Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2011, Article ID 920873, 12 pages
doi:10.1155/2011/920873

Research Article

Using Game Development to Teach Software Architecture

Alf Inge Wang and Bian Wu

Norwegian University of Science and Technology, Sem Seelandsv. 7-9, 7491 Trondheim, Norway
Correspondence should be addressed to Alf Inge Wang, alfw@idi.ntnu.no

Received 12 August 2010; Revised 14 April 2011; Accepted 2 May 2011

Academic Editor: Jihad El-Sana

Copyright © 2011 A. 1. Wang and B. Wu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper describes a case study of how a game project using the XNA Game Studio from Microsoft was implemented in a software
architecture course. In this project, university students have to construct and design a type of software architecture, evaluate the
architecture, implement an application based on the architecture, and test this implementation. In previous years, the domain
of the software architecture project has been a robot controller for navigating a maze. Robot controller was chosen as the domain
for the project, as there exist several papers and descriptions on reference architectures for managing mobile robots. This paper
describes the changes we had to make to introduce an XNA game development project to the software architecture course, and our
experiences from running a software architecture project focusing on game development and XNA. The experiences described in
this paper are based on feedback from the course staff, the project reports of the students, and a mandatory course evaluation. The
evaluation shows among other things that the majority of the students preferred the game project to the robot project, that XNA
was considered to be suitable platform for a software architecture project, that the students found it useful to learn XNA and C#,

and that some students were carried away when developing the game in the software architecture project.

1. Introduction

Games have been used in education for many years main-
ly focusing on teaching children in an interesting and mo-
tivating way. Research shows that integrating games within
children’s classroom can be beneficial for academic achieve-
ment, motivation, and classroom dynamics [1]. Teaching
methods based on educational games are not only attractive
to schoolchildren, but can also be beneficial for university
students [2]. Research on game concepts and game develop-
ment used in higher education is not unique, for example [3—
5], but we believe there is an untapped potential that needs to
be explored. By introducing games in higher education lec-
turers can access teaching aids that promote active students,
provide alternative teaching methods to improve variation,
enable social learning through multiplayer learning games,
and motivate students to work harder on projects and
exercises.

Games can mainly be integrated in higher education in
three ways. First, traditional exercises can be replaced by
games motivating the students to put extra effort in doing
the exercises, and giving the course staff an opportunity to

monitor how the students work with the exercises in real-
time [6, 7]. Second, games can be used within a traditional
classroom lecture to improve the participation and motiva-
tion of the students through knowledge-based multiplayer
games played by the students and the teacher [8, 9]. Third,
game development projects can be used in computer science
(CS) or software engineering (SE) courses to learn specific CS
or SE skills [10, 11]. This paper focuses on the latter, where
a game development project was introduced in a course to
teach CS and/or SE skills. The motivation for bringing
game development into a CS or SE course is to utilize the
students’ fascination for games and game development to
stimulate the students to put extra effort in the course pro-
ject. Many students dream of making their own games, and
game development projects allow the students to use their
creativity in contrast to, for example developing a more
traditional web-based application. Game technologies and
game user interfaces are now being more commonly used
in serious applications [12-14], and the market for serious
games is growing. This makes it important for students to
learn how to develop games even the students do not target
to work in the game industry.

In this paper, we describe a case study of how a game
project was integrated with a software architecture course.
From the perspective of a game developer, knowledge and
skills about how to develop appropriate software architec-
tures are becoming increasingly important. As games are
growing bigger and becoming more complex, well-designed
software architectures are needed to cope with variations in
hardware configurations, functional modifications, and net-
work real-time constraints [15]. From the perspective of a
software architect, games are interesting due to the inherent
characteristics of the domain including real-time constraints,
changing and varying functionality, and user-friendliness.
In addition, games are interesting from the perspective of a
software architect, as there exist no real functional require-
ments that stem from the users. Typical user requirements
for games are that the game should be fun to play, it should
have enough variety, and it should be engaging.

The case study presented in this paper describes how a
software architecture course was adapted to include a game
development project. The paper describes the parts of the
course and syllabus that had to be changed to make game
development a natural part of the course, and how XNA was
used as a game development platform in the course. Further,
we present an evaluation of how the game development pro-
ject was perceived by the students and the course staff com-
pared to the robot project. The data of this evaluation is
based on the students’ responses to the final course evalua-
tion, the feedback from the students during the project, and
the student project reports.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 describes the software
architecture course. Section 4 describes how the course was
changed to adapt to the game project. Section 5 presents
experiences we learned from running a game development
project along with the robot development project in a
software architecture course, and Section 6 concludes the

paper.

2. Related Work

This paper describes experiences from introducing an XNA
game development project in a software architecture course.
The main benefits from using XNA to teach software archi-
tecture is that the students get more motivated during the
software development project. As far as we know, there are
only few papers (presented here) that describe usage of XNA
to teach CS or SE, and only few papers that contain case
studies of games used in CS and SE education (also described
here). In this section, we will also briefly describe alternative
game development frameworks to XNA that can be used in
CS and SE education.

Youngblood describes how XNA game segments can be
used to engage students in advanced CS education [16].
Game segments are developed solution packs providing the
full code for a segment of a game with a clear element left
for a student to implement. The paper describes how XNA
was used in an artificial intelligence course where the stu-
dents were asked to implement a chat bot, motion planning,

International Journal of Computer Games Technology

adversarial search, neural networks, and flocking. Finally,
the paper describes seven design principles for using game
segments in CS education based on lessons learned. The
approach described by Youngblood could also be used in a
software architecture course, where the students can put to-
gether parts of the game (game segments) based on their
designed architecture. However, this approach is very limit-
ing as the architectural freedom will be very restricted and
the students will not get the chance to design their own soft-
ware architecture of their own game.

El-Nasr and Smith describe how modifying or modding
existing games can be used to learn CS, mathematics, phy-
sics, and ascetic principles [10]. The paper describes how
modding of the WarCraft III engine was used to teach high
school students a class on game design and programming.
Further, they describe experiences from teaching univer-
sity students a more advanced class on game design and
programming using the Unreal Tournament 2003 engine.
Finally, they present observations from student projects that
involve modding of game engines. Although the paper claims
to teach students other things than pure game design and
programming, the focus is on game development in contrast
to CS or SE. Modding existing games is not very useful in a
software architecture course, as the focus of the course is the
structure of software components and not game content nor
game engine scripts.

Sweedyk and Keller describe how they have introduced
game development in an introductory SE course [17]. The
students learn principles, practices, and patterns in software
development and design through three projects. In the first
project, the students develop a campus life 2D arcade game
over four weeks with the educational focus on gaining famil-
iarity with UML tools, learn and use a variety of development
tools and gain understanding of game architecture and the
game loop. In the second project, the students should build
a one-hole miniature golf game over five weeks with the
educational focus on learning and practicing evolutionary
design, prototyping and refactoring, usage of UML design
tools, usage of work management tools, and design and
implementation of a test plan. In the third and final project,
the students can develop a game of their own choice over
five weeks with educational focus on reinforcing the practices
and principles learned in two previous projects, learn to
apply design patterns, and practice management of complex
software projects. The students’ response to this SE course
has according to the authors been extremely positive. They
argue that game projects allow them to better achieve the
learning objectives in the SE course. Their main concern is
related to gender, as women are less motivated to learn SE
through game development projects. The main difference
with Sweedyk and Keller’s approach and ours is that they
have introduced three projects instead of one, and the SE
focus is different. For our purpose, more than one project
would take away the focus on the software architectural
educational goals and miss the opportunity to follow the
evolution of the software architecture through a complete
development cycle.

K. Calypool and M. Calypool describe another SE course
where a game development project was used to engage

International Journal of Computer Games Technology

the students and make the course more fun [18]. In this
course, the students worked with one game project where the
students had to go through all the phases in a software devel-
opment process. The preliminary results of comparing the
game-based SE course with a traditional SE course showed
that the game version had higher enrollment, resulted in
average higher grades, a higher distribution of A grades, and
had a lower number of dropouts. The feedback from the stu-
dents was also very positive. The approach described in this
paper is very similar to our approach. The main difference is
that in our course the students carry out the various phases
in a software process from a software architecture perspective
focusing on quality attributes, software architecture design,
and software architecture evaluation.

Volk describes how a game engineering course was in-
tegrated into a CS curriculum [19] motivated by the fact
that game development projects are getting more and more
complex and have to deal with complex CS and SE issues.
The experiences from running this course showed that it was
a good idea handle the game engineering course more in a
form of a real project, that the students were very engaged in
the course and the project, that the lack of multidisciplinary
teams did not hinder the projects, that the transition from
preproduction to production was difficult (extracting the
requirements), and that some student teams were overam-
bitious for what they wanted to achieve in their project. In
our software architecture course, we experienced some of the
same issues as described in this paper, namely difficult ex-
traction of requirements and overambitious teams.

Linhoff and Settle describe a game development course
where the XNA platform was used to allow the students gain
experience in all aspects of console game creation [20]. The
course focuses on creating of fonts, icons, 3D models, camera
and object animation paths, skeletal animations, sounds,
scripts, and other supporting content to the XBOX 360 game
platform. In addition, the students are required to edit the
source code of a game to change variables, and copy-and-
paste code. The student response to the course was positive.
The results also showed that students with programming
background did better in the class. The students did not learn
any CS or SE skills.

Zhu et al. describe how games can be introduced in SE
courses to teach typical SE skills [21]. The paper describes
how the two games SimSE and MO-SEProcess were used to
give students an opportunity to practice SE through simu-
lations to learn the complex cause and effect relationships
underlying the process of SE. MO-SEProcess is a multiplayer
online SE process game based on the SimSE in 3D imple-
mented in Second Life. In this game, the players should
collaborate with other developers to develop a system by
giving out tasks and following up tasks. Although the models
and simulations in SimSE are much more extensive than
the ones in MO-SEProcess, the usage of Second Life bring
some advantages such as better support for group sharing
and collaboration, and the possibility to create interactive
learning experiences that would be hard to duplicate in real
life. This approach is very different from ours and does not
fit with our educational goals.

Rankin et al. describe a study on how game design project
impact on students’ interest in CS [22]. In a Computer
Science Survey course, the students are given the task to apply
SE principles in the context of game design. The pre and post
survey results reveals that game design project can have both
a positive and a negative impact on students’ attitudes about
enrollment in a game design course, pursuit of a CS degree,
turther development of programming skills and enrollment
in additional CS courses.

Leutenegger and Edgington argue that the course assign-
ment and example content is more important than whether
a introductory programming course should focus on pro-
cedural versus object-oriented approach [23]. Their paper
describes an introductory programming course focusing on
game programming. The results showed that the students
improved their understanding basic programming concepts,
and the students were satisfied with the course.

Coller and Scott describe an interesting approach for
teaching mechanical engineering through game programm-
ing [24]. In a numerical methods course, the students are
asked to program the behavior of a car in the Torcs open
racing car simulator. The students must use numerical meth-
ods to program acceleration, steering, gearshifts, and break-
ing. A comparison with a traditional version of the course
showed that for the game-based course the students on
average spent roughly twice as much time on the course, and
that the students achieved deeper learning as the students
were more interested, more engaged, and invested more in
learning the material.

We have found the XNA was a perfect fit for our game
project as it provides a high-level API, the framework is ma-
ture and well supported, and the students are motivated by
the fact that XNA makes it easy to develop for XBOX 360.
There are also other alternative game frameworks that can
be used. The Labyrinth [25] is implemented in Java and is
a flexible and easy-to-use computer game framework. The
framework enables instructors to expose students to very
specific aspects of CS courses. The framework is a finished
game in the Pac-Man genre, highly modular, and it lets the
students change different aspects of the game. The JIG (Java
Instructional Gaming) project [26] has the aims to build a
Java Instructional Game Engine suitable for a wide variety
of students at all levels in the curriculum, to create a set of
educational resources to support the use of the game en-
gine at small, resource-limited, schools, and to develop a
community of educators that use and help improve these
resources. The DXFramework [27] is a game engine written
in C++ targeted specifically for 2D games to be used in
game programming education. The SAGE [28] game engine
is also written in C++ and is targeted for game programming
educational use focusing on 3D games. GEDI [29] game
engine is another alternative for 2D games in C++ designed
with game programming educational use in mind. For
business teaching, Arena3D [30] is a game visualization
environment with animated 3D representations of the work
environments, simulation of patients queuing at the front
desk, and interacts with the staff. IBM has also produced a
business game called INNOVS [31], which is “an interactive,
3D business simulator designed to teach the fundamentals of

business process management and bridge the gap in under-
standing between business leaders and IT teams in an organ-
ization”.

Of the related work described in this section, the work
by Kajal and Calypool is closest to the work described in
this paper. The main difference with our approach is that
we focus on software architecture methods and processes
and not only software engineering topics in general. The
students’ responses to our course are very similar to the stu-
dies described in this section, characterized by higher moti-
vation, higher enrollment, and more effort spent on the
course.

3. Software Architecture Course

The software architecture course is a postgraduate course
offered to CS and SE students (not mandatory) at the Nor-
wegian University of Science and Technology (NTNU). The
course is taught every spring, its workload is 25% of one
semester, and about 70-80 students attend the course every
spring. The students in the course are mostly of Norwegian
students (about 80%), but there are also 20% foreign stu-
dents mostly from EU countries. There are about 10% female
students. The textbook used in this course is the “Software
Architecture in Practice, Second Edition,” by Clements et
al. [32]. Additional papers are used to cover topics that
are not sufficiently covered by the book such as design
patterns, software architecture documentation standards,
view models, and postmortem analysis [33-37].

The education goal of the course is: “the students should
be able to define and explain central concepts in software ar-
chitecture literature, and be able to use and describe design/
architectural patterns, methods to design software architectures,
methods/techniques to achieve software qualities, methods to
document software architecture and methods to evaluate soft-
ware architecture.”

The course is taught in three main ways:

(1) ordinary lectures given in English,
(2) invited guest-lectures from the software industry,

(3) a software development project with emphasis on
software architecture.

The software architecture course at NTNU (course code
TDT4240) is taught in a different way than at most other uni-
versities, as the students also have to implement their de-
signed architecture in a project. The motivation for doing so
is to make the students understand the relationship between
the architecture and the implementation, and to be able to
perform a real evaluation of whether the architecture and
the resulting implementation fulfill the quality requirements
specified for the application. The architecture project in the
course has similarities with projects in software engineering
courses, but everything in the project is carried out from a
software architecture perspective. Throughout the project,
the students have to use software architecture techniques,
methods, and tools to succeed according to the specified
project requirements and the document templates. The
development process in the project will also be affected by

International Journal of Computer Games Technology

the focus on software architecture, as the development view
of the architecture will specify how the teams should be
organized and how they should work. The main disadvantage
of this approach is that the students get less time dedicated to
do the architectural design, as they have to spend time on the
implementation. The main advantage is that the students are
learning software architecture through doing a whole project
where they can see the results of their architectural design as
a product.

The TDT4240 software architecture course has been
rated as one of the most useful and practical courses offered
at the Deptartment of Computer and Information Science in
surveys conducted among exstudents now working in the IT
industry. The course staff has also seen the benefits of making
the students implement the architecture, as the students have
to be aware of the developing costs of fancy and complicated
architectural designs.

30% of the grade awarded to the software architecture
course relate to the evaluation of the software architecture
project all students have to do, while 70% is awarded for
the results of a written examination. The goal of the project
is for the students to apply the methods and theory in the
course to design and fully document a software architec-
ture, to evaluate the architecture and the architectural app-
roaches (tactics), to implement an application according to
the architecture, to test the implementation related to the
functional and quality requirements, and to evaluate how the
architectural choices affected the quality of the application.
The main emphasis when grading the projects is on the qual-
ity of the software architecture itself, but the implementation
should also reflect the architecture and the architectural
choices.

The project consists of the following phases.

(1) Commercial Off-the-Shelf (COTS). Learn the develop-
ment platform/framework to be used in the project
by developing some simple test applications.

(2) Design Pattern. Learn how to utilize design patterns
by making changes in two architectural variants of
an existing system designed with and without design
patterns.

(3) Requirements and Architecture. Describe the func-
tional and the quality requirements, describe the
architectural drivers, and design and document the
software architecture of the application in the project
including several view points and views, stakeholders,
stakeholder concerns, architectural rationale, and so
forth.

(4) Architecture Evaluation. Use the Architecture Trade-
off Analysis Method (ATAM) [32, 38, 39] to evaluate
the software architecture in regards to the quality
requirements.

(5) Implementation. Do detailed design and implement
the application based on the designed architecture
and based on the results from the evaluation. Test
the application against both functional and quality
requirements specified in phase 3, evaluate how well
the architecture helped to meet the requirements,

International Journal of Computer Games Technology

and evaluate the relationship between the software
architecture and the implementation.

(6) Project Evaluation. Evaluate the project using a Post-
Mortem Analysis (PMA) method [34]. In this phase,
the students will elicit and analyze the successes and
problems during the project.

In the two first phases of the project, the students work
on their own or in pairs. For the phases 3-6, the students
work in self-composed teams of four students. The students
spend most time in the implementation phase (6 weeks),
and they are also encouraged start the implementation in
earlier phases to test their architectural choices (incremen-
tal development). During the implementation phase, the
students continually extend, refine, and evolve the software
architecture through several increments.

In previous years, the goal of the project has been to
develop a robot controller for a robot simulator in Java with
emphasis on an assigned quality attribute such as availability,
performance, modifiability, or testability. The functional aim
of this project was to develop a robot controller that moves a
robot in a maze collecting balls and bringing them to a light
source. Robot controller was chosen as a case for the software
architecture project, as the problem of software architecture
is well defined within this domain. For the robot controller
domain there exist several examples of software architecture
patterns or reference architectures that can be applied, such
as Control loop [40], Elfes [41], Task Control [42], CODGER
[43], Subsumption [44], and NASREM [45].

4. How the Course Was Changed?

This section presents the changes we made to the course
to integrate an XNA game development project with the
software architecture course.

4.1. Course Preparations. Half a year ago we integrated the
game development project with the software architecture
course, we initiated a master research project, named
XQUEST, to explore how XNA could be used and integrated
with the course. The goal of this project was to answer the
following questions.

(Q1) How well is the XNA framework suited for teaching
students software architecture?

(Q2) What resources must be in place to quickly get up to
speed developing games using the XNA framework?

(Q3) How should XNA be introduced to the students?

The first question (Q1) was decomposed into three sub-ques-
tions. First, the XQUEST project investigated which soft-
ware/game components were required to allow the students
to stay focused on the software architecture during the their
project. This work resulted in an implementation of a game
library named XQUEST framework [46] to provide a high-
level sprite animation framework, a game object manage-
ment framework, and some additional helper classes (audio,
input, text out, and texture store) on top of XNA to ease

the development. Second, the XQUEST project investigated
how difficult it was for the students that only knew Java
to learn the C# programming language. They found that it
took about three days to learn the most essential features
of C# for a postgraduate student with average Java skills.
Third, the XQUEST project investigated what limitations or
restrictions that should be put on a game development pro-
ject in a software architecture course. The conclusion was to
limit the projects to 2D games, and only to focus on the two
quality attributes modifiability and testability. 2D games
were preferred to 3D games, as the students should not spend
too much time on 3D graphics and focus on the structure
of the software. We also considered the quality attributes
performance and usability for the project. Performance was
dropped because the XNA framework handles most of the
performance issues and it is hard to make architectural
design that actually will affect this quality attribute. Further,
usability was dropped because this quality attribute is rather
hard to measure without extensive usability tests (not within
the scope of the software architecture course).

The necessary resources to quickly develop games in
XNA (Q2) was found to be C# and XNA tutorials, XNA ex-
amples, XNA documentation, libraries of graphical art (spri-
tes, tiles, etc.), a high-level API on top of XNA, and making
course staff available that could answer specific XNA or C#
questions. Although XNA provides a high-level API, the
XQUEST framework was found necessary to provide an even
higher API to help the students get going faster.

The conclusion of final question (Q3) was that XNA
should be exposed to the students through a mixture of lec-
tures, an XNA resource webpage and continues technical
support through the semester. It was found to be very imp-
ortant to give an introductory lecture in XNA to learn the
tools, environments, and the core concepts of XNA, and give
an overview of the differences between Java and C#.

4.2. Changes to the Syllabus. It was rather difficult to change
the syllabus of the software architecture course to include
more the literature about software architecture in games.
Good books and papers that give an in-depth insight into
game architectures and game architecture patterns are to
our knowledge non-existent. There are several papers that
describe architectures of specific games such as [47, 48] or
books that give a brief overview of game architecture [49, 50],
but none that looks at the typical abstractions (architectural
patterns) you can observe in game software development.
The syllabus ended up with including some chapter from
the book “Game Architecture and Design” [50] to describe
the initial steps of creating a game architecture, and two
self-composed sets of slides on (1) software architecture and
games and (2) architectural patterns and games. The former
was a one hour lecture on motivation software architecture
design in games [15], architectural drivers within game
development [51], challenges related to software architecture
in games [52], and the main components of game archi-
tectures [53]. The latter was a one-hour lecture describing
architectural patterns that are common and useful for games,
such as model-view controller, pipe-and-filter, layered archi-
tecture, and hierarchical task trees.

4.3. Changes of the Project. The course staff decided to let
the student teams themselves choose between the robot and
the game project. This meant that the main structure of
the project had to remain the same, and that we had to
make two variants of the project. For the robot project the
students had fixed requirements, while for the game project
the students should define their own requirements (design
their own game). However, the documents to be delivered
were the same for both types of projects based on the same
templates, and the development process was also to be the
same.

To evaluate and grade the software architecture project,
we posted some project evaluation criteria in the beginning
of the semester that stated how the project should be doc-
umented, what should be documented, what should be
delivered (such as documents, source code, complied code,
etc.), completeness of robot controller or game, and an
implementation that reflects the architecture. The main dif-
ference between the game and the robot versions of the eva-
luation criteria was how the implementation was to be eva-
luated. For the XNA projects, we required the game to have
a certain level of complexity (at least five classes organized
in a structure), the game should be easy to install and run.
For a top grade (A), the game should be impressive in some
way (fun, nice, creative, or original). For the robot controller,
the implementation should similarly have a certain level of
complexity, but it had to adhere to the given functional
requirements. For a top grade (A), the robot should be able
to solve the task efficiently.

Another thing we had to change was the quality attributes
the various teams should focus on during the project. The
teams that chose the robot projects were assigned to focus on
safety of the robot (not get stuck in the maze), modifiability
(easiness of changing the robot controller software), and test-
ability (easiness of testing the robot software). For the game
projects, we ended up with modifiability (easiness of chang-
ing the game software) and testability (easiness of testing the
game software).

The main change of the project assignments was to add
XNA game variant of the COTS introexercise (phase 1, see
Section 2). The COTS intro exercise for the robot controller
asked the students to do simple navigation and make to robot
pick up balls. In the XNA game variant of this exercise, the
students were asked to perform the following four tasks.

(1) Draw a helicopter sprite on the screen and make it
move around on its own (computer controlled).

(2) Move around the helicopter sprite from previous task
using the keyboard or a game controller, change the
size of the sprite, rotate the sprite, and write the
position of the sprite on the screen.

(3) Animate the helicopter sprite using several frames
and do sprite collision with other sprites.

(4) Create the classical Pong game (2D from-above tennis
game).

4.4. Changes of the Staff and the Schedule. The main change
to staffing was that two last year master students were hired

International Journal of Computer Games Technology

to give technical support for student during the project (both
robot and XNA). The main tasks of the technical support
staff were to give lectures on the COTS, to be available for
technical questions on email, to be available two hours a
week in a lecture halls for questions, and to evaluate the imp-
lementation of the final project delivery (testing the games
and the robots).

The main changes that were made to the course schedule
were:

(i) Changing the motivation of the software architecture
project to also include the game project. An extra
bonus for the teams that chose the game project
was that they could register for the Norwegian Game
Awards competition [54]. This is an open national
game developer competition for the all universities
and colleges in Norway.

(ii) Added an extra two-hour COTS introduction lecture

to give an introduction to the robot simulator, C#,
and XNA.

(iii) Adding an extra two-hour technical support lecture
on COTS every week (both for robot and XNA).

(iv) Changing a one-hour lecture on architectural pat-
terns to also include architectural patterns on games.

(v) Added a one-hour lecture on software architecture in
video games.

(vi) Changing the project workshop where selected teams
presented their work to give room to show more
demos (mostly games and some demos of robots).

5. Experiences and Results

This section presents experiences and results from running
the course. The experiences presented here are collected from
course staff interviews and notes, final course evaluation,
the project reports, student feedback by email, and feedback
during lectures. The students doing game development
projects used version 2.0 of XNA Game Studio (the most
recent version at that time).

5.1. Staff Experiences. In the first weeks of the semester, we
were faced with a problem introduced by allowing students
to choose between a robot and a game project. In previous
years, the students did not have to make any decisions (e.g.,
forming teams, etc.) regarding the project before week 7, as
this was the start of the main project (phase 3, see Section 3).
By introducing two variants of the project, the students had
to choose in week 3 if they were going to do the robot or the
game project (before they had formed the teams) due to the
two variants of the COTS exercise. As a result, some students
ended up doing an exercise on the robot and later did the
game project and vice versa.

The course staff was exited to see the distribution the
number of student that chose the robot versus the game
project. When we introduced the project to the students
in the beginning of the semester, we admitted that this
was the first time running a game project in the software

International Journal of Computer Games Technology

FIGURE 1: Distribution of project selection.

architecture course, and that the robot version of the project
was better supported through previous experience, examples,
the literature, and software architecture patterns. The result
was that 6 teams chose the robot project while 16 teams
chose the game project (see the distribution in Figure 1). The
percentage of teams choosing the game project was much
higher than we expected (almost 3 out of 4). The results
show that students are attracted to games, and it indicates
that games can be a motivation for choosing a course or for
putting extra effort into projects.

During the semester, the students receive feedback on
their part-deliveries from the course staff. The most notably
difference between the part-deliveries made by robot, and
game project teams were found in phase 3 of the project (Re-
quirements and Architecture, see Section 3). For many game
project teams, it was hard to create proper requirements doc-
umentation. This was not unexpected, as these teams first
had to specify some gameplay element and then translate
these into functional requirements. The course staff suspect-
ed that it also would be harder to specify the software archi-
tecture in the game projects due to less available literature
and architectural patterns. This was, however, not the case.
For the final delivery of the project, there was no noticeable
difference in the quality of documentation, requirements,
design, architecture, and implementation between the two
variants (robot versus game). The implementation of some
teams (both robot and game) suffered for being too ambiti-
ous resulting in unfinished implementations. For teams imp-
lementing a robot controller, the main challenge was to imp-
lement an intelligent maze navigator. For teams implement-
ing a game, the main challenge was to implement advanced
game logic.

The educational approach for our software architecture
course is to force the students to use the theory described
in the textbook during the project by applying the methods
and theoretical framework described. To make this work, the
course schedule is heavy on theoretical presentations in the
first part of the semester. At the same time, the students
have to learn the COTS through exercises (phase 1 and 2).
Phase 3 is really the start of the project, where the students
will document the requirements and do the architectural
design. Although the students at this stage should know the
COTS and all the software architectural theory required to
describe the requirements and to the design, we discovered
that the students were lacking both knowledge of the COTS

RPG

——— 6%

Platform
/S 12%

Shooter
Racing
6%

F1GuUrk 2: Distribution of game genres in student projects.

and the theory. This was true for both types of projects, and
we did not discover any differences between robot and game
teams. Based on feedback from the course staff and from
another student team evaluating the project using ATAM,
the software architectures improved significantly in terms
of quality and quantity in the implementation phase of the
project. The teams discovered problems with their architec-
tural design mainly due to wrong assumptions about the
COTS. Both XNA and Khepera put constrains on how to
design the architecture, and the students discovered this
through trial and error. The XNA teams struggled to make
this work due to the complexity of the COTS, while for
the Khepera simulator the main problem was lack of doc-
umentation. The students learned most during the imple-
mentation phase of the project, as they in this phase had
to put everything together, reflect on their choices, make
changes to make it work, and do the final documentation
including updating documentation from previous phases.
The course staff also noticed that the students worked a lot
the last couple of weeks to be able to finish in time, and put
everything together.

One noticeable difference for the course staff after intro-
ducing the game project was that the software architecture
workshop, where a selected number of teams presented their
work, was much more interesting and exciting. In previous
years, these workshops have not been very interesting, since
most all the students had worked with the same domain
(robot). The game projects brought new life to the workshop,
and it was very interesting to learn from creative game
projects.

5.2. The Games Developed. In total, 16 different 2D games
were developed. The type of games varied in several dimen-
sions like number of players, game genre, network support,
real-time versus turn-based games, and so forth. The distri-
bution of the game genres implemented by the students is
shown in Figure 2. From the figure, we can see that most
students chose to implement a variant of a shooter game in-
cluding a bee-shooter, space shooters, balloon-shooter, tank-
shooter, and so forth. The other major game genre was the
strategy games that included trading games, and turn-based
worm clones.

The student projects also varied in support for multi-
player and network, and usage of the XQUEST-framework as

100 - —
90 - —
80 A
70 -
60 -
50 A
40 A
30 A
20 A
10 ~

0 T T T 1
Multiplayer Turn-based Network XQUEST

(%)

& No
& Yes

FiGURE 3: Distribution of game characteristics.

shown in Figure 3. More than 56% of the games developed
supported multiplayer, 31% were turn-based, and only two
games supported playing over network. About 44% of the
games used the XQUEST framework that was developed for
this course to simplify the development in XNA.

None of the games developed were groundbreaking in
terms of gameplay or graphics, but several of the games
had new twists in gameplay or graphics (like including the
two most known buildings in the local city—Trondheim).
The most novel game was a two-player split screen death-
match shooting game, where two players were navigating in
an environment that was hand-drawn using colored pencils.
One of the levels in the game was actually architectural draw-
ings of the implementation of the game itself. Figure 4 shows
a screenshot of this game named BlueRose.

Some of the teams have continued to develop their games
after the course ended.

If we look further into differences between how the robot
teams and the game teams in terms of the implementation,
we found that the projects varied in complexity and size.
Although the APIs of XNA and Khepera framework is about
at the same abstraction level, the game projects on average
had more complex architectures. The architecture of game
teams on average consisted of 12 classes compared to 9 for
robot teams. We also noticed that the robot teams had a
standard deviation of about 3 classes compared to 4 classes
for game teams. We found the same tendency for lines of
code where robot teams wrote in average 1800 lines of code
(without comments), while game teams wrote 3400 (about
90% more lines of code). Another finding was that there
was much more variation in number of lines code in game
teams compared to robot teams. For robot teams, the most
productive team wrote about 2500 lines of code (less than
the average for game teams), and the least productive 850
lines of code. For game teams, however, the most productive
team wrote about 12000 lines of code and the least productive
about 800 lines of code. From analyzing the code, we
found that the game teams that produced most lines of
code really got carried away with programming the game

International Journal of Computer Games Technology

with less attention to the software architecture. We also
compared the final grade of students doing game projects
versus students doing robot projects and did not find any
significant difference in the final grade. However, we noticed
a tendency that students from game teams got a better grade
on the project compared to the final written examination,
and the students from the robot teams the opposite. An
extensive analysis of the differences between the two projects
is described in [55].

5.3. Lessons Learned from the Students. This section describes
experiences described in the students’ lessons learned section
of the teams’ final reports.A striking difference between
students that did a game versus students that did a robot pro-
ject was how they experienced using the COTS. None of
the robot students said anything positive about the Khep-
era framework. The students that did the game projects
described XNA and C# to be easy to learn and work with,
that the tools were user-friendly and helpful, that the XNA
framework provided the most important functionality in-
cluding the game loop, and that the game project was very
interesting. The students also wrote that it was very valuable
to learn XNA and C#, and that XNA and the XQUEST library
let them focus on the logic of the video game thus saving a
lot of time.

There were several comments both from robot and
game teams about the negative experiences from using the
chosen COTS. For the students working with the robot sim-
ulator, the main problems were related to random and un-
predictable behavior of the robot, that the robot simulator
performed differently on different PCs, that it was difficult to
implement the designed architecture using the API, and that
the implementation forced the students to think too much on
Al issues instead of software architecture. The random and
unpredictable behavior of the robot simulator is a built-in
feature to simulate unpredictable sensors in the real worlds.
This issue caused a lot of frustration among the students.
The different performance of the robot simulator on different
PCs is due to problems of real-time execution in Java and
real-time performance on different virtual machines. The
negative experiences from using XNA was insufficient audio
support (only support uncompressed audio files), no sup-
port for network testing of two instances on the same ma-
chine, limitations of the provided network API in XNA, and
that more knowledge of the XNA framework was required to
do a good architectural design.

Another topic that was covered by many teams in the
lessons learned was their experience with the software archi-
tecture domain. Both robot and game teams found that they
had learned a lot about software architecture through the
design and implementation of the software architecture. One
game team said that especially the XQUEST put some major
restrictions on the architecture as it was tightly coupled to
XNA. This made it difficult to implement a layered architec-
tural pattern. Their conclusion was that the team should have
spent more time in the beginning discovering the architec-
tural limitations of the COTS. Another XNA team found
that the COTS enabled a proper balance between the game

International Journal of Computer Games Technology

% BlueRose

Play Game

/e
e,

IS
Oe

FIGURE 4: Screenshots from the BlueRose XNA game.

functionality and the software architecture, which resulted in
a smooth implementation. Finally, an XNA team described
that they did not do an attempt to separate game logic and
graphics beyond what was done in XNA, and that this was
a big mistake that cause a lot of problems later in the pro-
ject. For the robot teams, one team said that they used an
inappropriate amount of time on the implementation and
that the software architecture was therefor, put in the back-
ground. One robot team discovered that having a well-
planned architecture before starting to implement made it
a lot easier to divide the work and make changes during
the project. Another robot team explained that they in the
beginning only had considered the top-level architecture
without examining the architecture of the major modules,
which caused a lot of problem. Finally, yet another a robot
team admitted that they should had thought more about
splitting different classes into packages, as they ended up with
code that was hard to modify and manage.

The overall lessons from the students doing a robot
project were a mixture of positive and negative issues. The
robot simulator itself frustrated the students, and they had
nothing positive to say about the COTS. Many students
found the robot simulation domain to be fascinating, but
they thought it was too difficult to implement the logic of
the robot. However, the students had many positive com-
ments about learning software architecture through such a
project and designing a software architecture for a robot con-
troller. They also mentioned that they had many reference
architectural patterns they could use as a starting point. The
hard part was implementing the architecture and the logic
for the robot controller.

The overall lessons learned from the students doing an
XNA game project were very positive about introducing
a game project in a software architecture course. Some

students felt that learning C# and XNA in addition to the
syllabus was a bit too much, but generally most students said
that to learn XNA and C# did not take much time. Some stu-
dents said that the XNA architecture put major restrictions
on their architecture. This is of course true, but this is also the
case in most commercial software development projects, as
they often use some kind of framework that the architecture
must adhere to. The main challenges of using XNA in the
software architecture project was to spend enough time
learning the framework before designing the architecture,
and doing the design and implementation. The identified
issue of lacking support for other audio format than wav was
resolved in XNA Game Studio 3.0. From the reports we could
also see that our own XNA extension (XQUEST) limited the
choices of architecture more than only using XNA. The main
benefit of using XQUEST was a simpler interface to some of
the most useful game functionality.

5.4. Student Evaluation Feedback. After completing the pro-
ject, all students had to fill in a final course evaluation and
write responses to three questions: what has been good about
the course, what has been not so good, and what would you
like to change to next year?

The responses regarding what had been good about the
course can be categorized into main areas the project, learn-
ing, practical work, and group dynamics. Both students from
robot and game teams stated that the project had been good,
but students from game teams were overall happier with
the project and described it to be cool, interesting, fun,
and motivating. Also both categories of students described
that they learned a lot from the project in that they got to
try out the theory from the lectures in practice. They also
gave concrete example of theory that they got to try out
in the project such as architectural and design patterns and

10

how the software architecture is represented in code. Many
students from game teams also wrote that the project was
a fun way of learning software architecture and that it was
useful to learn about the interplay of game and architectural
approaches. Regarding the practical work, students from
game teams mentioned that it was really useful to learn C#
as it is commonly used in industry and that it was easy to
learn because of its similarities with Java. Both robot and
game students gave positive comments about the fact that
the course forced the students to do practical work. Finally,
it was mentioned that it was useful to learn from other teams
through the final workshop. The responses from the students
taking the course were overall very positive. The feedback
from game team students was generally more positive than
the feedback from the robot controller projects. Typical
positive feedback we received from students doing a game
project was that they felt they learned a lot from the game
project, that they liked the practical approach of the project
and having to learn C#, and the interaction between the
teams (both ATAM and the project workshop). The students
doing a robot project were pleased with learning software
architecture through practical work, and thought it was very
interesting to learn about software architecture in general.

The responses regarding what had been not so good about
the course mainly concerned the COTS. Both students from
robot and game teams complained about the lack of technical
support during the project and sufficient introductory lec-
ture on the COTS in the beginning of the course. Further,
both categories of students complained that the COTS took
away focus from software architecture in the course. Few
students on game teams complained that learning C# took
so much time that they did not have enough time to stu-
dy software architecture. Some other students on game teams
said that the focus on the game itself keep them from focus-
ing on the software architecture, and that the game domain
limits the choice of architecture too much. Students on ro-
bot teams complained that the difficulty of implementing
the robot controller took the focus away from architectural
design, and that the workload of the project was way too
high. The main negative feedback from students doing game
projects focused on the lack of XNA technical support
during the project, and that some student felt that there was
too much focus on C#, XNA and games and too little on
software architecture. The students doing a robot project also
complained about not sufficient technical assistance, and that
the robot simulator and the robot domain were very difficult
to master.

On the final question in the course evaluation, what
would you have changed for next year’s course; we received
various course improvement suggestions. Game team stu-
dents suggested to allocate more time to develop the game,
to make the project count 50% of the grade, to give a better
C# introduction, to provide better technical support, and
to put more restrictions on game-type to ensure that the
teams choose games suited for the course. The robot team
students suggested to either give better information on how
to program the robot or drop the robot project all together,
provide better technical support during the project, and split
the project into several smaller exercises. One robot team

International Journal of Computer Games Technology

student said that he rather would choose the game project
if he could start all over again. The suggestions to improve
the course were mainly according to the negative feedback
namely to improve teaching and technical support related
to the COTS (XNA and robot simulator), and to adjust the
workload of the project.

6. Conclusion

In this paper, we have described how we changed a software
architecture course to include a game development project.
The main motivation for introducing such a project was to
motivate the students to put extra effort into the project
and motivating for higher course enrollment. Some parts
of the syllabus were changed to include game development
as a natural part of the software architecture course. A
challenge we discovered was to find the appropriate literature
on design of software architecture for the game domain,
which we are still looking for. It is not very hard to motivate
for why game developers can benefit from learning more
about software architectures as games are becoming increas-
ingly more complex (especially massively multiplayer online
games). From a software architecture perspective, games are
interesting since they introduce relevant challenges such as
dealing with continues changes of functional requirements
(modifiability), and hard real-time requirements both for
hardware and network.

Our experience from running a game development pro-
ject in a software architecture course is very positive. The
course staff noticed an increasing interest and motivation for
the project in the course. From the course evaluation, we also
notice that students choosing the game project were more
positive towards the project compared to those who chose the
robot project. Robot team students complained more about
the project while game team students generally expressed
that the project was fun and engaging. Game development
projects are also very positive for the group dynamics, as
other that CS and SE skills are required (e.g., creative and
artistic skills). The main negative effect of introducing a
game development project was that some teams focus more
on developing the game than on the software architecture
of the game. This effect was not a major issue, as most
teams did a good job of designing the architecture and then
implementing it. There will always be some students that do
not like to do a project on games. When we looked at the
demographics to see if there were any various in choosing
game projects, we only found minor variations between male
(73%) and female (71%). Actually, the difference was larger
between Norwegians (74%) and foreign students (70%). One
challenge for some students was that they had to learn C#.
Most students did not think this issue was negative thing,
as to know C# is useful for later in the career and it is not
very different from Java. Another challenge using XNA as a
development platform was that it only runs on the Microsoft
Windows platform. This is a major problem as more and
more students have laptops running Mac OS X and Linux.
To compensate for this problem, we provided a computer lab
where 10 PCs running Microsoft Windows with XNA Game
developer studio 2.0 installed. Unfortunately, these PCs did

International Journal of Computer Games Technology

not have proper graphics cards, making game development
slow and tedious. To compensate for this problem in the
future, we might offer game projects on other platforms such
as Android and iPhone. Apart from the lack of support for
other operating systems, we were very pleased with using
XNA as a game developer platform. The high-level APIs in
XNA makes it possible to be productive with little effort.
Also XNA is flexible in terms of what games can be imp-
lemented and how the architecture can be designed. For the
students, the opportunity to develop XBOX 360 games is very
tempting. Only few of the teams tried to run their games on
the XBOX 360 mainly due to time pressure. In XNA Game
Studio 4.0, it is also possible to develop for Windows Phone,
extending the target platform even more. This can give more
variety of what kind of projects the students can develop in
future projects.

Acknowledgments

The author would like to thank Jan-Erik Strem and Trond
Blomholm Kvamme for implementing XQUEST and for
their inputs to this paper. They e would also like to thank
Richard Taylor at the Institute for Software Research (ISR)
at University of California, Irvine (UCI) for providing a
stimulating research environment and for hosting a visit-
ing researcher from Norway. The Leiv Eriksson mobility
program offered by the Research Council of Norway has
sponsored this work.

References

[1] R.Rosas, M. Nussbaum, P. Cumsille et al., “Beyond Nintendo:
design and assessment of educational video games for first and
second grade students,” Computers and Education, vol. 40, no.
1, pp. 71-94, 2003.

[2] M. Sharples, “The design of personal mobile technologies for
lifelong learning,” Computers and Education, vol. 34, no. 3-4,
pp. 177-193, 2000.

[3] A. Baker, E. O. Navarro, and A. Van Der Hoek, “Problems

and programmers: an educational software engineering card

game,” in Proceedings of the 25th International Conference on

Software Engineering (ICSE 03), pp. 614—619, Irvine, Calif,

USA, May 2003.

L. Natvig, S. Line, and A. Djupdal, “Age of computers: an

innovative combination of history and computer game ele-

ments for teaching computer fundamentals,” in Proceedings of
the 34th Annual Frontiers in Education: Expanding Educational

Opportunities Through Partnerships and Distance Learning, pp.

F-1-F-6, Trondheim, Norway, October 2004.

[5] A. O. Navarro and A. Hoek, “SimSE: an educational simula-
tion game for teaching the software engineering process,” in
Proceedings of the 9th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITiCSE '04), p.
233, ACM Press, New York, NY, USA, 2004.

[6] G. Sindre, L. Natvig, and M. Jahre, “Experimental validation
of the learning effect for a pedagogical game on computer
fundamentals,” IEEE Transactions on Education, vol. 52, no. 1,
pp. 1018, 2009.

[7] B. A. Foss and T. 1. Eikaas, “Game play in engineering
education—concept and experimental results,” International

=

(8]

11

Journal of Engineering Education, vol. 22, no. 5, pp. 1043-1052,
2006.

A. 1. Wang, O. K. Morch-Storstein, and T. @fsdahl, “Lecture
quiz—a mobile game concept for lectures,” in Proceedings
of the 11th IASTED International Conference on Software
Engineering and Application (SEA °07), November, 2007.

A. 1. Wang, T. @fsdahl, and O. K. Merch-Storstein, “An eval-
uation of a mobile game concept for lectures,” in Proceedings
of the 21st Conference on Software Engineering Education and
Training, (CSEET °08), pp. 197-204, April 2008.

M. S. El-Nasr and B. K. Smith, “Learning through game
modding,” Computers in Entertainment, vol. 4, no. 1, pp. 45—
64, 2006.

B. Wu and A. I. Wang, “An evaluation of using a game
development framework in higher education,” in Proceedings
of the 22nd Conference on Software Engineering Education and
Training, (CSEET ’09), pp. 41—44, Hyderabad, India, February
2009.

A. Sliney and D. Murphy, “JDoc: a serious game for medical
learning,” in Proceedings of the Ist International Conference
on Advances in Computer-Human Interaction, (ACHI ’08), pp.
131-136, February 2008.

E Mili, J. Barr, M. Harris, and L. Pittiglio, “Nursing training:
3D game with learning objectives,” in Proceedings of the Ist
International Conference on Advances in Computer-Human
Interaction, (ACHI ’08, pp. 236-242, Rochester, NY, USA,
February 2008.

L. V. Ahn, “Games with a purpose,” IEEE Computer Magazine,
vol. 39, no. 6, pp. 92-94, 2006.

J. Blow, “Game development: harder than you think,” ACM
Queue, vol. 1, no. 10, pp. 28-37, 2004.

G. M. Youngblood, “Using XNA-GSE game segments to
engage students in advanced computer science education,”
in Proceedings of the 2nd Annual Microsoft Academic Days
Conference on Game Development, February, 2007.

E. Sweedyk and R. M. Keller, “Fun and games: a new software
engineering course,” ACM SIGCSE Bulletin, vol. 37, no. 3, pp.
138-142, 2005.

K. Claypool and M. Claypool, “Teaching software engineering
through game design,” in Proceedings of the 10th Annual
SIGCSE Conference on innovation and Technology in Computer
Science Education (ITiCSE °05), pp. 123-127, Caparica, Portu-
gal, June, 2005.

D. Volk, “How to embed a game engineering course into a
computer science curriculum,” in Proceedings of the Conference
on Future Play: Research, Play, Share, pp. 192-195, Toronto,
Canada, November, 2008.

J. Linhoff and A. Settle, “Teaching game programming using
XNA,” in Proceedings of the 13th Annual Conference on
innovation and Technology in Computer Science Education
(ITiCSE °08), pp. 250-254, Madrid, Spain, June-July 2008.

Q. Zhu, T. Wang, and S. Tan, “Adapting game technology to
support software engineering process teaching,” in Proceedings
of the 3rd International Conference on Natural Computation,
(ICNC07), pp. 777-780, Haikou, China, August 2007.

Y. Rankin, A. Gooch, and B. Gooch, “The impact of game
design on students’ interest in CS,” in Proceedings of the 3rd
International Conference on Natural Computation (ICNC °07),
pp- 777-780, Miami, Fla, USA, February-March 2008.

S. Leutenegger and J. Edgington, “A games first approach to
teaching introductory programming,” SIGCSE Bulletin, vol.
39, pp. 115-118, 2007.

12

[24] B. D. Coller and M. J. Scott, “Effectiveness of using a video
game to teach a course in mechanical engineering,” Computers
and Education, vol. 53, no. 3, pp. 900-912, 2009.

[25] J. Distasio and T. Way, “Inclusive computer science edu-
cation using a ready-made computer game framework,” in
Proceedings of the 12th Annual Conference on Innovation and
Technology in Computer Science Education, pp. 116-120, June
2007.

[26] Washington State University Vancouver and University of
Puget Sound, “2008 The Java Instructional Gaming Project,”
June 2008, http://ai.vancouver.wsu.edu/jig/.

[27] C. Johnson and J. Voigt, “DXFramework,” June 2008, http://
www.dxframework.org.

[28] L. Parberry, “SAGE: a simple academic game engine,” June
2008, http://larc.csci.unt.edu/sage.

[29] R. Coleman, S. Roebke, and L. Grayson, “GEDI: a game engine
for teaching videogame design and programming,” Journal of
Computing Science in Colleges, vol. 21, no. 2, pp. 72—82, 2005.

[30] Rockwell Automation Inc, “Arena Simulation Software,” June
2008, http://www.arenasimulation.com.

[31] IBM, “INNOV8—a BPM Simulator,” June 2008, http://www-
304.ibm.com/jct03001c/software/solutions/soa/innov8.html.

[32] P. Clements, L. Bass, and R. Kazman, Software Architecture in
Practice , Addison-Wesley, 2nd edition, 2003.

[33] J. O. Coplien, “Software design patterns: common questions
and answers,” in The Patterns Handbook: Techniques, Strategies,
and Applications, pp. 311-320, Cambridge University Press,
New York, NY, USA, 1998.

[34] A. 1. Wang and T. Stalhane, “Using post mortem analysis to
evaluate software architecture student projects,” in Proceedings
of the 18th Conference on Software Engineering Education and
Training (CSEET °05), pp. 43-50, April 2005.

[35] D. P. Perry and A. L. Wolf, “Foundations for the study
of software architecture,” ACM Sigsoft Software Engineering
Notes, vol. 17, no. 4, pp. 40-52, 1992.

[36] IEEE, “IEEE recommended practice for architectural descrip-
tion of software-intensive systems,” Software Engineering Stan-
dards Committee of the IEEE Computer Society, 2000.

[37] P. B. Kruchten, “The 4+1 view model of architecture,” IEEE
Software, vol. 12, no. 6, pp. 42-50, 1995.

[38] R.Kazman, M. Klein, R. Kazmani et al., ““The architecture tr-
adeoff analysis method,” engineering of complex computer sy-
stems,” in Proceedings of the Fourth IEEE International Confer-
ence on Engineering Complex Computer Systems (ICECCS *98),
vol. 0, 1998.

[39] A. BinSubaih and S. C. Maddock, ““Using ATAM to evaluate
a game-based architecture”, workshop on architecture-centric
evolution,” in Proceedings of the 20th European Conference on
Object-Oriented Programming (ECOOP ’06), Nantes, France,
July 2006.

[40] T. Lozano-Pérez, Autonomous Robot Vehicles, Springer, New
York, NY, USA, 1990.

[41] A. Elfes, “Sonar-based real-world mapping and navigation,”
IEEE Journal of Robotics and Automation, vol. 3, no. 3, pp. 249—
265, 1987.

[42] R. G. Simmons, “Concurrent planning and execution for
autonomous robots,” IEEE Control Systems Magazine, vol. 12,
no. 1, pp. 46-50, 1992.

[43] S. A. Shafer, A. Stentz, and C.E. Thorpe, “An architecture
for sensor fusion in a mobile robot,” in Proceedings of the
IEEE International Conference on Robotics and Automation, pp.
2002-2011, April 1986.

International Journal of Computer Games Technology

[44] D. Toal, C. Flanagan, C. Jones, and B. Strunz, “Subsumption
architecture for the control of robots,” in Proceedings of the
13th Irish Manufacturing Conference (IMC-13), pp. 703-711,
1996.

[45] R. Lumia, J. Fiala, and A. Wavering, “The NASREM robot
control system and testbed,” The International Journal of
Robotics and Automation, no. 5, pp. 20-26, 1990.

[46] A. I Wang and B. Wu, “An application of game development

framework in higher education,” The International Journal of

Computer Games Technology, 2008.

C. Vichoido, M. Estranda, and A. Sanchez, “A constructivist

educational tool: software architecture for web-based video

games,” in Proceedings of the 4th Mexican International

Conference on Computer Science (ENC ’03), Apizaco, Mexico,

September 2003.

[48] J. Krikke, “Samurai romanesque, J2ME, and the battle for
mobile cyberspace,” IEEE Computer Graphics and Applications,
vol. 23, no. 1, pp. 16-23, 2003.

[49] S. Rabin, “Introduction to game development,” in Course
Technology Cengage Learning, 2008.

[50] A. Rollings and D. Morris, Game Architecture and Design—A
New Edition, New Riders, 2004.

[51] G.Booch, “Best practices in game development,” IBM Presen-
tation, March 2007.

[52] A. Grossman, Postmortems From Game Developer, Focal Press,
2003.

[53] R. Darken, P. McDowell, and E. Johnson, “Projects in VR: the
delta3D open source game engine,” IEEE Computer Graphics
and Applications, vol. 25, no. 3, pp. 10-12, 2005.

[54] NGA, “Norwegian game awards 2011—home,” April 2011,
http://www.gameawards.no.

[55] A.I. Wang, “Extensive evaluation of using a game project in a
software architecture course,” Computers & Education, vol. 11,
pp. 1-28, 2011.

(47

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

