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Abstract

The heat transfer experiment was performed in a specialized rig, with hot air as a substitute
for exhaust gas. Both heat transfer and pressure drop were investigated for a staggered tube
array consisting of elliptical tubes with rectangular fins. The Reynolds number was based
on the minimum flow area and the hydraulic diameter of the tubes, and was varied from 5
500 to 38 600. Through a data reduction procedure, correlations for both heat transfer and
pressure drop were found in the form of Euler-Reynolds and Nusselt-Reynolds equations,
respectively.

The Euler-Reynolds equations were Eu = 13.910Re−0.28 for the large orifice and Eu =
19.129Re−0.31 for the small orifice. These show a good agreement with published cor-
relations, and the exponents are well within the range of previous work. The Nusselt-
Reynolds equations were Nu = 0.576Re0.44 for the large orifice and Nu = 0.576Re0.36

for the small orifice. The Nusselt-Reynolds correlations show some deviation compared
to previous work. This deviation was thought to be the result of fouling inside the tubes,
and an attempt to quantify the fouling factor was made. Accounting for this fouling factor
showed that a fouling factor of 0.0004 - 0.0007 m2K/W would correlate the results nicely
with previous work.

To investigate the risk of excessive tube vibration in compact heat exchanger units, a For-
tran 90 program was created. The program returns the the natural frequencies and corre-
sponding mode shapes of a finned tube with intermediate supports. In addition to this, it
assesses the risk of vortex induced vibration, fluid-elastic instability, turbulent buffetting
and acoustic resonance, based on input chosen by the user. To test the program, it was run
with the same input as two previously worked examples from the literature, and managed
to replicate the results well.
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Sammendrag

Varmeovergangseksperimentet ble gjennomført i en spesialisert rigg, hvor oppvarmet luft
ble brukt som en erstatning for eksosgass. Både varmeovergang og trykkfall ble undersøkt
for elliptiske rør med rektangulære finner, arrangert i forskjøvne rekker. Reynoldstallet
ble beregnet ut fra det minste strømningsarealet og rørenes hydrauliske diameter, og vari-
erte mellom 5 500 og 38 600. Gjennom en datareduksjonsprosedyre ble korrelasjoner for
både trykkfall og varmeovergang funnet i form av henholdsvis Euler-Reynolds og Nusselt-
Reynolds korrelasjoner.

Euler-Reynolds korrelasjonene var Eu = 13,910Re−0,28 for den største blendeskiven, og
Eu = 19,129Re−0,31 for den minste blendeskiven. Disse korrelasjonene stemmer godt
overens med tidligere publisert forskning, hvor Euler-Reynolds ligningene var innenfor
spekteret av tidligere resultater. Nusselt-Reynolds korrelasjonene var Nu = 0,576Re0,44

for den største blendeskiven, og Nu = 0,576Re0,36 for den minste blendeskiven. Disse
avviker fra tidligere resultater. Dette avviket ble antatt å være et resultat av begroing på
innsiden av rørene, og denne begroingsfaktoren ble forsøkt tallfestet. Det viste seg at
ved å legge til en begroingsfaktor på 0,0004-0,0007 m2K/W så samsvarte resultatene med
tidligere arbeid.

For å undersøke risikoen for ødeleggende rørvibrasjoner i kompakte varmevekslere, ble
et Fortran 90 program laget. Programmet returnerer de naturlige svingefrekvensene og
modusformene til et finnet rør med mellomliggende støtter. I tillegg blir risikoen for
virvelindusert vibrasjon, fluidelastisk ustabilitet, turbulensindusert eksitasjon og akustisk
resonans vurdert, basert på inngangsverdier som brukeren selv velger. For å teste program-
met ble det kjørt med samme inngangsverdier som to tidligere eksempler fra litteraturen,
og gjenskapte resultatene fra eksemplene godt.
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h Convective heat transfer coefficient W/m2K
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I Second moment of inertia m4
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k Thermal conductivity W/mK
K Fluid-elastic instability constant [-]
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¯Tt.s. Average test section temperature K
U Overall heat transfer coefficient W/m2K
Umax Maximum test section velocity m/s
V,Up Pitch velocity m/s
Vcr Critical pitch velocity m/s
V̇ Volume flow m3/s
W Heat exchanger dimension normal to the flow m
Wt.s. Test section width m
Y Vibration amplitude m
Ymax Maximum amplitude m
Ymax,r.m.s. Maximum root mean square amplitude m

Greek notation
Symbol Parameter Unit
β Orifice to tube diameter ratio [-]
βn Natural frequency coefficient [-]
δ Mass damping parameter [-]
∆ Change in pressure over orifice [-]
ε Expansibility factor [-]
εg Void fraction [-]
ηf Fin efficiency [-]
θb Temperature difference K
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Θ Phase angle rad
κ Heat capacity ratio [-]
κ Mode shape eigenvalue [-]
λ Vibration shape constant [-]
µ Dynamic viscosity kg/ms
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ρtube Mass density of tube material kg/m3
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1 Introduction

1.1 Background

The Intergovernmental Panel on Climate Change’s 2018 report titled "Special Report on
Global Warming of 1.5 ◦C" states that if the global temperature rise is to be limited to only
1.5 ◦C, drastic steps must be made [8]. These changes would entail, among other things,
reducing CO2 emissions associated with power production. One way of achieving this is
to enhance the efficiency of already existing power plants.

An excellent way to increase energy efficiency is to better utilize the heat in exhaust gases
from gas turbines. One method in achieving this is through combined cycles, where a
bottom cycle is combined with the gas turbine and reuses the exhaust heat. In this way,
the energy that otherwise would have gone to waste can be transferred to other means.
By doing this, less gas is needed to produce the same amount of power, and therefore the
efficiency will increase.

The usage of such combined cycles is less common offshore than offshore. This is due
to the strict weight and size restrictions associated with offshore production. Because of
this, waste heat recovery units for offshore usage must be efficient in both weight and
size. Such solutions are often susceptible to damage from excessive tube vibrations due to
the limited space available inside the heat exchanger. This vibration may cause excessive
wear and tear, and in some cases, cause breakdowns to occur. Because of this, thorough
considerations of these factors are necessary for optimal design of compact waste heat
recovery units.

1.2 Objective

The objective of this thesis is to investigate the flow and heat transfer characteristics of
a finned tube bundle. Such thermal-hydraulic characteristics are essential to know when
designing compact heat exchanger units. Pressure drop, heat transfer, and tube vibration
are all design aspects which need to be assessed for compact waste heat recovery units.

The investigation into these characteristics was done in two parts. Firstly, an experiment
on a finned tube array was carried out on a bundle of elliptical tubes with rectangular fins.
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Chapter 1. Introduction

The measurements gathered from this experiment were used to develop correlations for
both heat transfer and pressure drop for the prediction of the thermal-hydraulic behavior
of the tube bundle. Secondly, a vibration response prediction program was created. This
program aimed to investigate the risk of excessive vibration of finned tubes. The program
was created so that the user may input parameters of their choosing, and can investigate
tube geometries of their choice. Due to time constraints and the complexity of the calcu-
lations, vibration in U-bend regions of heat exchangers was not included in the program.

Both the thermal-hydraulic characteristics and risk of excessive vibration are critical de-
sign parameters that are all important factors when designing compact waste heat recovery
units.
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2 Theory

The purpose of this chapter is to provide relevant background theory for convection, con-
duction, overall heat transfer coefficients and finned tubes, as well as introducing impor-
tant dimensionless numbers. Also, the chapter presents equations, parameters, and mech-
anisms that will serve as the theoretical background of the vibration response prediction
program. Parts of 2.1, 2.2, 2.3 and 2.4, excluding 2.4.3, have been reused and modified
from the author’s earlier project thesis.

2.1 Dimensionless numbers
Euler number

The Euler number, Eu, expresses the ratio of the local pressure drop to the kinetic energy
of the flow, per unit volume. An Euler number of 1 corresponds to perfect, frictionless
flow. In the context of these experiments, the Euler number has to be adjusted for the
number of tube rows.

Eu =
∆P

NL
1
2ρV

2
(2.1)

Where ∆P is the pressure drop, NL is the number of longitudinal tube rows, ρ is the fluid
density, and V is the fluid velocity.

Nusselt number

The Nusselt number, Nu, expresses the ratio of convective to conductive heat transfer nor-
mal to the boundary.

Nu =
hL

kf
(2.2)

Where h is the local convection coefficient, L is the characteristic length, and kf is the
fluid thermal conductivity.

3



Chapter 2. Theory

Prandtl number

The Prandtl number, Pr, is the ratio of the momentum diffusivity to the thermal diffusivity.
For small Prandtl numbers, the momentum diffusivity dominates, and for large Prandtl
numbers the thermal diffusivity dominates.

Pr =
µcp
k

(2.3)

Where µ is the dynamic viscosity of the fluid, cp is the specific heat capacity at constant
pressure, and k is the thermal conductivity of the fluid.

Reynolds number

The Reynolds number, Re, is the ratio of inertial forces to viscous forces. It is a helpful
tool to determine the flow regime of a fluid. For low Reynolds numbers the fluid is dom-
inated by viscous forces, and the flow is laminar, while for high Reynolds numbers, the
fluid is likewise dominated by inertial forces, and the fluid is turbulent.

Re =
V L

µ
(2.4)

Where V is the fluid velocity, L is the characteristic length, and µ is the dynamic viscosity
of the fluid.

2.2 Heat transfer parameters

2.2.1 The convection coefficient

Convective heat transfer is heat transfer that occurs between a fluid in motion and a sur-
face when the two are at different temperatures. This heat transfer is sustained by both
random molecular motion and the bulk motion of the fluid. This fluid motion is the key
difference between convection and conduction, where conduction is heat transfer through
direct contact with no movement involved [2].

With fluid-surface interaction, a velocity boundary layer will develop. Inside this boundary
layer, the fluid velocity will gradually grow from zero at the surface to a velocity T∞
associated with the flow. This is analogous to convective heat transfer, where a thermal
boundary layer will develop if the surface and fluid are at two different temperatures. Fig.
2.1 illustrates the development of both the velocity and the thermal boundary layer.
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2.2 Heat transfer parameters

Figure 2.1: Boundary layer developments of a fluid flowing across a heated plate. Reproduced from
[2].

The rate equation for convective heat transfer is known as Newton’s law of cooling, and is
expressed in (2.5).

q′′ = h(TS − T∞) (2.5)

This equation shows that the convective heat flux, or heat transfer per unit area, q′′, is
proportional to the difference between TS and T∞, which is the surface temperature and
fluid temperature, respectively. In the case where the flow has a higher temperature than
the surface, i.e., T∞ > TS , the heat transfer will happen in the opposite direction, and it is
common to write the temperature difference as (T∞ − TS). The term h is the convection
coefficient and is dependent on multiple fluid properties. The key to calculating conduc-
tive heat transfer is often determining this coefficient.

The convection coefficient is often expressed in terms of the dimensionless Nusselt num-
ber.

Nu ≡ hL

kf
(2.6)

In many cases it is desirable to estimate the average convection coefficient to better calcu-
late total heat transfer rate. This average convection coefficient is found by integrating the
local convection coefficients over the entire surface:

h =
1

As

∫
hdAs (2.7)

5



Chapter 2. Theory

It then follows that the total convection heat transfer rate may be expressed as:

qtot = hAs(TS − T∞) (2.8)

This integration can however prove difficult for more complicated surfaces, but as with the
local convection coefficient, it can be expressed by the average Nusselt number, Nu. This
average Nusselt number is in turn a function of both the Reynolds number, Re, and the
Prandtl number, Pr, and can be expressed as:

Nu ≡ hL

kf
= f(Re, Pr) (2.9)

Numerous empirical correlations of the average Nusselt number exist for a wide range
of geometries. Among them is the Gnielinski correlation, which is for turbulent flow in
tubes, and will be used in later calculations.

2.2.2 Thermal conductivity
Thermal conductivity, k, is a measure of a material’s ability to conduct heat. It is a ma-
terial specific property, and its values are often tabulated. For materials with low thermal
conductivity, heat transfer will occur at a lower rate than in materials with high thermal
conductivity. Conduction of heat happens as energy is transferred from more energetic
particles to less energetic ones, i.e., from a high to a low temperature, as shown in Fig.
2.2. The corresponding rate equation is known as Fourier’s law and is expressed in Eq.
2.10.

Figure 2.2: One-dimensional heat transfer by conduction.

6



2.2 Heat transfer parameters

q′′ = k
dT

dx
=
k

L
(T1 − T2) (2.10)

2.2.3 The overall heat transfer coefficient
The overall heat transfer coefficient, also referred to as the U-value, is a convenient tool
when working with composite systems. It is, in essence, a merging of all the thermal
conductivities and convection coefficients into one combined value. For an illustrative
example of this, we can take the simple example from Fig. 2.5.

Figure 2.3: Heat transfer through composite wall.

The figure shows a composite wall with two materials of different width, L1 and L2, and
with thermal conductivities k1 and k2, placed together between a hot fluid with tempera-
ture T∞,1, and a cold fluid with temperature T∞,3. This creates two surface temperatures,
Ts,1 and Ts,3, and an intermediate temperature T2 at the boundary between the two mate-
rials.

Using Newton’s law of cooling and Fourier’s law, we can set up the equation for the heat
flux.

q′′x = h1(T∞,1 − Ts,1) =
k1
L1

(Ts,1 − T2) =
k2
L2

(T2 − Ts,3) = h2(Ts,1 − T∞,3) (2.11)

7



Chapter 2. Theory

(2.11) can be rearranged to:

q′′x =
T∞,1 − T∞,3

1
h1

+ L1

k1
+ L2

k2
+ 1

h2

(2.12)

where:

U =

(
1

h1
+
L1

k1
+
L2

k2
+

1

h2

)−1
(2.13)

The inverse of the U-value is called the thermal resistance, and is a measure of how well
the material resists heat transfer.

For counter flow heat exchangers, the derivation is less trivial [2], but the general expres-
sion for the overall heat transfer coefficient is similar:

q = (UA)LMTD (2.14)

Where A is the total heat transfer area, and LMTD is the logarithmic mean temperature
difference, defined as:

LMTD =
(T1,in − T2,out)− (T1,out − T2,in)

ln
(

(T1,in−T2,out)
(T1,out−T2,in)

) (2.15)

For radial systems, such as cylinders, the derivation of the overall heat transfer coefficient
is similar to that of the composite wall, but with a key difference. The difference is that the
temperature distribution associated with radial conduction is logarithmic, as opposed to
linear, which it is for the plane wall [2]. This yields the following expression for a regular
cylinder, based on the outside area:

Uo =

(
1

ho
+

Ao
2πkL

ln
r2
r1

+
Ao
Aihi

)−1
(2.16)

where the subscripts i and o refer to the inner and outer surface of the cylinder, respectively.

2.3 Heat transfer enhancements
Looking at Eq. 2.8, we recognize that the only option for increasing the total heat trans-
fer rate, provided that the temperature difference is not subject to change and the average
convection coefficient is constant, is to increase the heat transfer area. Increasing the heat
transfer area is achieved by adding extended surfaces, or fins, to the already existing sur-
face. By doing this, the convection heat transfer is increased, and thereby the total heat
transfer.
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2.3 Heat transfer enhancements

To evaluate the heat transfer to and from extended surfaces, one must first obtain the tem-
perature distribution along the fin. This is important as the temperature is not constant
along the surface of the fin, which means that the temperature difference between the sur-
face and the surrounding fluid will not be constant either.

To simplify the evaluation, one must first make several assumptions. Firstly one-dimensional
conditions are assumed in the longitudinal direction for straight fins, and in the radial di-
rection for annular fins. This means that the temperature is only a function of either x or
r. Steady-state conditions, constant thermal conductivity, negligible surface radiation, no
heat generation, and uniform convection coefficient are also assumed [2].

The general form of the resulting energy equation is shown in Eq. 2.17, and the solu-
tion of which, combined with appropriate boundary conditions, provides the temperature
distribution for extended surfaces.

d2T

dx2
+

(
1

Ac

dAc
dx

)
dT

dx
−
(

1

Ac

h

k

dAs
dx

)
(T − T∞) = 0 (2.17)

Here, As and Ac is the surface and cross-sectional area, respectively.

For a straight fin with a uniform cross-sectional area, 2.17 reduces to the linear, homoge-
neous, second order differential equation:

d2T

dx2
− hP

kAc
(T − T∞) = 0 (2.18)

where P is the fin perimeter.

For a solid, annular fin 2.17 becomes:

d2T

dr2
+

1

r

dT

dr
− 2h

kt
(T − T∞) = 0 (2.19)

where t is the fin thickness. This equation is a modified Bessel equation of order zero, the
general solution for which is shown below:

θ(r) = C1I0(mr) + C2K0(mr) (2.20)

where θ is the temperature difference T − T∞, and I0 and K0 are modified, zero-order
Bessel functions. m is defined as:

m =
√

2h/kt (2.21)

which can be recognized from the third term in 2.19.
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Chapter 2. Theory

Using Fourier’s law of heat conduction 2.10 to express the fin heat transfer rate:

qf = −kAdT
dr

= −k2πrt
dθ

dr
(2.22)

While this is an example derivation, similar derivations can be done for a wide variety of
geometries and fin types.

2.3.1 Fin efficiency
Fin efficiency is a very important tool for evaluating fin performance. Due to fins having a
finite thermal conductivity, a thermal gradient will be formed along the fin, from the base
to the tip. This temperature gradient means that the temperature difference, which is the
driving force of convective heat transfer, will be lower along the fin. This will in turn result
in a lower heat transfer compared to a fin with infinite conductance [1].

It is the ratio of these two heat transfer rates which defines the fin efficiency, ηf , as shown
in 2.23.

ηf =
qf
qmax

=
qf

hAfθb
(2.23)

Here, qf is the fin heat transfer rate, and qmax is the hypothetical heat transfer rate where
the fin has infinite conductance, and the entire fin is at the base temperature [2]. θb is the
temperature difference between the base temperature and the surrounding fluid tempera-
ture. The convection coefficient, h, is assumed to be uniformly distributed over the fin
area, Af . This assumption is common, but not necessarily correct, and several corrections
have been suggested [1].

Using the expression for fin heat transfer rate 2.22, we can derive the fin efficiency for a
solid, annular fin by using the fin efficiency equation 2.23:

ηf =
qf

h2π(r22 − r21)θb
=

2r1
m(r22 − r21)

K1(mr1)I1(mr2)− I1(mr1)K1(mr2)

K0(mr1)I1(mr2) + I0(mr1)K1(mr2)
(2.24)

As is the case for the derivation for qf , the expression for fin efficiency can be obtained
similarly for a wide range of geometries.

If the fin efficiency is taken into account, the apparent convection coefficient is not equal
to the actual convection coefficient. The apparent convection coefficient is often the co-
efficient one would get directly from measurements, i.e., without factoring in the fins and
fin efficiency, while the actual coefficient is the coefficient one would get if we do take the
fins into account. To better illustrate this, we define the apparent convection coefficient as:

happ = hconv

(
Abt + ηfAf

Atot

)
(2.25)
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2.3 Heat transfer enhancements

Here, Abt is the bare tube area, i.e. the tube area not covered by fins, and Af is the finned
area. Atot is the total outside surface area, Abt +Af .

As the expression shows, happ and hconv will be equal if the fin efficiency is 1. This is not
realistic, however, and therefore the apparent convection coefficient would be lower than
the actual one.

The same correction must be made for equation 2.16 as well, where it is important to
recognize that the outside convection coefficient is an apparent one, not an actual one.
Rearranging the equation leaves us with the following expression for the apparent convec-
tion coefficient:

happ =

[
Ao

(
1

UAo
− ln(r2/r1)

2πkL
− 1

hiAi

)]−1

(2.26)

By using these two expressions for the apparent convection coefficient, along with an
appropriate expression for the fin efficiency, one can solve for the actual convection coef-
ficient through an iterative procedure.

2.3.2 Fin types

For tube banks, extending the surface area would mean the addition of fins to the tubes.
There are three main methods of attaching fins to a tube, extruding, grooving, and weld-
ing. Extruding means creating the fins from the tube material itself, and has the benefit
of having a perfect thermal contact between the tube and fins. The drawback of extrud-
ing fins is that the tube material needs to be soft, and it is, therefore, unsuited for use in
high-temperature environments. Grooved fins are fins placed in grooves or serrations in
the tube, which often causes imperfect thermal contacts and mechanical weakness. The
last method, welding, is also the most suited for use at high temperatures. It has a better
thermal connection and mechanical strength than grooved fins, and also a higher structural
rigidity than extruded fins [1].

Increasing the average convection coefficient can be achieved through thinning of the
boundary layers [9]. This relationship can be seen in equation 2.9, where a reduction
of the boundary layer thickness will lead to an increase in the average convection coeffi-
cient. This thinning can be achieved by breaking the flow, creating more, small boundary
layers.

Serrated fins have the advantage of both having an increased surface area compared to bare
tubes, while also having more flow disruption, and therefore thinner boundary layers, than
plain fins. Due to this fact, serrated fins are often used in industrial applications.
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Chapter 2. Theory

2.4 Tube vibration

This section contains an overview of essential tube parameters that need to be considered
when calculating tube vibration. It also includes a condensed version of a previous lit-
erature search, with an emphasis on the forced vibration part of the vibration response
prediction program. Lastly, it contains the theoretical basis of the free vibration part of the
same program.

2.4.1 Tube parameters

Tube array configurations

The rows of a tube bank can be either be in-line, also referred to as aligned, or staggered
in the direction of the fluid velocity. In an in-line array, the minimum flow area is at a con-
stant location, while a staggered array has alternating placements of this minimum flow
area.

The configuration is also characterized by parameters such as the transverse pitch, Pt, the
longitudinal pitch, Pl, and the tube diameter, D, as well as the ratios between these. These
definitions of these parameters can be viewed in Fig. 2.4 below.

Figure 2.4: Illustrative graphic showing the definitions of transverse pitch, longitudinal pitch. Fluid
path from left to right.
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2.4 Tube vibration

The hydraulic diameter

Due to the difference in behaviour of fluids around finned tubes, it is not applicable to use
the bare tube diameter to estimate certain parameters. To counteract this, several different
hydraulic tube diameters have been proposed.

A volumetrically based effective diameter has been proposed [10], and is on the form:

Dvol =

√
(D2

f −D2
b )
t

c
+D2

b (2.27)

where Df is the diameter from fin tip to fin tip, Db is the bare tube diameter, t is the fin
thickness and c is the fin pitch.

Mair et al. proposed an alternate variation of the effective diameter, based on the projected
area of the finned tube [11]:

Dh =
1

c
[t(Df −Db) + cDb] (2.28)

As we can see, both versions of the effective diameter will reduce to the bare-tube diame-
ter Db when the fin width, t, is zero.

Lumsden and Weaver conclude that the hydraulic diameter, Dh, seems to be the most
appropriate, especially for rotated square arrays, although there is a 4%-6% difference be-
tween the two [12].

It is also important to note that both these effective diameters were derived for plain finned
tubes, i.e., not helically wound or serrated fins. The calculations would be much more
complex and lengthier, especially for serrated fins. Despite this it has been shown by Mair
[11] that the projected area based effective diameter is reasonably accurate in predicting
vortex shedding, even for both helically wound and serrated fins.

Second moment of area

The second moment of area is a geometrical property of an area; in this case, the tube cross-
section, which describes how points are distributed along the axis. The usual formula for
an unfinned, circular tube’s second moment of area is:

I =
π

64
(D4

0 −D4
i ) (2.29)

where Do and Di are the tube outside and inside diameters, respectively. For finned tubes,
the equation must take into account the added area of the fins. For spiral-finned tubes the
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expression, as found by Fischer [13], is:

Ieff = I +
π

64
((D0 +

tf
2

)4 −D4
0)F

F = max

[
0; 1.0785666 · tf

sf
− 0.066319823

] (2.30)

where tf is the fin thickness, and sf is the fin pitch. The parameter F was numerically
obtained by Fischer [13] and curve-fitted by [14]. This correction for spiral-finned tubes
is done due to the increased rigidity the fins will add to the tube. Had the fins not been
helically wound, but welded in discrete rows or similar, the bending stiffness will not
increase.

Mass per unit length

The equation for mass per unit length for finned tubes is:

m =
π

4
(ρt(D

2
o −D2

i ) + ρiD
2
i + αρoD

2
o) (2.31)

where ρt is the tube material density, and ρi and ρo is the internal and external fluid density
respectively. α, which can be neglected if the external fluid is a gas [13]. If either one of
the fluid densities are two-phase, one must need to factor in the quality of the fluid in
question to get an appropriate density. This can be done according to:

ρi,o = (1− εg)ρl + εgρg (2.32)

where εg is the void fraction, and ρg and ρf are the density for gas- and fluid phase,
respectively.

2.4.2 Vibration mechanisms

There are three main vibration mechanisms which can be dangerous and destructive in
compact tube bundles, namely vortex shedding, fluid-elastic instability, and turbulent buf-
fetting. All three mechanisms can contribute to excessive wear and tear on the materials,
and ultimately may lead to premature destruction of the unit. It is therefore essential to
understand the underlying theory behind each, to better design against them.

As the different vibration mechanisms that may occur in finned tube bundles were cov-
ered extensively through a literature search in the project thesis, this section will provide
a summary of the main findings for each of the three vibration mechanisms.
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2.4 Tube vibration

Figure 2.5: Illustrative graphic showing the three vibration mechanisms, vortex shedding fluid-
elastic instability and turbulent buffetting. Reproduced from [3].

Vortex shedding

Flow across a tube will generate a repeating pattern of vortices in the wake region, known
as the Karman vortex street. This vortex street is characterized by periodic shedding of vor-
tices on alternating sides of the tube surface. This shedding is dependent on the Reynolds
number, and Fig. 2.6 shows how the flow around a cylinder evolves for certain ranges of
Reynolds numbers.

Figure 2.6: Vortice development for increasing Reynolds numbers. Reproduced from [4].
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Experiments have shown that such periodic shedding occurs not only for isolated cylinders
but also for each individual tube in tube banks. This periodic shedding can occur both in
the transverse direction and parallel to the flow and will induce periodic pressure varia-
tions on the structure. In the transverse direction, these pressure variations will generate a
transverse force, i.e., lift force, on the cylinder, and a drag force in the parallel direction.
In the lift direction, the alternating force will have a dominant frequency called the vor-
tex shedding frequency fv . In the drag direction, the dominant frequency of the structure
is twice the vortex shedding frequency [15]. This frequency is usually expressed by the
dimensionless Strouhal number, St:

St =
fvDh

V
(2.33)

where V is the flow velocity, fv is the vortex shedding frequency, and Dh is the hydraulic
diameter based on the projected area of finned tubes [16]. If the vortex shedding frequency
is within ±20% of the natural tube frequency the vortex shedding may produce a signifi-
cant tube vibration amplitude [17].

In tube bundles, expressions for the Strouhal numbers have to be found experimentally.
They use the hydraulic diameter Dh as proposed by Mair [11], as his work has shown
that it is applicable for finned tubes. To achieve this, they approximate expressions from
experimental data sorted by bundle layout. The expressions are as follows:

St =
1

1.173

Dh

Pt
(2.34)

for normal triangular bundles,

St =
1

1.16

Dh

Pt
(2.35)

for rotated triangular bundles, and

St =
1

1.2

Dh

Pt
(2.36)

for square bundles. Pt is the transverse tube pitch, i.e., the shortest distance between two
tube centers in the transverse direction. Similarly, Pl is the longitudinal tube pitch. A more
detailed table of the dynamic lift coefficient and Strouhal numbers for these cases can be
found in [18].

The previously mentioned lift force is expressed by Pettigrew et.al. (Pettigrew and gor-
man) as:

FL(x) = CLDρUp(x)2/2 (2.37)

where CL is an experimentally determined lift coefficient [18], D is the tube outside diam-
eter, and Up is the maximum pitch velocity. The lift coefficient is dependent on the pitch
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ratio, and can be determined according to Eq. 2.38 [17].

CL = 0.075;Pt/dh < 1.6

CL = 0.461
Pt
dh
− 0.663; 1.6 < Pt/dh < 2.5

CL = 0.49;Pt/dh > 2.5

(2.38)

For a fully correlated lift force, i.e. when the vortices shed simultaneously across the
length of the tube, and assuming that the damping is small, the general expression for the
peak vibration amplitude at the ith mode can be expressed as:

Y (x) =
φi(x)

mπ2f2i δ

∫ l

0

FL(x′)φi(x
′)dx′ (2.39)

Where m is the mass per unit length, δ is the structural damping, FL(x′) is the periodic
shedding force along the tube, from Eq. 2.37 and φi is the normalized mode shape for
the ith mode [18]. It is important to note that such a case is highly unlikely because the
vortices will not necessarily shed simultaneously across the entire tube length. It is more
likely that the shedding would occur more randomly. It is, however, a conservative choice
to design for it, as it is the worst case scenario.

Singh & Soler [19] propose a simplified version for only the first mode of vibration, i.e., for
one standing half wave, one a single span, where a uniform gas velocity and hinged support
in both ends is assumed. In this case, the force FL becomes constant, and the integral
becomes simpler to evaluate. The maximum amplitude Y (L/2) at mid-span becomes:

Ymax =
FL

π2f2n,1mδ
(2.40)

Pettigrew and Taylor suggest an acceptance criterion where the maximum root mean
square tube vibration amplitude should be less than 2% of the outside tube diameter [20]:

Ymax,r.m.s. < 0.02D (2.41)

Vortex shedding have been shown to also be existent in finned tube arrays. Ziada [16]
found that for finned tubes, the vortex shedding frequency increases linearly with the ve-
locity, just as for bare tubes. This frequency does, however, decrease following the addition
of serrated fins. He also found that the frequency also decreases when you increase the fin
density, which is supported by the findings of both Mair [11] and McClure & Yarusevych
[21].

Fluid-elastic instability

Fluid-elastic instability is commonly characterized by several different mechanisms. B.W.
Roberts created the first model attempting to analyze fluid-elastic instability in 1962 [22],
which he dubbed "jet-switching". Jet-switching occurs when a fluid flows past a row of
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tubes and forms discrete jets as it flows between tube pairs. These jets will create jet-
pairings at the wake of the tube array, and can be switched back and forth if the tubes in a
single row are displaced alternately up- and downstream by a sufficient amount, as can be
seen in Fig. 2.7.

Figure 2.7: Jet pairing in the wake of a tube row. (a) Jet pairing in aligned row. (b) Jet switching
caused by streamwise displacement of tubes.

These jets produce a pressure difference, which in turn produces a drag force obtained by
integrating the pressure distribution around the cylinder circumference. The drag force on
a tube increases dramatically if two jets are paired behind it, and decreases equally if two
jets separate behind it [23]. This switching mechanism of increasing and decreasing drag
force may cause detrimental tube vibration. Jet-switching cannot occur at all flow veloci-
ties, however, but only past a certain critical velocity. This critical velocity is expressed in
its dimensionless form in the so-called "Connor’s formula".

Vcr
fnD

= K(
mδ

ρD2
)

1
2 (2.42)

Here, the left hand side expressed the dimensionless critical pitch velocity, and the right
hand side is the dimensionless mass damping parameter.

To minimize the risk of fluid-elastic instability the maximum flow velocity should be lower
than the critical velocity as described in [24], i.e.

Vr
Vcr

< 1 (2.43)
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2.4 Tube vibration

Pettigrew and Taylor suggest an additional safety factor for further security, for example a
ratio of 0.75 [20].
There have been few experiments on fluid-elastic instability for finned tunes. Lumsden
[12], however, conducted experiments on two different tube geometries, in-line square
and rotated square, where he found that Vcr increases for the in-line case, while it reduces
for the rotated square case.

Turbulent buffetting

Turbulent buffeting, also called turbulence induced vibration or random excitation, is a
vibration mechanism caused by random pressure fluctuations in the flow. This results in
randomly forced oscillations in the tubes [25]. The nature of turbulent buffeting is highly
complex, and because of this simulation and prediction of turbulent buffeting is very diffi-
cult. As a result of this, mostly empirical models have been utilized.

The cylinders are excited by these turbulent forces over a wide range of frequencies. This
frequency range is, however, centered around a dominant frequency [15]. To better illus-
trate this phenomena, we can look to Weaver and Grover and their experimental results
from 1977 [5], as shown in Fig. 2.8.

Figure 2.8: Turbulence velocity power spectra for (a) V=1.10 m/s, (b) V=2.32 m/s and (c) V=4.16
m/s. Reproduced from [5].

This dominant frequency can in turn be written in terms of the dimensionless Strouhal
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number, as shown by Owen [26] in Eq. 2.44.

Sttb =
ftbD

U

PtPl
D2

= [3.05(1− D

Pt
)2 + 0.28] (2.44)

The tube response to turbulent buffeting must be calculated by random vibration theory,
and summed over all significant vibration modes. The equation for the mean square re-
sponse of the tubes is calculated by:

y2(x) =

k∑
r=1

k∑
s=1

φr(x)φs(x)

16π4f2r f
2
s

∫ ∞
0

Hr(f)Hs(f)W (f)df (2.45)

where, r and s is the mode number, k is the total number of modes considered, Hr,s is the
(complex) frequency response function defined as:

Hr,s(f) = [(1− f2

f2r,s
) + j

cf

2πmf2r,s
]−1 (2.46)

and W(f) is the weighting function defined below.

W (f) =

∫ L

0

∫ L

0

R(x, x′, f)φr(x)φs(x
′)dx dx′ (2.47)

Here, R(x,x’,f) is the spatial correlation density function, which is an expression for the
random force field. If it is assumed that the random force field is homogeneous and spa-
tially correlated, i.e. independent of x, the spatial correlation density function can be
expressed as R(x,x’,f) = S(f), where S(f) is the power spectral density. The power spectral
density is dependent on flow type, and the definitions of which can be found in [27].

Acoustic resonance

When the natural frequency of the structure is sufficiently close to the vortex shedding fre-
quency, the two frequencies will synchronize [15]. This phenomenon is called lock-in. If
this condition is met, combined with either sufficiently high acoustic energy or sufficiently
low acoustic damping, the heat exchanger will experience acoustic resonance. This res-
onance will typically cause a very intense noise and may cause severe damage to both
baffles and tubes. Acoustic resonance is a possible issue for heat exchangers with both
finned and unfinned tubes [20].
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Figure 2.9: Lock-in conditions. Reproduced from [3].

The acoustic resonance frequencies of a duct containing a tube bundle can be defined using
the effective speed of sound inside the heat exchanger, as well as the heat exchanger’s
physical dimensions [28]. This correction is made to adjust for the decrease in sound
speed inside the heat exchanger [15].

fa =
nceff
2W

; n = 1, 2, 3, ...,∞ (2.48)

Where W is the heat exchanger dimension normal to the flow, and ceff is the effective
speed of sound, defined as [29]:

ceff ≈ c0
√

1 + σ (2.49)

where σ is the fraction of the total volume occupied by pipes, and c0 is the speed of sound,
defined as [20]:

c0 =
√
κp/ρ; κ = cp/cv (2.50)

where cp and cv are the specific heats at constant pressure and constant volume, respec-
tively, p is the static pressure, and ρ is the air density.

According to Pettigrew & Taylor [20], the range of Strouhal numbers for which lock-in
may be possible is 0.8St < St < 1.35St. Blevins & Bressler [24] use a more conservative
approach, where they suggest the range 0.6St < St < 1.48St.
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2.4.3 Natural frequencies and mode shapes
The natural frequencies and mode shapes of heat exchanger tubes are important to be aware
of when designing against excessive vibration. This section will provide background for
the calculation of these, both for single- and multi-span tubes.

Natural frequencies

Any flexible structures, including heat exchanger tubes, have infinite numbers of natural
frequencies. These natural frequencies correspond to the frequencies at which the tube
or structure vibrates when released from a non-equilibrium initial condition. If there is
no damping present on the tubes, the tube motion will be sinusoidal in time, or the sum
of different sine waves if several, higher natural frequencies are excited. The correlation
between the natural frequencies and the sinusoidal waves is that each sine wave frequency
is equal to a corresponding natural frequency. The motion of the tube can be written in the
general form:

y(x, t) = ψ(x)sin(ωt+ θ) (2.51)

where ψ(x) is the mode shape, which be discussed later, θ is the phase angle, and ω is the
natural frequency [19]. To account for the infinite amount of both natural frequencies and
mode shapes, the equation can be written as:

y(x, t) = ψn(x)sin(ωnt+ θn); n = 1, 2, 3, ...∞ (2.52)

The basic equation for the natural frequencies of a vibrating tube is:

fn =
βn
L2

(
EI

m

)0.5

(2.53)

where ωn = 2πfn, m is the mass per unit length, and EI is the tube bending stiffness (also
sometimes called flexural rigidity) and βn is a dimensionless coefficient specific for each
natural frequency. This dimensionless coefficient depends on tube end fixation and mode
number. The bending stiffness is comprised of two elements, Young’s modulus, E, and the
tube’s second moment of area, I. Young’s modulus is a material-specific measure of the
material’s ability to withstand changes in length while under tensile or compressive stress.

Mode shapes

For each natural frequency, there is a corresponding mode shape. If a tube vibrates at only
one natural frequency, the corresponding displacement, or amplitude, distribution is called
the mode shape. They are somewhat similar to sine waves, but generally not exactly.
If several natural frequencies are excited simultaneously, the mode shape is the sum of
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the corresponding mode shapes. The mode shapes are generally defined arbitrarily and
are often scaled according to a reference value, usually 1. This can be achieved by first
finding the peak amplitude of the mode shape and then dividing all values by this, thereby
making all the values in the range of ±1. It can also be scaled so that the integral of the
mode shape squared is equal to a specific value, i.e.:

1

L

∫ L

0

φ2n(x)dx = C (2.54)

where C is a constant, φn(x) is the nth mode shape, and L is the characteristic length. It
is also important to note that because of this scaling, the mode shape does not specify the
displacement response of the tube. For this, one would need to know the excitation forces.

Single span tube

The governing equation for the vibration of a single tube with fixed supports at both ends
is:

−EI δ
4y

δx4
= m0

δ2y

δt2
(2.55)

where E is the Young’s modulus of the tube material, I is the second moment of area,
and m0 is the tube’s mass per unit length [19]. By substituting equation 2.51 for y into
equation 2.55 and dividing by the sine term throughout, the equation becomes:

d4ψn
δx4

= κ4ψn (2.56)

where

κ4 =
ω2
nm0

EI
(2.57)

By doing this, it becomes clear from equation 2.56 that the mode shape can be expressed by
a function whose fourth derivative is equal to the function itself, multiplied by a constant
κ4. Singh & Soler [19] expresses this solution as:

ψn(x) = An(cos(κx) + cosh(κx)) +Bn(cos(κx)− cosh(κx))

+Cn(sin(κx) + sinh(κx)) +Dn(sin(κx)− sinh(κx))
(2.58)

Where An, Bn, Cn and Dn are chosen to satisfy the tube’s end conditions.

Multi-span tubes

A multi-span tube is a tube supported on multiple places along its length. For heat ex-
changers, the supports are baffle supports, which are thin sheets of metal that supports the
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tubes. These supports serve to separate the tube into individual spans. This means that for
N spans, there are N-1 intermediate supports and two end-supports. The length of each
individual span may vary, but it is usual for the two end spans to have the same length, and
the N-1 middle spans to have the same length.

This multi-span configuration is what complicates the free-vibration analysis, as the tube
cannot be treated by a single, comprehensive analysis. Instead, each span must be exam-
ined individually, each with it’s own set of equations. The spans are considered as separate
beams with the origin at its left support. The solution for span i is then:

ψi = Bi(cos(κxi)− cosh(κxi)) + Ci(sin(κxi) + sinh(κxi))

+Di(sin(κxi)− sinh(κxi))
(2.59)

where Bi, Ci and Di are undetermined constants for span i. The equation for each span in
a multi-span tube is similar to the equation for a single tube, but with one key difference,
namely that there is no Ai term coinciding with the An term in equation 2.58. This is due
to the fact that the deflection is zero at the origin of each span, as well as at the rightmost
point of span N. As cos(κxi) + cosh(κxi) will not be zero at either x = 0 or x = L, Ai
must then be set to zero.

Accompanying the solution 3.34 are sets of boundary conditions for each intermediate
support and the two end spans. This is to ensure continuity between spans so that the
mode shape continues through each support, even though there are separate equations for
each span. For the leftmost span:

ψ′(0) = 0 (2.60)

This means that the slope of the span at the leftmost support is equal to zero. For the
intermediate supports between span i and i+1, we have the following three equations:

ψ(li) = 0 (2.61)

d2ψi
dx2i
|xi=li =

d2ψi+1

dx2i+1

|xi+1=0 (2.62)

dψi
dxi
|xi=li =

dψi+1

dxi+1
|xi+1=0 (2.63)

where li is the length of each span. What the first equation shows is that there is no trans-
verse displacement of the tube at any of the N-1 intermediate supports. The second and
third boundary conditions indicate continuity of bending moment and slope, respectively,
at the intermediate support between span i and i+1. This simply means that the slope and
moment are continuous through the support. The last two boundary conditions are for span
N, and are stated below.

ψN (lN ) = ψ′N (lN ) = 0 (2.64)
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While this may only seem as one equation, it is two separate equations entirely. They state
that the transverse displacement and slope of the span is zero at the rightmost end of span
N, lN . Thus, there is a total of 3N linear algebraic equations, three at each of the N-1
intermediate supports, one at the leftmost span, and one at the rightmost, together with the
3N unknowns (Bi, Ci, Di; i = 1, 2, ...N ).

This set of homogeneous algebraic equations is then formulated as a matrix, where a non-
trivial solution, i.e., Bi, Ci, Di 6= 0, would require the matrix determinant to be zero.
Discrete values of κ, which makes this determinant zero define the modes. The natural
frequency corresponding to each mode can after that be solved through equation 2.57.
Each mode shape can then be determined through equation 3.34, by plotting over the total
tube length and using the previously unknown Bi, Ci and Di corresponding to each span.

This logic serves as the theoretical basis for the first part of the Fortran program, which is
designed to return the N first natural frequencies and N corresponding mode shapes for a
multi-span tube with N total spans.
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3 Methodology

This chapter will provide an overview of the experimental setup for the heat exchange
experiment, as well as the data reduction procedure and uncertainty calculation. A similar
experiment was conducted in the author’s project thesis, so parts of 3.1 is reused and
modified from this work. It will also give a summary of the logic behind the vibration
response prediction, in addition to the input values used.

3.1 Heat transfer experiment
This section provides a summary of the experiment, from the experimental setup to an
extensive presentation of the final data reduction procedure conducted for both the pres-
sure drop- and heat transfer experiments. In addition to this, estimations of the uncertainty
ranges for relevant parameters are calculated and presented.

3.1.1 Experimental Setup

Figure 3.1: Flow diagram of experimental rig.
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Fans and heating battery

Two fans and a heating battery was used to control the mass flow rate and temperature of
the air. The fans were connected in series, and the fan speed was adjustable. This speed
could be changed by as small increments as 1% of the maximum. There is also a third
fan downstream of the test section, which serves the purpose of controlling the test section
pressure. The heating battery is installed downstream of the two initial fans and has a
power capacity of 400 kW. The air temperature could be adjusted either by directly setting
a temperature, or by adjusting the power output of the heating battery.

Orifice

Two changeable orifice plates were used to help calculate the mass flow rate of air and
subsequent Reynolds numbers. The details of how the orifices were used for these calcu-
lations are detailed later. These orifices were used for high and low flow rates, with orifice
diameters of 221.86 and 139.90 mm, respectively.

Diffusor, settling chamber and contraction section

Downstream of the orifice, a section consisting of a diffusor, settling chamber and a con-
traction section is placed. The diffusor decreases the air velocity by enlarging the flow
area, while also changing the shape of the flow area from a circular to a square geometry.
The settling chamber serves the purpose of decreasing turbulence and creating a uniform
flow distribution. This is vital to getting as accurate measurements as possible. The con-
traction section is designed for reducing the chamber dimensions to fit the test section.

Test section

The test section is the location where the heat transfer occurs. Warm air from the heating
batteries is used as a substitute for flue gases, where the air transfers heat to the water
circuit through finned tubes. The test section consists of two rectangular boxes with two
tube rows each. The boxes each have a height of H = 458 mm, and a width of W = 440
mm. The tube bundles have a 30◦ layout, with a transverse pitch of Pt = 26, 5 mm and a
longitudinal pitch of Pl = 60 mm. The tube rows of each box both have 16 tubes in the
first row, and 17 tubes in the second. This makes the total number of tubes 66, with 33 in
each box.

The tubes themselves are elliptical, while the fins are solid, i.e., not serrated, and rectan-
gular. The outer diameters of the tubes are 14 and 36 mm and inner diameters of 9 and 31
mm. This means that the wall thickness is 2,5 mm. The fins are 0,5 mm thick and have a
height of 26 mm and a width of 55 mm. This geometry means that the spacing between
fin tips, both in the transverse and longitudinal direction is 0,5 mm. Of the 440 mm length
of each tube, the finned length is 420 mm, which means that there are unfinned portions of
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3.1 Heat transfer experiment

each tube of 10 mm to either side. The fins are spaced 3,5 mm apart.

In Fig. 3.2a and Fig. 3.2b below, are illustrated cross sections of one of the two boxes of
which the test section is comprised of and of a single tube, along with indicated dimen-
sions for relevant parameters.

(a) Test section geometry.

(b) Tube and fin geometry.

Water circuit

The water circuit is a closed circuit that had to be manually filled with water before per-
forming the heat transfer measurements. The circulation of water was maintained using an
adjustable speed pump. Using water as the cooling medium, unfortunately, increases the
risk of corrosion in the tubes, which might influence the results, as corrosion adds more
thermal resistance.

The heat removal was done by a plate heat exchanger, which transferred heat from the
water circuit to the city water supply. The cold water supply was regulated by a manually
operated valve to keep the water inlet temperature constant. The valve also had an auto-
matic setting, but the manual option was chosen to secure stability.
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3.1.2 Thermophysical properties
For all the calculations of temperature dependent thermophysical properties, the mean
temperature, as defined in (3.1), has been used.

T = |Tout + Tin
2

| (3.1)

Air

The density calculation for air is done with the assumption of ideal gas, and a specific gas
constant Rs = 287.1J/kgK. The equation is as follows:

ρair =
Pt.s. − 1

2∆Pt.s.

(T ) ·Rs
; T [K] (3.2)

In addition to the density, the specific heat capacity, cp,air, and dynamic viscosity, µair,
and thermal conductivity, kair, are all temperature dependent. They must therefore be es-
timated numerically by (3.4) and (3.3), respectively.

cp,air = Rs ·

(
B + (C −B) ·

(
T

A+ T

)2
)
·
(

1− T

A+ T

·

(
D + E · T

A+ T
+ F ·

(
T

A+ T

)2

+G ·
(

T

A+ T

)3
)

; T [K]

(3.3)

µair, kair = A+B · T + C · T 2 +D · T 3 + E · T 4; T [K] (3.4)

The coefficients A to G are dependent on which parameter being calculated, and are tabu-
lated in table 3.1 below.

Table 3.1: Thermophysical coefficients of air. Reproduced from [1].

Thermal con-
ductivity

Dynamic viscos-
ity

Specific heat ca-
pacity

kair [W/mK] µair [Pa· s] cp,air [J/kgK]
A −0.908 · 10−3 −0.01702 · 10−5 2548.9320
B 0.112 · 10−3 0.79965 · 10−7 3.5248
C −0.084333 ·10−6 −0.72183 · 10−10 -0.6366
D 0.05696 · 10−9 0.04960 · 10−12 -3.4281
E −0.01563 · 10−12 −0.01388 · 10−15 49.8238
F - - -120.3466
G - - 98.8658

30



3.1 Heat transfer experiment

Water

The same procedure must be done for the thermophysical properties of water in the water
circuit, with the addition of an equation for the water density, ρw. The coefficients are
similarly tabulated in table 3.2.

ρw, kw, cp,w = A+B · 273.15

T
+ C ·

(
273.15

T

)2

; T [K] (3.5)

µw = exp

[
A+B · 273.15

T
+ C ·

(
273.15

T

)2
]

; T [K] (3.6)

Table 3.2: Thermophysical coefficients of water. Reproduced from [1].

Thermal con-
ductivity

Dynamic viscos-
ity

Specific heat ca-
pacity

Density

kw [W/mK] µw [Pa· s] cp,w [J/kgK] ρw [kg/m3]
A 0.83818 -4.63024 5364.49 658.49825
B -0.07629 -12.70106 -2590.01 664.71643
C -0.20174 10.9899 1437.59 -322.61661

3.1.3 Uncertainty analysis

The uncertainties have been calculated by using the partial derivatives of the terms of each
equation used. These partial derivatives are combined using Eq. 3.7.

δR =

√√√√ N∑
n=1

(
δR

δXn
δXn

)2

(3.7)

The confidence interval was chosen to be 95%, with the Student t multiplier 1.98, as sug-
gested in (ISO 5167-1)[30]. The uncertainty intervals are based on the uncertainties for
each measurement in the heat transfer measurments. All calculated uncertainties are pre-
sented as uncertainty intervals, along with an arithmetic mean uncertainty.
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Mass flow rates

The uncertainty estimation for the air mass flow rate was done in accordance with (ISO
5167-1) [30]. The equation used is:

δṁa

ṁa
=

√√√√(δC
C

)2

+

(
δε

ε

)2

+

(
2β4

1− β4

2
)2

·
(
δD

D
+

)2

√
+

(
2

1− β4

)2

·
(
δd

d

)2

+
1

4

(
δ∆P

∆P

)2

+
1

4

(
δρa
ρa

)2

(3.8)

where β is the orifice to diameter ratio, ρa is the air density, ∆p is the orifice pressure
drop, D is the diameter and d is the orifice diameter. The partial derivatives of D, d, ε and
C were calculated according to (ISO-1 5167). As ρa is a function of both the pressure and
the temperature, it has to be calculated as follows:

δρa
ρa

=

√(
δT

T

)2

+

(
δ∆P

∆P

)2

+

(
δP

P

)2

(3.9)

where T is the test section temperature, P is static pressure and ∆P is the test section
pressure drop. For the water mass flow rate, the equation is:

δṁw

ṁw
=

√√√√(δρw
ρw

)2

+

(
δV̇

V̇

)2

(3.10)

where ρw is the water density and V̇ is the water volume flow rate, as measured in the
experiments. The uncertainty ranges for air and water mass flows are presented in Table
3.3 below.

Table 3.3: Uncertainty ranges for mass flows.

Parameter Symbol Uncertainty range
Air mass flow ṁair ±(1.01− 5.50%)(±3.26%)
Water mass flow ṁw ±(0.35− 3.91%)(±1.40%)

Heat transfer rates

The uncertainties of the heat transfer rates, Qair and Qw, were calculated as presented in
(3.11), and the calculated uncertainties are presented in Table 3.4 below.

δQ

Q
=

√(
δṁ

ṁ

)2

+

(
δcp
cp

)2

+

(
δT

T

)2

(3.11)
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3.1 Heat transfer experiment

Here, ṁ, cp and T are the respective mass flows, as calculated in (3.8) and (3.10), specific
heat capacity and average temperature.

Table 3.4: Uncertainty ranges for heat transfer rates.

Parameter Symbol Uncertainty range
Heat transfer air Qair ±(2.33− 6.04%)(±4.18%)
Heat transfer water Qw ±(0.39− 6.72%)(±2.33%)

Pressure drop measurements

Table 3.5: Uncertainty ranges for Reynolds and Euler number for pressure drop measurements.

Parameter Symbol Corresponding
equation

Uncertainty range

Reynolds number ReD 3.19 ±(3.39− 6.80%)(±4.64%)
Euler number Eu 3.20 ±(2.17− 6.62%)(±3.90%)

Heat transfer measurements

Table 3.6: Uncertainty ranges for heat transfer parameters.

Parameter Symbol Corresponding
equation

Uncertainty range

Water side convec-
tion coefficient

hi 3.28 ±(2.65− 2.69%)(±2.67%)

Log mean tempera-
ture difference

LMTD 2.15 ±(0.14− 3.92%)(±1, 34%)

Overall heat trans-
fer coefficient

U 3.24 ±(1.03− 6.82%)(±4.19%)

Air side convection
coefficient

hair 3.30 ±(4.67− 8.22%)(±5.78%)

Air side Nusselt
number

Nu 3.30 ±(4.67− 8.22%)(±5.78%)

3.1.4 Measurements and data reduction procedures
The measurements were done in two sets of 8, one set for each of the two orifice plates.
For the smallest orifice, the fan power was adjusted such that the pressure drop over the
orifice was around 8000 Pa, which is the highest measurable value for the orifice pressure
gauge. For the larger orifice, the pressure drop never reached this value, so the fan power
was set to maximum output. The fan power was reduced by 10% after each measurement,
to test for several different Reynolds numbers. As the heat transfer rate is proportional to
the mass flow, it was necessary to reduce the heat battery power by the same amount to
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maintain a relatively stable temperature difference inside the test section.

The measurements were automatically logged once every three seconds, and the total mea-
suring time per fan power setting was around 15 minutes. This means that the total number
of measurements per fan power setting was about 300. The measurements were then aver-
aged to get as accurate values as possible, and a standard deviation was identified. These
average values were the ones used in subsequent calculations.

Calculation of air mass flow rate

The data reduction procedure for calculating the air mass flow rate was adapted from (ISO-
1 5167) [31], which is in turn used to find the Reynolds number, ReD,t.s. and the Euler
number, Eu.

The equation for mass flow rate is as follows:

qm =
C√

1− β4
ε
π

4
d2
√

2∆pρ (3.12)

where C is the discharge coefficient, and is in this case defined as:

C = 0.5961 + 0.0261β2 − 0.216β8 + 0.000521

(
106β

ReD

)0.7

+

(
0.0188 + 0.0063

(
19000β

ReD

)0.8
)
β3.5

(
106

ReD

)0.3 (3.13)

and ε is the expansibility factor, defined below.

ε = 1− (0.351 + 0.256β4 + 0.93β8)

[
1−

(
p2
p1

)1/κ
]

(3.14)

In these equations, the factor β is the ratio of the orifice diameter, d, to the tube diameter,
D, and p1, p2 and ∆p is the upstream pressure, downstream pressure and pressure drop
over the orifice, respectively. The pressure parameters are obtained from averaged samples
in the test rig, and ∆p is corrected for the baseline sample.

As both qm are C dependent on the Reynolds number, an iterative computation is required
to obtain qm. The principle of this iterative solution is to first regroup all known values of
3.12 into one member, and the unknown values into the other. The known member is then
the invariant, A, and is expressed as:

A =
εd2
√

2∆pρ

µD
√

1− β4
(3.15)
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where µ is the dynamic viscosity of the air. The iteration equation then becomes as shown
below.

ReD
C

= A (3.16)

The variable will then beReD, for which you first guess an initial value. This will, in turn,
produce another value of ReD by using equation 3.15. You then compare the two values,
and if they are not equal, or within a specified limit, you repeat the procedure with your
new ReD. When your answer is satisfactory, the next step will then be to compute your
mass flow rate, qm, which can be computed as follows:

ṁ =
π

4
µDReD (3.17)

When you have obtained the mass flow rate, you can compute the maximum velocity in
for the test section. This maximum velocity, Umax, is the highest velocity the air can have
inside the test section, and is defined as:

Umax =
ṁ

ρFmin
(3.18)

where Fmin is the open area between the finned tubes in the test section. This velocity
will enable you to compute both the test section Reynolds number, ReD,t.s., and the Euler
number, Eu, as such:

ReD,t.s. =
ρUmaxDh

µ
(3.19)

Eu =
∆Pt.s.

1
2NLρU

2
max

(3.20)

Where, in Eq. 3.20, ∆Pt.s. is the pressure drop over the test section, obtained in the same
manner as ∆p in Eq. 3.12, and NL is the number of tubes in the lateral direction. In Eq.
3.19, µ is the dynamic viscosity calculated as described in Eq. 3.4)

Heat transfer

After the data reduction procedure detailed in the previous subsection was finished and all
air mass flow rates were calculated, the air-side convection coefficients could be found.
The first step is to calculate the heat transferred from the air and to the water, respectively.
Both heat transfers were calculated according to the heat transfer equation:

Q = ṁcp∆T (3.21)

where Q is the heat duty, ṁ is the mass flow, cp is the specific heat capacity, and ∆T is
the change in temperature.
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For the air-side heat duty, Qair, the mass flow was found by (3.17), and the resulting
equation was as follows:

Qair = ṁaircp,air∆Tair (3.22)

For the mass flow of water, the measured average volume flow, V̇w, was used for the
calculation:

Qw = ρwV̇wcp,w∆Tw (3.23)

Further, the U-value, Uair, was found by solving (3.24) for Uair:

Qair = UairAtotLMTD (3.24)

where LMTD is the logarithmic temperature difference, defined below.

LMTD =
(Ta,i − Tw,o)− (Ta,o − Tw,i)
ln ((Ta,i − Tw,o)/(Ta,o − Tw,i))

(3.25)

The water side heat transfer coefficient, hw, was found using the Gnielinski correlation [1]
to find the Nusselt number, as shown in (3.26).

Nuw =
cf
2 (Rew − 1000)Prw

1 + 12.7
√

cf
2 (Pr

2/3
w − 1

(
1 + (di/L)2/3

)
(3.26)

Where di and L is the tube inside diameter and tube length, respectively. Prw and Rew
are the Prandtl and Reynolds numbers, while cf

2 is the fanning type friction coefficient
defined below.

cf
2

= (2.236ln(Rew)− 4.639)−2 (3.27)

From the Nusselt number, hw can be solved for.

hw =
kwNuw
di

(3.28)

From these values it is now possible to solve for the average air side convection heat
transfer coefficient, hair. This is done by solving a set of equations through iteration by
Microsoft Excel’s function Goal-seek. Firstly, we define the apparent outside convection
coefficient, happ as in Eq. 3.30:

happ =

(
1

Uair
−Atot

ln(dodi )

2πkwL
− Atot
Aihw

)
(3.29)
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and, because we have a tube with serrated fins, this apparent convection coefficient will
not be equal to the actual convection coefficient. We therefore again define happ as in Eq.
2.26:

happ = hconv

(
Abt + ηfAf

Atot

)
(3.30)

where ηf is the fin efficiency. Due to the uncommon shape of the finned tubes, with
elliptical tubes and rectangular fins, no general expression exists for the fin efficiency.
Due to this, an empirical correlation must be used. This correlation was obtained from
[14], and is as follows:

ηf =
a+ chconv

1 + bhconv + dh2conv

a = 0.999071685

b = 5, 76561 · 10−3

c = 1, 343229 · 10−3

d = 1, 70017 · 10−6

(3.31)

The iteration procedure involved finding a hconv so that equations 3.29 and 3.30 becomes
equal. After the air-side convection coefficients were established, Nusselt numbers could
be calculated.

Through regression analysis, both Euler- and Nusselt dependencies on the Reynolds num-
bers were established. These were found by fitting the experimental data to equations 3.32
and 3.33, respectively. This is done to better compare the results to previous work.

Eu = C1Re
m
D (3.32)

Nu = C2Re
n
D (3.33)

In these equations, the constants C1 and C2 are geometry specific, and the exponents m
and n are the main points of comparison with other work.
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3.2 Vibration response prediction program

This section serves as an explanation of the vibration response prediction program, its
logic, calculations, input, and output. The Fortran 90 code can be found in its entirety
in Appendix A. The program can be divided into two main parts. The first part was pro-
grammed to calculate the N first natural frequencies and corresponding mode shapes for
an N-span tube, with N-1 intermediate supports. The second part of the program checks
the risks of forced vibration mechanisms. It calculates the vibration response of vortex
shedding and turbulent buffetting and evaluates the danger of fluid-elastic instability and
acoustic resonance. A 4-span tube is illustrated in Fig. 3.3 below. It serves as a visual
representation of the tube used as an input in the vibration response prediction program.

Figure 3.3: Illustration of tube used as input into vibration response prediction program.

3.2.1 Free vibration
The free vibration analysis was adapted from Singh & Solér’s MULTSPAN program,
which can be found in [19]. The program consists of two subroutines and one function,
along with the main program. The input parameters are N, which is the total number of
spans, the lengths of each respective span, VM, which is the mass per unit length of the
tube, Ieff, which is the tube’s second moment of area, as calculated in equation 2.30, and
the Young’s modulus of the tube material, in Pa.

The purpose of the main program, Vibresponse is to initialize several vectors, which are
given values at later points in the program, along with calling up the other subroutines
and functions. It also sets up a vector containing the individual lengths of each span,
ELL. This vector then becomes a representation of the tube, with the first value being the
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3.2 Vibration response prediction program

leftmost span and the Nth value being the rightmost span. The vectors used in the free
vibration part are ELL, XKAPPA, FRENAT, B, C and D. ELL is the previously mentioned
span-length vector, while the others are set to contain eigenvalues, natural frequencies, and
the constants of integration Bi, Ci, and Di, respectively. A vector X is also set up created,
which later serves as a vector representation of the eigenvalue matrix.

The main program then calls the subroutine natfre, which first sets up an initial guess for
the eigenvalue κ. This is done to reduce computing time [27]. After the initial guess is
made, it is used as an input in the function calc. Calc then returns the determinant of the
resulting matrix. This process is repeated, and the eigenvalue is recalculated several times
if the determinant is non-zero. When the determinant eventually is sufficiently close to
zero, then the eigenvalue is accepted and stored in the AKAP matrix for the calculation of
the mode shape. The same is done with the natural frequency calculated from the eigen-
value.

The previously mentioned function, calc, serves the purpose of setting up the matrix with
all the equations of motion, with the eigenvalue it is called up with. It then vectorizes the
matrix by filling up the already initialized vector X and uses this as an input into the second
subroutine, minv, which is short for matrix inverter. This subroutine inverts a vectorized
matrix and returns the resulting determinant. calc then returns the determinant.

After all natural frequencies, eigenvalues and constants of integration are obtained, all the
components for describing the mode shapes are available. In order to print out the mode
shapes, each individual span is divided into 50 parts of equal length to get a representation
that is as accurate as possible. This means that the step size for printing out the mode shape
is 1/50th of the span length. By doing this, the mode shape can be represented according
to equation 3.34, which is repeated below:

ψi = Bi(cos(κnxi)− cosh(κnxi)) + Ci(sin(κnxi) + sinh(κnxi))

+Di(sin(κnxi)− sinh(κnxi))
(3.34)

where the equation expresses the transverse displacement at a point xi. The subscripts n
and i refers to the mode number in question and span number, respectively.

In Fig. 3.4 is a flowchart illustrating the program logic of the free vibration part of the
vibration response prediction program.
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Figure 3.4: Program flowchart of for free vibration calculations.

3.2.2 Forced vibration
The underlying program logic for the forced vibration part of the vibration response pre-
diction program was obtained from [27], while the theoretical background is summarized
in the Theory chapter. It is, as previously mentioned, separated into four main parts. Vor-
tex shedding, fluid-elastic instability, acoustic resonance, and turbulent buffetting. As it
uses the mode shape and natural frequency of the tube, these calculations must be done
after all the necessary mode shapes and natural frequencies are obtained.

The initial part of the vortex shedding amplitude prediction is the calculation of the pe-
riodic lift force along the tube, which is the cause of the vibration response. Firstly, a
pitch-ratio dependent lift coefficient must be determined. Then, the lift force is calculated
according to equation 2.37. If the number of tube spans is one, Eq. 2.40 is used to calcu-
late the vibration response, and if the number of spans is two or more, Eq. 2.39 is used. A
Strouhal number is then calculated as a function of the pitch ratio, and from this, a vortex
shedding frequency is found through Eq. 2.33. The vortex shedding frequency is then
checked to be within the critical range of the natural frequency of the tube, and a message
of either "Danger of vortex shedding" or "No danger" is printed accordingly. This proce-
dure is done for all the first N modes of vibration.

Regarding fluid-elastic instability, the critical velocity is first calculated according to Con-
nor’s formula, Eq. 2.42. After a critical velocity has been calculated, it is then compared
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to the input fluid velocity. If the fluid velocity is larger than the critical one, a message
of "Danger of instability is printed, and equivalently a message of "No danger" is printed
if not. As with the vortex shedding calculation, this is done for all considered modes of
vibration.

The turbulent buffetting calculation is the most complicated of all the forced vibration cal-
culations. The function returns the RMS amplitude at a given location along the length
axis of the tube. First, the real parts of the frequency response functions within Eq. 2.45
are calculated, which is then multiplied with the weighting function. After the terms in-
side the integral is established, it is then integrated through a ten point Gauss-Legendre
scheme. When the integral is calculated, it is summed along with the rest of the terms
over all significant modes of vibration. The same calculation is then repeated for all points
along the tube, and the largest amplitude is returned.

Before the possibility of acoustic resonance can be estimated, several different parameters
must be calculated. The total volume occupied by tubes and the following volume fraction
are calculated and used to estimate the effective speed of sound inside the heat exchanger.
This is then used in Eq. 2.48 to find the acoustic resonance frequency. To evaluate the
danger of lock-in. this frequency is then compared to the vortex shedding frequency and
all natural frequencies of the tube. A warning message is then printed if any of frequencies
are within lock-in range.

3.2.3 Input parameters

Table 3.7 shows the parameters which were used as input variables in the vibration re-
sponse prediction program. They were used both in the free and forced vibration parts.
The parameters are related to tube geometry, tube composition, array configuration and
the external fluid. In addition to this, in Table 3.8 are the initial calculations which were
used at different parts of the program. The theoretical background for these calculations
can be found in earlier chapters, and references to the specific equations used can also be
found in the table.
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Table 3.7: Input parameters for vibration response program.

Parameter Symbol Value Unit
Tube inner diameter Di 10 [mm]
Tube outer diameter Do 12.38 [mm]
Young’s modulus E 193 [GPa]
Fin height hf 9.35 [mm]
Fin thickness tf 1.05 [mm]
Fin pitch sf 8.98 [mm]
Tube layout angle - 30 [deg]
Tube bundle height Ly 4.28 [m]
Transversal tube pitch Pt 35.66 [mm]
Longitudinal tube pitch Pl 32.57 [mm]
Support plate thickness b 20 [mm]
Number of spans N 4 [-]
Mid-span length SPMID 0.9 [m]
End-span length SPEND 1.15 [m]
Total tube length Leff 4.1 [m]
External fluid density ρo 0.48 [kg/m3]
Maximum fluid velocity Vr 17 [m/s]

Table 3.8: Initial calculations of input parameters.

Parameter Symbol Value Unit Equation
Effective mass m 1.411 [kg/m] 2.31
2nd moment of area Ieff 6.75E-10 [m4] 2.30
Total damping δ 0.031 [-]
Hydraulic diameter dh 14.6 [mm] 2.28

In order to best verify the results, these input values and initial calculations are the same
ones used in the worked example found in [17]. The results from this worked example were
used as the benchmark values for verification of the results from the vibration response
prediction program. This does, however, only apply to the first natural frequency and the
corresponding mode shape, as this was the only mode considered in Næss’ work.
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4 Results and discussion

4.1 Heat transfer experiment

In this section are presented the results from the pressure drop and heat transfer calcu-
lations. They are represented by Euler-Reynolds, Fig. 4.1, and Nusselt-Reynolds, Fig.
4.2, graphs. Each graph is accompanied by two equations, one representing the results
from the measurements gathered by using the small orifice, and one for the large orifice.
These equations were established through regression analysis, and the subscripts LO and
SO represent the large and small orifice, respectively.

Figure 4.1: Euler-Reynolds correlations of pressure drop calculations.

EuLO = 13.910Re−0.28

EuSO = 19.129Re−0.31
(4.1)

43



Chapter 4. Results and discussion

Figure 4.2: Nusselt-Reynolds correlations of heat transfer calculations.

NuLO = 0.576Re0.44

NuSO = 1.152Re0.36
(4.2)

4.1.1 Comparison to published correlations

The basis of this comparison comes from the extensive literature review done by Holfeld
[1], where the Reynolds number exponents for different comparable experiments are sum-
marized in a thorough way. Correlations for both serrated-fin and and solid-fin tubes are
presented in [1], but only those for solid-fin tubes will be considered in this section.

Pressure drop

As can be seen from Eq. 4.1 the Reynolds number exponents are -0.28 and -0.31 for the
large and small orifice, respectively. Despite the disparity between the two lines, the ex-
ponents are very similar, with an arithmetic average of 0.295. This value is within the
range of previous work [1]. This range is between -0.23 and -0.32 for similar experiments
concerning pressure drop over finned tubes.

The implications of these results are that the pressure drop correlations are normal, despite
the unusual geometry. While the geometry may have an effect, the correlations does not
particularly stick out compared to previous work.

44



4.1 Heat transfer experiment

Heat transfer

The span of Reynolds number exponents in Nusselt number correlations are spread rela-
tively evenly between 0.6 and 0.8 [1]. As previously mentioned, the corresponding expo-
nents found in this experiment are 0.36 and 0.44 for the small and large orifice, respec-
tively. If the average exponent of 0.4 is considered, it will be exactly half of the highest
Reynolds number, and 2/3rd of the smallest. Also, if only the more reliable results from
the large orifice is considered the exponent would still be 0.16 off the lowest value of the
range. This shows that the exponents resulting from this experiment are far removed from
comparable previous work.

While most other experiments have been done for circular tubes, Huang & Pu have done
similar experiments with elliptical tubes, and use the correlation in Eq. 4.3 to express their
results [32]. This method may be the most relevant for elliptical tubes, as the thermal-
hydraulic behaviour would perhaps be different than for circular tubes.

Nu = CRemPr0.38 (4.3)

In this equation, Huang & Pu use an effective diameter for elliptical tubes defined in Eq.
4.4 as:

de =
Ardr +Af

√
Af

2N

Ar +Af
(4.4)

where Ar is the bare tube area, Af is the fin area, N is the fin density. dr is a geometrical
parameter regarding elliptical tubes defined below.

dr =
ab√
a2+b2

2

(4.5)

Here, a and b is the long and short axis of the ellipse, respectively. They did experiments
for several different ratios of a/b, where C1 = 0.148, m = 0.632 for a ratio of 2.5. This is
the ratio closest to that of this experiment where a/b = 2.57.

Using this correlation, the regression analysis yields C = 2.522, m = 0.363 for the small
orifice, and C = 1.228, m = 0.4357 for the large orifice. These correlations show the same
tendency as the previous, where the Nusselt number is significantly lower than comparable
work. While it is difficult to ascertain exactly what the root cause of these discrepancies
are, calculations were performed to investigate whether fouling may have been a factor.
This theory will be investigated further on in this section.

4.1.2 Discussion

Euler number inconsistency

As Fig. 4.1 shows, the Euler numbers representing the two orifices do not overlap. This
is again shown in their respective regression equations, Eq. 4.1, where both the constants
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and the Reynolds number exponents differ. This is counterintuitive to the theory behind
the calculations. As mentioned previously, the Euler number is a measure of the ratio of
pressure to inertia. Therefore, because the test section geometry is constant, the pressure
drop and subsequent Euler number corresponding to a certain Reynolds number should be
constant as well. The graph does not support this, but instead shows a consistent difference
between the Euler numbers for each of the orifices. In Table 4.1 are tabulated the Reynolds
numbers with corresponding Euler numbers for the data points with overlapping Reynolds
numbers, along with the percentage difference between the two measurement series (∆).

Table 4.1: Deviation of Euler numbers for overlapping Reynolds numbers.

Re [-] Eu [-] ∆ [%]
18 147 30.95 5.94
16 312 0.97 5.13
14 509 1.00 4.64
12 711 1.03 4.47

As Table 4.1 shows, the percentage differences between the Euler numbers are relatively
similar but decreases along with the Reynolds number, which might still suggest a depen-
dency on the Reynolds number. This may indicate that the source of the error lies in the
calculation of the air mass flow rate. Whether this error lies in the calculations in the data
reduction procedure from (ISO 5167) [30] or in any other calculations regarding the mass
flow rate is uncertain and would need further investigation. This is supported by the rel-
atively low average uncertainty of the air mass flow (±3.26 %) and Reynolds number (±
4.64 %), which shows that this error may be systematic rather than random.

Nusselt number inconsistency

As Fig. 4.2 clearly shows, there are two measurement points that both stand out com-
pared to the other measurements. These points correspond to Reynolds numbers of 16 312
and 18 147, with corresponding Nusselt numbers of 38.33 and 39.35, respectively. These
points prevent the two lines representing the correlations for the small and large orifices to
overlap, as had been the tendency of the other overlapping data points. These inconsisten-
cies have been emphasized in Fig. 4.3 below, which is a magnified version of Fig. 4.2 in
which the two data points are emphasized with a red rectangle.
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4.1 Heat transfer experiment

Figure 4.3: Nusselt-Reynolds correlations of heat transfer calculations.

These two Nusselt numbers represent deviations of 6.76 % and 8.66 % from the trend line
representing the large orifice. This was calculated by inserting their Reynolds numbers
into the regression analysis equation for the large orifice and calculating the percentage
deviation of the two values. Comparatively, the closest other data point to these two, cor-
responding to respective Reynolds- and Nusselt numbers of 14 509 and 38.66, deviates
only by 0.97 %. In Table 4.2 below are tabulated all the Reynolds numbers from the mea-
surements with the small orifice, their corresponding Nusselt numbers, along with their
percentage deviation (∆). As the table clearly shows, the two values deviate by more than
the others. This further emphasizes the possibility that some error in the measurements
has occurred.

Table 4.2: Deviation of small orifice Nusselt numbers from large orifice.

Re [-] Nu [-] ∆ [%]
18 147 39.47 8.30
16 312 38.33 6.77
14 509 38.66 0.98
12 711 36.77 0.17
11 129 35.05 -0.88
9 539 32.80 -1.04
7 395 29.61 -2.01
5 516 25.72 -0.84

This error may have come as a result of an issue with the water-side pump, which regulated
the water volume flow. This issue lead to different pump speeds for the two previously
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mentioned measurements, compared to the previous ones. As all calculations were done
similarly and with no other noticeable differences, this seems the likely culprit. A more
thorough investigation is needed, however, to conclude anything for certain.

Fouling factor estimation

Stagnant water at elevated temperatures will in many cases cause the metal tubes to rust
on the inside. As this has been the case for the tubes used in this experiment, there is a
cause for concern that there may be a layer of rust present. Such a layer will serve as an
added thermal resistance, and will then increase the total resistance. The fouling is usually
presented as a fouling factor, Rf . To account for this fouling factor, a small modification
must be done to Eq. 2.26. The modified equation, where the fouling factor is added as a
thermal resistance is shown below.

happ =

[
Ao

(
1

UAo
− ln(r2/r1)

2πkL
− 1

hiAi
− 1

RfAi

)]−1

(4.6)

In an attempt to estimate Rf , the iteration procedure for estimating the convection heat
transfer coefficient was re-done with different fouling factors. This procedure was re-
peated until the exponent of the Reynolds number in the Nusselt number expression for
the large orifice was beyond the previously mentioned range of 0.6-0.8 from comparable
previous work. In Table 4.3 are tabulated values of the fouling factor with the resulting
exponent value for the large orifice, as well as the respective change from the original
value. This was also recalculated with Eq. 4.3, to compare the results to those of similar
geometry.

Table 4.3: Changes in Reynolds number exponents for different fouling factor estimations. Calcu-
lated by Eq. 3.33 and Eq. 4.3

Fouling factor
[m2K/W]

Exponent [-]
Eq. 3.33

∆ Exponent [-]
Eq. 4.3

∆

0.0000 0.44 0 0.44 0
0.0001 0.47 0.03 0.47 0
0.0002 0.51 0.07 0.51 0.07
0.0003 0.55 0.11 0.55 0.11
0.0004 0.61 0.17 0.60 0.16
0.0005 0.67 0.23 0.66 0.23
0.0006 0.74 0.30 0.74 0.30
0.0007 0.83 0.39 0.83 0.39

As can be seen in the table, the exponents resulting from both Eq. 3.33 and Eq. 4.3 are
highly similar, with the only exception being a difference of 0.01 for Rf = 0.0004 and
0.0005 m2K/W. By reviewing the results, it can be seen that this added fouling factor of
Rf = 0.0004 m2K/W resulted in a Reynolds number exponents of 0.61 and 0.6, which
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4.2 Vibration response prediction

makes it within the range of previous work. The Reynolds number exponent of 0.6, when
using Eq. 4.3 is also similar to that of Huang & Pu, which is 0.632. This shows that
a fouling factor of around 0.0004 may be the most accurate, as Huang & Pu utilized a
similar geometry to that of this experiment. This value is higher than the 0.0001-0.0002
range of representative fouling factors for water given in Fundamentals of Heat and Mass
Transfer [2], but is still of comparable size. While it would be hasty to assume that this
theoretical fouling factor was the cause of the discrepancy between the results from this
thesis and that of previous work, it shows that an added fouling factor within a reasonable
limit would correlate these results nicely to the ones from previous experiments [1].

4.2 Vibration response prediction

4.2.1 Free vibration
This section will provide a summary of the results regarding the free vibration part of
the vibration response prediction program. The first four natural frequencies of the heat
exchanger tube can be found in Table 4.4, while the mode shapes corresponding to each
natural frequencies are displayed in Fig. 4.4a, 4.4b, 4.4c and 4.4d.

Table 4.4: First four natural frequencies of heat exchanger tube.

fn,1 18.176 Hz
fn,2 20.518 Hz
fn,3 27.471 Hz
fn,4 36.335 Hz

As the figures show, all mode shapes have clearly defined peaks at the middle of each
respective span, which fits the theory as explained earlier. In addition to this, all modes
shapes are zero at the supports, i.e. between the spans. With this, it can be assumed that
all end conditions are implemented correctly. The mode shapes are normalized according
to their largest displacements, so that the maximum absolute value of each mode shape is
1.
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(a) First mode. (b) Second mode.

(c) Third mode. (d) Fourth mode.

4.2.2 Forced vibration

This section will present the output from the forced vibration part of the vibration re-
sponse prediction program. The results are divided into subsections, where each subsec-
tion will focus on one of the four forced vibration mechanisms that are covered in this
thesis, namely vortex shedding, fluid-elastic instability, acoustic resonance and turbulent
buffetting. This section is concluded with a comparison of these results and the previously
mentioned calculations done by Næss [17].

Vortex shedding

Table 4.5: Results from vortex shedding analysis.

Parameter Value Units Eq.
St 0.237 [-] 2.34
fvs 276 Hz 2.33
FL 0.469 N/m 2.37
CL 0.463 [-] [-]
Ymax 5.49 mm 2.39
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4.2 Vibration response prediction

As Table 4.5 shows, the vortex shedding frequency is much larger than any of the nat-
ural frequencies calculated by the free vibration analysis, as can be seen in Table 4.4.
This means that the vortex shedding frequency is safely outside the ±20 % of the natural
frequency required for any sort of significant amplitude to occur. Because of this, the max-
imum amplitude given in the table is not strictly accurate, but serves as a good indication
of a possible amplitude regardless.

Fluid-elastic instability

To minimize the risk of fluid-elastic instability the critical velocity should be lower than
the maximum fluid velocity, as stated in Eq. 2.43. The program first calculates the critical
velocity for each natural frequency, and then checks the ratio of the maximum velocity to
the critical velocity. The results of these calculations are presented in Table 4.6 below.

Table 4.6: Critical velocities and velocity ratios of the first four modes. All velocities are in [m/s].

Vcr Vr/Vcr
Mode 1 18.11 0.94
Mode 2 20.44 0.83
Mode 3 27.37 0.62
Mode 4 36.20 0.47

As the table above shows, neither of the ratios of maximum velocity to critical velocity are
within the critical range.

Acoustic resonance

To check for acoustic resonance, an acoustic resonance frequency, fa was calculated from
Eq. 2.48. The ratio of the acoustic resonance frequency to the vortex shedding frequency
was then calculated to ascertain whether lock-in may be an issue. Lastly, the ratios of the
acoustic resonance frequency to the first four natural frequencies wwew found. These data
are presented in Table 4.7.

Table 4.7: Acoustic resonance frequency and frequency ratios.

fa,1 49.40 [Hz]
fa/fvs 0.18
fa/fn,1 2.74
fa/fn,2 2.42
fa/fn,3 1.81
fa/fn,4 1.37

The results show that fa/fvs is safely outside the previously established lock-in range of
0.8 < fa/fvs1, 35. Despite this, the ratio of the acoustic resonance frequency to the fourth
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natural frequency is within the more conservative range suggested by Blevins & Bressler
[24]. The ratios of acoustic resonance frequency to natural frequency are all safely outside
the ±20 % range where excessive vibration may occur.

Turbulent buffetting

The resulting maximum RMS amplitude caused by turbulent buffetting was calculated to
be 0.005 mm. This is less then the allowable 2 % of the tube outside diameter, as suggested
by Pettigrew & Taylor [18].

4.2.3 Benchmarking
The results from the vibration analysis were benchmarked against a previous worked ex-
ample by Næss, in order to verify the results. The worked example can be found in its
entirety in the appendix of [17]. After this benchmarking was done, and the results were
found to be satisfactory, expansions of the program could be made. This section will pro-
vide a comparison between the results from the original worked example and the results
from the vibration analysis program, which can be seen in Table 4.8. It is important to note
that Næss’ calculations are for the first mode of vibration only. Because of this, only the
results based on the first mode of vibration and first natural frequencies will be considered
and compared.

Table 4.8: Results from vortex shedding analysis.

Parameter Output Næss % Diff.
fn,1 18.176 [Hz] 17.81 [Hz] +2.06%.
Vcr 18.11 [m/s] 17.74* [m/s] +2.08%
FL 0.469 [N/m] 0.47 [N/m] 0.0%
CL 0.463 [-] 0.466 [-] -0.64%
St 0.237 [-] 0.278 [-] -14.74%
fvs 275.56 [Hz] 324.68 [Hz] +15.12%
fa 49.36 [Hz] 51.60 [Hz] -4.34%
Yrms 0.005 [mm] 0.005 [mm] 0.0%

*In Næss’ paper this value is listed as 23.31 m/s. This value has since been found to be
erroneous, due to a miscalculation. The value listed in Table 4.8 is the correct value.

Firstly, there are two values and corresponding differences that are noticeable. These val-
ues are the values for the vortex shedding Strouhal number, and the corresponding vortex
shedding frequency, St and fvs, respectively. These numbers are the sources of a 14.74
% and 15.12 % difference. This is most likely due to different methods of calculating the
Strouhal number. The vibration response program presented in this thesis uses Eq. 2.34,
which is for a triangular tube layout with a 30◦ layout angle, while Næss notes that his
calculations are based on a 33.19 layout angle. Because of this, the Strouhal number will
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naturally be different, and therefore also the vortex shedding frequency. This can be read-
ily seen by considering Eq. 2.33.

The other compared values vary in difference from -4.34% to +2.08%. Some of these
may be the result of differences in rounding, which is difficult to ascertain for certain. In
addition to this, different pressure calculations may cause the difference in acoustic reso-
nance frequency. For the purpose of this program, the pressure was defined as 1 atm, or
101.325 Pa. This was done for simplicity, and is an uncomplicated parameter to change.
The critical velocity with regard to fluid-elastic instability, Vcr, is proportional to the tube’s
natural frequency. It is therefore natural for the deviation in natural frequency calculation
to propagate into the critical velocity calculation as well. This deviation is most likely a
result of the two different methods of calculating the natural frequency. While the natural
frequency calculation in the vibration response program is based on the approach of Singh
& Solér [19], which calculates the natural frequency of an N-span tube, the calculations
by Næss were done in accordance with to ESDU’s method of calculating the natural fre-
quency of a singe span [17].

4.2.4 Comparison between different models

In this thesis, several different models and methods of calculation have been presented.
In this section several of these will be implemented into the vibration response predic-
tion program. The results will be compared to the original results, and the differences
quantified.

Free vibration

Since the free vibration analysis is based on Singh & Solér’s MULTSPAN program, a
good way to verify the program output would be to compare it to their results. To do this,
the program was run with the input parameters detailed in [19]. The resulting first three
natural frequencies of the structure were in both cases 141.08 Hz, 206.01 Hz, and 249.54
Hz. The fact that all three natural frequencies are similar for both cases indicate that the
calculations were implemented correctly. The resulting three mode shapes for both cases
are compared in Fig. 4.5a and 4.5b.

As the figure shows, the mode shapes are highly similar in shape. The natural frequencies
corresponding to each mode shape are indicated by numbers in the figure. With this,
together with the similarity in frequencies, it is possible to conclude that the free vibration
part of the vibration response prediction program is viable.

Fluid-elastic instability

As described previously, the vibration response prediction uses the so-called Connor’s for-
mula for calculating the critical velocity in relation to fluid-elastic instability. This formula
is repeated below.
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(a) Normalized mode shapes for a three-span tube.(b) Normalized mode shapes for a three-span tube.
Reproduced from [19].

Vcr
fnD

= K(
mδ

ρD2
)

1
2 (4.7)

There has been some discussion regarding the fluid-elastic instability constant K. Among
others, Pettigrew & Taylor suggest a value of 3.0 as a design criterion [20], while the HTFS
Design Report No.25 [27] suggests a value of 3.3. As the HTFS Design Report has been
used as a source of the program logic for the vibration response prediction program, the
suggested value of 3.3 has been used. A K-value of 3.3 would also produce the highest
critical velocity, which is important to consider when designing against it. The critical
velocity is proportional to this constant, so the critical velocity when using Pettigrew &
Taylors suggested value would naturally be 11 % lower than the one suggested by the
HTFS Design Report.

Weaver & Fitzgerald [33] suggest that Connor’s formula should be modified to account for
differences in tube geometry. By separating experimental data into four different geome-
tries, they established a different equation for each. For a normal triangular array, which
is the type of array considered in the program, the equation is given by Eq. 4.8

Vcr
fnD

= 3.2(
mδ

ρD2
)0.4 (4.8)

As the equation shows, the fluid-elastic instability constant K has a value of 3.2, and the
right-side exponent is 0.4, as opposed to Connor’s formula, where the exponent is 0.5.

By running the program with Weaver & Fitzpatrick’s iteration of Connor’s formula for
normal triangular arrays, the resulting critical velocity for the first mode of vibration be-
comes 22.31 m/s. This is higher than the 18.11 m/s resulting from the original calculation.
This means in effect that while both results suggest that there is no danger of fluid-elastic
instability, Weaver & Fitzpatrick’s formula reports an even lower probability.
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4.2 Vibration response prediction

Paidoussis [34] suggests another iteration of Connor’s formula, which is given in Eq. 4.9
below. This version takes the pitch ratio, Pt/D, into account, something the other itera-
tions do not include.

Vcr
fnD

= 5.8(
mδ

ρD2
)0.4(

Pt
D
− 1)0.5 (4.9)

After testing Paidoussis’ version in the same manner as testing that of Weaver & Fitz-
patrick, the critical velocity became 20.85 m/s for the first mode of vibration. This puts it
in between the critical velocities from Eq. 2.42 and 4.8, and further emphasizes the im-
portance of choosing a proper fluid-elastic instability model, even if all three velocities in
this case are within the stable region.

Lift coefficient

As mentioned earlier, the fluctuating lift coefficient is estimated as a function of the pitch
ratio Pt/D. The correlation is based upon a certain set of lift coefficients, and the cor-
relation is found through linear interpolation. It is then important to check whether this
estimation is supported by other previous works. A comparison of fluctuating lift coeffi-
cients of single cylinders in cross flow can be found in [6], as shown in Fig. 4.6 below.

Figure 4.6: Fluctuating lift coefficient CL as a function of Reynolds number for a single tube in
cross flow. Reproduced from [6].

The Reynolds number based on the input for the vibration response prediction program is
estimated to be in the region of 6·103, which is low compared to figure. This is besides the
point, however, because based on the previously established lift correlation, the lift coef-
ficient should be constant for a certain pitch ratio – independent of the Reynolds number.
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This is not the case for the measured values depicted in this figure, however, which shows a
variation of CL dependent on the Reynolds number. This may indicate that the correlation
used in this program may not be as accurate as desired, and should be investigated further.

Despite this, there may be some cause to think that the lift coefficient obtained through
the vibration response prediction program is within a realistic range. In Fig. 4.7, obtained
from [7] is another graph of lift coefficients as a function of Reynolds numbers, collected
from several different sources. This range of Reynolds numbers is between 1000 and 100
000, which means that the Reynolds number as used in the vibration response prediction
program is within this range. The intersection between the Reynolds number and the lift
coefficient from the output is indicated as the red lines in Fig. 4.7. This intersection is
located above and to the left of a cluster of data points.

Figure 4.7: Fluctuating lift coefficient CL as a function of Reynolds number for a single tube in
cross flow. Reproduced from [7].

As both Fig. 4.6 and 4.7 show, there may be a cause for concern regarding a lift coefficient
based solely on the pitch ratio. While the output lift coefficient may be within a reasonable
range of the ones indicated in Fig. 4.7, it is evident that the coefficient varies depending
on the Reynolds number. The figure also shows that the lift coefficient obtained from the
vibration response prediction will be within the data point cluster for a Reynolds number
in the range 1·104 - 1·105. What this shows is that while the lift coefficient may not be
in line with previous work, it fits with a reasonable degree for a wide range of Reynolds
numbers.

Effective diameter

As previously mentioned, two methods of expressing the effective diameter of finned tubes
have been proposed. One volumetrically based, Dvol and one hydraulic diameter based on
the projected area of the finned tube, Dh. The equations for these diameters are given in

56



4.2 Vibration response prediction

Eq. 2.27 and 2.28, respectively. The results of these calculations are Dvol = 15.77 mm and
Dh = 14.60 mm. The program was rerun with Dvol as input instead of Dh, to check how
this difference manifests in the vibration calculations. The results were a 48% change in
maximum vortex shedding amplitude, a 12% change in the periodic shedding force, FL,
and an 18% change in the lift coefficient, CL. The rest of the output remained unchanged.
While the conclusions regarding vortex shedding, i.e., that the vortex shedding frequency
was not sufficiently close to the natural frequency to make vortex shedding a problem, this
shows that the choice of effective diameter must be made consciously to ensure accurate
results.
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5 Conclusion

A set of experiments was performed on an elliptical tube bundle with solid, rectangular
fins. These were performed to measure heat transfer and pressure drop performance. The
experiments were performed with varying Reynolds numbers, and corresponding Euler-
and Nusselt correlations were calculated through regression analysis. The resulting cor-
relations were, for the Euler numbers, within the range of comparable previous work [1].
For the Nusselt numbers the results were outside this range, where the exponent of the
Reynolds number in the correlation were significantly lower than that of previous work
[32]. This may have been the result of fouling on the water side of the tubes.

A two-part vibration response prediction program was also created in Fortran 90. The first
part was created to evaluate the free vibration response of an N-span tube, where the aim
was to find the first N natural frequencies and corresponding mode shapes of the tube. The
second part was created to evaluate the risk of four forced vibration mechanisms: vortex
induced vibration, fluid-elastic instability, turbulent buffetting and acoustic resonance. The
output of the program was then compared to that of previous work, where both the free
vibration and forced vibration parts were found to be in good agreement with these [17],
[19]. There was, however, some variation in the results when different models were tested.
This program may aid further vibration analysis of compact heat exchanger units.
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6 Further Work

As there is limited data regarding heat transfer in compact heat exchanger units with sim-
ilar geometry as the one considered in this thesis, it would be beneficial to do more such
experiments. A deeper theoretical understanding would enable the optimization of such
heat exchangers for a larger variety of cases. This would enable the creation of geometries
specific for elliptical tubes, so that optimal geometries can be identified.

As the results of the heat transfer experiments suggest, there may be fouling on the tube
side area. If this is the case, this fouling may have caused extra thermal resistance to occur,
which in turn will have influenced the results. Because of this, measures should be taken to
remove the fouling, and additional experiments should be performed to verify the results.

The forced vibration part of the vibration response program is designed to simulate a con-
stant velocity distribution. Because of this, it is not a realistic representation of a compact
heat exchanger. The reason for this is that the fluid velocity, and therefore the fluid forces
will vary inside a shell and tube heat exchanger. The velocity will typically be higher at
both the shell-side inlet and outlet. In effect, this would mean that some spans will have
more fluid forces acting on it than others. The program should, because of this, be ex-
panded by implementing a varying velocity distribution. This would serve to identify the
points of the tube that are more susceptible to critical vibration.

Shell-and-tube heat exchangers are often composed of not only straight tubes but also
u-bend regions. This means that the tubes at some point turn 180 degrees, which the pro-
gram does not account for. These u-bend regions complicate the vibration analysis, as this
enables out-of-plane vibration of the tubes, in addition to the already existing in-plane vi-
bration. A natural further step in the program would then be to account for the out-of-plane
vibration. This function was originally meant to be included in the vibration response pre-
diction program, but due to the complexity of the calculations and strict time limitations,
this was not implemented.
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Appendix

A Vibration response prediction program
In the appendix can be found the output screen of the vibration response prediction pro-
gram, along with the Fortran 90 code in its entirety.

Figure 6.1: Example of vibration response prediction program output screen.
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MODULE​ felles 
implicit​ ​none 
  ​INTEGER​ :: N = ​3 
  ​double​ ​precision​ :: pi = ​3.14159 
  ​double​ ​precision​ :: tubelength = ​4.1 
  ​double​ ​precision​ :: Uniformflow = ​1.0 
  ​double​ ​precision​ :: Lm,VM,FR,FS 
  ​double​ ​precision​, ​dimension​(:), ​allocatable​ :: X 
  ​double​ ​precision​, ​dimension​(:), ​allocatable​ :: ELL 
  ​double​ ​precision​,​dimension​(:), ​allocatable​ :: UCRIT,XKAPPA,FRENAT 
  ​double​ ​precision​,​dimension​(:,:),​allocatable​ :: B,C,D,XVECT 
   ​SAVE​ X,UCRIT,XKAPPA,FRENAT,N,ELL,pi,Lm,B,C,D,VM,FR,FS,XVECT 
  

END​ ​MODULE​ felles 
 

program​ vibresponse 
use​ felles 
IMPLICIT​ ​DOUBLE​ ​PRECISION​ (A-H,O-Z) 
double​ ​precision​ :: eiv,AMOM,F,AKAP,RHOT,RHOF,D1,D2,DF,FD,T,PF,PT,VINF,L 
double​ ​precision​ :: AMOMeff = ​6.75D-10  !Second moment of area 
double​ ​precision​ :: YM = ​193000.0D6     !Young’s Modulus 
double​ ​precision​ :: SPMID = ​0.9         !Mid-span length 
VM = ​1.411                              !Virtual mass 
SPEND = ​0.9                             !End-span length 
eiv = ​sqrt​(YM*AMOMeff/VM) 
 

allocate​(XVECT(N,N)) 
allocate​(ELL(N)) 
allocate​(UCRIT(N)) 
allocate​(XKAPPA(N)) 
allocate​(FRENAT(N)) 
allocate​(B(​3​*N,N)) 
allocate​(C(​3​*N,N)) 
allocate​(D(​3​*N,N)) 
allocate​(X(​3​*N)) 
do​ ​999​ I = ​1​,(​3​*N) 

X(I) = ​0 
999​ ​continue 
ELL(N) = SPEND 

ELL(​1​) = SPEND 
do​ ​69​ I = ​2​,(N-​1​) 



ELL(I) = SPMID 

69​ ​continue 
 

 

call​ natfre(N,eiv,F,AKAP) 
call​ instability(Vcrit,​17.00D0​,​0.031D0​,​0.48D0​) 
call​ vortexshedding(​0.48D0​,​14.6D-3​,​17.0D0​,​0.03566D0​) 
Yturb = turbulentbuffetting(SPMID) 

print​*,​"         " 
print​*, ​"-------------------- Turbulent Buffetting --------------------" 
print​*,​"         " 
print​*, ​"Maximum RMS amplitude, Turbulent Buffetting = "​,Yturb, ​" m" 
 

end​ ​program​ vibresponse 
 

subroutine​ natfre(N,eiv,F,AKAP) 
USE​ felles, ​ONLY​ : ELL,X,pi,UCRIT,Lm,FRENAT,XKAPPA,B,C,D 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
double​ ​precision​ :: HIGHELL = ​0.0 
integer​ :: ISOL = ​0 
print​*,​"         " 
print​*, ​"-------------------- Natural frequencies 

--------------------" 

print​*,​"         " 
do​ ​111​ I = ​1​,N 

111​ HIGHELL = ​DMAX1​(HIGHEll,ELL(I)) 
X1 = ​3.0​/HIGHELL 
X2 = ​1.01​*X1 
Y1 = calc(X1,​0​,ELL,N) 
do​ ​150​ I = ​1​, ​1000 
Y2 = calc(X2,​0​,ELL,N) 
IF​ (Y1*Y2) ​105​,​105​,​110 

105​ X3 = ​0.5​*(X2+X1) 
IF​(​ABS​(X3-X2) <= ​5.0E-06​) go to ​130 
Y3 =calc(X3,​0​,ELL,N) 
IF​(Y2*Y3) ​115​,​115​,​120 

115​ X1 = X2 
120​ X2 = X3 

Y2 = Y3 

go to ​105 
130​ ISOL = ISOL+​1 

AKAP = X3 



F = AKAP*AKAP*eiv/(​2.0​*pi) 
DUMP = CALC(X3,​1​,ELL,N)

!Kompilerer ikke riktig uten. 

XKAPPA(ISOL)=AKAP 

      FRENAT(ISOL)=F 

  

     ​DO​ ​2001​ J=​1​,N 
        J3=​3​*J 
        B(ISOL,J)=X(J3-​1​) 
        C(ISOL,J)=X(J3-​2​) 
        D(ISOL,J)=X(J3) 

 ​2001​  ​CONTINUE 
 

 

 

print​*, ​'F,'​,ISOL,​', = '​, F, ​' Hz' 
Y = calc(X3,​1​,ELL,N) 
call​ modeshape(AKAP) 
if​ (ISOL == N) go to ​160 
X2 = ​DMAX1​(X1,X2) 

110​ X1=X2 
X2 = ​1.01​*X2 
Y1=calc(X1,​0​,ELL,N) 

150​ ​continue 
160​ ​continue​!stop 
 

end​ ​subroutine​ natfre 
 

 

subroutine​ modeshape(AKAP) 
use​ felles, ​only​ : ELL,X,N 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
 

 

dimension​ YY(​50​),ZZ(​50​) 
 

CS(Z) = ​COS​(AKAP*Z) - ​COSH​(AKAP*Z) 
S(Z)  = ​SIN​(AKAP*Z) + ​SINH​(AKAP*Z) 
SS(Z) = ​SIN​(AKAP*Z) - ​SINH​(AKAP*Z) 
T=​0.0 
Y=​0.0 
open(​unit​ = ​10​,​file​=​'C:\Users\thoma\OneDrive\Desktop\vib.txt'​) 



 

701​ ​FORMAT​(X,​10E12.4​) 
do​ ​101​ I = ​1​,N 
I3 = ​3​*I 
do​ ​201​ J = ​1​,​50 
W = ELL(I)*​0.02​*J 
Y = X(I3-​1​)*CS(W)+X(I3-​2​)*S(W) + X(I3)*SS(W) 
T = T+​0.02​*ELL(I) 
ZZ(J) = T 

YY(J) = Y 

write​(​10​,*)Y 
 

 

201​ ​continue 
!write(6,702) 

!702 FORMAT(//,10(2H**),"MODE SHAPE",5(2H**),/,5(12X,"X",10X,"Y",3X)) 

!write(6,700) (ZZ(J),YY(J),J=1,50) 

!700 FORMAT(5(6X,F9.3,2X,E10.3)) 

101​ ​continue 
return 

 

end​ ​subroutine​ modeshape 
 

 

 

function​ calc(AKAP,ISOLV,ELL,N) 
use​ felles, ​only​ : X 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
dimension​ A(​3​*N-​1​,​3​*N-​1​), ELL(N), G((​3​*N-​1​)*(​3​*N-​1​)) 
 

C(I) = ​cos​(AKAP*ELL(I)) + ​cosh​(AKAP*ELL(I)) 
CS(I) = ​cos​(AKAP*ELL(I)) - ​cosh​(AKAP*ELL(I)) 
S(I) = ​sin​(AKAP*ELL(I)) + ​sinh​(AKAP*ELL(I)) 
SS(I) = ​sin​(AKAP*ELL(I)) - ​sinh​(AKAP*ELL(I)) 
 

DO​ ​1​ I=​1​,(​3​*N-​1​) 
 ​DO​ ​2​ J=​1​,(​3​*N-​1​) 
  G((​3​*N-​1​)*(I-​1​)+J) = ​1.0 
  A(I,J) = ​0.0 

 ​2​     ​CONTINUE 
 ​1​    ​CONTINUE 
 



 

if​(N == ​1​) go to ​220 
 

do​ ​120​ I = ​1​,(N-​1​) 
J = ​1​+(I-​1​)*​3 
A(J,J) = CS(I) 

A(J,J+​1​) = SS(I) 

A(J+​1​,J+​1​) = -S(I) 

A(J+​1​,J) = -C(I) 

A(J+​1​,J+​3​) = ​2.0 
A(J+​2​,J+​2​) = -​2.0 
A(J+​2​,J) = -S(I) 

A(J+​2​,J+​1​) = CS(I) 

 

120​ ​CONTINUE 
 

if​ (N < ​3​) go to ​210 
 

do​ ​1300​ I = ​2​,(N-​1​) 
J = ​1​+(I-​1​)*​3 
A(J,J-​1​) = S(I) 

A(J+​1​,J-​1​) = -SS(I) 

A(J+​2​,J-​1​) = C(I) 

 

1300​ ​CONTINUE 
210​ ​CONTINUE 

A(​3​*N-​1​,​3​*N-​3​) = C(N) 
A(​3​*N-​2​,​3​*N-​3​) = S(N) 

220 A(​3​*N-​1​,​3​*N-​1​) = CS(N) 
A(​3​*N-​1​,​3​*N-​2​) = -S(N) 
A(​3​*N-​2​,​3​*N-​2​) = CS(N) 
A(​3​*N-​2​,​3​*N-​1​) = SS(N) 
 

N3M = ​3​*N-​1​-ISOLV 
 

do​ ​31​ J = ​1​,N3M 
 ​do​ ​30​ I = ​1​,N3M 

NDEX = (N3M*(J-​1​)+I) 
G(NDEX) = A(I,J) 

30​ ​continue 
31​ ​continue 
 



call​ minv(G,N3M,N3M**​2​,CALC) 
 

if​(ISOLV == ​0​) ​RETURN 
 

do​ ​41​ J = ​1​,N3M 
do​ ​40​ I = ​1​,N3M 

NDEX = (N3M*(J-​1​)+I) 
A(I,J) = G(NDEX) 

40​ ​continue 
41​ ​continue 
 

F = -SS(N) 

 

do​ ​300​ I = ​2​,(N3M+​1​) 
 

X(I) = A(I-​1​,N3M)*F 
 

300​ ​CONTINUE 
 

X(​1​) = ​0.0 
X(​3​*N) = ​1.0 

 

RETURN 

end​ ​function  
 

 

SUBROUTINE​ MINV(A,N,N2,D) !? 

  

      ​IMPLICIT​ ​DOUBLE​ ​PRECISION​ (A-H,O-Z) 
  

 

      ​DIMENSION​ L(N),M(N), A(N2) 
 

      D = ​1.0 
      NK = -N 

      ​DO​ ​80​ K=​1​,N 
      NK = NK+N 

      L(K) = K 

      M(K) = K 

      KK = NK+K 

      BIGA = A(KK) 

      ​DO​ ​21​ J=K,N 



      IZ = N*(J-​1​) 
      ​DO​ ​20​ I = K,N 
      IJ = IZ+I 

 ​10​   ​IF​(​ABS​(BIGA)-​ABS​(A(IJ))) ​15​,​20​,​20 
 ​15​   BIGA = A(IJ) 
      L(K) = I 

  M(K) = J 

 ​20​   ​CONTINUE 
 ​21​   ​CONTINUE​ ​!mrk 
      J = L(K) 

IF​(J-K) ​35​,​35​,​25 
 ​25​   KI = K-N 
      ​DO​ ​30​ I=​1​,N 

KI = KI+N 

 HOLD = -A(KI) 

JI = KI-K+J 

A(KI) = A(JI) 

 ​30​   A(JI) = HOLD 
 ​35​   I = M(K) 
      ​IF​(I-K) ​45​,​45​,​38 
 ​38​   JP = N*(I-​1​) 
      ​DO​ ​40​ J=​1​,N 

JK= NK+J 

JI = JP+J 

HOLD = -A(JK) 

A(JK) = A(JI) 

 ​40​   A(JI) = HOLD 
 ​45​   ​IF​(BIGA) ​48​,​46​,​48 
 ​46​   D = ​0.0 

RETURN 

 ​48​   ​DO​ ​55​ I=​1​,N 
IF​(I-K) ​50​,​55​,​50 

 ​50​   IK = NK+I 
      A(IK) = A(IK)/(-BIGA) 

 ​55​   ​CONTINUE 
      ​DO​ ​65​ I=​1​,N 

IK = NK+I 

HOLD = A(IK) 

IJ = I-N 

DO​ ​65​ J=​1​,N 
IJ = IJ+N 

IF​(I-K) ​60​,​65​,​60 



 ​60​   ​IF​(J-K) ​62​,​65​,​62 
 ​62​   KJ = IJ-I+K 
      A(IJ) = HOLD*A(KJ)+A(IJ) 

 ​65​   ​CONTINUE 
      KJ = K-N 

DO​ ​75​ J=​1​,N 
KJ = KJ+N 

IF​(J-K) ​70​,​75​,​70 
 ​70​   A(KJ) = A(KJ)/BIGA 
 ​75​   ​CONTINUE 
      D = D*BIGA 

A(KK) = ​1.0​/BIGA 
 ​80​   ​CONTINUE 
      K=N 

 ​100​  K = K-​1 
      ​IF​(K) ​150​,​150​,​105 
 ​105​  I = L(K) 
      ​IF​(I-K) ​120​,​120​,​108 
 ​108​  JQ = N*(K-​1​) 

JR = N*(I-​1​) 
DO​ ​110​ J=​1​,N 
JK = JQ+J 

HOLD = A(JK) 

JI = JR+J 

A(JK) = -A(JI) 

 ​110​  A(JI) = HOLD 
 ​120​  J = M(K) 
      ​IF​(J-K) ​100​,​100​,​125 
 ​125​  KI = K-N 
      ​DO​ ​130​ I=​1​,N 

KI = KI+N 

HOLD = A(KI) 

JI = KI-K+J 

A(KI) = -A(JI) 

 ​130​  A(JI) = HOLD 
      ​GOTO​ ​100 
 ​150​  ​CONTINUE 
 

      ​RETURN 
      ​END  
 

 



!__________________________________________________________________________

________________________________________________________ 

 

subroutine​ vortexshedding(rhoair,dh,Vr,Pt) 
use​ FELLES,​only​ : ELL,pi,X,N,UCRIT,Lm,FRENAT,XKAPPA,tubelength,VM,B,C,D 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
 

) 

CC(Z)  = ​COS​(AKAP*Z) + ​COSH​(AKAP*Z) 
CS(Z) = ​COS​(AKAP*Z) - ​COSH​(AKAP*Z) 
S(Z)  = ​SIN​(AKAP*Z) + ​SINH​(AKAP*Z) 
SS(Z) = ​SIN​(AKAP*Z) - ​SINH​(AKAP*Z) 
vdist = ​1.0 
DampC = ​0.031​*​2.0​*VM  

delta = ​0.031 
Constant=VM/(​2.0​*pi*DampC) 
 

if​ (Pt/dh < ​1.6​) ​then 
CL = ​0.075 

else​ ​if​(Pt/dh > ​2.5​) ​then 
CL = ​0.49 

else 

CL = (​0.461​*Pt/dh)-​0.663 
end​ ​if 
 

FL = CL*rhoair*dh*Vr*Vr/​2.0 
Ymax=​0.0 
Xmodmax = ​0.0 
xpos=​0.0 
 

 

if​ (N==​1.0​) ​then 
Ymax = FL/(pi*pi*FRENAT(​1​)*FRENAT(​1​)*VM*delta)  

 

 

else 

do​ ​301​ K = ​1​,N !Iteration over mode 

AKAP = XKAPPA(K)  

do​ ​101​ I = ​1​,N !Iteration over spans 

I3 = ​3​*I 
do​ ​201​ J = ​1​,​50 !Iteration in 1/50 increments over each span 

W = ELL(I)*​0.02​*J 



Y = B(K,I)*CS(W)+C(K,I)*S(W) + D(K,I)*SS(W) !Mode shape 

 

xmod = 

(X(I3)*SS(ELL(I))+X(I3)*CS(ELL(I))-X(I3)*(CC(ELL(I))-​2.0​))/AKAP​!Integral of 
modeshape 

  

V = (FL*Y)/(FRENAT(K)*FRENAT(K)*​4.0​*pi*delta*VM) 
 

if​ (​abs​(V)>​abs​(Ymax)) ​then 
Ymax = V 

xpos = W 

Span = I 

mode = K 

end​ ​if 
if​(​abs​(Y) > ​abs​(xmodmax)) ​then 
xmodmax = ​abs​(Y) 
end​ ​if 

 

 

 

201​ ​continue 
101​ ​continue 
301​ ​continue 
end​ ​if 
print​*,​"         " 
print​*,​"-------------------- VORTEX SHEDDING --------------------" 
print​*,​"         " 
print​*,​"FL = "​,FL,​" N/m | "​,​"CL = "​,CL 
print​*, ​'Ymax = '​, ​abs​(Ymax), ​" m" 
 

SrVS = (​1.0​/​1.73​)*(dh/Pt) 
 

fvs = Vr*SrVS/dh 

 

do​ ​6666​ I =​1​,N 
print​*, ​"Fvs/Fn"​,I,​"="​,fvs/FRENAT(I) 
if​ ( fvs < ​1.2​*FRENAT(I) .AND. fvs < ​0.8​*FRENAT(I)) ​then 

print​*, ​"Danger of vortex shedding" 
else 

print​*,​"No danger" 
end​ ​if 
6666​ ​continue 



 

 

 

print​*, ​"Strouhal number, Sr = "​,SrVS 
print​*, ​"Vortex shedding frequency, fvs = "​,fvs, ​" Hz" 
print​*,​"         " 
print​*, ​"-------------------- Acoustic resonance --------------------" 
print​*,​"         " 
 

call​ acousticresonance(fvs,fa,sigma,vdist,supmode) 
print​*,​"fa = "​,fa  
end 

 

 

subroutine​ instability(Vcrit,Vr,delta,rhoG) 
use​ FELLES 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
print​*,​"         " 
print​*,​"-------------------- Fluid-elastic instability 
--------------------" 

print​*,​"         " 
do​ I = ​1​,N 
if​ (uniformflow == ​2.0​) ​then 
 

Vcrit = FRENAT(I)*​3.3​*((delta*VM)/(rhoG))**​0.5 
 

else  

 

Vcrit = 

3.3​*((delta*FRENAT(I)*FRENAT(I))/rhoG*squareintegral(XKAPPA(I),ELL(I))**​0.5
) 

print​*, squareintegral(XKAPPA(I),tubelength) 
end​ ​if 
 

if​ (Vr > Vcrit) ​then 
 

print​*, ​"Critical velocity"​, I, ​"="​,Vcrit,​"m/s"​,​" | "​, ​"Ur/Ucrit = 
"​,Vr/Vcrit 

print​*, ​"Danger of instability" 
else 

print​*, ​"Critical velocity"​, I, ​"="​,Vcrit,​"m/s"​,​" | "​, ​"Ur/Ucrit = 
"​,Vr/Vcrit 



print​*, ​"No danger" 
 

end​ ​if 
end​ ​do 
 

end​ ​subroutine 
 

 

 

 

 

 

 

double​ ​precision​ ​function​ turbulentbuffetting(xpos) 
!The main program for calculating turbulent buffetting amplitude. 

!Returns the maximum RMS amplitude. 

!Sums the effect of each excited mode over all spans. 

!I,J  signifies modes R and S 

!M signifies span number 

!K signifies span increments in 50 increments per span, to sum over all 

modes per increment. 

use​ FELLES 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
EXTERNAL​ TBFORC 
 

 ​DO​ ​6300​ I=​1​,N 
        ​DO​ ​6200​ J=I,N 
          FLOW=​0.0 
          FINT=​0.0 
          ​DO​ ​6100​ K=​1​,N 
            FHIGH=FRENAT(K) 

            ​IF​(​MOD​(K,​2​) .EQ. ​0​) FHIGH=​0.5​*(FRENAT(K)+FRENAT(K-​1​)) 
            FR=FRENAT(I) 

            FS=FRENAT(J) 

            ​CALL​ QGAUS(TBFORC,flow,fhigh,t4) 
            FINT=FINT+T4 

            ​IF​(I .NE. J) FINT=FINT+T4 
            FLOW=FHIGH 

 ​6100​     ​CONTINUE 
          XVECT(I,J) = FINT

 

 ​6200​   ​CONTINUE 



 ​6300​ ​CONTINUE  

 

 

 ampltb =​0.0 
 POSX = ​0.0 
 ​do​ ​40​ M=​1​,N  

    dx=ELL(M)/​50 
    POSX=​0.0 

do​ ​30​ K = ​1​,​50  

SUM​=​0.0 
    POSX=POSX+DX 

      ​do​ ​10​ I = ​1​,N  

xmoder = (B(I,M)*(​cos​(XKAPPA(I)*POSX)-​cosh​(XKAPPA(I)*POSX)) & 
+ 

C(I,M)*(​sin​(XKAPPA(I)*POSX)+​sinh​(XKAPPA(I)*POSX))+D(I,M)*(​sin​(XKAPPA(I)*POS
X)-​sinh​(XKAPPA(I)*POSX)))/FRENAT(I) 

do​ ​20​ J = ​1​,N  

  xmodes = (B(J,M)*(​cos​(XKAPPA(I)*POSX)-​cosh​(XKAPPA(I)*POSX))& 
   + C(J,M)*(​sin​(XKAPPA(I)*POSX)+​sinh​(XKAPPA(I)*POSX)) + 

D(J,M)*(​sin​(XKAPPA(I)*POSX)-​sinh​(XKAPPA(I)*POSX)))/FRENAT(J) 
  ​SUM​ = ​SUM​ + 

XVECT(I,J)*​abs​(xmoder*xmodes)*wf(B(I,M),C(I,M),D(I,M),B(J,M),C(J,M),D(J,M),
Lm,XKAPPA(I))/(​16.0​*(pi)**​4.0​) 

 

20​ ​continue 
10​ ​continue 

if​(​SUM​>ampltb)​then 
ampltb = ​SUM 
end​ ​if 

30​ ​continue 
40​ ​continue 
 

turbulentbuffetting = ampltb 

 

end​ ​function​ turbulentbuffetting 
 

double​ ​precision​ ​function​ wf(B1,C1,D1,B2,C2,D2,xmax,AKAP) 
!Serves the purpose of returning the integral Ør(x)*Øs(x')dxdx' from 0 to 

xmax. 

!Is the part of the weighting function that is dependent on axial position. 

!Is a part of the calculation of turbulent buffetting amplitude. 

use​ FELLES 



implicit​ ​double​ ​precision​ (A-H,O-Z) 
 

 

!Integral of modeshape from 0 to Lm 

int1 = 

(C1*(​sin​(AKAP*xmax)+​sinh​(AKAP*xmax))+D1*(​sin​(AKAP*xmax)-​sinh​(AKAP*xmax))-B1
*(​cos​(AKAP*xmax)-​cosh​(AKAP*xmax)-​2.0​)) 
 

 

int2 = 

(C2*(​sin​(AKAP*xmax)+​sinh​(AKAP*xmax))+D2*(​sin​(AKAP*xmax)-​sinh​(AKAP*xmax))-B2
*(​cos​(AKAP*xmax)-​cosh​(AKAP*xmax)-​2.0​)) 
 

wf = int1*int2 

 

end​ ​function 
 

SUBROUTINE​ QGAUS(FUNC,A,B,SS) 
 

!Integrates a specified function FUNC between boundaries A and B. Returns 

SS 

!Used to integrate Hr(f)Hs(f)S(f) from 0 to infinity. 

 

 

IMPLICIT​ ​DOUBLE​ ​PRECISION​(A-H,O-Z) 
 

 

double​ ​precision​, ​dimension​(​5​) :: X,WX = 
(/​0.1488743389​,​0.4333953941​,​0.6794095682​,​0.8650633666​,​0.9739066285​/) 
W = (/​0.295524227​,​0.2692667193​,​0.2190863625​,​0.1494513491​,​0.0666713443​/) 
 

      XM=​0.5​*(B+A) 
      XR=​0.5​*(B-A) 
      SS=​0.0 
      ​DO​ ​1000​ J=​1​,​5 
        DX = XR*X(J) 

        SS=SS+W(J)*(FUNC(XM+DX)+FUNC(XM-DX)) 

 ​1000​ ​CONTINUE 
      SS = XR*SS 

 

return  

end 



double​ ​precision​ ​function​ squareintegral(AKAP,XPOS) 
use​ FELLES,​only​ : ELL,pi,N,UCRIT,Lm,X,FRENAT,XKAPPA,tubelength 
!Calculates the integral of the square of the mode shape, from 0 to Lm.  

     ​implicit​ ​double​ ​precision​ (A-H,O-Z) 
B = X(​3​*N-​1​) 
C = X(​3​*N-​2​) 
D = X(​3​*N) 
Y=(AKAP*XPOS) 

 

      VAL1=(​SIN​(​2.​*Y)+​2.​*Y)/(​4.​*AKAP) 
 

      VAL2=(​2.0​*Y-​SIN​(​2.​*Y))/(​4.0​*AKAP) 
 

      VAL3=(​1.0​-​COS​(​2.0​*Y))/(​4.0​*AKAP) 
 

      VAL4=(​COS​(Y)*​SINH​(Y)+​SIN​(Y)*​COSH​(Y))/(​2.0​*AKAP) 
 

      VAL5=(​COS​(Y)*​COSH​(Y)+​SIN​(Y)*​SINH​(Y)-​1.0​)/(​2.0​*AKAP) 
 

      VAL6=(​SIN​(Y)*​SINH​(Y)-​COS​(Y)*​COSH​(Y)+​1.0​)/(​2.0​*AKAP) 
 

      VAL7=(​SIN​(Y)*​COSH​(Y)-​COS​(Y)*​SINH​(Y))/(​2.0​*AKAP) 
 

      VAL8=(​SINH​(​2.0​*Y)+​2.0​*Y)/(​4.0​*AKAP) 
 

      VAL9=(​DCOSH​(​2.0​*Y)-​1.0​)/(​4.0​*AKAP) 
 

      VAL10=(​DSINH​(​2.0​*Y)-​2.0​*Y)/(​4.0​*AKAP) 
 

      F1 = (B*B)*VAL1 

      F2 = (C+D)*(C+D)*VAL2 

      F3 = ​2.0​*(B*C + B*D)*VAL3 
      F4 = -​2.0​*(B*B)*VAL4 
      F5 = ​2.0​*(B*C - B*D)*VAL5 
      F6 = -​2.0​*(B*C + B*D)*VAL6 
      F7 = ​2.0​*(C*C - D*D)*VAL7 
      F8 = (B*B)*VAL8 

      F9 = ​2.0​*(B*D - B*C)*VAL9 
      F10= (C-D)*(C-D)*VAL10 

squareintegral=F1+F2+F3+F4+F5+F6+F7+F8+F9+F10 

 

end​ ​function​ squareintegral 



 

 

double​ ​precision​ ​function​ TBFORC(F) 
use​ felles 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
 

DampC = ​0.031​*​2​*pi 
 

! Frequency response function for mode r 

    HR = ​1.0​-(F/FR)**​2.0 !Real 

    HRI = DampC*F/(​2.0​*pi*VM*FR) !Imaginary 

HRZ=(HR**​2.0​ + HRI**​2.0​)**(-​0.5​) !Absolute value 

    THETAR=​DATAN2​(HRI,HR) !Angle 

 

! Frequency response function for mode s 

 

    HS = ​1.0​-(F/FS)**​2.0 !Real  

    HSI = DampC*F/(​2.0​*pi*VM*FS) !Imaginary  

    HSZ=(HS**​2.0​ + HSI**​2.0​)**(-​0.5​) !Absolute value 

    THETAS=​DATAN2​(HSI,HS) !Angle 

        ​IF​(F .LE. ​40.0​) ​THEN 
         CRFAC = ​24.0D-03 
        ​ELSE 
         CRFAC = ​32.6​*F**(-​1.96​) 
        ​ENDIF 
  

 TBFORC = HRZ*HSZ*​cos​(THETAR-THETAS)*CRFAC**​2.0 !Weightingfunction(F) 

 

end​ ​function​ TBFORC 
 

 

 

subroutine​ acousticresonance(fvs,fa,sigma,xmode,supmode) 
use​ felles 
implicit​ ​double​ ​precision​ (A-H,O-Z) 
 

Vtot = ​0.03566​*​0.03257 !=Pt*Pl 

 

Vtube = pi*​0.01238​*​0.01238​*​0.25
!=pi*d2*d2*0.25 

 

Vfin = (pi*​1.05D-3​*​0.00935​*​0.1238​)/(​2.0​*​8.98D-3​) !=(pi*tf*hf*D2)/(sf) 



 

sigma = (Vfin+Vtube)/Vtot 

 

c0 = ​sqrt​(​1.4​*​101325.00​/​0.48​)
!=sqrt(1.4*Pair/rhoair) /pressure 1 atm 

 

ceff = c0/(​1.0​+sigma) 
 

print​*, ​"fa/fvs = "​,fa/fvs 
 

if​ ( fa/fvs < ​0.8​ .OR. fa/fvs > ​1.35​) ​then 
 

print​*, ​"No danger of acoustic resonance" 
 

else 

 

print​*, ​"Danger of acoustic resonance" 
 

end​ ​if 
 

 

end​ ​subroutine 
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