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Abstract 

 

Metabolomics analysis of biofluids is a feasible tool for disease characterization and monitoring due to its 

minimally invasive nature. To reduce unwanted variation in biobanks and clinical studies, it is important 

to determine the effect of external factors on metabolic profiles of biofluids. In this study we examined 

the effect of sample collection and sample processing procedures on NMR measured  serum lipoproteins 

and small-molecule metabolites in serum and urine, using a cohort of men diagnosed with either prostate 

cancer or benign prostatic hyperplasia. We determined day-to-day reliability of metabolites by systematic 

sample collection at two different days, in both fasting and non-fasting conditions. Study participants 

received prostate massage the first day to assess the differences between urine with and without prostate 

secretions. Further, metabolic differences between first-void and mid-stream urine samples, and the 

effect of centrifugation of urine samples before storage were assessed. Our results show that day-to-day 

reliability is highly variable between metabolites in both serum and urine, while lipoprotein subfractions 

possess high reliability. Further, fasting status clearly influenced the metabolite concentrations, 

demonstrating the importance of keeping this condition constant within a study cohort. Day-to-day 

reliabilities were however comparable in fasting and non-fasting samples. Urine sampling procedures such 

as sampling of first-void or mid-stream urine, and centrifugation or not before sample storage, were 

shown to only have minimal effect on the overall metabolic profile, and is thus unlikely to constitute a 

confounder in clinical studies utilizing NMR derived metabolomics.  
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1. Introduction 

Metabolomics, the study of small-molecular intermediates and end-products of metabolism, provides a 

snapshot of the active cellular processes. The most commonly used platforms for metabolic profiling is 

nuclear magnetic resonance (NMR) spectroscopy and chromatography-based mass spectrometry (MS). 

While MS has the advantage of high sensitivity (picomolar for MS versus micromolar for NMR), NMR has 

high reproducibility and a simpler sample-preparation which is more suitable for large-scale 

reproducibility and quality studies [1]. Metabolomics analysis of biofluids are gaining increased interest 

due to its minimally invasive nature, and several studies have shown that different biofluids contain 

important information related to cancer diagnosis, prognosis and treatment response [2]. The most 

commonly used biofluids for metabolomics analyses are blood (serum or plasma) and urine, however 

other biofluids such as saliva [3] and cerebral spinal fluid [4] has also shown promising results for disease 

characterization. Sampling of blood and urine, often termed liquid biopsies, is less invasive than e.g. 

cerebrospinal fluid or tissue biopsy and therefore suitable for screening, surveillance and patient 

monitoring. However, in comparison to metabolomics analysis of tissue samples, the biofluid metabolome 

will reflect the metabolic state of the entire organism being studied. Serum and urine metabolism are 

therefore influenced by several endogenous and exogenous factors, such as health and disease [2], diet 

[5, 6], and activity level [7-10]. Such factors may change over time, causing variation in the measured 

metabolome that can hinder the identification of clinically relevant biomarkers. Additionally, previous 

studies have demonstrated that urine and serum metabolomes are affected by circadian rhythms [11, 12]. 

Characterizing how the biofluid metabolome varies between days will facilitate identification of robust 

biomarkers for clinical use.  

 

To minimize the effect of irrelevant factors, collecting samples from fasting participants and standardizing 

the sampling protocols are desired in biobanks and clinical studies. The effect of time from sample 
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collection to freezing on NMR measured metabolic profiles in serum and plasma has been assessed [13, 

14], in addition to different centrifugation methods for urine samples [15], demonstrating that sample 

handling will affect the measured metabolic profile. However, different biobanks may follow different 

protocols for sample collection and handling. Collecting urine and serum samples from fasting condition 

will reduce the influence of immediate diet effects on the measured metabolic profile. For urine samples, 

collecting mid-stream samples is usually recommended to avoid contaminations such as bacteria and 

epithelial cells [16]. However, it is not always feasible to collect fasting samples, for instance in large-scale 

population biobanks or in cases where fasting will be inconvenient for the patients in clinical trials. 

Additionally, study participants may not always follow the given instructions. Thus, it is important to 

characterize how deviations from standard protocols affects the metabolic profile.  

 

Prostate cancer is the most common cancer type in men, and there is an urgent need of defining 

biomarkers for accurate diagnosis of prostate cancer, and further to separate aggressive from indolent 

cancers. Urine is an interesting biofluid in the search for prostate cancer biomarkers, due to its close 

proximity to the prostate. The main function of the prostate is to produce and secrete prostatic fluid which 

mixes with sperm upon ejaculation. By applying prostate massage (stroking the prostate through the 

rectum), prostatic fluid will be released into the urethra, and the first urine collected after prostate 

massage will be a mixture of urine and prostate secretion. The difference in metabolic profile between 

urine with and without prostate secretions has not been assessed.  

 

The purpose of this study was to examine how sample collection and processing affects NMR measured 

serum lipoproteins and small-molecule metabolites of serum and urine, using a cohort of men diagnosed 

with either prostate cancer or benign prostatic hyperplasia. To achieve this, we examined day-to-day 

variations in the NMR measured serum and urine metabolome by systematic sample collection at two 



5 
 

different days, and we characterized how non-fasting serum and urine samples differ from fasting samples 

in a setting where samples were collected before and after a meal. Further, we describe metabolic 

differences between urine samples acquired with and without prior prostate massage, the effect of 

centrifugation of urine samples before storage, and metabolic differences between first- void and mid-

stream urine samples.  

 

2. Materials and methods 

2.1 Study participants 

Serum and urine samples were collected as part of a pilot study including prostate cancer patients (n=29) 

and controls diagnosed with lower urinary tract symptoms and benign prostatic hyperplasia (n=21)[17]. 

Samples were collected at St. Olavs University Hospital, Trondheim, Norway, at two different days within 

a week (Monday (Day 1) and Thursday (Day 2)). At Day 1, the patients received prostate massage by three 

finger strokes over the prostate prior to urination in order to collect urine containing prostate secretion. 

Fasting morning serum and urine samples were collected, and non-fasting samples were then collected 

after participants ate a meal of their own choice. Median time since last meal were 11 hours (range: 9-15 

hours) for fasting samples and 2 hours (range: 0.5-2 hours) for non-fasting samples.  

 

First-void and mid-stream urine was collected from both fasting and non-fasting. The first 20-30 mL of 

urine was defined as first-void urine (or urine containing prostate secretion at the morning of day 1) and 

collected in separate tubes. One aliquot of urine was immediately frozen after collection, while another 

was centrifuged (10 000g, 10 minutes) before collection and freezing of the supernatant. This resulted in 

16 urine samples per study participant (Figure S1), giving a total of 800 urine samples.  
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Serum samples were collected in 10 mL Vacuette tubes without gel, turned five times and left to coagulate 

for at least 30 minutes (max 120 minutes), before all samples were centrifuged (1800g, 10 minutes) and 

aliquoted.  Serum samples (four samples per study participants, Figure S1) and urine samples  were stored 

in Biobank1, St.Olavs University Hospital, at -80 °C for approximately one year before NMR analysis.  

 

This study was approved by the Regional Committee for Medical and Health Research Ethics (Norwegian 

Health Region III) (REK 2011/540) and informed written consent was obtained from all study participants.  

 

2.2 NMR analyses 

Thawed urine samples (540 μL) were mixed with a bacteriostatic buffer (60 μL) (pH 7.4, 1.5 mM KH2PO4 

in D2O, 0.1% sodium 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionate (d4-TSP), 2 mM NaN3) and 

transferred to 5 mm NMR tubes. Urine samples containing prostate secretion (1 mL) were centrifuged at 

13000 g for 5 min before NMR analysis, and 540 μL supernatant was used for analysis. Thawed serum 

samples (100 μL) were mixed with 100 µL buffer (pH 7.4, 0.075 mM Na2HPO4, 5 mM NaN3, 5 mM d4-TSP) 

and transferred to 3 mm NMR tubes.  

 

All NMR experiments were recorded on a Bruker Avance III 600 MHz spectrometer (Bruker BioSpin GmbH, 

Rheinstetten, Germany) equipped with a 5 mm QCI Cryoprobe with integrated, cooled preamplifiers for 

1H, 2H and 13C. Experiments were fully automated using the SampleJet™ in combination with Icon-NMR 

on TopSpin 3.1 software (Bruker Biospin). Samples were stored at 6 °C in the autosampler prior to analysis. 

Urine samples were analysed at 27 °C, using a 1D 1H Nuclear Overhauser effect spectroscopy (NOESY) 

pulse sequence (noesygppr1d) with 32 scans (NS), 64k data points (TD), 20 ppm spectral width, 4 s 

relaxation delay and mixing time of 10 ms. Serum samples were recorded at 37 °C using a Carr–Purcell–

Meiboom–Gill (CPMG) pulse sequence (cpmgpr1d) with 64 scans (NS), 64k data points (TD), 20 ppm 
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spectral width and 4 s relaxation delay. Both pulse sequences utilized water presaturation (25 Hz) during 

the relaxation delay. The spectra were Fourier transformed to 64K real data points after 0.3 Hz exponential 

line broadening. 2D heteronuclear single quantum coherence spectroscopy (HSQC) were acquired for 

metabolite identification. Results from analysis of serum samples showing metabolic differences between 

prostate cancer and benign prostatic hyperplasia from day 1 have been published previously [17].  

 

2.3 Data preprocessing 

Data were transferred to Matlab R2017a for further processing. Urine NOESY NMR spectra were 

referenced to the creatinine peak at 3.05 ppm. The region of interest between ppm 0.73-9.42 was peak 

aligned using icoshift [18] using the spectrum with the highest correlation to the remaining spectra as 

reference. Asymmetric least squares baseline correction [19] was used to correct the baseline of two 

spectra with uneven baseline due to poor water-suppression. Spectra were normalized by probabilistic 

quotient normalization [20] after removal of the water peak between ppm 4.63-5.00, using the median 

spectrum as a normalization reference. Four spectra were removed due to poor spectral quality, and four 

spectra were removed due to insufficient water suppression. Urine samples from one patient at day 2 

were excluded due to large contaminating peaks from paracetamol intake.  

 

Serum spectra were referenced to the left peak of the alanine doublet at 1.47 ppm. One spectrum was 

removed due to contaminations from unknown origin resulting in massive peaks in the spectrum. The 

spectra were baseline corrected by setting the lowest point to zero. The region of interest between 0.29-

8.52 ppm, excluding the water peak between 4.31-5.15 ppm, was normalized to equal total area.  

 

Metabolites were assigned using HSQC data, Chenomx NMR suite 7.7 (Chenomx Inc., Alberta, Canada) 

and the Human Metabolome Database [21]. Metabolite peaks were integrated from normalized spectra 
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using Matlab, and for metabolites with more than one resonance, either the mean of resonances or the 

resonance in a non-overlapping region of the spectrum was chosen. For serum samples, the metabolite 

levels were normalized after quantification to remedy the influence of large lipid peaks in the spectra.    

 

Lipoprotein subfractions were predicted from the fasting serum NMR spectra using commercially 

available procedures from Bruker Biospin (Bruker IVDr Lipoprotein Subclass Analysis (B.I.LISA)), as 

described previously for this dataset [17]. This method measures the concentration of cholesterol, 

phospholipids, triglycerides and/or apolipoproteins A1, A2 and B in the serum sample (total values) and 

in each of the lipoprotein subfractions (total very low-density lipoproteins (VLDL), intermediate density 

lipoproteins (IDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL), in addition to the 

subclasses VLDL-1–6, LDL-1–6 and HDL-1–4) [22].  

 

2.4 Statistical analysis 

Intraclass correlation coefficients (ICC) for each metabolite and lipoprotein subfraction were calculated 

between measurements from the two days of sample collection to assess day-to-day reliability. ICCs were 

calculated from random intercept models with no covariates in R (version 3.5.2, R Foundation for 

Statistical Computing) using the nlme package. Random intercept models are linear mixed models and 

allows for modelling of random effects in clustered data, such as repeated measures collected from the 

same individuals. The ICC is an estimate of the correlation between clustered observations, and is 

calculated as the variance of the random effect divided by the total variation of the model.  

 

To examine metabolic differences between days (day 1 vs day 2, in fasting and non-fasting condition), 

principal component analysis (PCA) trajectory plots were calculated from autoscaled metabolite levels. 

Systematic differences between samples with different sampling procedures (fasting vs non-fasting serum 



9 
 

and urine samples, centrifuged vs non-centrifuged urine samples, urine with and without prostate 

secretion, first-void vs mid-stream urine samples) were examined by multilevel partial least squares 

discriminant analysis (multilevel PLSDA) [23] of autoscaled metabolite levels. Multilevel PLSDA puts focus 

on the individual changes in metabolic profile due to sampling procedures, by separating the within- and 

between-subject variation. Models were orthogonalized for easier interpretation [24]. Loadings were 

colored according to variable importance in the projection (VIP) score, reflecting the variable’s influence 

on the classification [25].   

 

For urine samples, centrifuged, mid-stream samples were used for assessment of day-to-day variation, 

fasting/non-fasting samples and to compare urine with and without prostate secretion. For examining 

differences between first-void and mid-stream urine samples, fasting, centrifuged samples from day 2 

(without prostate massage) were used. For examining differences between centrifuged and non-

centrifuged urine samples, fasting mid-stream samples from day 2 were used. When comparing fasting 

and non-fasting condition, samples from both days were used. Multilevel PLSDA models were validated 

by leave-n-patients-out cross-validation (where n=10% of patients) with 20 iterations. Permutation testing 

using 1000 permutations was performed for testing the significance of the resulting models, and models 

with permutation p-values (pperm) ≤ 0.05 were considered significant. Multivariate analyses were 

performed in Matlab R2017a using PLS_toolbox 8.2.1. Boxplots showing changes in metabolite 

concentrations related to urine sampling procedures were made in R version 3.5.2 using the package 

ggplot2, and shows the median, first and third quartiles (in box) and up to the smallest/largest observation 

within 1.5 * interquartile range from the box (whiskers). For visual simplicity, outliers are not shown.  
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3. Results 

3.1 Day-to-day variations in the biofluid metabolome 

Relative concentrations of 25 serum metabolites and 34 urine metabolites were quantified (Table S1 and 

S2 for serum and urine metabolites, respectively), while 105 lipoprotein subfractions were quantified from 

fasting serum samples as previously described (Table S3) [17]. There are clear day-to-day variations in 

fasting serum metabolites, urine metabolites and serum lipoproteins, as demonstrated by PCA trajectory 

score plots (Figure 1). The amounts of variation explained by the first two principal components are 39.9%, 

24.0% and 64.4% for serum metabolites, urine metabolites and lipoprotein subfractions, respectively. For 

some individuals, metabolite measurements from two different days cluster together in the PCA score 

plot, while in several cases the variation between two measurements from one individual appears 

comparable to the between-subject variation. The serum lipoproteins have smaller day-to-day variations 

compared to the small-molecule serum metabolites, as two samples from the same study participant are 

plotted closer together in the PCA score plot. Similar results were evident also in further PCs. PCA 

trajectory score plots for non-fasting serum and urine samples are shown in Figure S2, showing 

comparable day-to-day variations as for fasting samples.  

 

ICC values for quantified serum (Figure 2A) and urine metabolites (Figure 3A) show comparable day-to-

day reliability in fasting and non-fasting samples. Nine serum metabolites (36%) had ICC ≥ 0.5 for both 

fasting and non-fasting samples. Methionine levels had low ICC values (≤ 0.2) for both fasting and non-

fasting samples. Histidine and tyrosine had ICC<0.2 in fasting samples, while ICC > 0.5 for non-fasting 

samples. Mean ICC values were 0.47 and 0.52 for fasting and non-fasting serum samples, respectively. 

 

Urine samples had ICC ≥ 0.5 for both fasting and non-fasting samples for 16 metabolites (47%) (Figure 3A). 

Dimethylamine and tartaric acid had ICC<0.2 for both fasting and non-fasting samples, while 3-
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aminoisobutyrate, citrate, and ascorbate had ICC values ≥ 0.8 in fasting and non-fasting condition.  Mean 

ICC were 0.51 and 0.52 for fasting and non-fasting urine samples, respectively. 

 

ICC values for fasting lipoprotein subfractions are shown in Table S3.  103 subfractions (98%) had ICC 

values > 0.5 and 85 subfraction (81%) had ICC values ≥ 0.8. ICC values ranged from 0.42-0.95, with a mean 

of 0.84.  

 

3.2 The effect of fasting and non-fasting condition on the biofluid metabolome 

There were significant differences in serum metabolite levels between fasting and non-fasting serum 

samples, with a multilevel PLSDA classification accuracy of 93.2% (pperm < 0.001).  Orthogonalized PLSDA 

score and loading plots (Figure 2B-C) show that non-fasting samples had higher levels of leucine and 

icoleucine compared to fasting samples, while fasting serum samples were characterized by higher 

relative levels of glutamine, dimethyl sulfone and glycine.  

 

The difference between fasting and non-fasting urine samples was assessed on centrifuged, mid-stream 

urine samples. Multilevel PLSDA showed highly significant differences due to fasting status with a 

classification accuracy of 97.3% (pperm<0.001) (Figure 3B-C). Non-fasting samples had higher levels of 

alanine, glycine, allantoin, and 2-furoylglycine, and lower levels of phenylacetylglutamine, p-cresol sulfate, 

dimethylamine, creatinine, and hippurate compared to fasting samples.  

 

PCA trajectory analysis of fasting and non-fasting samples shows that the within-subject variation due to 

fasting status is of comparable influence as the between-subject variation for both serum and urine 

samples (Figure S3).   

 



12 
 

3.3 Metabolic differences between urine with and without prostate secretion 

PCA trajectory plot (Figure 4A) shows that metabolite levels from first-void urine samples collected 

immediately after prostate massage, containing prostate secretion, show small, but systematic 

differences compared to mid-steam urine samples. For most individuals, the between-subject variation is 

larger than the variation between measurements from the same individual. These systematic differences 

between prostate secretion and urine resulted in perfect separation in a multilevel PLSDA model with a 

classification accuracy of 100.0% (pperm<0.001), showing that there are clear metabolic differences 

between the two sample types (Figure S4). Differences in metabolite levels between urine samples with 

and without prostate secretion are shown in Figure 5A. As evident from both percentage differences and 

OPLSDA loadings, it is clear that urine samples had higher levels of all quantified metabolites except for 

citrate and the NMR signal at 3.11 ppm, consisting of signals from spermine, proline betaine, cis-aconitic 

acid and 3-aminoisobutyrate. 

 

3.4 Metabolic differences between first-void and mid-stream urine samples 

First-void and mid-stream urine samples from the same individuals could be well separated by multilevel 

PLSDA with a classification accuracy of 95.0% (pperm<0.001), demonstrating clear differences in metabolite 

levels (Figure S4). However, PCA trajectory analysis (Figure 4B) show that although systematic, the 

metabolic differences between first-void and mid-stream urine are minor compared to between-subject 

variations, with overlapping samples in the PCA score plot for most of the individuals. This is also evident 

by the very small percentage differences, fluctuating around zero,  between first-void and mid-stream 

urine samples shown in Figure 5B.   

 

3.5 Metabolic difference between centrifuged and non-centrifuged data 
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Separation of centrifuged and non-centrifuged urine samples by multilevel PLSDA was highly significant 

(classification accuracy 91.0%, pperm<0.001, Figure S4). PCA trajectory analysis (Figure 4C) however shows 

that the within-subject variation resulting from differences in first-void and-mid stream samples are minor 

compared to the between-subject variation, and the samples from the same individual are overlapping. 

Median percentage change in metabolite concentrations  fluctuate around zero, as shown in Figure 5C. (  

 

4. Discussion  

In this study we demonstrate clear day-to-day variations in the NMR measured metabolome of serum and 

urine samples. However, most metabolites show correlated levels in measurements from two different 

days, with mean ICC values of approximately 0.5 for both serum and urine samples. Serum lipoprotein 

subfractions had smaller day-to-day variations and higher ICC values compared to small-molecule serum 

metabolites measured simultaneously. We further describe metabolic differences in samples acquired 

with and without prior fasting, and demonstrate a change in the metabolic profile of urine after prostate 

massage releasing prostate secretion.  Additionally, we show that urine sampling procedures such as 

sampling of first-void or mid-stream urine, and performing or not performing centrifugation before 

sample storage introduces systematic, but very small, differences in the metabolite levels.  

 

The high ICC values observed for NMR derived lipoprotein subfractions, with a mean value of 0.84, are in 

agreement with a previous study showing low coefficients of variation for serum total and HDL cholesterol 

in samples acquired days apart [26]. The observation of higher day-to-day reliability of serum lipoprotein 

subfractions compared to small-molecule serum metabolites is expected. The small-molecule metabolites 

will be more influenced by immediate factors, such as last meal, recent activity level, and circadian 

rhythm, while lipoproteins, commonly measured to assess an individual’s cardiovascular health, represent 

a measure of long-term habitual diet and lifestyle.  
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Interestingly, mean ICC values over all quantified metabolites were comparable in fasting and non-fasting 

samples for both serum and urine samples. In agreement with our results, a previous study by Carayol et 

al. examining serum samples collected from individuals at two different days two years apart found 

comparable reliability according to fasting status for most amino acids [27]. However, the estimated ICC 

values in our studies are not in agreement for all amino acids. While our data show low ICC values for 

methionine for both fasting and non-fasting samples, Carayol et al. find ICCs of 0.6 for methionine in 

fasting samples. Similarly, we find ICC values above 0.6 for fasting and non-fasting leucine and isoleucine, 

while Carayol et al. describe ICCs below 0.3 for non-fasting samples. This discrepancy may result from 

differences in study design, as they acquired samples two years apart, and their non-fasting samples were 

collected from women only. Further, in the study by Carayol et al, the first batch of samples was stored 

for two years longer than the second batch, and it is possible that metabolite degradation during sample 

storage affects the reliability measure of certain metabolites. Thus, ICC values for different metabolites 

might be affected by sample handling. However, previous studies have described how serum metabolic 

concentrations fluctuate within the first hours after a meal [28, 29], and in our study postprandial samples 

were acquired approximately after two hours. Sampling at varying time points after food intake, which 

would represent a more realistic setting for a study cohort including non-fasting samples, might have 

provided lower day-to-day reliability for non-fasting samples.  

 

Serum dimethyl sulfone had high day-to-day reliability with ICC values above 0.9 for fasting and non-

fasting samples. We previously described serum dimethyl sulfone as a possible biomarker for separating 

prostate cancer and benign prostatic hyperplasia in the same cohort [17]. A good biomarker should have 

reliable measurements between days, thus this study further supports dimethyl sulfone as a feasible 

biomarker for prostate cancer. Histidine levels were also in our panel of possible biomarkers for prostate 
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cancer, however this amino acid shows low reliability in fasting samples, and may therefore be a less 

valuable biomarker candidate.  

 

Urinary levels of 3-aminoisobutyrate and ascorbate had ICCs above 0.8 in both fasting and non-fasting 

samples, thus showing high day-to-day reliability. 3-aminoisobutyrate is an end-product of pyrimidine 

degradation, while ascorbate, or vitamin C, is an important antioxidant and contributes to immune 

defence [30]. On the contrary, urine dimethylamine, trimethylamine N-oxide (TMAO) and tartaric acid all 

had ICC values below 0.25 in both fasting and non-fasting conditions. Both TMAO and dimethylamine are 

abundantly present in urine, and can result from metabolism of trimethylamine by gut microbiota [31], 

while dietary intake is the major contributor to urinary tartaric acid [32]. Thus, our results show that 

metabolites typically resulting from diet may have low reliability also in fasting samples. Creatinine is a 

breakdown product of creatine phosphate in muscles, and is claimed to be produced at a relatively 

constant rate in the body. This is in accordance with our findings of ICC values above 0.5 for creatinine 

levels measured both in fasting and non-fasting serum and urine samples.  

 

The effect of habitual diet has been investigated in several large epidemiological studies [33-35], showing 

that habitual dietary patterns will be reflected in serum metabolic data. Further, a previous study showed 

more diet-specific metabolites being present in urine than in serum samples [36]. Fasting samples are 

usually recommended to reduce the direct effect of dietary intake, however this is not always achievable, 

and not all subjects will be fasting even if required. Despite comparable ICC values between fasting and 

non-fasting samples, we detected large differences in metabolic profiles of fasting and non-fasting 

samples both in urine and serum. Participants in our study had a freely chosen meal prior to the non-

fasting sample collection, and our cross-over study design allows analysis of fasting effects within 

individuals. The very high classification results for separating fasting and non-fasting samples indicate that 
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the metabolic patterns we observe are characteristic of fasting status, independent of which type of food 

has been consumed.  

 

For serum, the main effect of non-fasting condition was increased leucine and isoleucine levels, and 

decreased dimethyl sulfone and glycine levels. Both leucine and isoleucine are essential amino acids, and 

food intake will increase their serum concentrations. Similarly, a study of postprandial serum 

metabolomics three hours after intake of three different breakfast meals found increased leucine levels 

after intake of dairy and meat containing meals, while isoleucine was not quantified in their study [37]. In 

urine, non-fasting samples were characterized by higher levels of alanine, glycine, allantoin and 2-

furoylglycine levels, and lower levels of p-cresol sulfate and creatinine. Increased alanine levels in urine 

were also an important discriminator in a study comparing fasting samples to one and two hours 

postprandial samples following meals containing wheat bran and aleurone [38], while 2-furoylglycine is a 

suggested biomarker for coffee consumption [39]. Overall, our data show that differences in fasting status 

between study participants may introduce noise and possibly be a confounder in clinical studies using 

NMR measured metabolic profiling of biofluids.  

 

We showed clear separation between urine samples with and without centrifugation prior to storage, and 

between first-void and mid-stream urine. However, it should be noticed that the metabolic changes 

related to these sampling procedures are very small, as evidenced by the PCA trajectory plots showing 

nearly complete overlap between samples, and median percentage changes in metabolite concentrations 

fluctuating around zero. By using multilevel PLSDA analyses, we separate the within and between patient 

variation, in that way putting emphasis on the individual metabolic differences resulting from the sample 

processing. Despite high classification accuracies, the observed between-patient variation is much higher 



17 
 

than the systematic variation resulting from the protocol, thus centrifugation and urine type will not be a 

confounder of high influence in clinical studies where these factors are varying between patients.  

 

Larger within-patient variations were evident between urine samples acquired with and without prior 

prostate massage. Urine samples had higher relative concentrations of most metabolites compared to 

urine with prostate secretion, possibly due to larger protein content after prostate massage, with the 

exception of levels of citrate and the singlet peak at 3.11 ppm. In urine spectra, this peak is frequently 

referred to as proline betaine, which can be related to intake of citrus fruits [40]. However 2D HSQC NMR 

experiments showed that this peak also contained signals from spermine, in addition to signals from cis-

aconitic acid, 3-aminoisobutyrate and an unknown compound. Both citrate and spermine are produced 

in large amounts by the healthy prostate. Although the overall metabolic content in urine seems reduced 

after prostate massage compared to regular urine, the high levels of citrate and spermine released from 

the prostate upon massage seems to compensate for this and increase relative citrate and spermine 

levels. Our results thus show that prostate massage affects the metabolic content of urine by secretion of 

prostate-related metabolites into the urine.  

 

In this study we examined a cohort of men with either prostate cancer or benign prostatic hyperplasia. It 

is possible that the presence of a non-healthy prostate affects the biofluid metabolites, and that results 

would differ in cohorts including men without prostatic conditions, or in cohorts including women. We 

and others have previously described metabolic changes as a results of circadian rhythms in both urine 

and blood samples [11, 12]. Our results may be influenced by diurnal variations, as the fasting samples 

were acquired in the morning while non-fasting samples were acquired mid-day. However, this study 

design allows comparison of fasting status within individuals, which is a strength of the study.  
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5. Conclusion 

We conclude that day-to-day reliability vary between metabolites in both serum and urine, which should 

be taken into account when searching for clinical biomarkers, as a good biomarker should possess low 

day-to-day variation. Further, fasting or non-fasting condition highly influenced the metabolite 

concentrations, thus it is important to keep this condition constant within a study cohort to avoid 

confounding results. Day-to-day reliability were however comparable in fasting and non-fasting samples 

in this setting where non-fasting samples were acquired two hours postprandial. Urine sampling 

procedures such as sampling of first-void or mid-stream urine, and centrifugation or not before sample 

storage, only had minimal effect on the overall metabolic profile, and is unlikely to constitute a 

confounder in clinical studies.  
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Figures: 

 

 

Figure 1: Day-to-day variations in the biofluid metabolome. PCA score plots showing day-to-day 

variations in A) fasting serum metabolites, B) fasting urine metabolites and C) fasting lipoprotein 

subfractions between day 1 (yellow) and day 2 (black). Measurements from the same individual are 

connected with black lines. Variations explained by PC1/PC2 were 22.2/17.6%, 14.3/9.7% and 

42.9/21.6% for A, B, and C, respectively.  
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Figure 2: Day-to-day reliability and effect of fasting condition in serum metabolites. A) ICC values for 

fasting and non-fasting serum metabolites measured from the same individuals at two different days. 

B,C) Orthogonalized multilevel PLSDA results separating fasting from non-fasting condition. The score 

plot (B) shows clear separation between fasting and non-fasting samples, while the corresponding 

loading plot (C) shows each metabolite’s influence on the model, colored by the metabolites’ VIP scores.  

Metabolites in C) are numbered according to A). *Unknown1: singlet at 3.36 ppm. 
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Figure 3: Day-to-day reliability and effect of fasting condition in urine metabolites. A) ICC values for 

fasting and non-fasting urine metabolites measured from the same individuals at two different days. 

B,C) Orthogonalized multilevel PLSDA results separating fasting from non-fasting condition. The score 

plot (B) shows clear separation between fasting and non-fasting samples, while the corresponding 

loading plot (C) shows each metabolite’s influence on the model, colored by the metabolites’ VIP scores.  

Metabolites in C) are numbered according to A).*in some spectra, the succinate peak is overlapping with 

an unknown peak at 2.41/32.5 in HSQC. **Singlet at 3.11 ppm consisting of signals from spermine, 

proline betaine, cis-aconitic acid, 3-aminoisobutyrat and an unknown compound. ***Unknown1: 

multiplet at 5.25 ppm. 
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Figure 4: Variation in urine metabolite levels related to sampling and sample processing procedures 

PCA trajectory score plots comparing A) prostate secrete and mid-stream urine samples, B) first-void 

and mid-stream urine samples, and C) centrifuged and non-centrifuged urine samples. Variations 

explained by PC1/PC2 were 13.9/11.0%, 14.9/11.6%, and 14.8/11.4% for A, B, and C, respectively.  
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Figure 5: Differences in urine metabolite concentrations related to sampling and sample processing 

procedures. The figure shows boxplots of percentage differences in relative metabolite concentrations 

between A) prostate secrete and mid-stream urine samples, B) first-void and mid-stream urine samples, 

and C) centrifuged and non-centrifuged urine samples. A positive differences represents a higher level in 

mid-stream urine, mid-stream urine, and non-centrifuged samples for A, B, and C, respectively. *in some 

spectra, the succinate peak is overlapping with an unknown peak at 2.41/32.5 in HSQC. **Singlet at 3.11 

ppm consisting of signals from spermine, proline betaine, cis-aconitic acid, 3-aminoisobutyrat and an 

unknown compound. ***Unknown1: multiplet at 5.25 ppm. 
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Supplementary figures: 

 

Figure S1: Serum and urine samples collected from each study participant. A total of 16 urine samples 

were collected from each study participant; first-void and mid-stream samples from fasting and non-

fasting condition at two different days. One aliquot of each urine sample was immediately frozen after 

collection, while another was centrifuged before collection and freezing of the supernatant. Four serum 

samples were collected from each study participant, fasting and non-fasting samples at two different 

days. 
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Figure S2: Day-to-day variations in the non-fasting biofluid metabolome. PCA score plots showing day-

to-day variations in non-fasting serum and urine metabolites between day 1 (yellow) and day 2 (black). 

Measurements from the same individual are connected with black lines. The amounts of variation 

explained by the first two principal components are 39.8% for serum metabolites and 25.9% for urine 

metabolites. 
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Figure S3: Variations due to fasting status in the biofluid metabolome. PCA score plots of fasting (blue) 

and non-fasting (orange) samples of serum and urine metabolite levels. Samples collected at day 1 are 

labelled by down-pointing triangles while day 2 samples are labelled by up-pointing triangles. PCA with 

two principal components explained 67.0% and 22.5% of the total variation for serum and urine 

metabolites, respectively.   
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Figure S4: Metabolic changes in urine related to sampling and sample processing procedures. A,B) 

Orthogonalized multilevel PLSDA  score and loading plot showing differences between urine with and 

without prostate secretion. C,D) Orthogonalized multilevel PLSDA  score and loading plot showing 

differences between first-void and mid-stream urine. E,F) Orthogonalized multilevel OPLSDA  score and 

loading plot showing differences between centrifuged and non-centrifuged urine. 1. Valine; 2. 3-
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Hydroxyisobutyrate; 3. 4-Deoxyerythronic acid; 4. 3-Aminoisobutyrate; 5. 4- Deoxythreonic acid ; 6. 3-

Hydroxyisovalerate; 7. 2-Hydroxyisobutyrate; 8. Alanine; 9. Acetate; 10. Acetone; 11. 

Phenylacetylglutamine; 12. p-Cresol sulfate; 13. Succinate*; 14. Citrate; 15. Dimethylamine; 16. 

Dimethylglycine; 17. Creatine; 18. Creatinine: 19. Singlet**; 20. Carnitine ; 21. Trimethylamine-N-oxide ; 

22. Taurine ; 23. Glycine ; 24. Hippurate; 25. Tartaric acid; 26. Ascorbate; 27. Xylose; 28. Unknown1***; 

29. Allantoin; 30. 2-Furoylglycine; 31. 4-Hydroxyphenylacetate; 32. Tyrosine; 33. Formate; 34. 

Trigonelline. ).*in some spectra, the succinate peak is overlapping with an unknown peak at 2.41/32.5 in 

HSQC. **Singlet at 3.11 ppm consisting of signals from spermine, proline betaine, cis-aconitic acid, 3-

aminoisobutyrat and an unknown compound. ***Unknown1: multiplet at 5.25 ppm. 
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Supplementary Tables: 

Table S1: Quantified serum metabolites. Metabolites were quantified by integration of spectral peaks 

and normalized to total area. Mean signals were used for metabolites with more than one resonances. d 

, doublet; dd, double doublet; m, multiplet, q, quadruplet; s, singlet. 

Metabolite ppm (multiplicity) 

Leucine 0.95 (t) 

Valine 0.97 (d), 1.03 (d), 3.61 (d) 

Isoleucine 0.99 (d) 

Dimethyl glutarate 1.06 (d) 

Alanine 1.47 (d) 

Acetate 1.91 (s) 

3-hydroxybutyrate 2.30 (m), 2.39 (m) 

Glutamate 2.34 (m) 

Pyruvate 2.37 (s) 

Glutamine 2.45 (m) 

Citrate 2.53 (d) 

Methionine 2.64 (t) 

Lysine 3.02 (t) 

Creatine 3.03 (s), 3.93 (s) 

Creatinine 4.05 (s) 

Proline betaine 3.10 (s) 

Dimethyl sulfone 3.15 (s) 

Unknown1 3.36 (s) 
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Glucose 3.24 (dd), 3.41 (m), 3.46 (m), 3.49 (m), 3.53 (dd), 3.72 (m), 

3.83 (m), 3.9 (dd), 5.25 (d) 

Glycine 3.56 (s) 

Lactate 4.11 (q) 

Tyrosine 6.90 (m), 7.20 (m)  

Histidine 7.06 (s), 7.79 (s) 

Phenylalanine 7.33 (d), 7.37 (m), 7.43 (m) 

Formate 8.47 (s) 
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Table S2: Quantified urine metabolites. Metabolites were quantified by integration of normalized 

spectra. Mean signals were used for metabolites with more than one resonances. d, doublet; dd, double 

doublet; m, multiplet, q, quadruplet; s, singlet. *in some spectra, the succinate peak is overlapping with 

an unknown peak at 2.41/32.5 in HSQC. ** peak consisting of signals from spermine, proline betaine, 

cis-aconitic acid, 3-aminoisobutyrat and an unknown compound. 

 Metabolite ppm (multiplicity)  

1  Valine 1.04 (d) 

2  3-Hydroxyisobutyrate 1.07 (d) 

3  4-deoxyerythronic acid (4-DEA) 1.11 (d) 

4 3-Aminoisobutyrate 1.20 (d) 

5 4- deoxythreonic acid (4-DTA) 1.23 (d) 

6 3-Hydroxyisovalerate 1.27 (s) 

7 2-Hydroxyisobutyrate 1.36 (s) 

8 Alanine 1.48 (d) 

9 Acetate 1.92 (s) 

10 Acetone 2.23 (s) 

11 Phenylacetylglutamine 2.27 (t) 

12 p-cresol sulfate 2.34 (s) 

13 Succinate* 2.41 (s) 

14 Citrate 2.54 (d) 

15 Dimethylamine 2.72 (s) 

16 Dimethylglycine 2.93 (s) 

17 Creatine 3.03 (s), 3.93 (s) 
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18 Creatinine 3.04(s), 4.05 (s) 

19 Singlet** 3.11 (s) 

20 Carnitine 3.23 (s) 

21 Trimethylamine-N-oxide (TMAO) 3.27 (s) 

22 Taurine 3.43 (t) 

23 Glycine 3.57 (s) 

24 Hippurate 3.97 (d), 7.55 (m), 7.64 (m) 

25 Tartaric acid 4.34 (s) 

27 Ascorbate 4.53 (d) 

28 Xylose 5.20 (d) 

29 Unknown1 5.25 (m) 

30 Allantoin 5.39 (s) 

31 2-Furoylglycine 6.64 (dd) 

32 4-Hydroxyphenylacetate 6.85 (m) 

33 Tyrosine 6.89 (m) 

34 Formate 8.47 (s) 

26 Trigonelline 8.84 (m), 9.12 (s) 
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Table S3: Quantified lipoprotein subfractions. Lipoprotein subfractions were quantified from fasting 

serum samples using quantification procedures from Bruker Biospin (Bruker IVDr Lipoprotein Subclass 

Analysis (B.I.LISA)). Intraclass correlation coefficients (ICC) for each parameter are shown.  

Matrix Analyte Name ICC 

Total Plasma Triglycerides TPTG 0.860 

Total Plasma Cholesterol TPCH 0.927 

Total Plasma Free Cholesterol TPFC 0.900 

Total Plasma Apo-A1 TPA1 0.921 

Total Plasma Apo-A2 TPA2 0.696 

Total Plasma Apo-B TPAB 0.932 

VLDL Triglycerides VLTG 0.869 

VLDL Cholesterol VLCH 0.895 

VLDL Free Cholesterol VLFC 0.889 

VLDL Phospholipids VLPL 0.876 

VLDL Apo-B VLAB 0.901 

IDL Triglycerides IDTG 0.822 

IDL Cholesterol IDCH 0.841 

IDL Free Cholesterol IDFC 0.851 
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IDL Phospholipids IDPL 0.836 

IDL Apo-B IDAB 0.845 

LDL Triglycerides LDTG 0.729 

LDL Cholesterol LDCH 0.918 

LDL Free Cholesterol LDFC 0.895 

LDL Phospholipids LDPL 0.927 

LDL Apo-B LDAB 0.909 

HDL Triglycerides HDTG 0.583 

HDL Cholesterol HDCH 0.940 

HDL Free Cholesterol HDFC 0.944 

HDL Phospholipids HDPL 0.936 

HDL Apo-A1 HDA1 0.946 

HDL Apo-A2 HDA2 0.834 

VLDL-1 Triglycerides V1TG 0.861 

VLDL-1 Cholesterol V1CH 0.874 

VLDL-1 Free Cholesterol V1FC 0.893 

VLDL-1 Phospholipids V1PL 0.874 

VLDL-2 Triglycerides V2TG 0.866 
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VLDL-2 Cholesterol V2CH 0.881 

VLDL-2 Free Cholesterol V2FC 0.892 

VLDL-2 Phospholipids V2PL 0.874 

VLDL-3 Triglycerides V3TG 0.874 

VLDL-3 Cholesterol V3CH 0.901 

VLDL-3 Free Cholesterol V3FC 0.891 

VLDL-3 Phospholipids V3PL 0.882 

VLDL-4 Triglycerides V4TG 0.866 

VLDL-4 Cholesterol V4CH 0.863 

VLDL-4 Free Cholesterol V4FC 0.869 

VLDL-4 Phospholipids V4PL 0.874 

VLDL-5 Triglycerides V5TG 0.836 

VLDL-5 Cholesterol V5CH 0.800 

VLDL-5 Free Cholesterol V5FC 0.880 

VLDL-5 Phospholipids V5PL 0.819 

VLDL-6 Triglycerides V6TG 0.493 

VLDL-6 Cholesterol V6CH 0.883 

VLDL-6 Free Cholesterol V6FC 0.642 
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VLDL-6 Phospholipids V6PL 0.876 

LDL-1 Triglycerides L1TG 0.402 

LDL-1 Cholesterol L1CH 0.937 

LDL-1 Free Cholesterol L1FC 0.872 

LDL-1 Phospholipids L1PL 0.820 

LDL-1 Apo-B L1AB 0.931 

LDL-2 Triglycerides L2TG 0.722 

LDL-2 Cholesterol L2CH 0.906 

LDL-2 Free Cholesterol L2FC 0.919 

LDL-2 Phospholipids L2PL 0.843 

LDL-2 Apo-B L2AB 0.828 

LDL-3 Triglycerides L3TG 0.748 

LDL-3 Cholesterol L3CH 0.825 

LDL-3 Free Cholesterol L3FC 0.863 

LDL-3 Phospholipids L3PL 0.912 

LDL-3 Apo-B L3AB 0.914 

LDL-4 Triglycerides L4TG 0.728 

LDL-4 Cholesterol L4CH 0.829 
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LDL-4 Free Cholesterol L4FC 0.748 

LDL-4 Phospholipids L4PL 0.824 

LDL-4 Apo-B L4AB 0.883 

LDL-5 Triglycerides L5TG 0.872 

LDL-5 Cholesterol L5CH 0.870 

LDL-5 Free Cholesterol L5FC 0.791 

LDL-5 Phospholipids L5PL 0.871 

LDL-5 Apo-B L5AB 0.874 

LDL-6 Triglycerides L6TG 0.867 

LDL-6 Cholesterol L6CH 0.681 

LDL-6 Free Cholesterol L6FC 0.595 

LDL-6 Phospholipids L6PL 0.696 

LDL-6 Apo-B L6AB 0.744 

HDL-1 Triglycerides H1TG 0.763 

HDL-1 Cholesterol H1CH 0.919 

HDL-1 Free Cholesterol H1FC 0.921 

HDL-1 Phospholipids H1PL 0.926 

HDL-1 Apo-A1 H1A1 0.915 
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HDL-1 Apo-A2 H1A2 0.858 

HDL-2 Triglycerides H2TG 0.569 

HDL-2 Cholesterol H2CH 0.937 

HDL-2 Free Cholesterol H2FC 0.877 

HDL-2 Phospholipids H2PL 0.916 

HDL-2 Apo-A1 H2A1 0.917 

HDL-2 Apo-A2 H2A2 0.826 

HDL-3 Triglycerides H3TG 0.621 

HDL-3 Cholesterol H3CH 0.936 

HDL-3 Free Cholesterol H3FC 0.879 

HDL-3 Phospholipids H3PL 0.833 

HDL-3 Apo-A1 H3A1 0.861 

HDL-3 Apo-A2 H3A2 0.749 

HDL-4 Triglycerides H4TG 0.838 

HDL-4 Cholesterol H4CH 0.822 

HDL-4 Free Cholesterol H4FC 0.707 

HDL-4 Phospholipids H4PL 0.859 

HDL-4 Apo-A1 H4A1 0.863 
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HDL-4 Apo-A2 H4A2 0.811 

 


