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This paper presents a 3-dimensional finite element formulation for predicting the behaviour of
complex umbilical cross-sections exposed to loading from tension, torque, internal and external
pressure including bending. Helically wound armours and tubes are treated as thin and slender
beams formulated within the framework of small strains but large displacements, applying the
principle of virtual displacements to obtain finite element equations. Interaction between structural
elements is handled by 2- and 3-noded contact elements based on a penalty parameter formulation.
The model takes into account a number of features, such as material nonlinearity, gap and friction
between individual bodies, and contact with external structures and with a full 3-dimensional
description. Numerical studies are presented to validate the model against another model as well
as test data.

1. Introduction

Flexible risers such as flexible pipes and umbilical cables represent a crucial element of a
floating production system. The concept is an attractive alternative to a rigid riser since it
does not require heave compensation and tensioning devices at the top or riser manifold at
the seabed. At the same time, it offers ease of installation, retrieval and usage elsewhere.

Flexible pipes and umbilical cables both work as composite pipes that are compliant
and highly deformable in bending but strong and stiff in response to internal pressure,
external pressure, tension, and torque.

For the flexible pipe, concentric polymeric layers are used to provide sealing. These
layers are supported by interlocked metallic layers to resist pressure loading and tensile
armour layers to resist tension, torque, and the pressure end cap effect. Umbilicals have
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Figure 1: Umbilical cross-section.

homogenous layers, cables, hydraulic hoses, andmetal tubes at their central core. Both helical
armours and helical multifunction tubes are used to resist tension and torque; see Figure 1.

Predicting the structural response in such composite structures is a problem that
has been dealt with by many authors. Knapp [1] addressed the axisymmetric response
of aluminium core with steel reinforcement cables. Raoof and Hobbs [2] proposed to
use an orthotropic material formulation to treat the helix armours as shells. Costello [3]
developed a model for wire ropes that is suitable for cables with few large tendons in
lateral contact. Witz and Tan [4] presented expressions for cables and flexible pipes under
moderate loads. Computer models for the same range of application on flexible pipes were
also presented by McNamara and Harte [5]. Feld [6] investigated the response of power
cables, material nonlinearity included, but assuming a constant factor between tension and
core radial contraction. Custódio and Vaz [7] studied the axisymmetric response of umbilical
cables, introduced improvements to previously publishedmodels, and compared estimations
with experiments. Sævik and Bruaseth [8] presented a fairly general 2-dimensional model,
however, also assuming axisymmetric behaviour.

The response of flexible pipes subjected to bending has been less focused on.
Lutchansky [9] and Tan et al. [10] allow axial movement of the helical reinforcing only.
Ferét and Bournazel [11] suggest that the unbonded helically wound tendon will follow the
geodesic of the curved cylinder. Leclair and Costello [12] used Love’s equations and assumed
wire geometry to calculate the local and global response of wires in a bent rope. Sævik [13]
developed a curved beam element to study the stress and deformation in one single armour
tendon exposed to a given curvature distribution. Most models presented in the literature,
however, assume that the curvature is constant and given from global analyses assuming
elastic bending stiffness, excluding the effect of the friction work done due to relative sliding
between layers. Sævik et al. [14] presented a model considering the full cross-section in
bending for flexible pipes; however, the assumptions applied in this model utilised the benefit
from the layered structure of such pipes, thus not very well suited for the umbilical cross-
section, often consisting of a few individual structural elements with a significant bending
stiffness.

Themain purpose of the present work has therefore been to formulate amodel that can
describe stresses and slip of umbilical structural elements for both axisymmetric and bending
loads and to validate the model against available test data.
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2. Model

2.1. General

Based on a comprehensive literature review of models, Custódio and Vaz [7] listed the most
common assumptions. For clarity and comparison purposes, these assumptions are repeated
here using their definition.

(1) Regularity of initial geometry: (a) the homogenous layers are long and uniform
cylinders; (b) the wires are wound on a perfectly cylindrical helix; (c) the wires are
equally spaced; (d) the wires of an armour are numerous, hence the forces they
exert on the adjacent layers may be replaced by uniform pressure; (e) the structure
is straight.

(2) Reduction to simple plane analysis: (f) there are no field loads such as self-weight;
(g) end effects may be neglected; (h) the material points from any layer have the
same longitudinal displacement and twist; (i) all wires of an armour present the
same stress state; (j) the wires maintain a helicoidal configuration when strained;
(k) the angle between thewire cross-section principal inertia axis and a radial vector
linking the centre of structure’s cross-section and the centre of wire’s cross-section
is constant; (l) there is no overpenetration or gap spanning.

(3) The effects of shear and internal friction are neglected: (m) the wires are so slender
that the movements of the material points are governed only by their tangent strain
and not by the change in curvature.

(4) Linearity of the response: (n) the materials have linear elastic behaviour; (o) the
changes in armour radii and pitch angles are linearly small; (p) the wires in one
armour never touch laterally or are always in contact; (q) there are no voids
between layers nor among cables in the functional core; (r) the homogeneous
layers are thin and made of soft material so they simply transfer pressure; (s) the
umbilical’s core responds linearly to axisymmetric loading; (t) both loading and
response are not timedependent.

The model presented by Custódio and Vaz avoids the assumptions (n)–(s). The
present model, however, avoids the assumptions (c), (d), (f), (g), (h), (i), (j), (k), (m), (n), (o)
and (p) enabling contact to be handled on component level as well as allowing end effects
and friction to be included. However, in order to limit the number of unknown parameters
in a 3D model, the governing equations are formulated to only include 1st order helices.
It is also assumed that local deformations in the cross-section can be handled by a surface
stiffness penalty parameter, so that the structural response can be described by beam theory.
The finite element approach has further been selected as it allows structural elements and
contact interaction effects to be handled on an individual basis.

2.2. Finite Element Formulation

In order to establish the equilibrium equations, the principle of virtual displacement is
applied. For an arbitrary equilibrium state

∫
V

(σ − σ0) : δε dV −
∫
S

t · δudS = 0, (2.1)
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where σ is the stress tensor, σ0 is the initial stress tensor, ε is the strain tensor, t is the
surface traction, and u is the displacement vector. σ0 may be obtained from the initial strain
tensor by applying the material law. In the case of nonconservative loading such as pressure,
the resulting load will change as a function of the area change. Hence, the change in the
surface area S of the volume V has to be formulated as a function of the strain. The above
equation is used for equilibrium control. However, the equation also needs to be formulated
on incremental form to allow equilibrium iterations to be carried out. The incremental form
is obtained as

∫
V

C : Δε : δε dV +
∫
V

σ : δΔEdV −
∫
s

ΔtdS = 0, (2.2)

where E is the Green-St. Venant strain tensor; see Belytschko et al. [15]. Equation (2.2) gives
the incremental equilibrium equation to be used as basis for the stiffness matrix. The first
term gives thematerial stiffness matrix, whereas the second term gives the geometric stiffness
matrix.

With respect to choice of reference configuration from which deformations are
measured, the so called corotational ghost reference formulation has been chosen. The basic
idea is to separate the rigid bodymotion from the local or relative deformation of the element.
This is done by attaching a local coordinate system to the element and letting it continuously
translate and rotate with the element during deformation; see Horrigmoe and Bergan [16].
The basis for this procedure is by attaching a local coordinate system to each node of the
structure. Along the helix, the following transformation describes the position of the local
coordinate system, i, relative to the right-handed Cartesian coordinate system, I, located at
the cross-section centre; see Figure 2:

⎡
⎣i1i2
i3

⎤
⎦ =

⎡
⎣cosα sinα cosϕ sinα sinϕ
sinα − cosα cosϕ − cosα sinϕ
0 sinϕ − cosϕ

⎤
⎦
⎡
⎣I1I2
I3

⎤
⎦, (2.3)

where α is the lay angle and ϕ is the angular position.
During deformation the helix nodes will translate and rotate and in order to update

the position of the local node base vector system from one configuration, n, to the next, n+1
the assumption of small incremental rotations is applied. This gives the following relation
between the updated local node base vector system relative to the global base vectors:

in+1i = Tn
ikΔTn

kjIj , (2.4)

where the incremental rotation matrixΔT is defined by the rotation incrementsΔθi about the
global axes Xi for each node and where the rotation is carried out in subsequent order 1-2-3,
which by multiplication of the three associated rotation matrices gives

ΔT =

⎡
⎣ cosΔθ2 cosΔθ3 cosΔθ1 sinΔθ3 + sinΔθ1 sinΔθ2 cosΔθ3 A

− cosΔθ2 sinΔθ3 cosΔθ1 cosΔθ3 − sinΔθ1 sinΔθ2 sinΔθ3 B

sinΔθ2 − cosΔθ2 sinΔθ1 cosΔθ2 cosΔθ3

⎤
⎦,

(2.5)
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Figure 2: Coordinate system.

where A denotes (sinΔθ1 sinΔθ3 − sinΔθ2 cosΔθ1 cosΔθ3) and B denotes (cosΔθ3 sinΔθ1 +
sinΔθ2 sinΔθ3 cosΔθ1).

The element types needed can be divided into two categories:

(1) beam elements to model copper conductors, tubes, fill materials or user defined
structural elements,

(2) contact elements to model contact between different element combinations such as
contact between core and 1st helix layer, between two helix layers and between
outer helix, and other interacting structural elements are examples.

With reference to (2.1) and (2.2), the following is needed in order to develop equations
for each element type that can be implemented into a computer code:

(1) Kinematics description, that is, a relation between the displacements and rotations
and the strains at a material point.

(2) A material law connecting the strain with resulting stresses.

(3) Displacement interpolation, describing the displacement and rotation fields by a
number of unknowns on matrix format that can be programmed.

In the following the above will be separately addressed.

2.3. Beam Kinematics

The beam contribution to the equilibrium equation is established assuming that the
Bernoulli-Euler and Navier hypotheses apply. The Green-St. Venant strain tensor is used as
strain measure when formulating the incremental equilibrium equations. The second order
longitudinal strain term in the Green-St. Venant strain tensor is neglected to avoid shear
locking. However, all terms related to coupling between longitudinal strain and torsion are
included.
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The displacements of an arbitrary point P , defined by local coordinates xi in the cross-
section as seen in Figure 2, may be expressed as

u1(x1, x2, x3) = u10 − x2u20,1 − x3u30,1,

u2(x1, x2, x3) = u20 − x3ω1,

u3(x1, x2, x3) = u30 + x2ω1.

(2.6)

Introducing the previously mentioned assumptions, the longitudinal Green-St. Venant strain
is found to be

E11 = u10,1 − x2u20,11 − x3u30,11 +
1
2

(
u2
20,1 + u2

30,1

)
+ω1,1(x2u30,1 − x3u20,1) +

1
2
ω2

1,1

(
x2
2 + x2

3

)
,

(2.7)

where ui is the displacements along the respective axis i and ωi is the rotation about the
same axis i. The subscript “0” quantities represent the displacement field in the respective
directions. The shear deformation, γ , is assumed according to St. Venant’s principle assuming
the beam to be long and slender with no end section warping as

γ = Rω1,1. (2.8)

The beam deformations resulting from the motion of the nodal ii system are referred to the
corotational ghost reference j-system. For an arbitrary equilibrium state the ghost reference
system is defined by the following procedure, where the superscript index refers to element
end node:

j1 =
dxk

|dx · dx| Ik, j2 =
1
2

(
i12 + i22

)
, j3 =

j1 × j2
|j1 × j2| . (2.9)

The local beam deformations at end 1 and referred to as the local ji system, is found by
transformation of the ii node system into the ji element system:

i1i = T1
ijIj = T1

ijTjkjk = T̃1
ijjj . (2.10)

The elemental rotational deformations in node i are determined by

θ1i =
1
2

θ

sin θ

(
T̃ i
23 − T̃ i

32

)
,

θ2i =
1
2

θ

sin θ

(
−T̃ i

13 − T̃ i
31

)
,

θ3i =
1
2

θ

sin θ

(
T̃ i
12 − T̃ i

21

)
,

(2.11)

where θ represents the resultant rotation at node i.
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Figure 3: Geometrical relations for contact element.

2.4. Contact Kinematics

Reference is given to Figure 3.
A contact element with two nodes is developed by considering two bodies A and B1

for this case body B2 is ignored. Each of the bodies occupies a region V l and has a boundary Sl

where l = A or B1. For a virtual time interval [t, t + Δt], the displacement fields are denoted
by ul = ul(xl), where xlV l. When bodies A and B1 are brought into contact, let Sc be the
unknown contact surface, which satisfies the relationship Sc = VA∩VB1 and Sl = Sl

σ ∪Sl
u∪Sl

c,
where Sl

σ denotes part of the surface with prescribed surface tractions Tl and Sl
u denotes

part of the surface with prescribed surface displacements. Also let n be the outward surface
normal vector of bodyA at x ∈ Sl

c and t be the corresponding tangent vector. At the beginning
of a time increment, an initial gap g0 at x ∈ Sl

c in the direction of n is defined as

g0 =
(
xB1 − xA

)
· n =

[(
RB1 + rB1

)
−
(
RA + rA

)]
· n, (2.12)

where xl, l = A or B1, represents the updated coordinates of a point at time t.
In order to describe contact between two helical layers, contact is considered between

3 bodies. One body is from the inner layer, and is denoted A. The remaining two bodies are
from the layer outside, and are denoted B1 and B2. With reference to Figure 3, the initial gap
can be expressed by:

g0 = (1 − ξ) ·
(
xB1 − xA

)
· n + ξ ·

(
xB2 − xA

)
· n, (2.13)

where the non-dimensional parameter ξ is defined as:

ξ =

(
RA + rA − RB1) · (RB2 − RB1)

∣∣RB2 − RB1
∣∣2 . (2.14)
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Note that in this case, the direction of the surface normal vector n is from the center of the
umbilical to the center of body A. It is directed outwards, to the next layer containing bodies
B1 and B2.

The current gap at time t + Δt in the direction of n can be described by:

g = (ΔuB1 −ΔuA) · n + g0 ≥ 0 (2.15)

for a two-body contact and by

g = (1 − ξ)(ΔuB1 −ΔuA) · n + ξ(ΔuB2 −ΔuA) · n + g0 ≥ 0 (2.16)

for a three-body contact.
Two contact conditions may occur:

(1) gap opening, if g ≥ 0,

(2) contact, if g < 0.

Further, if contact has been established, relative slippage including friction work will
occur for a two-body contact when

Δγt = (ΔuB1 −ΔuA) · t/= 0,

Δγs = (ΔuB1 −ΔuA) · s/= 0,
(2.17)

where s is pointing along the centre line of body A and t is obtained by taking the cross-
product between s and n. The three-body contact is treated in the same manner:

Δγt = (1 − ξ)(ΔuB1 −ΔuA) · t + ξ(ΔuB2 −ΔuA) · t/= 0,

Δγs = (1 − ξ)(ΔuB1 −ΔuA) · s + ξ(ΔuB2 −ΔuA) · s/= 0.
(2.18)

2.4.1. Patch Test

The meshing in the longitudinal direction is restrained to be identical for all the helical
components. Hence, the 2-noded contact elements operate between coincident nodes, and
the contact element will pass the patch test [17]. For the 3-noded contact elements, the force
balance will be satisfied within each separate contact element. A contact force that is acting
on bodyA, Figure 3, will have a reaction force that will be linearly distributed with ξ between
body B1 and B2. The patch test is therefore also passed for this contact element.
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2.5. Material Models

2.5.1. Beams and Tubes

Denoting the longitudinal direction by index 1 the circumferential direction by index 2 and
assuming that the normal direction is governed by a prescribed value, p, Hooke’s law for
linear elastic materials reads:

⎡
⎣σ11

σ22

τ12

⎤
⎦ =

ν

1 − ν

⎡
⎣pp
0

⎤
⎦ +

E

1 − ν2

⎡
⎢⎢⎣
1 ν 0
ν 1 0

0 0
1 − ν2

2(1 + ν)

⎤
⎥⎥⎦
⎡
⎣ε11ε22
γ12

⎤
⎦. (2.19)

For the beam and tube elements (2.19) is further simplified by prescribing σ22 by application
of thin shell theory for the tube element.

When the stresses exceed the elastic limit of the stress/strain relation, an elastoplastic
formulation is required. In this case, it is of great importance to use an elastoplastic
formulation that takes into account the two-dimensional stress state, that is, both the stresses
in the axial and hoop directions for the tubes. The applied elastoplastic material model is
based on expressing

(i) the yield criterion as a yield surface specified by the scalar function f ,

(ii) the 2nd Piola-Kirchhoff stress tensor S as a measure for stress together with the
energy conjugate Green strain tensor E as a measure of strain.

J2-flow theory of plasticity is applied, assuming that the yielding is independent of
the first and third deviatoric stress invariant, and any combination of kinematic and isotropic
hardening is allowed for. The constitutive relation reads:

Ṡ =

⎡
⎢⎣C(e) − α

C(e) :
(
∂f/∂S

)(
∂f/∂S

)
: C(e)

(
∂f/∂S

)
: C(e) :

(
∂f/∂S

) − (
∂f/∂Seq

)(
dSeq/dW

(p)
)
S : (∂f/∂S)

⎤
⎥⎦ : Ė, (2.20)

where

α = 1 if
∂f

∂S
: Ṡ ≥ 0, f = 0,

α = 0 if
∂f

∂S
: Ṡ ≥ 0 or f < 0,

(2.21)

where C(e) is the elastic material law, W (p) is the plastic work done, and Seq is the equivalent
stress. For further details, references are made to Levold [18], McMeeking and Rice [19] and
Belytschko et al. [15].
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2.5.2. Contact Element

In nonlinear finite element analysis, there are three commonly used principles when dealing
with contact problems see Shyu et al. [20, 21]. These are

(i) the lagrange multiplier method (LM),

(ii) the penalty method (PM),

(iii) the mixed method (MM).

In LM, the constraint conditions for a contact problem are satisfied by introducing
Lagrange parameters in the variation statement, where both the displacements and Lagrange
multipliers are treated as unknowns which again leads to an increased number of finite
element equations.

In PM, the contact pressure is assumed proportional to the amount of penetration
by introducing a pointwise penalty parameter. The final stiffness matrix does not contain
additional terms. However, since the resulting contact forces are of the same order as the
assumed displacement field, this may lead to violation of the local Babuska-Brezzi stability
condition, see Chang et al. [20], and the success of using MM is highly dependent on the
selected order of the contact pressure. A guideline on this item is given in [20]where an MM
contact element with excellent numerical properties was presented.

In this case, however, the focus has been on formulating a contact element that allows
easy and flexible modelling of contact effects in helical structures. Therefore a node-to-node
contact formulation based on PM has been adopted.

The constitutive relation used to model friction in the contact elements consists of two
major ingredients:

(i) a friction surface,

(ii) a slip rule.

The constitutive model used is established based on the work by Shyu et al. [21] but is
adjusted to include material hardening to improve numerical stability. The friction surface fs
is assumed to be a function of the normal traction λn, the tangential tractions λs and λt, and
the friction coefficient μ, that is:

fs = fs
(
λn, λs, λt, μ

)
. (2.22)

Assuming a linear surface, we have

fs =
√
λ2s + λ2t − μλn = 0. (2.23)

The slip increment is divided into two parts:

Δγ = Δγ e + Δγp, (2.24)
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where Δγ e is the 2-dimensional increment of elastic slip and Δγp is the corresponding
increment of plastic slip. The elastic slip increment is determined as

Δγe =
√
Δγ2s + Δγ2t e =

√
Δλ2s + Δλ2t e

E
=

Δλe
E

,
(2.25)

where E is a proportional constant. It is seen that as E grows towards infinity, a classical
Coulomb law is obtained. Assuming symmetry, that is, an associative slip rule, the following
slip rule is postulated:

γp = η
[
λs λt

]
, (2.26)

where η is a still unknown proportional constant. By assuming a constant normal traction,
the proportional constant is determined from the consistency condition:

dfs = ∇λλ : Δλ − ηλn∇γpμ : ∇λλ = 0, (2.27)

where the last term is associated with material hardening. The expressions are therefore
developed including the hardening parameter β, that is:

∂μ

∂γp
= β. (2.28)

By combining the previous equations the following constitutive relation is obtained:

[
Δλs
Δλt

]
= E

⎡
⎢⎢⎢⎢⎣
1 − λ2s

λ
2(
1 + β/E

) − λsλt

λ
2(
1 + β/E

)
− λsλt

λ
2(
1 + β/E

) 1 − λ2t

λ
2(
1 + β/E

)

⎤
⎥⎥⎥⎥⎦
[
Δγs
Δγt

]
. (2.29)

2.6. Solution Procedure

The developed finite element equations have been implemented into a computer code using
standard procedures for matrix operations. For the beam elements, linear interpolation is
used in the axial direction, whereas cubic interpolation has been applied in the transverse
direction. For the contact elements, linear interpolation is used for the 3-noded element used
between helical layers to allow the helix to distribute forces if the helix is positioned between
two bodies in the next layer. Between umbilical helix and 1st helix layer and between last
helix layer and external structures, two-noded contact elements are used, and hence no
interpolation is applied for these elements. With respect to numerical integration, closed
form expressions are developed for the beam elastic case; that is, no numerical integration
is needed. In the elastoplastic case, for pipe elements numerical integration is performed by
dividing the beam into a number of subvolumes each characterized by its strain/stress state.
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Figure 4: Typical finite element model.

The numerical procedure used to solve the finite element equations was based on a
Newton-Rapson iterative scheme controlled by applying displacement, force, and energy
norms to ensure convergence, see Belytshcko et al. [15].

3. Case Study

The purpose of the case study was to investigate the performance of the developed model
compared to others. The case selected is the umbilical test case presented by Lutchansky [9],
and the basic properties are summarized in Table 1.

The contact between the beam and the armour was modelled by setting the surface
stiffness penalty parameter to 7MPa/mm, except for the armour to armour contact, where
100MPa/mmwas applied. Table 2 shows the performance of the present model as compared
to test data, the Custódio and Vaz model, and the 2-dimensional model presented by Tan et
al. [10]. It is seen that the predicted values are similar to the other model values with respect
to stiffness parameters. The present 3-dimensional model suggests stronger torsion coupling.
However, few data points on coupling parameters were included in the measurements for
this case study.

For the test cases applied in this study a linear convergence was observed for the
complete model.

4. Experimental Studies and Analyses

The experimental studies were performed for validation of a 2D umbilical model and have
been reported in this context by Tan et al. [10].

Different umbilical cross-sections was tested with respect to the axial stiffness under
tension, coupling between axial strain and torsion and torsion stiffness in both directions. The
different umbilical cross-sections cover the range from torsion balanced dynamic umbilicals
to torsion unbalanced static umbilicals andwith variable complexity. The cross-section details
required to define input to numerical models are attached in the appendix.

Measurements, predictions, and comparison between experimental data and model
results are presented in Table 3. In all analyses a surface stiffness parameter of 100MPa/mm
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Figure 5: Example of test results compared to analysis and theoretically obtained values.

Table 1: Custódio and Vaz. umbilical cross-section.

Layer Dext (mm) Features
External sheath 94.0 Material HDPE, E = 720 MPa, ν = 0.42
Outer armour 83.8 N = 56, round wires d = 4.1mm, lay angle −20 deg.
Inner armour 75.6 N = 50, round wires d = 4.1mm, lay angle = 20 deg.
Intermediate polymer 67.4 Material HDPE, E = 720 MPa, ν = 0.42
8 hose bundle 52.4 N = 8, telescopic settlement
Soft fller 27.0 Polyurethane, E = 720 MPa, ν = 0.420
Central hose 12.7 N = 1, lay angel 0 deg.

has been applied to all metal-to-metal interfaces. For the other surfaces, a stiffness parameter
of 7MPa/mm has been applied. An exception was done for cross Section 1, which contains
layers of fillers creating a soft core. For this cross section the 7MPa/mm surface stiffness
valuewas reduced to 3.5MPa/mm.When obtaining the torsional stiffness and corresponding
coupling factors, 100 kN tension was applied in the analyses. The numerical model was 1.5m
long, and the element lengths were 1.5 cm. A typical element meshing is shown in Figure 4.

An example of measured and predicted data is shown in Figure 5, where the axial
force is plotted against axial strain for umbilical 1 and umbilical 4. Figure 5 shows three
graphs, measured, computed, and analytical where the analytical is based on simply adding
together the axial stiffness of all structural elements, taking the lay angle into account but
neglecting the effect of radial interaction. It is seen that good correlation is obtained between
the measured and the computed results in terms of stiffness. For umbilical 1, the analytical
stiffness is considerable higher than the simulations and the tests. This is likely to be due to
radial interaction effects, which are included in the model, but cannot be taken into account
in the analytical solution. Umbilical 1 has a soft core, and radial contraction is therefore more
significant than for a stiffer cross-section, as umbilical 4.

It is seen that the measured stiffness is low for the first load cycle of umbilical 1, which
most probably is due to gap closure.
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Table 2: Comparison with Custódio and Vaz test data, simulation data from Custido and Vaz, and
simulated results from Sævik and Bruaseth.

Layer Test results Custódio and Vaz Sævik and Bruaseth Present model

EA under tension, MN 71–101 82.9 100 82.9
Coupling (m)
(axial strain/torsion)

No data 0.19 0.21 0.11

GJ clockwise (kNm2)
(tension = 0 kN)

14.5–56.3 44.7 44.3 44.4

Coupling clockwise
(rad/m)
(torsion/axial strain)

No data 182 188.0 202

GJ anticlockwise (kNm2)
(tension = 0 kN)

15.9–17.22 19.1 19.5 16.5

Coupling anticlockwise
(rad/m) (torsion/axial
strain)

No data −406 −330.0 −190

Table 3: Comparing full-scale tests to analysis. Measurements denoted (M), simulation results (S) and
measurement to simulation ratio (R). Average value and standard deviation are given for the ratio
parameter.

Umbilical no.
Avrg. Std.

1 2 3 4 5 6 7 8 9

EA under tension (MN)
torsion fixed

M 609 — — 206 194 209 466 136 366 — —
S 630 — — 202 191 232 529 168 406 — —
R 0.97 — — 1.02 1.02 0.90 0.88 0.81 0.90 0.93 0.08

EA under tension (MN)
torsion free

M 565 466 261 190 — 201 474 114 366 — —
S 606 538 281 172 — 215 529 141 406 — —
R 0.93 0.87 0.93 1.10 — 0.93 0.90 0.81 0.90 0.92 0.08

Coupling (rad/m)
(torsion/axial strain)

M — −39 9.5 35.2 — — — — — — —
S — −36 7.1 38.2 — — — — — — —
R — 1.08 1.34 0.92 — — — — — 1.11 0.21

GJ clockwise (kNm2)
M 339 48 65 12.9 4.7 35.5 50.5 3.85 48.5 — —
S 288 41 64 14.1 4.2 32.6 48.8 3.94 52.9 — —
R 1.18 1.17 1.02 0.91 1.12 1.09 1.03 0.98 0.92 1.05 0.10

Coupling clockwise (10−3 m/rad)
(axial strain/torsion)

M — −3.9 2.2 3.1 2.4 — — 2.3 — — —
S — −3.0 1.8 3.5 2.8 — — 2.2 — — —
R — 1.30 1.22 0.89 0.97 — — 1.05 — 1.09 0.17

Table 4: Umbilical 1 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)

Sheath 0.00 0 2.004 6.122 7.958

Armour 84.75 2634 247.934 72.467 0.866

Armour 82.05 −1833 222.932 117.358 0.826

Armour 76.90 2634 499.872 100.139 1.539

Armour 69.70 −2442 454.712 71.777 1.399

Sheath 0.00 0 0.884 1.389 1.806

Armour 16.60 −275 13.978 0.543 0.001
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Table 5: Umbilical 2 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Tube 0.00 0 41.2760 2.0132 2.6171
Copper 32.25 −1450 3.8261 0.1704 0.0002
Tube 32.25 −1450 107.3444 4.3182 2.6907
Tube 58.50 4200 472.4745 33.9403 27.7502

Table 6: Umbilical 3 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Tube 0.00 0 163.3085 59.7814 77.7158
Sheath 0.00 0 0.8551 1.0509 1.3662
Tube 40.85 −2500 96.6505 3.5824 2.4163
Copper 4.20 150 16.0432 1.3589 0.0020
Armour 42.50 −2500 7.9993 0.9269 0.0013

Table 7: Umbilical 4 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Sheath 0.00 0 0.7779 1.1390 1.4807
Tube 44.95 −2900 121.8301 10.7828 10.9509
Tube 38.20 −2900 17.8638 0.5009 0.4106
Tube 41.48 −2900 28.8489 1.5292 1.4432
Tube 42.19 −2900 24.5609 1.3952 1.3071
Copper 19.25 2000 13.4267 0.1373 0.0027

Table 8: Umbilical 5 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Tube 31.99 2200 186.0801 5.2873 4.7552
Copper 4.28 180 11.7823 0.1348 0.0013

Table 9: Umbilical 6 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Sheath 0.00 0 0.4943 0.4141 0.5384
Tube 26.47 −1075 148.4896 5.4891 3.7872
Armour 39.95 812 144.2165 21.8472 0.4625
Armour 43.30 −1269 125.1482 10.7903 0.3497
Copper 10.40 550 4.3838 0.0202 0.0001

Table 10: Umbilical 7 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Tube 34.25 −2400 354.2712 31.2172 35.8470
Tube 59.90 3600 167.6028 9.8551 4.2154
Copper 60.16 3600 10.7384 0.6520 0.0007
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Table 11: Umbilical 8 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Tube 0.00 0 15.5958 0.3058 0.3976
Sheath 0.00 0 0.3822 0.1801 0.2612
Tube 27.10 −1870 154.0381 3.9950 3.9309

Table 12: Umbilical 9 parameters.

Description Centroid radius (mm) Pitch length (mm) EA (MN) GIT (kNm2) EI (kNm2)
Armour 53.7 −1847 247.626 24.0071 0.3888
Armour 48.7 1347 218.6 26.8073 0.3444
Armour 15.25 548 29.2146 0.2125 0.0073
Tube 33.65 2200 39.3457 1.1549 0.9551

In addition to test and analysis results, Table 3 gives a summary of the relation tested
value/predicted value for all umbilical cross-sections for all test parameters, including the
statistics in terms of average correlation and standard deviation.

It is seen that in terms of axial and torsion stiffness good correlation is found, with a
standard deviation within a 10% range. This must be considered reasonable for such complex
structures. It is noted that the axial stiffness in average is predicted to be 7-8% lower than the
measurements. With regard to tension/torsion coupling the number of valid measurements
was limited, and therefore the statistical basis is too weak to conclude. This was due to
the fact that some of the specimens were torsion balanced; hence very small inherent test
rig friction forces would influence the measured rotation. The reported values include only
torsion unbalanced cross-sections where the amount of rotation is larger. For these cross-
sections reasonable correlation was found with a standard deviation within a 20% range.

It should be noted that a better match of analysis to the experiment could have been
obtained if the surface stiffness parameter had been adjusted for each cross-section. This
would also be a reasonable approach, as the surface stiffness represents the components
ability to get a local depression at the contact point. This is clearly different for different
materials and geometries. However, the results indicate that using the suggested stiffness is
sufficient for most purposes.

5. Conclusions

In this paper, a 3-dimensional model for simulation of complex umbilical cross-sections were
presented and tested with respect to published data for axisymmetric response. The model
was based on the finite element approach, enabling contact interface effects to be handled
on individual component level and in 3 dimensions. Material nonlinearities, gap formation,
friction, lateral contact between wires, contact with external structures, and wires’ curvature
change are taken into account. The model can estimate the stresses and the displacements
of individual structural element as well as the overall structural response. The influence of
gap formation effects between structural elements was handled by a surface stiffness penalty
parameter applied to the contact elements, and generally good correlation was found with
test data. This demonstratesmodel robustness at least for the range of umbilical cross-sections
used in the experiments. The model enables generality with respect to external loading, and
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work is ongoing with respect to investigating the model performance with respect to bending
and friction stresses as well.

Appendix

Cross-Section Model Input Details

For more details see Tables 4, 5, 6, 7, 8, 9, 10, 11, and 12.
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[7] A. B. Custódio and M. A. Vaz, “A nonlinear formulation for the axisymmetric response of umbilical
cables and flexible pipes,” Applied Ocean Research, vol. 24, no. 1, pp. 21–29, 2002.

[8] S. Sævik and S. Bruaseth, “Theoretical and experimental studies of the axisymmetric behaviour of
complex umbilical cross-sections,” Applied Ocean Research, vol. 27, no. 2, pp. 97–106, 2005.

[9] M. Lutchansky, “Axial stresses in armor wires of bent submarine cables,” Journal of Engineering for
Industry, Transactions of the ASME, vol. 91, pp. 687–693, 1969.

[10] Z. Tan, J. A. Witz, G. J. Lyons, J. Fang, and M. H. Patel, “On the influence of internal slip between
component layers on the dynamic response of unbonded flexible pipe,” in Proceedings of 10th
International Conference of Offshore Mechanics and Arctic Engineering Conference (OMAE ’91), 1991.

[11] J. J. Ferét and C. L. Bournazel, “Calculation of stresses and slip in structural layers of unbounded
flexible pipes,” Journal of Offshore Mechanics and Arctic Engineering, vol. 109, no. 3, pp. 263–269, 1987.

[12] R. A. Leclair and G. A. Costello, “Axial, Bending and Torsional Loading of a Strand with Friction,”
in Proceedings of the 6th International Offshore Mechanics and Arctic Engineering Symposium (OMAE ’87),
Houston, Tex, USA, March 1987.

[13] S. Sævik, On stresses and fatigue in flexible pipes [Ph.D. thesis], NTH, 1992.
[14] S. Saevik, E. Giertsen, and G. P. Olsen, “New method for calculating stresses in flexible pipe tensile

armours,” in Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering
(OMAE ’98), Lisbon, Portugal, July 1998.

[15] T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, John
Wiley & Sons, Chichester, UK, 2000.

[16] G. Horrigmoe and P. G. Bergan, “Incremental variational principles and finite element models for
nonlinear problems,” Computer Methods in Applied Mechanics and Engineering, vol. 7, no. 2, pp. 201–
217, 1976.



18 Journal of Applied Mathematics

[17] N. El-Abbasi and K. J. Bathe, “Stability and patch test performance of contact discretizations and a
new solution algorithm,” Computers and Structures, vol. 79, no. 16, pp. 1473–1486, 2001.

[18] E. Levold, Solid mechanics and material models including large deformations [Ph.D. thasesis], Division of
Structural Mechanics, The Norwegian Institute of Technology, NTH, Trondheim, Norway, 1990.

[19] R. M. McMeeking and J. R. Rice, “Finite-element formulations for problems of large elastic-plastic
deformation,” International Journal of Solids and Structures, vol. 11, no. 5, pp. 601–616, 1975.

[20] T. Y. Chang, A. F. Saleeb, and S. C. Shyu, “Finite element solutions of two-dimensional contact pro-
blems based on a consistent mixed formulation,” Computers and Structures, vol. 27, no. 4, pp. 455–466,
1987.

[21] S. C. Shyu, T. Y. Chang, and A. F. Saleeb, “Friction-contact analysis using a mixed finite element
method,” Computers and Structures, vol. 32, no. 1, pp. 223–242, 1989.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


