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1Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology,
N-7489 Trondheim, Norway, 2Interagon AS, Laboratoriesenteret, NO-7006 Trondheim and 3Department of
Computer and Information Science, Norwegian University of Science and Technology, N-7489 Trondheim,
Norway

Received December 21, 2010; Revised May 5, 2011; Accepted May 9, 2011

ABSTRACT

MicroRNAs (miRNAs) regulate genes post tran-
scription by pairing with messenger RNA (mRNA).
Variants such as single nucleotide polymorphisms
(SNPs) in miRNA regulatory regions might result in
altered protein levels and disease. Genome-wide
association studies (GWAS) aim at identifying
genomic regions that contain variants associated
with disease, but lack tools for finding causative
variants. We present a computational tool that can
help identifying SNPs associated with diseases, by
focusing on SNPs affecting miRNA-regulation of
genes. The tool predicts the effects of SNPs in
miRNA target sites and uses linkage disequilibrium
to map these miRNA-related variants to SNPs of
interest in GWAS. We compared our predicted SNP
effects in miRNA target sites with measured SNP
effects from allelic imbalance sequencing. Our pre-
dictions fit measured effects better than effects
based on differences in free energy or differences
of TargetScan context scores. We also used our
tool to analyse data from published breast cancer
and Parkinson’s disease GWAS and significant
trait-associated SNPs from the NHGRI GWAS
Catalog. A database of predicted SNP effects
is available at http://www.bigr.medisin.ntnu.no/
mirsnpscore/. The database is based on haplotype
data from the CEU HapMap population and miRNAs
from miRBase 16.0.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding single
stranded RNAs of about 22 nucleotides length that
regulate genes post transcription by partially pairing
with 30-untranslated regions (30-UTR) of messenger

RNA (mRNA) (1). Watson–Crick pairing to nucleotides
2–7 of the 50-end of microRNAs (seed sites) is known to
be important in mRNA targeting. Specifically, miRNAs
require almost perfect complementarity at seed sites for
binding and reducing the protein levels of targets (2).
However, mRNA sites with perfect complementarity to
the seed nucleotides are not necessarily functional (3)
and those with imperfect seed complementarity can also
be functional (2). Consequently, considering seed sites
alone gives many false positive miRNA target sites.
Predictions can be improved, however, by using informa-
tion about the target sites’ context, such as their position
within the 30-UTR (4) and the distance to neighbouring
sites (5), as such context is critical for target site function-
ality and efficacy.
Genome-wide association studies (GWAS) can identify

genomic regions that contain genomic alterations, such as
single nucleotide polymorphisms (SNPs), associated with
common disease (6). The biological effects of identified
alterations are usually not known, however, as few of
the functional variants that show association in GWAS
change the amino acid sequence. Moreover, a sizeable
proportion is thought to reside in regulatory regions,
since several associated regions found in GWAS lack
known genes (7). Variants in regulatory regions can, for
example, result in altered protein levels, so identifying and
understanding their effects can improve diagnostics and
treatments for diseases (8). Specifically, SNPs in regula-
tory elements such as miRNA target sites can affect
phenotype (9) and have been associated with increased
cancer risk (10) and other diseases (11). The increased
use of GWAS to study genetic factors in common
disease necessitates a tool that can identify and interpret
effects of regulatory variants.
Several research groups have tried to look at regulatory

variant effects. Bao et al. (12) looked for SNPs in putative
conserved miRNA target sites [from the target site predic-
tion tool TargetScan (13)], and integrated such SNP sites
with phenotype (physiological and behavioural traits
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of mice as quantitative trait loci) and expression data
(of mice and human transcripts) into a database.
However, the studied phenotypes only concern physiology
of mice instead of human diseases. Georges et al. (14) also
made a database with SNPs in putative miRNA target
sites [regulatory motifs identified in (15) and predicted
sites from (13)], but Georges et al. (14) did not map
their site SNPs to phenotypes, except for one SNP in
sheep. Barenboim et al. (16) developed an online tool
that finds SNPs in microRNA target sites on the fly.
The tool takes haplotype into account, but is limited to
one single gene and six SNPs per run and does not
quantify SNP effects. Nicoloso et al. (17) used the
miRanda tool (18) to identify breast cancer-associated
SNPs that disrupt miRNA target sites. The authors
filtered SNPs based on minimum free energy (MFE) and
tested the remaining ones in a case-control study.
A basic way of detecting SNPs in microRNA target

sites (mirSNPs) in a gene g, starts by looking at SNPs
lying in a region of interest, such as 30-UTR, 50-UTR,
coding or promoter region (Figure 1). Here, we will use
the 30-UTR as an example, since SNPs affecting miRNA
target sites are more likely to reside in the 30-UTR (19,20).
Let us consider a SNP s in this region of interest. The SNP
s has several alleles, usually two, that we want to evaluate

for targeting by a microRNA seed motif m. Specifically,
for each allele ai, we determine whether there is a
microRNA target site in a sequence alsi consisting of the
allele ai and its flanking sequences. Target sites are
detected by using any miRNA target site prediction tool
based on sequence search. It is convenient to disregard
target sites with mismatches in the seed region and only
consider 6-mer, 7-mer and 8-mer seed sites. For each
allelic sequence alsi, we get a list li of target sites for
microRNA m. We can then compare these lists to deter-
mine if a target site is created, deleted, or changed between
the alleles (Figure 1).

All existing tools use variants of the approach above
of evaluating candidate sites individually (Figure 1), but
this approach ignores that 30-UTRs can contain multiple
linked SNPs that can affect miRNA targeting by altering
site context. Instead, we propose to analyse all the SNPs
of the 30-UTR at the same time, to have a general overview
of the SNPs’ regulatory effect on the considered mRNA.

In this article, we present a computational tool that
can help identifying SNPs causative to diseases, such as
cancer. The tool focuses on SNPs that may affect miRNA
targeting and thereby cause gene dysregulation. More pre-
cisely, the tool predicts the effects of SNPs in miRNA
target sites and uses linkage disequilibrium to map those
mirSNPs to SNPs of interest in GWAS. We show that the
tool’s predictions correspond well to the SNP’s measured
effects on miRNA regulation, and that the predictions
correlate better to those effects than do the predictions
of other existing tools. We further demonstrate the
tool’s utility by analysing two published GWAS data
sets and specific SNPs reported to affect miRNA
targeting.

MATERIALS AND METHODS

The following sections will present a method that uses
context-based miRNA target prediction to quantify the
effects of SNPs in miRNA target sites (mirSNPs) and
uses linkage disequilibrium to map candidate mirSNPs
to disease data from GWAS. The tool allows additional
filtering of candidate genes and candidate miRNAs.
The tool’s mapping method is general and can therefore
be applied to SNPs independent of the scoring method
used.

Data

We used the SNP data from the human haplotype map
project [HapMap, (21)]; particularly, SNP data from the
CEU population (CEPH - Utah residents with ancestry
from northern and western Europe), release 22 for haplo-
type data, and release 27 for linkage disequilibrium data.
We used DNA sequences from the human and mouse
genome assemblies hg18 and mm9 (22,23). SNPs and
Gene annotations (hg18,mm9) came from UCSC
Genome browser (24). MicroRNA sequences came from
miRBase, release 13.0 and 16.0 (25). GWAS data were
from a breast cancer study from Cancer Genetic
Markers of Susceptibility (CGEMS) (26), from a
Parkinson disease study (P-values from tier 1) (27), and
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Figure 1. Identifying SNPs in miRNA target sites. The illustration
shows an mRNA region that contains SNPs represented by small
vertical lines. The considered SNP has two alleles: A and G. We
make one subsequence for each allele by using the flanking regions
of the SNP (7 nucleotides on each side). Given miRNA seed motifs
(nucleotides 2–8 from the 50-end of miRNA sequences), we look for
target sites in each allele sequence and then compare results to charac-
terise the effect of the SNP (create/delete (CRT/DEL) target sites, or
change (CHG) site type).
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from the NHGRI GWAS catalog (28) (http://www
.genome.gov/gwastudies).

MicroRNA regulation score of haplotypes

To analyse all the SNPs of the 30-UTR at the same time,
we use population haplotype data for the 30-UTR
(Figure 2 and Supplementary Figure S1). Specifically, we
first use haplotype data to build haplotype sequences hsi;
i.e. 30-UTR sequences containing the combinations of
alleles found in the considered population. Second, for a
given miRNA m, we use a miRNA target prediction tool
(29) to score each haplotype sequence hsi. The prediction
tool uses a two-step SVM classifier, where one SVM step
classifies individual target sites and a subsequent SVM
step classifies overall mRNA targeting potential.
Features the SVM uses at the first step include seed

pairing, 30 supplementary pairing, the site’s AU context
and relative position in the 30-UTR, and distance to neigh-
bouring sites, whereas features at the second step include
30-UTR length, the number and predicted strength of
target sites, and the number of optimally spaced sites in
the 30-UTR (29). As output, the SVM-based prediction
tool gives a score such that a high output score indicates
that the miRNA m is likely to down-regulate this mRNA.
Third, we compare the score-haplotype pairs to find the
differences of haplotypes that can explain any differences
of SVM scores. From the differences of haplotypes, we
can make a list of candidate SNPs and predict their
impact on gene regulation.
The haplotype score comparison works as follows. First

we group haplotypes Hi by scores, since we are interested
in score differences:

Gs ¼ fHi 2 H jScoreðHiÞ ¼ sg:

Second, we look at the difference of haplotypes between
groups, to identify which SNPs differ between two score
groups: 8(Gm, Gn), m 6¼ n, 8Hi2Gm, 8Hj2Gn,

�Haploij ¼ fsnpjHiðsnpÞ 6¼ HjðsnpÞg:

Third, we cluster the �Haplo SNP sets, to handle par-
ticular cases such as two SNPs in one target site
(Supplementary Figure S2). Specifically, we cluster
�Haplo sets such that in each cluster, the intersection of
all the �Haploij of the cluster is not empty:

Clustk ¼
�
�Haploijj

\
�Haploij 6¼ ;

�
:

Fourth, we take the intersection of the �Haplo SNP sets
in each cluster, to identify which SNP is responsible for
the score difference in each cluster:

Intersk ¼
\

Clustk ¼
\

�Haploij 2Clustk

�Haploij:

Finally, we merge all the clusters to create a list of SNPs
responsible for the score difference for the clusters:

Candidatemn ¼
[
k

Intersk:

Candidatemn are candidate SNPs that might explain the
difference between the scores m and n.

Normalization of target site scores

The miRNA target site prediction tool (29) predicts both
the targeting potential of individual candidate sites and
the total regulatory potential of candidate 30-UTRs; i.e.
if a gene’s 30-UTR sequence contains one or more candi-
date miRNA target sites, the tool scores the miRNA’s
regulatory effect on the target gene. However, the tool
does not score mRNAs without target site candidates.
Consequently, to score and compare scores for sequences
with and without candidate sites, we needed to create a
normalized score. The desired distribution should be
mainly uniform, because the difference between two trans-
formed scores should reflect a difference in percentiles in
the original distribution. Since we only get scores for
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Figure 2. Scoring SNPs in miRNA target sites. rs3019 and rs2281627
are SNPs in the 30-UTR of TRIM32. There are 3 different haplotypes
in the CEU population: UC/UU/CU. TRIM32 is targeted by miR-511,
but the U allele of rs2281627 disrupts one seed site, which results in a
lower score S2 for the UU/CU haplotypes. To identify rs2281627 as the
effect SNP, first the 3 haplotypes H1, H2 and H3 are grouped by scores
into G1 and G2. Second, we identify the differences between haplotypes
from groups G1 and G2; i.e. differences between H1 and H2 and
between H1 and H3. Third, we cluster those haplotype differences, so
that the intersection within the cluster is not empty; here, there is only
one cluster. Finally, we take the intersection of haplotype differences
within this cluster, which gives the SNP rs2281627. Similarly, rs6114999
and rs6132784 lie in the 30-UTR of ACSS1. There are 3 haplotypes:
GC/GU/AU. Both SNPs lie outside of any seed sites of miR-452, but
rs6132784 lies in a 30-supplementary site and has a small effect on the
scores.
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sequences with target sites, we had to find a way to score
sequences that do not have target sites and to com-
pare sequences with and without target sites. Our
solution consisted of normalizing the scores in the
interval [0, 1]. As there are more sequences without
target sites than with target sites, we normalized scores
so that the codomain of the normalization has an expo-
nential distribution in [0, 0.01] and a uniform distribution
in [0.01, 1], according to the following probability density
function:

dfðyÞ ¼
�e���y y 2 ½0; ��
PUnif

1�� y 2 ½�; 1�:

�

Here, t is the threshold that separates the two distribu-
tions in the codomain. To jointly score sequences with and
without target sites, we considered sequences with only
one target site as an intermediate. Since we needed to
put the worst target site scores in the exponential part,
we used the score distribution of mRNAs that have only
one target site, which is a 6-mer. Specifically, we used
the fifth percentile of the 6-mer distribution to define
the threshold T: P(X6m<T )=0.05. This threshold then
separated the exponential distribution from the uniform
distribution in the domain of the normalization
morphism. As a result, the exponential part contained
scores for sequences that have no target site (TS)
(including those with mismatch target sites) or canonical
target sites with a score lower than T. The proportion of
scores that will be in the uniform part is PUnif=
P[X�T]PTS, where PTS is the probability of having a
target site and P[X�T ] is the proportion of scores
greater than T. The proportion of scores in the expo-
nential part is PExp=1�PUnif. The parameter
� ¼ � 1

�� logð1� �PExpÞ makes the cumulative distribu-
tion of the exponential part fit PExp. The parameter
� 2

�
0; 1

PExp

�
makes the two distributions continuous in t

and minimizes

fð�Þ ¼ �
1� �PExp

��
logð1� �PExpÞ �

PUnif

1� �

� �2

:

We chose t=0.01 as a trade-off between t being so small
that all the scores from the exponential part had the same
tendency, and being so large that we could find the a that
minimized f(a).

Mapping candidate SNPs to disease

We can map candidate mirSNPs to disease by filtering on
genes that are dysregulated in a given disease, filtering
on miRNAs that are dysregulated in a given disease,
and filtering on disease-associated SNPs from the same
genomic region as the candidate. As filtering on genes or
miRNAs simply involves focusing on subsets of the UTRs
or miRNAs, we detail the filtering on disease-associated
SNPs.
Association studies can show association of marker

SNPs with a disease, but not necessarily association of a
causal SNP with the disease. Consequently, if we want to
know whether a candidate mirSNP may be causal, we first
have to map it to associated marker SNPs.

Mapping candidate SNPs to association studies consists
in looking for GWAS top ranking SNPs that have been
inherited together with our candidate SNPs; i.e. looking
for candidate SNPs that have alleles that correlate with
alleles of associated marker SNPs. This can be achieved by
computing inheritance blocks.

Inheritance blocks are DNA regions with highly
correlated alleles. Consequently, by knowing the alleles
of one SNP of the block one can predict the alleles at
another SNP of the block. This measure of inheritance
is called linkage disequilibrium (LD). Given a candidate
SNP, we can compute its inheritance block, according to
HapMap data. The block is an area of strong linkage
disequilibrium and shows SNPs that have high correlation
between themselves and with the candidate SNP.

We can define a block as a set of successive SNPs:

Block ¼ fsl; : : ; srg;

where sl and sr are the left and right bound SNPs of the
block.

A block spine is a set of LD values:

Spine ¼ fD0ljg [ fD
0
irg;

such that l< j� r and l< i< r and where D0xy is the linkage
disequilibrium between the SNPs sx and sy. In short, the
spine consists of the borders of the block (the two borders
of the triangle block).

A solid spine is a spine where a relative amount a of
the spine’s LD values is below a threshold T. For example,
we can use a=10% and T=0.8, to detect blocks with
strong LD.

The block detection method (Figure 3) is called
Solid Spine by Expansion and is an adaptation of the
Solid Spine algorithm developed within the Haploview
software (30). This expansion algorithm uses a candidate
SNP as input. It starts the expansion from this SNP and
then tries to expand the block successively in the down-
stream and upstream directions. An expansion occurs if
the spine of the expanded block fits a rule depending on a
and T. This algorithm needs an area of high LD to
expand, which ensures that the algorithm returns few
false positive blocks. The expansion can start on the left
side as well as on the right side and the two directions can
give different results. As we are interested in finding all
SNPs that reside in blocks that have high LD with of the
input SNP, we consider both resulting blocks.

Given a block of SNPs identified by the Solid Spine by
Expansion algorithm above, we then extract GWAS top
ranking SNPs from the block, to identify if the candidate
SNP is correlated with any associated SNPs. We consider
a SNP to be top-ranking when its rank is less than a given
threshold.

We define three scores to assess the level of LD of the
block defined by the candidate SNP and a top ranking
SNP. The spine score is the mean of all LD values of
the spine between the SNPs sx and sy:

Scspine ¼
1

2ðy� xÞ � 1

Xy
j¼xþ 1

D0xj þ
Xy�1
i¼xþ1

D0iy

 !
:
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The triangle score is the mean of all LD values of the inner
triangle between the SNPs sx and sy:

Sctriangle ¼
2

ðy� xÞðy� xþ 1Þ

Xy�2
i¼xþ1

Xy�1
j¼iþ1

D0ij

 !
:

A block score is the sum of the spine score and the
triangle score:

Scblock ¼ Scspine þ Sctriangle:

RESULTS

We first use data from allelic imbalance sequencing (31) to
test our SNP scoring method and to compare our method
with existing ones. Then we use two different GWAS data
sets to evaluate the mapping method. Finally, we show
that the method can find known altered miRNA targets
associated with disease.

Scoring method predicts effects of mirSNPs

Kim and Bartel (31) used allelic imbalance sequencing
to measure for three miRNAs, in vivo miRNA-directed
repression at polymorphic target sites in mice. They
provide allelic ratios (target versus non-target allele)

AR ¼ jtarget allelej
jnon target allelej for 65 SNPs in 30-UTRs that create

or disrupt miRNA target sites in tissues expressing
(ARE) and not expressing (ARNE) the considered
miRNA. We used 47 of these SNPs (those that have
both allelic ratios ARE and ARNE) to test our method.
For each of these 47 SNPs, we computed miRNA regula-
tion scores for the target allele ST and non-target allele
SNT. We compared the difference of our scores between
the two alleles �S=ST�SNT with the difference of loga-
rithms of allelic ratios �AR=log2(ARNE)� log2(ARE)
(Figure 4) and found a clear and significant correlation
(Pearson’s correlation P-value 0.0025, Spearman’s rank
correlation P-value 0.00019).

In comparison, using MFE given by RNAhybrid 2.1
(32) to predict SNP effects gave insignificant correlations,
whereas using TargetScan 5.0 context scores (13) (com-
puted without taking conservation into account) gave

significant but lower correlation (Table 1). Furthermore,
our normalization method could improve the correlation
based on TargetScan scores.
This result suggests that our scoring method for SNP

effects fits data from allelic imbalance sequencing better
than TargetScan context scores (13) or changes in MFE
[for example, used in (17)]. Our method therefore appears
to be the best choice for predicting effects of SNPs in
microRNA target sites.

ANALYSIS OF GWAS DATA

To generate a list of candidate SNPs involved in
miRNA-based regulation, we computed differences of
scores for all 30-UTR haplotypes for all coding genes
(UCSC RefSeq Genes hg18) and all miRNAs (from
miRBase 13.0). Specifically, we analysed mRNAs that
had more than 1 haplotype in their 30-UTR (12 808 of
the 26 963 coding transcripts) according to the CEU popu-
lation from HapMap. Of the 12 808*698=89 39 984
mRNA/miRNA pairs, 396 851 had at least one haplotype
score that differed from the other haplotype scores of the
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Figure 4. Predicted SNP effects correspond with observed effects.
Correlation between the measured allelic ratio �AR and (A) the differ-
ence of our predicted allelic scores �S (with transformation), (B) MFE
differences, and (C) TargetScan score differences (without transform-
ation, but where the minimum TargetScan value represents the score
for sequences without predicted target sites). See Table 1 for correl-
ations and P-values.
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Figure 3. Example of a linkage disequilibrium block. Given an input
SNP, we compute its linkage disequilibrium block (delimited by dark
lines), and then look for top ranking SNPs in the block (here a SNP
ranking as 351).
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same mRNA/miRNA pair. As explained in the methods,
the haplotype score distribution has an exponential and a
uniform part. Consequently, differences of scores also
have a distribution with an exponential part, describing
small differences in miRNA targeting. We used a thresh-
old of 0.15 to filter out the exponential part. Of the
396 851 mRNA/miRNA pairs (which correspond to
401 983 �S values, as several mRNAs had several haplo-
type score differences), 55 707 pairs (60 751 �S values)
had at least one �S> 0.15. We selected the SNPs that
generated a difference in score �S> 0.15 as candidate
SNPs (18 325 SNPs).
To further analyse the candidate mirSNPs, we mapped

the mirSNPs to the breast cancer GWAS from CGEMS,
as described in the methods. One would usually choose a
high T threshold as parameter for the mapping method to
identify blocks with high LD. We chose T=0, however,
to have data with low LD to analyse the block score vari-
ation in relation to the SNP and GWAS scores, as the
block scores quantify the link between the candidate
mirSNPs and the GWAS SNPs. We computed block
scores for each pair of candidate SNP and top ranking
SNP detected by the mapping method.
Top-ranking SNPs are likely in strong LD with their

causative SNP. Consequently, we would expect that if
mirSNPs are a significant factor behind the top-ranking
CGEMS SNPs, high �S scores would be enriched among
the highest scoring blocks. Since a candidate SNP can
have several corresponding �S due to several miRNAs
and transcripts, we assigned to each SNP its maximum
�S value: �SM. To test whether an increase in block
score threshold between top-ranking SNPs and candidate
SNPs causes any shift in the �SM distribution, we
computed the probability density of �SM for different
subsets of SNPs. These subsets were defined by a block
score greater than a threshold, starting from all block
scores and gradually reducing to only the best ones.
Figure 5 shows for SNPs mapped to the 2112 top-

ranking CGEMS SNPs, the distributions of �SM (from
0.15 to 1) for several subsets of SNPs based on different
block score thresholds. The distributions show a shift
of the main peak at �S=0.33 to �S=0.53 as the
block score threshold increases. This shift is consistent
with mirSNPs being significant causative factors behind
the top-ranking CGEMS SNPs.

We would also expect that the shift will be less
pronounced if we consider more candidate SNPs (by
using a higher rank threshold on GWAS SNPs), as these
SNPs will likely have a higher proportion of false posi-
tives. We therefore looked at different top-ranking thresh-
olds to check that as the top-ranking threshold increases,
the shift occurs later and later in terms of block score
threshold. Figure 6A–D show 3D plots for top-ranking
thresholds 528, 1056, 2112, and 4224. As in Figure 5,
the plots show a shift of the main peak at �S=0.33 to
�S=0.53 as the block score threshold increases.

The lower part of the plots shows all �SM for all
block scores—the background distribution of �SM

scores without taking LD into account. Increasing the
block score threshold removes mirSNPs that are not
linked to breast cancer-associated GWAS marker SNPs,
thereby increasing the proportion of candidate mirSNPs
that are associated with breast cancer. The shift in �SM

towards the right for high block score thresholds therefore
shows that mirSNPs associated with breast cancer have a
stronger effect on miRNA targeting than have the back-
ground of all mirSNPs.

As expected, increasing the threshold on top-ranking
GWAS SNPs results in the shift occurring later and
later on the y-axis. Using a higher top-ranking threshold
gives a bigger proportion of false positive SNPs, whereas
in contrast, a higher block score threshold gives a smaller
proportion of false positives. Consequently, to compen-
sate for the additional false positive SNPs that were
added when increasing the rank threshold, a higher
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Figure 5. Distribution of mirSNP scores �SM for SNPs mapped to
high-ranking SNPs from the CGEMS breast cancer GWAS. �SM is
the maximum difference of scores for each SNP, where the scores are
normalized scores from the SVM. Each curve shows the distribution for
SNPs that have a block score greater than a given threshold. ‘All’ refers
to �SM of all SNPs. ‘>0.9’ refers to �SM of SNPs that have a block
score >0.9 with one of the 2112 top-ranking CGEMS SNPs. The peak
at 0.33 is decreasing as the block score threshold increases, whereas the
peak at 0.53 is increasing with the block score threshold.

Table 1. Correlations between the measured allelic ratio �AR

and predicted SNP effects from several methods

Method Pearson’s corr. Spearman’s corr.

coeff. P-value coeff. P-value

SVM (raw scores) 0.383 0.0079 0.507 0.00033
SVM (w/ transformation) 0.431 0.0025 0.524 0.00019
SVM (w/ transf, w/o 1 outlier) 0.562 4.8*10�5 0.548 0.00010
MFE (no helix constraint) 0.223 0.1324 0.177 0.2345
MFE (helix constraint 2–7) 0.124 0.405 0.084 0.5736
TargetScan (raw scores) 0.168 0.2582 0.394 0.0062
TargetScan (w/ transformation) 0.299 0.0409 0.413 0.0039
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block score threshold is needed to observe the shift in �S.
These results indicate a link between high �S and
high-block score top-ranking SNPs. Furthermore, the
analyses give a good overview of how our predicted
scores �S fit some GWAS data and show that our
approach can identify SNPs in regulatory elements that
may be causal in disease.

Using TargetScan’s context scores (13) computed for all
30-UTR haplotypes (without considering conservation),
gave similar results indicating that the analysis is robust
to the choice of prediction method (Supplementary
Figures S3 and S4).

We also repeated the analysis on a GWAS for
Parkinson’s disease. This analysis gave similar results,
indicating that the method works with other data sets
and diseases (Supplementary Figures S5 and S6).
Finally, we analysed the significant trait-associated SNPs
from the NHGRI GWAS Catalog (28) and found a
similar shift in the �S distribution at very high-block

scores between miRSNPs and associated SNPs from
caucasian-based studies (Supplementary Figure S7; see
Supplementary Table S1 for the list of the best-scoring
miRSNPs strongly linked to caucasian-based trait-
associated SNPs). This result is consistent with us using
Hapmap CEU haplotypes and linkage disequilibrium
data for the analysis and indicates that miRSNPs
explain some of the trait-associations in the NHGRI
GWAS Catalog.

Disease-related examples

To further evaluate our methodology, we used it to
analyse three miRNA/SNPs involved in breast cancer,
asthma and Parkinson’s disease.
Saetrom et al. (33) found that the SNP rs1434536 lies in

the target site of the microRNA miR-125b within the gene
BMPR1b, and is associated with breast cancer. In that
study, we used the disease mapping method presented
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Figure 6. Distributions of �SM for SNPs mapped to different numbers of high-ranking SNPs from the CGEMS breast cancer GWAS.
The distributions vary with the number of candidate SNPs and block score thresholds. The graphs show �SM on the x-axis (range [0.15, 1]),
complementary cumulative distribution of block scores (from all block scores on the bottom, to gradually filtering to the best block scores on the
top) on the y-axis, and density of �SM for a given block score threshold (specifically, the distribution of �SM for SNPs that have a block score > the
value on the y-axis) on the z-axis (in grayscale). Dark grey, light grey and white are respectively low, intermediate, and high-density values. Panels
(A), (B), (C) and (D) show 3D plots for top-ranking thresholds 528, 1056, 2112 and 4224, respectively. The plots show a shift of the main peak at
�SM=0.33 to �SM=0.53, as the block score threshold increases.
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above to map the candidate SNP rs1434536 to the breast
cancer GWAS from CGEMS. We computed the LD block
of rs1434536, in which we found 5 SNPs that rank within
the 500 best in the association study (ranks 67, 79, 291,
409 and 424) out of 528.000 SNPs; the candidate SNP lay
in between the SNPs ranked 67 and 79 (Figure 7). The
difference of scores for rs1434536 is 0.39. Saetrom et al.
(33) verified that the SNP affects miR-125b’s regulation of
BMPR1b and verified the SNP’s breast cancer association
in an independent cohort.
Tan et al. (34) found that the SNP rs1063320 is

associated with asthma, depending on the mother’s
disease status. rs1063320 lies in the 30-UTR of HLA-G,
and the authors showed that this SNP affects miR-148a,
miR-148b and miR-152 targeting of the HLA-G gene.
They suggested that this altered miRNA targeting in-
creases the risk of asthma.
With our haplotype scoring method run genome-wide,

we found 3 SNPs (rs1063320, rs1610696 and rs1707)
in the 30-UTR of HLA-G that can affect 28 miRNAs
(data not shown). rs1063320 affects 10 miRNAs (data
not shown), and its three largest differences of scores
are given by the same three miRNAs reported by Tan
et al. (34): 0.76, 0.78 and 0.81, respectively for
miR-148b, miR-148a and miR-152. The other scores
range from 0.33 to 0.55, indicating that the three
miRNAs are clear candidates.
Wang et al. (35) found that the SNP rs12720208 is

associated with Parkinson’s disease. rs12720208 lies in
the 30-UTR of FGF20. They also showed that this SNP
has an effect on miR-433 targeting of FGF20. They sug-
gested that this altered targeting increases the risk of
Parkinson’s disease.
We identified two SNPs (rs1721100 and rs12720208) in

the 30-UTR of FGF20 that can affect four miRNAs (data

not shown). The largest difference of scores for this gene is

0.88 and is given by miR-433 at rs12720208—the same

miRNA/SNP pair reported by Wang et al. (35). One

other miRNA scores 0.44 with rs12720208, whereas SNP

rs1721100 scores 0.24 and 0.43 with two miRNAs.

Consequently, the pair rs12720208/miR-433 seems to be

a clear candidate.

DISCUSSION

By evaluating our proposed method on allelic imbalance
sequencing data, two different GWAS data sets, and
validated mirSNPs, we have demonstrated that our
method is useful for identifying potential causative SNPs
in miRNA target sites. Specifically, our analyses of the
allelic imbalance sequencing data show that our proposed
method outperforms existing methods. Although the
data set is limited as it contains only 47 SNPs, the data
set should be of high quality as it was generated in vivo
without artificially altering miRNA or target expression
(31). Indeed, our results revealed clear differences
between the methods. Especially, the method based on
changes in predicted miRNA–mRNA hybridization
MFE showed poor performance and could not predict
the SNPs’ effect on miRNA targeting. This result is con-
sistent with overall miRNA–mRNA hybridization in itself
being a poor predictor of miRNA targeting and support
the model of target site context being essential for miRNA
regulation (1).

The basic approach used by many existing tools for
detecting SNPs in miRNA target sites looks for SNPs
in seed regions of predicted target sites. Seed regions
are known to be the most important regions for miRNA
targeting efficacy (1). Focusing on seed regions reduces
the amount of false positive SNPs predicted to alter
miRNA-targeting, but will miss SNPs affecting
non-canonical miRNA targeting such as 30 supplementary
sites. This basic method can however be used to filter the
mRNA/miRNA pairs that are most likely affected by
SNPs. Such filtered SNPs can then subsequently be
analysed with our haplotype method.

SNPs outside the seed region can affect miRNA target-
ing, however, and some existing approaches based on
computational RNA–RNA hybridization or thermo-
dynamic calculations consider such SNPs. Our method
can also detect SNPs in 30 supplementary sites, but accord-
ing to our analyses, such SNPs have a small
predicted effect (Supplementary Figure S8). This result
is consistent with the observation that conserved 30 sup-
plementary sites constitute 4.9% of all conserved pairing
sites (36). As SNPs affecting seed site pairing have a bigger
predicted effect than those affecting other miRNA
features, our online database provide allelic sequences
for SNPs in target seed sites.

A transcriptome-wide study of interactions between
miRNAs and mRNAs estimated that sites with seed
mismatches constitute <6.6% of all miRNA target sites
(19). By excluding SNPs in mismatch sites, we only miss
SNPs that change a mismatch target site (weak) into
another mismatch site. Moreover, non-canonical sites
appear to have a smaller regulatory effect than canonical
target sites have (19). Thus, our method focuses on iden-
tifying the SNPs that are most likely to affect and to have
the largest effect on miRNA targeting.

Our haplotype scoring method is based on HapMap
haplotype data, and only 66% of the SNPs from
HapMap have haplotype data. The 34% HapMap SNPs
that do not have haplotype data have a very low minimum
allele frequency (MAF), usually 0 in the considered

424
291

79
Input

67
409

Figure 7. SNP rs1434536 (input) has an LD block (delimited by the
dark lines) which contains top ranking SNPs (ranks 67, 79, 291, 409
and 424) from CGEMS’s breast cancer GWAS.

e109 Nucleic Acids Research, 2011, Vol. 39, No. 16 PAGE 8 OF 10

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/39/16/e109/2411800 by N

TN
U

 Library user on 10 O
ctober 2019

http://nar.oxfordjournals.org/cgi/content/full/gkr414/DC1


hapmap population. Removing low MAF SNPs is an ad-
vantage in mapping SNPs to common diseases, resulting
in less false positives (false causal SNPs), in a common
variant common disease model.

Our haplotype approach also currently only focuses on
analysing 30-UTRs. Although miRNAs can target
50-UTRs and coding regions, these sites have a limited
effect compared to 30-UTR sites (19,20).

The main advantage of our method compared to
existing methods is that we analyse the regulatory effects
of all linked genetic variations within regulatory regions,
such as 30-UTRs. Consequently, our method can be used
to analyse how SNPs in multiple target sites together con-
tribute to upregulate, downregulate, or compensate each
other, through haplotype patterns.

CONCLUSION

We have presented a tool that aims at identifying
the causative variation within regions associated with
diseases. Specifically, the tool identifies 30-UTR SNPs
that can affect miRNA targeting and predicts the SNPs’
effect on miRNA regulation. Our main result is the
SNP effect prediction method. The results suggest that
the effect predictions are reliable, compare favourably to
existing methods, and can be used to filter and identify
causative SNPs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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