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Abstract

Thraustochytrids are heterotrophic protists that under certain conditions accumulate large
quantities of triacylglycerols (TAGs) rich in ω-3 polyunsaturated fatty acids (PUFAs). The
increasing global demand for these PUFA-rich TAGs has consequently made the thraus-
tochytrids being regarded as primary candidates for microbial lipid producing cell fac-
tories. However, a systems-level understanding of the metabolic shift from exponential
growth to lipid accumulation is in a large extent unclear.

Genome-scale metabolic models (GSMs) allow for a systems-level understanding of
the organization and behavior of biochemical networks. The modeling approach integrates
all the metabolic capabilities of an organisms within a stoichiometric framework, enabling
the in silico prediction of the reaction fluxes throughout the metabolic network. The ability
to predict cellular phenotypes offers major insights into the properties of metabolic sys-
tems, and constraint-based analyses have, for this reason, become one of the most impor-
tant tools in the systems biological studies of metabolism. GSMs also provide direct cor-
relations between the genotype and biochemical phenotype through boolean gene-reaction
associations, allowing for the direct simulation of metabolic engineering strategies.

Using an already published GSM of a closely related strain, a high-quality GSM of the
thraustochytrid Auranthiochytrium sp. T66 termed iVS1191 was reconstructed. Through
iterative refinements and extensive manual curation, the metabolic scope and coverage
of the model was significantly improved from that of the template reconstruction. The
generated model consisted of 2093 unique metabolic reactions, 1668 metabolites, and
1191 associated genes. Simulated gene essentiality predictions on carbon-limited minimal
medium revealed a robust and adaptable metabolic network, able to grow at sub-optimal
or optimal growth phenotypes for around 81% of all single-gene knockouts. Using the
OptKnock algorithm, multiple double-reaction knockout strategies were proposed for the
increased production the key lipid precursors malonyl-CoA and NADPH.

Additionally, the integration of genome-wide transcriptomics data indicate a concur-
rent down-regulation of specific pathways of the amino acid metabolism at the onset of
lipid accumulation, alluding to a conserved transcriptional regulation also observed in
other oleaginous microorganisms. The latter analysis also suggest a bimodal regulatory
mechanism by which the fatty acid synthase (FAS) complex appears to primarily be regu-
lated on the transcriptional level, while the competing polyketide synthase (PKS) pathway,
responsible for the biosynthesis of the ω-3 PUFAs, seems to be regulated on the metabolic
level. These results suggest that increasing the intracellular pool of lipid precursor might
preferentially benefit the flux through the PKS pathway compared the FAS system, thus
increasing the fractional amounts of the ω-3 PUFA in A. sp. T66.
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Sammendrag

Thraustochytrider er heterotrofe protister som under bestemte betingelser akkumulerer
store mengder triglyserider som er svært rike på ω-3-flerumettede fettsyrer. Det økende
globale behovet for disse fettsyrene har gjort thraustochytrider til særlig lovende kandi-
dater for mikrobiell produksjon av disse. En forståelse på systemnivå av den metabolske
overgangen fra eksponentiell vekst til lipidakkumulering er derimot fortsatt uklar.

Genome-skala metabolske modeller (GSM) muligjør en forståelse på systemnivå av or-
ganiseringen og adferden til biokjemiske nettverk. Denne modelleringsmetoden integrerer
samtlige metabolske egenskaper til organismen ved bruk av et såkalt støkiometrisk ram-
meverk som muliggjør den simultane beregningen av samtlige reaksjonshastigheter i hele
det metabolske nettverket. Disse cellulære fenotypene bidrar til stor innsikt i egenskapene
til det metabolske systemet, og har av nettopp denne grunnen blitt til et av de viktigste
verktøyene innen systembiologisk forskning på metabolske systemer. GSM inkorporerer
også direkte forbindelser mellom genotyper og biokjemiske fenotyper ved bruk av boolske
gen-reaksjon-assosiasjoner, som muliggjør direkte simulering av knockout-strategier for
økt målmetabolittproduksjon.

Ved bruk av en allerede publisert GSM av en nært beslektet stamme, ble en GSM av
høy kvalitet rekonstruert for thraustochytriden Auranthiochytrium sp. T66. Ved hjelp av it-
erative modifikasjoner og forbedringer ble det metabolske omfanget og dekningsgraden til
modellen utbedret sammenlignet med templatmodellen. Den endelige modellen inneholdt
2093 unike metabolske reaksjoner, 1668 metabolitter, og 1191 tilhørende gener. Simulerte
genessensialitetsanalyser på minimalt karbon-medium antydet at det metabolske nettver-
ket er både robust og tilpasningsdyktig, ved å oppnå optimal eller sub-optimal vekst for
rundt 81% av alle gen-knockouter. Flere doble reaksjonsmutanter ble identifisert ved bruk
av OptKnock-algoritmen som resulterte i økte produksjonsrater av de essensielle lipid-
forløperne malonyl-CoA og NADPH.

Ved inkorporering av transkriptomdata ble det også oppdaget en sammenfallende ne-
dregulering av spesifikke reaksjonsspor i aminosyremetabolismen ved nitrogen-begrensing,
noe som tyder på en konservert reguleringsmekanisme som også er observert i andre ol-
jeholdige mikroorganismer. Den sistnevnte analysen antyder også en bimodal reguler-
ingsmekanisme der fettsyrasyntase-komplekset (FAS) virker å være primært regulert på
transkriptomnivå, mens det konkurrerende enzymkomplekset ansvarlig for produksjnoen
av de ω-3-flerumettede fettsyrene, polyketid-syntase (PKS), tilsynelatende er regulert på
metabolittnivå. Dette kan tyde på at en økning av den intracellulære mengden av lipid-
forløperne vil kunne øke aktiviteten til PKS, og i mindre grad påvirke aktiviteten til FAS,
som følgelig vil kunne forbedre den fraksjonelle sammensetningen av de ønskede ω-3-
fettsyrene i A. sp. T66.

iii



iv



Table of Contents

Acknowledgements i

Abstract ii

Sammendrag iii

Table of Contents vii

List of Tables x

List of Figures xiv

Abbreviations xv

1 Introduction 1

2 Background 3
2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Linear program in standard form . . . . . . . . . . . . . . . . . . 4
2.1.2 The simplex method . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Metabolic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Stoichiometric modeling . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Flux balance analysis - FBA . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Flux variability analysis - FVA . . . . . . . . . . . . . . . . . . . 10
2.2.4 Minimization of metabolic adjustment - MOMA . . . . . . . . . 11

2.3 Genome-scale metabolic models - GSMs . . . . . . . . . . . . . . . . . . 12
2.3.1 Reconstruction of GSMs . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Employment of GSMs for the prediction of metabolic engineering

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Lipid accumulation in oleaginous microorganisms . . . . . . . . . . . . . 19

v



3 Software and methods 23
3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 COBRA toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 RAVEN Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 ModelExplorer . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.6 Escher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.7 Gurobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.8 BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.9 HECTAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.10 DeepLoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Draft model reconstruction and refinement . . . . . . . . . . . . . . . . . 26
3.2.1 Initial draft reconstruction . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Ensuring biomass production . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Addition of novel metabolic capabilities and gene re-annotation . 28
3.2.4 Biomass reformulation . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Metabolic network evaluation . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Detection and removal of energy-generating cycles . . . . . . . . 32
3.3.2 Evaluating the in silico model predictions . . . . . . . . . . . . . 33

3.4 Model employment for phenotypic predictions . . . . . . . . . . . . . . . 34
3.4.1 Assessing gene essentiality by in silico gene deletion analysis . . 34
3.4.2 Genetic interventions for increased lipid production . . . . . . . . 35
3.4.3 Elucidation of transcriptionally regulated enzymes . . . . . . . . 36

4 Results and discussion 41
4.1 Reconstruction and refinement of iVS1191 . . . . . . . . . . . . . . . . . 41

4.1.1 Constructing the initial draft model . . . . . . . . . . . . . . . . 41
4.1.2 Gap filling for biomass production . . . . . . . . . . . . . . . . . 42
4.1.3 Enhancing the scope of the reconstruction . . . . . . . . . . . . . 45
4.1.4 Eliminating erroneous EGCs . . . . . . . . . . . . . . . . . . . . 52

4.2 Properties of the final model reconstruction . . . . . . . . . . . . . . . . 53
4.2.1 Major advancements in both coverage and scope . . . . . . . . . 53
4.2.2 Growth rate predictions suggest insufficient maintenance energies,

and hints at an unrealistic biomass composition . . . . . . . . . . 56
4.2.3 Gene essentiality analysis reveals metabolic robustness and adapt-

ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Model employment for phenotypic predictions . . . . . . . . . . . . . . . 60

4.3.1 Innate potentiality of the metabolic network uncover strategies for
increased production of malonyl-CoA and NADPH . . . . . . . . 60

4.3.2 Genome-wide transcriptomic changes are associated with the metabolic
shift from growth to lipid accumulation . . . . . . . . . . . . . . 64

5 Conclusion and Outlook 69

Bibliography 71

vi



Appendix A - Constructing the biomass objective function 85

Appendix B - Calculations of specific uptake rates 89

Appendix C - Pathway map of the steroid biosynthetic pathway 90

Appendix D - PKS pathway map 91

Appendix E - Minimal medium used during gene essentiality predictions 92

vii



viii



List of Tables

3.1 Carbon-limited minimal medium used during the model refinement of the
draft reconstruction with associated uptake rates (mmol gDW-1 h-1). The
growth-limiting carbon uptake rate of 1.4 mmol gDW-1 h-1 was assumed
to be equal to that of the template model. . . . . . . . . . . . . . . . . . . 27

3.2 Normalized fractional fatty acid composition of A. sp. T66 obtained from
batch-fermentation experiments. These values were used to impose a fatty
acid distribution on all lipid forms implemented in the GSM. . . . . . . . 31

3.3 Set of dissipation reactions used to identify thermodynamically infeasible
EGCs. Each dissipation reaction were iteratively added to the model and
subsequently optimized when all exchange reactions were constrained to
zero. Any non-zero optimal objective value indicated the presence of an
ECG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Condition-dependent rates used to constrain the feasible solution space of
the three condition-specific models, allowing for random flux sampling
and subsequent comparisons of the differential flux distributions. . . . . . 37

3.5 Qualitative assignments of the three modes of regulation based on the var-
ious combinations of up-regulation (+), down-regulation (-) and no regu-
lation (=) for flux and transcript levels. TR: transcriptional regulation, PR:
post-transcriptional regulation, MR: metabolic regulation. . . . . . . . . . 38

4.1 Comparison of the model properties of the template model iCY1170 DHA
and the resulting draft reconstructions after iterative modifications. . . . . 41

4.2 Minimal set of gap filling reactions of the initial draft model reconstruc-
tion necessary for the production of all biomass components. The letters
in square brackets indicate between which subcellular compartments the
transport reaction occur; c - cytosolic (between the extracellular and cyto-
plasmic compartment), m - mitochondrial (between the mitochondrial and
cytoplasmic compartment). . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



4.3 Qualitative assessment of growth on various carbon sources that enters the
central carbon metabolism at the level of the two-carbon metabolite acetyl-
CoA. Uptake rates were arbitrarily set to 1 mmol gDW-1 h-1. Growth and
non-growth is denoted by + and -, respectively. . . . . . . . . . . . . . . 50

4.4 Candidate genes encoding the enzymatic subunits of the PKS complex
responsible for the biosynthesis of the PUFAs in A. sp. T66. . . . . . . . 51

4.5 Comparison of the features of the final model reconstruction iVS1191 and
iCY1170 DHA. Dead-end metabolites are metabolites that are unable to
be consumed or produced as they are constituents of only one model re-
action. The blocked reactions were identified by having lower and upper
flux bounds of zero when running FVA on an open model (i.e. all exchange
reactions left unconstrained). . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Comparison of experimental and in silico specific growth rates (h-1) on
various minimal media, using measured uptake fluxes to constrain the
model (mmol gDW-1 h-1). . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Suggested double reaction knockout mutants by the OptKnock algorithm
for increased productivity of each target metabolite. The list of genes for
each mutant strategy indicate the set of genes that need to be disrupted
in order to knock out the reaction pairs. Given are the resulting biomass
yields and associated flux ranges through the target reactions. No double
reaction knockout strategy were identified for the target reaction ME. . . . 61

4.8 Flux rates for the target reactions of the four independent double reac-
tion knockout strategies proposed by OptKnock. These fluxes were cal-
culated by MOMA to investigate how the initial flux redistribution of the
metabolic network would affect the fluxes through the target reactions. . . 63

4.9 Number of gene-reaction pairs subject to either of the three modes of reg-
ulation: transcriptional, post-transcriptional, and metabolic for each of the
given condition-comparisons. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Listing of essential cofactors and coenzymes added to the biomass reac-
tion to increase the scope and validity of the gene essentiality predictions.
The various compartments are denoted by the following abbreviations: cy-
toplasm (c), mitochondria (m) and peroxisome (x). . . . . . . . . . . . . 87

5.2 Experimental substrate uptake rates, qs (g substrate gDW-1 h-1), and cor-
responding uptake fluxes (mmol gDW-1 h-1) used to constrain the growth
predictions of the reconstructed GSM. Also given are the measured am-
monium uptake rates (qN). . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Updated carbon-limited minimal medium used during the model employ-
ment. The growth-limiting uptake rate (mmol gDW-1 h-1) of glucose was
determined experimentally. The cofactors thiamine and cyanocob(III)alamin
were added as A. sp. T66 are unable to synthesize these de novo. . . . . . 92

x



List of Figures

2.1 Feasible region in the form of a convex polyhedron in three-dimensional
space. The solution space is determined by the intersecting constraints
of the linear program. An optimal solution will reside in either of the
indicated corner-points, or as a convex combination of a set of adjacent
corner points (i.e. on a facet or edge of the convex polyhedron). . . . . . 5

2.2 Toy example of a metabolic network containing 5 metabolites (A - E), and
10 metabolic reactions. The latter of which consist of 4 exchange reactions
(vE1 - vE4) importing or exporting metabolites to/from the system, while
6 are intracellular metabolic transformations (v1 - v6). . . . . . . . . . . 8

2.3 Illustrative example of the FBA problem. 1) The stoichiometric constraints,
and 2) flux variable bounds impose restrictions on the unconstrained solu-
tion space, reducing the range of feasible flux distributions. The resulting
convex polyhedron is treated as the feasible solution space in a linear pro-
gram in which an objective function composed of a linear combination of
reaction fluxes is optimized. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The criteria of optimality for the FBA and MOMA problem mapped onto
a two-dimensional flux space for clarity. The solution to the MOMA prob-
lem of the perturbed network is a feasible solution x ∈ Φj′ (denoted as
the point c) that resides closest to the optimal solution of the wild type
network, v ∈ Φ (given as a). MOMA finds this solution by minimizing
the Euclidean distance D using quadratic programming. Also indicated is
the optimal solution of the FBA problem for the knockout mutant which
assumes evolutionary optimized growth performance (point b). . . . . . . 12

2.5 The five stages of GSM reconstruction, where the stages are subdivided
into a total of 96 unique steps. The iterative nature of the model recon-
struction procedure in steps 2-4 is indicated by the blue arrows. . . . . . . 14

2.6 Derivation of GAM and NGAM using growth data from chemostat ex-
periments in which the specific growth rates are plotted against the ATP
consumption rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xi



2.7 Overview of the metabolic pathways involved in the production of the fatty
acid precursor malonyl-CoA, as well as reducing power in the form of
NADPH. Depletion of nitrogen initiates a metabolic cascade in which cit-
rate accumulates in the mitochondria due to the reduced activity of isoci-
trate dehydrogenase. Citrate is then exported to the cytosol, where it gener-
ates acetyl-CoA, which subsequently gets carboxylated, forming malonyl-
CoA. Malonyl-CoA is then shuttled into either of two pathways of fatty
acid biosynthesis: the traditional fatty acid synthase (FAS) pathway or a
polyketide synthase (PKS) system. The reducing power are thought to
be generated from the pentose phosphate pathway (PPP) or malic enzyme
(ME). The generated fatty acids are further used, along with glycerol-3-
phosphate, to create TAGs and phospholipids (PLs). The former are stored
as intracellular lipid droplets and constitute the majority of the generated
lipids. Abbreviations: AcCoA: acetyl coenzyme A, TCA: tricarboxylic
acid cycle, ACL: ATP-citrate lyase, ACC: acetyl-CoA carboxylase. . . . . 20

2.8 Putative PKS pathway of PUFA biosynthesis in thraustochytrids. The
acyl-chain is successively elongated through the condensation of 3-ketoacyl-
ACP and malonyl-ACP by ketoacyl synthase (KS). The subsequent re-
duction by ketoacyl reductase (KR) and dehydration by dehydratase (DH)
generates a trans-enoyl-ACP intermediate, which either may be isomer-
ized to the cis-isomer by a proposed isomerase domain (I), or reduced to
form a saturated acyl-ACP by enoyl reductase (ER). By retaining the un-
saturated bonds during the biosynthetic process, less reducing power is
needed by the cell to synthesize these PUFAs. . . . . . . . . . . . . . . . 21

4.1 Metabolic pathway map of steroid biosynthesis from the KEGG path-
way database. Highlighted in red are the five missing enzymatic steps
in the draft reconstruction required for the capability of generating stig-
masterol; squalene monooxygenase (SQLE, EC:1.14.14.17), methylsterol
monooxygenase 1 (SMO1, EC:1.14.18.-), cholestenol δ-isomerase, (HYD1,
EC:5.3.3.5), 24-methylenesterol C-methyltransferase (SMT2, EC:2.1.1.143),
and sterol 22-desaturase (CYP710A, EC:1.14.19.41). . . . . . . . . . . . 44

4.2 Subsystem distributions in the reconstructed draft model of A. sp. T66
using the KEGG functionality of the Raven Toolbox. (a) Subsystem dis-
tributions of the reactions (n = 626) associated with the genes unique to
the KEGG model, (b) subsystem distribution of all reactions (n = 1455) in
the KEGG model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Subsystem distributions of the initial draft model reconstructed from iCY1170 DHA.
(a) Subsystem distributions of the reactions (n = 466) associated with the
genes unique to the initial draft model, (b) subsystem distribution of all
reactions (n = 1828) in the initial draft model. . . . . . . . . . . . . . . . 47

4.4 Subsystem distribution of the reactions (n = 667) associated with the 396
novel genes identified during the manual gene re-annotation. . . . . . . . 49

xii



4.5 Subsystem distribution of the 9 main classes of subsystems from the KEGG
PATHWAY database in iVS1191 and iCY1170 DHA. The subsystem ’Other’
contains Glycan Biosynthesis and Metabolism, Metabolism of Terpenoids
and Polyketides, Biosynthesis of other secondary metabolites, Metabolism
of Other Amino Acids, Xenobiotics Biodegradation and Metabolism and
Metabolism of terpenoids and polyketides. . . . . . . . . . . . . . . . . . 54

4.6 Visualization of the metabolic reconstructions in ModelExplorer of (a)
iCY1170 DHA, and (b) iVS1191. Both reconstructions were converted
to open models in which all exchange reactions were set to be uncon-
strained. Blocked reactions are indicated as red circles, while those that
are able to carry flux are indicated in light green. The metabolites are color
coded in a similar fashion: blocked = dark red, non-blocked = dark green,
where the dead-end metabolites also are highlighted by a surrounding blue
edge color. The compartments of the models are indicated by the yellow
boarders: (1.) cytosol, (2.) mitochondria, (3.) extracellular, and (4.) per-
oxisome. The mitochondrial intermembrane compartment of iVS1191 is
not visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Subsystem distribution of the three categorical classes of gene essentiality
resulting from the single gene deletion analysis. In total, 193 genes were
found to be essential, 230 were partially essential, while the remaining 768
genes were characterized as non-essential. . . . . . . . . . . . . . . . . . 58

4.8 The deletion impact p for all 1191 genes of the reconstructed GSM of A.
sp. T66. The flux distributions were calculated using an FBA formula-
tion of the perturbed network. Also indicated are the ternary essentiality
classes resulting from the single gene deletion analysis. . . . . . . . . . . 59

4.9 Production envelopes for the in silico double reaction mutants proposed by
the OptKnock algorithm for increased production of (a) malonyl-CoA by
ACC1, and increased generation of (b) NADPH via the oxidative pathway
of the PPP, G6PD and PGD. The graphs indicate the minimal and maximal
flux values obtainable for the target reactions at various growth rates. . . . 60

4.10 Subsystem distribution of the various gene-reaction pairs significantly reg-
ulated at the metabolic shift from exponential growth to the early onset of
lipid accumulation (N1/E). The modes of regulation are: (a) transcriptional
level, showing a high correlation between the differential changes in flux
and transcript levels, (b) post-transcriptional level, no change in flux levels
with an associated change in transcript levels, (c) metabolic level, inverse
correlation between fluxes and transcript levels, or a significant increase in
flux with no concurrent change in transcript levels. . . . . . . . . . . . . 65

4.11 Heatmap showing the extent of transcriptional, post-transcriptional and
metabolic modes of regulation occurring between the three conditions.
The color grading are proportional to the likelihood of a metabolic re-
action in a particular subsystem being regulated transcriptionally, post-
transcriptionally or metabolically. Abbreviations: E: exponential growth
phase, N1: onset of lipid accumulation, N2: late lipid accumulation. . . . 66

xiii



4.12 Subsystem distribution of the various gene-reaction pairs significantly reg-
ulated at the metabolic transition from early to late lipid accumulation
(N2/N1). The modes of regulation are: (a) transcriptional level, showing
a high correlation between the differential changes in flux and transcript
levels, (b) post-transcriptional level, no change in flux levels with an asso-
ciated change in transcript levels, (c) metabolic level, inverse correlation
between fluxes and transcript levels, or a significant increase in flux with
no concurrent change in transcript levels. . . . . . . . . . . . . . . . . . 67

5.1 Metabolic pathway map of steroid biosynthesis from the KEGG PATH-
WAY database annotated with the putative metabolic capabilities of A. sp.
T66. These types of color coded metabolic maps were extensively used in
the gap filling procedures during the initial draft model refinement, as well
as during subsequent rounds of model curations. . . . . . . . . . . . . . . 90

5.2 Metabolic map of the PKS pathway responsible for the biosynthesis of PU-
FAs in A. sp. T66. The pathway map was generated in a semi-automated
fashion in Escher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



Abbreviations

ACC1 = Acetyl-CoA carboxylase
ACL = ATP-citrate lyase
ACP = Acyl-carrier protein
BLAST = Basic Local Alignment Search Tool
CB = Convex Basis
CoA = Coenzyme A
COBRA = Constraint-Based Reconstruction and Analysis
DHA = Docosahexaenoic acid
EC = Enzyme commision
EGC = Energy-generating cycle
FAS = Fatty acid synthase
FBA = Flux balance analysis
FVA = Flux variability analysis
GAM = Growth associated maintenance
GSM = Genome-scale metabolic model
G6PD = Glucose-6-phosphate 1-dehydrogenase
HMM = Hidden markov model
KEGG = Kyoto Encyclopedia of Genes and Genomes
KO = KEGG Orthology
Mb = Mega base pairs
MC = Mitochondrial carrier
ME = Malic enzyme
MILP = Mixed-integer linear programming
MOMA = Minimization of metabolic adjustment
NGAM = Non-growth associated maintenance
ODE = Ordinary differential equation
ORF = Open reading frame
PGD = 6-phosphogluconate dehydrogenase
PGK = Phosphoglycerate kinase
PKS = Polyketide synthase
PPP = Pentose phosphate pathway
PUFA = Polyunsaturated fatty acid
RAVEN = Reconstruction, analysis, and visualization of metabolic networks
RPIA = Ribose-5-phosphate isomerase
S. limacinum = Schizochytrium limacinum
TAG = Triacylglycerol
TCA = Tricarboxylic acid
TCDB = Transporter classification database

xv



xvi



Chapter 1
Introduction

For several decades, accumulated evidence has been gathered for the health benefits of hu-
man consumption of marine sea foods [1]. The high content of ω-3 polyunsaturated fatty
acids (PUFAs), such as docosahexaenoic acid (DHA), is regarded as one of the major con-
tributors to this effect [1, 2]. These fatty acids are necessary for the proper development
of the fetal brain and retina [3, 4], and have shown to possess antiinflammatory properties
associated with reduced risks of cardiovascular diseases [5, 6]. Although rich in ω-3 fatty
acids, oily fish such as salmon, mackerel and herring do not synthesize these de novo,
but rather acquire them from feeding on lipid-rich plankton and microalgae [1]. The rising
global aquaculture industry, particularly the marine pisciculture industry, has consequently
led to an escalating need for novel sources of these fatty acids [7], whose current source
is predominately that of fish oil [8]. Owing to their trophic level in the food chain, these
PUFA-containing lipids contain elevated levels of toxic contaminants such as polychlori-
nated biphenyls and heavy metals [9, 10]. A need for alternative sources of high-quality
ω-3 PUFAs is therefore of utmost importance.

Cultivation and strain engineering of lipid-producing microorganisms is regarded as
a promising strategy to cater for this demand. Despite the fact that a large variety of
phylogenetically diverse microorganisms accumulate substantial amounts of lipids, only
a limited number of oleaginous species produce lipids rich in ω-3 PUFAs [11]. One of
these ω-3 PUFA-producing organisms are a group of marine heterokonts called thraus-
tochytrids. The thraustochytrids are a taxinomically ambiguous group of heterotrophic
unicellular protists that accrue large quantities of ω-3-rich triacylglycerols (TAGs) [12].
These TAGs are stored as intracellular lipid droplets that may constitute up to 80% of the
total cell mass, and have DHA contents of up to 80%, albeit not simultaneously [13, 14].

In most PUFA-producing microorganisms, the fatty acids are produced by elongat-
ing and desaturating the products of the fatty acid synthase (FAS) enzymatic machinery
[15]. However, the thraustochytrids predominately synthesize their PUFAs using a com-
peting polyketide synthase (PKS) system. Here, the acyl intermediates may retain their
unsaturated bonds during the biosynthetic process, thus lowering the molar requirement
for reducing power compared to the traditional elongation/desaturation scheme [16]. The
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Chapter 1. Introduction

capability to accumulate large amounts of ω-3 PUFAs, as well as the decreased need for
reducing power, has made thraustochytrids particularly promising candidates for effective
lipid-producing cell factories [16].

To elucidate the biological mechanisms underpinning the fatty acid biosynthesis of
thraustochytrids, knowledge of the global metabolic organization and functionality is vital.
Metabolic modeling has become a pivotal methodology to simulate and predict metabolic
phenotypes in silico, thereby generating hypotheses and guide experimental efforts [17].
Whereas some modeling approaches require extensive parametrization, constraint-based
modeling using genome-scale metabolic reconstructions, in its most fundamental form,
merely calls for an annotated genome sequence [18]. Applying simple assumption of mass
balance, a steady state, and an evolutionary motivated objective function to be optimized,
this approach allows for rapid and efficient predictions of metabolic fluxes throughout the
metabolic network [19].

The principal aim of this thesis was to generate a high-quality genome-scale metabolic
model (GSM) of the thraustochytrid Aurantiochytrium sp. T66.

This was performed by using an already published metabolic reconstruction,
iCY1170 DHA, of the closely related Schizochytrium limacinum SR21 as a template [20].

Through iterative rounds of extensive manual curation and refinement, a high-quality
GSM, termed iVS1191, was successfully reconstructed. iVS1191 showed significant
improvements in both coverage and scope to that of iCY1170 DHA. The reconstructed
model was phenotypically tested against experimental growth measurements in order
to assess the validity of its predictions. These growth predictions were indicative of a
questionable biomass composition, and highlighted the need for accurate and organism-
specific biomass compositions to properly evaluate the predictive capabilities of the model.

The secondary aim of the project was to employ the reconstructed model to
identify approaches for increased productivity of PUFA-containing lipids.

By applying computational methods for finding strain and genetic improvements,
optimization strategies and potential bottlenecks for increased PUFA- and lipid production
were identified. These strategies were in the form of double reaction mutants, whose
target metabolite production rates were considerably greater than that of the wild type.
Additionally, incorporation of transcriptomics data into the modeling framework was
performed, elucidating the differential regulatory mechanisms that are associated with the
metabolic shift from exponential growth to lipid accumulation.
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Chapter 2
Background

Systems biology is a transdisciplinary field that aims at studying complex biological sys-
tems through the application of mathematical and computational techniques [21]. Whereas
traditional biological research predominately has followed a reductionist approach, sys-
tems biology seek to understand the emergent properties of the biological system as a
whole. This holistic approach has experienced a rapid and extensive development from
its genesis almost two decades ago [21, 22]. The progress has predominately been driven
by the increased availability of large-scale biomolecular data, which allows for a systems-
level elucidation of biological processes [21].

Central to the field of systems biology is the use of mathematical models to represent
and simulate biological systems. These partial representations of biological reality can
offer new insight into the systems that they represent, and has generated considerable ad-
vancements in the understanding of biological phenomenon [23, 21].

The following section will therefore start by providing a thorough description of the
underlying mathematical assumptions and principles of constraint-based metabolic model-
ing. To begin with, an introduction into linear programming is given, explaining its appli-
cability in solving underdetermined systems of linear equations given an appropriate ob-
jective function. Subsequently, an overview of stoichiometric modeling and its application
for modeling genome-wide metabolism using flux balance analysis (FBA) is presented.
The following sections will then provide a comprehensive description of the process of
GSM reconstruction and refinement, as well as the prediction of metabolic engineering
strategies using this constraint-based modeling framework. Finally, the metabolism of
lipid accumulation in oleaginous microorganisms is presented, providing an important ref-
erence point for the subsequent analyses performed on the reconstructed model.
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2.1 Linear programming
Linear programming is a particular instance of mathematical optimization, and is widely
used in a range of diverse areas such as economics, engineering, business and indus-
try [24]. The wide applicability is a consequence of its mathematical formulation that
can easily be used to model many real-life problems. In its most rudimentary form, the
method aims at optimizing a linear objective function given a set of linear constraints
[24, 25]. The general concepts of linear programming that follow are taken from the text-
book ”Optimization” by Lundgren et al. [25].

2.1.1 Linear program in standard form
A linear program can be broken down into three distinct components: an objective func-
tion consisting of a linear combination of decision variables, a set of constraints in the
form of equalities or inequalities that determine the allowable solution space, and value
restrictions on the decision variables that is to be determined [25]. The canonical form
of a linear program is most often expressed as minimizing an objective function, while
the constraints are in the form of equalities and the decision variables have to be non-
negative. Constraints in the form of inequalities can easily be transformed to equalities,
while negative or unrestricted variables may be converted to non-negative variables using
appropriate variable substitutions. Additionally, maximization problems can be changed
to minimization problems by simply minimizing the negative objective function of the
original problem [25]. Consequently, non-standard formulations of linear programs can
all be formulated using the following standard form

min z =

n∑
j=1

cjxj (2.1)

subject to

n∑
j=1

aijxj = bi, i = 1, ....,m (2.2)

xj ≥ 0, j = 1, ...., n. (2.3)

Here, z is the objective function that is to be minimized, xj a decision variable, cj the
objective coefficient corresponding to the decision variable xj , aij the constraint coeffi-
cient of xj in the ith constraint, and bi the right-hand side of the ith constraint. The goal of
linear programming is to determine a set of values for the decision variables xj such that
z is minimized, while simultaneously not violating equations (2.2) and (2.3) [25].

The set of linear constraints in eq. (2.2) form a system of linear equations with n
variables and m equations. Although the system may be solved algebraically whenever
n ≥ m, most problems appropriately modelled using linear programming are underdeter-
mined (i.e. n < m). Here, the linear constraints form a solution space which subsist of
all points that simultaneously satisfies all of these constraints (Figure 2.1). This region is
known as a convex polyhedron; a region in n-dimensional space that is spanned by a con-
vex set of points given by the intersecting linear constraints. The convexity of the solution
space is a consequence of the linearity of the constraints, and causes any local optimum to
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Figure 2.1: Feasible region in the form of a convex polyhedron in three-dimensional space. The so-
lution space is determined by the intersecting constraints of the linear program. An optimal solution
will reside in either of the indicated corner-points, or as a convex combination of a set of adjacent
corner points (i.e. on a facet or edge of the convex polyhedron). Figure adapted from Ref. [26].

also constitute a global optimum. Given that the solution space is bounded and non-empty,
along with the fundamental theorem of linear programming which states that an optimal
solution will always reside on the boundary of this region, an optimal solution may be
identified by searching for a local optimum along the edges of the polyhedron [25].

As the constraints span a solution space in Rn, it is often convenient to algebraically
express a linear program using the following matrix notation

min z = cTx (2.4)

s.t. Ax = b (2.5)

x ≥ 0, (2.6)

where A is anm×n coefficient matrix constituting all aij from eq. (2.2), c and x are n×1
vectors representing the objective coefficients and the corresponding decision variables, b
is an m × 1 vector representing the right-hand sides of the constraints, and 0 is the null
vector. Consequently, A can therefore be regarded as a linear transformation, mapping
elements of Rn onto elements of Rm.

2.1.2 The simplex method
The most common approach for solving linear programs is the simplex method, an al-
gorithm developed in 1947 by George Dantzig [27]. The simplex method relies on the
already introduced notion that an optimal solution to a linear program will reside on the
boundary of the feasible solution space in Rn. More specifically, an optimal solution will
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be located in a feasible corner-point solution given by the intersecting constraints. Al-
though exhaustive enumeration of the objective value of all corner-points of the solution
space would result in the identification of an optimal solution, this would be highly ineffi-
cient as the running time scales exponentially with the number of constraints. The simplex
method exploits the fact that any local optimum will necessarily also be a global optimum
due to the convexity of the solution space. This is employed in the criterion of optimality
which identifies a local optimum by checking whether the objective value will improve in
any of the adjacent corner points. If this is not the case, a local optimum has been reached,
which consequently also must constitute a global optimum. The algorithm begins in a
feasible corner-point solution and calculates whether the objective value in either of the
adjacent corner-points is improving or not. It then iteratively moves between neighbour-
ing corner-points in a direction of improving values of the objective function, such that the
final optimal solution may efficiently be identified [25]. Although its worst case running
time is exponential [28], its running time in practice turns out to be polynomial in the num-
ber of constraints [29]. In fact, for most conventional applications of linear programming,
the simplex algorithm turns out to be as efficient as other solution algorithms with better
worst-case time complexity, such as interior-point methods, as the simplex method rarely
elicit its worst-case running time [30].

2.2 Metabolic modeling
The history of the mathematical representation of biochemical systems spans an entire
century, and a multitude of diverse methods have been proposed in order to predict and
explain the behavior of metabolic systems [31]. Even though modeling of in vitro enzyme
kinetics using variants of Michaelis-Menten kinetics early on became an integral part of
the field of biochemistry [32], the mathematical modeling of larger metabolic systems has
not truly gathered traction until the past couple of decades [33]. A major driving force
behind this shift has been an ever-increasing availability of large-scale biological omics
data, whose integration with detailed biological knowledge from decades of research has
laid the groundwork for high-quality models of metabolism [33]. The use of metabolic
models also coincide aptly with the ethos of systems biology, where emergent properties
of complex biological systems are elucidated through studying the systems as a whole
[34]. It is therefore not a coincidence that systems biological research on biochemical
systems entail a substantial emphasis on utilizing metabolic models to study the underlying
biological mechanisms.

2.2.1 Stoichiometric modeling
The two major modeling frameworks of metabolism are dynamic and stoichiometric mod-
els, whose distinction has its roots in the model assumptions and mathematical formu-
lations [35]. Dynamic models are used to simulate and predict the dynamic nature of
biochemical systems using ordinary differential equations (ODEs). It usually begins with
constructing ODEs which expresses the changes in concentration of the system compo-
nents (i.e. metabolites, enzymes, regulators). The resulting set of equations are then
solved, allowing insight into the changing behavior over time [36]. Central to dynamic
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modeling is the concept of stability and robustness, which are investigated by examining
the altered behavior of the system when parameter values or initial conditions are changed
[37]. For this form of modeling, a priori knowledge of the biochemical topology and reg-
ulation is paramount. Additionally, extensive parametrization that either originates from
experimental efforts or in silico parameter estimations is required [36]. This imposes sub-
stantial limitations on the applicability of this approach as the absence of high-quality
kinetic parameters prevents the modeling of larger metabolic systems, or the metabolism
of organisms of which little biochemical knowledge is established.

Stoichiometric models on the other hand, require minimal parametrization, and the
only a priori knowledge called for is stoichiometric information on the metabolic trans-
formations [38]. These models are based on a few key assumption which, in addition to
negating the requirements for parametrization, has the enticing property that the resulting
system of rate equations becomes linear [39].

The first assumption is that of mass balance; for every metabolite Xi in the metabolic
system, a flux balance is given which mathematically is expressed as

dXi

dt
=

n∑
j=1

sijvj (2.7)

Here, sij is the stoichiometric coefficient of metabolite i in reaction j, and vj the corre-
sponding reaction flux. Eq. (2.7) states that the change in concentration of any metabolite
Xi is given as the sum of the stoichiometrically weighted fluxes of the reactions where Xi

is a constituent.
Secondly, as the time constants which describe transient metabolic variations are much

smaller than the time constants of cell growth, the time derivatives may be ignored by in-
vestigating the steady-state behavior of the system [40]. Consequently, eq. (2.7) is trans-
formed to the following homogeneous system

n∑
j=1

sijvj = 0, (2.8)

or similarly, in matrix notation
Sv = 0, (2.9)

where S has the generic form

S =


s11 s12 . . . s1n
s21 s22 . . . s2n

...
...

. . .
...

sm1 sm2 . . . smn

 . (2.10)

For m metabolites and n reactions, S is an m× n stoichiometric matrix whose entries sij
are the stoichiometric coefficients of metabolite i in reaction j, while v is an n × 1 flux
vector. By solving this homogeneous system of linear equations, the flux distribution of
the entire metabolic network of interest may be predicted [39]. As aforementioned earlier
and aptly stated in eq. (2.9), the only necessary knowledge required is the stoichiometric
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Figure 2.2: Toy example of a metabolic network containing 5 metabolites (A - E), and 10 metabolic
reactions. The latter of which consist of 4 exchange reactions (vE1 - vE4) importing or exporting
metabolites to/from the system, while 6 are intracellular metabolic transformations (v1 - v6). Figure
adapted from Ref. [39].

relationships between all the constituent metabolites in the metabolic system of interest.
The enticing idea of modeling the genome-scale metabolism of an organism is therefore
only restricted by the amount of available biochemical information [18].

To illustrate the essence of stoichiometric modeling, consider the following example of
a minor metabolic network containing 5 metabolites and 10 reactions, as depicted in Fig-
ure 2.2. The exchange reactions vE1 - vE4 represent the input and outputs of the metabolic
system. The imported metabolite A is converted through a series of interconnected reac-
tions into either of the 4 other internal metabolites B - E. These interconversions are given
by the 6 internal reactions v1 - v6. Assuming that the fluxes (i.e. reaction rates) are given
by the reaction names, flux balances may be expressed for every metabolite in which pro-
ducing and consuming reactions are given positive (+) and negative (-) signs, respectively.
The mathematical representation is given as

dA
dt

= vE1 − v1 (2.11)

dB
dt

= v1 − v2 − v3 (2.12)

dC
dt

= v2 − v4 − v5 − vE2 (2.13)

dD
dt

= v3 + v4 − v6 − vE3 (2.14)

dE
dt

= v5 + v6 − vE4. (2.15)

These balance equations can concisely be formulated in the form of a stoichiometric matrix
S given by

S =


−1 0 0 0 0 0 −1 0 0 0

1 −1 −1 0 0 0 0 0 0 0
0 1 0 −1 −1 0 0 −1 0 0
0 0 1 1 0 −1 0 0 −1 0
0 0 0 0 1 1 0 0 0 −1

 ,
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where the order of the rows are according to the metabolites A - E, and the columns
according to the reactions v1 - v6, vE1 - vE4.

Finally, due to the assumption of a metabolic steady-state, the unknown fluxes can be
calculated by solving the resulting system of linear equations in eq. (2.9). Through the
underlying assumptions of stoichiometric modeling, the unknown rate equations have now
been replaced by the placeholder values vj , whose value directly denotes the metabolic
flux through reaction j.

2.2.2 Flux balance analysis - FBA
For most real-life biochemical systems, the number of reactions exceeds the number of
metabolites [19]. As a consequence, the m × n stoichiometric matrix S contains more
columns than rows (n > m). The associated system of homogeneous linear equations of
the form seen in eq. (2.9) thus denotes an underdetermined system of equations, which
cannot be solved using Gaussian elimination alone. In fact, any solution to the system
of linear equations reside within the null space of S [19]. Several methods have been
developed to solve these forms of problems [41]. However, owing to its simple formulation
and efficient solvability, FBA has become the principal methodology to predict the flux
distributions of metabolic networks modeled using a stoichiometric framework [19].

FBA applies the methodology of linear programming to identify a solution within the
aforementioned null space. The null space can be thought of as the feasible solution space
to the system of linear equations in which an optimal solution resides. By optimizing an
evolutionary motivated objective function, this optimal solution will encompass a more
biologically realistic flux distribution [19]. In addition to the linear constraints given by
the stoichiometric matrix, additional constraints in the form of upper or lower bounds are
usually added on particular fluxes, distinguishing the sets of reversible and irreversible
reactions [42]. By doing this, the unbounded null space is transformed to a bounded
hyperspace which, because of the linearity of the constraints, forms a convex polyhedron
(Figure 2.3). An optimal solution will consequently reside in an intersection of the given
constraints, and may therefore be determined using the simplex method or other solution
methods of linear programs [19].

The general FBA problem can therefore be stated as the following linear program

max z = cTv (2.16)

s.t. Sv = 0 (2.9)

lb ≤ v ≤ ub, (2.17)

where c is the n×1 objective coefficient vector, which determines the objective function as
a linear combination of the reaction fluxes given by the n×1 flux vector v. S is the m×n
stoichiometric matrix denoting all biochemical transformations of the metabolic system.
Eq. (2.9) represents the homogeneous system of linear equations, while eq. (2.17) specifies
the upper (lb) and lower (lb) bounds on the flux variables. Other forms of restrictions of
physiochemical origin may also be added to further restrain the allowable solution space
[19]. The formulation of these constraints reduces the size of the feasible solution space
and allows for more accurate predictions of metabolic fluxes [42].
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Figure 2.3: Illustrative example of the FBA problem. 1) The stoichiometric constraints, and 2)
flux variable bounds impose restrictions on the unconstrained solution space, reducing the range of
feasible flux distributions. The resulting convex polyhedron is treated as the feasible solution space
in a linear program in which an objective function composed of a linear combination of reaction
fluxes is optimized. Figure taken from Ref. [18].

The choice of objective function poses a difficult challenge in the FBA formulation.
For microorganisms, the assumed objective function is usually cellular growth, which rest
on the assumption that cells that maximizes growth tend to outcompete the other cells in
the population [43]. Although several other objective have been proposed, the optimization
of biomass production seems to fit well with experimental data, especially when predicting
the cellular growth of exponentially growing microorganisms [43, 44]. The real cellular
objective is most likely a combination of several interdependent goals, and will presumably
change during various growth phases, metabolic demands, and environmental conditions
[43].

2.2.3 Flux variability analysis - FVA
Although the optimization of an objective function allows for the identification of a solu-
tion from a larger solution space, this solution is often non-unique. In many cases, several
alternative flux distributions give rise to the same optimal objective value, indicative of a
highly flexible metabolic system that is able to obtain the same optimal phenotype using a
range of different flux distributions [45]. This variability of metabolic fluxes can be calcu-
lated with an approach called flux variability analysis (FVA), which calculates the lower
and upper bounds of every reaction flux in the model [45]. This is expressed by the two
linear programs

max /min vj (2.18)

s.t. Sv = 0 (2.9)

cTv ≥ γz (2.19)

lb ≤ v ≤ ub (2.17)

Here, the reaction flux vj is maximized and minimized to obtain its upper and lower
bounds given the stoichiometric constraint of eq. (2.9) and the flux boundary constraints
of eq. (2.17). The last constraint, eq. (2.19), expresses the minimal objective value that
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has to be obtained, which for optimal phenotypes is given when γ = 1, while sub-optimal
objective states can be explored when 0 ≤ γ < 1.

2.2.4 Minimization of metabolic adjustment - MOMA
The calculations of metabolic flux distributions by optimizing biomass production using
FBA is based on the evolutionary motivated assumption that the organism has evolved to
reach an optimal growth performance [19, 46]. However, following a genetic perturbation
such as a gene knockout, this assumption falls short as the perturbed metabolic network
of the organism has not been subject to the same evolutionary pressure to reach optimal-
ity. Minimization of metabolic adjustment (MOMA) is a method which tries to reconcile
this problem when calculating the flux distribution of a perturbed metabolic network (e.g.
knockout mutant) [46]. It relies on a separate hypothesis where it is assumed that the
metabolic fluxes of the mutant network is minimally different from that of the unperturbed
network, thus minimizing the metabolic adjustments from the wild type metabolic pheno-
type. This can mathematically be explained as finding a feasible solution point in the n
dimensional flux space for the mutant network that is closest in Euclidean distance to the
optimal solution of the wild type network (Figure 2.4).

The solution to the MOMA problem of a reaction knockout of reaction j, j’, is a flux
vector x within the knockout solution space Φj′ that has a minimal Euclidean distance
to the wild type optimal solution v within the wild type feasible solution space Φ. This
Euclidean distance can mathematically be expressed as

D(v,x) =

√√√√ n∑
j=1

(vj − xj)2, (2.20)

where vj and xj are the fluxes of reaction j in the wild type and mutant network, respec-
tively. Finding a flux vector x ∈ Φj′ thus correspond to a minimization of this distance
D. Due to the non-linearity of the objective function D, quadratic programming has to
be applied to be able to solve the MOMA problem. Quadratic programming is similar to
linear programming in that the constraints are linear, but dissimilar in that the objective
function is quadratic [25]. The general objective function f(x) for a quadratic program
can be expressed as

f(x) = Lx +
1

2
xTQx. (2.21)

Here, xT denotes the transpose of x, the n × 1 vector L and n × n matrix Q denotes
the linear and quadratic part of the objective function, respectively. The distance D can
be transformed to this form by noting that minimizing D is equivalent to minimizing its
square, and further setting Q to be the identity matrix I, and letting L = −v. The MOMA
problem for a knockout of reaction j’ can consequently be expressed as

min f(x) =
1

2
xIxT + (−v)x (2.22)

s.t. Sx = 0 (2.23)

v′j = 0 (2.24)
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Figure 2.4: The criteria of optimality for the FBA and MOMA problem mapped onto a two-
dimensional flux space for clarity. The solution to the MOMA problem of the perturbed network
is a feasible solution x ∈ Φj′ (denoted as the point c) that resides closest to the optimal solution of
the wild type network, v ∈ Φ (given as a). MOMA finds this solution by minimizing the Euclidean
distance D using quadratic programming. Also indicated is the optimal solution of the FBA prob-
lem for the knockout mutant which assumes evolutionary optimized growth performance (point b).
Figure adapted from Ref. [46].

lb ≤ v ≤ ub, (2.17)

where the flux through the knocked out reaction v′j is constrained to zero in eq. (2.24)
[46].

2.3 Genome-scale metabolic models - GSMs
To properly understand any biochemical system, one needs to discern its role and function-
ality within a larger framework of genome-scale metabolism [47]. Although biochemical
literature historically have identified biochemical modules which serve some particular
function as unique entities, they are in fact components of a highly interconnected net-
work of biochemical conversions [48]. Their behavior are constrained and regulated by a
complex web of interacting metabolites and enzymes. As such, their function might not
be easily defined, and may change as a consequence of varying metabolic demands and
environmental conditions [49]. GSMs acknowledges this fact by taking into account the
entire metabolism of an organism to enable flux predictions of all reaction rates throughout
the metabolic network [50]. This is accomplished by concisely representing the totality
of metabolic activities within a stoichiometric framework. These activities are deduced
using the available genomic, physiological and bibliomic data on the organism of interest
to infer all metabolic capabilities.

In addition to flux simulations, these models provide direct correlations between the
genetic information and the biomolecular phenotype through gene-reaction relationships
[18]. The effects of genetic interventions can therefore be predicted, thus enabling the
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guiding of metabolic engineering strategies [51]. Additionally, as these models encompass
every enzymatic capability of an organism, they are also regarded as excellent repositories
of species-specific biochemical information [42].

2.3.1 Reconstruction of GSMs
The reconstruction of GSMs is a highly labour-intensive procedure which can be parti-
tioned into four major stages, with a subsequent fifth and final stage; employing the model
for phenotypic predictions. These stages are further subdivided into 96 steps, as described
in Ref. [18] (Figure 2.5). Although consecutive in order, these stages are organized in
an iterative manner in which additional model curation is performed such that the predic-
tions progressively match the expected biochemical phenotype. While many of the steps
require, or at least benefit from manual curation, several steps have become partly, if not
fully automated. These steps are performed using computational software and algorithms
which drastically reduces the time spent on model reconstruction [52]. The following
section gives an overview of these five stages, and unless stated otherwise, is taken from
[18].

Stage 1 - Draft reconstruction

The first stage involves the initial generation of a draft reconstruction. Here, appropri-
ate metabolic functions are added to the model in the form of a stoichiometric matrix
based on the enzymatic capabilities of the cell. The primary source of this information
resides in the genome annotation of the organism of interest. The functionality of the gene
product found in the annotation are either predicted using homology-based methodologies
or through evidence from experimental efforts. The homology-based methods involve
searching a range of reference databases for significantly similar genes or proteins, and by
doing so, deducing their putative functionalities. This approach is the norm for organisms
of which little biological insight is available, while the deduction of functionality from ex-
perimental efforts is mainly the case for extensively studied model organisms. Irrespective
of the methodology, the resulting metabolic functionalities are gathered as a collection of
biochemical reactions along with the associated genes. These form the initial draft model
and provide a primary scaffold where additional reactions, metabolites, and genes can be
added later on in the reconstruction process.

Through the recent years, several computational procedures have been created in order
to facilitate an automatic generation of these draft reconstructions [52]. In general, these
methods can be subdivided into two distinct groups. The first group of methods utilizes
already constructed GSMs in combination with putative genetic homology to infer which
reactions a particular gene should be associated with [53, 54], while the second group em-
ploys large biochemical databases, where metabolic reactions are annotated to genes from
a taxonomically diverse range of organisms [53, 55]. In both methodologies, significantly
similar genes are assumed to be homologous, and the reactions associated with the genes
in either the template model or biochemical database are subsequently incorporated into
the new draft reconstruction, greatly assisting in the construction of the initial metabolic
model [53]. A prerequisite of these methodologies is to select appropriate parameter val-
ues for the sequence comparisons. Closely related organisms require higher significance

13



Chapter 2. Background

Figure 2.5: The five stages of GSM reconstruction, where the stages are subdivided into a total of
96 unique steps. The iterative nature of the model reconstruction procedure in steps 2-4 is indicated
by the blue arrows. Figure taken from Ref. [18].

levels to ascertain genetic homology, while more distantly related organisms call for less
stringent similarities. At the same time, the evolutionary relatedness of the organisms are
also of importance, as the probability that the inferred homologous genes actually carry
out the same metabolic function are inversely proportional to the taxonomic distance [56].
Consequently, as the parameters and taxonomic relation between the organisms are inter-
dependent of one another, a lot of care has to be taken in order to generate a draft model
of satisfactory quality.

Stage 2 - Refinement of the reconstruction

The second stage encompasses the refinement and curation of the draft reconstruction,
which for the most part require considerable manual inspection and verification of the
model components. This is especially the case for the automatically generated draft re-
constructions where the resulting gene functionalities might be erroneous. Whereas both
the sequences and activity of enzymes associated with the central carbon metabolism are
highly conserved, the functionality of enzymes in more peripheral or organism-specific
metabolic pathways are often harder to pinpoint. Consequently, particular care has to be
made in the inference of the metabolic capabilities of these proteins, either to prevent the
inclusion of incorrect metabolic functions, or on the other hand, leave out essential enzy-
matic activity.

Even though the majority of biochemical transformations require enzymes in order to
occur at a satisfactory rate, certain reactions can take place without the assistance of en-
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zyme catalysis [57]. The exclusion of these spontaneous reactions may subsequently lead
to gaps in the metabolic network. The elucidation of these reactions is therefore a highly
important step in the process of model refinement. Special emphasize should also be given
on correctly representing the gene-reaction associations so as to accurately describe the re-
lation between the encoded protein and the reaction. These relationships are expressed as
boolean rules in which constituents of enzymatic complexes and isozymes are associated
via ’and’- and ’or’-logic, respectively. These relations links a gene with the appropriate
chemical reactions of the encoded enzyme which, because of the boolean formulation, al-
lows for in silico gene essentiality predictions [58].

As mass balance is a central concept of the stoichiometric modeling framework, it is
necessary to correctly define appropriate metabolite formulas so as the resulting biochem-
ical reactions are mass balanced. Although the neutral metabolite formulas are easily
obtainable, the charged formulas are dependent on the pH of the associated cellular com-
partment and may be more difficult to ascertain. Certain biochemical databases such as
MetaCyc do contain charged formulas [59], but in some cases it might be more appropri-
ate to estimate the protonation state when the intracellular pH levels are available. When
the mass and charge of every metabolite has been established, the proper metabolite stoi-
chiometry for every reaction may be surmised.

The biochemistry of eukaryotic organisms is characterized by the spanning of several
subcellular compartments [60]. This compartmentalization causes the subcellular sections
to fulfill particular metabolic roles by housing entire or subsets of metabolic pathways, pro-
viding a major driving-force behind the characteristic behavior of eukaryotic metabolism
[61]. The subcellular targeting of cellular proteins to these compartments is an intricate
and tightly regulated process. Central to this mechanism are signal peptides in the synthe-
sized protein that carry information of where the protein should be localized [62]. Several
computational algorithms have been developed in order to identify these signal sequences,
and by that, predict the most likely subcellular localization that a given protein will reside
in [63]. Even though certain proteins are localized to multiple compartments [64], most
of these subcellular predictors only return a unique subcellular prediction [63]. Conse-
quently, proteins targeted to multiple compartments are quite a challenge to identify and
may constitute a major source of gaps in the metabolic networks of eukaryotic GSMs.

The transport of metabolites across these subcellular compartments are generally car-
ried out by specific transporter proteins [65]. These proteins possess highly specific affini-
ties for sets of metabolites with similar molecular structures. The identification of trans-
porter proteins from predicted protein sequences are quite straightforward as these proteins
are evolutionary highly conserved, owing to the existence of universal membrane-spanning
motifs [65]. However, the inference of which subset of metabolites a particular transporter
actually translocates across the membrane, and by what molecular mechanism, is more of
a challenge to ascertain [66]. Consequently, considerable care is paramount when adding
these reactions to the model, both to prevent the inclusion of invalid reactions, as well as
the exclusion of necessary metabolite transport.

Associated exchange reactions also have to be added to the model. These pseudo-
reactions define the boundaries of the metabolic system and determine which metabolites
are able to enter and leave the system. The exchange reactions are added as extracellu-
lar reactions, which subsequently also determine the growth medium of the model. By
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Figure 2.6: Derivation of GAM and NGAM using growth data from chemostat experiments in
which the specific growth rates are plotted against the ATP consumption rates. Figure taken from
Ref. [18].

altering the associated exchange rates, growth on particular nutrient compositions can be
simulated, and the model predictions can be correlated with the corresponding experimen-
tal phenotypes.

To enable the prediction of growth rates, an abstractive biomass reaction is added to
the model. Here, the substrates consist of all metabolic precursors required for the species-
specific biomass production [67]. These usually include amino acids, nucleotides, lipids,
carbohydrates, vitamins and cofactors. Each of these precursors are stoichiometrically
weighted such that the generated biomass has a molecular weight of 1 g mmol-1, thus
enabling quantitative predictions of specific growth rates (h-1) [68]. In order to accu-
rately simulate growth rates in accordance with experimentally determined growth rates,
the quantitative biomass composition of the organism has to be determined experimentally
[69]. Additionally, the energetic demand related to growth-associated processes such as
the polymerization of the cellular macromolecules (i.e. DNA, RNA and proteins) is in-
cluded in the biomass reaction in the form of ATP hydrolysis (termed growth-associated
maintenance (GAM)). Non-growth associated maintenance (NGAM) is also represented as
an independent ATP consumption reaction. The derivation of the associated stoichiomet-
ric coefficients are usually performed by linear regression of growth data from chemostat
experiments (Figure 2.6) [67].

Stage 3 - Conversion of reconstruction into computable format

The third, and shortest stage involves the conversion of the draft reconstruction into a com-
putational format. Several computational environments exist for this purpose, such as the
COBRA toolbox [70], CellNetAnalyzer [71], and the RAVEN Toolbox [54]. These pro-
vide functionalities for analyzing the predictive properties of the model, and can be used to
facilitate the labour-intensive process of model refinement. Additional functionalities are
commonly incorporated within these frameworks, allowing for the employment of a wide
range of computational techniques on the metabolic models, as well as greatly assisting in
their generation [70].
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Stage 4 - Network evaluation

The fourth stage can be regarded as the debugging phase of the model reconstruction pro-
cess. Here, extensive evaluation of the model properties are performed so as to reduce the
likelihood of incorrect model predictions. One of the most important tests is that of mass
and charge balance. To prevent the loss or creation of mass, which can cause erroneous
flux predictions, all the reactions have to be stoichiometrically balanced based on the ele-
mental composition of the metabolic constituents. The most common issue is the inclusion
or omission of protons which, based on the chosen protonation state of the metabolites,
either has to be removed or added to the associated reaction.

An inevitable property of draft reconstructions is the existence of gaps in the metabolic
network. These gaps result in blocked reactions and entire pathways which cannot carry
any flux due to the model assumption of mass balance and a metabolic steady state [72, 73].
Consequently, it is often the case that the initial model reconstruction cannot grow as one
or multiple biomass components are unable to be produced. These missing metabolic
functions can be a result of unknown enzymatic reactions, the existence of promiscuous
enzymes, or insufficient coverage of the genome annotation [72]. Irrespective of why a
gap might be present, considerable efforts are necessary to fill these, allowing for more
realistic flux predictions.

As with the initial draft reconstruction stage, a broad selection of automatic proce-
dures exist which can be used to generate gap filling candidates for a draft reconstruction
[74, 75, 76]. These operate by altering the network connectivity through providing a list
of candidate reactions, whose addition to the model will fill metabolic gaps. Some algo-
rithms also generate putative gene-assigments, which may assist in the identification of
the associated genes [73]. The quality of these gap-filling reactions is however a matter of
debate [77] and substantial manual verification of these suggestions has to be performed
in order to prevent issues like over-fitting by adding reactions that do not occur in vivo
[72]. Manual inspection of the gaps is also a much used strategy in order to fill the holes
in the metabolic network. Although time consuming, it generally leads to a more realis-
tic set of candidate reactions by preventing the inclusion of erroneous reactions that may
be added by the algorithmic strategies [77]. These candidate reactions can be identified
by investigating the metabolic surrounding of the gaps, which can be found in biochemi-
cal pathway databases such as KEGG (Kyoto Encyclopedia of Genes and Genomes) and
MetaCyc [78, 59]. Subsequently, the proposed reactions can then be evaluated by inspect-
ing whether there exists genomic evidence for the existence of the associated enzymes, or
whether other physiological evidence might indicate their presence [77].

Another central task of the network evaluation stage is to compare the model pre-
dictions with experimental data on the biomolecular physiology. Validating growth/non-
growth on a wide range of nutrient compositions is an efficient strategy in order to evaluate
the quality of the reconstructed model. Growth rate comparisons is also a commonly used
procedure in which the simulated growth rate of the model is compared with the actual
growth rate of the organism. A prerequisite for this is measured uptake rates of the lim-
iting nutrient, such that the availability of the growth-limiting metabolic precursor is the
same for both the organism in vivo and the model in silico. Too low growth rates indicate
that one or several biomass precursors cannot be synthesized at a sufficient rate, which
suggests that some particular metabolite is growth-limiting. On the other hand, too high
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growth rates could suggest that the estimated GAM or NGAM might be insufficient, or
that incorrect reactions have been added to the metabolic network. It could also indicate
that the optimization of biomass production might be an unsuitable objective function.

A common issue with compartmentalized GSMs is the presence of thermodynamiccaly
infeasible energy-generating cycles (EGCs). These subgroups of type II extreme pathways
can give rise to spontaneous generation of reducing power which could be used to drive
ATP synthesis without any input of matter [79]. These pathways are biochemical loops
in which matter is transformed from an initial state through a series of interconnected
biochemical reactions back into the same state in which it started [80]. Identifying and re-
moving these cycles are essential in order to accurately predict growth rates and associated
flux distributions.

Stage 5 - Draft assembly and dissemination

The fifth and final stage consists of the model employment to achieve novel insight into the
genome-scale metabolism of the organism. An extensive amount of functionalities within
the various constraint-based computational frameworks can be employed to utilize the pre-
dictive power of GSMs [70]. The metabolic fluxes can be estimated using FBA, where an
appropriate objective function is chosen to be optimized (e.g. biomass production) [19].
The calculated fluxes can subsequently be used to obtain new understanding into how the
flow of matter are partitioned onto the biochemical network. Effects of genomic inter-
ventions such as gene deletion, over-expression and dampening strategies, and additions
of novel biochemical reactions can efficiently be simulated before any experimental ef-
forts are initiated. Thus, these GSMs can be regarded as particularly helpful tools in the
generation of biologically realistic hypotheses on the metabolic phenotype [33].

2.3.2 Employment of GSMs for the prediction of metabolic engineer-
ing strategies

The field of metabolic engineering strives to exploit the large biochemical potential of
metabolic networks in order to improve the biomolecular phenotype and productivity of
microorganisms [40]. Most often, the goal is to identify strategies to reroute the metabolic
fluxes towards particular pathways in order to increase the yield and production rate of
a metabolite of interest [51]. Through genetic interventions, the flux partitioning of the
metabolic network is altered so as to increase the productivity. These interventions can ei-
ther adjust or remove the activity of existing enzymes and/or regulators, or introduce novel
metabolic capabilities through the expression of heterologous genes [81]. Historically,
these modifications were informed by extensive knowledge of the underlying metabolic
organization and regulation [82]. However, the recent employment of metabolic models
has turned out to be a valuable mode of research, both with regards to the simulation of
these genetic interventions, as well as the generation of novel overproduction strategies
using the modeling frameworks [51].

As the genome-wide metabolism consists of a highly interconnected network of bio-
chemical reactions, genetic interventions at seemingly distant parts of the metabolic net-
work may greatly affect the production rate of a particular compound. The identification
and effects of these apparently ”counter-intuitive” strategies are therefore often very hard
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to deduce without the use of in silico flux simulations [83]. Consequently, constraint-based
metabolic models such as GSMs have been widely used in combination with FBA-related
methods to generate strategies for increased productions of metabolites of interest. These
approaches propose sets of genetic interventions that enables the metabolite of interest to
be produced at higher levels compared to a predefined wild type state [84]. Several of
these methods operate by altering the connectivity of the metabolic network using gene
deletions such that the flux of the metabolite-producing reaction and the cellular objective
(e.g. growth), become coupled. By optimizing for the same cellular objective, this cou-
pling forces flux through the target reactions, thus leading to a higher production rate of
the metabolite of interest [51]. These approaches have led to the elucidation of several
successful genetic interventions, such as increased lycopene and succinate production in
Escherichia coli [85, 86], and reduced glycerol production with a concurrent increased
yield of ethanol in Saccharomyces cerevisiae [87]

2.4 Lipid accumulation in oleaginous microorganisms

The metabolic organization and behavior of lipid biosynthesis and accumulation is highly
conserved among oleaginous microorganisms [16]. Central to the initiation of lipid accu-
mulation is the depletion of an essential nutrient (e.g. nitrogen), while a steady supply of
carbon is maintained. The cell halts its growth and redistributes its metabolic fluxes from
biomass formation into the biosynthesis of lipid precursors (Figure 2.7). The synthesized
lipids are stored as intracellular lipid droplets, which function as energy reserves during
the ensuing period of nitrogen starvation [16]. One of the earliest responses to nitrogen
deprivation is the enhanced activity of AMP (adenosine-5’-monophosphate) deaminase
(AMPD, EC:3.5.4.6), which catalyzes the irreversible deamination of AMP, generating
the much needed ammonium (NH4

+)

AMP + H2O −−→ NH4
+ + IMP. (2.25)

This increased activity causes an intracellular depletion of AMP, which, due to its role
as an obligatory allosteric activator of the mitochondrial isocitrate dehydrogenase, reduces
the extent of isocitrate oxidation in the tricarboxylic acid (TCA) cycle [16]. Through rapid
equilibration between isocitrate and citrate, accumulation of citrate ensues, which subse-
quently gets exported out of the mitochondria, primarily via an antiport-mechanism along
with malate. The cytosolic citrate is then cleaved by ATP citrate lyase (ACL, EC:2.3.3.8),
forming oxaloacetate and the central metabolite acetyl coenzyme A (CoA). The latter is
subsequently carboxylated by acetyl-CoA carboxylase (ACC1, EC:6.4.1.2), forming the
immediate precursor of fatty acids; malonyl-CoA. Malonyl-CoA is then used in the suc-
cessive elongation of a wide range of fatty acid moieties, depending on the species [16].

In thraustochytrids, two distinct pathways are utilized: the classical fatty acid synthase
(FAS) pathway, and a polyketide synthase (PKS) pathway. The FAS pathway is utilized in
the biosynthesis of saturated fatty acid of chain lengths C16 - C18, while longer PUFAs
such as DHA and eicosapentaenoic acid (EPA), are synthesized via the PKS pathway [88].
The latter pathway operates by retaining the unsaturation of certain acyl-intermediates
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Figure 2.7: Overview of the metabolic pathways involved in the production of the fatty acid precur-
sor malonyl-CoA, as well as reducing power in the form of NADPH. Depletion of nitrogen initiates
a metabolic cascade in which citrate accumulates in the mitochondria due to the reduced activity
of isocitrate dehydrogenase. Citrate is then exported to the cytosol, where it generates acetyl-CoA,
which subsequently gets carboxylated, forming malonyl-CoA. Malonyl-CoA is then shuttled into
either of two pathways of fatty acid biosynthesis: the traditional fatty acid synthase (FAS) pathway
or a polyketide synthase (PKS) system. The reducing power are thought to be generated from the
pentose phosphate pathway (PPP) or malic enzyme (ME). The generated fatty acids are further used,
along with glycerol-3-phosphate, to create TAGs and phospholipids (PLs). The former are stored as
intracellular lipid droplets and constitute the majority of the generated lipids. Abbreviations: Ac-
CoA: acetyl coenzyme A, TCA: tricarboxylic acid cycle, ACL: ATP-citrate lyase, ACC: acetyl-CoA
carboxylase.

through the iterative elongation, thus lowering the molar demand for reducing power in
comparison with the classical elongation/desaturation scheme (Figure 2.8) [16]. The re-
ducing power required for the biosynthesis of these fatty acids is hypothesized to be gener-
ated via two major pathways: the NADPH-generating reactions of the pentose phosphate
pathway (PPP), and the activity of cytosolic malic enzyme (ME, EC:1.1.1.40) [16]. The
latter catalyzes the oxidative decarboxylation of malate to pyruvate, forming NADPH in
the process. This malate is thought to be created from the oxidation of oxaloacetate, the
secondary product of ACL [89]. Although the extent to which these two pathways con-
tributes to the NADPH-generation in thraustochytrid is unclear, it is regarded as one of the
primary bottlenecks of fatty acid biosynthesis, along with the generation of malonyl-CoA
[16].

In A. sp. T66, the majority of biosynthesized fatty acids are esterified along with
glycerol-3-phosphate to form TAGs during the lipid accumulation phase [90]. The regu-
lation of the the fatty acid composition of these lipids are poorly understood, and whether
the biosynthetic enzymes have varying substrate preferences or whether degradation of
certain classes of fatty acids are more predominant than others is unclear. Similarly, the
regulatory mechanisms behind the metabolic shift from biomass production during expo-
nential growth to lipid accumulation following nutrient depletion is also fairly unsettled
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Figure 2.8: Putative PKS pathway of PUFA biosynthesis in thraustochytrids. The acyl-chain is suc-
cessively elongated through the condensation of 3-ketoacyl-ACP and malonyl-ACP by ketoacyl syn-
thase (KS). The subsequent reduction by ketoacyl reductase (KR) and dehydration by dehydratase
(DH) generates a trans-enoyl-ACP intermediate, which either may be isomerized to the cis-isomer
by a proposed isomerase domain (I), or reduced to form a saturated acyl-ACP by enoyl reductase
(ER). By retaining the unsaturated bonds during the biosynthetic process, less reducing power is
needed by the cell to synthesize these PUFAs. Taken from Ref. [91].

[90].
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Chapter 3
Software and methods

The following chapter will give a detailed description of the software and various methods
employed throughout the project. To begin with, a succinct introduction to the software
that was used during the model reconstruction is given. The subsequent section will then
provide a comprehensive review of the model reconstruction, refinement and validation.
Finally, the ways in which the final reconstruction was employed for novel phenotypic
predictions is described.

3.1 Software

3.1.1 MATLAB
MATLAB is a computational environment and scripting language developed by Math-
Works specifically tailored for numerical analysis [92]. With a particular emphasis on
matrix manipulations, the programming language is widely used within the engineering
disciplines, as well as the field of applied mathematics. Extensions to MATLAB exist as
separate toolboxes with specialized functionalities, either developed by MathWorks or as
independent, community-generated software suites. During this project MATLAB 2017b
was used for the model reconstruction and refinement, as well as the subsequent model
employment [92].

3.1.2 Python
The pre-processing of the JSON format files for constructing metabolic maps in Escher
were performed using Python version 3.6.4 [93].

3.1.3 COBRA toolbox
The COBRA (Constraint-based reconstruction and analysis) toolbox is a comprehensive
repository of software for the refinement and analysis of constraint-based metabolic mod-
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els [70]. The toolbox is community-generated and interoperable, allowing for the ef-
ficient utilization of a wide range of computational approaches on these models. For
the main refinement and analysis of the reconstructed GSM, the COBRA toolbox v3.0
was used within the MATLAB computational environment [70]. COBRApy v0.13.4, an
object-oriented COBRA package for Python, was also utilized for the aforementioned pre-
processing of the JSON format files [94].

3.1.4 RAVEN Toolbox

The RAVEN (Reconstruction, analysis, and visualization of metabolic networks) Tool-
box is a standalone MATLAB toolbox that enables the semi-automatic reconstruction and
analysis of GSMs [53]. It proposes two modes of action in order to generate a draft recon-
struction: (1) using one or multiple template models and protein homology to ascertain
which reactions are to be selected and added to the draft reconstruction, or (2) identify-
ing homologous proteins in the biochemical database KEGG, and subsequently creating
a model using the associated reactions. RAVEN Toolbox v1.0 was employed to generate
two separate draft models using both of these approaches [53].

3.1.5 ModelExplorer

ModelExplorer is a software program used to identify inconsistencies within the metabolic
network of GSMs. The software visualizes metabolic networks as bipartite graphs of in-
terconnected nodes of metabolites and associated reactions. The nodes are highlighted
so as to indicate whether the associated reactions are able to carry any flux or not. Us-
ing various inconsistency checks, the origins of these blocked reactions can be identified,
markedly assisting in the labour-intensive manual curation of the metabolic model [95].
The ModelExplorer software was used during the various gap-filling stages of the model
reconstruction, as well as in identifying the sources of metabolic blocks during the model
refinement.

3.1.6 Escher

Escher is a web application for the semi-automatic construction and visualization of
metabolic pathways [96]. Escher was used to construct a metabolic map of the central
carbon metabolism of A. sp. T66 to assist in the visualization of the simulated flux distri-
butions.

3.1.7 Gurobi

The Gurobi optimizer is a stand-alone proprietary solver for a wide range of optimization
problems, such as linear programming, quadratic programming, and mixed-integer linear
programming (MILP). The solver provide interfaces for multiple modeling and program-
ming languages, including MATLAB [97]. It is also one of the supported solvers for a
majority of the functions within the COBRA toolbox [70]. During this project, Gurobi
version 7.5.2 was used to solve all optimization problems [97].
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3.1.8 BLAST

BLAST (Basic Local Alignment Search Tool) is a local alignment algorithm for finding
similar sequences in a library of sequences using a query of an amino acid sequence of
a protein or the nucleotide sequence of a gene [98]. Although not necessarily awarding
an optimal alignment [99], the heuristic algorithm has gathered traction for its speed, en-
abling rapid identification of similar sequences in ever-growing genomic databases [100].
The algorithm can be divided into three steps: (1) compiling a list of k-letter high-scoring
words, (2) scanning the database for hits of these words, and (3) extending the resulting
hits to identify sequences of high similarity.

In step (1), the algorithm pre-processes the query sequence by removing regions of
low compositional complexity, that is, regions of biased overrepresentations of particular
amino acids or nucleotides which may award highly significant, but biologically mean-
ingless hits [100]. The query sequence is then fragmented into k-letter words and further
expanded with a set of ”synonyms” based on possible changes of these initial words due
to random mutations [101]. These ”synonyms” are evaluated and discarded if the result-
ing score based on the substitution matrix (e.g. BLOSUM62 [102]) falls below a given
threshold.

In step (2) and (3), the database is scanned for exact matches of these high-scoring
matching words. These matches are then extended in both directions until the optimal
accumulated score begins to decrease. Hits are then kept or discarded, depending on if
their associated score falls below an empirical threshold. The statistical significance of
the resulting list of hits are then determined by finding the probability that two random
sequences of lengths equal to the query sequence and the entire database, respectively,
could generate the calculated scores given the same composition [100, 101]. The database
sequences associated with the hits of highest significance are then used in a second local
alignment with the query sequence using the Smith-Waterman algorithm. The resulting
alignment are given as an output, along with the statistical scores which may be used
to evaluate the similarities between the query sequence and the similar sequences in the
database [100].

Several BLAST programs exist which varies based on whether the query and database
sequences are made up of amino acids or nucleotides [100]. During this project, two of
these programs were employed using the online interface available at
https://blast.ncbi.nlm.nih.gov/Blast.cgi [103]; BLASTp and tBLASTn. BLASTp is used
to compare an amino acid query sequence against a protein sequence database, while
tBLASTn is used to compare an amino acid query sequence against a nucleotide sequence
database which is translated in all six reading frames [100]. While BLASTp was used
to find similar sequences of the predicted peptides of A. sp. T66, tBLASTn was used to
identify ”hidden” protein-encoding genes from the genomic sequence, which due to insuf-
ficient coverage of the predicted protein-coding sequences were not categorized as unique
open reading frames (ORFs).

3.1.9 HECTAR

HECTAR is a statistical tool for predicting the subcellular targeting of proteins from the
eukaryotic clade of heterokonts [104]. It proposes a divide-and-conquer approach in which
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the assignment is divided into multiple hierarchical layers consisting of already existing
prediction methods. The outputs of these layers are then combined using a Support Vec-
tor Machine (SVM), awarding a unique prediction into one of five classes of subcellular
targeting: signal peptides (secretory pathway), type II signal anchors (membrane anchor-
ing), chloroplast transit peptides, mitochondrion transit peptides and proteins containing
no N-terminal signal sequence. Although primarily developed to handle the difficulty of
predicting chloroplastic proteins due to the unique bipartite chloroplast target peptide of
phototrophic heterokonts [105], the inherent application of multiple prediction tools could
presumably strengthen the resulting predictions of proteins originating from heterotrophic
heterokonts such as A. sp. T66. HECTAR was therefore used to infer the putative local-
ization of the various proteins of the model [104].

3.1.10 DeepLoc
DeepLoc is a prediction algorithm for the subcellular localization of eukaryotic proteins
[106]. The basis of the algorithm is a recurrent neural network that takes into account
the entire amino acid sequence of the protein, identifying regions of the sequence which
are particularly decisive in predicting the subcellular localization. The prediction tool is
able to predict ten unique localizations: nucleus, cytoplasm, extracellular, mitochondrion,
cell membrane, endoplasmic reticulum, plastid, Golgi apparatus, lysosome/vacuole and
peroxisome. DeepLoc was used in combination with HECTAR in the prediction of the
subcellular localization of all model protein [106].

3.2 Draft model reconstruction and refinement

3.2.1 Initial draft reconstruction
To obtain an initial draft reconstruction, an already published metabolic model of the
closely related S. limacinum SR21, iCY1170 DHA [20], was utilized as a template model
using method (1) of the RAVEN Toolbox. The peptide sequences of S. limacinum was
obtained from the JGI Database [107], and together with the predicted peptide sequences
of A. sp. T66, a reciprocal BLASTp was performed using the functionality of RAVEN
with default parameter settings [53]. The resulting blast structure was subsequently used
to infer putative homologs by bidirectional best hits between the two organisms using the
following parameters: alignment length of at least 200, a minimal E value of 10−30, and
a minimum identity of 40%. With the help of the corresponding boolean gene-reaction
rules, all reactions from the template model associated with the homologous genes were
extracted to form the initial draft model.

3.2.2 Ensuring biomass production
In order for a metabolic model to be able to predict specific growth rates, the production of
all biomass precursors has to be made possible. The next step of the draft model curation
was therefore the identification of gaps responsible for the prevention of biomass produc-
tion. Due to insufficient knowledge of the specific biomass composition of A. sp. T66, the
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biomass reaction of the template organism S. limacinum was employed. The production
of each biomass precursors were tested by iteratively adding a demand reaction for ev-
ery component individually. A linear program was subsequently made for every biomass
component in which the flux through the corresponding demand reaction was maximized,
using the minimal medium given in Table 3.1. Any biomass component unable to be pro-
duced would subsequently lead to an objective value of 0.

For every biomass precursor incapable of being produced, the anabolic pathways re-
sponsible for their production were meticulously studied in order to identify putative gap
filling candidates. This procedure was partly manual in which the metabolic surrounding
of these pathways were inspected in the pathway databases of both KEGG and MetaCyc
[78, 59], and partly automatic in which a brute force strategy was proposed in order to fill
the final gaps.

In the manual approach, every KEGG Orthology (KO) associated with a particular
pathway map was fetched from the KEGG database by utilizing the KEGG Application
Programming Interface (API) [78]. These KOs are annotations of groups of homologous
genes encoding enzymes of a particular metabolic functionality. The associated pathway
map was subsequently annotated with the subset of these KOs found within the genome
annotation of A. sp. T66 in order to visualize the presumptive metabolic capabilities. Addi-
tionally, visual inspection of the metabolic network using ModelExplorer was performed
in order to identify gaps and metabolic inconsistencies. Gaps in the metabolic network
were thereby identified and filled by adding appropriate reactions from both KEGG and
MetaCyc. Corresponding candidate genes were found by either using the genome anno-
tation directly, or by BLASTp searches of the predicted peptide sequences of A. sp. T66.
tBLASTn searches of the genomic nucleotide sequence was also performed to circumvent

Table 3.1: Carbon-limited minimal medium used during the model refinement of the draft recon-
struction with associated uptake rates (mmol gDW-1 h-1). The growth-limiting carbon uptake rate of
1.4 mmol gDW-1 h-1 was assumed to be equal to that of iCY1170 DHA.

Metabolite Uptake rate

D-glucose 1.400
Ammonium 10.00
Phosphate 1000
Sulfate 1000
Proton 1000
Water 1000
Oxygen 1000
Calcium 0.010
Boron 0.010
Magnesium 0.010
Silisium 0.010
Copper 0.010
Potassium 0.010
Sodium 0.010
Iron 0.010
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any inadequate coverage of the peptide sequences. When no candidate genes were iden-
tified but the reaction was necessary to enable biomass production, it was added as a gap
filling reaction.

The automatic approach was implemented by formulating a brute force strategy in or-
der to fill the final gaps. As the template model was able to generate all required biomass
precursors, the set of reactions not added to the draft model during the initial stages con-
tains the needed reactions to enable biomass production. Finding a minimal set of these
that are needed for biomass production would therefore, upon addition to the reconstruc-
tion, allow the model to grow. The method was carried out as follows: (1) the set of
reactions from the template model not included during the initial draft reconstruction were
added to the model, (2) random subsets from this set of reactions were iteratively removed
until the biomass production was prevented, (3) steps (1) and (2) was simulated 1 000
times in order to determine the minimal set of necessary reactions.

3.2.3 Addition of novel metabolic capabilities and gene re-annotation

Obtaining a draft reconstruction from KEGG

To increase the predictive capabilities of the newly reconstructed GSM, comprehensive
investigations of additional metabolic functionalities were initiated. To facilitate this pro-
cess and aid in the identification of candidate reactions and genes, a secondary draft model
was constructed using method (2) of the RAVEN Toolbox. This method make use of the
KO IDs found in the KEGG database, and attempts to assign these to significantly homol-
ogous genes from the organism of interest. The associated reactions are subsequently used
to generate a draft model reconstruction [53]. Pre-trained profile hidden Markov mod-
els (HMM, Eukaryota, Identity: 100%) generated using multiple alignments of the genes
associated with each KO was obtained from [108]. These were later queried using the pre-
dicted peptide sequences of A. sp. T66. Genes of significant similarity were assigned to
the corresponding KOs, and the associated reactions were subsequently used to construct
the secondary draft model.

The contents of this model, along with biochemical pathway maps from KEGG and
MetaCyc, were used in combination with the genome annotation to identify reactions and
genes that should be added to the draft reconstruction. Candidate metabolic reactions were
also identified through the inspection of metabolic dead-ends and the associated blocked
reactions of the model. Metabolic maps from KEGG was visualized using the appropriate
KO IDs from the genome annotation to qualitatively identify those pathways present in
A. sp. T66. Candidate genes for missing reactions were thereby identified and suitable
metabolic reactions were collected, forming a repository of novel metabolic capability to
be added to the reconstruction.

Gene re-annotation

To further enhance the accuracy of the gene-reaction associations, as well as assuring
quality-control of the newly identified genes and associated reactions, a gene re-annotation
was performed. All the metabolic genes present in the draft model, as well those present
in the aforementioned list of additional metabolic capabilities, were individually inspected
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and evaluated using the following approach:

1. The gene was used as a query for BLASTp searches against the KEGG and UniProt
databases using default parameter settings [78, 109]. Hits from KEGG allowed for
easy identification of the set of biochemical reactions the encoded enzyme would
catalyze, while hits from UniProt contributed with more detailed descriptions in the
form of bibliomic data. The resulting best hits were recorded, and the associated bio-
chemical reactions were compared against those already present in the model. Any
discrepancies were resolved through the addition or removal of reactions. Genes
with inconclusive functionalities due to low or ambiguous hits were removed from
the model.

2. Associated Enzyme Comission (EC) numbers were validated, based on the best hits
found in UniProt, in addition to those annotated to the KO IDs. These EC numbers
were also used as queries against the MetaCyc database, which provided extensive
descriptions of the associated enzymes, along with auxiliary enzymatic activities
not found in the KEGG database. When appropriate, these additional metabolic
capabilities were also added to the model.

3. Subcellular predictions were made for all genes using HECTAR and DeepLoc
[104, 106]. In cases of differing predictions, HECTAR took precedence over
DeepLoc as it is specifically tailored for predicting the subcellular targeting of pro-
teins from the eukaryotic clade of heterokonts in which the thraustochytrids belong
[12, 104]. Qualitative evaluations were also performed in cases of conflicting pre-
dictions, or when the subcellular localization could be established from high-quality
biochemical information. When the subcellular localization of existing genes in the
model was changed, appropriate transport reactions were added if subsections of the
associated metabolic pathways now appeared in different compartments.

4. The existence of auxiliary subunits of heteromeric enzyme complexes were inferred
based on database and literature surveys of the various enzymes. Putative subunits
were subsequently identified, and the associated gene rules were updated accord-
ingly.

5. Candidate isozymes were determined by BLASTp searches against the predicted
peptide sequences of A. sp. T66 using the gene as a query. Steps 1. - 4. were then
repeated for the sequences of significant similarity.

In some cases, these additions led to new metabolic dead-ends, causing the process to take
on an iterative nature as more and more reactions and genes were added to the reconstruc-
tion.

Transporter identification and incorporation

To more accurately represent the transport mechanisms occuring between the various
model compartments, a separate round of protein transporter identification was initiated.
The motivation behind this was twofold; first and foremost, the transport reactions that
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originated from the template model was primarily in the form of reversible uniport reac-
tions. Other modes of transportation such as symport and antiport mechanisms are highly
relevant in biochemical systems in which concentration gradients are established and uti-
lized in order to drive the transport of metabolites [110]. Furthermore, antiport reactions
are particularly important with regards to mitochondrial transport, as most transport re-
actions carried out by members of the mitochondrial carrier (MC) superfamily utilizes
this transportation scheme [111]. Secondly, although the KEGG database contain entries
for a wide range of metabolite transporters, they hardly include any reaction information
on their specificity nor information regarding the associated transport mechanism. Con-
sequently, the resulting draft model generated using the KEGG functionality within the
RAVEN Toolbox contained no transport reactions.

To begin with, the set of candidate reactions were extracted using the available infor-
mation found in the genome annotation. Genes annotated by certain gene ontology (GO)
terms relating to the process of metabolite transport were identified. These genes were
subsequently subjected to the same gene re-annotation procedure as described previously.
Explicit care was made when trying to pinpoint the set of substrates a particular transporter
would act on. Database and literature surveys on sequences of highest sequence similarity
was the primary source of this information. In addition to BLASTp searches of KEGG
and UniProt, the Transporter Classification Database (TCDB) was also queried for similar
sequences. The TCDB is a manually curated and freely available database on metabolite
transporters from all forms of life. Its entries comprise over 10 000 unique transport sys-
tems that are further classified into 1000 transporter families [112]. Significant hits found
in these databases were subsequently used to infer the most likely set of metabolites a
given transporter acts on, and what mode of transport the given transporter employs.

Updating the polyketide synthase pathway

The biosynthesis of the PUFAs in A. sp. T66 occurs by the action of the PKS enzymatic
complex (Figure 2.8). Here, the acyl chains are covalently attached to the acyl-carrier
protein (ACP) domain of the enzyme complex, which directs the moiety to the various
catalytic domains during the successive elongation [16]. The PKS pathway from the tem-
plate model followed a more simplistic mechanism where the associated enzymatic steps
were merged into generic reactions involving inaccurate intermediates. Additionally, the
acyl moieties were present as acyl-CoA intermediates, thus disregarding the final hydroly-
sis of the fatty acid from the ACP and subsequent ATP-driven condensation with CoA. A
more accurate representation of the PKS pathway was therefore implemented in which the
acyl-CoA intermediates were replaced by acyl-ACPs. Every single catalytic step was also
added as unique reactions in order to depict the presumed biochemical reaction mechanism
occurring in vivo. The final hydrolysis of the acyl chain was also implemented in order for
the model to predict more realistic energy demands due to the ensuing condensation with
CoA.

Addition of the peroxisome

The draft model initially contained only three compartments; cytosol, mitochondria and
an extracellular compartment. Because of its central role in fatty acid metabolism [113], a
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peroxisomal compartment was added to the model. To resolve which reactions that should
be added to this compartment, two strategies were employed. First and foremost, biochem-
ical literature on the peroxisomal metabolism of eukaryotes was studied extensively to get
an overview of the various metabolic roles of the subcellular compartment. Associated
genes from well studied organisms such as Homo sapiens, S. cerevisiae and Arabidopsis
thaliana were then used as queries for BLASTp searches against the predicted peptides
of A. sp. T66 to identify putative homologs. Secondly, proteins containing peroxisomal
target signals were identified by searching for PTS1 and PTS2 signal sequences. These
target sequences are universal signals found in many of the proteins targeted to the per-
oxisome [114, 115], and are recognized by specific receptor proteins which upon binding,
initiates the translocation across the peroxisomal membrane [115]. The associated reac-
tions of the resulting candidate genes were then added to this novel compartment in the
model. Subsequent debugging in the form of metabolic gap filling later ensued.

3.2.4 Biomass reformulation

During the initial stages of the draft model refinement, the biomass reaction was taken
directly from the template model. Although the two organisms most likely have minor dif-
ferences in their biomass compositions, significant variations in fatty acid composition are
quite normal between different thraustochytrid strains [116]. As an accurate description
of the fatty acid composition is central to this project, efforts were made to incorporate the
organism-specific fatty acid distributions. A restrictive approach was carried out in which
the lipid composition was assumed to be the same as for S. limacinum, while the acyl chain
distribution was obtained from generic fatty acid methyl ester (FAME) analysis of A. sp.
T66 cells from batch-fermentation experiments. Lacking detailed experimental data on
the quantitative levels of specific lipids of particular chain configurations, it was further
assumed that all lipid classes would have the same fractional acyl chain composition.

In the general case, the stoichiometric coefficients of the various acyl moieties were
updated to take on the values of the normalized fractions as given in Table 3.2. These
correspond to the molar ratios of the various acyl chains. Subsequent reformulation of the
stoichiometric weightings of the lipid classes in the biomass function was then performed.

Table 3.2: Normalized fractional fatty acid composition of A. sp. T66 obtained from batch-
fermentation experiments. These values were used to impose a fatty acid distribution on all lipid
forms implemented in the GSM.

Fatty acid Lipid number Fractional composition

Tetradecanoate c14:0 0.121
Hexadecanoate c16:0 0.314
Hexadecenoate c16:1(n-7) 0.134
Octadecanoate c18:0 0.017
Octadecenoate c18:1(n-7) 0.072

Eicosapentaenoate c20:5(n-3) 0.006
Docosapentaenoate c22:5(n-6) 0.049
Docosahexaenoate c22:6(n-3) 0.287

31



Chapter 3. Software and methods

This was due to the template model utilizing a twofold stoichiometric weighting, both in
these acyl-consuming/producing reactions and in the biomass reaction.

The biomass reaction was further split up into five distinct reactions, each contain-
ing sets of biomass precursors belonging to a particular category. These five categories
consisted of DNA, RNA, amino acids, carbohydrates and lipids. For the DNA and RNA
groupings, (deoxy)nucleoside triphosphates ((d)NTPs) were used as reactants, simulating
the energetic cost of replication and transcription, respectively. Similarly for the amino
acid reaction, aminoacyl-tRNAs were used for each of the 20 amino acids, along with
additional energy carriers in the form of adenosine 5’-triphosphate (ATP) and guanosine
5’-triphosphate (GTP) required for the process of translation. For the carbohydrate reac-
tion, UDP-D-galactose and GDP-L-galactose were employed. These energetic demands
constitute a subset of the cellular requirements for energy, thus forming a minimal estimate
of the GAM. The lipid reaction was further updated from the template model through the
addition of free fatty acids, as well as the exclusion of mono- and diacylglycerols, whose
experimental levels were unobtainable.

3.3 Metabolic network evaluation

3.3.1 Detection and removal of energy-generating cycles
Stoichiometric models of genome-scale metabolism may contain thermodynamically in-
feasible cycles which are able to charge intracellular energy carriers without any nutrient
consumption [117]. These cycles are products of inaccurate reversibilities of the con-
stituent reactions, which often result from a lack of thermodynamic constraints within
the modeling framework. Alternatively, subsets of the cycles could be thermodynami-
cally feasible only under particular environmental conditions (i.e. metabolite concentra-
tions), but not simultaneously [117]. The detection and removal of these cycles is therefore

Table 3.3: Set of dissipation reactions used to identify thermodynamically infeasible EGCs. Each
dissipation reaction were iteratively added to the model and subsequently optimized when all ex-
change reactions were constrained to zero. Any non-zero optimal objective value indicated the
presence of an ECG.

Energy carrier Dissipation reaction

ATP ATP + H2O −−→ ADP + Phosphate + H+

CTP CTP + H2O −−→ CDP + Phosphate + H+

GTP GTP + H2O −−→ GDP + Phosphate + H+

UTP UTP + H2O −−→ UDP + Phosphate + H+

ITP ITP + H2O −−→ IDP + Phosphate + H+

NADH NADH −−→ NAD+ + H+

NADPH NADPH −−→ NADP+ + H+

FADH 2 FADH2 −−→ FAD + 2 H+

Ubiquinol-9 Ubiquinol – 9 −−→ Ubiquinone – 9 + 2 H+

Acetyl-CoA Acetyl – CoA + H2O −−→ acetate + CoA + H+

L-glutamate L – glutamate + H2O −−→ 2-oxoglutarate + Ammonium + 2 H+
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paramount in order to prevent an overestimation of the predicted growth rates and yields.
Of particular relevance are so-called energy-generating cycles (EGCs), a subset of type
II extreme pathways [118], in which internal cycles drives the biochemical charging of
metabolic energy carriers without any input of energy [117]. These may be regarded as
the thermodynamically infeasible counterpart of futile cycles, where energy is dissipated
without being used to drive any biochemical process [119, 120].

Although the presence of these EGCs is quite easy to identify, the source of their oc-
currence is more of a challenge to single out. Generally, the most common strategy is to
add an energy-consuming reaction (e.g. ATP hydrolysis). The reaction is then selected as
an objective to be maximized in a generic FBA formulation when all exchange reactions
are constrained to zero. Any non-zero flux through this reaction will therefore indicate the
existence of an EGC [117]. This approach was carried out for the model reconstruction to
identify any EGC.

The set of tested energy carriers and associated dissipation reactions are all stated in
Table 3.3. These dissipation reactions were iteratively added to the model reconstruction
and subsequently selected as the objective function to be optimized in a closed model (i.e.
all exchange reactions constrained to zero). In the case of a non-zero objective value, the
minimal set of active reactions were determined by minimizing the sum of absolute fluxes
to remove any infeasible type III extreme pathways [121]. The associated flux distribu-
tion of the remaining active reactions was subsequently inspected. The directionality of
these was then compared and updated to those found in the MetaCyc database. If the EGC
still remained after these modifications, a final reaction-deletion strategy was proposed in
which a minimal set of reactions to be deleted was identified. This set of reactions was
selected by performing a qualitative ranking of their genomic evidence, where secondary
enzymatic activities inferred from in vitro experiments on homologous proteins obtained
the lowest score. Deletions of the reactions with the lowest ranks were then performed
until the associated EGC was disrupted.

A nearly identical test was performed when only the uptake of the carbon source was
constrained to zero. This was to account for alternative EGCs in which extracellular pro-
tons are taken up and used to drive the charging of energy carriers. This can often occur
with GSMs in which a particular metabolite is taken up via a symport reaction along with
a proton, while concurrently being exported through a uniporter [117]. The flux through
the set of dissipation reactions was optimized, and the minimal set of active reactions were
identified and inspected as described above.

3.3.2 Evaluating the in silico model predictions

Comparisons of in vivo and in silico growth rates

A key part of the network evaluation stage is to compare model predictions with experi-
mental growth data. Uncovered disparities might highlight deficiencies within the model
reconstruction, and further guide the modeler in subsequent reformulations and updates to
close in on the gap between experimental and predicted phenotypes [18]. To assess the
quality of the constructed model, the predicted rate of biomass production was compared
to the specific growth rates obtained from experimental efforts. Measured substrate uptake
rates were incorporated as lower bounds on the exchange reactions of the corresponding
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model metabolites to allow for the comparative analysis. These experimental measure-
ments were performed by Inga Marie Aasen, a collaborator at SINTEF, by request of the
author.

Uptake rates were determined by performing two separate growth experiments using
two different carbon sources, glucose and glycerol, with ammonium as a nitrogen source
in both experiments. Cells were cultivated in 100 mL medium in 500 mL shaking flasks at
28 ◦C and 250 rpm. Four samples of 10 mL were extracted during the exponential growth
phase and subsequently centrifuged at 3200 g for 10 minutes. The supernatant was frozen
for quantitative analysis for contents of carbon source and ammonium. The pellet was
washed once in 0.9% NaCl, and the resulting supernatant was carefully removed before
drying at 105 ◦C for 16-20 hours to enable dry weight quantification. Glucose and glyc-
erol were quantified by high performance liquid chromatography (HPLC). Samples were
centrifuged and filtered through 0.2 µm syringe filters before analyzed using an Aminex
HPX-87-H column (BioRad Laboratories) at 45 ◦C, and refractive index detection (RID-
6A, Shimadzu). Five mmol H2SO4 was used as mobile phase at 0.6 mL/min. Ammonium
quantities was determined using an enzymatic kit according to the instructions (Megazyme
K-AMIAR). The quantified levels of the carbon source and ammonium was subsequently
used to estimate the specific uptake rates (calculations available in Appendix B).

3.4 Model employment for phenotypic predictions

3.4.1 Assessing gene essentiality by in silico gene deletion analysis
Through the employment of the boolean gene-reaction associations in GSMs, one may
study the effect of single- or multiple-gene deletions on the metabolic phenotype under
various conditions. These predictions do not only offer information on the properties of
the metabolic network, but can also be utilized in the context of metabolic engineering,
where the effects of genetic perturbations can be assessed to evaluate the viability of pro-
posed gene knockout strategies.

Although traditional gene essentiality studies primarily focuses on the ternary classi-
fication of genes as essential, partly essential or non-essential [122], another interesting
evaluation is how the gene deletion affects the flux redistribution in the perturbed wild
type network. Employing the proposed method by Xu et al. [123], the deletion impact p
on the metabolic flux redistribution were calculated for all genes of the model. For a set R
of metabolic reactions, the deletion impact p is defined as

p =

R∑
j

(v′j − vj)2, (3.1)

where v′j and vj is the flux through reaction j in the perturbed and wild type network,
respectively. The flux distributions of both the wild type and perturbed network were
identified by FBA, allowing for the calculations of the associated p values.

Traditional gene essentiality simulations were also performed by evaluating the effect
on the growth rate of each single-gene deletion. A threshold of 10% of the wild type
growth rate was applied, defining essentiality. Three distinct classes were defined; those

34



3.4 Model employment for phenotypic predictions

where the growth rate fell below the given threshold (essential genes), those with a growth
rate above the threshold, but below that of the wild type network (partially essential genes),
and those with no adverse impact on the predicted growth rate (non-essential genes). Sub-
sequent subsystem enrichments of these three classes were then evaluated and compared
with the results obtained from the p score analysis.

To more accurately reflect the essentiality of cofactor biosynthesis and utilization, the
biomass reaction was expanded by adding indispensable cofactors, coenzymes, and inor-
ganic ions - see Appendix A for list of metabolites. Cofactors and coenzymes were added
at arbitrarily low levels (stoichiometric coefficients of 10−6), not to alter the growth es-
timations, but rather to verify the ability of the model to synthesize them. Although the
magnitude of the resulting flux values in the associated anabolic pathways are too low
to be biologically realistic, the emerging flux distributions should more accurately depict
what actually occurs in vivo, and enable essentiality predictions of the associated genes.

3.4.2 Genetic interventions for increased lipid production

The production of malonyl-CoA and reducing power in the form of NADPH is regarded
as limiting steps for increased lipid production in oleaginous microorganisms [16]. Using
the reconstructed model, optimization strategies for increased production of these were
investigated using the OptKnock algorithm. OptKnock is a computational framework for-
mulated as a bilevel optimization problem which tries to identify single- or multiple reac-
tion knockouts in which the flux through a target reaction of interest is higher compared to
that of the wild type network [124]. The optimization problem operates by reorganizing
the connectivity of the metabolic network through reaction deletions such that the target
reaction becomes coupled with the cellular objective. Optimizing for the same objective
will thereby necessitate an increased flux through the target reaction, theoretically leading
to increased levels of the target metabolite. For a GSM containing a set N of reactions
and a set M of metabolites, the bilevel mixed-integer optimization problem is expressed
mathematically as

max
yj

vchemical

subject to max
vj

vobjective

subject to
N∑
i=j

Sijvj = 0 ∀i ∈M

vj = vexchangej ∀j ∈ ξ
vobjective ≥ vtargetobjective

vatp ≥ vatp main

vmin
j · yj ≤ vj ≤ vmax

j · yj ∀j ∈ N

yj = {0, 1} ∀j ∈ N
N∑
i=j

(1− yj) ≤ K.
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Here, the goal is to maximize the flux through the target reaction vchemical by selecting
the set of active reactions through reaction deletions of up to K deletions. The deletions
are expressed using the binary variables yj , given by

yj =

{
1, if reaction flux vj is active
0, if reaction flux vj is inactive,∀j ∈ N.

(3.2)

This outer problem is subjected to the constraints of the inner problem which seek to maxi-
mize a cellular objective vobjective, subject to the given constraints. The inner problem is a
classic FBA formulation in which the first constraint describes the stoichiometric connec-
tivity of the metabolic network subject to the assumptions of mass balance and a pseudo
steady-state. The second type of constraints provide bounds for all exchange fluxes vj
(e.g. uptake and secretion rates), in the subset ξ ⊆ N of exchange reactions. The third
and fourth constraint assures that vobjective and vatp (NGAM), is greater than or equal
to a predefined minimum. The final constraint of the inner problem ensures that the flux
through an inactive (i.e. deleted) reaction is constrained to zero, while the flux through
an active reaction vj is within the range [vmin

j , vmax
j ]. These lower and upper bounds are

determined by performing an initial FVA on the metabolic model using the constraints of
the inner problem. This nested optimization problem can further be reformulated into a
single-level MILP, which is implemented as the OptKnock function within the COBRA
toolbox [70].

Four independent double reaction knockout strategies were tested. The first target
reaction was selected to be ACC1, which generates malonyl-CoA by carobxylating acetyl-
CoA.

The second and third target reaction was the PPP reactions glucose-6-phosphate
1-dehydrogenase (G6PD, EC:1.1.1.49) and 6-phosphogluconate dehydrogenase (PGD,
EC:1.1.1.44), both regarded as important producers of NADPH.

The final target reaction was the cytosolic ME, hypothesized to be a key producer of
NADPH during lipid accumulation [89]. MOMA was also used to assess the initial flux
redistribution following the proposed reaction knockout strategies.

3.4.3 Elucidation of transcriptionally regulated enzymes
To aid in the understanding of the modes of regulation fundamental to the metabolic shift
from the exponential growth to lipid accumulation, transcriptomic data was integrated
with the metabolic model using the approach proposed in Ref. [125]. In this method,
condition-specific models are generated by constraining a set of experimental fluxes in
each condition, thus altering the region of feasible flux distributions. Random sampling
of the resulting flux spaces gives rise to averages and standard deviations for every flux in
the model, which subsequently can be used to infer the statistical significance of change
between the conditions. By comparing these changes with the corresponding changes in
transcript levels of the associated enzymes, one may infer the sets of metabolic enzymes
that are controlled by transcriptional, post-transcriptional or metabolic modes of regula-
tion.

Three condition-specific models were generated for three consecutive stages of a fer-
mentation setup of A. sp. T66, where genome-wide transcriptomics analysis had been
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performed at the corresponding sampling points [126]. These stages were: the exponen-
tial growth phase (E), early onset of lipid accumulation (N1), and late lipid accumulation
(N2). The description of the various condition-dependent constraints and underlying as-
sumptions are presented in Table 3.4.

Before the random flux sampling, FVA was performed on all three models to identify
the set of reactions involved in type III extreme pathways, which will give rise to un-
realistic means and standard deviations during the random sampling procedure. Minimal
bounds for these reactions were determined by gradually decreasing/increasing their lower
and upper bounds until a feasible solution were obtainable for the individual models (i.e.
all condition-specific constraints were maintained). Rather than performing a random,
uniform sampling of the feasible solution space using a hit and run (HR) approach, the
extreme solutions of the feasible flux distributions were sampled using the Convex Basis
(CB) approach. The CB approach tends to be more conservative than the HR algorithm as
it generates higher standard deviations of the fluxes [125]. This allows for predictions of
higher confidence by reducing the likelihood of falsely assigning a given flux as signifi-
cantly changed.

Using the CB algorithm, the optimal corner-point feasible solutions was sampled by
maximizing the flux through random pairs of reactions 2000 times for each of the three
conditions. The resulting means and standard deviations for all fluxes were then used to
calculate a Z statistic, which quantifies the significance of flux change between the various

Table 3.4: Condition-dependent rates used to constrain the feasible solution space of the three
condition-specific models, allowing for random flux sampling and subsequent comparisons of the
differential flux distributions.

Condition Glycerola Ammoniuma Growthb TAGa Comments

E 2.4432 10 0.1289 0 Exponentially growing cells in a
glycerol-limited medium. Growth
rate constrained at its optimal value.

N1 2.4432 10 0.04 0.067 Early onset of lipid accumulation,
experimental growth rate of 0.04
h-1 estimated based on CO2 levels
[126]. Remaining carbon flow as-
sumed to be directed towards TAG
production, which is constrained at
an optimal level as no measured
rates of lipid production are avail-
able.

N2 2.4432 0 0 0.097 Nitrogen-depleted medium where
all carbon flow is assumed to be
used for lipid production. Ammo-
nium uptake constrained to zero,
while the TAG production is con-
strained at its optimal level.

a Lower bounds of fluxes given in mmol gDW-1 h-1.
b Specific growth rates given in h-1.
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conditions. The Z statistic for a given reaction i is given by

Zflux
i =

E2(vi)− E1(vi)√
V ar2(vi) + V ar1(vi)

, (3.3)

where E2(vi) and E1(vi) are the means of flux vi of two conditions, and V ar2(vi) and
V ar1(vi) are the corresponding variances. The significance of transcript level change
Zexp
i between the conditions was calculated from the associated p values from the tran-

scriptomics data using the inverse error function

Zexp
i = ±inverf(1− pi/2). (3.4)

These Z statistics were subsequently used to calculate the individual probabilities of each
of the three modes of regulation. The probability of transcriptional regulation, Ptri, is
given by the product of the probability of a metabolic flux changing with the probability
of the corresponding enzyme having its transcript level change in the same direction

Ptri = Φ(Zflux
i )Φ(Zexp

i ), (3.5)

where Φ(Z) is the cumulative Gaussian distribution. For decreasing flux or transcript lev-
els, the absolute values of the Z scores were applied. Additionally, if the direction of a
reversible reaction changed between the two conditions, a Ptri value of zero was assigned
by default, as this change only can be ascribed to changing metabolite concentrations.

For post-transcriptional regulation, we obtain the probabilities by multiplying the prob-
ability that the transcript levels are changing with the probability that the corresponding
flux remains unchanged

Ppri = erf(Zexp
i )(1− erf(Zflux

i )). (3.6)

Here, erf(Z) is the error function as we want to assess the probability of change in any
direction.

Similarly for metabolic regulation, we obtain the probabilities from the product of the
probability of a change in flux, but not in transcript levels

Pmri = erf(Zflux
i )(1− erf(Zexp

i )). (3.7)

For the probabilities of post-transcriptional and metabolic regulation, the absolute values
of the Z statistics were employed. Table 3.5 summarizes the various combinations of

Table 3.5: Qualitative assignments of the three modes of regulation based on the various combina-
tions of up-regulation (+), down-regulation (-) and no regulation (=) for flux and transcript levels.
TR: transcriptional regulation, PR: post-transcriptional regulation, MR: metabolic regulation.

Exp\Flux + - =

+ TR MR PR
- MR TR PR
= MR MR
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flux and transcript changes with the resulting forms of regulation. A threshold of 0.95
was selected for all probabilities, resulting in nine independent lists of gene-reaction pairs
corresponding to these three modes of regulation for the three condition comparisons; N1
v. E, N2 v. E and N2 v. N1.
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Chapter 4
Results and discussion

4.1 Reconstruction and refinement of iVS1191

4.1.1 Constructing the initial draft model

The initial reconstruction generated from the template model iCY1170 DHA contained a
total of 1340 reactions, 1099 metabolites and 974 associated genes (available in Supple-
mentary Material as initialDraftModel.mat). Based on the integrated gene-reaction rules,
around 92% percent of all reactions from iCY1170 DHA associated with a set of genes
were incorporated into the draft reconstruction. However, putative reciprocal best hits for
a substantial amount of template genes were not identified.

Further inspection of the remaining 196 genes from iCY1170 DHA identified 103 new
putative homologs in A. sp. T66. These were determined using reciprocal BLASTp of the
predicted peptide sequences with less stringent cutoffs for the alignment lengths. This
was done so as to prevent the exclusion of genes whose sequence lengths were too small
to be added during the initial draft reconstruction. A more appropriate strategy to avoid
this issue could have been to apply a dynamic minimal alignment calculated by a scaling
function, whose value would be proportional to the sequence lengths of the query genes.
Subsequent BLASTp searches using queries of lengths smaller than the original minimal

Table 4.1: Comparison of the model properties of the template model iCY1170 DHA and the re-
sulting draft reconstructions after iterative modifications.

Model Note Reactions Metabolites Genes

iCY1170 DHA Template model 1769 1659 1170
Initial draft model From template 1340 1099 974

Draft model Additional genes 1423 1573 1107
Draft model Transport & exchange 1689 1632 1107
Draft model Gap filling 1828 1680 1145
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cutoff would therefore not automatically be discarded during the initial reconstruction pro-
cess.

A remaining set of 54 template genes had no significant hits against any predicted pep-
tide of A. sp. T66. Although this could reflect genuine genomic disparities between the
two organisms, the close phylogenetic distance between them rather hinted at insufficient
coverage of the predicted peptide sequences of A. sp. T66, preventing the identification
of genuine homologous sequences. Consequently, tBLASTn searches of the genomic nu-
cleotide sequences using these genes as queries were performed in order to circumvent this
issue. In the end, a total of 30 additional candidate homologs were identified in the ge-
nomic sequence of A. sp. T66. The corresponding reactions of these genes, along with the
reactions associated with the aforementioned set of 103 genes, were subsequently merged
with the draft reconstruction, resulting in 83 additional metabolic reactions.

Out of 195 transport reactions of iCY1170 DHA, only 118 had an associated gene-
reaction rule. As an initial strategy, all of the remaining transport reactions were therefore
transferred to the draft reconstruction. This was done to prevent their exclusion from im-
peding on the ability of the model to produce any of the necessary biomass components.
Similarly, all exchange reactions from iCY1170 DHA were also added to the draft recon-
struction. The properties of iCY1170 DHA and the resulting draft reconstructions during
these iterative modifications are all listed in Table 4.1.

4.1.2 Gap filling for biomass production
Following the initial round of metabolic gap filling, the model was able to generate all
the necessary biomass precursors, with a corresponding specific growth rate of 0.0834 h-1.
This was a slight increase from that of iCY1170 DHA, which at the same glucose uptake
rate of 1.4 mmol gDW-1 h-1 predicted a specific growth rate of 0.0812 h-1. Although a
minor increase, the in vivo exponential growth rates of A. sp. T66 is in reality found to
be considerably higher than that of S. limacinum - see Table 4.6 and [20]. This clearly
indicated that the metabolic network was lacking necessary biochemical potential, and
consequently, that further additions of metabolic reactions was needed.

Although the primary goal was to enable biomass production, other additional reac-
tions was also introduced to more accurately represent the metabolic network of A. sp.
T66. To illustrate this curational procedure, consider the following example of how the
metabolic gaps were identified and filled.

Following the inclusion of the additional genes, as well as the remaining transport
and exchange reactions, the metabolic model was unable to generate 9 of the 49 biomass
precursors. One of these metabolites was the steroid derivative stigmasterol. The key
precursor for stigmasterol is the isoprenoid squalene, which is synthesized from succes-
sive condensations of isoprene units derived from the mevalonate pathway [127]. From
squalene, a set of 14 consecutive biochemical modifications are required to generate stig-
masterol. As seen in Figure 4.1, the model was deficient in 5 intermediary enzymatic steps
needed to synthesize stigmasterol.

The genome annotation was then probed for genetic candidates based on associated
KO IDs so as to elucidate the putative metabolic environment found in A. sp. T66. This
was assisted by color coding the KEGG steroid biosynthesis pathway map to highlight
the metabolic capabilities of A. sp. T66 (Appendix C, Figure 5.1). Based on this initial
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approach, candidate enzymes for two out of the five missing reactions were identified di-
rectly from the genome annotation. These were the genes T66009048.1 and T66008786.1,
putatively encoding the enzymes methylsterol monooxygenase 1 (SMO1, EC:1.14.18.9),
and sterol 22-desaturase (CYP710A, EC:1.14.19.41), respectively. Their exclusion during
the initial draft reconstruction was a result of iCY1170 DHA not having any associated
genes for these reactions, although candidate genes can be identified in the peptide se-
quences of S. limacinum (Aurli1 80852 and Aurli1 74786, respectively).

For the remaining three reactions, sequences associated with the appropriate KO
IDs were used as queries for both BLASTp and tBLASTn searches against the pep-
tide and genome sequences of A. sp. T66. This resulted in the identification of
a final gene, T66005921.1, putatively encoding a cholestenol δ-isomerase (HYD1,
EC:5.3.3.5). Although no candidate enzymes were found for the latter two enzymes 24-
methylenesterol C-methyltransferase (SMT2, EC:2.1.1.143), and squalene monooxyge-
nase (SQLE, EC:1.14.14.17), the associated reactions were added as gap filling reactions
to the model so as to enable the biosynthesis of stigmasterol.

A similar approach was carried out for the remaining 8 biomass precursors that the
model initially was unable to generate. These were: d-galactose, l-galactose, l-leucine,
l-lysine, l-proline, l-tyrosine, cholesterol and phosphatidylglycerol. In total, 139 reac-
tions were added during this initial gap filling procedure, of which 12 reactions were non-
spontaneous gap filling reactions with no identifiable candidate genes. Simulated deletions
of the latter reactions, along with the collection of incorporated transport reactions, culmi-
nated in a minimal set of 15 gap filling reactions necessary to allow the model to synthesize
all biomass precursors (Table 4.2). These simulations were performed by single reaction
deletions of this set with a predetermined cutoff of 10% of the wild type specific growth
rate defining reaction essentiality [128].

The main concern of metabolic gap filling of GSMs is the inclusion of erroneous bio-
chemical reactions which affords the model with additional metabolic capabilities not
found in vivo, potentially leading to inaccurate phenotypic predictions. Sufficient ef-
forts therefore need to be made to minimize the number of included gap filling reactions,
thereby reducing the likelihood of faulty model predictions. Although present as gap fill-
ing reactions with no associated genes, the cytoplasmic transport reactions of magnesium
(AUR1515), silicon (AUR1516), boron (AUR1517) and copper (AUR1518) are highly bi-
ologically significant as the transported elemental compounds are essential biomass com-
ponents.

The latter mitochondrial transport of 2-oxobutanoate (AUR1704) is known to occur in
vivo in other eukaryotes [129], where the transporter is hypothesized to be the pyruvate
carrier [130]. On the other hand, the three remaining mitochondrial transport reactions
(SLI1423, SLI1465 and AUR1724) could potentially pose a problem as no supporting bib-
liomic evidence was found for their existence in other eukaryotes. Their requirement may
likely to be a result of inaccurate predictions of the subcellular localization of the proteins
involved in the surrounding metabolic pathways. However, the associated metabolites of
these transport reactions are key intermediates in the linear biosynthetic pathways of the
branched-chain amino acids valine, leucine and isoleucine [131]. Although the subcellular
localization of the surrounding metabolic reactions might be inaccurate, the effects on the
predictive capabilities of the model would presumably be insignificant due to these inter-
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Figure 4.1: Metabolic pathway map of steroid biosynthesis from the KEGG pathway database [78].
Highlighted in red are the five missing enzymatic steps in the draft reconstruction required for the
capability of generating stigmasterol; squalene monooxygenase (SQLE, EC:1.14.14.17), methyls-
terol monooxygenase 1 (SMO1, EC:1.14.18.-), cholestenol δ-isomerase, (HYD1, EC:5.3.3.5), 24-
methylenesterol C-methyltransferase (SMT2, EC:2.1.1.143), and sterol 22-desaturase (CYP710A,
EC:1.14.19.41).

mediary metabolites only taking part in isolated pathways. Similarly, the four gap filling
reactions associated with the biosynthesis of steroids (AUR1151, AUR1152, AUR1153
and AUR1164), as well as diaminopimelate dehydrogenase necessary for the biosynthesis
of lysine (AUR0392), are all constituents of linear pathways, such that the outcome of
their inclusion on the model should only be that of enabling steroid and lysine production,
respectively.

The addition of the last two reactions mannose-1-phosphate guanlylytransferase
(AUR0068), and GDP-L-galactose phosphorylase (AUR0102), were needed for the model
to generate L-galactose. Their inclusion was the result of a final brute force approach
in which the minimal set of non-incorporated reactions from iCY1170 DHA needed for
biomass production was identified through simulated reaction deletions. Both reactions
were present as gap-filling reactions in iCY1170 DHA, suggesting that their responsible
enzymes might be elusive in thraustochytrids in general.

Interestingly, the enzyme responsible for mannose-1-phosphate guanlylytransferase
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activity has not yet been identified, indicated by the absence of any associated enzyme
sequence in KEGG and MetaCyc. Thus, the lack of any genetic evidence may therefore
be a result of lacking biochemical knowledge, rather than inadequate coverage of the ge-
nomic sequence of A. sp. T66. Although one gene, T66010550.1, showed some similiarity
with the GDP-L-galactose phosphorylase 2 and 5 of A. thaliana, (e values of 8x10−6 and
1x10−4, respectively), the similarities were too low and ambiguous to grant the gene a
place in the model.

Even though no clear genetic evidence was identified in either the nucleotide nor pre-
dicted peptide sequences, the surrounding metabolic proficiency of A. sp. T66 suggested
that these reactions might be the most realistic candidates to permit the synthesis of L-
galactose. Consequently, the reactions were deemed the most likely to occur in vivo, and
were therefore kept in the model to enable biomass production.

4.1.3 Enhancing the scope of the reconstruction

KEGG model

The secondary draft model was reconstructed using method (2) of the RAVEN Toolbox.
Here, reactions annotated to the appropriate KO IDs were fetched based on significant
sequence similarities between the predicted peptides of A. sp. T66 and the associated se-
quences in the KEGG database.

The reconstructed model contained a total of 1455 reactions, 1556 metabolites and
1090 genes (available in Supplementary Material as keggDraftModel.mat). Of these genes,

Table 4.2: Minimal set of gap filling reactions of the initial draft model reconstruction necessary for
the production of all biomass components. The letters in square brackets indicate between which
subcellular compartments the transport reaction occur; c - cytosolic (between the extracellular and
cytoplasmic compartment), m - mitochondrial (between the mitochondrial and cytoplasmic com-
partment).

Model ID KEGG ID EC Reaction name

AUR0068 R00883 2.7.7.22 Mannose-1-phosphate guanylyltransferase (GDP)
AUR0102 R07678 2.7.7.69 GDP-L-galactose phosphorylase
AUR0392 R02755 1.4.1.16 Diaminopimelate dehydrogenase
AUR1151 R02874 1.14.14.17 Squalene monooxygenase
AUR1152 R07495 1.1.1.270 3β-hydroxysteroid 3-dehydrogenase
AUR1153 R07496 - -
AUR1164 R05776 2.1.1.143 24-methylenesterol C-methyltransferase
AUR1704 - - (S)-2-isopropylmalate transport [m]
SLI1423 - - (R)-2,3-dihydroxy-3-methylbutanoate transport [m]
SLI1465 - - (S)-2-aceto-2-hydroxybutanoate transport [m]

AUR1724 - - 2-oxobutanoate transport [m]
AUR1515 - - Magnesium transport [c]
AUR1516 - - Silisium transport [c]
AUR1517 - - Boron transport [c]
AUR1518 - - Copper transport [c]
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Figure 4.2: Subsystem distributions in the reconstructed draft model of A. sp. T66 using the KEGG
functionality of the Raven Toolbox. (a) Subsystem distributions of the reactions (n = 626) associated
with the genes unique to the KEGG model, (b) subsystem distribution of all reactions (n = 1455) in
the KEGG model.

343 were unique to the KEGG model compared to the initial draft reconstruction. This
highlights quite a substantial difference in genetic coverage between the two models, and
suggests that the metabolic capabilities of the initial reconstruction might be insufficient.

When investigating the subsystem distribution of the reactions annotated to this set of
genes, they turned out to be highly enriched with reactions associated with the subsystem
’Other’ (Figure 4.3). This generic subsystem consists of several pathways associated with
secondary metabolism, which in iCY1170 DHA, and subsequently the draft reconstruc-
tion, were predominately absent. As the impact of these peripheral reactions on the flux
distribution of the model was insignificant due to them being members of disconnected,
and consequently blocked, components of the metabolic network, little effort was presum-
ably made to identify these during the reconstruction of iCY1170 DHA. The rather large
subsection of reactions of the lipid metabolism associated with the unique genes in the
KEGG model was probably a consequence of a generic specificity of both the biosynthetic
and catabolic enzymes, which seemingly hints at the existence of complementary isoen-
zymes unique to the KEGG model, rather than inadequate reaction coverage of the initial
draft reconstruction.

On the same note, the initial draft model contained 398 unique genes compared to the
KEGG reconstruction. The subsystem distribution of the associated reactions were some-
what enriched for both lipid and nucleotide metabolism (Figure 4.3). The reason behind
the former is most likely the implementation of the PKS pathway for PUFA biosynthesis
in A. sp. T66, which accounts for 26 independent enzymatic steps which are not found
in the KEGG database. Additional reactions associated with the ATP-driven charging
of acyl-CoA moieties are also relatively absent in the database for the set of fatty acids
implemented in the model. The enrichment of reactions associated with the nucleotide
metabolism was due to the existence of non-specific hydrolytic ribonucleoside hydrolases
and 5’-nucleotidases, which were annotated to a large set of reactions in the model, often
occurring in multiple compartments.
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Figure 4.3: Subsystem distributions of the initial draft model reconstructed from iCY1170 DHA.
(a) Subsystem distributions of the reactions (n = 466) associated with the genes unique to the initial
draft model, (b) subsystem distribution of all reactions (n = 1828) in the initial draft model.

The rather substantial set of unique genes in the two draft reconstructions hints at
a shortcoming of only employing one of the two methods in order to generate a draft
model of sufficient quality. While the KEGG database consist of a large repository of
high-quality biochemical information, it is not specifically tailored to assist in the recon-
struction of metabolic models. This is partly reflected in the lack of implemented transport
reactions, which plays a key role in the genesis of a genome-scale metabolic networks, es-
pecially for the compartmentalized metabolism of eukaryotes. Associated with this is also
information on the subcellular localization of proteins, which generally is missing in the
KEGG database. Consequently, the largest difference between the two models was the
exclusion of any form of transport reactions in the metabolic reconstruction obtained from
KEGG, along with no information on the subcellular localization of any of the reactions
in the model. Similarly, only utilizing template models for the reconstruction of a draft
model may also result in the exclusion of necessary metabolic reactions. Although these
models contain additional information not found in biochemical databases such as KEGG,
their quality provide an upper bound on the quality of the resulting draft reconstruction.
In hindsight, it may therefore have been beneficial to sacrifice the small phylogenetic dis-
tance between A. sp. T66 and S. limacinum for models of higher quality and scope. A more
appropriate strategy could have been to employ multiple template models from a taxonom-
ically diverse range of organisms, and in doing so, minimize the number of excluded genes
and associated reactions.

Gene re-annotation reveals the importance of manual curation

The motivation behind the manual re-annotation of the metabolic genes of A. sp. T66 was
threefold. Firstly, during the manual gap filling procedure, as well as throughout the identi-
fication of novel metabolic capabilities, the quality of iCY1170 DHA was questioned due
to the apparent scarcity of manual curation of the model reactions and associated genes.
Several genes seemed to be annotated to erroneous sets of reactions, and the subcellu-
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lar localization of a large number of reactions seemed to be based purely on automatic
predictions.

A telling example was the subcellular localization of the electron-transferring-
flavoprotein dehydrogenase (ETFDH, EC:1.5.5.1), which transfers electrons from mul-
tiple mitochondrial flavoprotein dehydrogenases, thus coupling the degradation of fatty
acids and certain amino acids with oxidative phosphorylation [132]. In iCY1170 DHA,
this reaction was localized to the cytosol, effectively preventing the model from properly
degrading these metabolites.

Secondly, during the comparison between the genes of the two draft reconstructions,
considerable disparities were found between the genes that were present in both models.
This was particularly true for proteins containing multiple catalytic domains, where the
KEGG functionality in RAVEN appeared to have difficulties assigning appropriate KO
IDs to these multi-functional enzymes.

Lastly, inferring enzymatic activity from the genome annotation of A. sp. T66 was in
certain cases quite difficult, primarily because of limited information in the annotation, but
also due to certain occurrences of inaccurate KO ID assignments and outdated database
information.

Although highly laborious, the process of manual re-annotation proved to be a fruit-
ful strategy. In total, high quality annotations on all the model genes were collected,
strengthening the qualitative properties of the model, and reinforcing the confidence of the
included reactions compared to that of the automatically assembled draft reconstructions.
This repository contains information on the candidate metabolic capabilities of all the
metabolic genes in the model, in certain cases with associated bibliomic references from
sequences of highest similarity. The collection of manual re-annotations can be found in
the Supplementary Material as ’Gene Re-annotation.xlsx’.

During the manual re-annotation and the initial rounds of model refinement (Table
4.1), 396 genes not present in the initial draft reconstruction were identified and added
to the reconstruction. A substantial set of these were candidate isozymes of already in-
corporated genes, which presumably was lacking from the initial draft reconstruction as
the strategy of bidirectional best hits only identifies sequences of highest similarity. 100 of
these genes originated from the KEGG model, whose criteria for inclusion is significant se-
quence similarity alone, not reciprocality. Consequently, the identification of isoenzymes
is therefore greatly facilitated by the KEGG functionality, and subsequently better than the
other method which necessitates a reciprocal counter-part in either of the given template
models in order for an isoenzyme to be identified and incorporated. This demonstrates
the complementarity of the two methods, clearly suggesting that the preferred strategy for
automatic reconstruction of GSMs is the concurrent employment of them both.

The subsystem distribution of the associated reactions of these novel genes were highly
enriched in transport (27%), as well as lipid metabolism (28%) (Figure 4.4). The former
was the result of extensive elucidation and incorporation of metabolite transporters, which
in iCY1170 DHA was rather crudely implemented, and furthermore, completely lacking
in the model obtained from KEGG. The latter was primarily due to the updated implemen-
tation of the PKS pathway with accurate metabolic intermediates and surrounding reaction
steps, the addition of the mitochondrial fatty acid biosynthetic pathway, as well as the in-
clusion of the peroxisome which harbours the peroxisomal β-oxidation of long-chain fatty
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acids [113].

Figure 4.4: Subsystem distribution of the reactions (n = 667) associated with the 396 novel genes
identified during the manual gene re-annotation.

In addition to the identification of new genes, 179 genes from the initial draft recon-
struction were removed based on erroneous or inconclusive functionalities. Similarly, 345
genes from the KEGG model were not included in the final reconstruction. However,
their exclusion were in large extent a consequence of them being of a generic nature, and
sometimes involving polymers or protein modifications, which in genome-scale modeling
terms is highly irrelevant. Certain cases of erroneous KO ID assignments did also occur in
the KEGG model reconstruction, as elucidated through the gene re-annotation procedure.
This might be a consequence of using an outdated pre-trained profile HMM, or that inac-
curate KO ID assignments were caused by only considering eukaryotic sequences. These
numbers corresponds to a rather substantial amount of the genes in these two draft recon-
structions (18.4% and 31.6%, respectively), and further illustrate the challenges associated
with solely relying on automatic reconstruction of GSMs.

In certain cases, the associated reactions of a given gene were accurate according to
the available biochemical information. However, the gene rules were sometimes incorrect,
often as a result of the exclusion of auxiliary subunits of both regulatory and catalytic ac-
tivity. Their identification allowed for more realistic gene-reaction associations, and will
greatly increase the validity of the in silico analysis of gene essentiality.

As an example, consider the mitochondrial enzyme acetolactate synthase (ALS,
EC:2.2.1.6) which catalyze the first step of the biosynthesis of the branched-chain amino
acids. This enzyme consist of a larger catalytic subunit, and a smaller regulatory subunit
[133]. In A. sp. T66, three genes encoding the catalytic subunit of ALS were identified;
T66001403.1, T66001404.1 and T66005295.1, along with one gene encoding the regu-
latory subunit, T66000489.1. Based on iCY1170 DHA, the associated gene rule were
constructed exclusively using AND logic

T66001403.1 and T66001404.1 and T66005295.1 and T66000489.1
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Using the obtained biological information on the heterodimeric enzymatic complex, the
gene rule was updated accordingly

(T66001403.1 or T66001404.1 or T66005295.1) and T66000489.1

The inspected sets of reactions were also examined to ensure mass balance, and updated
by either adding additional metabolites (e.g. protons, water), or altering the existing sto-
ichiometries. As a general rule, both the stoichiometry of the reactions and the chemical
formula of each metabolite was based on those found in the MetaCyc database. These
metabolites are protonated at a reference pH level of 7.3, representing that of the average
cytoplasmic compartment [59]. While the subcellular pH levels of the other compartments
implemented in the model will be different from this reference state, it was assumed to be
constant because of the lack of any experimental data explicitely stating otherwise.

While the detailed reaction mechanisms of the majority of biochemical reactions have
been established, accurate stoichiometries of certain reactions still remains undiscovered.
Although these incomplete reactions were also present in this reconstructed GSM, the po-
tential impact of the calculated flux distributions is however limited, as these tended to be
part of peripheral and isolated pathways, which subsequently were unable to carry a non-
zero flux. Certain reactions capable of carrying flux were still present as incomplete reac-
tions in the model (e.g. methylsterol monooxygenase, AUR1141 and AUR1145), which
should be updated when appropriate biochemical information on their metabolic transfor-
mations is available.

Properties of the peroxisomal compartment

Following extensive literature reviews and identification of proteins that were hypothe-
sized to be targeted to the peroxisome, a peroxisomal compartment was added to the
model reconstruction. This compartment harboured 135 unique reactions, consisting of
92 internal and 43 transport reactions, respectively. The metabolic capabilities of the com-
partment was mainly associated with that of β-oxidation of fatty acids, along with the

Table 4.3: Qualitative assessment of growth on various carbon sources that enters the central carbon
metabolism at the level of the two-carbon metabolite acetyl-CoA. Uptake rates were arbitrarily set
to 1 mmol gDW-1 h-1. Growth and non-growth is denoted by + and -, respectively.

Carbon source Draft reconstructiona iVS1191 iCY1170 DHA

Tetradecanoate (c14:0) - + -
Hexadecanoate (c16:0) - + -

Hexadecenoate (c16:1(n-7)) - + -
Octadecanoate (c18:0) + + -

Octadecenoate (c18:1(n-7)) - + -
Eicosapentaenoate (c20:5(n-3)) - + -
Docosapentaenoate (c22:5(n-6)) - + -
Docosahexaenoate (c22:6(n-3)) - + -

Acetate + + +
a Draft reconstruction following the initial gap filling to enable biomass production.
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associated glyxoylate shunt, which allowed for the biosynthesis of carbohydrates from the
generated acetyl-entities of the β-oxidation pathway, along with medium containing other
two-carbon compounds such as acetate. The constituent reactions of the latter anaplerotic
cycle were predicted to be localized to the peroxisome, as well as the cytosol and mito-
chondria, suggesting a rather complex interexchange of the metabolic intermediates be-
tween these compartments.

While the reactions associated with the glyoxylate cycle were present in the template
reconstruction, allowing for growth on two-carbon compounds such as acetate, the model
was unable to grow on any of the implemented fatty acids due to insufficient incorpora-
tion of necessary transport reactions, preventing the mitochondrial degradation of these
acyl chains. Additionally, indispensable enzymatic steps required for the oxidation of un-
saturated fatty acids such as ∆3-∆2-enoyl-CoA isomerase (ECI1/ECI2, EC:5.3.3.8) and
2,4-dienoyl-CoA reductase (DECR1/DECR2, EC:1.3.1.34) were also not implemented,
preventing the metabolic network from being able to degrade the collection of fatty acids
that it produces. When the required reactions were implemented along with the peroxi-
somal compartment, the reconstructed model was able to grow on all implemented fatty
acids (see Table 4.3).

Based on the available genomic data, the β-oxidation of fatty acids in A. sp. T66
is situated in both the peroxisomal and mitochondrial compartment. However, the chain
length specificities of these two enzymatic machineries remains to be elucidated. A de-
cision was subsequently made, similar to that of the GSM of Phaeodactylum tricornu-
tum, iLB1027 lipid [134], in which acyl chains of length 20 and longer were assumed to
initially be degraded solely in the peroxisomal compartment. The presumed end prod-
uct octanoyl-CoA is then exported out of the peroxisome for further degradation in the
mitochondrial β-oxidation pathway, due to the presence of a peroxisomal carnitine O-
octanoyltransferase (CROT, EC:2.3.1.137). The genuine substrate specificities of the two
β-oxidation pathways are most likely overlapping. However, barring any genuine bio-
chemical evidence of their acyl-chain preferences, this differentiation was deemed the
most likely based on the available genomic information.

Resolving the biosynthetic pathway of PUFAs

The updated PKS pathway contained a total of 81 unique metabolic reactions, with 75
associated acyl-ACP intermediates. To distinguish the nine initial enzymatic steps which
are similar to that of the FAS complex, a duplicated set of metabolites and reactions were

Table 4.4: Candidate genes encoding the enzymatic subunits of the PKS complex responsible for
the biosynthesis of the PUFAs in A. sp. T66.

PKS subunit Gene Homologous genea Sequence identity (%) Citation

A T66011701 KX651612.1 99.96 [135]
B T66005413.1 KX651613.1 100 [135]
C T66011702 KX651614.1 100 [135]

acpT T66011703 KX651615.1 99.31 [135]
a GenBank accession number.
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added to the reconstruction. The biosynthetic pathway was able to synthesize all of the
PUFAs that A. sp. T66 produces during lipid accumulation [90]. These consists of the
the two ω-3 fatty acids eicosapentaenoate (c20:5(n-3)) and docosahexaenoate (c22:6(n-
3)), and the ω-6 fatty acid docosapentaenoate (c22:5(n-6)). The resulting pathway thus
diverges early on in the biosynthetic process by either retaining the unsaturated π-bond
at the n-3 position, generating eicosapentaenoate and docosahexaenoate, or reducing it,
eventually producing docosapentaenoate (Appendix D, Figure 5.2).

In iCY1170 DHA, 15 separate genes were present in the associated gene rules of the
PKS pathway. However, upon further inspection it was revealed that many of these en-
zymes contained rather generic PKS domains, which did not seem to constitute either of
the three catalytic subunits of the PKS complex. Through the process of manual gene re-
annotation, three candidate genes were found in the genome of A. sp. T66 which showed
significant sequence similarity with the PUFA PKS subunits of Thraustochytrium sp.
26185 (Table 4.4) [135]. Along with an additional gene encoding the auxilliary phospho-
pantetheinyl transferase (acpT) subunit, which was not present in iCY1170 DHA, these
four genes were used to replace the previous set of 15.

4.1.4 Eliminating erroneous EGCs
Upon thorough inspection, it was revealed that the reconstructed model was able to charge
all the energy carriers in Table 3.3 without any input of reduced carbon. The responsible
EGCs contained a minimal set of 280 - 408 reactions, depending on the particular energy
carrier, emphasizing the complexity of the emergent EGCs of stoichiometric models of
metabolism. These thermodynamically infeasible cycles concertedly operated by taking
up extracellular protons by means of a flux coupling between a proton-coupled transport
reaction of a given metabolite, and a reversible uniport reaction of the same compound.
The set of reactions then utilized this flow of protons to drive a continuous generation of
cytosolic reducing power in the form of NAD(P)H. The retained free energy in these were
subsequently used to drive the biochemical charging of the other energy carriers. In the
example of ATP generation, the associated electrons were shuttled into the mitochondria
via the available substrate-shuttles (e.g. glycerol-3-phosphate shuttle), being used to force
the export of protons into the intermembrane space in the respiratory chain, thus driving
the ensuing charging of ATP. Due to the presence of these EGCs, the predicted growth rate
of the metabolic model increased by around 34%, clearly indicating the importance of its
removal for accurate predictions of metabolic phenotypes.

The flux-carrying reactions were inspected by finding the set of reactions present in
all of the emergent EGCs, which culminated in a list of 96 unique reactions. From these,
a qualitative ranking of the reactions and associated genes were performed, based on an
evaluation of the likelihood that the encoded enzymes in fact catalyze their associated re-
actions in vivo. From the identified list, one reaction was singled out as a prime candidate
for removal. This reaction was an auxiliary enzymatic activity of the cytosolic enzyme
serine hydroxymethyltransferase (SHM1, EC:2.1.2.1), where it converts 5,10-methenyl-
tetrahydrofolate to 5-formyl-tetrahydrofolate in the presence of glycine. This catalytic
activity has been found in the homologous enzyme of both rabbit and E. coli [136, 137],
and was therefore assumed to also occur in A. sp. T66. This secondary activity is however
merely mentioned as a sidenote in MetaCyc, not being explicitly defined as a catalytic
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activity of the enzyme in the database. The reaction was consequently deemed to be that
with which most uncertainty resided, and was subsequently selected for elimination.

Following its removal, all previously present EGCs were disrupted, preventing the in-
feasible charging of the aforementioned energy carriers. This approach should however
only be considered a temporary solution to the issue of EGCs in iVS1191. More accurate
thermodynamic data based on measured metabolite concentrations should, when available,
be included in future refinements of the model to alter the reaction directionalities so as to
allow for the inclusion of this reaction if it turns out to be a genuine activity of the enzyme,
without the occurrence of these infeasible cycles.

To counteract the possibility of obtaining additional EGCs, a mitochondrial intermem-
brane compartment were added for the protons used to drive the charging of the energy
carrier ATP during oxidative phosphorylation. This is a similar approach to that used in
human GSM RECON3D [138], where the transfer of protons from the mitochondrial ma-
trix exports the hydrogen ions into this separate compartment, rather than to the cytosol.
Import of extracellular protons into the cytosol due to coupled transport reactions can sub-
sequently not be used directly to drive the electrochemical charging of ATP, thus reducing
the likelihood of thermodynamically infeasible EGCs following future refinements of the
model.

4.2 Properties of the final model reconstruction

4.2.1 Major advancements in both coverage and scope

The final model reconstruction iVS1191 contained a total of 1668 metabolites, 2093 re-
actions (1455 metabolic reactions, 416 transport reactions and 232 exchange reactions),
and 1191 associated genes (available in Supplementary Material as ’iVS1191.xml’). This
highlights a significant increase in coverage compared to iCY1170 DHA (Table 4.5). Most
noticeable is the additional number of reactions. All three categories (i.e. metabolic, trans-
port and exchange) have expanded their number of reactions, where the number of trans-
port reactions shows the largest increase.

The modest increase in the amount of genes can be explained by the process of manual
curation. Here, a large set of genes with sub par hits against enzymes of known func-
tionalities was removed during the process. At the same time, several genes were added,
either to replace those that were removed, or as associated genes of novel metabolic re-
actions not present in iCY1170 DHA. Consequently, although the difference might seem
insignificant, considerable alterations have been performed so as to more accurately reflect
genuine biological organization with these gene-reaction associations.

To assess the qualitative difference between the two models, the distribution of the 9
main subsystem classes was compared. From the plot in Figure 4.5, one may notice minor
alterations in the subsystem distributions of the two models, clearly indicating the close
phylogenetic relationship between the two organisms. However, iVS1191 shows a signifi-
cant increase in the number of transport reactions, while the remaining subsystems show a
slight decrease. The reason behind this is twofold. Firstly, the inclusion of a peroxisomal
compartment added 43 transport reactions to the model. Secondly, and most importantly,
the extensive curation of the inter-exchange of metabolites between the remaining com-
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Figure 4.5: Subsystem distribution of the 9 main classes of subsystems from the KEGG PATH-
WAY database in iVS1191 and iCY1170 DHA. The subsystem ’Other’ contains Glycan Biosynthe-
sis and Metabolism, Metabolism of Terpenoids and Polyketides, Biosynthesis of other secondary
metabolites, Metabolism of Other Amino Acids, Xenobiotics Biodegradation and Metabolism, and
Metabolism of terpenoids and polyketides.

partments during the manual gap filling resulted in a net addition of 175 cytoplasmic and
mitochondrial transport reactions. Although the number of transport reactions more than
doubled, the fraction of these transport reactions with an associated gene rule increased
significantly.

Of the cytoplasmic transport reactions, about 75% has a corresponding gene rule
in iVS1191, compared to around 65% for iCY1170 DHA. The fraction only increased
slightly from about 55% to 57% for the mitochondrial transport reactions. This limited
increase can mainly be attributed to the difficulty of assigning appropriate substrates for
a large subset of the transporters belonging to the MC family, due to high degrees of se-
quence homology between the candidate proteins [139]. Furthermore, as candidate trans-
porters for several metabolites that are known to cross the mitochondrial inner membrane
still remain to be elucidated [140], one would expect that a significant proportion of the
necessary transport reactions will lack gene associations.

While the ORF coverage of iVS1191 did show a pronounced increase from that of
iCY1170 DHA (Table 4.5), this is most likely an effect of a smaller genome, and a cor-
responding reduction in the number of predicted ORFs. Whereas the genome size of S.
limacinum is 60.93 Mb (mega base pairs), with 14,859 unique ORFs [107], the genome
size of A. sp. T66 is merely 43 Mb, with a corresponding list of only 11,683 of predicted
ORFs [141]. Although this could imply a deficient genome coverage, the ORF coverage
is comparable to other high-quality GSMs of the oleaginous species Mortierella alpina
and Yarrowia lipolytica [142, 135], each possessing an ORF coverage of 9.5% and 9.6%,
respectively [20].

A considerable reduction in the number of blocked reactions and associated dead-
end metabolites was accomplished during the model reconstruction and curation. In
iCY1170 DHA, a substantial subsection of the reactions were found to be blocked, con-
stituting around 44% of all model reactions. Of the metabolites, around 38% were catego-
rized as metabolic dead-ends. Even with a substantial increase in the number of reactions
in iVS1191, only around 16% were found to be blocked. Similarly, merely 17% of the
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(a) iCY1170 DHA (b) iVS1191

Figure 4.6: Visualization of the metabolic reconstructions in ModelExplorer of (a) iCY1170 DHA,
and (b) iVS1191. Both reconstructions were converted to open models in which all exchange re-
actions were set to be unconstrained. Blocked reactions are indicated as red circles, while those
that are able to carry flux are indicated in light green. The metabolites are color coded in a similar
fashion: blocked = dark red, non-blocked = dark green, where the dead-end metabolites also are
highlighted by a surrounding blue edge color. The compartments of the models are indicated by
the yellow boarders: (1.) cytosol, (2.) mitochondria, (3.) extracellular, and (4.) peroxisome. The
mitochondrial intermembrane compartment of iVS1191 is not visible.

metabolites were found to be metabolic dead-ends.
To illustrate this drastic reduction, the two reconstructions were visualized in Model-

Table 4.5: Comparison of the features of the final model reconstruction iVS1191 and
iCY1170 DHA. Dead-end metabolites are metabolites that are unable to be consumed or produced
as they are constituents of only one model reaction. The blocked reactions were identified by hav-
ing lower and upper flux bounds of zero when running FVA on an open model (i.e. all exchange
reactions left unconstrained).

Features iVS1191 iCY1170 DHA

Compartments 5 3
Genes 1191 1170
Metabolites 1668 1659
Reactions 2093 1769

Metabolic 1445 1386
Transport 416 195
Exchange 232 188

Blocked reactions 339 769
Dead-end metabolites 280 628
ORF coverage (%)a 10.2 7.9

a Gene sequences found in the genome sequence, but not as
unique ORFs, were also included to account for insufficient
coverage.
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Explorer when all their exchange fluxes were unconstrained (Figure 4.6). Here, one may
notice how larger parts of the metabolic network of A. sp. T66 now are able to carry
flux, compared to that of iCY1170 DHA in which considerable sections of the metabolic
network are blocked. While the mitochondrial compartment in iCY1170 DHA in large ex-
tent is metabolically dead, the reactions of this compartment in the iVS1191 is to a much
greater extent able to take on non-zero flux values. These changes are prime examples
of how the newly constructed model is able to utilize a greater subsets of its metabolic
capability, expectedly giving rise to more accurate phenotypic predictions.

Although there are considerable advancements in the network connectivity because
of extensive metabolic gap filling and manual curation, significant proportions of the
metabolic network of iVS1191 are still unable to carry flux (around 16% of all reactions).
For example, there is a fairly substantial proportion of blocked reactions and associated
dead-end metabolites in the mitochondrial compartment of iVS1191, visible as a cluster
on top of the compartment in Figure 4.6 (b). This is indicative of a metabolic model that
is still in need of future refinements when more bibliomic and biochemical information is
available for the organism.

4.2.2 Growth rate predictions suggest insufficient maintenance ener-
gies, and hints at an unrealistic biomass composition

Incorporation of the experimentally determined specific uptake rates allowed for a com-
parative analysis of the in silico growth rate predictions with the measured specific growth
rates (see Appendix B for calculations). While the ratios between the measured and pre-
dicted growth rates on the two carbon sources were very similar (1.09 versus 1.04), the
predicted rates of biomass production overestimated the measured rates by about 7% and
14%, respectively (Table 4.6). A reasonable explanation for these exaggerated predictions
can partly be explained by underestimating the energy requirements of the model. For ex-
ample, the model does not include a non-zero lower bound for ATP hydrolysis to simulate
the NGAM demands, as no available chemostat data exist for A. sp. T66. Similarly, the
estimated GAM of the biomass reaction is only based on the implicit ATP requirements
to enable synthesis of the cellular macromolecules. Based on the biomass formulation in
the model, this GAM estimate constitute only 7.35 mmol ATP gDW-1 h-1. As a compar-
ison, the GAM utilized in the GSM of the heterokont P. tricornutum were 29.89 mmol
ATP gDW-1 h-1, with an additional NGAM of 1.5 mmol ATP gDW-1 h-1 [143]. Assuming
comparable maintenance demands for A. sp. T66, these values were incorporated into the
model to evaluate the impact on the predicted growth rates. As seen in Table 4.6, this
resulted in a drastic reduction in growth rate compared to that of the initial predictions.

While the rather naive incorporation of the maintenance requirements likely constitute
an overestimation, the severe decline in biomass production could also be ascribed to a
dubious biomass composition. In iVS1191, lipids constitute an entire 43% of the biomass.
However, for A. sp. T66, the lipid content of exponentially growing cells is merely 13%,
not reaching these levels until the late lipid accumulation phase [90]. Similarly, the large
contents of carbohydrates (32% of dry cell weight) suggest a biomass composition de-
prived of nitrogen, probably being closer to that of late lipid accumulation, rather than
exponentially growing cells. The protein content is also expected to be larger than the
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current levels of around 12%, which would increase the implicit GAM of the biomass
reaction, closing in on the gap between the predicted and measured growth rates.

The experimental measurements also allude to a similar conclusion as the spe-
cific uptake rate of the nitrogen source ammonium was measured to be around
1.11 mmol gDW-1 h-1 and 0.99 mmol gDW-1 h-1 on glucose and glycerol, respectively
(Appendix B). However, the corresponding simulated exchange rates in iVS1191 was only
0.392 mmol gDW-1 h-1 and 0.378 mmol gDW-1 h-1 at the optimal growth rates. This is in-
dicative of a biomass composition deprived of nitrogenous compounds, and suggests that
the implemented biomass is most likely erroneous.

4.2.3 Gene essentiality analysis reveals metabolic robustness and
adaptability

Simulated gene essentiality on the minimal glucose medium defined in Appendix E, Ta-
ble 5.3, identified 768 unique genes as non-essential, 230 as partially essential, and 193
as essential. The subsystem distribution of these categorical classes can be seen in Figure
4.7. For the majority of the subsystems, there was a significant enrichment of non-essential
genes, suggesting that the metabolic network of A. sp. T66 in many cases are rather imper-
vious to genetic perturbations. Additionally, the high number of partially essential genes,
particularly in the subsystems ’Carbohydrate Metabolism’ and ’Energy Metabolism’, sug-
gest that the network is fairly adaptable by being able to redistribute its metabolic fluxes
to accommodate the genetic disruptions.

Of the essential genes, the largest subset is associated with amino acid metabolism.
Although this partly can be explained by the sheer number of genes associated with
these metabolic pathways (300 unique genes), a more satisfactory explanation is a gen-
eral scarcity of complementary isoenzymes, as well as a predominance of linear pathways
with limited metabolic flexibility. In fact, of the 294 unique reactions of the amino acid
metabolism associated with a set of genes, only 21% possesses complementary isozymes,
while for the remaining reactions of the metabolic network, this value is around 40%.

A similar case can be argued for the genes of the subsystem ’Metabolism of Cofac-
tors and Vitamins’, where a total of 48 out of 139 are defined as essential. Although
the biological essentiality of the biosynthetic enzymes of cofactors and vitamins is highly
evolutionary conserved [144], the enrichment of amino acid metabolism is rather uncon-
ventional. However, considering that dead organic matter is one of the main ecological
habitats of the thraustrochytrids [145], a reasonable explanation might be limited selection
pressure for increased flexibility of amino acid biosynthesis due to a sustained availability

Table 4.6: Comparison of experimental and in silico specific growth rates (h-1) on various minimal
media, using measured uptake fluxes to constrain the model (mmol gDW-1 h-1).

Medium Uptake flux Experimental In silico In silicoa

Minimal glucose 1.44 0.124 0.134 0.016
Minimal glycerol 2.44 0.114 0.129 0.015

a After the incorporation of additional growth- and non-growth associated mainte-
nance demands.
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Figure 4.7: Subsystem distribution of the three categorical classes of gene essentiality resulting
from the single gene deletion analysis. In total, 193 genes were found to be essential, 230 were
partially essential, while the remaining 768 genes were characterized as non-essential.

of exogenous nutrients.
Contrary to the case of the amino acid metabolism, a large amount of metabolic flexi-

bility exists for the reactions associated with lipid metabolism. Only 29 out of 220 genes of
the lipid metabolism were found to be essential in the minimal glucose medium. This was
primarily due to the existence of complementary isozymes, which was quite prevalent for
the associated reactions (around 40%). However, due to severely restricted biochemical
information on the encoded enzymes, the specificity of the various enzymes were rather
broadly implemented in the model. This will most likely result in an underestimate of
genuine gene essentiality, as the overlapping activity of the genes in the model does not
accurately reflect the more specialized affinities of the encoded enzymes in vivo.

While the ternary gene essentiality analysis provide valid insight into how the spe-
cific growth rate is affected by single gene deletions, they do not offer any assessment of
the extent of the resulting metabolic flux redistribution. Using the deletion impact p, the
quantity of flux redistribution was evaluated for every gene in the model by calculating
the emergent flux redistribution following the genetic perturbation. The distribution of p
values are presented in Figure 4.8, where the essentiality classifications from the earlier
analysis are highlighted.

There is a clear separation of the essential genes showing the largest flux deviations
from the wild type network. These genes are clustering at a p value of over 10x107, cor-
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Figure 4.8: The deletion impact p for all 1191 genes of the reconstructed GSM of A. sp. T66.
The flux distributions were calculated using an FBA formulation of the perturbed network. Also
indicated are the ternary essentiality classes resulting from the single gene deletion analysis.

responding to an inactive metabolic network of all zero flux values. Similarly, most of
the non-essential genes are clustered at the bottom, where the deletion impact of 0 indi-
cate an identical flux distribution to that of the wild type. However, 50 essential genes
show fairly large flux deviations compared to the wild type network. These single gene
knockouts indicate that the metabolic network of A. sp. T66 in several cases are able to
redistribute its metabolic fluxes in response to the genetic perturbation, obtaining the same
optimal growth phenotype as the wild type network. This is indicative of an adaptable
metabolism, which in a robust fashion redirects its metabolic fluxes to counteract the ef-
fect of the genetic knockout, reaching the same optimal growth phenotype as that of the
wild type network. The deletion impact of the partially essential genes are rather varied,
some showing very large deviations, while others generate flux distributions similar to the
wild type.

As in the original paper, as well as that of the aforementioned analysis, the flux distri-
butions of the wild type and mutant networks were all calculated using a standard FBA-
formulation of growth optimization. The method does not take alternative optimal solu-
tions into account, whose underlying flux distributions could be quite different from one
another. This is especially the case for type III extreme pathways, whose constituent re-
actions form internally closed loops, able to take on infeasibly large flux values. If these
loops are active in a certain flux distribution and not in another, the difference between
these may subsequently have a considerable impact on the calculated p value, overesti-
mating the deletion impact of a given gene knockout.

A more appropriate approach could have been to minimize the sum of absolute fluxes
[121, 146], then use the resulting flux distributions to calculate the associated deletion im-
pacts. This method is founded on the assumption that there is selection pressure for cells
to utilize a minimal amount of enzyme to obtain a given growth phenotype [146]. Conse-
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(a) Malonyl-CoA - ACC1 (b) NADPH - G6PD and PGD

Figure 4.9: Production envelopes for the in silico double reaction mutants proposed by the Opt-
Knock algorithm for increased production of (a) malonyl-CoA by ACC1, and increased generation
of (b) NADPH via the oxidative pathway of the PPP, G6PD and PGD. The graphs indicate the
minimal and maximal flux values obtainable for the target reactions at various growth rates.

quently, in addition to providing a unique flux distribution with minimally active type III
pathways, the emergent flux distributions may therefore be more biologically realistic, in-
creasing the likelihood of accurately predicting the emergent flux redistribution following
a genetic perturbation.

4.3 Model employment for phenotypic predictions

4.3.1 Innate potentiality of the metabolic network uncover strategies
for increased production of malonyl-CoA and NADPH

The reconstructed GSM provides a suitable framework for proposing candidate genetic
interventions for increased lipid production. Using the OptKnock algorithm, candidate
double reaction knockout mutants were found for three of the four considered target reac-
tions (Table 4.7). Depending on the associated gene rules, the suggested mutant strategies
required three to four independent gene knockouts. Consequently, in addition to evalu-
ating the calculated yields and production rates, one has to simultaneously consider the
tractability of the various genetic interventions.

Malonyl-CoA - ACC1

The first target reaction was ACC1 (AUR0129), which synthesizes the fatty acid pre-
cursor malonyl-CoA. The suggested mutant (mutant A) was a double reaction mutant of
phosphoglycerate kinase, AUR0008 (PGK, EC:2.7.2.3) and ribose-5-phosphate isomerase,
AUR0046 (RPIA, EC:5.3.1.6). Deleting these metabolic reactions from the network re-
sulted in an approximately two-fold increase in the flux through the target reaction, altering
its flux variability from 1.89 - 1.89 mmol gDW-1 h-1 in the wild type network, to 3.66 -
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4.93 mmol gDW-1 h-1 in the knockout mutant (Table 4.7).
This enhanced production of malonyl-CoA was accompanied by a concurrent reduc-

tion in the specific growth rate from 0.134 to 0.0753 h-1, indicating that the redirection of
carbon flux towards malonyl-CoA production results in an inability to generate appropriate
levels of certain biomass precursors. The production envelope (Figure 4.9), which shows
the minimal and maximal fluxes of the target reaction for various growth rates, indicate
that the rather modest coupling of biomass production and ACC1 flux is not initiated until
the growth rate exceeds 0.04 h-1. From this point, the malonyl-CoA production increases
gradually until it reaches its maximal capacity at a growth rate of 0.0753 h-1.

This double reaction knockout creates an obstruction in glycolysis, resulting in an in-
creased flux into the PPP. Here, the removal of RPIA induces a redistribution of flux,
which eventually leads to an increased production of glycerone phosphate. Through a se-
ries of interconversions, the generated glycerone phosphate is transformed into cytosolic
pyruvate which subsequently enters the mitochondria, fueling the citric acid cycle, which
in the mutant has an increased flux compared to that of the wild type network (citrate

Table 4.7: Suggested double reaction knockout mutants by the OptKnock algorithm for increased
productivity of each target metabolite. The list of genes for each mutant strategy indicate the set
of genes that need to be disrupted in order to knock out the reaction pairs. Given are the resulting
specific growth rates and associated flux ranges through the target reactions. No double reaction
knockout strategy were identified for the target reaction ME.

ID Knockouts Genes Growtha Targetb Wild typeb

Malonyl-CoA

A AUR0008 T66006855.2 0.0753 3.66 - 4.93 1.89 - 1.89
T66010974.1

AUR0046 T66011653.1

NADPH, PPP

B AUR0008 T66006855.2 0.0727 4.41 - 7.21 0.288 - 0.289
T66010974.1

AUR1205 xc

C AUR0008 T66006855.2 0.0932 3.13 - 7.17 0.288 - 0.289
T66010974.1

AUR0034 T66006855.2
T66010974.1

D AUR0008 T66006855.2 0.105 4.19 - 7.02 0.288 - 0.289
T66010974.1

AUR0054 T66004892.1

NADPH, ME

-
a Denotes the optimal specific growth rate (h-1).
b Predicted flux ranges of the target reactions for the perturbed and wild type network were calcu-
lated by FVA at optimum. Given in mmol gDW-1 h-1.
c Any of the enzymatic subunits of the ubiquinol-cytochrome-c reductase complex: T66000711.1,
T66002810.1, T66002825.1, contig 179 or contig 6507.
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synthase (CS, EC:2.3.3.1) flux of 1.83 and 2.29 mmol gDW-1 h-1, respectively). The gen-
erated citrate is then exported out to the cytosol, where it upon the action of ACL is used
to generate acetyl-CoA, which subsequently gets carboxylated, forming the end product
malonyl-CoA.

Although the algorithm predicts an increased flux through ACC1, the generated
malonyl-CoA is predicted to be directly decarboxylated by the action of malonyl-CoA
decarboxylase (MCD, EC:4.1.1.9), preventing any increased lipid production. If imple-
mented in vivo, it might therefore be necessary to either inhibit the activity of MCD, or
knocking out the gene entirely, in order for the proposed mutant to increase its malonyl-
CoA productivity.

An even more detrimental side effect of this knockout mutant is the adverse reduction
in flux of two of the key NADPH-generating reactions associated with lipid accumula-
tion. The flux variability of the NADPH-producing reactions of the PPP (G6PD and PGD)
are in the mutant drastically reduced from that of the wild type network, both showing a
more than 105 fold reduction. Consequently, the positive effects of the proposed knock-
out strategy might therefore be quite limited when implemented in vivo, questioning its
applicability.

NADPH - G6PD and PGD

A joint OptKnock formulation was proposed for the two NADPH-generating reactions of
the pentose-phosphate pathway, G6PD (AUR0055) and PGD (AUR0041), as they are sub-
ject to a direct flux coupling in A. sp. T66 because of their presence in a linear, unbranched
pathway. The three top candidate strategies (B, C and D) are presented in Table 4.7, with
the resulting production envelopes in Figure 4.9.

The three proposed mutants showed a highly significant increase in flux ranges for the
target reactions, compared to that of the wild type network. Common to all the knockout
strategies was the inactivation of the glycolytic enzyme PGK (AUR0008), which forces a
flux redistribution from the degradational pathway of glycolysis into the oxidative steps of
the PPP. This increased influx of carbon causes both of the target reactions to drastically
increase their flux capacities, consequently increasing their rate of NADPH production.
In fact, by only performing this single-reaction knockout, the minimal and maximal flux
values of the target reactions increases to 2.68 and 6.55 mmol gDW-1 h-1, respectively,
with a concurrent optimal growth rate of 0.106 h-1.

The second knockout was quite different for the three proposed strategies.
The suggested knockouts were reaction AUR1205, ubiquinol-cytochrome-c reductase

complex (EC:7.1.1.8) for mutant B, reaction AUR0034, mitochondrial malate dehydroge-
nase (MDH2, EC:1.1.1.37) for C, and reaction AUR0054, glycerate 2-kinase (GLYCTK,
EC:2.7.1.165) for D.

Although the details of the flux redistribution in these mutants are harder to pinpoint,
they all induce a drastic increase in flux into the oxidative steps of the PPP, resulting
in a considerable loss of carbon because of the oxidative decarboxylation of 6-phospho-
d-gluconate by PGD. The generated carbon dioxide is subsequently exported out of the
system, preventing its incorporation into the necessary biomass precursors, causing the
associated growth rates to decrease. As illustrated in the production envelopes in Figure
4.9, mutant B exhibit the earliest flux coupling between growth and target reactions at a
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growth rate of merely 0.005 h-1. On the contrary, mutants C and D do not exhibit any flux
coupling until the growth rate has exceeded around 0.05 and 0.07 h-1, respectively.

While all three approaches have a highly positive impact on the metabolic flux through
the oxidative steps of the PPP, they do all result in a concurrent decrease in the flux ranges
of ACC1. Much like the effect of knockout strategy A on the fluxes through G6PD and
PGD, the flux through ACC1 did show a reduction for all three knockouts B, C and D.
However, the effect was not as detrimental, only showing a reduction in flux range from
1.88 - 1.89 mmol gDW-1 h-1 in the unperturbed network, to 0.812 - 0.813 mmol gDW-1 h-1

in mutant B, 1.04 - 1.04 mmol gDW-1 h-1 in mutant C, and 1.17 - 1.18 mmol gDW-1 h-1 in
mutant D.

Based on all these results, it seems that knockout strategy D could be the one with the
greatest potential, assuming optimal growth. The mutant is showing a small reduction in
growth rate, a significant increase in flux through the target reactions, a fairly low reduction
in malonyl-CoA production, as well as only needing the simultaneous knockout of three
enzyme-encoding genes (Table 4.7). For sub-optimal growth phenotypes, however, the
other mutant strategies B and C might be preferable. B would be favorable for growth
rates of around 0.07 h-1 and below, while the strong growth coupling of mutant C in the
growth range 0.08 - 0.09 h-1 makes this the best choice at these growth rates.

NADPH - ME

OptKnock did not identity any viable double reaction knockout strategies for increasing
the metabolic flux through the cytosolic ME (AUR0135). Additionally, the flux variability
of this reaction was only 0 - 0.0002 mmol gDW-1 h-1 in the wild type network, suggesting
that this reaction might not be as important for NADPH generation in A. sp. T66 and
other oleaginous microorganisms as earlier hypothesized [89].

While the proposed knockout strategies might be accurate when the cells has
evolved over time towards optimal growth performance, the flux distribution of the
initial generations might be rather different. MOMA was therefore used to calculate the
initial flux redistribution following the genetic perturbations, assuming it to be minimally
different from that of the wild type network (Table 4.8).

Table 4.8: Flux rates for the target reactions of the four independent double reaction knockout strate-
gies proposed by OptKnock. These fluxes were calculated by MOMA to investigate how the initial
flux redistribution of the metabolic network would affect the fluxes through the target reactions.

ID Target productiona

A 0.890
B 0.333
C 0.236
D 0.360

a Predicted flux of the tar-
get reactions, mmol gDW-1

h-1.
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MOMA predicted that the initial fluxes through the target reactions are quite different
from those predicted by OptKnock, and indicated that the beneficial effects of the pro-
posed knockouts would not emerge until the cells have had time to evolve towards a state
of optimal growth. Consequently, this leads to the conclusion that the implementation of
any of these knockout strategies should be followed by adaptive laboratory evolution of
fast-growing strains, ensuring an optimal coupling between the cellular objective and the
production of the target metabolite.

A central issue with the OptKnock framework is the implicit assumption of biomass
production as an appropriate cellular objective during target metabolite production. In
many cases, the biosynthesis of the target compound is not properly initiated during the
exponential growth phase, but instead pursues the depletion of an essential nutrient. This
nutrient deficiency triggers a metabolic shift with a concurrent redistribution of fluxes
within the metabolic network, prompting the generation of the target metabolite. An
induced coupling between growth and target metabolite production is therefore quite
unrealistic, and would presumably yield poor results when implemented in vivo. This
uncoupling of growth and target metabolite production is also the case for lipid production
in oleaginous microorganisms. Here, the depletion of nitrogen, or some other essential
nutrient, induces a substantial redistribution of flux in which lipids are synthesized at high
rates during a post-growth lipid accumulation phase [90]. However, experimental efforts
have been performed on a Schizochytrium strain in which it was found that single-stage
continuous cultures at optimal dilution rates could prove beneficial for lipid and DHA
production [147]. The reason being factors such as set-up times and harvesting methods,
which for the biphasic batch-fermentations were sub-optimal compared to that of the
continuous cultures. Consequently, it could therefore be worth exploring these candidate
mutant strategies in A. sp. T66 to assess whether this could offer novel approaches to
increased lipid accumulation in thraustochytrids.

4.3.2 Genome-wide transcriptomic changes are associated with the
metabolic shift from growth to lipid accumulation

Integration of the transcriptomics data with the three condition-specific models reveal di-
vergent modes of regulation during the metabolic shift from biomass production to lipid
accumulation (Table 4.9). At the onset of lipid accumulation (N1), 188 gene-reaction pairs
appears to be regulated on the transcriptional level categorized by a high correlation be-
tween the change of their metabolic fluxes and a concurrent change in the associated tran-
script levels. Out of the 8 major subsystems, the amino acid metabolism appears to be the
most significantly regulated on the transcriptional level, constituting 31% of these gene-
reaction pairs (Figure 4.10). From the heatmap in Figure 4.11, a considerable proportion
of these consist of the biosynthetic aminoacyl-tRNA reactions, suggesting a global reduc-
tion in protein synthesis as a response to the ongoing nitrogen depletion. In fact, of the 20
common amino acids, the only tRNA-charging reaction that was not under significant tran-
scriptional regulation was that of cysteinyl-tRNA synthetase (CARS, EC:6.1.1.16). The
apparent regulatory mechanisms behind the coinciding reduction in the particular amino
acid biosynthetic pathways, however, appears to be more varied.

The biosynthetic pathways of the aromatic amino acids phenylalanine, tyrosine and
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Figure 4.10: Subsystem distribution of the various gene-reaction pairs significantly regulated at
the metabolic shift from exponential growth to the early onset of lipid accumulation (N1/E). The
modes of regulation are: (a) transcriptional level, showing a high correlation between the differential
changes in flux and transcript levels, (b) post-transcriptional level, no change in flux levels with an
associated change in transcript levels, (c) metabolic level, inverse correlation between fluxes and
transcript levels, or a significant increase in flux with no concurrent change in transcript levels.

tryptophan, in addition to histidine, are highly enriched with transcriptional regulation,
showing a considerable downregulation of both metabolic fluxes and associated transcript
levels when transitioning into lipid accumulation (Figure 4.11). Interestingly, recent re-
search that applied the same methodology on a GSM of the oleaginous yeast Y. lipolyt-
ica also suggest that a similar set of metabolic pathways of the amino acid metabolism
are subject to transcriptional downregulation during nitrogen limitation [148]. While the
identified subsystems consisted of the biosynthetic pathways of histidine, phenylalanine,
tyrosine and tryptophan, they also include the biosynthetic pathways of leucine and lysine,
which is not found to be significantly regulated transcriptionally in the case of A. sp. T66.
In the paper, they further hypothesized that the protein TORC1 might possess an alter-
native regulatory role on lipid accumulation [148], which was further supported by later
experimental efforts suggesting an interplay between TORC1, the leucine-intermediate 2-
isopropylmalate and a Leu3-like transcription factor [149].

Although the presented results do not fully corroborate these findings, they do point in

Table 4.9: Number of gene-reaction pairs subject to either of the three modes of regulation: tran-
scriptional, post-transcriptional, and metabolic for each of the given condition-comparisons. Lists
of the set of genes, associated reactions and associated flux and transcript changes are available in
the Supplementary Material ’Transcriptome Model Integration.xlsx’

Condition-comparison Transcriptional Post-transcriptional Metabolic

N1/E 188 148 669
N2/E 190 188 669

N2/N1 103 633 138
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Figure 4.11: Heatmap showing the extent of transcriptional, post-transcriptional and metabolic
modes of regulation occurring between the three conditions. The color grading are proportional
to the likelihood of a metabolic reaction in a particular subsystem being regulated transcriptionally,
post-transcriptionally or metabolically. Abbreviations: E: exponential growth phase, N1: onset of
lipid accumulation, N2: late lipid accumulation.

the same direction, alluding to a similar mechanism by which oleaginous microorganisms
concertedly downregulates specific subsections of the amino acid metabolism upon nitro-
gen starvation by way of transcriptional regulation. This could thereby contribute to the
rerouting of carbon flow into lipid biosynthesis during the metabolic shift from exponen-
tial growth to lipid accumulation.

Whereas lipid metabolism in the aforementioned studies were found to be under
limited transcriptional regulation, instead being subject to mostly metabolic regulation
[148, 149], our results indicate that the two modes of fatty acid biosynthesis in A. sp. T66
are in fact subject to divergent regulatory constraints.

The reactions of the standard fatty acid biosynthetic pathway appear to be under signif-
icant transcriptional regulation, showing correlated changes in a large subset of fluxes and
associated transcript levels from the exponential phase (E) to the early lipid accumulation
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Figure 4.12: Subsystem distribution of the various gene-reaction pairs significantly regulated at the
metabolic transition from early to late lipid accumulation (N2/N1). The modes of regulation are:
(a) transcriptional level, showing a high correlation between the differential changes in flux and
transcript levels, (b) post-transcriptional level, no change in flux levels with an associated change
in transcript levels, (c) metabolic level, inverse correlation between fluxes and transcript levels, or a
significant increase in flux with no concurrent change in transcript levels.

phase (N1). This regulation is predominately present during the onset of lipid accumu-
lation (N1), while the transcripts level show a minor decrease towards the end of lipid
accumulation (N2) (4.11). These reactions are all associated with a single gene encoding
both of the catalytic subunits of the FAS enzymatic complex, which shows a significant
transcriptional upregulation during the two sample points of the lipid accumulation phase
(fold changes of 2.8 and 2.1, respectively). The reactions of the PKS pathway, however,
seem to predominately be under metabolic regulation, as seen in Figure 4.11, constituting
the majority of the gene-reaction pairs associated with the subsystem ’Biosynthesis of un-
saturated fatty acids’ (Figure 4.10). The metabolic regulation of the reactions of the PKS
pathway seems to be fairly constant during both stages of the lipid accumulation phase.

These contrasting regulatory mechanisms might hint at a possible strategy for increas-
ing both the amount and fractional composition of PUFAs in the lipid moieties of A. sp.
T66. By increasing the available levels of intracellular lipid precursors (e.g. malonyl-CoA
and NADPH), while simultaneously inhibiting the expression of the FAS-encoding gene,
one would tentatively proceed to increase the catalytic activity of the PKS synthase path-
way, while suppressing the activity of the competing FAS system. In this way, the rate
of PUFA biosynthesis would increase, at the same time as the rate of production of the
unsaturated fatty acids by the FAS complex would decline. While approaches for the tran-
scriptional inhibition of the FAS-encoding gene might be challenging to develop, other
methods such as the direct inhibition of the protein complex using a range of established
FAS-inhibitors could also be employed to reduce its cellular activity [150].

The incorporation of the genome-wide transcriptomics data gave rise to valuable in-
sight into the systems-level regulatory mechanisms underlying the metabolic shift into
lipid accumulation. However, the results do also hint at a rather simplistic assumption of an
exclusive redistribution of metabolic fluxes from biomass production towards lipid accu-
mulation. This is quite apparent when considering the large number of post-transcriptional
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gene-reaction pairs associated with the shift from early lipid accumulation (N1) to late
lipid accumulation (N2). In total, 633 unique gene-reaction pairs are subject to a signifi-
cant change in transcript levels, with no concurrent change in metabolic flux (Table 4.9).
While a subset of these may correspond to genuine instances of post-transcriptional reg-
ulation, the considerable increase in number could rather indicate that the predicted flux
distributions might underestimate the global biochemical activity of the metabolic network
in vivo. In fact, as the subsystem distribution of the associated reactions indicate in Figure
4.12, the underlying transcriptional regulation appears to be generally representative of the
subsystem distribution of the metabolic network of A. sp. T66 as a whole (Figure 4.5). This
suggests a comprehensive transcriptional transition not reflected in the metabolic fluxes of
the model, which could be indicative of a metabolic network whose global activity are
underestimated due to the condition-dependent assumptions.
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Chapter 5
Conclusion and Outlook

A high-quality GSM of the entire metabolism of the thraustochytrid A. sp. T66 was suc-
cessfully reconstructed. The model termed iVS1191 was subject to extensive manual cu-
ration and refinements, considerably expanding its metabolic scope to that of the template
reconstruction iCY1170 DHA. In doing so, the connectivity of the metabolic network
showed drastic improvements when compared to iCY1170 DHA, significantly reducing
the number of blocked reactions and associated dead-end metabolites.

Through model employment using the OptKnock framework, multiple double reac-
tion knockout strategies were identified which were predicted to increase the productivity
of the essential PUFA precursors malonyl-CoA and NADPH. Furthermore, integration of
genome-wide transcriptomics data from fermentation experiments revealed a transcrip-
tional downregulation of subsets of the metabolic fluxes associated with the amino acid
metabolism, alluding to a conserved regulatory mechanism also observed in other oleagi-
nous microorganisms. This analysis also suggested a bimodal regulatory scheme in which
the FAS complex appears to predominately be regulated on the transcriptional level, while
the competing PKS pathway seems to be under metabolic control. This led to the model-
generated hypothesis that increased levels of lipid precursors might preferentially influence
the activity of the PKS pathway, while in minor ways affecting that of the FAS system,
thus increasing the fractional composition of PUFAs.

This thesis successfully delivered on both the primary and secondary aim of model re-
construction and application for identifying strategies for increased production of PUFA-
containing lipids. However, the general lack of validations of the model predictions is of
a genuine concern. Before future employments of the reconstruction, it would be highly
beneficial to perform large-scale validations of the phenotypic predictions. These could
be in the form of the growth predictions performed during this project or by utilizing
high-throughput phenotype microarrays on a wide range of nutrient sources. The resulting
disparities between predicted and experimental results could thereafter be used to drive
future model refinements.

Fundamental to the validation of these predictions is detailed quantitative data on the
biomass composition and associated energy demands of A. sp. T66. As the analysis in this
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project indicates, the current biomass composition and associated energy demands are of
insufficient quality. Obtaining high-quality data should therefore be of the highest priority
before future validations and applications of the reconstruction. Planning of these experi-
ments are currently being discussed by the collaborators of this project (AurOmega).

Although interesting in their own right, the gene essentiality predictions should primar-
ily be utilized for model validation when in vivo knockout data is available. Disparities
between the experimental and predicted mutant phenotypes will subsequently provide in-
dications of inadequacies in the reconstruction, prompting future model refinements.

The model-generated hypothesis of the bimodal regulation of FAS and PKS is a great
starting point for further research. A reasonable approach is to investigate whether the
changing proteomic levels of these complexes are correlated with the corresponding tran-
script changes. If this turns out to be the case, the subsequent plan of attack could be
the identification of strategies for increasing the lipid precursor pool. Ways of increas-
ing these may be difficult to ascertain, although crudely over-expressing enzymes such
as ACC1 could prove beneficial. A more interesting and possibly more promising strat-
egy might be to exploit the innate biomolecular modes of regulation responsible for the
metabolic shift from exponential growth to lipid accumulation. As our results indicate,
the downregulation of specific subsets of the amino acid metabolism appear to be closely
linked to the rerouting of flux towards lipid production. Further investigation in the form
of differential gene co-expression analysis could aid in the identification of key regula-
tors that are responsible for this transcriptional and metabolic shift, which could highlight
novel strategies for increasing the capabilities of lipid biosynthesis in A. sp. T66.
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Appendix A
Constructing the biomass objective
function

The biomass objective function is an abstractive reaction of GSMs that contain the nec-
essary biomolecular components to generate a unit of cellular dry weight [67]. By per-
forming appropriate stoichiometric weightings, the flux through this reaction directly cor-
respond to the specific growth rate of the organism [68]. In a similar approach to that of
[134], the biomass reaction was expanded by adding five preceding reactions, one for each
of the following biomass classes: DNA, RNA, proteins and amino acids, carbohydrates
and lipids. The components of these reactions were stoichiometrically weighted using
appropriate correction factors, such that each generic biomass product had a normalized
biomass weight of 1 gDW. Scaling these generic components in a final biomass reaction
using experimental weight fractions (i.e. g component gDW-1) will subsequently enable
direct predictions of specific growth rates. All calculations are available in the Supple-
mentary Material ’Biomass composition.xlsx’.

DNA

The relative molar abundance of each nucleotide was assumed to be the same as that
of S. limacinum. To simulate the energetic requirements of DNA polymerization, the
corresponding dNTPs were used as reactants, resulting in a reaction on the form

c1dATP + c2dGTP + c3dCTP + c4dTTP −−→ DNA + c5PPi.

The stoichiometric coefficients c1 - c5 were calculated by using the molar masses of the
respective dNTPs minus the molar mass of the generated pyrophosphate to scale and nor-
malize the molar fractions of each constituent deoxynucleotide (Table A in S1 - Biomass
calculations).

RNA

An identical approach was carried out for the RNA composition, which in a similar way
was assumed to be the same as that of the template organism (Table A in S1 - Biomass
calculations).

Protein

Protein content, as well as the amino acid composition was assumed to be the same as
that of the template organism. To account for the energetic demands of ribosomal protein
synthesis, one molar equivalent of ATP and two of GTP were added to the reaction [134].
Additionally, charged tRNA molecules were utilized as reactants to include the preced-
ing energy requirements of the ATP-driven synthesis of aminoacyl-tRNA. Molar ratios of
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each aminoacyl-tRNA were calculated based on mass percentages of each amino acid, and
subsequently scaled in a similar fashion to that of DNA and RNA using a correction factor
(Table B1 in S1 - Biomass calculations).

Lipids

The lipid class contents was partly assumed to be the same as that of iCY1170 DHA, with
a few exceptions. Mono- and diacylglycerols were removed as available experimental data
were not available for these lipid classes, while free fatty acids were added as a separate
component. The weight fractions of each constituent lipid class were normalized, and
subsequently converted to molar ratios using the corresponding molar masses. The molar
masses of the lipid classes containing fatty acyl chains (e.g. triacylglycerol) were deter-
mined using the generic fatty acid distribution obtained from FAME analysis of A. sp. T66
(Table 3.2). The molar ratios were then scaled by a correction factor, culminating in the set
of stoichiometric coefficients used in the lipid biomass reaction (Table B1 in S1 - Biomass
calculations).

Carbohydrates

The carbohydrate content was assumed to be the same as that of S. limacinum, consist-
ing of the the two enantiomers D- and L-galactose. To estimate the energy requirements
for the polymerization of these monomeric carbohydrates, GDP-L-galactose and UDP-
D-galactose were employed. Experimental molar ratios were converted to mass ratios,
and subsequently scaled by an appropriate correction factor to obtain the stoichiometric
coefficients (Table C in S1 - Biomass calculations).

Biomass reaction

The products of these biomass reactions were then added to a final reaction which com-
bines these generic classes at appropriate ratios based on experimental mass fractions

s1DNA + s2RNA + s3Protein + s4Lipids + s5Carbohydrates −−→ Biomass.

Here, the stoichiometric coefficients s1 - s5 are simply the normalized mass fraction of
each of the major biomass components (Table D in S1 - Biomass calculations). Con-
sequently, the molar weight of the generated biomass is 1 gDW mmol-1, enabling the
prediction of specific growth rates (h-1). An auxiliary demand reaction for the biomass
metabolite was also added to allow the reaction to carry a non-zero flux.

Coenzymes and cofactors

A sixth biomass reaction was added when performing the gene essentiality analysis to ac-
count for the indispensable requirement for coenzymes and cofactors for cellular growth
(see Table 5.1). The stoichiometric weights of the cofactors and coenzymes were set at
an arbitrarily low level of 10−6. Additionally, inorganic ions were also added based on
that of the biomass reaction of iCY1170 DHA. These ions were; iron, potassium, sodium,
calcium, copper, magnesium, silicon and boron.
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The decisions regarding the intracellular localization of the various coenzymes and
cofactors of the biomass reaction were primarily determined based on biochemical infor-
mation of the role and subcellular localization of their associated enzymes. However, when
certain coenzymes were needed in a particular subcellular compartment but no available

Table 5.1: Listing of essential cofactors and coenzymes added to the biomass reaction to increase
the scope and validity of the gene essentiality predictions. The various compartments are denoted
by the following abbreviations: cytoplasm (c), mitochondria (m) and peroxisome (x).

Metabolite Compartments Description

NAD+ c, m, x Electron carrier used in a wide range of biological re-
dox reactions, needed for maintaining internal redox
states and other biological processes in all included
intracellular compartments of the model [151].

NADP+ c, m, x Similar function to that of NAD+, but also important
for the regeneration of glutathione [152], as well as
being an important cofactor in a wide range of an-
abolic pathways [151].

FAD c, m, x Essential prosthetic group of flavoproteins [153]. Al-
though predominately present in the mitochondrial
compartment [154], it is also needed for the activity
of cytosolic and peroxisomal flavoproteins (e.g. per-
oxisomal acyl-CoA oxidase [155]).

Coenzyme A c, m, x Central role in cellular metabolism, as well as post-
translational and allosteric regulation [156].

Ubiquinone-9 m Electron-carrier in the respiratory chain [157].
Glutathione c, m Antioxidant protecting the cell from oxidative stress

[152].
Tetrahydrofolate c, m Central role in the one-carbon metabolism [158].
Thiamine diphosphate c, m Coenzyme of enzymes that transfer two-carbon units

[159].
Riboflavin-5-phosphate
(FMN)

c, x Along with FAD, an important prosthetic group of
flavoproteins [153].

Pyridoxal 5’-phosphate c Needed for the catalysis of wide range of biochemical
reactions (e.g. transamination) [160].

Lipoic acid m Essential cofactor of the E2 subunit of various oxo-
acid dehydrogenase complexes, as well as the H pro-
tein of the glycine cleavage system [161].

Biotin c, m Required for the transfer of carbon dioxide in car-
boxylase reactions [162].

Heme b c, m Metalloporphyrin bound to hemoproteins of diverse
biological functionalities [163].

Adenosylcobalamin m Necessary for the activity of the mitochondrial
methylmalonyl-CoA mutase [164].

Methylcobalamin c Needed for the activity of the cytosolic methionine
synthase [164].
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intracellular transporter was identified, the cytosolic form of the coenzyme was chosen by
default.

For example, while the majority of intracellular riboflavin-5-phosphate (FMN) acts as
redox cofactors of mitochondrial dehydrogenases [153], no transporter or mitochondrial
source of FMN were identified in A. sp. T66. Consequently, a decision was made not to
include a gap filling reaction to enable a mitochondrial uptake of this coenzyme, and rather
just use the cytosolic version in the biomass reaction.
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Appendix B
Calculations of specific uptake rates

The specific uptake rates qs of the two carbon sources d-glucose and glycerol, as well as
the nitrogen source ammonium qN, were estimated based on the measured substrate con-
centrations. The conversion to flux rates in mmol gDW-1 h-1 were performed by dividing
this value by the molar mass in g mmol-1. As an example, consider glucose with a molar
mass of 180.156 g mol-1, and a measured specific uptake rate of 0.259 g gDW-1 h-1. The
corresponding uptake flux is given as

0.259 g gDW-1 h-1

180.156 g mol-1/1000 mmol mol-1
= 1.44 mmol gDW-1 h-1.

The uptake fluxes of the remaining substrates were calculated in a similar fashion (Table
5.2).

Table 5.2: Experimental substrate uptake rates, qs (g substrate gDW-1 h-1), and corresponding uptake
fluxes (mmol gDW-1 h-1) used to constrain the growth predictions of the reconstructed GSM. Also
given are the measured ammonium uptake rates (qN).

Medium qs Uptake flux qN Uptake flux, ammonium

Minimal glucose 0.259 1.44 0.020 1.11
Minimal glycerol 0.225 2.44 0.018 0.99
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Appendix C
Pathway map of the steroid biosyn-
thetic pathway

Figure 5.1: Metabolic pathway map of steroid biosynthesis from the KEGG PATHWAY database
annotated with the putative metabolic capabilities of A. sp. T66. These types of color coded
metabolic maps were extensively used in the gap filling procedures during the initial draft model
refinement, as well as during subsequent rounds of model curations.
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Appendix D
PKS pathway map

Figure 5.2: Metabolic map of the PKS pathway responsible for the biosynthesis of PUFAs in A. sp.
T66. The pathway map was generated in a semi-automated fashion using Escher [96]
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Appendix E
Minimal medium used during gene
essentiality predictions

Updated minimal medium used for single gene essentiality analysis, with the addition of
essential cofactors which A. sp. T66 are unable to synthesize de novo. The composition of
this medium is taken from [90], except for the carbon source which was changed to that of
glucose.

Table 5.3: Updated carbon-limited minimal medium used during the model employment. The
growth-limiting uptake rate (mmol gDW-1 h-1) of glucose was determined experimentally. The co-
factors thiamine and cyanocob(III)alamin were added as A. sp. T66 are unable to synthesize these
de novo [90].

Metabolite Uptake rate

D-glucose 1.44
Ammonium 10.000
Phosphate 1000

Sulfate 1000
Proton 1000
Water 1000

Oxygen 1000
Calcium 0.010
Boron 0.010

Magnesium 0.010
Silisium 0.010
Copper 0.010

Potassium 0.010
Sodium 0.010

Iron 0.010
Thiamine 1000

Cyanocob(III)alamin 1000
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