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 
Abstract— Energy saving and optimization play an 

increasingly important role in industrial electronic systems. 
A heterogeneous embedded system is composed of a 
general-purpose central processing unit (CPU) with an 
enhanced module of graphics processing units (GPU). This 
paper explores the effective strategies of task granularity 
and software prefetching for energy optimization. We 
propose a novel energy optimization model for GPU-based 
embedded systems by harnessing a communication-based 
pipeline spatial and temporal relation. We analyze the 
characteristics of a multiple thread execution of parallel 
GPUs. We present an effective algorithm for the dynamic 
power optimization with the adaptively adjusted distance 
of software prefetching. The experimental results show 
that the dynamic energy consumption can be saved by 22.1% 
and 21.8% respectively under two prefetching strategies 
(register and shared memory) without loss of performance. 
We demonstrate the effectiveness of the proposed 
methods for energy saving and consumption reduction of 
performance driven computing in industrial scenarios. 
 

Index Terms—Low power optimization, heterogeneous 
embedded systems, communication-computing pipeline 
spatio-temporal diagram, task partition, software 
prefetching 

I. INTRODUCTION 

N the field of industrial manufacturing, heterogeneous 
embedded system is needed as a supporting condition for 

product design and R&D processes such as aerospace, 
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automobile, ship and so on. Although a heterogeneous 
embedded system shows a higher peak computing speed and 
peak computing efficiency, the problem of massive power 
consumption remains. Excessive power consumption poses a 
severe challenge of reliability and heat dissipation for 
large-scale heterogeneous embedded systems in safety-critical 
industrial applications. Therefore, power consumption has 
become a crux concern at an unprecedentedly high level [1, 2]. 

The difference of speeds between a processor and an off-chip 
memory leads to the presence of a memory wall, which has 
always been one of main problems hindering improvements in 
computational efficiency [3-6]. At present, on-chip multi- and 
many-core processors have been developed, and a parallel 
system places a more onerous burden on memory registers, 
which aggravates the severity of problems concerning memory 
allocation. Thus, reducing or hiding memory latency is 
important when specifying a system architecture. Prefetching is 
a method of hiding memory latency by utilizing overlapped 
memory access and computation [7, 8]. Prefetching 
optimization aims to decrease bottlenecks in memory access 
and improve execution performance by extracting data into 
cache in advance and overlaps execution of computing and 
memory access functions on a processor. Prefetching 
optimization can be divided into hardware and software 
prefetching. Hardware prefetching aims to identify and predict 
the memory access mode of programs controlled by the 
prefetch engine so as to prefetch data automatically. Hardware 
prefetching is characterized by having no software overhead 
while it has low flexibility and pertinence. Software prefetching 
is illustrated as follows: programmers or compliers insert 
prefetching instructions at an appropriate location in their code 
and extract data into a cache (or register) in advance, thus 
avoiding computation arising from aborting due to a delay 
when waiting for memory access. Software prefetching is 
characterized by flexibility, efficiency, and pertinence while it 
leads to software and power overheads. In this paper, only 
software prefetching is taken into account. 

The contributions of this paper are as follows. By 
considering the energy consumed by prefetching instructions, 
GPU processors, and memory access, as well as the static 
energy consumption of a system, an optimization model for the 
energy consumption of a GPU-based embedded system is 
established. An algorithm for optimizing dynamic energy 
consumption of homogeneous multi-GPU processors based on 
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adaptive adjustment of the distance of software prefetching is 
proposed. 

The paper is organized as follows. Section 2 presents a 
review of existing works. Section 3 provides architecture of a 
GPU-based embedded system. Section 4 analyses the 
opportunities of task partition and software prefetching for 
energy optimization. Section 5 establishes a model for energy 
optimization of a heterogeneous embedded system. Based on 
the model, Sections 6 propose an algorithm for optimizing the 
dynamic energy consumption based on adaptive adjustment of 
the distance of software prefetching. Section 7 evaluates and 
analyzes the experimental results. Section 8 concludes the 
paper. 

II. RELATED WORK 

Software prefetching has been investigated for a long time. 
Mowry et al. [9] are one of teams investigating optimization 
algorithms based on software prefetching. They propose an 
algorithm for inserting prefetching instructions. The algorithm 
only prefetches data likely to be subjected to cache failure: this 
avoids extra overheads due to unnecessary prefetching. By 
exploring software prefetching from the perspectives of 
compiling. 

Very recently, it has been demonstrated that software 
prefetching-based optimization can effectively hide memory 
latency and improve the performance of programs, while it 
inevitably leads to increased power consumption [10, 11]. The 
main reason is that prefetching instructions increase the number 
of codes and prefetching takes advantage of the spatial 
parallelism of memory and processor. As a result, the energy 
consumed by the whole processor per unit time increases. 
Aiming at the influence of software perfecting based 
optimization on power consumption, Agarwal et al. [12] 
propose an energy optimization strategy such that, the 
performance gain obtained by software prefetching is 
converted into a reduction in energy consumption by using 
dynamic voltage and frequency scaling (DVFS) technology 
[13]. In this way, about 38% of energy overhead can be 
eliminated without performance loss. Through analysis, it can 
be seen that the method ignores the influence of voltage (or 
frequency) scaling on prefetching-based optimization. Others 
[14, 15] propose that controlling the overhead of software 
prefetching depends on determination of the prefetch distance 
while the optimal prefetch distance is co-determined by 
execution time of memory latency and a single iteration. After 
the voltage (or frequency) of a processor is scaled, only is the 
execution time of iteration affected, but the absolute latency of 
memory access is unchanged. Therefore, after reducing the 
frequency (or voltage), it is necessary to decrease the prefetch 
distance, making it more reasonable. 

Task scheduling and dynamic voltage scaling are two main 
methods used for optimizing the performance or energy 
consumption of a system. Keqin et al. [16] investigated a 
combined optimization of the two methods aiming at a 
homogeneous parallel system. Through theoretical analysis, 
they pointed out that the energy optimization under a 
performance constraint and performance optimization under an 
energy constraint both can be treated as a general power sum 
problem. In further investigation [17], the author analyzed the 

problem related to energy optimization of parallel tasks in a 
parallel system and it is necessary to consider simultaneously 
the influences of three factors (involving system partition, task 
scheduling, and frequency scaling) on the energy consumption 
of a system. Goraczko et al. [18] propose a task partition 
method for energy optimization for heterogeneous multi-core 
processors. The method can optimize the energy overhead of 
processors under the constraint of satisfying real-time 
application by mapping tasks into heterogeneous multi-core 
processors and combining the technology of frequency scaling 
of processors.  

The difference between this paper and other power 
optimization work is that software prefetching is introduced 
into the energy consumption optimization model, and energy 
consumption optimization is carried out by voltage frequency 
regulation and task partition. 

III. ARCHITECTURE OF A GPU-BASED EMBEDDED SYSTEM 

The architecture of a typical heterogeneous embedded 
system with multiple GPUs is shown in Figure 1: this contains a 
central processing unit (CPU) (host) processor and multiple 
GPU co-processors. Each CPU processor and GPU processor 
have their own memories: when programs run, CPU processors 
can send DMA orders and transfer data between the host 
memory and GPU memory by using a specialized DMA. 
Owing to the host memory being shared by various GPUs, the 
host processor is only allowed to transfer data to a GPU at a 
given time while various GPU processors can run 
independently. In this architecture, the program is divided into 
serial program segment and parallel program segment during 
the executive process. Serial program segments are executed on 
CPU and parallel program segments are executed on multiple 
GPUs. Since there is only one CPU, there is no problem of how 
to allocate tasks and how to adjust the dynamic voltage 
frequency. Therefore, under this architecture, we focus on the 
power modelling and optimization in multi-GPU environment. 

CPU

Host memory

GPU memory GPU processor GPU1

GPU memory GPU processor GPU2

GPU memory GPU processor GPUN

... ...

 
Fig. 1.  Architecture of a typical GPU-based embedded system 

IV. TASK PARTITIONING AND SOFTWARE PREFETCHING FOR 

ENERGY OPTIMIZATION 

Three communication–computing pipeline spatio-temporal 
diagrams probably appear during execution of parallel 
programs in a homogeneous multi-GPU system. 

We assume that the whole program contains n tasks 𝑚௜ , m =
(𝑚ଵ, 𝑚ଶ, ⋯ , 𝑚௡)  refers to the sequence of tasks arranged 
according to the program. For 1 ≤ i ≤ n, Type(𝑚௜) denotes 
the operation type of tasks 𝑚௜ . The range of values is {C, P, T, 
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M} represent the kernel computing, data prefetching, data 
transferring, and memory latency, respectively. 
Time(Type(𝑚௜)) is the time required for a task operation.  

The perfect-overlap communication–computing pipeline 
spatio-temporal diagram is shown in Figure 2. The vertical axis 
refers to different GPUs and the middle part between two blue 
dashed lines denotes software prefetching and memory access 
conducted by the same GPU. The horizontal axis represents the 
execution time of programs where, 𝑃(𝑚௜) denotes prefetching, 
which is responsible for computing the address of data to be 
prefetched. For example, 𝑃(𝑚ଵ)  refers to prefetching data 
required in the 𝐶(𝑚௡ାଵ) computing section and the prefetched 
data are accessed at point B. It can be seen from Figure 2(a) that, 
in the case of perfect overlap, the memory access brought about 
by the last prefetching task is completely overlapped with the 
computing operations in the processors. As this time there is, 

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑇(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
 (1) 

When prefetching is executed early, data prefetched in a 
memory register are not immediately used as they access the 
memory. It is necessary to wait for some time; therefore, a 
period of idle memory appears. At this time there is, 

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ > 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
              (2) 

As depicted in Figure 2(b), the situation when the execution 
time of the processors plays a dominant role, due to prefetching 
operations being executed early, thus incurring an idle period of 
memory, is called GPU-bound. The occurrence of the idle 
period of the memory has an adverse influence on performance. 
In this case, from the perspective of energy, it is necessary to 
search for an appropriate task granularity to minimize the area 
of the rectangle enclosed by horizontal and vertical coordinates 
in the spatio-temporal diagram, thus decreasing static power 
consumption. Additionally, the frequency of the memory needs 
to be scaled to make the memory work at a low frequency. By 
doing so, on the condition of having no influence on the 
performance, this avoids accessing data in advance, therefore 
reducing dynamic energy consumption. 

Under prefetching delay, the time of memory access is 
longer than the computing time of processors within the same 
stage. In this case, the idle period in computation occurs due to 
waiting to access data in memory cannot be completely 
removed. At this time there is, 

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ < 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑇(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ > 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
 (3) 

As depicted in Figure 2(c), the situation when the time of 
memory access plays a dominate role, due to prefetching 
operations being delayed, thus incurring an idle period on all 
processors, is called memory-bound. Under this circumstance, 
from the perspective of energy, it is feasible to determine an 
appropriate task granularity to minimize the area of the 
rectangle enclosed by horizontal and vertical coordinates in the 
spatio-temporal diagram, therefore lowering static power 
consumption. Additionally, the frequency of processors is 
adjusted to enable processors to work at a low frequency. In this 
way, while having no influence on the performance, the access 
of data in advance is avoided, thus decreasing dynamic energy 
consumption. 
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(a) Perfect-overlap communication-computing pipeline spatio-temporal 
diagram 
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(b)  GPU-bound communication-computing pipeline spatio-temporal 
diagram 
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(c)  Memory-bound communication-computing pipeline spatio-temporal 
diagram 
Fig. 2.  communication-computing pipeline spatio-temporal diagram 

V. THE POWER MODEL OF HETEROGENEOUS SYSTEMS 

In a CPU-GPU heterogeneous embedded system, 𝑘 denotes a 
basic unit for tasks partition to be executed for a given kernel 
program. If the number of tasks assigned to a certain GPU is 
greater than the basic unit 𝑘, that is, when each Stream Multiple 
processors (SM) can be divided into more than one thread block, 
it can improve the computational intensive in SM to a certain 
extent, make more effective use of the performance of SIMD 
computing pipeline, and hide the delay caused by GPU memory 
access. When the number of thread blocks allocated to the GPU 
is not an integer multiple of the number of SMs, there will be 
load imbalance which makes some SMs idle. Therefore, in task 
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partitioning, we take the multiple 𝑘 ∙ 𝑟(𝑟 ≥ 1) of the basic task 
partitioning unit 𝑘  as the granularity. So 𝑘 ∙ 𝑟  represents the 
granularity of task partitioning. A parallel program generally 
consists of multiple parallel loops. As data dependence between 
iterations does not exist in parallel loops, various loop iterations 
can be mapped into multiple processors for concurrent 
execution. In a heterogeneous embedded system with 
homogeneous multiple GPUs, the task 𝑘 ∙ 𝑟 corresponds to a 
loop iteration in a parallel program and is assigned to a GPU 
processor for further execution by default. 

When describing the problem related to energy optimization 
of a CPU-GPU heterogeneous embedded system under a 
performance constraint, the following parameters are involved: 

𝐷𝑎𝑡𝑎(𝑘 ∙ 𝑟) refers to the data size transferred to GPUs from a 
host processor (Host) corresponding to task k ∙ r. 

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)) represents the time taken transferring data 
size (𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)) from the host processor (Host) to DRAM 
memory of GPUs. 

𝐶௖(𝑘 ∙ 𝑟) refers to the clock cycle of processor computing 
required for completing task k ∙ r by GPUs.  

b denotes the number of cache blocks prefetched by a 
prefetching instruction. 

𝑁௕ denotes the number of prefetching instructions in a loop 
iteration. 

𝐸௕  denotes the energy overhead consumed when prefetching 
a cache block. 

C୮(Data(k∙r))  denotes the clock cycle consumed during 
prefetching in each loop iteration. 

C୫(Data(k∙r)) denotes the cycles of memory latency in an 
iteration caused by cache failure. 

The optimization objective of energy and the performance 
constraint for the energy optimization problem of a multi-GPU 
system under a performance constraint are discussed below. 
The optimization objective is to minimize the total energy (E௧) 
consumed (including dynamic (Eௗ ) and static (E௦ ) energy 
consumption), containing that in program execution in a 
prefetched loop section while ignoring energy consumed by the 
bus and clocks. 

Dynamic energy consumption ( Eௗ ) mainly includes the 
energy (𝐸௣) consumed when prefetching instructions calculate 
data addresses, energy (𝐸௖) consumed during GPU computation, 
and energy (𝐸௠) consumed by memory access. 

It is supposed that the energy consumed in prefetching a 
cache block is E௕. The number of cache blocks prefetched by a 
prefetching instruction is b and the number of prefetching 
instructions in an iteration is N௕ . In this case, the number of 
cache blocks to be prefetched in an iteration is expressed as b ∙
N௕ . Therefore, the energy (𝐸௣) consumed when prefetching 
instructions calculate data addresses within 𝑁௜  iterations can be 
expressed as follows: 

𝐸௣ = E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜                                 (4) 

For task 𝑘 ∙ 𝑟, it is supposed that the power consumption of 
processors at the frequency 𝑓௖  is 𝑝௖(𝑓௖) and the clock cycle 
consumed by computation of a processor within an iteration is 
𝐶௖(𝑘 ∙ 𝑟). Thus, the energy consumed by computation of the 

processor within 𝑁௜ iterations is calculated as follows: 

𝐸௖ = 𝑝௖(𝑓௖) ∙
஼೎(௞∙௥)

௙೎
∙ 𝑁௜                             (5) 

For task 𝑘 ∙ 𝑟, it is assumed that the power consumption of the 
memory at frequency 𝒇𝒎 is 𝑝௠(𝑓௠) and the cycle of memory 
access within an iteration caused by cache failure is 
C௠(Data(k∙r)). Under this circumstance, the energy consumed 
(𝐸௠) by the memory within 𝑁௜ iterations can be expressed as 
follows: 

𝐸௠ = 𝑝௠(𝑓௠) ∙
஼೘(஽௔௧௘(k∙r))

௙೘
∙ 𝑁௜                     (6) 

Therefore, the dynamic energy consumption is: 

𝐸ௗ = E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜  + 𝑝௖(𝑓௖) ∙
஼೎(௞∙௥)

௙೎
∙ 𝑁௜  + 𝑝௠(𝑓௠) ∙

஼೘(஽௔௧௘(k∙r))

௙೘
∙ 𝑁௜ (7) 

According to the reference [19], the dynamic power 
consumption P  and the frequency 𝑓  of electronic CMOS 
circuits satisfy 𝑝 ∝ 𝛼𝐶𝑓ଷ(𝛼 is the switching activity factor, C 
is the switching capacitor) and therefore the power 
consumptions of the processors and memories can be 
separately expressed as follows: 

𝑝௖(𝑓௖) = 𝛼ଵ ∙ 𝐶ଵ ∙ 𝑓௖
ଷ                                   (8) 

𝑝௠(𝑓௠) = 𝛼ଶ ∙ 𝐶ଶ ∙ 𝑓௠
ଷ                             (9) 

By substituting the above two expressions into Formula (7), 
Formula (10) can be obtained: 

𝐸ௗୀE௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁௜ + 𝑄ଶ𝑓௠

ଶ𝐶௠(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))𝑁௜    (10) 
Where, 𝑄ଵ = 𝛼ଵ ∙ 𝐶ଵ and 𝑄ଶ = 𝛼ଶ ∙ 𝐶ଶ.  
As the main source of static power consumption, leakage 

current induced power consumption is generated when the 
circuit is stable, therefore, it can be assumed that the static 
power consumption of GPUs remains unchanged when 
programs run. The system contains M  GPUs and the static 
power consumption is P௦. After being subjected to a certain task 
partition C, N (N ≤ M) GPUs take part in computing while the 
other GPUs are turned off or run at the lowest power 
consumption possible. In this case, the static power 
consumption can be ignored. The total execution time of 
programs is set to T and it is supposed that the static power 
consumption of GPUs remains unchanged during program 
execution. Thus, the total static power consumption of multiple 
GPUs can be expressed as follows: 

𝐸௦ = 𝑁ீ ∙ 𝑃௦ ∙ 𝑇                                    (11) 

Owing to P௦ remaining unchanged during program execution, 
𝐸௦ ∝ 𝑁ீ ∙ 𝑇(𝑁ீ  and 𝑇 refer to the number of GPUs and total 
execution time of parallel programs, respectively) holds. This 
means that the static power consumption generated by multiple 
GPUs is positively proportional to the area of the rectangle 
enclosed by horizontal and vertical coordinates in the 
spatio-temporal diagram, therefore, the optimization objective 
of total energy of a CPU-GPU heterogeneous embedded system 
is as follows: 

min(E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁𝑖 + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁𝑖 + 𝑄ଶ𝑓௠

ଶ𝐶௠൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯𝑁𝑖 + 𝑁ீ ∙ 𝑃௦ ∙

𝑇(12) 
In terms of the energy optimization problem, performance is 
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the most important constraint condition. Performance refers to 
the execution time of parallel programs after being optimized 
based on an optimal task partition and software prefetching. 
The performance constraint should ensure that the total 
execution time of parallel programs does not rise to β . By 
analyzing the opportunities of task partition and software 
prefetching for energy optimization, it can be seen that the total 
execution time of parallel programs is related to the 
communication–computing spatio-temporal diagram. The 
diagram contains four basic operation types, involving 
communication for transferring data from the host processor to 
GPU DRAM, software prefetching for prefetching data from 
GPU DRAM to GPU cache, memory latency caused by 
software prefetching, and data calculation and processing. In 
the spatio-temporal diagram, it can be seen that, in a 
heterogeneous  embedded system with homogeneous multiple 
GPUs, all memory latencies caused by software prefetching are 
hidden by the computing task(s) of GPUs, therefore, the ratio of 
the sum of the times consumed in GPU computations and 
software prefetching to the communication time (recorded as R) 
is a fundamental factor determining the distribution of the 
spatio-temporal diagram. 

The total task load of parallel programs is expressed as F. For 
task 𝑘 ∙ 𝑟 assigned to a certain GPU: 

R(𝑘 ∙ 𝑟) =
஼೎(௞∙௥)/௙೎ା௕∙୒್∙େ೛(஽௔௧௘(௞∙௥))/௙೎

೟்(஽௔௧௘(௞∙௥))
                  (13) 

When considering the execution time of parallel programs, 
two conditions are shown, involving GPU-bound (Figure1 b) 
and memory-bound (Figure1 c) cases. 
①  If R(𝑘 ∙ 𝑟) ≥ 𝑁ீ , various GPU processors are all in a 

full-load working state. Therefore, it can be considered that all 
data communication latencies are hidden by software 
prefetching and computing tasks in GPUs. Owing to the 

number of tasks assigned to each GPU being 
ி

ேಸ∙௞∙௥
, the total 

execution time of parallel programs is calculated as follows: 
𝑇௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +

ி

ேಸ∙௞∙௥
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙

𝑟))/𝑓௖)                     (14) 

②  If R(𝑘 ∙ 𝑟) < 𝑁ீ , idling occurs in pipelines and data 
communication is taken as the key factor determining program 
execution times. It can be thought that all software prefetching 
and computing in GPUs are hidden by data communication, 
therefore, the total execution time of programs is expressed as 
follows: 

𝑇௕(𝑟) =
ி

௞∙௥
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖(15) 

Thus, the execution time of parallel programs on the 
condition of having 𝑁ீ  GPUs satisfies the following 
piece-wise continuous functions: 

T(r) = ൜
𝑇௔(𝑟) R(𝑘 ∙ 𝑟) ≥ 𝑁ீ

𝑇௕(𝑟) R(𝑘 ∙ 𝑟) < 𝑁ீ
                         (16) 

When the degree of performance loss is allowed to be less 
than β, the following condition should be satisfied: 

𝑓௖
଴ represents the initial frequency of GPU processors and 

T଴(r) denotes the execution time of parallel programs when 
𝑓௖ = 𝑓௖

଴. In this case, the following formula is acquired: 

T଴(r) = ൜
𝑇଴

௔(𝑟) R(𝑘 ∙ 𝑟) ≥ 𝑁ீ

𝑇଴
௕(𝑟) R(𝑘 ∙ 𝑟) < 𝑁ீ

                          (17) 

The goal of performance constraints is to require that the 
execution time of the optimized program should not 
exceed the original execution time (performance loss is 
expressed by parameter β ) and minimize energy 
consumption. The optimization objective is the total 

energy consumption of the system (including dynamic and 
static energy consumption). Two constraints cond1 and 
cond2 ensure that the property of the program is not 
changed during the frequency regulation process 
(CPU-bound, Memory-bound). At the same time, the range 
of processor frequency and memory frequency is limited. 

𝑓௖
ᇱ，𝑓௖

ᇱᇱ , respectively, are the next and last period of 

processor frequency change. 𝑓௠
ᇱ ，𝑓௠

ᇱᇱ, respectively, are the 

next and last period of memory frequency change.  
The energy optimization problem is described as follows. 

min(E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁௜ + 𝑄ଶ𝑓௠

ଶ𝐶௠൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯𝑁௜ + 𝑁ீ ∙ 𝑃௦ ∙ 𝑇(r)) 

T(r) = ൜
𝑇௔(𝑟) ≤ (1 + β)𝑇଴

௔(𝑟) 𝑐𝑜𝑛𝑑1

𝑇௕(𝑟) ≤ (1 + β)𝑇଴
௕(𝑟) cond2

 

𝑇௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +
𝐹

𝑁ீ ∙ 𝑘 ∙ 𝑟
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕

∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖) 

𝑇௕(𝑟) =
𝐹

𝑘 ∙ 𝑟
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖ 

𝑇଴
௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +

𝐹

𝑁ீ ∙ 𝑘 ∙ 𝑟
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖

଴ + 𝑏 ∙ N௕

∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖
଴
) 

𝑇଴
௕(𝑟) =

𝐹

𝑘 ∙ 𝑟
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖

଴ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖
଴ 

𝑐𝑜𝑛𝑑1: 
𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))
≥ 𝑁ீ 

𝑐𝑜𝑛𝑑2: 
𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))
< 𝑁ீ 

𝑓௖
ᇱ ≤ 𝑓௖ ≤ 𝑓௖

ᇱᇱ 
𝑓௠

ᇱ ≤ 𝑓௠ ≤ 𝑓௠
ᇱᇱ                                            (18) 

VI. AN ALGORITHM FOR DYNAMIC ENERGY OPTIMIZATION 

BASED ON THE ADAPTIVELY ADJUSTED DISTANCE OF 

SOFTWARE PREFETCHING 

The key to controlling the overhead of software prefetching is 
to determine the prefetch distance. For a loop structure, the 
prefetch distance denotes the number of loop iterations between 
prefetching instructions and true access. To hide the memory 
latency caused by prefetching, the time when prefetching 
instructions is completed must correspond to the moment of 
true access as far as possible during software prefetching. 
Therefore, the prefetch distance is co-determined by iterative 
delay and memory latency, so it can be expressed as follows: 

PD = ቒ
஺஽

ோ்
ቓ                                     (19) 

Where, AD denotes the average memory latency and RT 
denotes the shortest possible execution time (containing time 
consumed by prefetching instructions) of each loop iteration. 
The purpose of rounding up is to guarantee that data have been 
prefetched before they are accessed. If the numerator and 
denominator of the fraction in Formula (19) are defined as 
wall-clock times, but not clock cycles, the formula can be 
written as follows: 

PD = ቒ
஺஽

஼/௙
ቓ                                   (20) 
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1. Algorithm: ECADP 
2. Input: parallel programs being subjected to prefetching optimization 
3. Output: PDᇱ; 
4. 𝑓(i) = 𝑓଴ , 𝑓௠(i) = 𝑓୫଴, where, 1 ≤ i ≤ N; 
5. Execution is repeated at an interval of 2esE threads until the program 

is completed { 
6. if (parallel programs are memory-bound) then 
7.    Executing 2esE threads when prefetching is allowed; 
8.    T௔(𝑟) = execution time of parallel programs when executing 2esE 

threads; 
9.    Executing 2esE threads when prefetching is not allowed; 
10.    T௔(r)′ = execution time of parallel programs when executing 2esE 

threads; 
11.    gain = T௔(r)′ − T௔(r)/T௔(r)′; 
12.    if (gain < 0) then 
13.          //The time complexity of the first path is O(1) 
14.         𝑓(i) = 𝑓଴; 
15.         𝑓௠(i) = 𝑓୫଴; 

Prefetching is not allowed; 
16.    else 
17.          //The time complexity of the second path is O(n) 
18.         for all i∈ [1, N] do 
19.         f(i)′ = 𝑓(i) ∙ (C௖௣(i) maxC௖௡௣(i));⁄   
20.         𝑉௖(𝑖)′ = 𝑉௖(𝑖) ∙ (𝑓(i)/f(i)′);  
21.         α஼ = f(i)′/f଴;  
22.         end for 
23.         α = α௖; 
24.     end 
25. else (parallel programs are GPU-bound) 
26.      Executing 2esE threads when prefetching is allowed;  
27.      T௕(𝑟) = the execution time of parallel programs when executing 

2esE threads;  
28.      Executing 2esE threads when prefetching is not allowed; 
29.      T௕(r)′ = the execution time of parallel programs when executing 

2esE threads;  
30.      gain = maxT௕(r)ᇱ − maxT௕(r)/maxT௕(r)ᇱ; 
31.       if (gain < 0) then 
32.            //The time complexity of the first path is O(1) 
33.             𝑓(i) = 𝑓଴; 
34.             𝑓௠(i) = 𝑓୫଴; 
35.             Prefetching is not allowed; 
36.       else 
37.           //The time complexity of the second path is O(n) 
38.            for all i∈ [1, N] do 
39.            f௠(i)′ = f௠(i) ∙ (C௠௣(i) maxC௠௡௣(i));⁄  
40.            𝑉௠(𝑖)′ = 𝑉௠(𝑖) ∙ (f௠(i)/f௠(i)′);  
41.            α௠ = f௠(i)′/f௠଴(𝑖); 
42.            end for 
43.            α = α௠; 
44.        end 
45. end 
46.     C points are uniformly sampled as frequency scaling factors within 

the interval of [α, 1]; 
47.     𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 P௑𝑇௑ ← 𝑠𝑒𝑙𝑒𝑐𝑡 𝛼௑; 
48.  if (P௑𝑇௑ < P଴𝑇଴) then 
49.        //The time complexity of the first path is O(1) 
50.          𝛼௙௜௡௔௟ = 𝛼௑; 
51. else 
52.       //The time complexity of the second path is O(1) 
53.         𝑓(i) = 𝑓଴; 
54.        𝑓௠(i) = 𝑓୫଴;// it is not applicable to optimize the program 

based on software prefetching under a performance constraint 
55. end 
56. PDᇱ = 𝛼௙௜௡௔௟ ∙ PD; 
57. return PDᇱ; 

Fig. 3. An algorithm for optimizing dynamic energy consumption based 
on an adaptively adjusted distance of software prefetching 

Where, C  and 𝑓  refer to the clock cycles within a single 
iteration and the working frequency of the processors, 
respectively. Generally, scaling the working frequency of 
processors cannot change the absolute latency of memory 
access. Thus, after reducing power, AD in Formula (20) 

remains unchanged while the number of clock cycles within a 
single iteration does not change with the working frequency, 
however, the delay in each clock cycle increases, thus, it can be 
seen that the prefetch distance shows an approximate, 
positively proportional, relationship with clock frequency: 

PDᇱ = α ∙ PD                                (21) 

where, PDᇱ and α denote the prefetch distance after scaling 
and the frequency scaling factor, respectively. 

For the architecture of GPUs, the burden on a register caused 
by prefetching may influence the degree of parallelism of 
programs, thus exerting a significant influence on performance. 
Therefore, reducing the prefetch distance generally means an 
increase in the degree of parallelism to improve performance. 
From this perspective, an algorithm for optimizing dynamic 
energy consumption based on adaptively adjusted distance of 
software prefetching (ECADP) is proposed and the 
pseudo-codes of the algorithm are as shown in Figure 3. 

We assume that a heterogeneous embedded system contains 
E GPUs in which each GPU has e SMs. Additionally, the 
processors initially work at frequency f଴  while the initial 
memory frequency is f୫଴. Simulation analysis is carried out on 
the original programs. It can be concluded that s thread blocks 
can synchronously work in SMs. To approach to true executive 
process, 2s thread blocks are assigned to each SM to make the 
SM always work in a full-load state during the simulation. 
According to the communication–computing pipeline 
spatio-temporal diagram in Section 3, 𝑇௔(𝑟)  and 𝑇௕(𝑟) 
separately represent the execution time of parallel programs 
under GPU-bound and memory-bound conditions. For a given 
parallel program optimized by prefetching, the algorithm 
computes the data at the interval of 2esE threads and the 
execution of the 2esE threads is taken as a repetition period. 
During the execution of the 2esE threads, if the parallel 
program is in a memory-bound state, the initial 2esE threads are 
first executed on the condition of allowing prefetching. In this 
case, the execution time of parallel programs is T௔(𝑟) . 
Afterwards, the subsequent 2esE threads are executed without 
allowing prefetching. Under this circumstance, the execution 
time of parallel programs is T௔(r)ᇱ. According to the execution 
time of 2esE threads when prefetching is, and is not, allowed, 
the performance gain can be calculated based on gain =
T௔(r)ᇱ − T௔(r)/T௔(r)ᇱ. If the performance does not increase 
through prefetching, the programs are executed by applying the 
current voltage and frequency of the processors and prefetching 
is not allowed. When the performance is improved through 
prefetching, the performance gain can be converted into an 
energy saving by scaling the voltage and frequency of the 
processors. C௖௣(i) refers to the number of execution cycles of 
the ith GPU when prefetching is allowed, and maxC௖௡௣(i) 
denotes the largest number of execution cycles of all GPUs 

when prefetching is not allowed. Through 
େ೎೛(୧)

୫ୟ୶େ೎೙೛(୧)
, the 

improvement ratio of performance is calculated. According to 
the relative increase in performance, the voltages and 
frequencies of each GPU processor core can be re-calculated to 
find the frequency scaling factor (α = f(i)/f଴) of each GPU 
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processor. In a similar way, if parallel programs are 
GPU-bound, the execution time of 2esE threads when 
prefetching is, and is not, allowed is expressed as T௕(𝑟) and 
T௕(r)ᇱ , respectively. When performance gain is generated 
through prefetching, C௠௣(i) is applied to represent the cycle of 
memory access of the ith GPU memory when allowing 
prefetching and maxC௠௡௣(i) denotes the largest period cycle 
of memory latency of all GPU memories when prefetching is 

not allowed. Through 
େ೘೛(୧)

୫ୟ୶େ೘೙೛(୧)
, the performance 

improvement ratio is attained. Similarly, according to the 
performance improvement ration, the voltages and frequencies 
of each GPU memory can be re-calculated to find the frequency 
scaling factor (α = f௠(i)/f௠଴(𝑖)) of each GPU memory. C 
points are uniformly sampled within the interval [α, 1] in steps 
46-50 as frequency scaling factors. The frequency scaling 
factor  𝛼௑  is selected to minimize the dynamic energy 
consumption (P௑𝑇௑). If P௑𝑇௑ < P଴𝑇଴ , 𝛼௑ is taken as the final 
optimal frequency scaling factor (otherwise, the original 
frequency f଴ /𝑓୫଴  is used). In this case, it implies that it is 
inapplicable to optimize the program by using software 
prefetching under a performance constraint. After obtaining the 
optimal frequency scaling factor 𝛼௑ , the access of prefetch 
distance is roughly determined at first according to the 
frequency scaling factor when determining the proper prefetch 
distance based on frequency during simulation in step 56 using 
Formula (20). Thereafter, slight scaling, with a small amplitude, 
is conducted to determine an appropriate prefetch distance, thus 
reducing dynamic energy consumption. We analyze the time 
complexity of the algorithm in terms of code nested layers. For 
the conditional judgment statements, the total time complexity 
is equal to the time complexity of the path with the greatest time 
complexity. In ECADP algorithm, there are three if-conditional 
judgment statements. In the first if-conditional judgment 
statement, the time complexity of the first path is 𝑂(1) and that 
of the second path is 𝑂(𝑛) , so the time complexity is 
𝑚𝑎𝑥 (𝑂(1), 𝑂(𝑛))= 𝑂(𝑛). Similarly, the time complexity of 
the second if-conditional judgment statement is 𝑂(𝑛). The time 
complexity of the third if-condition judgment statement is 𝑂(1). 
So，the holistic time complexity of the whole algorithm is 
𝑚𝑎𝑥 (𝑂(n), 𝑂(𝑛), 𝑂(1)), that is 𝑂(𝑛).  

VII. EXPERIMENTAL VERIFICATION 

A. Experimental platform and test cases 

We tested high performance computing platforms in 
industrial scenarios. Existing GPUs with few adjustable levels 
cannot completely support dynamic voltage (or frequency) 
scaling, which is not conducive to conducting theoretical 
research and verification of the low-power optimization of 
GPUs. Therefore, the simulator used for testing the power 
consumption of GPUs is used for experimental verification 
[20]. 

TABLE I PARAMETER SETTINGS OF THE SIMULATOR FOR GPU POWER 

CONSUMPTION 
SM 8 Network Crossbar 
Warp size 32 SIMT width 32 

Max. blocks per SM 8 Max threads per SM 1024 
Core clock 325 MHz L2 clock 650 MHz 
Network clock 650 MHz DRAM clock 800 MHz 
Shared memory per 
SM 

12 kB Memory latency 450 

L1 per SM 16 kB, 32bytes per block, 4-way 
L2 cache 2 MB, 32 bytes per block, 4-way 
Software GPGPUSim 2.1.1b, NVCC 2.2, GCC 4.3 

The simulator for power consumption is realized by adding a 
Wattch model for power consumption into the GPGPUSim 
simulator to model the power consumption of various 
components (Shader Cores, L2 Cache, and the Memory 
Controller) in GPUs [21]. For an Interconnection Network, the 
modelling approach for power consumption used in PowerRed 
is applied [22]. For DRAM, the modelling is carried out by 
utilizing a published method [23]. For each component, the 
simulator counts the activities of each clock cycle in its clock 
domain and accumulates power consumption. Finally, the total 
power consumption of GPU is summed up. Because of the 
semiconductor technology adopted by the modern GPU is more 
mature and the characteristic coefficient is smaller than the set 
in Wattch model, it should be noted that the absolute power 
consumption given by the simulator is slightly higher than of 
the simulated target GPU (the general error is less than 10%). 
However, as a theoretical optimization method, this paper 
focuses on the relationship between power and performance 
changes of GPU after frequency reduction, rather than the 
absolute value of power consumption. Therefore, the absolute 
power error is acceptable. Parameters of the simulator for GPU 
power consumption are listed in Table 1. 

TABLE II TEST CASE 
Application Data 

size 
Thread 
block size 

The number of 
thread block 

Data/thread 
block 

Data/r 
thread 
block 

MM 2× 4MB 16×16 4096 128 kB 64 (1 + r) 
kB 

DH 2 MB 256 1024 2 kB 2r kB 
MV 8 MB 128 2048 64.5 kB 64r + 0.5 kB 
LP 2 MB 16 × 16 2048 1.3 kB 1152r + 144 

B 
MT 4 MB 256 256 16 kB 16r kB 
SQ 8×2MB 256 512 4 kB 4r kB 
BS 2MB 256 256 8 kB 8r kB 
FB 8MB 128 2048 64.5KB 64r + 0.5 kB 

Eight typical applications (including BlackScholes (BS), 
dwtHaar1D (DH), fwtBatch1 (FB), MatrixMul (MM), 
Matrix-Vector (MV), Laplace (LP), MersenneTwister (MT), 
and SobolQRNG (SQ) from multiple cognate areas such as 
signal processing, finance, and scientific computation were 
used as the test cases. BS comes from the financial field. It 
implements the Black-Scholes model and calculates partial 
differential equations for financial prices. DH realizes the 
wavelet transform of signal. FB application comes from fast 
walsh transform. MT accomplishes Mersenne Twister 
pseudo-random number generation algorithm. SQ is the Sobol 
quasi-random number generation algorithm. MM, MV and LP 
come from the field of scientific computing. They are matrix 
multiplication, matrix vector multiplication and Laplace 
transformation. These applications are characterized by the fact 
that their loops are contained in a kernel function and the loop 
contains references to accessing global memory space. They 
satisfy the basic conditions for conducting software 
prefetching-based optimization. The specific data size of the 
test cases is listed in Table 2.  
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TABLE III FREQUENCY SCALING FACTORS AND OPTIMIZATION EFFECTS OF ENERGY CONSUMPTION 

Application 
Register Shared memory 

α 
𝛼௑ 

Energy 
consumption 

α 
𝛼௑ 

Energy 
consumption α௖ α௠ α௖ α௠ 

Memory-bound 

MM 0.42  0.42 78.8% 0.46  0.46 86.2% 
DH 0.58  0.58 80.2%  -  - 100% 
MV 0.57  0.57 65.6% 0.43  0.43 66.3% 
LP 0.62  0.60 75.2% -  - 100% 
MT 0.65  0.65 84.5% -  - 100% 
SQ - - - 100% - - - 100% 

GPU-bound 
BS  0.35 0.35 84.5%  0.33 0.33 85% 
FB  0.23 0.2 76%  0.12 0.12 75% 

B. Test results 

Figure 4 shows the execution time and the ratio between 
power consumptions (after prefetching/before prefetching) of 
the applications on the condition of separately using register 
and shared memory as a prefetching buffer. When using shared 
memory as the buffer for software prefetching in LP and MT 
applications, the execution time of the applications increased 
compared with that before software prefetching, thus leading to 
poorer program performance. Under the two strategies, the 
performances after prefetching separately increase by 41% and 
30% (on average) while the power consumption increased 
slightly due to software prefetching. The changes in simulated 
performances and energy consumptions of eight typical 
applications before, and after, optimization of dynamic energy 
consumption based on adaptively adjusted distance of software 
prefetching are analyzed on a GPU platform. Through analysis, 
it can be concluded that the adaptively adjusted distance of 
software prefetching is related to the frequency scaling factor. 
Therefore, the dynamic energy consumption can be optimized 
by scaling frequencies of processors and memories.  
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Fig. 4. Changes in simulated performance and energy consumption 
before, and after, prefetching 

Figure 5 separately shows the performance and energy 
benefits when separately using the register and shared memory 
as a prefetching buffer. The prefetch distance is the optimal 
value calculated by using the algorithm for optimizing dynamic 
energy consumption based on the adaptively adjusted distance 
of software prefetching. As shown, when utilizing the register 
and shared memory as the prefetching buffer, the energy 
consumptions of the system can be separately reduced by 18% 
and 13% by applying the aforementioned algorithm under a 
performance constraint. It can be seen that the power 
consumptions of DH, LP, and MT, when using the shared 

memory as a prefetching buffer, are not optimized. The power 
consumptions of the application SQ under both strategies are 
not optimized. The main reason for this is that, when a program 
undergoing prefetching-based optimization is subjected to 
incremental frequency reduction, the moment at which the 
execution time increases to its original level is earlier than that 
when the energy consumption falls to its original level. This 
means that, when the execution time increases to the original 
time through frequency scaling, the power consumption is 
significantly greater than that seen in its original condition, thus 
failing to reduce energy consumption by decreasing frequency. 
Therefore, according to the optimization method, it is not 
applicable to utilize software prefetching for optimization and 
the application is still executed using the original programs at 
the original frequency. 
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Fig. 5.  Changes in simulated performance and energy consumptions 
before, and after, optimizing dynamic energy consumption based on the 
adaptively adjusted distance of software prefetching 

Additionally, in a homogeneous multi-GPU system, there are 
three communication–computing pipeline spatio-temporal 
diagrams during software prefetching. According to different 
pipeline spatio-temporal diagrams, the performance 
bottlenecks of the application program can be further judged. 
By exploring the performance bottleneck, some parameters are 
calculated, including the frequency scaling factor 𝛼௑ of 
processors (or memories) under optimal dynamic energy 
consumption and the frequency scaling factor α of processors 
(or memories) in performance-bound conditions under a time 
constraint. Based on the frequency scaling factor, an 
appropriate prefetch distance can be rapidly determined to 
further reduce dynamic energy consumption. 

In the related work, we mentioned the work of Agarwal et al. 
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They proposed the energy optimization strategy of prefetching 
before DVFS. This method ignores the effect of DVFS on 
prefetching optimization. From the analysis of Section IV, we 
conclude that after DVFS, the prefetching distance should be 
reduced appropriately to make it more reasonable. It can also be 
seen form the experimental results of Fig.4, the register 
pressure brought by prefetching may affect the parallelism of 
the program and thus have a greater impact on the performance. 
Therefore, reducing prefetching distance often means 
increasing parallelism and improving performance. 

In the energy consumption optimization method, Agarwal et 
al. adopted an on-line dynamic voltage regulation algorithm. 
The voltage was adjusted online according to the learning of 
instruction window. This method needs to ensure that the 
instruction window cannot be selected too small, in order to 
avoid the overhead of learning. For GPU program, the special 
structure of its program determines that it is not suitable to use 
learning method to dynamically adjust the voltage. First, the 
thread space of GPU is composed of a large number of thread 
blocks with isomorphic instructions, which also run on SM 
with isomorphic hardware. Because the number of thread 
blocks running at the same time on SM is limited, thread blocks 
occupy SM execution according to macro-batch and 
microscopic timesharing. From the time dimension of the 
whole program execution, SM execution is composed of a large 
number of similar computational processes, so there is no need 
to learn program behavior at the thread block level, only need to 
extract the behavior of single thread block by simulation. 
Secondly, the execution time of the single thread block itself is 
relatively short (the proportion of execution time of the total 
program is very small). If the instruction window is studied in 
the single thread block, the granularity is too fine. This will 
result in excessive learning overhead, and there is no practical 
significance. Therefore, 2esE thread blocks are simulated to 
extract the relationship between program performance, power 
consumption and software prefetching optimization. 
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 Fig. 6.  (a) Performance improvements of application MM under different 
frequency scaling factors 

In this paper, the proposed algorithm for dynamic energy 
optimization based on the adaptively adjusted distance of 
software prefetching compared with the energy optimization 
method (Abbreviated as Ag algorithm) propose by Agarwal et 
al. as shown in Figure 5. From the experimental results, we can 

see that the performance of our energy consumption 
optimization method is improved by 19% and 16% respectively, 
considering the appropriate reduction of prefetch distance 
compared with Ag algorithm, when the energy consumption is 
basically the same. So, the method proposed in this paper is 
more effective. 
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Fig. 6.  (b) Performance improvements of application BS under different 
frequency scaling factors 

Table 3 lists the optimal frequency scaling factors 𝛼௑, and 
frequency scaling factors α  at the performance-bound state and 
optimization effects of energy consumption of eight 
applications. According to the communication–computing 
pipeline spatio-temporal diagram, the eight applications can be 
approximately classified into two types. The applications MM, 
DH, MV, LP, and MT are constrained by the memory of GPUs 
and therefore communication overhead is considered to be the 
performance bottleneck (memory-bound) of that type of 
application. Under this circumstance, the energy consumption  
can be reduced by decreasing the frequency α௖   of the 
processors. Applications BS and FB are restricted by the 
processors in the GPUs and therefore the computing time of 
processors is regarded as the performance bottleneck 
(GPU-bound) of that type of application. In this case, the 
energy consumption can be reduced by reducing the frequency 
of the memories. It can be seen from Figure 4 that prefetching 
using shared memory is inapplicable for DH, LP, and MT 
applications. For an SQ program, it is not suitable to carry out 
prefetching under the two strategies, therefore, the power 
consumptions under these conditions are not optimized, with an 
energy saving of 0%. In the other applications, under most 
circumstances, the optimal frequency scaling factor 𝛼௑ for 
energy consumption is consistent with the frequency scaling 
factor α (α௖/α௠) at the performance bound; however, for the 
three applications FB, LP, and MM, the condition 𝛼௑ < 𝛼 
arises. The main reason is that there is also non-negligible static 
energy consumption in the system, apart from its dynamic 
energy consumption. When improving the frequency to some 
extent in the vicinity of α , the reduction in static energy 
consumption is more significant than the increase in dynamic 
energy consumption. According to the frequency regulation 
factor 𝛼௑, the parameters of core clock and DRAM clock are 
adjusted in GPGPUSim power simulator. In GPGPUSim, each 
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power consumption data is recorded in a power_result_type 
structure, and the total power consumption data is output 
through double total_power. According to the ration of the total 
energy consumption after to before frequency regulation, the 
percentage of energy consumption optimization in Table 3 is 
obtained. Taking the average value, under the two prefetching 
strategies, energy consumptions can be separately reduced by 
22.1% and 22.8% through frequency scaling.  

To verify the effectiveness of the optimal frequency scaling 
factor in the present study, the applications MM and BS are 
selected and verified on the true Quadro FX 5600 platform. The 
two applications separately represent the two types of test cases, 
i.e., memory-bound and GPU-bound. Figure 6 shows the 
performance improvements in applications MM and BS 
obtained under different frequency scaling factors (α௖  and α௠). 
It can be seen from Figure 6(a) that an inflection point occurs in 
the frequency scaling factor α௖ plot between 0.4 and 0.45 for 
processors when the performance of MM rapidly declines. The 
reason for this is that MM is a computation-intensive 
application. When the processor works at a high frequency, the 
bottleneck during program execution frequency of the 
processor decreases to a certain extent, the bottleneck during 
the execution of application MM is found in the processors but 
not in memory. Under this circumstance, the performance of 
the application decreases if the frequency of the processor 
continues to be lowered. Therefore, the optimal frequency 
scaling factor of the MM application program is supposed to 
occur at the inflection point. As seen from Table 2, the optimal 
frequency scaling factors of GPU processors in MM 
application are theoretically calculated as 0.42 and 0.46 by 
using the algorithm for optimizing dynamic energy 
consumption based on the adaptively adjusted distance of 
software prefetching. The results are attained when the register 
and the shared memory are applied for prefetching-based 
optimization. The results show an insignificant discrepancy 
with the optimal frequency scaling factor 0.40 ≤ α௖ ≤ 0.45 for 
processors tested on a true platform. In Figure 6(b), it can be 
seen that, for application BS, the performance exhibits a linear 
relationship with the frequency of processors for most α௠. It is 
because application BS is memory-intensive. In this case, the 
bottleneck of program operation is attributed to computation 
and therefore reducing the frequency of GPU processors 
certainly decreases the performance. Thus, under this 
circumstance, it is necessary to guarantee the performance and 
lower the energy consumption by decreasing the memory 
frequency. As shown in the figure, on the condition that α௠ is 
low enough, that is, α௠= 0.2, the bottleneck during program 
operation is transformed. In this context, reducing the 
frequency of GPU processors by a small amount cannot 
significantly influence program performance, therefore, it can 
be judged that the optimal frequency scaling factor for 
application BS is α௠= 0.2, which differs by about 10%, from 
the theoretical optimal frequency scaling factors (0.35 and 
0.33): this further validates the effectivenesses of the model for 
energy consumption and the algorithm for optimizing dynamic 
energy consumption. 

VIII. CONCLUSION AND FUTURE WORK 

The opportunities of task partition and software prefetching 
for energy optimization of a CPU-GPU heterogeneous 
embedded system are analyzed through the communication–
computing pipeline spatio-temporal diagram. Furthermore, a 
model for energy optimization of a homogeneous multi-GPU 
system is established. Based on the model, an algorithm for 
optimizing dynamic energy consumption of a homogeneous 
multi-GU architecture based on the adaptively adjusted 
distance of software prefetching is proposed. The algorithm is 
used for energy optimization of parallel programs. The test 
result showed that, under the two prefetching strategies 
(register and shared memory), the dynamic energy 
consumptions separately decreased by 22.1% and 21.8% (at 
most) on the premise of maintaining the program performance 
through frequency scaling of processors and memories. 

Parallel programs exhibit various problems (such as load 
imbalance and data dependence) during actual executions, so it 
is difficult to establish models capable of exploring the energy 
optimization of parallel programs. For this reason, future work 
will focus on the investigation of the characteristics of program 
parallelism in order to conduct energy analysis and 
optimization thereof.  
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