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Abstract

Metabolomicsanalysis of biofluidis a feasible tool for disease characterization and monitoduog to its
minimally invasive natur€l'o reduceunwanted variationin biobanks and clinical studidsis important

to determinethe effect of external factors ometabdic profiles of biofluidsIn this study wesxaminel
the effect of sample collectioand sampleprocessingrrocedureson NMR measuredserumlipoproteins
andsmaltmolecule metabolitegn serum and urine, using a cohort of men diagnosed with either prestat
cancer or benign prostatic hyperplasiile determinedday-to-dayreliability of metabolitedy systematic
sample collection at two different days) both fasting and notfiasting conditionsStudy participants
received prostate massage the fiddy to asess the differences betweeirine with and without prostate
secretions.Further, metabolic differences between firstoid and midstream urine samplesand the
effect of centrifugation of urine samples before storagere assessedur results shovthat dayto-day
reliability is highly variablébetween metabolites in both serum and uringhile lipoprotein subfractions
possess high reliabilityFurther, fastingstatus clearly influenced the metabolite concentrations,
demonstrating the importance okeepng this condition constant within a study cohorayto-day
reliabilitieswere however comparable in fasting and nfasting samples. Urine sampling procedures such
as sampling of firstoid or midstream urine, and centrifugation or not before samdtorage were
shown toonly have minimal effect on the overall metabolic profile, anthiss unlikely to constitute a

confounder inclinical studiestilizingNMRderivedmetabolomics



1. Introduction

Metabolomics, the study of smatholecular intermediates and ergroducts of metabolismprovides a
snapshot of the active cellular process&se most commonly used platforms for metabolic profiling is
nuclear magnetic resonance (NMR) spectroscopy andnecatographybased mass specmetry (MS).
While MS has the advantage of higgnsitivity (picomolar for MS versus micromolar for NMR), NMR has
high reproducibility and a simpler samgbdeeparation which is more suitable for larggcale
reproducibility andquality studieq1]. Metabolomicsanalysis of biofluidare gaining increased interest
due to its minimally invasive naturend veral studieshave shown that different biofluids contain
important information related to cancer diagnosis, prognosis and treatment regpfitjs The most
commonly used biofluids for metabolomics analyses ao®dl(serum or plasma) and urine, however
other biofluids such as saliy8] andcerebral spinal fluig4] has also shown promising results for disease
characterization. Sampling of blood and uriradten termed liquid biopsieds lessinvasivethan e.g.
cerebrospinal fluidor tissue biopsyand therefore suitable for screening, surveillance gratient
monitoring.However, in comparisotd metabolomics analysis of tissue samples, the biofluid metabolome
will reflect the metabolic state of the entirerganism being studiedserum and urine metabolismare
therefore influenced by severaindogenousand exogenoudactors, such as health and dised2g diet

[5, 6], and activity leve[7-10]. Such factors may change over time, causingatian in the measured
metabolome that can hinder the identification of clinically relevant biomarkers. Additionatbyjqus
studies have demonstratatiat urine and serum metabolomes aaéfected by circadian rhythnid1, 12]
Characterizing how the biofluid metabolome varies between days will facilitate identification of robust

biomarkers for clinical use.

To minimize the effect of irrelevant factogllecting samples from fasting participants atehdardizing

the samplingprotocols are desired inbiobanks andclinical studiesThe effect of time from sample



collection to freezing on NMR measured metabolic profiteserum and plasmhas been assess¢ii3,
14], in addition to different centrifugatiomethods for urine samplefl5], demonstrating that sample
handling will affect the measured metabolic profildowever,different biobanks may follow different
protocols fa samplecollectionand handling. Colleirtg urine and serum sampldsom fasting condition
will reducethe influenceof immediatediet effectson the measured metabolic profileoFurine samples
collectingmid-stream samplesis usuallyrecommended to avoid contaminatiorsich as bacteria and
epithelial cell§16]. Howeverjt is not always feable to collect fasting samples, for instance in lasgale
population biobanks or in cases where fasting will be inconvenient for the patients in ctimidsl
Additionally, study participantsmay not dways follow the givennstructions Thus, 1 is important to

characterize hovdeviations from standard protocoldfactsthe metabolic profile

Prostate cancer is the most common cancer type in mamg there is an urgent need of defining
biomarkes for accurate diagnosis of prostate cancer, and furtheséparate aggressive from indolent
cancers.Urine is an interesting biofluith the search foprostate cancer biomarkeygiue to its close
proximity to the prostate The main functiomf the prostateis to produce and secrete pstatic fluid which
mixes with spermupon ejaculation By applying prostate massage (stroking the prostate through the
rectum), prostatic fluid will be released into the ureth and the first urine collectedfter prostate
massagewill be a mixtue of urine and prostate secretiofMhedifferencein metabolic profile between

urine with and withoutprostate secretionfias not been assessed.

The purpose of this study was to examine how sangpléectionand processingffects NMR measured
serum lipoproteins and smatholecule metabolite®f serum and uringusing a cohort of men diagnosed
with either prostate cancer or benign prostatic hypesb.To achieve this, & examined dayo-day

variations in the NMR measured serum and urine metaboldyneystematic sample collection at two



different days and we characterizeldow nonfasting serum and urine samples differ fromtfag samples

in a seting where samples were collected before and after a mé&airther, we describe metabolic
differences between urine samples acquired with and without prior prostate massage, the effect of
centrifugation of urine samples before storage, and metabolic diffees between firstvoid and mid

stream urine samples.

2. Materials and methods

2.1 Study participants

Serum and urineamnples were collected as part of a pilot studgluding prostate cancer patients (n=29)

and controls diagnosed with lowerrinary tract symptoms and benign prostatic hyperplasia (nEZ).)
Samplesvere collected atSt. Olavs University Hospital, Trondheim, Norwayvatdifferent days within

a week (Monday (Day 1) and Thursday (Day 2)). At Day 1, the patients received prostate massage by three
finger strokes over the prostate prior to urination inder to colect urinecontainingprostate secretion
Fastingmorningserum and urine samples were collectethdnon-fasting samples werthen collected

after participants ate a meal of their own choidéedian time since last meal wefil hours (range:-95

hours) for fasting samples and 2 hours (range:Dt®urs) for norasting samples.

Firstvoid and midstream urine was collected from botladting and noffasting The first 2630 mL of
urine was defined as firstoid urine(or urine containing prostate secretion at the morning of dagrid
collected in separate tube®nealiquot of urine was immediately frozeafter collection, whileanother
was centrifuged (1000g, 10 minutespefore collection and freezing ¢tie supernatant. This resulted in

16 urine samples per study participakigure SL), giving a total of 800 urine samples



Serumsamples wereollected inl0 mLVacuette tubes without gel, turned five ties and left to coagulate
for at least 30minutes (max 120 minutespeforeall samples wereentrifuged (1800g, 10 minutes) and
aliquoted. Serum sample§our samples per study participants, Figure 8ad urine samplesvere stored

in Biobank1 St.Olav&Jniversity Hospitalat -80 °Cfor approximately one year before NM#Ralysis.

This study was approved by the Regional Committee for Medical and Health Research Ethics (Norwegian

Health Region IIIREK 2011/54@nd informed written consent was obtained from all study participants.

2.2NMR analyses

Thawed urine samplg$40>L) weremixed with a bacteriostatic buffer (6€L) (pH 7.4, 1.5 mM KPIQ
in DO, 0.1%sodium 3(trimethylsilyl}2,2,3,3tetradeuteropropicate (d4-TSP), 2 mM NalN ard
transferred to 5 mm NMR tubeklrine sanples containing prostate secretiqth mL)were centrifuged at
130009 for 5 min before NMR analysis, abdi0 >L supernatant was used for analysihawed serum
samples (106&L) were mixd with 100uL buffer pH 7.4 0.075 mM NaHPQ, 5 mM Naly, 5 mMd4-TSP

and transferred to 3 mm NMR tubes.

AIINMR experiments were recordesh a Bruker Avance 111 600 MBjzectrometer (Bruker BioSpin GmbH,
Rheinstetten, Germanygquipped with a 5 mn@QCI Cryoprobe with integied, cooled preamplifiers for
H2Hand™¥ & 9ELISNAYSy(ia 6SNB FdzZ te Idzi2YlI §SRNMRBRAY 3 (K
on TopSpin 3.1 software (Bruker BiospBgmples were stored at 6 °C in the autosampler prior tdyssa

Urine samples were analysed at 2@ using alD'H Nuclear Overhauser effespectroscopy (NOESY)

pulse sequence (noesygpprld) with 32 scans (NS), 64k data points (TD), 20 ppm spectral width, 4 s
relaxation delay and mixing time of 10 ms. Serum gaswere recorded a87 °Cusing aCarcPurcelt

MeiboomcGill (CPMGpulse sequence (cpmgprld) with 64 scans (NS), 64k data points (TD), 20 ppm



spectral width and 4 s relaxation delay. Both pulse sequences utiliatst presaturation(25 Hz) during
the relaxation delayThespectrawere Fourier transformed to 64dreal data pointafter 0.3 Hz exponential
line broadening 2D heteronuclear single quantum coherence spectrosc@$QC) were acquired for
metabolite identificationResults from analysis of sen sampleshowing metabolic differences between

prostate cancer and benign prostatic hyperplasn day 1 have been published previoudly].

2.3Data preprocessing

Data were transferredo Matlab R2017a for further processing. Urine NOBRBAR spectrawere
referenced to tte creatinine peak a8.05ppm. The region ofinterest between ppm 0.78.42 was pak
aligned using icoshiftl8] using the spectrum with théighestcorrelation to the remaining spectras
reference. Asymmetric leasgsares baseline correctiof19] was used to correct the baseline of two
spectra with uneven teeline due to poor watesuppresfon. Spectra were normalized Ipyobabilistic
guotient normalization20] after removal of he water peak between ppm 4.68.00, using the median
spectrum as a normalizatiaeference.Four spectra were removed due to poor spectral quadityd four
spectrawere removed due to insufficient water suppressiditine sampts from one patient at dag

were excluded due to largeontaminatingpeaks from paracetamol intake.

Serum spectra were referenced to the left peak of the alanine doublet at 1.47 ppm. One spectsum wa
removed due to contaminations from unknown origin resulting in masgeaks in the spectrunThe
spectra were baseline corrected by setting the lowest point to zero. The region of interest between 0.29

8.52 ppm, excluding the water peak between 4815 ppmwas normaized to equal total area

Metabolites were assigned g HSQC dataChenomx NMR suite 7.Zenomx Inc., Alberta, Canada)

andthe Human Metabolome Databa$21]. Metabolite peaks were integrated from normalized spectra



using Matlab, and for metabolites with more than oresonance, either the meaof resonance®r the
resonarte in a noroverlapping region of the spectrumas chosenkor serum samples, thmetabolite

levelswere normalizedafter quantificationto remedy the influence of large lipid peaks in the spectra

Lipoprotein subfractionsvere predicted from the fasting serum NMR speatrusing commercially
available procedures from Bruker i@spin (Bruker IVDr Lipoprotein Subclass Analy8id.LISA) as
described previouslyor this dataset[17]. This method measures theoncentration of cholesterol,
phospholipids, triglycerides and/@polipoproteins Al, A2 and B in teerum sample (total valueghd

in each of the lipoprotein subfractions (total very laensitylipoproteins (VLDL), intermediate density
lipoproteins (IDL)low-density lipoproteins DL and high-density lipoproteinsKIDL, in addition to the

subclasse¥LDELC6, LDELc6 andHDL:1¢4) [22].

2.4 Statistical analysis

Intraclass correlation coefficien{$CCYor each metabolite and lipoproteiaukfraction were calculated
between measurements from the two days of sample collediioassesslay-to-day reliability ICGwere
calculatedfrom random intercept models with no covariates in(¥ersion 3.5.2R Foundation for
Statistical Computing)sing the nime packag&andom intercept models are linear mixed models and
allows for modding ofrandom effects in clustered data, such as repeated measures collected from the
same individuals. The IG€ an estimateof the correlation between clusteredbservations and is

calculated ashe varianceof the randomeffectdivided by the totalariation of the model.

To examine metabolic differees between days (day 1 vs day 2, in fasting andfasting condition),
principal component analysis (PCA) trajectory plots were calculated from autoscaled metabolite levels.

Systematic differences beeensampleswith different sampling procedurggastingvsnon-fastingserum



and urine samples centrifuged vs noftentrifuged urine samplesurine with and without prostate
secretion first-void vs midstream urine samplesyere examined bymultilevel partial least squares
discriminant analysisr{ultilevel PLSDW23] of autoscalednetabolite levelsMultilevel PLSDA puts focus

on theindividual changes in metabolic profile due to sampling procedures, by separating the-aitdin
betweensubject variation. Models were orthogonalized for easier interpretafid4]. Loadings were

O2f 2NBR FOO0O2NRAY3 (2 GINRARF6fS AYLRNIFYyOS Ay (GKS

on the classificatiof25].

For urine samples, centrifuged, métkeam samples were used for assessinof dayto-day variation,
fasting/nonfasting samplesand to compare urinevith and withoutprostate secretionFor examining
differences between firstoid and midstream urine samples, fasting, centrifuged samples from day 2
(without prostate massage) were use8@or examining differences between centrifuged and nhon
centrifuged urine samplegastingmid-stream samples from day 2 were us&ilhen comparing fasting
and nonfasting condition, samples from both days were udddltilevel PLSDAnodelswere validated

by leaven-patients-out crossvalidation (where n=10% of patients) wiftd) iterations Permutation testing
using 1000 permutations was performed for testing the sigaifce of the resulting models, and models
with permutation pvalues (perm) XX0.05 were considered significanMultivariate analyses were
performed in Matlab R2017a usingL® toolbox 8.2.1Boxplots showing changes in metabolite
concentrations related to urine sampling procedures were made in R version 3.5.2 using the package
ggplot2, and shows the median, first and third quartiles (in box) and theetemallest/largest olexvation

within 1.5* interquartile range from the box (whiskers). For visual simplicity, outliers are not shown.



3. Results

3.1Dayto-day variations in the biofluid metabolome

Relative concentrations &5 serum metabolites an@4 urine metabolites were quantifieqTableSL and

2 for serum and urine metabolites, respectivelyhile 105 lipoprotein subfractions were quantififgdm
fasting serum sampleas previously describefTable S3)17]. There areclear dayto-day variations in
fastingserummetabolites, urine metabolites and serum lipoproteias demonstrated by PCA trajectory
score plotgFigure ). The amounts bvaiiation explained by the first two principal components are 39.9%,
24.0% and 64.4% for serum metabolites, urine metabolites and lipoprotein subfractions, respe&rely.
some individualsinetabolite measurements from two different days cluster togethertlie PCA score
plot, while in several cases the variatidmetween two measurements from one individual appears
comparable to the betweessubject variationTheserumlipoproteins have smaller dap-day variations
compared to tle smalimoleculeserum netabolites, aswo samples from the same study participant are
plotted closer togetherin the PCAscore plot. Similar results were evident also in further PEEA
trajectory score plots for noffasting serum and urine samples are shown in Figige showing

comparable dayjo-day variations as for fasting samples.

ICC values faquantified serum(Figure 2ARnd urinemetabolites(Figure 3Ashow comparable dato-
day reliabilityin fasting and no#iasting samplesNine serum metabolite(36%)had ICCx 0.5 for both
fasting and norfasting samplesMethionine levels hadow ICCvalues(KD.2) for both fasting and non
fasting samples. Histidine and tyrosine had ICC<0.2 in fasting samples, wh#eJ&f6r non-fasting

samplesMean ICC values were 0.47d 0.52 for fasting and neflastingserumsamples, respectively.

Urine samples had IG¢D.5 for both fasting and noefasting samples for 16 metabolites (47%&igure 2.

Dimethylamine and tartaric acid had ICC<0.2 for bakting and noffasting samms, while 3
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aminoisobutyrate citrate, and ascorbate had ICC valwgs8 in fasting and nofasting condition. Mean

ICC were 0.51 and 0.52 for fasting and ffiasting urine samples, respectively.

ICC values for fasting lipoprotein subfractions are shown in Table@3subfractions (98%) had ICC
values> 0.5and & subfraction (%) had ICC value®.8. ICC values ranged frddm2-0.95, with a mean

of 0.84

3.2The effect of fasting and neflasting conditionon the biofluid metabolome

There weresignificant diffeences inserum metabolite levels betweefasting and noffasting serum
samples, with anultilevel PLSDAlassification accuracy of 93@pperm< 0.00). Orthogonalized®LSDA
score and loadinglots (Figure 2&) show that non-fasting samples habligher levels ofleucine and
icoleucinecomparedto fasting sampleswhile fasting serum samples were characterized by higher

relative levels of glutamine, dimeghsulfone and glycine

The difference between fasting and néesting urine samples was assessed on ¢iged, midstream
urine samples Multilevel PLSDA showetighly significant differences due to fasting status with a
classificationaccuracy of 98% (Rem<0.00]) (Figure 3B0). Nonfasting samples hadigher levels of
alanine, glycine, allantoin, andf@roylglycine, and lower levels of phenylacetylglutaminer@sol sulfate,

dimethylamine, creatinine, and hippuratempared to faghg samples

PCA trajectory analysis of fasting and Hasting samples shows that the with&ubject variation due to

fasting status is of comparable influence as the betwsebject variationfor both serum and urine

sampleqFigureS3).
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3.3Metabolic differences between urimdth and without prostate secretion

PCA trajectory plo{Figure #) shows thatmetabolite levelsfrom first-void urine samples collected
immediately after prostate massage, daming prostate secretion show small but systematic
differences compied to midsteam urine samples. For maatividuals the betweensubjectvariation is
larger than the variatiotbetweenmeasurements from the same individudlhese systematic differences
between prostate secretioand urineresulted inperfect separationin amultilevel PLSDA model with
classification accuracgf 100.0% @perm<0.00), showing that there are clear metabolic differences
between the two sampletypes (Figures4. Differences in metabolite levels between urine samples with
and without prostate secretion are shown in Figure 5A. As evident from both percentage miferand
OPLSDA loadings, itdear thaturine samples had higher levetd all quantified metabolitegxceptfor
citrate andthe NMR signaht 3.11 ppm, consisting of signals from spermine, proline betais&conitic

acid and 3aminoisobutyrag.

3.4Metabolic dfferences between firstoidand midstream urinesamples

Hrst-void and midstreamurine samplesrom the same individualsould be well separated by milével
PLSDA with a classification accuracy of 9%0%4<0.00]), demonstratingclear differences in metabolite
levels (Figure S4)However, PCAtrajectory analysigFigure 4B show that although systematic, the
metabolic differences betwen firstvoid and midstream urine araninor compared to betweersubject
variations with overlappingsamples in the PCgcore plot formost of the individuals This is also evident
by the very small percentage differencdhictuating around zero between firstvoid and midstream

urine samples shown in Figure 5B.

3.5Metabolic dfference between centrifuged and neentrifuged data

12



Separation of centrifuged and narentrifuged urine samplely multilevelPLSDAvashighly significant
(classification accuracy 91.0%.p<0.001 Hgure S4. PCA trajectory analys{Bigure 4Chowever shows
that the withinrsubject variatiorresulting from differences in firstoidand-mid stream samples armainor

compared to the betweersubject variationandthe sampledrom the sameindividualare overlapping.

Median percentage change in metabolite concentratidhgtuatearound zero, ashown in Figure 5C. (

4. Discussion

In this study we demonstratelearday-to-day variations in the NMR measured metaboloniserum and
urine samples. Heever, most metabolites show correlated leveis measurements frontwo different
days, withmean ICC values of approximat@lyp forboth serum and urine sampleSerum lipoprotein
subfractions had smaller dag-day variationsand higher ICC valuesmpared to smalinoleculeserum
metabolitesmeasured simultaneousiyWe further describemetabolic differences in samples acquired
with and withoutprior fasting, and demonstrate ehange irthe metabolic profile ofirine after prostate
massageeleasing prostate secretionAdditionally, we show thaturine samplingproceduressuch @&
sampling of firsvoid or midstream urine and performing or not performing centrifugation before

sample storagéntroduces systematidout very small,differences in the metabolite levels.

The high ICC valuebserved for NMR derived lipoprotein subfractions, with a mean value of 0.84, are in
agreementwith a previous study showingw coefficiens of variation for serum total and HDL cholesterol

in samples acquired days ap§26]. The observation ofigherday-to-dayreliability of serum lipoprotein
subfractons compared to smafholeculeserummetabolitesis expected. fie smalimoleculemetabolites

will be more influenced byimmediate factors, such as last meetcent activity leve] and circadian
rhythm,while lipoproteins, commonly measured to assanindividuaQ & O NXR hedltd tepreSetsf I NJ

a measure of longerm habitual diet and lifestyle.
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Interestingly meanICC valuesver all quantified metabolitewere comparable in fasting and ndasting
samples for both serum and urine samplesagreementvith our results a previous studpy Carayol et

al. examinirg serum samples collected fromdividualsat two different daystwo years apart found
comparabé reliability according to fasting status for most amino a¢x¥§. However, the estimated ICC
values in our studies are not in agreement for all amino adhdsle our data showlow ICC values for
methionine for both fasting and nefasting samples, Carayol et al. find $@€0.6 for methionine in
fasting samples. Similg, we find ICC values above 0.6 for fasting andfasting leucine and isoleucine,
while Carayol et al. describe ICCs below 0.3 forfasting samplesThis discrepancy may result from
differences irstudy designas theyacquired samples twgears apa, and theirnon-fasting samplewere
collected from women only. Further, in the study by Carayol et al, the first batch gfleamwas stored

for two years longer than the second batch, and it is possible that metabolite degradation during sample
storageaffects the reliability measure of certain metabolites. TH@C values for different metabolites
might be affected by sample handlinglowever, previous studies have described how serum metabolic
concentrations fluctuate within the first hos after a neal[28, 29] and in our study postprandial samples
were acquired approximately after twbours. Sampling at varying time pdirafter food intake, which
would representa more realistic setting for a study cohort including ffasting samples, mightave

provided lower dayto-day reliability for norfasting samples.

Serum dmnethyl sulfonehad highday-to-day rdiability with ICCvalues above 0.8or fasting and non
fasting sampleswWe previously described serum dimethyl sulfone as a possible biomarker for separating
prostate cancer and benign prostatic hyperplasia in the same c¢hdytAgoodbiomarker shouldhave
reliable measurements between days, thus this study furtheppors dimethyl sulfone as #easible

biomarker for prosate cancer. Histidine levels weaéso in our panel of possible biomarkers for prostate

14



cancer, however this amino acid sheWw reliability in fasting samples, and may therefdre a less

valuablebiomarker candidate.

Urinarylevels of3-aminoisobutyrateand ascorbate had ICCs above 0.8 in both fasting anefastimg
samples, thus showing higtay-to-day reliability. 3-aminoisobutyrate is an endroduct of pyrimidine
degradation, whileascorbate or vitamin C, is an important aoxidant and contributes to immune
defence[30]. On the contrary, urine ichethylamine trimethylamine Noxide TMAQ and tartaric acidll

had ICC values below 0.Bbboth fasting and notfiasting conditios. Both TMAO and dimethylamine are
abundantly present in urinegnd can result fronmetabolism of trimethylamine by gut microbiofal],

while detary intake is the major contributor to urinary tartaric ag@R]. Thus, our results show that
metabolites typically resulting from diet may have low reliabitityoin fasting sample<Creatinine is a
breakdown product of creatine phosphate in muscles, and is claimed tprdduced at a relatively
constant rate in the body. This is in accordance with our findings of ICC values above 0.5 for creatinine

levels measured both in fasting and nfasting serum and urine samples.

The effect of habitual diet has been investigairgeveral large epidemiological stud[88-35], showing
that habitualdietary patternswill be reflected irserummetabolic dataFurther, aprevious studyshowed
more dietspecific metabolites being present in urine than in serum samj@ep Fasting samples are
usually recommendetb reducethe directeffect of dietaryintake, howeverthis is not alwaysachievable,
andnot all subjects will be fasting even if requir&kspitecomparablelCC valuebetweenfasting and
non-fasting sampleswe detectedlarge differences imetabolic profiles of fasting and nedasting
samplesboth in urine and serumParticipants in ourtsdy had a freely chosemmeal prior to thenon-
fasting sample collection, andur crossover study design allows analysis of fasting effects within

individuals.Thevery high classification results for separating fasting andfasting samples iticate that
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the metabolic patternsave observe are characteristic of fasting status, independent of which type of food

has been consumed.

For serumthe main efect of nonfasting condition wasncreased leucine and isoleucine levels, and
decreased dimethyl sulf@and glyaie levels. Both leucine and Isacine are essential amino acids, and
food intake will increase their serum concentrationSimilarly, a study of postprandial serum
metabolomicsthree hoursafter intake of three different breakfast meals found increased leucine levels
after intake of dairy and meat containing meals, while isoleucine was not quantified in their[8W]dyn
urine, non-fasting samples wereharacterized byhigher levelsof alanine glycine, allantoinand 2-
furoylglycine levels,rad lower levels of fresol sulfate andreatinine Increased alanine leveis urine
were also an important discriminatan a studycomparing fasting samples tone and two hours
postprandial samples following meals containing wheat bran and alelyB&8jewhile 2-furoylglycineis a
suggestediomarker for coffee consumptioi@9]. Overall, oudata show that differenes in fasting status
between study participantsnay introduce noise and possibly beanfounder in clinical studies using

NMR measured mntabolic profiling of biofluids.

We showed clear separation between urine samples with and without centrifugation prior to siaradje
between firstvoid and midstream urine. However, it should be noticed that the metabolic changes
related to these samlng procedures are very small, as evidenced by the PCA trajectory plots showing
nearly complete overlapetween samplesand median percentage changi@ metabolite concentrations
fluctuatingaround zero By using multilevd?LSDA analyses, we separate Within and between patient
variation, in that way putting emphas@n the individual metabolic differences resulting from the sample

processingDespite high classification accuracid¢® bbserved betweeatient variation is much higher

16



than the systeratic variation resulting from the protocol, thus centrifugation and urine tyfglenot bea

confounder of high influence in clinical studies where these factors are varying between patients.

Larger withinpatient variations were evident between urinersples acquired with and without prior
prostate massage. Urine samples had higher relative concentrations of most metatmitgpared to
urine with prostate secretionpossibly due to larger proteicontent after prostate massageavith the
exception of levels of citrate and the singlet peak at 3.11 plpnurine spectra, this peak is frequently
referred to as proline betaine, which can be related to intake of citrus ff4@tf However 2D HSQC M
experiments showed that this pealso contaird signals from sperminén addition to signals frorgis
aconitic acid, 2aaminoisobutyrate and annknown compoundBoth dtrate and spermine argoroduced
in largeamounts by the healthy prostate Ilthough theoverallmetabolic contenin urineseems reduced
after prostate massge compared to regular uringhe high levels of citratand spermine redased from
the prostate upon massage seems tmmpenste for this and increaseelative citrateand spermine
levels.Our results thus show that prostate massage affects the n@ialbontent of urine by secretioof

prostaterelated metabolites into the urine.

In this study we examined a cohort of men with either prostate cancer or benign prostatic hyperplasia. It
is possible that the presence of a nbealthy prostate affectshe biofluid metabolites, and that results
would differ in cohorts including men without prostatic conditions, or in cohorts including wokiven.

and others have previously described metabolic changes as a results of circadian rhythms in both urine
and bloodsampleq11, 12] Our results may be influenced by diurnal variations, as the fasting samples
were acquired in the morning while ndasting samples weracquired midday. However, this study

design allows comparison of fasting status within individuals, which is a strength of the study.
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5. Conclusion

We conclude thatday-to-dayreliability vary betweemmetabolitesin both serum and urinewhich should

be taken into account when searching for clinical biomarkers, as a good biansudeld possess low
day-to-day variation Further, fastingor nonfasting condition highly influenced the metabolite
concentrations thus it is important to keep this condition constant within a study cohort to avoid
confounding resultsDayto-dayreliability were however comparable in fasting and rfasting samples

in this setting vlere nonfasting samples were acquiretivo hours postpandial Urine sampling
procedures such asampling of firstvoid or mid-stream uring and centrifugation or not before sample
storage, only hal minimal effect on the overall metabolic profile, and is unlikely ¢onstitute a

confounder inclinical studies
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Figures

PC2
N

Figure 1: Dayto-day variations in the biofluid metabolomePCA score plots showing deday
variations in A) fasting serum metabolité},fasting urine metabolites and C) fasting lipoprotein
subfractions between day 1 (yellow) and day 2 (black). Megsents from the same individual are
connected with black line¥ariations explained by PC1/P®ere22.2/17.6%, 14.3/9.7% and

42.9/21.6% for A, B, and C, respectively.
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Figure 2: Dayto-day reliability and effect of fasting condition in serum metahtas. A) ICC values for

fasting and norfasting serum metabolites measured from the same individuals at two different days.

B,C) Orthogonalized multilevel PLSDA results separating fasting frofastimg condition. The score

plot (B) shows clear separatidetween fasting and nefasting samples, while the corresponding
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Figure 3: Dayto-day reliability and effect of fasting condition in urine metabolited) ICC values for

fasting and norfasting urine metabolites measured from the same individuals at two different days.

B,C) Orthogonalized multilevel PLSDA results sépgrasting from norfasting condition. The score

plot (B) shows clear separation between fasting and-famting samples, while the corresponding
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Metabolites in C) are numbered according to A).*in some spectra, the succinate peak is overlapping with

an unknown peak at 2.41/32.5 in HSQC. **Singlet at 3.11 ppm consisting of signals from spermine,

proline betaine, cisconitic acid, saaminoisobutyrat anchn unknown compound. **Unknown1:

multiplet at 5.25 ppm.
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Figure 4Variation in urine metabolite levels related to sampling and sample processing procedures
PCA trajectory score plots comparing A) prostate secrete anetrédm urine samples, B) firgbid
and midstream urine samples, and C) centrifuged and-nentrifuged urine sample&/ariations

explained by PC1/PC2 wetd.911.0% 14.9/11.6%, and 14.8/11.4% for A, B, and C, respectively.
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Figure 5 Differencesin urine metabolite concentrationsrelated to sampling and sample processing

procedures The figure shows boxplots of percentage differences in relative metabolite concentrations

between A)prostate secrete and midtream urine samplesB) firstvoid and midstream urine samples,

and Cxentrifuged and nofcentrifuged urine samples\ positive differences represents a higher level in

mid-stream urine, miestream urine, and nowentrifuged samples for A, B, and C, respectivatysome

spectra, the succinate peak dverlapping with an unknown peak at 2.41/32.5 in HSQC. **Singlet at 3.11

ppm consisting of signals from spermine, proline betaineacaitic acid, daaminoisobutyrat and an

unknown compound. **Unknown1: multiplet at 5.25 ppm.
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Figure S1Serum and une samples collected from each study participamt.total of 16 urine samples
were collected from each study participant; fisgtid and midstream samples from fasting and non
fasting condition at two different days. One aliquot of each urine sample was immediately frozen after
collection, while another was centrifuged before cotien and freezing of the supernatarfour serum
samples were collected from each study participant, fasting andfasting samples at two different

days.
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Figure S2: Dato-day variations in the norfasting biofluid metabolome PCA score plots showing day
to-day variations in noffiasting serum and urine metabolites between day 1 (yellow) and day 2 (black).
Measurements from the same individual are conneateth black lines. The amounts of variation
explained by the first two principal components are 39.8% for serum metabolites and 25.9% for urine

metabolites.
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