 

The distinction between dunes and ripples, however, is not so sharp. 

tngelund and Hansen indicate a transition between ripples and dunes 

for a certain flow condition. On the other hand dunes and ripples are 

observed coexisting, as shown in fig. 2.1. 

A consensus exists between different authors that ripples are small, 

i.e. by wave length and amplitude compared to those of dunes. While 

the ASCE Task Force proposition is an upper wave length of 1 foot, 



Lngelund and Hansen propose a maximum wave length of 60 cm. Others 

allow ripple wave lengths up to 1.0 m. We thus seem to be left with a 

somewhat unsatisfactory characterisation of the ripples. It may even be 

justitied to ask whether the ripples seen for flows just above the state 

of incipient motion - i.e. first grains movement - and the ripples seen 

superimposed on dunes are of the same type. Being characterised only 

by their size, relative or absolute, very little is in fact known so far 

about the physical nature and origin of ripples. 

An interesting and comprehensive report was written by Guy, Simons 

and Richardson based on extensive laboratory research work on all 

three types of bed forms. It contains both a large amount of flow, 

sediment and bed form data and fascinating photographs and written 

descriptions of the observed bed and surface features. For a detailed 

and thorough description of bed forms and associated flow under 

laboratory conditions this is probably one of the best references 

available. A well known and authoritative source of descriptive 

information on bed forms observed in the field is the book by J.R.L. 

Allen. 
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3. A SURVEY OF THE LITERATURE ON SOFT BED STABILITY 

ANALYSIS. 

3.1. Work before 1960 

3.1.1. Early contributions 

The interest in bed forms dates back to earlier centuries. Raudkivi 

mentions in his book an investigation by G.H. Darwin in 1883, and this 

was probably not the first one. It is interesting to note, however, that 

Darwin is reasoning along lines of hydrodynamic stability. And as such 

it is very likely to be one of the first attempts. 

Raudkivi also refers to an empirical description of the nature of ripple 

formation by G.F. Deacon in 1892 "of a quality such that subsequent 

descriptions have added very little to it". 

3.1.2. An early hydraulic approach. The erosion equation. 

F.M. Exner (1925) is another early investigator working on the basis of 

hydraulics. The hydraulic way of attack has an inherent weakness in 

that it is developed for description of unitorm flows i.e. phenomena of 

very long range in the flow direction. In terms of wave length x and 

water depth h this means that the description is limited to cases where 

2 7rh/x = kh is small. An advantage of the hydraulic approach may be 

that it offers a possibility of taking friction and nonlinear accelerations 

to some extent into account. 

Exners most important contribution was the establishment of the erosion 

equation 

ate + = 0 aX 
(3.1) 

where qs  is the volume transport of sediments and 712  is the bed ele-

vation above a fixed level. This equation is obviously one of sediment 
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continuity. A slight improvement of (3.1) is needed, by inclusion of the 

bed porosity. 

3.1.3. The first potential theory attempt. 

A.G. Anderson (1953) applied potential theory for flow over a 

sinusoidal bed and Exner's erosion equation, considering bed load only, 

in a combined experimental and theoretical work. He seems, however, 

like Exner, to have missed the factor (1-n) on the term l'iz /at, where 

n is bed porosity. By further assuming aqs /ax to be proportional to 

au/ax, u being mean horizontal velocity at bed level, he finds the 

analytical solution for the bed process as a bed wave 

n2(x,t) = 2a cosh-1  kh sinftt cos(kx-(3t) (3.2) 

where k is the wave number 21T/X, a is the surface wave amplitude and 

13. is a frequency given in terms of mean flow, surface wave and bed 

erosion parameters. He further argues that bed waves reach an 

equilibrium stage in phase with the surface wave and with maximum 

amplitude given by 

sin 13t = 1 => f3t = Ir/2 (3.3) 

And by equating the resulting amplitude ratio to the one given by 

Milne-Thomson tor stationary flow over a sinusoidal bottom, he arrives 

at a criterion to be satisfied by fully developed bed waves as 

F-2 = kh (tanh kh - 2 sinh-1  2kh) (3.4) 

where 

F = U/igh 

is the Froude number, U being the over all horizontal velocity of the 

flow, and h the water depth. Equation (3.4) with some experimental 

data is shown in fig. 3.1. 
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Fig. 3.1. - Relative wave length as a function of Froude number 

according to A.G. Anderson (1953). 

tven if the resulting formula shows a reasonable agreement with experi-

mental data, some remarks may be made on the analysis, in addition to 

the porosity factor mentioned: 

- Since the analysis is made on the development of dunes later 

experimental research has shown that fully developed dunes are 

out of phase rather than in phase with the surface wave. 

- The theory says nothing about the transitional state and the 

specific nature of antidunes. 

- Ripples, often seen coexisting with dunes are not mentioned in 

the analysis. 

- The application of potentional theory results for the flow field 

close to the bed and in interaction with the bed material is from 

a physical point of view not convincing. 



- The bed load transport relation saying that Bqb/ax is 

proportional to au/ax is an analytically handy formulation. 

However, as is generally agreed to by researchers in this field, 

the bed load function is complex and cannot, even at present, 

be considered tully established. 

3.1.4. Liu's work 

H.-K. Liu (1957) in his doctoral thesis reviewed the work by Exner and 

Anderson and in addition the "classic" instabilities of hydrodynamics. In 

studying the bed instability in order to explain sediment ripple 

formation, he found experimentally that ripples formed for 1-roude 

numbers as low as 0.22. On this basis he concluded that ripples are not 

caused by surface waves. Further Liu states that a sediment-laden bed 

may be considered as a fluid since 

a) a rigid boundary can be treated as a fluid of infinite 

viscosity, and 

b) sediment density currents are usually accepted as being 

fluids, and a sediment-laden bed is an extreme case of a 

density current. 

Both statements seem reasonable by themselves. But it does not appear 

to what extent they should have relevance to the bed stability problem. 

Liu in his further work does not seem to make any direct use of these 

ideas. His main contribution is on relating experimentally the beginning 

of ripple formation to Shields' criterion tor incipient grain motion. Liu's 

resulting diagram is shown in fig 3.2. 
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For comparison the same Shields' diagram with experimental data for 

incipient grain motion and domains of first occurring bed forms, as 

given by Raudkivi (1965), is shown in fig. 3.3. 

The general impression of the early contributions to the study of 

granular bed stability is that the success in explaining the pertinent 

bed features was rather limited. This is readily understandable however 

when considering that we even today have important parts of the 

problem unsolved. We should also remember that the empirical knowledge 

and the amount of available high-quality physical data on the phenomena 

was much less than today. 

3.2. A decade of high activity.  

3.2.1. J.F. Kennedy's work. The potential theory approach. 

Starting with the work by J.F. Kennedy (1963) on "The mechanics of 

dunes and antidunes in erodible - bed channels", the following decade 

showed an increasing number of publications on the subject. A strongly 

growing research activity took place which brought the subject from an 

initial stage to one of considerably improved knowledge. The develop-

ment was empirical as well as theoretical. A summary of all experimental 

work is outside the scope of this work. Much of the empirical knowledge 

gained is reflected in the classification and description of section 2.1. 

For quantitative empirical information reference has to be made to the 

subject reports. The one by Guy et al. is, as said earlier, highly 

recommendable. Others are found in the list of references. 

Kennedy continued on the line taken up by Anderson in applying 

potential theory for flow over a sinusoidal bed. In fig. 3.4 is shown his 

basic flow model. 
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Fig. 3.4. Sketch of theoretical flow model used by J.F. Kennedy. 

Kennedy restates a well known result of potential theory namely that 

the relation (given by Kennedy on a slightly different form) 

a2 /al  = (F2  - tanh kh/kh) F 2cosh kh (3.5) 

connects the bed and surface wave amplitudes. Equation (3.5) leads to 
the condition 

F2  = tanh kh/kn (3.6) 

separating in phase waves, i.e. antidunes, from out of phase waves 

i.e. dunes. F is the hydraulic Froude number U/igh. 
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In analysing sediment transport as the cause of bed instability, i.e. 

growing bed waves, he arrives at the result 

a2 (t)/al(o) = {sinh k(D-h)/sinh kh} • 

. exp {ct k2t coth ktD-h) sin la} (3.7) 

Here a is a sediment transport rate coefficient and 6 is the length by 

which the local sediment transport rate at the bed lags the local 

velocity. If this lag is zero Kennedy's model is seen to give neither 

growth nor decay of bed perturbations. The depth parameter D, 

stemming from Milne-Thomson potential theory formulas, is artificial and 

serves the additional purpose of obscuring the physical content of the 

result (3.7). If D is removed through use of the linear wave theory 

stationariiy condition 

k U2 /g = tanh kD, (3.8) 

the resulting formula is 

a2(t)/al(o) = (F2  - tanh kh/kh) F 2  cosh kh. 

.exp{-ct k2t sin kS (F2- coth kh/kh). 

•tanh kh (F2 - tanh kh/kh)
-1  } (3.9) 

This last form of Kennedy's stability result was used in the 1969 review 

paper. Equation (3.9) forms the basis of a detailed stability discussion 

in which the lag distance 6 plays a central role. Kennedy suggests as 

part of this discussion the relation 

F2  = 1/kh (3.10) 

as an upper boundary for the existence of antidunes, in spite of the 

fact that the relation 

F2  = coth kh/kn (3.11) 



is suggested by Kennedy's own result (3.9). As will be seen in the 

following (3.11) is in later stability analysis concluded to be the upper 

stability boundary. 

Kennedy found the relation 

cr = a k cos la tanh kh (F2- coth kh/kh). 

. (F2- tanh kh/kh)-1 (3.12) 

for the propagation rate of bed waves, which is seen to exist also for 

zero lag distance S. 

The following figure shows parts of Kennedy's theoretical results in the 

F - kh diagram including a considerable amount of experimental data on 
observed dunes and antidunes. The later upper regime boundary (3.11) 

is shown in stead of (3.10). 

IT 
I I  
II 
It 
II 
I 

1 1O 
 

tt Barton & Lin 0.18 mm. sand 
1 Brooks 0.088 mm. sand 

IA t Brooks 0.145 mm. sand 
Kennedy 0.157-0.46 mm. sand 
Kennedy 0 233 mm. sand 

t
i
i 

Kennedy 0549 mm. sand 
I • Laursen 0.1 mm. sand 

Plate 0253 mm. sand 
Plate 0.350 mm. sand tyrt 

c,1,) 
19-t 

Plate 0.448 mm. sand 
Plate 0545 mm. sand 

1, Simons et a/. 045 mm. sand 
1 • Tison 0.04-1-75 mm. sand 

Tsubaki a al. 1.03 mm. sand 
t 
AA 

. Tsubaki ct al. 1.26 mm. 
Tsubaki ct al. 1.46 mm. 

sand 
sand 

• \V•% • 
Tsubaki ct al. 226 mm. sand 

• Dunes 
1$ I-  . Antidunes 

• 
• 

ir.:• •... • 
1  
k 4 

..`"e:9 • •. :Ts,. 
4  '4•4Y a 
. ..s•-F• 

•
A - • 

• •„)„. • 10 'LA s 1,_ •... 
„ --•-. _____ • 

' •• a. . _ 1 __ — ---• •____ f , , r• , 
• ' • • s  

2 4 10 

k h 

Fig. 3.5. Stability analysis results of J.F. Kennedy with empirical data 

on dunes and antidunes. The relation F2=coth kh/kh is also 

shown. 

20 

28 

24 

20 

1.6 

12 

0.8 

04 

0.0 
0 12 14 16 18 



3.2.2. Reynolds' work. 

A.J. Reynolds (1965) performed an analysis of the problem of erodible 

bed stability tirst along the lines of hydraulics and next using potential 

theory. The hydraulic analysis proceeds by use of the continuity and 

momentum equations 

Uh = q (3.13) 

DU BT12 Dh 13 U 2  
g ( + ) ° 

(3.14) 

where U is the flow velocity, h the water depth, q volum flux of water 

per unit width of channel, 1-12  bed level, g acceleration of gravity and 

a flow friction coefficient. Further he uses the erosion equation 

Dn2  DL Dh9  
at 5< = m = ° 

(3.15) 

where m is a proportionality konstant and L = (1-n)-1qs is eftective 

volume flux of bed soil material per unit width of channel. The 

following figure shows Reynold's flow model. 
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Fig. 3.6. Definition of flow parameters for hydraulic equations in 

Reynolds' analysis. 



The inherent assumptions of this approach are: 

- the velocity U is a cross sectional average, 

- the vertical accelerations are small enough to be neglected, 

- the pressure is hydrostatic, 

- the frictional resistance obeys a "velocity squared law". 

An implication of the neglect of vertical acceleration is that the 

longitudinal changes of flow have to be slow. 

Reynolds found by a linear perturbation procedure on the above 

equations that without a phase difference 6 between erosion and 

horizontal velocity gradient the bed was stable. Thus an unstable bed 

is described if the erosion equation is developed as 

    

ant 
at 

all + m --- x ax = x - 6 0  
(3.16) 

    

Reynolds' finding on this point is then essentially the same as 

Kennedy's. In considering the effect of bed friction Reynolds concluded 

that friction was generally not sufficient to explain phase shift and 

instability. 

In revising Kennedy's potential theory Reynolds arrives at the expres-

sion 

tp = - mk (1 - G02  tanh kh) (G02  - tanh kh)-1 (3.17) 
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for the velocity of propagation of bed waves, where 

G02  = kU2 /g. If Go is allowed to be larger than one - Kennedy 

considered Go < 1 - one gets a limiting condition for upstream 

propagating antidunes as 

F2  = coth kh/kh (3.18) 

He stated further that (3.18) marks also the boundary of the region of 

instability of bed waves of small amplitude. 
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and Reynolds (2), with data plotted for observed antidunes. 

We note that as Kennedy based his criterion on water wave 

considerations Reynolds applied the erosion equation. 

3.2.3. A detailed empirical description. 

A.J. Raudkivi in 1966 published a work where he stresses the 

importance of the wake formed behind bed wave peaks and also the 



importance of bed shear stress and sediment transport for the 

understanding of bed form generation. He states his doubt about an 

instability mechanism being responsible saying that 

"The development of bed forms from a flat bed is a 

progressive process and not a spontaneous growth of 

amplitude of a bed disturbance". 

Raudkivi's remark seems in fact to be directed towards the use of a 

maximum growth rate criterion, leading to one specific or preferred 

wave length, more than towards the instability idea itself. 

3.2.4. The Boussinesq refinement of the hydraulic approach. 

F. Engelund and E. Hansen (1966) made an effort to generalise the 

hydraulic model by applying the Boussinesq method, which allows to 

some extent for changes in the direction of flow. Additionally an empiri-

cal "delay distance" was applied. They arrived at a criterion for un-

stable bed and also succeeded in describing some threedimensional 

effects. However, the Boussinesq method complicates the hydraulic 

analysis considerably. On the other hand the principal weaknesses of 

the hydraulic approach, mentioned earlier, are conserved. Thus the 

Boussinesq refinement does not seem to be a penetrating improvement of 

bed stability analysis. 

3.2.5. Time varying hydraulic equations. 

M. H. Gradowczyk (1968) worked with the nonstationary hydraulic 

equations or the unidirectional first order shallow water equations, 

reading 

DU . u _ DU 
at Dxg ax

112+h) 
+ f h112 = 

(3.19) 

ah a(Uh) _ 0 (3.20) 
at ax 
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I he flow variables are defined as in fig 3.6. In addition the erosion 

equation 

3112 3% = 0 (3.21) 
at ax 

was used where go  is the bed - load part of the sediment transport, 

i.e. that part of the sediment transport which occasionally touches the 

bed. 

Gradowczyk analyses both the propagation and stability of surface and 

bed waves, the mathematical techniques being the method of 

characteristics and that of channel flow linear stability analysis as used 

earlier by Jeffreys. The analysis leads to an instability of the surface 

for high Froude numbers ( F > 2.0 ), and, interesting enough, the bed 

was concluded to be unstable without use of the artificial phase shitt S. 

The model used by Gradowczyk meets the same objections as all other 

work on this problem along the lines of hydraulics, even when, as 

here, allowance is made for nonstationarities. The basic restriction in 

this kina of theoretical flow modelling i.e. when vertical flow and 

horizontal pressure variations are suppressed, may exclude essential 

parts of an existing instability mechanism. The porosity factor (1-n) in 

the erosion equation seems to be overlooked also by Gradowczyk. 

3.2.6. A study on the lag distance. 

T. Hayashi in 1970 concentrated specifically on analysing the lag 

distance S. He found the limit for antidunes to lie beyond the curve 

F2  = coth kh/kn found by Reynolds. Hayashi's analysis also put signifi-

cance on the role played by gravity. It is interesting to note that the 

same conclusion came out of laboratory tests on sand transport in 

tunnels by D.K. Lysne (1969) at just about the same time. 
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3.2.7. Engelund's shear model. 

A new line of theoretical analysis of the bed stability problem was taken 

up by F. Engelund in 1970 by using the two-dimensional vorticity 

transport equation. 

dw _ 2  
- 6 V w  

where the vorticity is defined by 

Dv au 2w =  - — ax ay 

(3.22) 

(3.23) 

The mean flow and concentration profiles used are shown in the 

following figure. We note that both profiles start with finite values Ub 
and Cb at bed level. The velocity profile is parabolic while the 

concentration varies exponentially. 
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Fig. 3.8.Engelund's basic flow and sediment concentration profiles used 

in vorticity transport stability theory. 

The continuity equation for the suspended sediment is taken as 

dC = way + 072C dt  
(3.24) 
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where the first right-hand term expresses changes due to the falling of 

grains, w being the single grain fall velocity, while the last term is one 

of diffusion. The diffusion coeftient e is taken to be the same here as 

in (3.22) for diffusion of vorticity. And more specifically 6 is assumed 

to be the channel flow eddy viscosity, of constant value througout the 

flow region. 

Engelund further included the bed load by the Meyer-Peter & Muller 

formula. The connection between the total load qt, the bed load qb  and 

the suspended load was formulated by 

h+fll  

qt = qb+p U C dy, (3.25) 

2 

where the integration is over the actual water depth. And the erosion 

equation, or total sediment continuity equation 

—actt + (1-n) Lfl2  = 0 (3.26) 
ax at 

connects the bed perturbation n2  to the flow and sediment transport 

field . 

Boundary conditions at the bed were formulated by requiring continuity 

of the vertical velocity component, a horizontal velocity squared relation 

for bed shear and a relation between the nominal bed sediment 

concentration Cb the bed shear T and the fall velocity w: 

ant Ub 2E2 . v  
at ax (3.27) 

T/Pw = (Ub cr) 21K 2 (3.28) 

and Cb = 13a(T/Pw )
3/2

w
-3 (3.29) 



respectively. K and a are constants. The ration T/pw  is recognised as 
the friction velocity (squared). The bed slip velocity Ub  is set 
proportional to the friction velocity. 

At the free surface the requirements were no vertical sediment flux, no 

normal or shear stress and a kinematic relation of the same type as at 

the bed. 

A linearisation procedure based on small amplitude, harmonic 

perturbations of the flow and sediment variables then leads to an 

Orr-Sommerfeld equation for the perturbed stream function f(y): 

(U-c){f"-(kh)2f}-U"f = {f""-2(kh)2P+(kh)4 f1 c/ikhL (3.30) 

and a second order coupled equation for the perturbed sediment 

concentration 0(y): 

(pH+(w h / ) cp - { ( k h ) 2+ ( U -c)i k h2  / }(I) 

= {i kh2(V/E)dCo /dy}f (3.31) 

In the above formulas h is the unperturbed water depth, U(y) the 

parabolic basic flow velocity profile of which V is the vertical average 

and k is the perturbation wave number. 

The asymptotic boundaries of the instability region, i.e. the limit of 

zero fall velocity, were found to be 

F2  = coth kh/kh (upper) (3.32) 

and F2  = tanh kh/kh (lower) (3.33) 

the first one in agreement with Reynolds' result. The interpretation of 

(3.33) as a stability boundary was a new result of Engelund's analysis. 
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Solving tor complete sediment transport, i.e. both suspended load and 

bed load, Engelund finds stability diagrams of the type shown in fig. 

3.10 for fine sediment (a) and coarser sediment (b). 
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As can be seen, the inclusion of bed load implies a lower range of 

instability as well. The stability region picture also changes strongly 

from the fine to the coarse sediment case, in particular the upper 

boundary of antidunes. 

Engelundis stability model invites some remarks: 

- The use of a bed slip velocity is favourable from the point of 

view of solving the Orr-Sommerfeld equation. However, it 

appears as a rather drastic simplification in a theoretical model 

that otherwise is unusually refined. 

- Applying an eddy diffusivity coefficient constant over flow 

depth, the same coefficient used for diffusion of vorticity and 

sediment concentration, and in magnitude of mean size for pure 

water channel flow, is another rough point in the analysis. 

- The grain fall velocity is known to depend on sediment 

concentration. This effect is not considered in the model. 

- The distinction between a suspended sediment load and a bed 

load may be hard to justify in a refined stability analysis 

which aims at finding the basic mechanics behind specific 

sediment flow phenomena at the bed. 

- The Orr-Sommerfeld equation is formulated for tully developed 

turbulent flow. Thereby the hydrodynamic stability problem is 

decoupled from the bed stability problem. This point might be 

worth wile some discussion. 

- The eigenvalue problem formulated contain other eigenvalues 

not presented or commented on. 

In spite of the above remarks the analysis represents an improved 

insight into the upper range bed behaviour, particularly the effect of 

suspended load ana grain fall velocity. The most prominent of earlier 

hydraulic and potential theory results are retained. The subcritical 

instability found with bed load included is definitely a new result. 

However, as Engelund himself points out: 

"the agreement between the theoretical stability analysis and 

the observations does not necessarily imply that the model is 

in accordance with the actual mechanism of instability." 
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Thus we have to conclude that the upper regime improvement is gained 

at the cost of a considerable increase in analytical complexity, and that 

the lower regime new instability rests on questionable "laws" of flow 

and sediment transport. Then we are still left with a considerable 

uncertainty about the instability mechanism. 

3.2.8. A three-dimensional study. 

The three-dimensional character of upper regime bed waves was studied 

by F. Engelund and J. Fredsoe (1971) using potential theory and a 

nonuniform suspended flow of sediments. Earlier findings of Reynolds 

were essentially confirmed, while the transition curve between upper 

and lower range in Reynolds' analysis was interpreted as a stability 

boundary by Engelund and Fredsoe. 

3.3 More recent work 

3.3.1. J. Fredsoe's work on lower range instability. 

J. Fredsoe (1974) worked along the same lines as Engelund in studying 

further the lower range instability. A new aspect in Fredsoe's analysis 

was the inclusion of the effect of gravity along a sloping bed on the 

sediment transport. It is also interesting to note that Fredsoe, studying 

the effect of the basic flow vorticity, concluded that a constant velocity 

profile gave only a very small change of the stability result when 

compared to a "correct" rotational profile. The following figure shows 

some of Fredsoe's findings. The effect of a gravity component along the 

bed, represented by the parameter II, is seen to be of some importance. 

In a second order development, in terms of the ratio between bed wave 

amplitude and flow depth, Fredsoe finds that dunes develop with a 

steepening downstream face, in accordance with what is seen in reality. 
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component along the bed, parametrised by p in the figure. 

3.3.2. A two-layer shearing interface model. 

T. Shirasuna (1973) worked with two potential flow layers of different 

densities flowing over a sinusoidal sediment bed with different basic 

velocities. He argues for his model saying: 

"A close observation of sand waves shows us that the motion of 

erodible beds is composed of the translation of a sand wave 

whose travelling velocity is far smaller than that of the flow 

above it and the movement of a fluidified thin surface layer 

which flows as a fluid". 

His analysis includes both the free surface and the fixed plane upper 

boundary cases. 
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It might be argued against this type of stability model that the result 

depends on an unknown velocity ratio between the main flow and the 

bed layer, and also an unspecified bed layer porosity (or sediment 

concentration) is involved. The model is thus to some extent 

inconclusive. Shirasuna's potential flow description is further made 

unnecessarily indirect by using two "virtual" depths. Once again Milne-

Thomson is the source. 

Despite these remarks the fact remains, no erosion equation or other 

sediment transport relation being used, that Shirasuna's model seems to 

give stability limits of the same type as given by earlier potential 

theory or even the refined shear analysis in the upper regime. The 

lower regime stability limits found by Shirasuna resemble those of the 

refined shear model and are not even indicated by earlier potential 

theory. The most serious remark to be made about Shirasuna's work is 

that due to a highly condensed presentation his analysis can hardly be 

followed, leading to a bed wave velocity of the same order of magnitude 

as the mean flow velocity in opposition to a reality showing completely 

different orders of magnitude on the two. 

3.3.3. A study with improved turbulence modelling. 

K.J. Richards (1980) also worked along the lines of Engelund, 

considering bed load and lower flow regime only. He generalised the 

approach by including a turbulent basic flow energy equation and a 

varying eddy diffusivity. Richards' findings were two modes of 

instability in the theoretical solution, one interpreted as a dune mode 

and the other as a ripple mode. 

The free surface was allowed only a very small or no deformation in 

Richards' theoretical model. This, of course, limits the validity of the 

results seriously. Another remark may be made on the bed roughness, 

playing an important role in the model. Since the bed roughness is 

dominated by the phenomena under study, this adds a second unsatis-

factory property to Richards' theory. Thus in spite of a strong effort 

in representing flow turbulence, the results are likely to be indicative 

only. 



3.3.4. Modification of dunes in unsteady flow. 

In two interesting papers Fredsoe (1979 and 1981) discusses the 

changes in dune properties due to a sudden change in the water 

discharge, the changes in weakly oscillating flow and the effect of 

suspended sediments under weakly unsteady basic flow conditions. In 

the last paper the transition from dunes to plane bed was considered in 

particular. 

This type of analysis, dealing with the modification of already existing 

dunes, is related to the bed stability problem and gives valuable 

additional knowledge about the dynamic interaction between flows and 

sedimentary beds. However, as they do not address the stability 

problem itself the two contributions by Fredsoe will not be discussed 

further here. 

3.3.5. Related topics. 

Along with and partly interacting with the ongoing research on soft bed 

stability there has been an increasing activity seen in the research 

work on the turbulent structure of pure fluid shearing flow. As early 

as in 1956 H. A. Einstein and Huon Li focused on the periodic growth 

and decay of the bed sublayer. Considerable interest has been paid to 

the "bursting" phenomenon originating in the flow region close to the 

bed. The line of development is represented by the Von Kerman Lecture 

of Mollo-Christensen (1971), and the experimental work of Nychas, 

Hershey and Brodkey (1973), Grass (1974) and others. Jackson (1975) 

and Yalin (1977) attempted to make sediment flow interpretations by use 

of the turbulent shear flow ideas and results. 

Without going into a detailed discussion of this subject we note some 

points of resemblance between shear flow and sedimentary flow pheno-

mena. One is the intermittent character of shear flow boundary layer 

instabilities while intermittency is a typical feature of antidunes. Anot-

her remarkable point is the "ordering principle" appearantly acting both 

in boundary layer instabilities and in the formation of soft bed waves. 
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Sumer and Deigaard (1981) particularly stress the experimental fact that 

the mean periodicity of the quasicyclic events scales with the outer main 

flow variables. Their work was directed towards the suspension 

mechanism by observing the trajectories of single grains. Several 

researchers emphasise the deterministic character of these quasicyclic 

events. Both Nychas et al. and Grass stress the role of a Helmboltz 

type instability forming a "key element in the turbulence generation 

cycle". 

A basic difference between the development of bed waves and the 

development of strong turbulent vortices in shear flow is found on the 

time scale for development of the phenomena. While bed waves develop 

very slowly the shear flow instabilities develop with a rate given by the 

outer flow. The other basic difference is of course that between the 

"ultimate" result of instability i.e. a flow vortex versus a bed wave. 



4. THREE REVIEWS 

4.1. Introductory remarks.  

A complementary type of intormation to the one found in the scientific 

publications surveyed in chapter three, is given by the review papers 

on the same subject. The review papers to be considered are written by 

persons with up to date knowledge of the subject, and who have them-

selves given strong contributions in the actual field of research. The 

following three reviews written on the soft bed stability problem are 

considered for the purpose of giving direct expressions for the "state 

of the art" at the time of writing: How the problem is conceived, and to 

what extent the physical phenomena under study are explained and 

understood. 

4.2. J.F. Kennedy, 1969.  

In characterising the nature of the soft bed phenomena Kennedy says: 

"Although there is no consensus about the details of mechanisms 

responsible for any of these bed forms, some aspects of their 

occurrence appear to be self-evident and common to all of them. 

First, all sedimentary bed forms are the result of an orderly 

pattern of scour and deposition. Their growth occurs by material 

being scoured from trough regions and deposited over the crests; 

this process continues until the forms attain their equilibrium 

amplitude, after which there is no further net deposition on the 

peaks or scour from the bottoms of the troughs. Ripples, dunes, 

and some antidunes move downstream because of a net transport of 

material from the upstream to the downstream faces, and upstream 

motion of antidunes results from the sediment transport rate being 

greater on downstream than on upstream slopes. The flat bed, on 

the other hand, accompanies flow conditions that cause scour from 

the crests and deposition in the troughs of bed forms of any 
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length that might be initiated. It should be clearly borne in mind 

that the pattern of scour and deposition responsible for the growth 

and migration of bed forms is generally only a perturbation 

imposed on the gross downstream transport of material, and not all 

of the transported sediment necessarily participates in the process. 

A second obvious conclusion is that periodic bed torms result from 

an instability phenomenon. A small disturbance on an otherwise 

initially fiat bed, for example, can perturb the longitudinal 

distribution of sediment transport capacity in such a way that 

deposition and scour occur over the crests and troughs, 

respectively, of the initial disturbance, causing it to increase in 

amplitude. The increased amplitude of the disturbance enhances 

the rate of differential scour and deposition, thereby promoting a 

still faster rate of growth of the bed waves, and so on until other 

factors associated with the finite amplitude intervene and fix their 

equilibrium height. The flow disturbance downstream from a 

bed-form train of finite extent induces the formation of additional 

downstream bed waves, thereby causing the length of the train to 

increase. Hence, under some flow conditions a flat bed is unstable 

in that any bed disturbance, whether fortuitous or induced, 

modifies the longitudinal distribution of sediment-transport capacity 

in such a way that the bed deformation grows and propagates. 

under other flow conditions, any bed disturbance influences the 

local transport so as to diminish its own amplitude; whence the 

flat-bed configuration. 

A final observation of sufficient generality that it warrants 

recording here is that there is, at least in a statistical sense, a 

characteristic wavelength and equilibrium amplitude for the bed 

forms accompanying a given flow over a specified granular 

material. Small aeolian ripples and wave-generated ripples are ex-

tremely regular in shape and spacing. Alluvial ripples or dunes 

formed on an artificially flattened bed are initially very regular in 

shape and spacing and are also long-crested, often extending 

across the full width of a laboratory flume. It is only some time 

after initiation of formation, when the bed forms have approached 
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or achieved their equilibrium dimensions, that their shapes become 

somewhat random and short-crested and their arrangement becomes 

disordered." 

And in reviewing the analytical treatments seen at that time Kennedy 

classifies the different approaches in four categories: 

"The first has proceeded from classical mechanics and has sought 

predictions of the conditions for occurrence and characteristics of 

various bed forms by introducing the continuity equation for 

sediment movement, together with assumed or generalized empirical 

relations for the local sediment transport rate, into the equations 

of motion for the fluid. Exner's contribution was the first effort in 

this category. The major stumbling block encountered in this 

approach has been the lack of a concisely formulated, generally 

applicable sediment transport law to couple with the fluid-flow 

equations in order to express the local sediment transport as a 

function of the local boundary geometry and flow properties. 

I he second approach, typified by Liu's analysis, has argued that 

bed forms result from an instability of the Helmholtz type, the 

sediment bed behaving as a fluid of very high viscosity. This 

model is rendered invalid by two obvious considerations, 1) 

sedimentary bed forms are the result of a scour-and-deposition 

process, not a shear deformation of the bed, and 2) a granular 

bed will not deform under the action of pressure distributions 

realizable in ordinary flows. 

A third school has overlooked the details of the responsible 

mechanisms and instead has sought only to obtain from 

experimental data relationships for the occurrence, dimensions, and 

kinematics of bed forms. A good example of the numerous papers 

in this class is that of Shinohara & Tsubaki. This avenue can be 

properly classed with the regime approach utilized in predicting 

the transport properties of alluvial channels on the basis of data 

obtained from other channels which had been judged to be in 

equilibrium. 



The fourth and most recent line of inquiry has sought to describe 

ripples and dunes in terms of their statistical properties, and has 

attempted by means ot spectral analysis to make deductions about 

the processes involved in their formation. 

Among these approaches the first and last appear to hold the most 

promise. An adequate understanding ot the formation and 

properties of bed forms can be expected only from a detailed 

analysis of the kinematics and dynamics of the interaction between 

the flow and the bed. Moreover, various dimensionless renderings 

of experimental data will continue to be of Iimiied value until a 

successful theory yields a logical framework for their presentation 

and interpretation. Description and examination of fully developed 

aqueous ripples and dunes by means of spectral analysis has merit 

because of the innerently random geometry and kinematical 

behavior of these bed forms." 

It is remarkable that Kennedy does not adress the hydraulic way of 

analysis in this connection as a school of its own, or at least as an 

analytical approach distinctly different from the potential theory 

approach. 

The Kelvin-Helmholtz type of approach as proposed by Liu is agreeably 

concluded to be invalid. One should, however, make it clear that the 

arguments, and thereby the conclusion, apply to Liu's model and not to 

the K-H mechanism as such. 

4.3. A.J. Reynolds, 1976.  

Reynolds surveyed the complete work in the western world that had 

been done up to and including 1974 on the soft bed stability problem. 

An interesting cut from his summing up of the current understanding 

reads as follows: 

"The best understood bed features are the least important - 

antidunes. These are of less importance because they are rather 
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uncommon in nature and never appear under a flow lacking a free 

surface. We have a good understanding of the mechanism of 

instability - namely, the finite time required for the suspended 

sediment to adapt to changed conditions - and of the role of the 

free surface, both in providing the overall conditions for 

instability and in introducing an important mechanism of growth 

limitation. The appearance of antidunes corresponds quite well to 

the predictions of the linearized theories (Kennedy 1969) and the 

role of three-dimensional flows is understood in general terms 

(Reynolds 1965, Engelund and Fredsoe 1971). 

A significant feature of antidunes is the adherence of the adjacent 

flow, even for quite large amplitudes, to the sinusoidal pattern 

assumed in the usual stability analyses. Dunes and ripples do not 

have this happy characteristic, the fluid motion downstream of 

each crest being dominated by separating and reattaching flows, in 

general of three-dimensional character. Although a good deal is 

known about these recirculating motions (see, for example, 

Raudkivi 1966 and Allen 1968) it has not been possible to introduce 

this information into the stability analysis in a convincing way. 

Moreover, the irregular character of these bed features is not 

closely approximated by the sinusoidal cross-stream variations 

which have been adopted in analytical models. 

The general nature of the transitions between dunes and antidunes 

is understood (Engelund and Fredsoe, 1974), but detailed 

predictions are not easy, since the stability boundaries are 

critically dependent on the balance between suspended load and 

bed load, among other factors. What is more, the nature of the 

bed in this region is often observed to vary in time. It is widely 

conceded that ripples - dune-like features much smaller than the 

channel dimension - are associated with the boundary layer on the 

perturbed channel bed, that their size is determined by the 

dimensions of the region of rapid velocity variation, and that the 

mechanism of instability presumably involves this variation. 

However, no analysis based on these ideas has been advanced. 

The case of wind ripples has been treated, it is true, but in the 

hydraulic environment the transport of particles is predominantly 

as bed load, unlike the aeolian situation where saltation is of great 

importance. 
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It is a privilege to have seen the subject of stream-bed stability 

develop within a period of little more than a decade. While we may 

hope that the expectation will prove to be incorrect, there is some 

reason to fear that progress will be less rapid in the future. The 

available mathematical techniques have revealed the general 

features of the interaction between flow and bed material. But it is 

apparent that our understanding decreases as the role of bed load 

becomes more dominant, because our insight into the interaction 

between the fluid and the particles on and near the bed is not 

sutticiently penetrating to allow the construction of simple, yet 

realistic models of the processes occurring there." 

The remarkable thing about the "best understood bed features" is that 

they are explained by the action of the suspended load. This indeed 

raises the question about the distinction between bed load and 

suspended load. If the suspended load is allowed to take part in bed 

processes the concept seems to be strained beyond justification. 

It is not obvious that separating and reattaching flow effects should be 

included in a stability analysis, at least not a linear one, since these 

effects are connected with the developed, i.e. finite amplitude, stages 

of the bed features. 

4.4. F. Engelund and J. Fredsoe, 1982.  

In their paper entitled "Sediment Ripples and Dunes" Engelund and 

Fredsoe review the more recent work on the generation of bed wave 

forms. The subject is reviewed in a wider context of sediment transport 

and flow resistance and, in spite of the title, antidunes are also given 

some space. In addition the discussion of antidunes is suffering from a 

slight misconception of the amplitude ratio result in potential theory. 

(see fig. 11.1) 



The work on formation of dunes is reviewed with emphasis on effects 

demonstrated to have influence, in descending order of importance: 

- fluid friction, 

- rate of sediment transport as bed load or suspended load, 

- gravity and inertia of sediment particles, 

- percolation of permeable bed. 

And, since Richards' analysis is the only attempt made towards ex-

plaining the generation of ripples, that topic occupies only a minor part 

of the whole paper (in fact less than a half page). 

The state of the art in 1982 very much seems to confirm Reynolds' 

(1976) pessimism concerning further progress. The situation is stri-

kingly characterised by Engelund's and Fredsiie's introductory state-

ments: 

"Many of the aspects are far from being clarified in a satisfactory 

way, and it has not been possible to avoid controversial issues. In 

such cases the authors have tried to state the situation 

objectively, but without trying to hide their own point of view." 
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5. SOME ESSENTIALS, AND A WORKING HYPOTHESIS. 

5.1. Free surface dynamics.  

Few items in the stability discussion of soft bed wave forms are subject 

to such a degree of general agreement as the significance of the free 

surface in the generating mechanism of dunes and antidunes. Even if 

one should distinguish sharply between an approximately stationary free 

surtace flow interacting with a tully developed undulatory bed on the 

one hand and the dynamics responsible for its generation on the other, 

there seems to be a firm theoretical and experimental basis for the 

significance of the free surface. In tact free surface relations play a 

dominating role in the most successful stability results up to now. And 

quite logically the F - kh plane is the most meaningful interpretation 

space for the theoretical and experimental results. 

5.2. Bed shear.  

Another effect generally agreed to be important is the bed shear. 

However, its role in the instability mechanism becomes indirect by its 

coupling to sediment transport relations. The formulation of a stability 

model with "correct" modeling of shear flow and sediment behaviour at 

the bed is of course the hard part of the problem. 

It is a remarkable fact, however, that the boundary layer concept, 

very successfully applied in other branches of hydrodynamics, has so 

far not been applied in the stability analysis of soft beds. There is one 

place in the literature where a "boundary layer way of thinking" is 

met, and that is in the argumentation (or speculation) about the origin 

of ripples. 

Two further observations should be made here. One is that the 

sediment transport mainly occurs as a bed load i.e. in the bed 

boundary layer, especially in the lower regime. Another observation is 

Engelund's experience that inclusion of a bed load in the stability 

analysis has a strong influence on his stability results. The bed load 

has also formed a basic part of Fredsoe's later work on dunes. 

43 



5.3. Sediment transport.  

It has been emphasized by earlier stability analysts and reviewers that 

the main difficulty met is the lack of "generally valid sediment transport 

laws". This is of course the immediate consequence once we have said 

that the sediment transport is an a priori prosess in our problem. And 

this is again an almost obvious assumption. A couple of remarks, how-

ever, seem appropriate at this stage. 

If we accept that the ultimate purpose of a stability theory is to estab-

lish a rational mechanical model to explain causality in the behaviour of 

the subject system, we also have to accept that use of empirisism in 

such a theory generally is undesirable. Agreeing that this ultimate goal 

may be hard to attain ana that quite often there will be no choice 

between empirisism or not, it remains though that in this sense the 

quality of a stability analysis decreases with the amount of empirisism 

involved. 

It may further be remarked that by basing stability theories for soft 

beds on empiric sediment transport "laws", such theories will hardly be 

suitable for explaining how the sediment transport itself is established. 

And this should be a problem at least as important as the sand wave 

generation problem. What appears intuitively evident, however, is that 

the sediment transport is established through an erosional prosess 

where the flowing water is the agent and the sediment bed is the 

reagent. In bed wave stability theories the erosion equation is used 

only as a tool to deal with the bed wave problem. It appears not self-

evident that one type of erosion is responsible tor the sediment trans-

port while another type generates bed waves. Could it be that a more 

fundamental purely hydrodynamic instability is responsible for both 

types of sediment motion and that erosion and sediment transport then 

is the result when this instability is strong enough while bed waves are 

generated by a weak action of the same instability? 
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5.4. Basic flow. 

The requirement to be met by the basic flow relations used in a rational 

hydrodynamic stability theory is that the fundamental equations of 

motion, state and continuity plus all boundary conditions should be 

satistied. Using empiric or semiempiric relations tor the flow field which 

are approximations to "reality" is then again undesirable but usually 

unavoidable. 

It an instability is involved, basic flow modelling is not a question of 

modelling a flow "reality" but rather of modelling an a priori flow. In 

practical terms this means finding a complete solution to the same 

hydrodynamic boundary value problem as in the stability model but now 

assuming the solution to be stationary. The basic flow solution should 

in general account for the nonlinear character of the basic equations or 

boundary conditions. As is well known, very few such exact solutions 

to hydrodynamic boundary value problems are known. And stability 

analysis is for this reason at present strichtly possible only tor a 

limited number of cases. 

We finally recollect the most important result up to now on basic flow 

modelling in granular bed stability analysis, namely Engelund's and 

Fredsoe's finding that the basic flow velocity gradient had only a very 

small influence on the stability results. 

5.5. A basic feature of sand wave development.  

Before closing this chapter it seems justified to emphasize a feature of 

the sand wave development not very much discussed in earlier stability 

analysis, but pointed out by experimentalists. In particular Raudkivi in 

his (1966) work emphasizes this phenomenon. 

It is a striking observation,when following the lower regime sand wave 

development, that it is a progressive prosess from shorter towards 

longer waves. The final dunes seen in a constant flow experiment have 

a much larger wave length than the ripple like wave forms seen in the 

beginning of the experiment. And there is a more or less gradual 
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transition during the experiment from the one to the other. There is, 

in other words, experimental evidence for the existence of a range of 

unstable wavelengths with a gradual transition from shorter to longer 

waves. The transition is in general slow, as is the propagation velocity 

and growth rate of the sand waves. None of the existing stability 

theories are able to explain this. 

5.6. A hypothesis for an alternative stability model.  

On the background of the preceding discussion it appears rather 

obvious that there is a need for a different way of attack on the 

problem of soft bed stability. However, it is not a matter of evidence 

how such an attack should be made. The following is a set of 

requirements, more or less justified by the preceding discussion, wich 

will be sought implemented in an alternative stability model to be devel-

oped and discussed in the remaining part of this work. 

A. Free surface dynamics should be accounted for, at 

least as far as linear theory can do it. 

B. Flow shear should be modelled in the near-bed 

region. In the remaining part of the main flow field the shear 

is assumed to be of minor importance. 

C. Fluid viscosity and grain roughness are of minor importance to 

the main flow. 

D. Sediment transport as suspended and bed load should be 

roughly modelled by average fluid densities. The purely 

hydrodynamic character of the flow system should instead be 

placed in the center of the discussion. 
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PART II 

THE K - H INSTABILITY 

INCLUDING: 

- A DISCUSSION OF DEPTH EFFECTS, IN PARTICULAR SMALL 

DEPTHS 

- A GENERALISATION OF THE K - H STABILITY MODEL 

- A STABILITY DISCUSSION OF A FREE SURFACE FLOW WITH 
BED SHEAR 



6. INTRODUCTORY REMARKS AND A LOOK BACK ON A "CLASSI-

CAL" STABILITY RESULT. 

6.1. On the subject.  

6.1.1. Remarks on hydrodynamic instability 

The subject under study is one of hydrodynamic stability and instabil-

ity. Even if the whole of Part 1 of this report is on stability models, it 

seems appropriate, before starting a detailed stability analysis in the 

following, to point out some basic aspects of hydrodynamic stability 

analysis in general. As an indicative statement of what the stability 

problem is about we may take the tollowing: 

"A hydrodynamic system is in a state of dynamic instability if it 

from an initial nonoscillatory state of motion by itself generates 

growing oscillatory motion when given a slight disturbance 

(perturbation). If such a perturbation disappears with time the 

system is said to be stable. And finally the system is dynamically 

indifferent or neutral if its perturbed motion goes on with no 

change." 

The initial nonoscillatory motion as well as the total motion after intro-

duction of the perturbation should satisfy the basic principles of dy-

namics and continuity. Further an equation of state and all conditions 

on the boundary of the system have to be satisfied. 

In mathematical terms a perturbation 11 is usually specified as a small 

amplitude wave with a time dependence expressed by 

-i a t 
reti e 

a being a complex angular frequency 

a= ar + 
(Ji (6.1) 
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In linear stability analysis terms of second and higher order in per-

turbed quantities are considered small and disregarded throughout the 

analysis. A solution of the linear stability problem is thus classified as 

follows 

a. > o unstable 

a. = o neutral I 
a. < o stable 

(6.2) 

Inherent in the formulation of a linear stability problem as sketched 

above is that conclusions on the system's stability are valid only with 

respect to small perturbations. And a possibly unstable solution 

describes the behaviour of the system only for a short time interval 

from the onset of the instability. Full account for nonlinear effects is 

necessary to describe further development into an eventual final state 

of motion. 

A second order solution to the mathematical problem of a linear instabil-

ity generally improves somewhat on the linear solution but by no means 

approaching a description of the state of motion for large values of the 

time t. And it is usually gained at the expence of a considerable 

increase in analytical complexity. This being said it should be pointed 

out that there exist many examples of mechanical systems that are 

stable with respect to a small perturbation but unstable when the 

perturbation is larger. In such a case the solution must account for the 

finiteness of the perturbation in order to detect the instability. 

Another point to observe is concerning the formulation of stability 

problems: If the problem is formulated with too strong restrictions one 

may conclude with stability in spite of dealing with a reality which is 

linearly unstable. A trivial example of this is a sliding or rolling mass 

at a saddle-point, being stable with respect to perturbations in one 

particular range of directions while generally unstable. 

Some consequences concerning physical experiments and observations on 

hydrodynamic instabilities may now be seen. Firstly, if the idea is to 

check a stability theory by experiment, it is clear that establishing the 
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correct basic flow conditions may be difficult. One reason for this may 

be that the theoretically applied basic flow meets strong restrictions set 

by the actual laboratory equipment to be used. 

Secondly it appears difficult to do measurements on instabilities, once 

basic flow conditions are established, since they usually exist over a 

range of wave numbers. They may develop simultaneously and possibly 

with high growth rate, leaving a very short time interval from the 

onset available for measurement and comparison with linear theory 

results. 

Thirdly we understand form this that visual observations on flow pro-

cesses in general will be on "fully developed"phenomena i.e. usually 

very far from conditions at the initial stages of the instability. The risk 

for misinterpretations may under such circumstances be high. 

6.1.2. Some examples of hydrodynamic instabilities. 

Perhaps the most well known example of a hydrodynamic instability is 

the transition from laminar to turbulent flow in a viscid fluid. The 

theoretical work by Tollmien, Schlichting and others on the transition to 

turbulence in a boundary layer over a flat plate and the later 

experimental confirmation by Schubauer and Skramstad is reported in 

Betchov and Criminale's book (among others) and stands as one of the 

most successful works in this branch of hydrodynamics. 

Another well known and strongly investigated instability is the genera-

tion of surface waves on water by a blowing wind. An early proposed 

mechanism to explain wind generated waves was the Kelvin - Helmholtz 

instability. However, it soon became clear that it could at best be only 

a part of the explanation since waves were found to be generated for 

only a small fraction of the wind velocity predicted by the K-H 

mechanism. Later work has shown considerable improvements. The most 

important work in this area is presented in LeBlond and Mysal< (1978) 

and in Yih (1980). 



The Kelvin - Helmholtz instability already mentioned dates back to a 

work by Helmholtz in 1868 and one by Lord Kevin in 1871. It is 

recognised as an important basic hydrodynamic instability playing an 

essential role both in large scale geophysical flows and in small scale 

flow phenomena. 

6.2. The classic Kelvin-Helmholtz instability 

6.2.1. Basic model 

The original Kelvin-Helmholtz (K-H) theory deals with the hydrodynamic 

stability of the interface between two shearing, ideal fluid layers of 

infinite extent horizontally and vertically in a gravity field. The situa-

tion is sketched in fig. 6.1, where n is a small amplitude perturbation 

of length A = 27r/k, 

g 
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Fig. 6.1. The classic Kelvin-Helmholtz stability model, a: basic flow, b: 

perturbed flow. 

The fluids are of different densities pi  and p2 , and the velocity shear 

is represented by a Dirac delta-function being infinitely large along the 

interface and zero elsewhere. The formulation of the hydrodynamic 

problem in terms of potentials and linearized boundary conditions as 
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well as the solution of the problem is straight forward and may be 

found in standard textbooks on theoretical hydrodynamics f. ex. Lamb 

(1945) or Yih (1980). 

6.2.2. The stability criterion 

The final dynamic relation for the perturbed interface may be solved 

explicitly with respect to the phase velocity, giving 

c = a/k = (PiUi P2U2)(P1 + P2)-1  

± if(Pi + P2)
-2 

P1P2AU
2 

(Pi + P2)
-1  Apg/k}2 (6.3) 

where AU = U2-U1  and Ap = p2-pi. By use of the definition (6.1) for the 

complex angular frequency, we readily find the relation 

ai(k) = ± {(P1±p2) -2P1P2AU2k2-(P1+p2)-1APgk}2 (6.4) 

for the imaginary part of the growth rate. This shows then that, for a 

perturbation in the given flow system making the formula (6.4) real, 

one solution grows exponentially in time expressing instability, and 

another decays exponentially to zero for large values of the time. The 

stability solution then appears as a complex conjugate pair of angular 

frequencies. Since an unstable solution exists the flow is concluded to 

be unstable. The result (6.4) is shown sketched in fig. 6.2. 

We observe that the growth rate is high for large k-values i.e. for 

short perturbation wave lengths, and in fact no maximum growth rate 

exists. Another observation to be made from the figure is that ai grows 

from zero at k = kc to a finite value over a very short interval of 

k-values, indicating that unstable perturbations of wave number close 

to kc may be observable. The limiting value kc defines the transition 

between unstable and neutral solutions, called the critical wave number. 

It is given by requiring (6.4) to be zero, whereby we get 

kc = (p1p 2 )-1  (pi + P2)  Ap g AU-2 (6.5) 



Fig. 6.2. Growth and decay rate according to the classic K-H solution. 

The corresponding critical wave length then follows as 

= 21Tp1p 2(p1+p2)-1 AU 2(Ap g)-1 (6.6) 

Perturbations of wave length larger than Ac  give real angular fre-

quencies. They are in other words neutral progressive gravity waves at 

the interface for which (6.3) is the dispersion equation. These waves 

may be regarded as indifferent solutions of the stability problem. 

6.2.3 Remarks on the original K-H theory. 

The fluid model used in the K-H theory includes fluid heterogeneity but 

disregards compressional as well as diffusional (thermal or viscous) 

processes. The relevance of such a fluid model is then restricted to 

phenomena that are much slower than compressional ones and at the 

same time much taster than the diffusional phenomena occurring in the 

same flow system. 
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The basic flow modelling is of course an idealisation. Representing flow 

shear by a Dirac 6-function as done in K-H theory is preferable by its 

analytical convenience. Its relevance depends, however, on the a priori 

shear profile in the actual flow case. The 6-function representation may 

be an acceptable approximation to flow zones with high flow shear over 

a limited thickness while neighbouring zones have low shear and are 

wider. 

Besides the restrictions already mentioned the original K-H theory 

assumes infinite flow depths. This restricts in reality the perturbation 

wave length to being much smaller than the existing depths, since the 

assumption is never realised in actual flow systems. The original K-H 

stability result is in this sense a short wavelength result. If this now 

is combined with the basic flow shear modelling, we also see that the 

wavelength has to be larger than the shear zone thickness. On this 

scale the K-H result is a long wave length result. 

//)//////////////////// 

Fig. 6.3. Two layered flow with finite depths and with transitional 

shear zone of thickness hs perturbed by a wave of length X. 



If h1  and h2  are the depths of an upper and a lower fluid layer 

respectively and hs  is the shear layer thickness, the requirement on 

the original K-H result is thus that A should satisfy the relation 

hs A << min (h1, h2 ) (6.7) 

a requirement that generally may be hard to satisfy. The preceding 

figure illustrates the situation under consideration. Shear zones at the 

upper and lower boundaries are in this connection disregarded. 

In conclusion the original K-H stability result is valid only under very 

strong restrictions. It will consequently be of use in only a very limited 

number of flow cases. These restrictions are not always, but should 

indeed be, considered when attempting applications of it. 

On the other hand it should be emphasized that the K-H instability 

mechanism still is an important one and that the critisism above is 

directed towards the mathematical restrictions imposed on it. One re-

striction is entirely unnecessary namely that the wave lengths should be 

short compared to flow depths. Generalising the K-H result on this 

point is a trivality from a mathematical point of view. From the applica-

tions point of view the inclusion of finite depths and thereby long wave 

instabilities is essential. The finite depth K-H result is therefore 

considered in particular in the following. 
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7. THE K-H INSTABILITY IN FINITE AND SMALL DEPTH SYSTEMS. 

7.1. Finite depth case. 

7.1.1. Stability criterion. 

The development of a K-H criterion for finite depth of the fluid layers 

is straight forward. The solution procedure will be omitted since it is 

similar to the one for infinite depths and may be found in the same text 

books as referred to in chapter 6. The only difference between the two 

cases is the kinematic condition of no vertical motion at bed and top 

level. The flow system is then modelled as shown in fig. 7.1. 

III III 4/4 /// 47/ //7 y = h 1 

— y =0 

P2 U 2 

y - - h 2 

Fig. 7.1. K-H stability model for finite fluid depths. 

The dynamic condition at the interface, as in the infinite depth case, 

requires continuous pressure, which upon application of linearized 

interface equations gives the new depth-modified dispersion or stability 

equation 
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Pi (c-U 1) 2/tanh kh 1  + p2 (c-U 2) 2/tanh kh 2  = AID g/k (7.1 ) 



Equation (7.1) shows that the finite depth requirement affects the 

inertia terms only. 

From now on we use the following short notation for the hyperbolic 

functions 

sh E sinh 

ch E cosh 

th E tanh 

cth cotanh 

The phase velocity solution is formally identical to (6.3) 

c = cr + ic. 

= (P *U 1 + Pz*U0( Pi* P2*) -1  

± i {Pi*Pz* (Pi*+PZ)
-2 

 AU
2 
 - AP( Pi*+P2* )

-1 
 g/k 12 (7.2) 

where we for compactness have written 

p1*  = pi/th kh 1, p2* = p2/th kh2 (7.3) 

The critical wave length formula is now 

Ac = 27rp1p 2( pith kch 2  + p2th kch1)-1  ( Apg)-1 AU 2 (7.4) 

Equation (7.4) is transcendental and not solvable in terms of an explicit 

formula for Ac or kc . On the other hand there should be no problem in 

solving it numerically. However, the general nature of the solution is 

easily outlined analytically and is shown in the following. First we may 

note that it is symmetric in the sense that subscripts 1 and 2 may be 

interchanged, except, of course, in Ap. Formula (7.4) may be rewritten 
as 

AU 2/gh2  = (p1p 2)-1( pith kch 2  + p2th kch 1) AP/kch2 
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from which two special cases are easily derived: 

kchi  << 1, h1/h2  << 1: 

AU 2/gh 2  = pp' pZ 
 1 th kch2/kch (7.6) 

and 

kch >> 1, h 1/ h2  >> 1: 

AU 2/gh2  = Ap(pikch2)-1  + App2 1  th kch2/kchz (7.7) 

The following figure is an illustration of relations (7.5 - 7.7). Because 

of the mentioned formal symmetry a similar figure exists with subscripts 

interchanged. 

eq (6.5) 

A U2  
gh 2 eq.( 7.7)  

hi/h2» 1 

h l/h2 =0(1) 

hi/ h2  «1 

k h2 

Fig. 7.2. Finite depth K-H stability boundaries. 

AP AP 
P2 p1 h2 

 

Ap 

 

 

P2 

 



From this we see that an important effect of finite depth on the K-H 

instability is a long - wave limit on the shearing flow conditions above 

which all waves are unstable. We also note that the infinite depth K-H 

result cannot be interpreted in this type of diagram. 

7.1.2. Finite depth effect on instability region. 

By noting that the tanh (kh) function for all positive real arguments 

has values in the interval <0,1>, the critical wave number kc , implicitly 

given by equation (7.5), is easily seen to be less than kc  for the 

infinite depth case given by (6.5). The corresponding critical wave 

length is consequently larger than in the infinite depth case: 

A c(hi,h2 ) > Ac(°.,°3) (7.8) 

Finite depths destabilises the interface according to the K-H criterion in 

the sense that the interval of unstable wave lengths is increased 

compared to the infinite depth case. And in general, since tanh is a 

monotonic function, the interface between two ideal fluids is destabilised 

in this sense when the depths are reduced. 

7.1.3. Finite depth effect on growth rate. 

The shape of the function ai(k;hi,h2 ) is very much the same as that of 

0.(k; c,c) shown in fig. 6.2. Since we get from (7.2) that 

cr.(k;111,h2) {P1*P2*AU2k2(P1*-/-P2*) 

- Apgk(p1*-Fp2* )
-1 (7.9) 

it is clear that cri  starts with vertical tangent at k = kc . The asymptotic 

behaviour for large values of k is the same as in the infinite depth 

case. Thus the general behaviour of the function Gi(k;hi,h2 ) may be 
sketched as follows 
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kc Ch (00
,  0.0 

Fig. 7.3. Unstable wave growth rate according to the finite depth K-H 

model. 

In the following we investigate in more detail the finite depth effects on 

the growth rate of unstable waves. First (7.9) is rewritten as 

2
(k;h1,h2) = P1*P2*(P1*+P2* )

-2  AU 2 k 2  

* * -1 
(P1 +P2 ) APgk (7.10) 

The case hi=n 2Fh gives 

a (2  k;h,h) = PiP2 (P1 + P2)
-2 AU LI< L  

-(P1 + P2)-1  Apgk th kh 

= 6. 2(1rk, 
• 
• co

, 
 CO) + (P1+P2)

-1 Apgk (1 - th kh) (7.11) 

And we see that even the limiting case of kh « 1, under the 

restriction of same depth in the two layers, gives the finite and slightly 

increased growth rate 
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o-. 2(k;h,h) + o  2  (k;03,00) + Pi + P2)
-1  Apgk (7.12) 

kh << 1 

On the other hand it is easily shown that the growth rate goes to zero 

if one of the layers is allowed to approach zero depth while the other 

depth is kept finite: 

a1 2(k;h1,h2) = (p1*AU 2k 2-Apgk)•kh 2/p2  + H.O.T. (7.13) 

kh2  << 1 

The growth rate of an unstable wave in a finite depth system then may 

be larger than, equal to or smaller than that for the infinite depth 

system. 

A more complete investigation of this point is done by independent 

variation of the two depths. This is most easily performed by deriva-

tion: 

9a. = - p1Apk2 {p2AU2k + (p 1+p 2 )9 th kh}. 
1 1-11=h2=h 

•{(Pi+P2)3 ch2kh th kh}-1 (7.14) 

and 

Da.  2 

ah 2 lh  1=h  2=h  

= p2Apkz{p1AU 2k - (pi+p2)g th kh}. 

• {(pi+P2)' ch2kh th kh} 1 (7.15) 

An upper layer depth increment is seen to give a reduced growth rate 

for all unstable waves. On the other hand a lower layer depth incre-

ment gives an increased, unchanged or reduced growth rate according 

to the condition 

/ >  
AU 2/ — P 2) P1 - 1  th kn/kh (7.16) 



While the conclusion based on (7.11) was limited to the case hi=h 2=h, 
the above results are valid tor any pair (h1, h2) of depths. And we 

note in particular that the lower layer only may give rise to a growth 

rate increment by altering the depth. 

7.1.4. Propagation velocity of unstable waves. 

The velocity of propagation of unstable waves is given by formula (7.2) 

as 

cr(k;hi,h2) = Pi*U + P2M-J ( Pi*  + P2* )
-1 (7.17) 

An immediate consequence of (7.17) is that the propagation rate in an 

equal-depths system is given by 

cr(k;h,h)= (PlUi + P2U 2)( + P2)
-1 

 

= cr'co) = const. (7.18) 

This result indicates that a depth difference between the layers is more 

determining for the propagation rate than the depths themselves. 

According to (7.18) cr  does not vary with depth at all as long as the 

two depths are kept the same, nor does in this case cr  vary with wave 

length. 

Further insight into the influence on cr  of depth variations is gained 

by establishing the derivatives as follows 

Bc _ p1*p2* (P1* P2"
*

)
-2 AU (In th kh1)' 

akfl 

DC - pi* p z* ( + p2*)-2AU (In th kh2)' 
Dkflg_ 

(7.19) 

(7.20) 

where the dash signifies derivation. While cr  is depending on the basic 

velocities the depth derivatives are seen to depend on the velocity 
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shear. Another interesting point is this: While an upper layer depth 

increment adds to the propagation velocity a depth increment in the 

lower layer acts oppositely. And in particular we get 
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r + r 
kh 1  2kn 2  

= 0 
h 1=h 2  

(7.21) 

confirming (7.18). 

The formal limit of disappearing depth of one layer gives 

cr(1-11,0) = U 2, cr(0, h2) = U1 (7.22) 

The limiting case is certainly meaningless and from a physical point of 

view without any interest. However, conceiving (7.22) as an 

approximative result for small but not disappearing depths, we have a 

result that seems much more interesting 

C
r(hi, Ah2) = U 2  + AU 2  and cr(Ah 1,h2) = U 1  + AU 1 (7.22a) 

where AU 2  and AU 1  are small compared to U 2  or U1. This will be 

investigated further in the following. First we sum up the finite depth 

results. 

/.1.5. Summary of finite depth results. 

Un the basis of the preceding analysis we may sum up the main results 

as follows: 

- The F' - kh plane is the natural plane for interpretation of the 

one mode finite depth K-H stability. 

- Finite layer depths affect only the inertia part of the interface 

dynamics. 

- The critical wave length is increased compared to the infinite 

depth case, i.e. the region of unstable wave lengths is larger 

in a finite depth than in an infinite depth system. 
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- In a finite depth system all wave lengths are unstable for 

sufficiently strong shear AU. 

- The growth rate of an unstable wave close to the critical one 

has finite value and increases monotonically with kh. No maxi-

mum growth rate exists. 

- The growth rate of an unstable wave in a finite depth system 

may be larger than, equal to or smaller than that of an infinite 

depth system. 

- The propagation velocity of an unstable wave in an 

equal-depths system is unaffected by the depth. In a 

one-thin-layer-system the propagation velocity approaches the 

flow velocity of the thin layer. 

7.2. K-H instability in a thin sublayer system.  

7.2.1. Why thin bed layers? 

Having considered so far the infinite depth and the finite depth cases 

we now turn to systems where the lower layer thickness is very small. 

The reason for doing this lies in the fact that natural systems do have 

bed layers set up by viscosity, gravity or other effects. The modelling 

done here allows the bed layer to be heavier than the fluid above to 

account for internal gravity effects. 

The model thus established will be purely hydrodynamical in spite of 

the fact that we have sedimentary flows in mind. This point will be 

discussed further in the later parts of this report. The hydrodynamic 

analysis will be continued along the lines of K-H theory, this being the 

main subject of the present part. Thus no use of traditional viscous or 

turbulent boundary layer theory will be made. 

The limiting case of very small lower layer depth was considered at the 

end of the last section. This is also the starting point for our thin bed 

layer analysis. 



7.2.2. Growth rate in thin bed layer system. 

The growth rate formula for a finite depth system was established by 

(7.10), where from one should recall the definitions (7.3). Divided 

through by k2  we have 

.0
1 =2 P1*P2* (P1*  + P2*)

-2
AU

2 -
(Pi*P2* )

-1  APg/k (7.23) 

Assuming now that kh2 is very small i.e. 

kh2 << 1 (7.24) 

while the upper layer depth is kept finite, we may develop (7.23) in 

series of ascending powers of kh2 as 

Ci =2 P1P2
-1 

(AU
2
/th khi - pi-1APg/k)kh2 + 01(k112)2 } (7.25) 

Generally we then have 

1 
Oc.1  = {(kh2)2 } 

However, 7.25 shows that when the relation 

F'2  = 1U2 /ghi = AP p1-1  th khi/khi 

is satisfied, i.e. the first parenthesis in (7.25) is zero, then 

Oc.1  = {kh2 } 

(7.26) 

(7.27) 

(7.28) 

This shows that unstable waves on an interface close to a bed, i.e. 
1 

(7.24) satisfied, grow slowly, and proportionally to (kh2)2 . Again this 

means that if h2  is fixed, the shorter waves in general grow faster 

than the longer waves. 
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7.2.3. Stability criterion. 

Equation (7.25) also serves as a first order stability criterion since the 

first order term generally dominates the expansion. And, as pointed out 

already, the paranthesis associated with kh2 may become zero. Relation 

(7.27) then in fact is, to first order, the stability criterion and may as 

such be written 

F'2  = AU2 /ghi = APPI-lth kchi/kchi (7.29) 

kc now being the critical wave number. With a view towards later 

discussion we have introduced the F' symbol for the ratio between the 

shear velocity AU and the long wave velocity of the upper layer (ighi). 

It should be noted that hi is introduced as a dummy parameter in the 

denominator of both (7.27) and (7.29). The reason is again our view 

towards a description and interpretation of results in terms of main flow 

variables and the ordinary hydraulic Froude - number. 

Relation (7.29) now is seen, by inspecting (7.25), to separate the 

region in the F'-khi plane where ci2  is positive, and perturbations 

consequently unstable, from the region where ci2  is negative and only 

neutral perturbations exist. Figure 7A illustrates this. 

F' 2  

UNSTABLE 
p1 

NEUTRAL 

khi  

Fig. 7.4. One mode first order K-H stability criterion for a thin sub-

layer system. 

Op 
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It is important to note that the criterion (7.29) in general defines a 

finite critical wave length. For a shear velocity of high enough strength 

waves of all lengths are still unstable. 

It should also be remarked that assumption (7.24) - the "thinness as-

sumption" - holds only for waves that are long enough when the depth 

h2  is given as the case will be in a real system. And when interpreting 

results here and in the following based on (7.24) - this limitation 

should be kept in mind. When we express the finiteness of the upper 

layer by saying 

kh1  = (7.30) 

this has the consequence that 

h2  << h1 (7.31) 

7.2.4. Propagation of unstable waves on a thin sublayer. 

The starting point for our development of the propagation velocity of 

unstable thin sublayer waves is relation (7.17) 

, 
c (hi,h2) = (P1 *U1 P2*U2)(P1* P2

,
")

-1 
 

= (PI*Ulth kh2  + P2U2)(Wth kh2  + 132)-1  (7.32) 

When we develop th kh2  as before we get 

cr  (h1, h2  <K h1) = U2 + p41i21.AUkh2 + Of(kh2) 21 (7.33) 

or the alternative statement: 

cr - U2 = Ofkh21 (7.34) 

The present result (7.33) is a more precise statement of the comment to 

(7.22) where we considered the zero limit of the lower layer depth. 
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It is interesting now to go back to the basic interface equation (7.1) 

and apply the results (7.25) and (7.34) in a development of (7.1) for a 

thin sublayer interface. We get after straight forward development the 

relation 

Pi* AU z  = Apg/k + O{kh 2 } (7.35) 

which is exactly the stability limit (7.29) and illustrated in fig 7.4. 

7.2.5. The homogeneous fluid limit. 

We may go to the limit pp-'0 in both the infinite, the finite and the small 

sublayer depth cases considered. Such a limiting process is from a 

mathematical point of view a trivial matter, so we simply state the most 

important findings: 

- Neutral or indifferent waves no longer exist, irrespective of 

depths being infinite, finite or small. 

- All wave lengths are unstable tor AU # 0 

- The growth rate is given by 

0- 1   . = ± (th kb, th kh2) 2  (th kh +th kh2)-1 kpU (7.36) 

any depth case being included. In particular 

Qi  (k;h,h) = ± z kpU (7.37) 

- The propagation velocity of unstable waves for a general depth 

system becomes 

cr  = (U 2th kh1  + U ith kh2)(th kh1  + th kh 2)-1 (7.38) 

approaching 

cr = U 2 + 0 {kh 2 } (7.39) 
for 

kh2  << 1 



68 

It may be remarked that an interpretation of the stability criterion in 

the F1  - khi  diagram of fig. 7.4 still may be done as we go to the 

limit Ap-3-0 . The stability boundary itself eq. (7.29) degenerates into the 

horizontal axis, which means that the whole F' - kV)l  quadrant is a 

region of instability. We therefore conclude that the main flow F' - khi  

plane is suitable also for interpretation of the weak instabilities of the 

shear interface close to the bed. 

7.2.6. Summary of thin sublayer results. 

The main results found for the thin sublayer may be summarised as 

follows 

- The thin sublayer model leads to the existence of a weak K-H 

instability which is suitably interpreted in terms of the main 

flow variables, i.e. in a F' - 'chi  diagram. 

- The stability criterion is expressed by the relation 

F12. = AU2 /ghl  = App l -1  th khl /kh l  

which for a finite Froude number F' generally determines a 

finite value of the critical wave length Ac  = 27r/kc. 

- The growth rate of unstable waves is small and of order given 

by 

c. = 0{(kh2 ) 2 } 

- The propagation velocity of unstable waves approaches the flow 

velocity close to the bed 

C r - U2  = O{kh2} 

7.3. The thin superlayer system. Remarks.  

The results gained in the preceding sections for a thin sublayer all 

have their counterpart in a thin upper layer (or superlayer) system. 
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This is obvious from the symmetry pointed out for finite depth systems, 

(see equations (7.2) - (7.5) and comment to fig. 7.2). Results for the 

thin superlayer are therefore not stated explicitely as they are deduci-

ble directly from the given sublayer results by replacing subscript 2 by 

subscript 1. An immediate consequence is that propagation velocity and 

growth rate of unstable waves are both small, to the orders given by 

cr - U1  = 0{kh I} 

c. = 0{(kh 0 2  

The dimensionless depth kh 1 of the superlayer is here assumed much 

smaller than one. And the critical wave length will again generally be 

finite. 

The preceding discussion of the K-H mechanism in a system with one 

finite depth and one small depth fluid layer of course meets the 

objection that such a system is hardly met in practice. We always have 

to do with more than one dynamic surface, be it internal shear surfaces 

or free surfaces without shear but with strong gravity effects. In order 

to meet this serious objection to the application of K-H theory to real 

systems the K-H model has to be generalised to cope with multidegree 

of freedom systems. This is the subject of the following chapter. 



Ui --> Yi Pi 

X 

kx -o-t) j =aje Pi -1 Ui-i Yi-i  

hi 

8. A GENERALISED DISCRETE INVISCID STABILITY MODEL FOR 

SHEARING FLOWS. 

8.1. Theoretical model. 

We consider an inviscid two-dimensional hydrodynamic system consisting 

of a high number of incompressible, homogeneous fluid layers of finite 

thickness and different densities in a graviLational field. 
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Fig. 8.1. Perturbed system of inviscied shearing fluid layers. Definition 

sketch. 

The system is given a perturbation as shown in fig. 8.1. The flow 

within each layer is considered as potential flow. We define convention-

ally the velocity components in layer j by 

-v. ,j  = 4./ ax., i = 1,2 

j = 1 ,2, - (8.1) 

Here q  is the velocity potential in the j - th layer and xi  is any of the 

coordinates x or y. 



We may now formulate the stability problem as follows: 

The total flow field is taken as the sum of the basic flow and a per- 

turbed flow 

• = (I) • + 1 1 1 
(8.2) 

where the meaning of the symbols is obvious. For the basic flow we 

define 

1 = U.x (8.3) 

And for the perturbed flow 

1 = C.,1 
11 

sh k(y.-h.) + Cj ,2 11 
ch k(y.-h.) (8.4) 

C.
1'1 Cj'2 and are integration constants to be determined by the 

kinematic conditions for layer j. In linearized form they appear as 

and 

an. rti + u. an. = - DO".
1
, y. = h. 

)1  /.  

an.+ U. 31-1. = — a0' y. = o 
V+1 a7<1+1 yy.r 

(8.5) 

(8.6) 

After straight forward development we find 

C.1.1 = i a .(c-U.) (8.7) 
1 1 

and 

Cj,2 t 
1 1

= (a./ h kh. - a.
+1 

 /sh kh.)(c-U.) (8.8) 

For layer j - 1 the formulation and reasoning is entirely similar, and we 

find a corresponding pair of integration constants for this layer de-

termined as 

and 

= i a j j (c-U ) Cj-1,1 -1 -1 

C. = i(a. /th kh. - a/sh khj )(c-Uj- ) -1,2 1-1 1-1 j -1 1  

(8.9) 

(8.10) 
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The amplitudes are generally allowed to be complex - valued by defining 

a
1 
 = la

1 
 d e iej (8.11) 

The velocity fields of layers j and j-1 are now completely determined by 

the basic flows and the perturbed flow potentials 

= i(c-U.){a. sh k(y.-h.) + 
1 1 1 1 

and 
( ca./sh kh

1  
. - 

a1.+1 
 /sh kh.) h k(y.-h.) }ei(kx-at) 

1 1 
(8.12) 

(1)." = i(c-U. )(a. sh k(y. -h. ) + 
1-1 1-1 1-1 1-1 1-1  

(a.
1-1 1 

/sh kh.-1 
1 

- a./ sh kh.
1-1 

 ) . 

.ch k(Y1_1-hj-1)}e i(kx-o
-t) (8.13) 

We may now enter the dynamic condition at interface j requiring conti-

nuity of pressure across the interface, which in linearized form reads 

Prl { 9-11-1 + Lij-1 2i1-1 - g 
at ax 

= pi{ 10 Uj - g y = n. (8.14) 

After substitution of potentials and some rearrangement of terms we 

arrive at the generalised interface condition 

p. (1/th kh. - a. ./sh kh. )(c - U. ) 2  
1-1 1-1 1-1  ,1 1-1 1-1  

1 
1 

1 1+  P •( /th kh. - 
a.+1,1  

./sh kh .)(c - U.)2 (8.15) 

= (p.j  - p. ) g/k, j = 1,2, - 



The symbol a
i_./ is a short notation for the amplitude ratio a. 

1- 1 
and correspondingly for aj+1 And since mostly the phase difference 

and not the phases themselves is the information of interest in this 

context we may also introduce the notation 0i+.
1,1 

for the phase 

difference 8+1-8, and similarly for other phase differences. 

8.2. Some comments on the generalised condition.  

8.2.1. Decoupling 

The essential result of the generalisation is the presence of the two 

coupling terms containing the amplitude ratios and a depth dependence. 

The system may be decoupled in two ways, 

- by letting the depths of the layers be large compared to the 

perturbation wavelength, or 

- by requiring no deformation of the neighbouring faces (i.e. 

plane rigid walls). 

In the decoupled cases we are back to the classical K-H results, for 

infinite or finite depths, respectively. 

8.2.2. Coupled system without basic flow. 

A check on the coupling terms is achieved by reducing the model to one 

without stability aspects i.e. by setting the shearing flow out of dis- 

cussion (U. = U. = 0). 1-1 
Eq. (8.15) should then be the general eigenvalue equation for free 

oscillation in an n-layer system. Rewriting it as a homogeneous ampli- 

tude equation, we have 

- p. 
1 
 kc2 /sh kh. .a. 

t 
1 

+ 
P1-1 

h  kh.-1  + p./th kh.)kc2  - (p.-p.1-1 )g}a. 
1 1 1 
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J 
c-P .k 2 /sh kh. . a. 1  = 0 (8.16) 

j = 1,2, - - n-1 

The eigenvalues are determined by the determinantal equation 

Al -B2 0 

-B2 A2 -B3 

-E33 A3 -B4  = 0 (8.17) 

0 -Bn-1 An-1 

where 

1 1 
= (p.-1

1 
/th kh.-1 

1 
+ pith kh•)< -(p•-p•

-1 
 )g 

B
J
. = pj-1 kc2 /sh khi_i  , j = 1 ,2, - - n - 1 

(8.18) 

(8.19) 

and this is exactly the n-layer eigenvalue equation of R.R. Webb as 

reported by A.G. Greenhill and later applied in theoretical conside-

rations on the critical Froude number in layered fluids. 

8.2.3. Flow over sinusoidal bed. 

A third case is included for the purpose of checking and because of its 

relation to later discussion. The case is another demonstration of the 

generality of equation (8.15). We apply it to the interface of the flow 

system sketched in fig. 8.2, and get the relation 



\ \ \ \.\ \ \ \ \ \ ' \ \ \ \ \ \ \  

, h. 

Pi h1 ,U1 

Fig. 8.2. Two layer flow over a sinusoidal bed. Definition sketch. 

Pi (1/th kh1  - a21/sh kh1)U12  = Apg/k (8.20) 

having assumed stationary and stable flow (c E o). The model is re-

stricted to cases of no relative motion between the upper layer and the 

bed perturbation. Relation (8.20) may be rearranged in the following 

way 

a21 = (F2  - APP1-1 th kh1/kh1)F
2 
 ch kh1 (8.20a) 

showing that the interface is in phase with the bed when the 

paranthesis is positive, or when 

F2  > th kh1/kh1 (8.21) 

In the long wave limit (8.20a) gives that a21  is positive if F2  is larger 

than Ap/pi. We may also note that the only influence on the flow by the 

upper layer is through isp. The free surface version of (8.20a) is 

obtained by simply setting p0  E 0, and may be written 

a 21  = (F2  - th kh1/kh1)F-2  ch kh1 (8.22) 
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where the Froude number as before is defined by F 2  = U12/gh1. Formula 

(8.22) is readily seen to be equivalent to the relation given by Lamb 

(art. 246). The version (8.22) has a form more suitable for comparison 

with other parts of this work. 

It is interesting to note that the relation 

F 2  = th kh1/kh1 (8.23) 

again plays a central role. We have stated the problem - as in other 

relevant texts, f.ex. Lamb - as one of stationary and stable flow. 

Formula (8.23) comes out as a relation separating in-phase flow from 

(180°) out-of-phase flows, fig.8.3. 

IN PHASE REGION 

ANTIPHASE REGION 

1 1 

10 2.0 30 kh 4.0 

Fig. 8.3. Phase of amplitude ratio for free surface flow over sinusoidal 

bed. 

One might want to include a purely imaginary frequency in this problem 

to discuss the interface stability. However, this would give us a stabil-

ity relation of the type 

f (kh;F,a 2i) (8.24) 

which does not serve satisfactorily as a stability result containing the 

undetermined amplitude ratio. It is thus clear that in formulating a 

stability problem properly by the present model, fixed boundaries 

should not be perturbed. A further remark about relation (8.23) should 

be made in view of the amplitude tormula (8.22). Besides being a phase 

2.0 
F 

1.0 

0 
0 
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separating relation it gives the wave length for a given flow (i.e. given 

F) for which the amplitude ratio (8.22) is zero. If the amplitude ratio is 

inversed, formula (8.23) is turned into a singularity relation. 

8.2.4. Flow under a fixed sinusoidal boundary. 

A final example is included as additional background for later discus-

sion. 

hi U i 

p2  , h2  

Fig. 8.4. Flow under sinusoidal boundary. Definition sketch. 

The flow model is sketched in fig. 8.4. We assume, as in the previous 

example, that the flow is stationary and stable and that there is no 

motion of the lower fluid relative to the upper boundary perturbation. 

Equation (8.15) now gives 

p 1(1/th kh1  - a 12/sh kh1)U 12  = ppg/k (8.25) 

for the interface. Solving for the amplitude ratio we get 

a 12 = (F2  - '6PP1
-1  th kh i/kh OF-2 ch kh1 (8.2b) 

this relation is of the same type as (8.20a) or (8.22) the main dif-

ference being that the amplitude ratio on the left is inversed. 



8.2.5. Final remarks on potential theory results for sinusoidal 

boundaries. 

The way the hydrodynamic problems are formulated above leads to 

serious drawbacks of the results. One has been pointed out already: 

the inconclusiveness of the interfacial condition as to stability or 

instability. 

In the case of a stationary single layer free surface flow over a 

sinusoidal bed it seems justified to ask whether such a flow really 

exists or not. Yih (1976) finds that the free surface becomes unstable 

by resonant interaction between different free surface modes. 

However, Yih's model as well as the potential theory formulas disregard 

the shearing effects at the fixed boundaries, and their possible interac-

tion with the free surface, which will be present in real fluids. It 

therefore seems to be an open question how to interprete relations like 

the ones shown in the two preceding subsections. A closer examination 

of shear effects at the bed and free surface interaction effects will be 

presented later in this report. 

8.3. A further aspect of the generalised condition.  

The generalised dynamic interfacial condition (8.15) may be written 

shortly 

a.
1-1 1 

(c-U.
-1  )

2 +a.(c-U.) 2 =6.P.g/k (8.27) 
1 1  

where the meaning of a. and a. is obvious. As a quadratic equation in 
1 j-1 

the phase velocity it has the solution 

c = U ± i{a. 1a. U2  - (ai_1+adApig/k12 /(ai_1-Fai) 1- 1 
(8.28) 

where U = (a.
1-1 1 

U.-1 + a. U.)/(a.
-1   

+ as ). The stability boundary is 
1 1 1 

then given by 
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pU2 k/Apig = (ai-1 ell)  

c J ={Pj-1 sh kh.( h kh.-1 J - a.-14  .) 

+ p.sh kh.
J -1 1 , (ch kh. - a. .)} . 

. fp. p.(ch kh. - a. .) (ch kh. - a. .)} 1-  
J J-1 J J-1 -1 ,J J J+1 ,J (8.29) 

This relation is of course not useful as a stability criterion as it de-

pends on three unknown amplitudes. The most interesting aspect of 

(8.29) appears to be the strong influence on the stability boundary by 

the ratio between neighbouring amplitudes versus the hyperbolic cosine 

to the dimensionless layer thickness between them. The relations 

a
j_i = ch khj_i (8.30) 

aj+1 = ch khj (8.31) 

in fact represent singular conditions in the above formula for the 

stability boundary. 
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9. THE FREE SURFACE - BED LAYER SYSTEM. 

9.1. Specification of the system. 

The hydrodynamic system to be considered initially in this chapter is 

sketched below, fig. 9.1. 

80 

j =1 

j = 2 
h1  

h2 
P2 , u 2 

Fig. 9.1. Two-layer free surface system. Definition sketch. 

In the terminology of chapter seven we are dealing with a three layer 

model with zero density of the upper layer, po  = 0. The system, is 

perturbed as shown, allowing generally a phase shift e to exist 

between the two surfaces. This phase will in turn be determined by the 

system's mechanical conditions. 

9.2. Stability condition.  

We consider first the most general situation with finite depth of both 

layers. By use of (8.15) on the free surface and in turn on the inter-

face, we get the two equations 
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(1/th khi - a21/sh khi)(c - Ui)2  = g/k (9.1) 

()With khi - a12/sh khi)(c - Ui)2  

+ P2 (c - U2)2 /th kh2 = AP g/k (9.2) 

The eigenvalues of the system are now determined and will be discussed 

in the following. 

9.2. The eigenvalue equation.  

The system (9.1) - (9.2) is rewritten in a more traditional way for 

eigenvalue analysis 

{(c - l.11)/th khi - -{(c - U1)2 /sh khi} a2 = 0 (9.3) 

{-Pi(c-U1)2 /sh + {P1*(c-U1)2  + PL*(c-U2)2  

- APg/k}a2 = 0 (9.4) 

The determinant of this homogeneous set of algebraic equations must be 

zero in order to have non-zero amplitude solutions. The determinantal 

equation is 

{pi (c-1.11)2  - Pig/k}{P1*(c-UO2 P2*(c-U2)2  - APg/k} 

= P1*2 (C-U1)4 /ch2 khi (9.5) 

The term responsible for coupling in the system is the one on the right 

hand side of (9.5) and is seen to diminish rapidly for large values of 

the argument khi. 
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One conclusion is immediately reached on inspection of (9.5): Since all 

variables, except possibly c, are real, an identical equation exists for c 

- the complex conjugate of c. That is 

{p1*(E-U1) 2  - pi  g/k}{pi* (E-U1)2  + p2*(Z-U2 )2  - Ppg/k} 

= pl 2 (c--111) 14 / ch2  khi (9.6) 

So the conclusion is: 

To every eigenvalue solution there corresponds another eigen-

value being the complex conjugate of the first. This result is 

trivially valid for purely real eigenvalues. 

In the decoupled case khi  >> 1 we are back to the two prototype one 

degree of freedom cases: the classical finite depth K-H internally, and 

the modified dispersion equation for neutral gravity waves on the free 

surface. This means that the decoupled system has either 4 real eigen-

values or two real and two complex conjugate eigenvalues. Generally we 

will then have one unstable wave in the decoupled case for a given flow 

system. Esch, as reported by Le Blond and Mysak, tound that this was 

the case in the coupled system as well,with a small density difference, 

the Boussinesq approximation being applied. There is no reason to 

expect this to be different in our system where the Boussinesq 

approximation is not necessary. 

9.3. Transformed stability condition.  

In a coordinate system following the lower layer the stability condition 

(9.5) is readily seen to transform into 

{pi* - P1 gik}1P1*( -Au)2 P2%2  - APg/k1 

= pl*2 ( c-AU)4/ch2khl (9.7) 

the new relative phase velocity being defined by 

= c - Uz (9.8) 
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This form of the stability equation shows that the velocity "shear" 

AU = U1  - U2 is determining for the system's stability and not the 

velocities U1  and U2  of the subject layers themselves, exactly as in the 

classical K-H case. Since (9.8) is a purely real transformation 

c - U2 r r 

1
. = C. (9.9) 

the stability problem is conserved by the transformation in the sense 

that the stability boundary ci  = o and generally the growth rate is 

conserved. 

9.4. The thin sublayer limit.  

9.4.1. The eigenvalue equation and the shear Froude number. 

Starting from equation (9.7) we note that the bed layer depth is repre-

sented by p2* = p2 /th kh2 . For perturbations that are long compared to 

the bed layer thickness, which again is assumed much smaller than the 

main flow depth, the eigenvalue equation may now be rewritten 

{F2(-11  ) 2  - th kh1 /kh1 }(r+1)F2  th kh1  E2  = 

{-F4 th2khi(E-1) 4  + (r+1)F2 (th klii/kh/ )(-1)2  

- r (th kh1 /kh1) 2 } kh2 + 0{(kh2 ) 2 } (9.10) 

We have used the notations 

r = AP/P1 = (P2 - P1)41 (9.11) 

= C/AU = c/(Ui - U2 ) 

and 

(9.12) 

F2 = Au2igh1  (9.13) 
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The first two are obviously dimensionless versions of the density 

difference and the relative phase velocity. The last parameter, defined 

by (9.13), might be called a shear Froude number. The superscript 

("dash") will be omitted in the following. The definition (9.13) should, 

however, be kept in mind. 

9.4.2. The finite eigenvalue solutions. 

Inspecting equation (9.10) we may reason as follows: 

Assuming to be of finite magnitude the square bracket terms on the 

right hand side are finite. Since the bracket is multiplied by kh2 , 

assumed small, the right hand side of the equation is small. The only 

way to satisfy the equation for finite - values must then be by 

requiring that the left hand side square bracket should be small of 

order kh2 : 

F2 (E-1) 2  - th khi/khi  = O{kh2 } (9.14) 

We obviously get the two solutions 

E(1) = F-1{F + (th khl/khl) 2 } + O{kh2 } (9.15) 

(2) = F-1{F - (th khi/khi) 2 } + O{kh2 } (9.16) 

We note that (1) , to a first approximation, is a real and always posi-

tive eigenvalue. The other eigenvalue, E(2) , is also real. However, (2)  

may be seen to become negative as well as positive. And, additionally, 

for perturbations close to satisfying 

F2  = th khi/khi (9.17) 

(9.16) gives 

E(2) = 0{kh2 } (9.18) 

which contradicts the finiteness assumption. Clearly the eigenvalue 

solution (9.16) is not valid in the vicinity of (9.17). This particular 

case will be treated separately in the following. 
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The solutions E(1) and E(2) may be found in a strictly analytical way 

by developing them from an asymptotic expansion based on the small-

ness of kh2. The procedure is shown in appendix A and the result in 

formula (A-15). Since the "inspectional procedure" above gives the same 

solution it is considered good enough here, and no further analysis will 

be made, dealing with the finite eigenvalues. The analytical strength of 

the asymptotic expansion technique will be fully appreciated, however, 

when dealing with the small eigenvalues in the following. 

The physical interpretation of (1)  and E(2) is clearly that they repre-

sent ordinary neutral surface waves. The wave corresponding to 01)  

travels downstream on top of the basic flow. The E(2)  wave travels in 

the opposite direction relative to the flow. However, relative to the 

(unknown) sublayer flow the E ( 2 ) wave travels upstream or downstream 

depending on whether th kh1/kh1 is larger or smaller than F2 . The 

same type of wave should also be able to propagate slowly upstream or 

downstream and even with zero rate relative to the sublayer. The 

eigenvalue solution for this case is, however, not given by (9.16). 

Reference is therefore made to the later special treatment. 



10. SMALL EIGENVALUES. 

10.1. Solution procedure.  

In the following we will seek the small eigenvalues of our flow system. 

First we rewrite the complete eigenvalue equation for small depth of the 

sublayer 

{F2(E-1)2  - th kh1lkhi}(r+1) F2  th khi E2 = 

- khL  (F4th2kh1  (E-1)4  - (r+1) F2(th khi/khi)(E-1)2  

+ r (th khi/khi)2 } + 0{(kh2)2 } (10 . 1 ) 

A perturbation procedure based on the assumption 

kh2  << 1 (10.2) 

will be used to solve this equation for the small eigenvalues. Inspection 

of (10.1) reveals that small eigenvalues will be of order (kh2) 2 . We 

therefore choose this as the basic perturbation parameter for the 

development: 

= (kh2 ) 2 (10.3) 

The small eigenvalues are now sought as an asymptotic series 

E = Els E2E2 E3E3 
. (10.4) 

10.2. The growth rate solution.  

The details of the mathematical development may be followed by reading 

appendix A. We shall take the solution found there directly into 

consideration. The first approximation is given by equation (A - 20) as 
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3 '4) ± ifF4  - (r+1)F2cth kh1/kh1  + r/(kh1) 2 }2  

. {(r+1)(F2  - th kh1/kh1)F2cth kh1} 2 (kh2 ) 2  

+ O{kh2 } 

= i Ei(3 '4)  + 0{kh2 } (10.5) 

Alternatively the solution may be written as 

61 (3 '4)  = {F2  - f1(kh1,r)}{F2  - f2(kh1,r)} . 

.{F2  - f3 (kh1)}711- -2 {cth kh1  (r+1)}-1  . kh2  

+ O{(kh2) 2 } (10.6) 

where 

f1(kh1,r) = 1(r+1) cth khi/khi  

+{(r+1) 2(cth kh1/kh1)2/ 4  - r/(kh1) 2 }1 (10.7) 

f2(kh1,r) = l(r+1)cth kh1/kh1  

-{(r+1)2(cth kh1/kh1)2/ 4  - r/(kh1) 2 }1 (10.8) 

f3  (kh1) = th kh1/kh1 ( 10 . 9) 

10.3. Stability interpretation.  

The formulas (10.6) - (10.9) now allow a stability interpretation, 

remembering that a positive Eli  means instability while a negative Eli 

means neutrality of the considered flow.One should also note that the 

function f3 (kh1) = th kh1/kh1  for all finite values of the arguments lies 
between f1(kh1,r) and f2(kh1,r). 
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The growth rate formula (10.6) is dominated by the proportionality 

factor kh2, which is by assumption small. Thus, when the flow system 

is subject to perturbations that are long, as assumed, it will basically 

exhibit a weak instability as determined by this factor. A drawback of 

the result is that the sublayer thickness h2  is unknown. We have even 

no firm basis for claiming it to be a constant. What can be said 

concerning the physical meaning of this is that if the wave number k 

varies more than h2  then the shorter perturbations are more unstable 

than the longer ones. Consequently the shorter perturbations in the 

long wave range should be observable before the longer ones, if 

observable at all. For this reason the instability also is termed 

progressive. 

The other main aspect of our stability result (10.6) is the growth rate 

dependence on the main flow variables F, khi  and r. 

Obviously the conditions 

and 

F2  = fi(khi,r) 

F2  = f2(khi,r) 

are stability limits since the growth rate is zero on them with an 

instability region on one side and a neutral region on the other. 

The solution 

F2  = f3 (khi) = th khi/khi (10.12) 

is, however, not a stability boundary in the same sense. The growth 

rate formula (10.6) should not be applied in the neighbourhood of 

(10.12) since the smallness assumption for the solution is violated. The 

stability solution for perturbations of (10.12) is treated separately in 

the following. At this stage we conclude by noting that (10.12) marks a 

transition zone between an unstable {F,khi} region below and a neutral 

region above. 
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The following figure 10.1 illustrates the stability result (10.6) by 

showing the different regions with the stability boundaries (10.10-11) 

and the transitional relation (10.12) drawn. Figure 10.2. shows the 

growth rate squared Eli  and magnified by the factor 1 /kh2  for 

khi  = 1.0 and r = 0.5. The strongest growth rate appears to be found 

just below the curve (10.12). 

Again it is emphasized that the solution as illustrated does not apply 

close to (10.12). This particular case is discussed in detail in section 

10.6 in the following. An example illustration of how the growth rate 

generally is distributed in the F - khi  plane is shown in fig. 10.3. 
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kh1  
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1.5- 
F 2 = f1 (khy), r = 0.0 
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= 0.96 
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F 2 = f2  khi• r),r= 1.20 

= 0.96 
= 0.72 

= 0.24 

ZONE I, NEUTRAL 

0.0 
0.0 
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Fig 10.1. Stability regions in F - khi  plane for a free surface - thin 

sublayer system. The density parameter r = Ap/pi  is varied in 

steps of 0.24 from 0.0 to 1.20. The shaded curve is F2  = 

tanh khi , while the lower curve in the upper group (r = 

0.0) is F2  = coth khi/khi. The shaded zone is one of 

stronger instability. 
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Fig.10.2. Variation of magnified growth rate with shear Froude number. 

The illustration case is drawn for khi  = 1.0 and r = 0.5. 
-1 Asymptiotic value for large F is (r-F1) th khi. 
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F 2 = cth khi/khi 
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Fig.10.3. Curves of constant magnified growth rate in the F - 1<h i  

diagram for the case r = 0.25. 



10.4. Two special cases.  

10.4.1. The hydraulic limit. 

For long wave perturbations the stability result (10.5) is easily seen to 

give the limit relation 

= - {F2  - - r/(r+1)}.(F2-1)' 1F-2h2 /hi  

+ H.O.T. (10.13) 

which indicates stability properties as follows 

1 < F2 neutral 

r/(r+1) < F2  < 1 unstable (10.14) 

F2  < r/(r+1) neutral 

Again we should not allow F to approach 1.0 in the above formula. It 

may be noted that the growth rate formula (10.13) is independent of 

wave length. 

10.4.2. Homogeneous flow. 

This is the case where r=0 or no density difference exists between the 

bed layer and the main flow, the case of homogeneous water flow being 

included. Formula (10.5) now gives 

Ef = {F2  - cth khi/khi}{F2  - thi/kh1}-1  th khCkh2 

+ H.O.T. (10.15) 
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The flow is consequently stabilitywise characterised as 

cth kh i /kh i  < F2 unstable 

th khi/kh i  < F2  < cth kh i /kh i neutral 

FL < th kh i /khi unstable (10.16) 

One may further note the limiting cases of small and large Froude 

numbers given by 

cth kh i  . kh2 , F<K1 ,0 

and 

E r  = th kh i  . kh2 , F>>1 ,0 

The magnified growth rate formula (10.15) may be illustrated as a 

function of F as shown in fig. 10.4 below 

kh 2 

1,0 

Fig.10.4. .Magnified Growth rate varying with Froude number for 

homogeneous flow. 
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In the following figure 10.5. the lines of constant magnified growth rate 

in the F - khi  plane are shown. 
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Fig.10.5. Curves of constant magnified growth rate in the F - khi  

diagram for the case r = 0. 
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10.5. Propagation.  

10.5.1. Finite eigenvalue case. 

The two finite eigenvalues (1) and (2) given by (9.15) and (9.16) 

are the propagation velocities of two ordinary free surtace wawes, one 

propagating with the flow and the other against it, as pointed out at 

the end of section 9.4.2. 

10.5.2. Small eigenvalue case. 

The stability solution (10.5) or (10.6) should be interpreted as propa-

gation rate formulas for perturbations that are neutral. The result is 

now more logically written 

_IF240iF2_f21{F243 }-1  F-2th kh1'kh2  

+ H.O.T. (10.19) 

These perturbations will not be generated by the present instability 

mechanism and are in this sense of less interest. 

Of more interest is the question about the propagation rate of the 

unstable perturbations, since they are more likely to be observed in 

reality. Since the result (10.5) now is a purely imaginary eigenvalue, 

the propagation rate to the approximation (kh2 ) 2  is zero. In order to 

get a quantitive expression for it the small eigenvalue solution then has 

to be developed to a higher order of approximation. This development is 

again shown in appendix A. Taking the result into direct consideration 

as given by (A-24) we have 

( ) _ 3 4 ) E _ + i (' + {F4  - 2F2th kh1/kh1  + (kh1)-2 }. 

.{(r+1)(F2-th khi/khi) 2cth kh1}-1.kh2 

+ 0{(kh2)3/2 } (10.20) 



The term of order kh2  is seen to have the following characteristics 

- it is common to both of the eigenvalues (+ or - sign in (kh,) 2  

term) 

- it is real 

- it is positive tor all values of the arguments kh1  or r. 

This term obviously has to be interpreted as the propagation rate of 

the unstable perturbations. It says then that all unstable perturbations 

propagate downstream. This result should also be excluded from the 

neighbourhood of (10.12). 

10.6. The case F2  = th khi/khi.  

10.6.1. One finite eigenvalue. 

The solution procedure is found in appendix A. Equation (A-28) gives 

the finite eigenvalue solution as 

(1) = 2 + O{kh2} (10.21) 

which clearly is the one for neutral surface waves propagating 

downstream, now with the double velocity of the free stream velocity, 

approximately. This solution also tollows directly from the more general 

finite-value result (9.15). 

The result (9.16) is now invalid and should be replaced by the first of 

the following solutions. 

10.6.2. Small eigenvalues. 

The mathematical treatment of the actual case in appendix A results in 

the three eigenvalue solution (A-36, 37, 38). One solution is real, i.e. 

that of a neutral wave: 

(2) = -{(r+1) sh 2kh1}-1/3(kh2 )1/3 + H.O.T. (10.22) 
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= 0 + H.O.T. 

The negative sign shows upstream propagation. 

Another eigenvalue is given as: 

c(3) = 1{(r+1) sh 2kh1}-1/3(kh2)1/3 + H.O.T. 

0)  = 113{(r+1)sh 2kh1}-1/3(kh2)1/3 + H.O.T. 

(10.23) 

(10.24) 

(10.25) 

expressing downstream propagation by the positive Er
(3) and instability 

by the positive E(3) . 

The last eigenvalue expresses an (asymptotically) stable perturbation: 

E (4) E (3) 
r r 

(4) = (3) • 

and confirms the earlier finding of eigenvalues in our problem occurring 

as complex conjugate pairs. 

All three eigenvalues above are seen to be of order (kh2)1/3 . This 

follows from the fact that our present analysis is performed for 

perturbations satisfying exactly the condition F2  = f3(kh1) = th kh1/kh1. 

There is no reason, however, not to expect a gradual transition from 

the above solution to the two finite plus the two O{(kh2 ) 2 } solutions 

found earlier when the perturbation is allowed to pass through the 

whole range of conditions. This range includes points well above F2  = 

f3(kh1) as well as points in the vicinity of and exactly on this relation 

plus finally points well below it. 

The essential stability result found here then is that the flow is weakly 

unstable of order (kh2 )1/3 on 

F2  = f3 (khg) (10.12) 

The unstable perturbations propagate downstream. 
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The exact location of the transition boundary between the unstable 

region below and at (10.12) and the neutral region above is not given 

by the present analysis. The conclusion is, however, that it is located 

in the vicinity of and just above (10.12). One may thus consider (10.12) 

as a first approximation to this boundary. 

The growth rate limit when approaching (10.12) from below is thus 

given by (10.25). For comparison with fig. 10.2, the "magnified growth 

rate" then has the limiting value 

E(3)2 /kh2  = ( 3 / 4 ){(r+1)sh 2kh1}-2/3(kh2)-1/3 (10.28) 



11. AMPLITUDE RATIO SOLUTIONS. 

11.1. Finite eigenvalue case. 

It is readily verified by substitution of the eigenvalue solution (9.14) 

into equations (9.1) and (9.2), or equations (11.2) and (11.3) below, 

that the amplitude ratio associated with the two finite eigenvalues in 

question is given by 

a21 = 0{kh2} (11.1) 

Mathematical details are found in appendix B. This result is simply 

another expression for the fact that the two finite eigenvalues give, to 

a first order of approximation, neutral gravity waves with a vertical 

motion going to zero at the bed. 

11.2. Small eigenvalue case.  

Equations (9.1) and (9.2) are now rewritten in the following form 

a21(1)  = {F2 (E-1)2  - th kh1/kh1}F-2  ch kh1  (E-1)-2 (11.2) 

a12 (11)  = {F2(E-1)2  - r th kh1/kh1}F-2  ch kh1  (E-1)-2  

+ (P2* /P1*) ch kh1  E2(E-1)-2 (11.3) 

The superscript (I) refers here to the free surface dynamic condition 

while superscript (II) refers to the dynamic condition on the interface. 

Remembering now that E is a small eigenvalue 

E Er + iEi  = O{kh2 } + i 0{(kh2)2} (11.4) 

by (10.5) and (10.20), we may develop a21(I) or a21(II) as shown in 

appendix B. In order to achieve a unique amplitude ratio, it is essential 

that the last term in (11.3) is included and developed by 
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using (11.4). The mathematical procedure may be followed in appendix 

B, leading to the result 

a21 = {F2- th khl/khO 
2

F ch khl  + 0{(kh2)1} (11.5) 

It is remarkable from (11.1) and (11.5) that 

- finite eigenvalues give small amplitude ratios. 

- small eigenvalues give finite amplitude ratios. 

The result (11.5), generally finite, is not valid along F2  = th khlikhi  
= f3 (kh1), being developed for eigenvalues with this restriction. 

Amplitude ratio solutions along F2  = f3 (khi) are developed in the last 

part of appendix B and will be commented on in the following. 

We may note from (11.5) that away from the condition F2  = f3 (kh1) the 

amplitude ratio is positive above and negative below it, corresponding 

to in phase and 180°  out of phase perturbations respectively. 

One may also note that the result (11.5) to first order of approximation 

is identical to the potential theory result (8.22). However, the 

essential difference is that (11.5) is developed for a weakly unstable 

interfacial mode while (8.22) is for a fixed sinusoidal bed. 

11.3. Two special amplitude ratios.  

The weakly unstable mode with the finite amplitude ratio (11.5) may be 

further examined for conditions giving amplitude ratios of ± unity. 

After some algebraic manipulation we find 

a21 = ± 1 : F2  = sh kh1  (ch kh1  ± 1)-1/kh1 (11.6) 
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a21 =1 
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1.0 
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Fig. 11.1. Location of particular unstable mode amplitude ratios in the 
F khi  plane, to first approximation. 



The result (11.6) plus the easily confirmed result for the same (now 

neutral) mode 

a21 = 1/ch khl (11.7) 

when existing, along F2  = cth khi/khi, are shown in fig. 11.1. 

11.4. Amplitude ratio at stability boundaries.  

An explicit solution for the amplitude ratio may be found by assuming 

E = 0 in (11.2) and (11.3). Hereby the solution is restricted to the 

conditions in the immediate vicinity of the upper and lower stability 

boundaries. The solution is easily found to be 

a21  = -1r-1(1-r){1±(1+4r(1-0-2  ch-2khi)1Jch khi (11.8) 

with the hydraulic limiting approximation 

a 21  = (1-r) 11-±(1+4r(1-0 -2 )1} (11.9) 

or 

a2+1 = - r
-1 (11.10) 

and 

a21  = 1.0 (11.11) 

Here plus sign refers to the lower stability boundary while minus refers 

to the upper. 

The above solutions are illustrated in the following figures 11.2 and 

11.3. 
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Fig 11.2. Amplitude ratio in thin sublayer - tree surface flow system 

corresponding to upper stability boundaries in fig. 10.1. 
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Fig 11.3. Amplitude ratio in thin sublayer-free surface flow system 

corresponding to lower stability boundaries in fig 10.1. 



11.5. Transitional amplitude ratio.  

The amplitude ratios found so far do not apply along the transitional 

relation 

F2  = th kh1/kh1 (11.11) 

The case is treated mathematically in appendix B with the result for the 

three small eigenvalues 

(n+2) a i = 2 ch kh1  e-i2n7113{(r+1)sh 2kho-1/3(kh2)1/3 
z 

+ 0{kh2 }2/31, n=0,1,2 

The superscript (n+2) now refers to the respective eigenvalue solution 

given in (10.22-27). In particular the neutral eigenvalue (10.22-23) has 

an amplitude ratio given by n = 0, or 

(2) (2) arg a21 = 6121 = 

which means that the perturbation on the free surface is in phase with 

the one on the shear interface. 

On the other hand the unstable mode gives an amplitude ratio phase 

difference given by 

arg a21(3) 
 = 021

(3)  = -21T /3 (11.14) 

The interpretation of this result in the physical plane is obviously as 

shown in the following figure. 
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21T/3 

Fig. 11.4. Transitional phase relationship of amplitude ratio for the 

unstable mode. 

11.6. Summary of eigenvalue and amplitude ratio results.  

The number of results gained in the two preceding chapters on eigen-

values and associated amplitude ratios are numerous. For full infor-

mation on them the only way is to go into the text. An overall presen-

tation in terms of order of magnitude and phase relationships for the 

different cases is given in the following table 11.1. A main conclusion is 

that the free surface influences the bed layer stability strongly as 

illustrated by the figures 7.4 and 10.1. 
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Table 11.1. An order of magnitude summary of eigenvalue analysis 

results. 
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11.7.  Final remarks on the stability model.  

So far the proposed stability model is analysed mathematically. Physical 

interpretation of the results are done only to a limited extent. Even if 

the model is purely hydrodynamical its relevance to pure water channel 

flow will not be discussed as part of this work, in spite of the fact that 

the question about this relevance is interesting enough. The model has 

been proposed and developed with sedimentary flow and sand wave 

generation as the target. The discussion of the preceding stability model 

as a possible generating mechanism for granular bed waves will then be 

the subject of the remaining part of this report. 
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PART III 

THE GENERATION OF SAND WAVES AS A K-H TYPE OF 

INSTABILITY. 

INCLUDING: 

- DESCRIPTION AND RESULTS OF A LIMITED SET OF QALITATIVE 

EXPERIMENTS 

- A QALITATIVE COMPARISON OF EXPERIMENTAL RESULTS AND 

THEORY 

- A SUMMARY OF THE WORK 
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12. SOME QUALITATIVE EXPERIMENTS. 

12.1. Purpose 

The bed layer stability results developed in the preceding chapters are of 

course of limited interest by themselves. The comparison between stability 

behaviour as predicted by the theory on the one hand and actual physical 

stability behaviour on the other is the only way to possibly improve on 

this. 

To supplement earlier experimental work as summarised in part I of this 

report with observations motivated directly by the preceding theory a 

limited number of qualitative experiments are performed. The sand bed 

particle distribution, the flow rate, the flow depth and the resulting sand 

wave lengths are grossly determined. There is, however, no attempt made 

to do measurements of flow or sand movement in any detail. The emphasis is 

in stead put on visualisation of phenomena occurring as part of the sand 

wave form generation process. The visualisation includes the character of 

the free surface, the main flow, the internal exitation or "degree of in-

stability" and the behaviour of the bed forms. 

Observing instability phenomena in the near bed region and interaction with 

the free surface is naturally of central importance in the present exper-

imental approach. 

After a presentation of the test rig, the equipment used, the sand particle 

distribution and the test procedure, the observations will be considered. 

12.2. Experimental set up.  

The flume used is shown drawn in fig. 12.1. All measures are given in 

meters. 
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Fig. 12.1. lest flume used for experiments on sand wave form 

generation. 

A 3 cm deep and 15 cm wide sand bed extends in all experiments 1.90 m 

over the central part of the flume. The flow and sand bed phenomena are 

visualised by placing a white colored wall with a 5 cm x 5 cm square grid 

in black behind the rear glass wall of the test flume. The visual obser-

vations are made from one side of the flume looking perpendicularly through 

the flow. With a white screen as background the bed protile as well as the 

free surface form and sediment flow phenomena are observed. In addition all 

tests are recorded on video tape providing a unique possibility of repeated 

observations. All photographs shown in the following are reproduced from 

the video recordings. 

V 



12.3. Sand material. 

The sand material used for the tests is represented here by the particle 
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distribution curves in fig. 12.2. Two slightly different sands are used, as 

shown. 
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Fig. 12.2. Particle distribution for test sands. 

12.4. Test procedure.  

The basic parameter varied in the tests is the main flow Froude number. 

While the water flow transport rate is kept constant at 5.4 1/s the Froude 

number is varied over the range 0.3 - 0.8 by regulating the outlet gate of 

the flume. For Froude numbers larger than 0.5 a slight slope of the flume 

is applied. One single test is run with the reduced transport rate 1.6 1/s, 

namely that for F = 1.1, visualising a case of antidune development. The 

correspondence between the Froude - number and the flow depth in all 

experiments except the antidune test is shown in fig. 12.3. 
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A second series of experiments was run after studying the visual record-

ings from the first series. I he second series covered the more limited 

Froude number range 0.5 - 0.7, and was run to focus somewhat differently 

on the phenomena seen. The applied sand was approximately the same as in 

the first series, see fig. 12.2, while all other test conditions were kept the 

same. The photographic material shown in the following is partly from the 

first and partly from the second series. 

Each test is started from a small velocity and high water level (F < 0.2) , 

and then accelerated up to the wanted Froude number by opening the outlet 

gate, the gate being properly calibrated in advance. The Froude number 

referred to is defined by mean velocity and total depth and to be the one 

at the initial stage of bed wave development. As will be seen the flow 

conditions including the Froude - number changes as a result of the 

development of the sand waves. 

0.5 

1.0 

0 

1.5 

0 5 10 15 
h1 (cm) 

Fig. 12.3. Correspondence between Froude number and water depth in 

lower regime tests. 



'111111111b ,,I,  

„..„,,iiimugrAiimo;011111111111111iiiili1111 if 

1 1;11111111'1  III 11111! 

114 

13. THE LOWER REGIME INSTABILITY. 

13.1. A progressive instability.  

A test for F = 0.4 shows very clearly the progressive character of the bed 

waves. The first photograph below is taken at an early stage in the devel-

opment of wave forms while the second is taken several minutes later in the 

same test. 

a.)  

b.)  

Fig. 13.1. The wave length of bed forms increase during their formation; 

a: early stage, b: later stage, F = 0.4. 
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It is clear from fig. 13.1. that there has been a considerable increase 

(about three times) in the bed wave length from stage a to stage b. If the 

two stages are plotted in the F - kh1  diagram, we find the development 

F2 

/ OBSERVED 

= cth khlikhi 

ANTIDUNES 

FLAT BED, 

N 

F2 

HIGH SEDIMENT 

= th khi /khi 

RIPPLES 

TRANSPORT 

///// 
1 

TYPICAL 
DEVELOPMENT 

TRANSPORT 

LOWER REGIVE / / 

DUNES 1 

FLAT BED, NO SEDIMENT 
I  

20 

Fig. 13.2. The progression of bed wave forms for the F = 0.14 test, plotted 

in the F - kill diagram. Later antidune observation is also 

shown. 

located as shown in fig. 13.2. The first sand waves seen are located in the 

upper unstable region of the F - 1<hi  diagram. Their wave length is 

roughly about half of the water depth, i.e. in absolute measure about 7.5 

cm. They can not be seen to interact with the free surface. Fig. 13.1 also 

confirms the generally agreed high degree of regularity and two-

dimensionality of the first waves seen. 

Thus in total the first waves seem to fall well within the definition of rip-

ples, as given in the nomenclature of section 2.1. 

The later stage sand waves are less unique in size and wavelength than the 

first waves. However, their wavelength fall within a reasonably short 

range, indicated in fig. 13.2. These waves are clearly seen to be located in 

the lower unstable region of the F - kh i  diagram. The shape of these later 

waves are not typically that of dunes. We also see that the interaction with 

F 

1.0 

0.5 

0 
0 5 10 15 

k h 1  
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the free surface is still small. It should be made clear that these later 

waves are not the final ones. A further increase in wave length was seen 

during this test. 

This feature of progressive occurrence, though emphasized by some wri-

ters, is not generally acknowledged in the literature as the basic feature of 

bed wave development as it really seems to be. In all experiments performed 

in the lower range the bed waves showed this same progressive character. 

The observed bed waves as given by Kennedy in fig. 3.5 should now be 

reconsidered with this bed wave property in mind. 

Both the early waves and the later waves propagate slowly downstream, as 

did all other sand waves for the subcritical flow tests. The propagation 

velocity was extremely small (a few centimeters per minute), i.e. orders of 

magnitude smaller than the free stream velocity. 

The growth rate was also small. However, no experimental determination of 

it was made. Also when judging growth rate as well as propagation rate, 

one should keep in mind the continuous change in wave length from shorter 

to longer, as pointed out. 

Between the early waves and the later waves shown, an intermediate stage 

of higher disorder is observed. This stage is considered separately in the 

following. 

13.2. The intermediate stage.  

It was mentioned in the previous section that at a stage of development 

(progression) of the bed forms they show a strongly irregular, rapidly 

changing 3-dimensional pattern while the fluid interior appear to be more 

excited than before or afterwards. The fotographs in figs. 13.3 a and b are 

both from this stage of a F = 0.5 test. 
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Fig. 13.3. Excited flow phase in F = 0.5 test with irregular 3D bed wave 

forms (a), and "lift up" (b). 
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The "lift up" phenomenon is a peculiar one and is focused on by Jackson 

(1976) and discussed by him in light of the "bursting" phenomena observed 

in fixed bed channel flow. The phenomenon was observable in the present 

tests only during the excited intermediate stage of bed form development 

and not observable at all for some Froude numbers. A suggestion more than 

an explanation is the following: 

In view of the progressive character of the bed form development the 

boundary layer will "lead" this development. At a certain stage the boun-

dary layer perturbation will just have reached underneath the transitional 

(phase shift) condition F2=th khi/khi, while the bed forms remain as 

developed outside. The bed topography forces the in-phase relation on the 

tree surface, while the unstable perturbation at the boundary layer is in an 

out-of-phase state versus the free surface causing the "lift up". 

The "lift up" phenomenon is not a dominating one, at least not on 

laboratory scale, and a wider discussion of it is hardly justified in the 
present context. 

13.3. The amplitude ratio development.  

The tests confirmed earlier findings with respect to the phase relationship 

for dunes, i.e. stable wave forms in the lower regime interacting with the 

free surface, in that the dunes and the free surface are basically 180°  out 

of phase with each other. The classical potential theory for flow over a 

sinusoidal bed as described in chapter 8, equation (8.22), is in fact suc-

cessful on this point. 

A more interesting observation of amplitude ratio is to follow its develop-

ment during a test. An even more convincing demonstration of the progres-

sive character of the instability than by development of wave lengths, as 

followed in section 13.1, is given by the amplitude phase development. The 

photographs in figure 13.4 below are all from a F=0.5 test. Fotograph "a" is 

taken at an early stage where the wave form is in the upper instability 

region and the amplitudes are seen to be of in-phase type. Fotograph "b" 

is taken at the transitional stage, approximately, where the downstream 

wave form is seen still to be of in-phase type while going upstream the 

wave forms are gradually lengthening and gradually altering phase. It 
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should be remarked here that in all tests there was a clear tendency to-

wards that the upstream end of the test section was "leading" the develop-

ment. This is clearly an efrect of local test conditions, which will be com-

mented on later. 

The final bed forms observed during this test were as shown in photograph 

"c", having the typical dune shape and an antiphase amplitude ratio. 

a.)  
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c.) 

Fig. 13.4. Amplitude and phase development during an F = 0.5 test. 

a: early stage, b: transitional stage, c: final stage. 

The message from the above photographs is clearly this: The instability 

responsible for the sand wave forms seen start up in the upper unstable 

region with little or no interaction with the free surface (depending on F). 

Gradually it develops towards longer wave lengths and stronger free 

surface interaction. The phase shifts gradually from the potential theoretic 

0o above to approximately 180° below the transitional condition as is again 

predicted by potential theory. 

From the point of view of the present theoretical model for bed layer stabil-

ity it may be remarked that the above observations compare relatively well 

with the theoretical results. As presented in table 11.1 the phase of the 

unstable eigenvalue 0(3) 2 1 shifts from zero above the transitional condition 

to - 2ff / 3 right at it and into -Tr below the condition. 
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Fig. 13.5. Development of unstable perturbation according to the present 

theory. a: upper unstable region. 

b: transitional, 

c: lower unstable region. 

13.4. Superposed ripples.  

A series of extra tests were performed for the only purpose of repeating 

earlier test while doing the photographic job differently. A basic lesson to 

be learnt from this is that the repeatability of such tests is not a matter of 

a rough approach to test conditions. Even if the flow conditions were 

repeated and controlled as exactly as possible the behaviour of the bed, in 

fact essential parts of the lower region bed forms development, was 

different from that in the first tests. The only parameter that could be 

identified as slightly different from earlier was the sand particle 

distribution. The content of the finer particles was less in the extra series, 

as shown in figure 12.2. 

The first part of the bed forms development was very similar to what we 

had seen the first time. However, the stable dune pattern as shown in fig. 

13.4.c was not obtained. In stead a continuously changing pattern of short 

length wave forms (ripples) were seen existing together with larger dune -

like wave forms, as shown on the following picture, fig. 13.6. 
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Fig. 13.6. Ripples superposed on larger dune-like bed forms. 

Such superposed ripples were not observed at all in the first series of 

tests. It is not intended to give any explanation of this here. We just point 

out what might be an essential point here, namely that the finer particle 

content of the bed sand influences the density profile of the flow. Hence 

the whole levelling of the lower instability region is altered, with reference 

to figure 10.3. One should expect the development at the bed to be differ-

ent depending on approaching the zero growth rate limit, i.e. F2  below 

r/r+1, or not, i.e. F2  above this value. 

13.5. Transition. Flat bed. 

The transitional bed configuration consists of a partly flat bed, partly 

low-amplitude ("washed-out") dunes or ripples, according to the ASCE 

classification of section 2.1. The Froude number is typically in the range 

0.8 - 1.0. The state of flat bed appears to be an ultimate state for this 

transitional configuration, i.e. F just below 1.0. The literature interpretes 

the flat bed as a stable configuration for the bed. 
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One test was run for F=0.8 to observe the typical features of the bed, the 

surface and the flow. The bed features were of low amplitude, of in-phase 

type, i.e. upper unstable region, propagated quickly downstream in com-

parison to the propagation velocities seen usually, and were accompanied by 

a high sediment transport rate. The ultimate state of flat bed is known also 

to be accompanied by a high sediment transport rate. 

Again referring to figure 10.3 it should be noticed that the shear layer at 

the bed is strongly unstable for all wave lengths of the lower unstable 

region. Further it appears that the instability increases when the transition 

condition F2 = th kh1  /kh1 is approached from the lower side. In other 

words: we are faced with a situation where the traditional concept of bed 

stability is standing in sharp contrast to the state of stability of the shear 

layer just above the bed. 

We have for this same reason - a strong lower region instability close to 

F2 = th kh1  /kh1 - used the term "transitional condition" about it, and will 

continue to do so. 

13.6. The antidune test. 

One single case of antidune generation was run. The flow rate was reduced 

from 5.4 I/s for the lower regime tests to 1.6 I/s in the antidune test. The 

Froude number was 1.1. 

The bed waves generated corresponded to earlier descriptions of antidunes 

in that they 

- occurred in groups of two or three waves 

- in their first stage were almost nonprogressive but moving with 

increasing still small velocity upstream as they grew larger 

- collapsed, particularly the front wave in the group, at a certain 

stage whereafter the growth and propagation development was more 

or less repeated 

- had an in-phase relationship to the free surface 

- were located in zone IV (fig. 10.1) of the F - kh1  diagram. 
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14. THEORY VERSUS EXPERIMENTS. 

14.1. An important remark.  

It should be kept clearly in mind that the stability model discussed in 

chapters 9 - 11 is a purely hydrodynamic one, i.e. strictly not one of 

bed waves at all. It is theretore highly justified to ask about the 

relevance of such a limitation. The present chapter will deal with this 

and some other questions of basic nature, and of relevance to the 

stability problem under discussion. Besides this a summary of agreement-

/disagreement results is given. 

14.2. Nature of bed perturbation and erosion equation.  

The erosion equation, orginally established by Exner, was met several times 

in part I of this report, reading 

aqt + (1-n) = 0 (14.1) 
@x at 

where qt  is total horisontal sediment flux, n is bed porosity and n3  the 

bed perturbation. 

The erosion equation expresses mathematically that horizontal gradients 

in total sediment flux exist for one single reason namely an increase or 

decrease of the sediment bed wave. In other words it excludes other 

reasons for horizontal flux gradients. 

Operating on total horizontal sediment flux the erosion equation is a 

vertically integrated relation. This again means that it is basically an 

equation for a hydraulic type of analysis. 

A third aspect of the erosion equation is also emphasized, namely that 

it is one of sediment continuity. The sediment bed is in other words 

represented solely by a nondynamic relation in earlier analysis. A 

continuity requirement of this type is of course part of a complete 
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analytical treatment. but in search for a responsible hydrodynamic 

instability the coupling to a "passive" bed is believed to be less important 

than the shear flow or tree surface effects. On the other hand, when 

asking about the actual result over some time of such an instability, this 

coupling is likely to be most important. This point is further focused on by 

the following reasoning: 

A perturbation of a sediment flow close to the bed will be subject to a 

"solidification" once it exists. By the term "solidification" we think about 

the settling of grains to form part of the underlying, from now on wavy 

bed. This property is solely one ot granular beds, in opposition to fixed 

channel beds, and may be a key effect in the realisation of the bed wave 

development as a long term gradually changing process. 

14.3. A comment on pure water flow and the maximum growth rate 

criterion. 

The same basic hydrodynamic instability in pure water flow over a flat 

bed will more likely be dominated by phenomena ot a more well defined 

wave length. This system is without the solidification effect and there-

tore more likely to give way for the perturbations of maximum growth 

rate. This, on the other hand, is to say that the maximum growth rate 

criterion does not apply in the case of bed wave development, at least 

not in its most simple version, leading to one particular wave length to 

be observed. The progressive character of bed wave development, 

which is considered by the author as an empirical fact, stands clearly 

in opposition to such a criterion. 

14.4. Theory and experiments compared.  

The alternative way to consider bed wave development is suggested by the 

chapter 9 - 11 theory, which in the same type of terminology might be 

called a small growth rate progressive process. In this respect the present 

theory and experiments seemingly agree. When looking further into the 

theoretical details we conclude by stating general agreement on the following 

points 
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- small propagation velocity 

- small growth rate 

- finite wave length 

- significant instability effect of free surface. 

One may further note that the K - H instability works without a free 

surface but then with a restricted instability range. Again this is in 

general agreement with well established experimental knowledge. 

Amplitude ratios and phase relationships between bed and free surface are 

in broad terms observed as given by the theory. Threedimensional effects 

and peculiar phenomena like "lift up" are not included in the above state-

ment. 

A remarkable point is the seeming experimental confirmation of the high 

growth rate suddenly met just underneath the condition F2  = th khi /kill  
during progression from shorter to longer waves. 

The fact that the interpretation of the subject instabilities is most 

meaningfully done in the I- - kill  plane - a general agreement exists on this 

point - is by itself a strong indication of a K - H type of instability. 

The above statements are general and qualitative. The experiments 

performed as part of this work do not allow stronger specific conclusion. 

Therefore the most important conclusion is the generally promising 

comparison between theory and experiments for lower range events. 

Improvements are certainly needed on ripple and antidune aspects. 
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15. LIMITATION OF THE PRESENT ANALYSIS. SUGGESTIONS FOR FUR-

THER WORK. 

15.1. The analytical model.  

15.1.1. Basic flow modelling. 

A.J. Raudkivi in his stimulating 1983 paper proposes a basic velocity profile 

of approximately the same simplicity as the one applied here. I he difference 

is a linearly decreasing velocity profile in the lower layer in Raudkivi's 

model, while the present model applies a concentrated velocity shear at a 

distance h2 from the bed. 

Fig. 15.5. Basic flow velocity profiles. a: Suggested by Raudkivi, 

b: present model. 

The essential feature of bed shear is then included in both but modelled 

somewhat differently. The present model is chosen for analytic convenience. 

In any case a proper matching of the basic flow with the boundary layer at 

the bed is needed for a measure for h2 in model a as well as for h2 in 

model b, A further comparison will have to await a stability 

analysis based on profile a. 
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15.1.2. Stability model development. 

The present stability model suffers from a noncomplete description close to 

the transitional condition. Completeness here requires a continuous descrip-

tion of growth and propagation rates as well as amplitude ratio and phase 

when passing through. It seems possible to do this, once h2 is given, by 

computerised eigenvalue analysis. 

15.1.3. Sediment flow modelling. 

The admittedly most serious limitation of the present stability model, con-

sidered as one for bed wave development, is the modelling of the sediment 

flow and the absence of erosional effects. This, it is the author's belief, 

accounts for the lack of success in explaining all aspects of the antidune 

behaviour. And a natural next step to take in further theoretical work 

along the present line would be to include the erosion effects in the 

analysis. Besides this a more complete modelling of the sedimentcarrying 

boundary layer at the bed should be attempted. 

15.2. Experimental limitations.  

The experimental rig used in the present qualitative tests of course has 

certain limitations. The flume is 15 cm wide and the wall boundary layers 

must be expected to have a slight influence on the flow conditions. The 

width is further smaller than the longest wave forms developed and may 

reduce the impression of threedimensionality of the bed features. 

Another limitation of the test flume lies in its limited length plus arrange-

ments at the upstream and downstream end of the test section. The up-

stream bottom edge at the beginning of the sand bed section tended to act 

as a local disturbance, and the development of bed waves usually started 

here. A flume dedicated to this type of tests would certainly have to be 

designed different from the one used in these respects. 
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15.3. Future experimental work.  

It is emphasized that the subject studied here is one where theory and 

experiment should go "hand in hand". As in all hydrodynamic stability work 

the experimentation suggested by theoretical developments should be done 

with the best equipment available and under the most well controlled con-

ditions possible. Along this way future steps towards improved understand-

ing and description of bed waves should be taken. I he number of tests to 

be made is likely to be high. However, the importance of the subject and 

the intriguing phenomena involved should guarantee strong efforts. 

Among the topics emerging trom this work will be a systematic variation of 

sand particle distribution, particularly the finer part, and observation of 

the accompanying development process. This will be a large experimental 

work by itself. 

Refinements, experimentally as well as theoretically, should be the subject 

of critical judgement since no refinement is justified by itself. There obvi-

ously is a need to tie the flow instability problem stronger to the bed 

stability problem. Equipment for spatial correlation of flow disturbances 

(fluctuations) thus seems justified in future experimental work. Hereby a 

determination of wave lengths or correlation lengths is made possible. And 

this should be followed by an interpretation in F - khi diagram. 

A reinterpretation of the involved Froude number is desirable. The 

hydraulic way of stability analysis is conclusively invalid. A simple 

consequence of this is that experimental work should be undertaken to 

improve the understanding of the Froude number as a truly 

hydrodynamic parameter. This should be part of a work also aiming at 

further insight into the bed layer character, interaction with the free 

surface included. 
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16. SUMMARY AND FINAL REMARKS. 

16.1. The granular bed stability problem.  

The subject has developed from a stage of poor understanding and 

primitive theoretical description some decades ago, through a period of 

high analytical and experimental activity, up to the present day status 

where much empirical knowledge is available and where the analytical 

models have been refined considerably but still without offering a satis-

factory explanation for the development of bed waves. The type of insta-

bility responsible for this development has not been convincingly demon-

strated by any of the previous theories. 

The most serious drawbacks of existing theories are: 

- dependance on empirical and not generally valid relations for the 

sediment transport which need themselves separate theories for 

their own existence, and 

- use of concepts and "laws" of developed flow providing a full 

decoupling from the basic hydrodynamic stability problem of the 

flow and obscuring the type of instability acting. 

Experimentalists have been forced back to pure shear flow studies or 

single grain behaviour in shear flow. A full treatment and understanding of 

granular bed phenomea is very likely not possible without a simultaneous 

and fully valid handling of the flow stability problem. 

16.2. The K - H mechanism and its relevance to the bed wave problem.  

The earlier attempts in applying the K - H mechanism have, fully 

justified, been met with serious objections. On this basis the K-H 

instability seems to have been considered generally invalid in the ana-

lysis of granular bed stability. 

Being aware of the limitations of the K - H theory and by using the 

generalisation of the K - H model as established, an analytical tool 
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considerably more useful than earlier one-degree-of-freedom formulas is 

now at hand. When applied to a system with bed shear and free surface 

several of the basic features of sand waves are demonstrated: 

- small propagation velocity 

- small growth rate 

- finite wave length 

- free surface instability effect 

- acting without a free surface 

- gradual development from shorter to longer waves 

In addition specific results of K - H theory in this system seems to be 

supported by observations i.e. amplitude ratio and phase develpment. A 

sudden increase in instability of the flow during the gradual develop-

ment from shorter to longer waves is predicted by the theory and seems 

to have a physical counterpart. The antidune development is not satis-

factorily met by the present K - H model, nor is the development of 

ripples. 

16.3. Final remarks. 

Not only the antidune and ripple cases but indeed the whole subject calls 

for further theoretical and experimental work. The present work primarily 

points out a way of approach that seems to justify some optimism. In 

proceeding along the lines suggested the aim should be not only an improved 

description of the bed waves as roughness elements. Equally important is it 

to gain an extended understanding and improved calculational basis for the 

erosion, transportation and aggregation processes of granular materials. 

If the beliet of the author is justified, the present work may serve as a 

first step in this direction. And in the whole picture of sedimentary 

processes the bed waves will then prove to be limiting events or a 

materialisation of an asymptotically weak hydrodynamic instability, not 

necessarily all the way of K - H type, where the flow shear close to the 

bed as well as the main flow and a possible free surface all play essential 

roles in their generation. 
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APPENDIX A 

ASYMPTOTIC EXPANSION OF EIGENVALUES 



A-1. THE FINITE EIGENVALUE SOLUTION. 

Starting with the eigenvalue equation 

{F2 (E-1)2  - th khl/kh1}(r+1) F2th Mil  • E2  = 

- kh2  {F4  th2kh1(E-1)4  - (r+1) F2(th khi/kh1)(E-1)2  

+ r(th khl/k111)2 } + O{(kh2 )Z} (A-1) 

we will search the eigenvalues developed as an asymptotic expansion 

based on the smallness requirement kh2  << 1. First we rewrite the above 
equation in a more tractable form as 

A-1 

ia(E-1)2  + ffl. -2 = kh2  {y(E-1)4  + ó(E-1)2+ 

+ 0{(kh2 )2 } 

where the new symbols have the obvious definitions 

a = (r+1)F4th khi  

= -(r+1)F2th2khl/khl  

y = -F4th2kh1  

= (r+1)FLth kh1/kh1  

K = r(th kh1/k1-11)2  

The expansion parameter is defined as 

1 

K = (kh2) 2  

(A-2)  

(A-3)  

(A-4)  

and the eigenvalue expansion then is formulated by 



A-2 

= E0 Ele E2E L ,j66 (A-5) 

From this we get the following derived expansions for higher powers of 

E2 = E0 + 2E
0

E 16  + ( 2 E E E 242 + OW} 
o 2 1 

E3 = + 3qE1c + 3 E0 (E0E2 + E12 )62  + 0{6 3} 

E LI  = 
E0

LE + 4E
0
3E16  + 2E2

0
(2E

0
E 2  + 3E12) 62 + of E31 

Hereby the eigenvalue equation (A-2) may be developed into 

faE02 2a 0 + + 

+ E0E1{4aq - 6a,E0  + 2(a, + 13)) 6 

▪ 12C4q(2E0E2 + 3E1Z) — 6(1E0( E12) 

+ + 0(2 E0E2 Ei z )}ez  

= {yelo  - LIyE(3) 
 + (6y+6)q,  - 2(2y+6)E

0 
 + y + 6 + K le2  

+ O{E 3} 

(A-6)  

(A-7)  

The first term in the above expansion is of order E°  and determines the 

possible finite solutions for E: 

EO {402  - 2aEo + a  + (3}  = 

Here a double root is obviously 

(3,4) E = 0 

(A-8)  

(A-9)  

so that the two corresponding eigenvalues must be sought as higher 

order terms in the expansion. The two remaining roots of (A-8) are 

given by 
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aE2  - 2aE + a + 6 = 0 0 0 (A-10) 

or 

c'o 
1 (1,2) . 1 .4_ ( _ i3lc) 2 

-1 1 
= F 1F±(th klii/khl) 2 1 (A-11) 

so determined provided VO. This means that the possibility that 0=0 

given by the minus sign in (A-11) should be excluded from the 

solution. 

We proceed a little further in finding higher order corrections to the 

finite eigenvalues (A-11). From the term of.  order E in (A-7) we have 

E0E114aE(23,  - 6aE0  + 2(a+f3)} = 0 (A-12) 

Since E0  now is different from zero and given by (A-11) the only solu-

tion to (A-12) is 

El = 0 (A-13) 

which means that the finite eigenvalues have no correction terms of 

order (khz ) 2 . The e2  term in (A-7) may be used to determine a possible 

correction term of order kh2. It is easily seen that the term is 

E z  = {yE't; - 4yEg + (6y+6)q - 2(2y+6)E0  + y + 6 + K }. 

{4aq - 6aE0  + 2 (a+0}-1(01 (A-14) 

where 1  = 0 has now been used. A further development of E2  by 

substitution of expressions for Eo ,a,(3,y,6 and K will not be performed. 

In general the finite eigenvalues may then be written 

E(1'2) = F-1{F ± (th khl/khl) 2 } + O{kh2 } (A-15) 



where the second eigenvalue (minus sign) should not be allowed to 

approximate zero. 

A-4 



A-2. SMALL EIGENVALUES. 

The determination of the small eigenvalues of equation (A-1) is most 

effectively performed by the direct (i.e. c3=0) expansion 

= E 1 c + 2e2  + 0E 3  + E4 64 .1-  - - - 

E2 = E12E2 + 2E1E2E3 + (E22 + 2E1E3 )64 + - 

E3 = E13 63 + 3E12E2E4 + _ 

E4 = E1464 + (A-16) 

1 
where as before 6 = (kh2 ) 2 . Development of the rewritten eigenvalue 

equation (A-2) now gives 

(a  + 0 )E1262 

+ {-2a E12  + 2(a + 0)2}E163  = 

(y + 6 + K)E2  

-2(2y + 6) 1e 3  + 0{e4 } 

The 62  terms now determine a first approximation to the small 

eigenvalues by 

(a + 0E12  - ("Y + 6 + K) = 0  

(A-17)  

(A-18)  

or 

E12  = (1' + 6  + Id(a + 0 -1 (A-19) 

When (A-3) is used for substitution we find 

A-5 



Ei(3,4) = ± • {Ft+ - (r+1)F2cth khi/khi  + r/(khi) 212 . 

.{(r+1)(F2  - th khi/khi)F2cth (A-20) 

This eigenvalue term may be purely imaginary or real depending on the 

variables in the brackets. 

Proceeding to the terms of order 63  in (A-17) we determine the next 

term in the eigenvalue expansion by 

{-2a Ei2  + 2(a + E.z  + 2(2y+d)}Ei = 0 (A-21) 

or, since # 0: 

E2 = E12 ( 2y-F 6 )}(a+W
1 

= {06 (K-Y) -M2Y+6 )}(a+0
-2 (A-22) 

when (A-19) is used. By the definitions (A-3) this gives the solution 

x
2
(3,4) - 2F2th khi/khi+(khi)-2

}. 

.{(F2  - th khi/khi) 2(r+1)cth kh,1-1 (A-23) 

It is easily seen that both solutions E2 (3 , 4) are real and positive for all 

values of the variables involved. 

As in the finite eigenvalue case we may proceed to higher order terms 

by first calculating E3  from ELf  terms in (A-17) and so on. We conclude 

by inspecting (A-17) that this can easily be done. We will, however, 

stop the development of the small eigenvalues at this stage. The solution 

so far developed then is 

A-6 



03 '4)  = ± i{F4  - (r+1)F2cth khi/khi + r/(khi)2 }2 . 

. {(r+1)(F2  - th kh i /kh i )F2cth khi} 1  .(kh2 )2  

+ {F4  - 2F2th kh i /khi + 1/(khi)2} • 

. {(r+1)(F2  - th khi /kh i ) 2cth kill}-1 . kh2 

+ 0{(kh2 )3/2 } (A-24) 

The solution is not valid close to the condition where 

F2  = th khi/khi (A-25) 

where the smallness requirement is contradicted. This case is considered 

separately in the following. 

A-7 



A-3. THE CASE F2  = th kh1/kh1. 

This case is investigated by starting from the following rewritten form 

of the eigenvalue equation (A-2): 

A-8 

a(E-2)0 = kh2{y(E-1)4  + 6(E--1)2  + K} 

where the parameters are defined as 

a = - 13 = (r+1)F4  th khi  

Y = - F4  th2kh1  

= (r+1) F4  

K = r F14  

Inspection of (A-26) gives the finite solution 

E ( 1 ) = 2 + O{kh2 } 

(A-26)  

(A-27)  

(A-28)  

This is seen to be exactly the same solution as the one (positive root) 

found before in (A-15). 

Inspection of (A-26) also leads to the following perturbation parameter 

E = (kh2 )1/3 (A-29) 

when small eigenvalues are searched. 

The small eigenvalues are now searched by developing E as 

E Eic E262  E363 (A-30) 



The developed powers E2 ,E3  and E4  are found as before. After 

introduction of the developed forms in (A-26) we can write the 

eigenvalue equation as 

- 2a E13 6 3  + a Ei2(E12  - 6E2)E4  = 

(y + S + K)E3  - 2(2i+d)E1E 4  + 0{E5 } (A-31) 

The terms of order 63  now give the solution 

E13  = -(y + 6 + K)(2a)-1 (A-32) 

which after introduction of (A-27) and some simplification gives the 

three first order eigenvalues as 

(n+2) e _ i(3-2n)Tr/3 - {(r+1)sh 2kh1}-1/3 
(kh2)

1/3 

+ 0{(kh2)2/3), n = 0,1,2 

They obviously have the same first order absolute value 

1 (n+2 = {(r+1)sh 2kh1}- 1/3  (khz)1/3  

but separate arguments 

arg {E(11+2) } = ff/3, 7, 57/3 

(A-33)  

(A-34)  

(A-35)  

respectively. They are located in the E - plane as shown in the follow-

ing figure 

A-9 
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Fig.A-1. Eigenvalue solution in phase velocity plane for the case 

F2 = th khi/khi. 

One of the eigenvalues 021, is real while the two others are complex 

conjugate. 

For the purpose of physical interpretation we consider real and imagi-

nary parts of the three eigenvalues. It is easily confirmed that the 

resulting formulas are 

Er(2)  = - {(r+1)sh 2khi}-1/3  (kh2)1/3  

E.(2) = 
(A-36) 

(3) = r - 2 {(r+1)sh 2kh1}-1/3  (kh2)1/3  

(3) = - 7 3 (r+1)sh 2kh0-1/3  (kh2)1/3 (A-37) 

E (4) = E (3) 
r r 

r . (4) = - r  (3) (A-38) 



Going back to (A-31) we may determine the next term in the 

development of small eigenvalues from the EL' coefficient as 

a X14  - 6a E L 2 = 2(2y+0E1 (A-39) 

or 

E2 = {2(2y+6) + a E13 }( 6a 1)-1 (A-40) 

This is fully determined by the parameters a,y,d and K together with 

the Ei  solution. We will not pursue the development of (A-40), but just 

conclude that the term generally exists for all three eigenvalues under 

discussion. We have then found the three small eigenvalues as 

(n+2) = ei(3-2n)03{(r+1)sh 2k111}-1/3 (kh2)1/3 

+ 0{(kh2 )2/3 }, n = 0,1,2 (A-41) 
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APPENDIX B 

AMPLITUDE RATIO CALCULATIONS 



B-1 

B-1. FINITE EIGENVALUES. 

With reference to chapter 11 the following developments are intended to 

give the details in calculating the final amplitude ratio (11.1). Starting 

by substitution of (9.14) into (11.2), we get 

a2.4 ( I) = ch kh1  {th kh1/kh1  + 0{kh2 ) 1 {Okh2 } 

= 0{kh2 } (B-1) 

It is obvious that this includes both of the finite eigenvalues 
(1) and E(2) 

For the sake of control we also develop the alternative or interface 

amplitude ratio formula (11.3) for the same eigenvalues: 

a12(11)  = ch kh1  {. (1-r) th kh1/kh1  + O{kh2 }} • 

. {th kh1/kh1  + 0{kh2}}-1  

+ ch kh1  p2p 1 -1 th kh1{th kh1/kh1  + 0{kh2 }-1  F2E 2 /kh2  

= (1-r)ch kh1  + (1+r)ch kh1 kh1  F2E 2 /kh2  

0{kh2 } (B-2) 

We note that the term with kh2  in the denominator is large, since is 

finite while the first term is finite and the other terms are small. The 

last formula may now be inverted for comparison with (B-1), since 

a12 = a21 1 by definition. This leads to 

a l/ (II) = { (1-r) + kh1  F2E2 /kh2  + 0{kh2 }}-1  /ch kh1  

= {kh1  ch kh1  F2E 3 }-1•kh2 O{(kh2 ) 2 } (B-3) 

This is then the explicit expression for the result (11.1) 



B-2. SMALL EIGENVALUES. 

The small eigenvalue case is treated in a similar way as the previous 

one. The amplitude ratio to be considered first is the one given by 

equation (11.2) 

ali( I ) = F-2(E-1)-2 ch kh1  {F2 (E-1)2  - th kh1/kh1} (B-4) 

J. 
which for eigenvalues satisfying E = 0{(kh2) 2 } obviously gives 

all(I)  I ) = F-2 ch kh1  {F2  - th kh1/kh1} + 0{(kh2)21 
 
} (B-5) 

It seems not obvious that formula (11.3) should give the same result as 

(B-5). A closer examination will therefore be given. According to 

(11.3) we should have 

a12(II) = F
-2

(E-1)
-2 ch kh1 {F2 (E-1)z  - r th kh1/kh1} 

+ ch khl (r+1) th khl (kh2)-  E2(E-1)-2 (B-6) 

Again E = 0{(kh2) 2 }, and by relation (10.20) 

E 2  = -Er + 0{(kh2)312 } (B-7) 

Further substitution of formula (10.8)(repeated here) 

= {F4  - (r+1)F2  cth khl/kh1 + r/(kh1) 2 } ' 

.{(F2  - th kh1/kh1)F2  cth kh1(r+1)-1}kh2 (B-8) 

for Ei  2  leads to 

a12(II) = F-2 (F2 - th khl/khl)-1  ch kh1  F4(1-th2khi) 

1 
+ Of (khz ) 2 1 

= F2(F2  - th kh1/kh1)-1  ch kh1  + 0{(kh2 ) 2 } (B-9) 
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And finally this result may be inverted, remembering that a21 = a 1 2
-1 
 , 

to give 

a2_4 (11) = F-2 ch khi(F2  - th kh i /kh i ) + 0{(kh2 ) 2 } (B-10) 

which is seen to be identical to (B-5). Again it should be remembered 

that the small eigenvalue solution is not valid at the transition condition 

Fz = th khi /khi. The corresponding amplitude ratio solution should be 

treated specially as was the eigenvalue solution. This is done in the 

following. 
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B-3. THE CASE F2  = th kh1/kh1. 

The finite eigenvalue case is included in the results (B-1) and (B-3). 

We therefore go to the three small eigenvalues for particular evaluation 

of the amplitude ratio along the condition F2  = th khi/khi. 

From the free surface equation (B-4) we get 

a21  = F-2 ch khi  {F2  - (1-E)-2 th kh1/kh1} 

= F-2 ch kh1  {FL - th khl/khl  - 2E th khl/khi} + ' 

= - 2 ch khi  E + • ' (B-11) 

Corresponding to the three eigenvalues (A-33) we now get the three 

amplitude ratios as 

= _ 031(  a21(n+2) 2 ch khl ei(3-2n) r+1)sh 2kh1}-1/3  (khz)1/3 

+ 0{(kh2 )2/3 }, n = 0,1,2 

All three are of the same order in kh2 , namely 

(n+2) 
a21 = 0{(kh2)1/3}, n = 0,1,2 

(B-12)  

(B-13)  

It is emphasized that the superscript (n+2) now refers to the respective 

eigenvalue found in App. A. 

We also note that two of the amplitude ratios are complex. Their loca-

tions in an Argand diagram for amplitude ratios are as shown in the 

following figure. 
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Fig.B-1. Amplitude ratio solutions for the case F2  = th kh1/kh1. 

In particular the phase differences defined at the end of section 8.1 are 

given as 

(2) -- q21 = 0 

(32/ (3) = - 27r/3 

021
(4)  = 2R/ 3  (B-14) 

It is easily confirmed that the interface equation (B-6) gives exactly 

the same result for the amplitude ratio. The last term in (B-6) is the 

significant one being of order (kh2)-1/3. By inversion we have  

a 21  = {(r+1)sh kh1  E2 }-1  . kh2  + H.O.T. 

= - 2 chkh1  E + H.O.T. (B-15) 

by using that E3= - {(r+1)sh 2kh1}-1  . kh2. 

Higher order terms, H.O.T. in the short notation of (B-15), are not 

shown explicitly here. Besides this the result (B-15) is identical to 

(B-11) from the free surface equation. 
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