
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS


Abstract— Energy saving and optimization play an

increasingly important role in industrial electronic systems.
A heterogeneous embedded system is composed of a
general-purpose central processing unit (CPU) with an
enhanced module of graphics processing units (GPU). This
paper explores the effective strategies of task granularity
and software prefetching for energy optimization. We
propose a novel energy optimization model for GPU-based
embedded systems by harnessing a communication-based
pipeline spatial and temporal relation. We analyze the
characteristics of a multiple thread execution of parallel
GPUs. We present an effective algorithm for the dynamic
power optimization with the adaptively adjusted distance
of software prefetching. The experimental results show
that the dynamic energy consumption can be saved by 22.1%
and 21.8% respectively under two prefetching strategies
(register and shared memory) without loss of performance.
We demonstrate the effectiveness of the proposed
methods for energy saving and consumption reduction of
performance driven computing in industrial scenarios.

Index Terms—Low power optimization, heterogeneous
embedded systems, communication-computing pipeline
spatio-temporal diagram, task partition, software
prefetching

I. INTRODUCTION

N the field of industrial manufacturing, heterogeneous
embedded system is needed as a supporting condition for

product design and R&D processes such as aerospace,

Manuscript received May 21, 2019; revised July 17, 2019; accepted
September 16, 2019. This work was supported by the school of
computers, Guangdong University of Technology. (Corresponding
authors: Zhuowei Wang.)

Zhuowei Wang is with the school of computers, Guangdong
University of Technology, Guangzhou 510006, China, and also is with
the school of computer science, Wuhan Donghu University, Wuhan
430074, China. (e-mail: wangzhuowei0710@163.com)

 Lianglun Cheng is with the School of Computers, Guangdong
University of Technology, Guangzhou 510006, China (e-mail:
llcheng@gdut.edu.cn)

Hao Wang is with department of Computer Science, Norwegian
University of Science and Technology, Gjøvik, Norway (e-mail:
hawa@ntnu.no)

Wuqing Zhao is with CSG Digital Power Grid Research Institute Co.,
Ltd. (DGRI), Guangzhou, China (e-mail: zhaowq@csg.cn)

Xiaoyu Song is with the Department of Electrical and Computer
Engineering, Portland State University, Portland, OR 97207, USA
(e-mail: songx@pdx.edu).

automobile, ship and so on. Although a heterogeneous
embedded system shows a higher peak computing speed and
peak computing efficiency, the problem of massive power
consumption remains. Excessive power consumption poses a
severe challenge of reliability and heat dissipation for
large-scale heterogeneous embedded systems in safety-critical
industrial applications. Therefore, power consumption has
become a crux concern at an unprecedentedly high level [1, 2].

The difference of speeds between a processor and an off-chip
memory leads to the presence of a memory wall, which has
always been one of main problems hindering improvements in
computational efficiency [3-6]. At present, on-chip multi- and
many-core processors have been developed, and a parallel
system places a more onerous burden on memory registers,
which aggravates the severity of problems concerning memory
allocation. Thus, reducing or hiding memory latency is
important when specifying a system architecture. Prefetching is
a method of hiding memory latency by utilizing overlapped
memory access and computation [7, 8]. Prefetching
optimization aims to decrease bottlenecks in memory access
and improve execution performance by extracting data into
cache in advance and overlaps execution of computing and
memory access functions on a processor. Prefetching
optimization can be divided into hardware and software
prefetching. Hardware prefetching aims to identify and predict
the memory access mode of programs controlled by the
prefetch engine so as to prefetch data automatically. Hardware
prefetching is characterized by having no software overhead
while it has low flexibility and pertinence. Software prefetching
is illustrated as follows: programmers or compliers insert
prefetching instructions at an appropriate location in their code
and extract data into a cache (or register) in advance, thus
avoiding computation arising from aborting due to a delay
when waiting for memory access. Software prefetching is
characterized by flexibility, efficiency, and pertinence while it
leads to software and power overheads. In this paper, only
software prefetching is taken into account.

The contributions of this paper are as follows. By
considering the energy consumed by prefetching instructions,
GPU processors, and memory access, as well as the static
energy consumption of a system, an optimization model for the
energy consumption of a GPU-based embedded system is
established. An algorithm for optimizing dynamic energy
consumption of homogeneous multi-GPU processors based on

Energy Optimization by Software
Prefetching for Task Granularity in
GPU-based Embedded Systems

Zhuowei Wang, Lianglun Cheng, Hao Wang, Member, IEEE, Wuqing Zhao, and Xiaoyu Song,
Senior Member, IEEE

I

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

adaptive adjustment of the distance of software prefetching is
proposed.

The paper is organized as follows. Section 2 presents a
review of existing works. Section 3 provides architecture of a
GPU-based embedded system. Section 4 analyses the
opportunities of task partition and software prefetching for
energy optimization. Section 5 establishes a model for energy
optimization of a heterogeneous embedded system. Based on
the model, Sections 6 propose an algorithm for optimizing the
dynamic energy consumption based on adaptive adjustment of
the distance of software prefetching. Section 7 evaluates and
analyzes the experimental results. Section 8 concludes the
paper.

II. RELATED WORK

Software prefetching has been investigated for a long time.
Mowry et al. [9] are one of teams investigating optimization
algorithms based on software prefetching. They propose an
algorithm for inserting prefetching instructions. The algorithm
only prefetches data likely to be subjected to cache failure: this
avoids extra overheads due to unnecessary prefetching. By
exploring software prefetching from the perspectives of
compiling.

Very recently, it has been demonstrated that software
prefetching-based optimization can effectively hide memory
latency and improve the performance of programs, while it
inevitably leads to increased power consumption [10, 11]. The
main reason is that prefetching instructions increase the number
of codes and prefetching takes advantage of the spatial
parallelism of memory and processor. As a result, the energy
consumed by the whole processor per unit time increases.
Aiming at the influence of software perfecting based
optimization on power consumption, Agarwal et al. [12]
propose an energy optimization strategy such that, the
performance gain obtained by software prefetching is
converted into a reduction in energy consumption by using
dynamic voltage and frequency scaling (DVFS) technology
[13]. In this way, about 38% of energy overhead can be
eliminated without performance loss. Through analysis, it can
be seen that the method ignores the influence of voltage (or
frequency) scaling on prefetching-based optimization. Others
[14, 15] propose that controlling the overhead of software
prefetching depends on determination of the prefetch distance
while the optimal prefetch distance is co-determined by
execution time of memory latency and a single iteration. After
the voltage (or frequency) of a processor is scaled, only is the
execution time of iteration affected, but the absolute latency of
memory access is unchanged. Therefore, after reducing the
frequency (or voltage), it is necessary to decrease the prefetch
distance, making it more reasonable.

Task scheduling and dynamic voltage scaling are two main
methods used for optimizing the performance or energy
consumption of a system. Keqin et al. [16] investigated a
combined optimization of the two methods aiming at a
homogeneous parallel system. Through theoretical analysis,
they pointed out that the energy optimization under a
performance constraint and performance optimization under an
energy constraint both can be treated as a general power sum
problem. In further investigation [17], the author analyzed the

problem related to energy optimization of parallel tasks in a
parallel system and it is necessary to consider simultaneously
the influences of three factors (involving system partition, task
scheduling, and frequency scaling) on the energy consumption
of a system. Goraczko et al. [18] propose a task partition
method for energy optimization for heterogeneous multi-core
processors. The method can optimize the energy overhead of
processors under the constraint of satisfying real-time
application by mapping tasks into heterogeneous multi-core
processors and combining the technology of frequency scaling
of processors.

The difference between this paper and other power
optimization work is that software prefetching is introduced
into the energy consumption optimization model, and energy
consumption optimization is carried out by voltage frequency
regulation and task partition.

III. ARCHITECTURE OF A GPU-BASED EMBEDDED SYSTEM

The architecture of a typical heterogeneous embedded
system with multiple GPUs is shown in Figure 1: this contains a
central processing unit (CPU) (host) processor and multiple
GPU co-processors. Each CPU processor and GPU processor
have their own memories: when programs run, CPU processors
can send DMA orders and transfer data between the host
memory and GPU memory by using a specialized DMA.
Owing to the host memory being shared by various GPUs, the
host processor is only allowed to transfer data to a GPU at a
given time while various GPU processors can run
independently. In this architecture, the program is divided into
serial program segment and parallel program segment during
the executive process. Serial program segments are executed on
CPU and parallel program segments are executed on multiple
GPUs. Since there is only one CPU, there is no problem of how
to allocate tasks and how to adjust the dynamic voltage
frequency. Therefore, under this architecture, we focus on the
power modelling and optimization in multi-GPU environment.

CPU

Host memory

GPU memory GPU processor GPU1

GPU memory GPU processor GPU2

GPU memory GPU processor GPUN

... ...

Fig. 1. Architecture of a typical GPU-based embedded system

IV. TASK PARTITIONING AND SOFTWARE PREFETCHING FOR

ENERGY OPTIMIZATION

Three communication–computing pipeline spatio-temporal
diagrams probably appear during execution of parallel
programs in a homogeneous multi-GPU system.

We assume that the whole program contains n tasks 𝑚௜ , m =
(𝑚ଵ, 𝑚ଶ, ⋯ , 𝑚௡) refers to the sequence of tasks arranged
according to the program. For 1 ≤ i ≤ n, Type(𝑚௜) denotes
the operation type of tasks 𝑚௜ . The range of values is {C, P, T,

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

M} represent the kernel computing, data prefetching, data
transferring, and memory latency, respectively.
Time(Type(𝑚௜)) is the time required for a task operation.

The perfect-overlap communication–computing pipeline
spatio-temporal diagram is shown in Figure 2. The vertical axis
refers to different GPUs and the middle part between two blue
dashed lines denotes software prefetching and memory access
conducted by the same GPU. The horizontal axis represents the
execution time of programs where, 𝑃(𝑚௜) denotes prefetching,
which is responsible for computing the address of data to be
prefetched. For example, 𝑃(𝑚ଵ) refers to prefetching data
required in the 𝐶(𝑚௡ାଵ) computing section and the prefetched
data are accessed at point B. It can be seen from Figure 2(a) that,
in the case of perfect overlap, the memory access brought about
by the last prefetching task is completely overlapped with the
computing operations in the processors. As this time there is,

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑇(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
 (1)

When prefetching is executed early, data prefetched in a
memory register are not immediately used as they access the
memory. It is necessary to wait for some time; therefore, a
period of idle memory appears. At this time there is,

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ > 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ = 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
 (2)

As depicted in Figure 2(b), the situation when the execution
time of the processors plays a dominant role, due to prefetching
operations being executed early, thus incurring an idle period of
memory, is called GPU-bound. The occurrence of the idle
period of the memory has an adverse influence on performance.
In this case, from the perspective of energy, it is necessary to
search for an appropriate task granularity to minimize the area
of the rectangle enclosed by horizontal and vertical coordinates
in the spatio-temporal diagram, thus decreasing static power
consumption. Additionally, the frequency of the memory needs
to be scaled to make the memory work at a low frequency. By
doing so, on the condition of having no influence on the
performance, this avoids accessing data in advance, therefore
reducing dynamic energy consumption.

Under prefetching delay, the time of memory access is
longer than the computing time of processors within the same
stage. In this case, the idle period in computation occurs due to
waiting to access data in memory cannot be completely
removed. At this time there is,

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ < 𝑇𝑖𝑚𝑒(𝑇(𝑚௜)) × 𝑛

𝑇𝑖𝑚𝑒൫𝐶(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑇(𝑚௜)൯ + 𝑇𝑖𝑚𝑒൫𝑃(𝑚௜)൯ > 𝑇𝑖𝑚𝑒(𝑀(𝑚௜)) × 𝑛
 (3)

As depicted in Figure 2(c), the situation when the time of
memory access plays a dominate role, due to prefetching
operations being delayed, thus incurring an idle period on all
processors, is called memory-bound. Under this circumstance,
from the perspective of energy, it is feasible to determine an
appropriate task granularity to minimize the area of the
rectangle enclosed by horizontal and vertical coordinates in the
spatio-temporal diagram, therefore lowering static power
consumption. Additionally, the frequency of processors is
adjusted to enable processors to work at a low frequency. In this
way, while having no influence on the performance, the access
of data in advance is avoided, thus decreasing dynamic energy
consumption.

C1

GPU

PT

C

Data prefetchingData transfering

Kernel computing

P1 Pn+1 Cn+1

Perfect overlap

BA

Mn

Cn

Mn+1

Pn

P2 C2

M2

M1

T1 Tn+1

T2

Tn

M Memory latency

time

(a) Perfect-overlap communication-computing pipeline spatio-temporal
diagram

C1

GPU

GPU-bound

Cn

M1

P1

Mn

Pn

M2

P2 C2

Cn+1Pn+1

Mn+1

T1

T2

Tn

Tn+1

time

(b) GPU-bound communication-computing pipeline spatio-temporal
diagram

C1

GPU

time

P1

Memory-bound

M1

Cn

Mn

Mn+1

Cn+1Pn+1

Pn

C2

M2

P2

T1

T1

Tn

Tn+1

(c) Memory-bound communication-computing pipeline spatio-temporal
diagram
Fig. 2. communication-computing pipeline spatio-temporal diagram

V. THE POWER MODEL OF HETEROGENEOUS SYSTEMS

In a CPU-GPU heterogeneous embedded system, 𝑘 denotes a
basic unit for tasks partition to be executed for a given kernel
program. If the number of tasks assigned to a certain GPU is
greater than the basic unit 𝑘, that is, when each Stream Multiple
processors (SM) can be divided into more than one thread block,
it can improve the computational intensive in SM to a certain
extent, make more effective use of the performance of SIMD
computing pipeline, and hide the delay caused by GPU memory
access. When the number of thread blocks allocated to the GPU
is not an integer multiple of the number of SMs, there will be
load imbalance which makes some SMs idle. Therefore, in task

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

partitioning, we take the multiple 𝑘 ∙ 𝑟(𝑟 ≥ 1) of the basic task
partitioning unit 𝑘 as the granularity. So 𝑘 ∙ 𝑟 represents the
granularity of task partitioning. A parallel program generally
consists of multiple parallel loops. As data dependence between
iterations does not exist in parallel loops, various loop iterations
can be mapped into multiple processors for concurrent
execution. In a heterogeneous embedded system with
homogeneous multiple GPUs, the task 𝑘 ∙ 𝑟 corresponds to a
loop iteration in a parallel program and is assigned to a GPU
processor for further execution by default.

When describing the problem related to energy optimization
of a CPU-GPU heterogeneous embedded system under a
performance constraint, the following parameters are involved:

𝐷𝑎𝑡𝑎(𝑘 ∙ 𝑟) refers to the data size transferred to GPUs from a
host processor (Host) corresponding to task k ∙ r.

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)) represents the time taken transferring data
size (𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)) from the host processor (Host) to DRAM
memory of GPUs.

𝐶௖(𝑘 ∙ 𝑟) refers to the clock cycle of processor computing
required for completing task k ∙ r by GPUs.

b denotes the number of cache blocks prefetched by a
prefetching instruction.

𝑁௕ denotes the number of prefetching instructions in a loop
iteration.

𝐸௕ denotes the energy overhead consumed when prefetching
a cache block.

C୮(Data(k∙r)) denotes the clock cycle consumed during
prefetching in each loop iteration.

C୫(Data(k∙r)) denotes the cycles of memory latency in an
iteration caused by cache failure.

The optimization objective of energy and the performance
constraint for the energy optimization problem of a multi-GPU
system under a performance constraint are discussed below.
The optimization objective is to minimize the total energy (E௧)
consumed (including dynamic (Eௗ) and static (E௦) energy
consumption), containing that in program execution in a
prefetched loop section while ignoring energy consumed by the
bus and clocks.

Dynamic energy consumption (Eௗ) mainly includes the
energy (𝐸௣) consumed when prefetching instructions calculate
data addresses, energy (𝐸௖) consumed during GPU computation,
and energy (𝐸௠) consumed by memory access.

It is supposed that the energy consumed in prefetching a
cache block is E௕. The number of cache blocks prefetched by a
prefetching instruction is b and the number of prefetching
instructions in an iteration is N௕ . In this case, the number of
cache blocks to be prefetched in an iteration is expressed as b ∙
N௕ . Therefore, the energy (𝐸௣) consumed when prefetching
instructions calculate data addresses within 𝑁௜ iterations can be
expressed as follows:

𝐸௣ = E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ (4)

For task 𝑘 ∙ 𝑟, it is supposed that the power consumption of
processors at the frequency 𝑓௖ is 𝑝௖(𝑓௖) and the clock cycle
consumed by computation of a processor within an iteration is
𝐶௖(𝑘 ∙ 𝑟). Thus, the energy consumed by computation of the

processor within 𝑁௜ iterations is calculated as follows:

𝐸௖ = 𝑝௖(𝑓௖) ∙
஼೎(௞∙௥)

௙೎
∙ 𝑁௜ (5)

For task 𝑘 ∙ 𝑟, it is assumed that the power consumption of the
memory at frequency 𝒇𝒎 is 𝑝௠(𝑓௠) and the cycle of memory
access within an iteration caused by cache failure is
C௠(Data(k∙r)). Under this circumstance, the energy consumed
(𝐸௠) by the memory within 𝑁௜ iterations can be expressed as
follows:

𝐸௠ = 𝑝௠(𝑓௠) ∙
஼೘(஽௔௧௘(k∙r))

௙೘
∙ 𝑁௜ (6)

Therefore, the dynamic energy consumption is:

𝐸ௗ = E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ + 𝑝௖(𝑓௖) ∙
஼೎(௞∙௥)

௙೎
∙ 𝑁௜ + 𝑝௠(𝑓௠) ∙

஼೘(஽௔௧௘(k∙r))

௙೘
∙ 𝑁௜ (7)

According to the reference [19], the dynamic power
consumption P and the frequency 𝑓 of electronic CMOS
circuits satisfy 𝑝 ∝ 𝛼𝐶𝑓ଷ(𝛼 is the switching activity factor, C
is the switching capacitor) and therefore the power
consumptions of the processors and memories can be
separately expressed as follows:

𝑝௖(𝑓௖) = 𝛼ଵ ∙ 𝐶ଵ ∙ 𝑓௖
ଷ (8)

𝑝௠(𝑓௠) = 𝛼ଶ ∙ 𝐶ଶ ∙ 𝑓௠
ଷ (9)

By substituting the above two expressions into Formula (7),
Formula (10) can be obtained:

𝐸ௗୀE௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁௜ + 𝑄ଶ𝑓௠

ଶ𝐶௠(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))𝑁௜ (10)
Where, 𝑄ଵ = 𝛼ଵ ∙ 𝐶ଵ and 𝑄ଶ = 𝛼ଶ ∙ 𝐶ଶ.
As the main source of static power consumption, leakage

current induced power consumption is generated when the
circuit is stable, therefore, it can be assumed that the static
power consumption of GPUs remains unchanged when
programs run. The system contains M GPUs and the static
power consumption is P௦. After being subjected to a certain task
partition C, N (N ≤ M) GPUs take part in computing while the
other GPUs are turned off or run at the lowest power
consumption possible. In this case, the static power
consumption can be ignored. The total execution time of
programs is set to T and it is supposed that the static power
consumption of GPUs remains unchanged during program
execution. Thus, the total static power consumption of multiple
GPUs can be expressed as follows:

𝐸௦ = 𝑁ீ ∙ 𝑃௦ ∙ 𝑇 (11)

Owing to P௦ remaining unchanged during program execution,
𝐸௦ ∝ 𝑁ீ ∙ 𝑇(𝑁ீ and 𝑇 refer to the number of GPUs and total
execution time of parallel programs, respectively) holds. This
means that the static power consumption generated by multiple
GPUs is positively proportional to the area of the rectangle
enclosed by horizontal and vertical coordinates in the
spatio-temporal diagram, therefore, the optimization objective
of total energy of a CPU-GPU heterogeneous embedded system
is as follows:

min(E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁𝑖 + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁𝑖 + 𝑄ଶ𝑓௠

ଶ𝐶௠൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯𝑁𝑖 + 𝑁ீ ∙ 𝑃௦ ∙

𝑇(12)
In terms of the energy optimization problem, performance is

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

the most important constraint condition. Performance refers to
the execution time of parallel programs after being optimized
based on an optimal task partition and software prefetching.
The performance constraint should ensure that the total
execution time of parallel programs does not rise to β . By
analyzing the opportunities of task partition and software
prefetching for energy optimization, it can be seen that the total
execution time of parallel programs is related to the
communication–computing spatio-temporal diagram. The
diagram contains four basic operation types, involving
communication for transferring data from the host processor to
GPU DRAM, software prefetching for prefetching data from
GPU DRAM to GPU cache, memory latency caused by
software prefetching, and data calculation and processing. In
the spatio-temporal diagram, it can be seen that, in a
heterogeneous embedded system with homogeneous multiple
GPUs, all memory latencies caused by software prefetching are
hidden by the computing task(s) of GPUs, therefore, the ratio of
the sum of the times consumed in GPU computations and
software prefetching to the communication time (recorded as R)
is a fundamental factor determining the distribution of the
spatio-temporal diagram.

The total task load of parallel programs is expressed as F. For
task 𝑘 ∙ 𝑟 assigned to a certain GPU:

R(𝑘 ∙ 𝑟) =
஼೎(௞∙௥)/௙೎ା௕∙୒್∙େ೛(஽௔௧௘(௞∙௥))/௙೎

೟்(஽௔௧௘(௞∙௥))
 (13)

When considering the execution time of parallel programs,
two conditions are shown, involving GPU-bound (Figure1 b)
and memory-bound (Figure1 c) cases.
① If R(𝑘 ∙ 𝑟) ≥ 𝑁ீ , various GPU processors are all in a

full-load working state. Therefore, it can be considered that all
data communication latencies are hidden by software
prefetching and computing tasks in GPUs. Owing to the

number of tasks assigned to each GPU being
ி

ேಸ∙௞∙௥
, the total

execution time of parallel programs is calculated as follows:
𝑇௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +

ி

ேಸ∙௞∙௥
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙

𝑟))/𝑓௖) (14)

② If R(𝑘 ∙ 𝑟) < 𝑁ீ , idling occurs in pipelines and data
communication is taken as the key factor determining program
execution times. It can be thought that all software prefetching
and computing in GPUs are hidden by data communication,
therefore, the total execution time of programs is expressed as
follows:

𝑇௕(𝑟) =
ி

௞∙௥
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖(15)

Thus, the execution time of parallel programs on the
condition of having 𝑁ீ GPUs satisfies the following
piece-wise continuous functions:

T(r) = ൜
𝑇௔(𝑟) R(𝑘 ∙ 𝑟) ≥ 𝑁ீ

𝑇௕(𝑟) R(𝑘 ∙ 𝑟) < 𝑁ீ
 (16)

When the degree of performance loss is allowed to be less
than β, the following condition should be satisfied:

𝑓௖
଴ represents the initial frequency of GPU processors and

T଴(r) denotes the execution time of parallel programs when
𝑓௖ = 𝑓௖

଴. In this case, the following formula is acquired:

T଴(r) = ൜
𝑇଴

௔(𝑟) R(𝑘 ∙ 𝑟) ≥ 𝑁ீ

𝑇଴
௕(𝑟) R(𝑘 ∙ 𝑟) < 𝑁ீ

 (17)

The goal of performance constraints is to require that the
execution time of the optimized program should not
exceed the original execution time (performance loss is
expressed by parameter β) and minimize energy
consumption. The optimization objective is the total

energy consumption of the system (including dynamic and
static energy consumption). Two constraints cond1 and
cond2 ensure that the property of the program is not
changed during the frequency regulation process
(CPU-bound, Memory-bound). At the same time, the range
of processor frequency and memory frequency is limited.

𝑓௖
ᇱ，𝑓௖

ᇱᇱ , respectively, are the next and last period of

processor frequency change. 𝑓௠
ᇱ ，𝑓௠

ᇱᇱ, respectively, are the

next and last period of memory frequency change.
The energy optimization problem is described as follows.

min(E௕ ∙ 𝑏 ∙ N௕ ∙ 𝑁௜ + 𝑄ଵ𝑓௖
ଶ𝐶௖(𝑘 ∙ 𝑟)𝑁௜ + 𝑄ଶ𝑓௠

ଶ𝐶௠൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯𝑁௜ + 𝑁ீ ∙ 𝑃௦ ∙ 𝑇(r))

T(r) = ൜
𝑇௔(𝑟) ≤ (1 + β)𝑇଴

௔(𝑟) 𝑐𝑜𝑛𝑑1

𝑇௕(𝑟) ≤ (1 + β)𝑇଴
௕(𝑟) cond2

𝑇௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +
𝐹

𝑁ீ ∙ 𝑘 ∙ 𝑟
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕

∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖)

𝑇௕(𝑟) =
𝐹

𝑘 ∙ 𝑟
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖

𝑇଴
௔(𝑟) = 𝑁ீ ∙ 𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ +

𝐹

𝑁ீ ∙ 𝑘 ∙ 𝑟
(𝐶௖(𝑘 ∙ 𝑟)/𝑓௖

଴ + 𝑏 ∙ N௕

∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖
଴
)

𝑇଴
௕(𝑟) =

𝐹

𝑘 ∙ 𝑟
𝑇௧൫𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟)൯ + 𝐶௖(𝑘 ∙ 𝑟)/𝑓௖

଴ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖
଴

𝑐𝑜𝑛𝑑1:
𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))
≥ 𝑁ீ

𝑐𝑜𝑛𝑑2:
𝐶௖(𝑘 ∙ 𝑟)/𝑓௖ + 𝑏 ∙ N௕ ∙ C௣(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))/𝑓௖

𝑇௧(𝐷𝑎𝑡𝑒(𝑘 ∙ 𝑟))
< 𝑁ீ

𝑓௖
ᇱ ≤ 𝑓௖ ≤ 𝑓௖

ᇱᇱ
𝑓௠

ᇱ ≤ 𝑓௠ ≤ 𝑓௠
ᇱᇱ (18)

VI. AN ALGORITHM FOR DYNAMIC ENERGY OPTIMIZATION

BASED ON THE ADAPTIVELY ADJUSTED DISTANCE OF

SOFTWARE PREFETCHING

The key to controlling the overhead of software prefetching is
to determine the prefetch distance. For a loop structure, the
prefetch distance denotes the number of loop iterations between
prefetching instructions and true access. To hide the memory
latency caused by prefetching, the time when prefetching
instructions is completed must correspond to the moment of
true access as far as possible during software prefetching.
Therefore, the prefetch distance is co-determined by iterative
delay and memory latency, so it can be expressed as follows:

PD = ቒ
஺஽

ோ்
ቓ (19)

Where, AD denotes the average memory latency and RT
denotes the shortest possible execution time (containing time
consumed by prefetching instructions) of each loop iteration.
The purpose of rounding up is to guarantee that data have been
prefetched before they are accessed. If the numerator and
denominator of the fraction in Formula (19) are defined as
wall-clock times, but not clock cycles, the formula can be
written as follows:

PD = ቒ
஺஽

஼/௙
ቓ (20)

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

1. Algorithm: ECADP
2. Input: parallel programs being subjected to prefetching optimization
3. Output: PDᇱ;
4. 𝑓(i) = 𝑓଴ , 𝑓௠(i) = 𝑓୫଴, where, 1 ≤ i ≤ N;
5. Execution is repeated at an interval of 2esE threads until the program

is completed {
6. if (parallel programs are memory-bound) then
7. Executing 2esE threads when prefetching is allowed;
8. T௔(𝑟) = execution time of parallel programs when executing 2esE

threads;
9. Executing 2esE threads when prefetching is not allowed;
10. T௔(r)′ = execution time of parallel programs when executing 2esE

threads;
11. gain = T௔(r)′ − T௔(r)/T௔(r)′;
12. if (gain < 0) then
13. //The time complexity of the first path is O(1)
14. 𝑓(i) = 𝑓଴;
15. 𝑓௠(i) = 𝑓୫଴;

Prefetching is not allowed;
16. else
17. //The time complexity of the second path is O(n)
18. for all i∈ [1, N] do
19. f(i)′ = 𝑓(i) ∙ (C௖௣(i) maxC௖௡௣(i));⁄
20. 𝑉௖(𝑖)′ = 𝑉௖(𝑖) ∙ (𝑓(i)/f(i)′);
21. α஼ = f(i)′/f଴;
22. end for
23. α = α௖;
24. end
25. else (parallel programs are GPU-bound)
26. Executing 2esE threads when prefetching is allowed;
27. T௕(𝑟) = the execution time of parallel programs when executing

2esE threads;
28. Executing 2esE threads when prefetching is not allowed;
29. T௕(r)′ = the execution time of parallel programs when executing

2esE threads;
30. gain = maxT௕(r)ᇱ − maxT௕(r)/maxT௕(r)ᇱ;
31. if (gain < 0) then
32. //The time complexity of the first path is O(1)
33. 𝑓(i) = 𝑓଴;
34. 𝑓௠(i) = 𝑓୫଴;
35. Prefetching is not allowed;
36. else
37. //The time complexity of the second path is O(n)
38. for all i∈ [1, N] do
39. f௠(i)′ = f௠(i) ∙ (C௠௣(i) maxC௠௡௣(i));⁄
40. 𝑉௠(𝑖)′ = 𝑉௠(𝑖) ∙ (f௠(i)/f௠(i)′);
41. α௠ = f௠(i)′/f௠଴(𝑖);
42. end for
43. α = α௠;
44. end
45. end
46. C points are uniformly sampled as frequency scaling factors within

the interval of [α, 1];
47. 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 P௑𝑇௑ ← 𝑠𝑒𝑙𝑒𝑐𝑡 𝛼௑;
48. if (P௑𝑇௑ < P଴𝑇଴) then
49. //The time complexity of the first path is O(1)
50. 𝛼௙௜௡௔௟ = 𝛼௑;
51. else
52. //The time complexity of the second path is O(1)
53. 𝑓(i) = 𝑓଴;
54. 𝑓௠(i) = 𝑓୫଴;// it is not applicable to optimize the program

based on software prefetching under a performance constraint
55. end
56. PDᇱ = 𝛼௙௜௡௔௟ ∙ PD;
57. return PDᇱ;

Fig. 3. An algorithm for optimizing dynamic energy consumption based
on an adaptively adjusted distance of software prefetching

Where, C and 𝑓 refer to the clock cycles within a single
iteration and the working frequency of the processors,
respectively. Generally, scaling the working frequency of
processors cannot change the absolute latency of memory
access. Thus, after reducing power, AD in Formula (20)

remains unchanged while the number of clock cycles within a
single iteration does not change with the working frequency,
however, the delay in each clock cycle increases, thus, it can be
seen that the prefetch distance shows an approximate,
positively proportional, relationship with clock frequency:

PDᇱ = α ∙ PD (21)

where, PDᇱ and α denote the prefetch distance after scaling
and the frequency scaling factor, respectively.

For the architecture of GPUs, the burden on a register caused
by prefetching may influence the degree of parallelism of
programs, thus exerting a significant influence on performance.
Therefore, reducing the prefetch distance generally means an
increase in the degree of parallelism to improve performance.
From this perspective, an algorithm for optimizing dynamic
energy consumption based on adaptively adjusted distance of
software prefetching (ECADP) is proposed and the
pseudo-codes of the algorithm are as shown in Figure 3.

We assume that a heterogeneous embedded system contains
E GPUs in which each GPU has e SMs. Additionally, the
processors initially work at frequency f଴ while the initial
memory frequency is f୫଴. Simulation analysis is carried out on
the original programs. It can be concluded that s thread blocks
can synchronously work in SMs. To approach to true executive
process, 2s thread blocks are assigned to each SM to make the
SM always work in a full-load state during the simulation.
According to the communication–computing pipeline
spatio-temporal diagram in Section 3, 𝑇௔(𝑟) and 𝑇௕(𝑟)
separately represent the execution time of parallel programs
under GPU-bound and memory-bound conditions. For a given
parallel program optimized by prefetching, the algorithm
computes the data at the interval of 2esE threads and the
execution of the 2esE threads is taken as a repetition period.
During the execution of the 2esE threads, if the parallel
program is in a memory-bound state, the initial 2esE threads are
first executed on the condition of allowing prefetching. In this
case, the execution time of parallel programs is T௔(𝑟) .
Afterwards, the subsequent 2esE threads are executed without
allowing prefetching. Under this circumstance, the execution
time of parallel programs is T௔(r)ᇱ. According to the execution
time of 2esE threads when prefetching is, and is not, allowed,
the performance gain can be calculated based on gain =
T௔(r)ᇱ − T௔(r)/T௔(r)ᇱ. If the performance does not increase
through prefetching, the programs are executed by applying the
current voltage and frequency of the processors and prefetching
is not allowed. When the performance is improved through
prefetching, the performance gain can be converted into an
energy saving by scaling the voltage and frequency of the
processors. C௖௣(i) refers to the number of execution cycles of
the ith GPU when prefetching is allowed, and maxC௖௡௣(i)
denotes the largest number of execution cycles of all GPUs

when prefetching is not allowed. Through
େ೎೛(୧)

୫ୟ୶େ೎೙೛(୧)
, the

improvement ratio of performance is calculated. According to
the relative increase in performance, the voltages and
frequencies of each GPU processor core can be re-calculated to
find the frequency scaling factor (α = f(i)/f଴) of each GPU

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

processor. In a similar way, if parallel programs are
GPU-bound, the execution time of 2esE threads when
prefetching is, and is not, allowed is expressed as T௕(𝑟) and
T௕(r)ᇱ , respectively. When performance gain is generated
through prefetching, C௠௣(i) is applied to represent the cycle of
memory access of the ith GPU memory when allowing
prefetching and maxC௠௡௣(i) denotes the largest period cycle
of memory latency of all GPU memories when prefetching is

not allowed. Through
େ೘೛(୧)

୫ୟ୶େ೘೙೛(୧)
, the performance

improvement ratio is attained. Similarly, according to the
performance improvement ration, the voltages and frequencies
of each GPU memory can be re-calculated to find the frequency
scaling factor (α = f௠(i)/f௠଴(𝑖)) of each GPU memory. C
points are uniformly sampled within the interval [α, 1] in steps
46-50 as frequency scaling factors. The frequency scaling
factor 𝛼௑ is selected to minimize the dynamic energy
consumption (P௑𝑇௑). If P௑𝑇௑ < P଴𝑇଴ , 𝛼௑ is taken as the final
optimal frequency scaling factor (otherwise, the original
frequency f଴ /𝑓୫଴ is used). In this case, it implies that it is
inapplicable to optimize the program by using software
prefetching under a performance constraint. After obtaining the
optimal frequency scaling factor 𝛼௑ , the access of prefetch
distance is roughly determined at first according to the
frequency scaling factor when determining the proper prefetch
distance based on frequency during simulation in step 56 using
Formula (20). Thereafter, slight scaling, with a small amplitude,
is conducted to determine an appropriate prefetch distance, thus
reducing dynamic energy consumption. We analyze the time
complexity of the algorithm in terms of code nested layers. For
the conditional judgment statements, the total time complexity
is equal to the time complexity of the path with the greatest time
complexity. In ECADP algorithm, there are three if-conditional
judgment statements. In the first if-conditional judgment
statement, the time complexity of the first path is 𝑂(1) and that
of the second path is 𝑂(𝑛) , so the time complexity is
𝑚𝑎𝑥 (𝑂(1), 𝑂(𝑛))= 𝑂(𝑛). Similarly, the time complexity of
the second if-conditional judgment statement is 𝑂(𝑛). The time
complexity of the third if-condition judgment statement is 𝑂(1).
So，the holistic time complexity of the whole algorithm is
𝑚𝑎𝑥 (𝑂(n), 𝑂(𝑛), 𝑂(1)), that is 𝑂(𝑛).

VII. EXPERIMENTAL VERIFICATION

A. Experimental platform and test cases

We tested high performance computing platforms in
industrial scenarios. Existing GPUs with few adjustable levels
cannot completely support dynamic voltage (or frequency)
scaling, which is not conducive to conducting theoretical
research and verification of the low-power optimization of
GPUs. Therefore, the simulator used for testing the power
consumption of GPUs is used for experimental verification
[20].

TABLE I PARAMETER SETTINGS OF THE SIMULATOR FOR GPU POWER

CONSUMPTION
SM 8 Network Crossbar
Warp size 32 SIMT width 32

Max. blocks per SM 8 Max threads per SM 1024
Core clock 325 MHz L2 clock 650 MHz
Network clock 650 MHz DRAM clock 800 MHz
Shared memory per
SM

12 kB Memory latency 450

L1 per SM 16 kB, 32bytes per block, 4-way
L2 cache 2 MB, 32 bytes per block, 4-way
Software GPGPUSim 2.1.1b, NVCC 2.2, GCC 4.3

The simulator for power consumption is realized by adding a
Wattch model for power consumption into the GPGPUSim
simulator to model the power consumption of various
components (Shader Cores, L2 Cache, and the Memory
Controller) in GPUs [21]. For an Interconnection Network, the
modelling approach for power consumption used in PowerRed
is applied [22]. For DRAM, the modelling is carried out by
utilizing a published method [23]. For each component, the
simulator counts the activities of each clock cycle in its clock
domain and accumulates power consumption. Finally, the total
power consumption of GPU is summed up. Because of the
semiconductor technology adopted by the modern GPU is more
mature and the characteristic coefficient is smaller than the set
in Wattch model, it should be noted that the absolute power
consumption given by the simulator is slightly higher than of
the simulated target GPU (the general error is less than 10%).
However, as a theoretical optimization method, this paper
focuses on the relationship between power and performance
changes of GPU after frequency reduction, rather than the
absolute value of power consumption. Therefore, the absolute
power error is acceptable. Parameters of the simulator for GPU
power consumption are listed in Table 1.

TABLE II TEST CASE
Application Data

size
Thread
block size

The number of
thread block

Data/thread
block

Data/r
thread
block

MM 2× 4MB 16×16 4096 128 kB 64 (1 + r)
kB

DH 2 MB 256 1024 2 kB 2r kB
MV 8 MB 128 2048 64.5 kB 64r + 0.5 kB
LP 2 MB 16 × 16 2048 1.3 kB 1152r + 144

B
MT 4 MB 256 256 16 kB 16r kB
SQ 8×2MB 256 512 4 kB 4r kB
BS 2MB 256 256 8 kB 8r kB
FB 8MB 128 2048 64.5KB 64r + 0.5 kB

Eight typical applications (including BlackScholes (BS),
dwtHaar1D (DH), fwtBatch1 (FB), MatrixMul (MM),
Matrix-Vector (MV), Laplace (LP), MersenneTwister (MT),
and SobolQRNG (SQ) from multiple cognate areas such as
signal processing, finance, and scientific computation were
used as the test cases. BS comes from the financial field. It
implements the Black-Scholes model and calculates partial
differential equations for financial prices. DH realizes the
wavelet transform of signal. FB application comes from fast
walsh transform. MT accomplishes Mersenne Twister
pseudo-random number generation algorithm. SQ is the Sobol
quasi-random number generation algorithm. MM, MV and LP
come from the field of scientific computing. They are matrix
multiplication, matrix vector multiplication and Laplace
transformation. These applications are characterized by the fact
that their loops are contained in a kernel function and the loop
contains references to accessing global memory space. They
satisfy the basic conditions for conducting software
prefetching-based optimization. The specific data size of the
test cases is listed in Table 2.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE III FREQUENCY SCALING FACTORS AND OPTIMIZATION EFFECTS OF ENERGY CONSUMPTION

Application
Register Shared memory

α
𝛼௑

Energy
consumption

α
𝛼௑

Energy
consumption α௖ α௠ α௖ α௠

Memory-bound

MM 0.42 0.42 78.8% 0.46 0.46 86.2%
DH 0.58 0.58 80.2% - - 100%
MV 0.57 0.57 65.6% 0.43 0.43 66.3%
LP 0.62 0.60 75.2% - - 100%
MT 0.65 0.65 84.5% - - 100%
SQ - - - 100% - - - 100%

GPU-bound
BS 0.35 0.35 84.5% 0.33 0.33 85%
FB 0.23 0.2 76% 0.12 0.12 75%

B. Test results

Figure 4 shows the execution time and the ratio between
power consumptions (after prefetching/before prefetching) of
the applications on the condition of separately using register
and shared memory as a prefetching buffer. When using shared
memory as the buffer for software prefetching in LP and MT
applications, the execution time of the applications increased
compared with that before software prefetching, thus leading to
poorer program performance. Under the two strategies, the
performances after prefetching separately increase by 41% and
30% (on average) while the power consumption increased
slightly due to software prefetching. The changes in simulated
performances and energy consumptions of eight typical
applications before, and after, optimization of dynamic energy
consumption based on adaptively adjusted distance of software
prefetching are analyzed on a GPU platform. Through analysis,
it can be concluded that the adaptively adjusted distance of
software prefetching is related to the frequency scaling factor.
Therefore, the dynamic energy consumption can be optimized
by scaling frequencies of processors and memories.

BS DH FB LP MM MT MV SQ Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a

tio
(A

fte
r

p
re

fe
tc

h
/B

e
fo

re
 p

re
fe

tc
h

)

 Performance(Reg)
 Performance(Shm)
 Energy(Reg)
 Energy(shm)

Fig. 4. Changes in simulated performance and energy consumption
before, and after, prefetching

Figure 5 separately shows the performance and energy
benefits when separately using the register and shared memory
as a prefetching buffer. The prefetch distance is the optimal
value calculated by using the algorithm for optimizing dynamic
energy consumption based on the adaptively adjusted distance
of software prefetching. As shown, when utilizing the register
and shared memory as the prefetching buffer, the energy
consumptions of the system can be separately reduced by 18%
and 13% by applying the aforementioned algorithm under a
performance constraint. It can be seen that the power
consumptions of DH, LP, and MT, when using the shared

memory as a prefetching buffer, are not optimized. The power
consumptions of the application SQ under both strategies are
not optimized. The main reason for this is that, when a program
undergoing prefetching-based optimization is subjected to
incremental frequency reduction, the moment at which the
execution time increases to its original level is earlier than that
when the energy consumption falls to its original level. This
means that, when the execution time increases to the original
time through frequency scaling, the power consumption is
significantly greater than that seen in its original condition, thus
failing to reduce energy consumption by decreasing frequency.
Therefore, according to the optimization method, it is not
applicable to utilize software prefetching for optimization and
the application is still executed using the original programs at
the original frequency.

BS DH FB LP MM MT MV SQ AVG
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 Performance(Reg) Performance(Shm) Energy(Reg) Energy(Shm)
 Performance(Reg)-Ag Performance(Shm)-Ag Energy(Reg)-Ag Energy(Shm)-Ag

P
e

rf
or

m
a

nc
e

 a
n

d
E

ne
rg

y
sp

ee
d

up
s

Fig. 5. Changes in simulated performance and energy consumptions
before, and after, optimizing dynamic energy consumption based on the
adaptively adjusted distance of software prefetching

Additionally, in a homogeneous multi-GPU system, there are
three communication–computing pipeline spatio-temporal
diagrams during software prefetching. According to different
pipeline spatio-temporal diagrams, the performance
bottlenecks of the application program can be further judged.
By exploring the performance bottleneck, some parameters are
calculated, including the frequency scaling factor 𝛼௑ of
processors (or memories) under optimal dynamic energy
consumption and the frequency scaling factor α of processors
(or memories) in performance-bound conditions under a time
constraint. Based on the frequency scaling factor, an
appropriate prefetch distance can be rapidly determined to
further reduce dynamic energy consumption.

In the related work, we mentioned the work of Agarwal et al.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

They proposed the energy optimization strategy of prefetching
before DVFS. This method ignores the effect of DVFS on
prefetching optimization. From the analysis of Section IV, we
conclude that after DVFS, the prefetching distance should be
reduced appropriately to make it more reasonable. It can also be
seen form the experimental results of Fig.4, the register
pressure brought by prefetching may affect the parallelism of
the program and thus have a greater impact on the performance.
Therefore, reducing prefetching distance often means
increasing parallelism and improving performance.

In the energy consumption optimization method, Agarwal et
al. adopted an on-line dynamic voltage regulation algorithm.
The voltage was adjusted online according to the learning of
instruction window. This method needs to ensure that the
instruction window cannot be selected too small, in order to
avoid the overhead of learning. For GPU program, the special
structure of its program determines that it is not suitable to use
learning method to dynamically adjust the voltage. First, the
thread space of GPU is composed of a large number of thread
blocks with isomorphic instructions, which also run on SM
with isomorphic hardware. Because the number of thread
blocks running at the same time on SM is limited, thread blocks
occupy SM execution according to macro-batch and
microscopic timesharing. From the time dimension of the
whole program execution, SM execution is composed of a large
number of similar computational processes, so there is no need
to learn program behavior at the thread block level, only need to
extract the behavior of single thread block by simulation.
Secondly, the execution time of the single thread block itself is
relatively short (the proportion of execution time of the total
program is very small). If the instruction window is studied in
the single thread block, the granularity is too fine. This will
result in excessive learning overhead, and there is no practical
significance. Therefore, 2esE thread blocks are simulated to
extract the relationship between program performance, power
consumption and software prefetching optimization.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 
m
=1 

m
=0.8 

m
=0.6 

m
=0.4 

m
=0.2

P
er

fo
rm

an
ce

 s
p

ee
du

p


c

 Fig. 6. (a) Performance improvements of application MM under different
frequency scaling factors

In this paper, the proposed algorithm for dynamic energy
optimization based on the adaptively adjusted distance of
software prefetching compared with the energy optimization
method (Abbreviated as Ag algorithm) propose by Agarwal et
al. as shown in Figure 5. From the experimental results, we can

see that the performance of our energy consumption
optimization method is improved by 19% and 16% respectively,
considering the appropriate reduction of prefetch distance
compared with Ag algorithm, when the energy consumption is
basically the same. So, the method proposed in this paper is
more effective.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 
m
=1 

m
=0.8 

m
=0.6 

m
=0.4 

m
=0.2

P
e

rf
or

m
a

nc
e

 s
pe

ed
u

p


c

Fig. 6. (b) Performance improvements of application BS under different
frequency scaling factors

Table 3 lists the optimal frequency scaling factors 𝛼௑, and
frequency scaling factors α at the performance-bound state and
optimization effects of energy consumption of eight
applications. According to the communication–computing
pipeline spatio-temporal diagram, the eight applications can be
approximately classified into two types. The applications MM,
DH, MV, LP, and MT are constrained by the memory of GPUs
and therefore communication overhead is considered to be the
performance bottleneck (memory-bound) of that type of
application. Under this circumstance, the energy consumption
can be reduced by decreasing the frequency α௖ of the
processors. Applications BS and FB are restricted by the
processors in the GPUs and therefore the computing time of
processors is regarded as the performance bottleneck
(GPU-bound) of that type of application. In this case, the
energy consumption can be reduced by reducing the frequency
of the memories. It can be seen from Figure 4 that prefetching
using shared memory is inapplicable for DH, LP, and MT
applications. For an SQ program, it is not suitable to carry out
prefetching under the two strategies, therefore, the power
consumptions under these conditions are not optimized, with an
energy saving of 0%. In the other applications, under most
circumstances, the optimal frequency scaling factor 𝛼௑ for
energy consumption is consistent with the frequency scaling
factor α (α௖/α௠) at the performance bound; however, for the
three applications FB, LP, and MM, the condition 𝛼௑ < 𝛼
arises. The main reason is that there is also non-negligible static
energy consumption in the system, apart from its dynamic
energy consumption. When improving the frequency to some
extent in the vicinity of α , the reduction in static energy
consumption is more significant than the increase in dynamic
energy consumption. According to the frequency regulation
factor 𝛼௑, the parameters of core clock and DRAM clock are
adjusted in GPGPUSim power simulator. In GPGPUSim, each

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

power consumption data is recorded in a power_result_type
structure, and the total power consumption data is output
through double total_power. According to the ration of the total
energy consumption after to before frequency regulation, the
percentage of energy consumption optimization in Table 3 is
obtained. Taking the average value, under the two prefetching
strategies, energy consumptions can be separately reduced by
22.1% and 22.8% through frequency scaling.

To verify the effectiveness of the optimal frequency scaling
factor in the present study, the applications MM and BS are
selected and verified on the true Quadro FX 5600 platform. The
two applications separately represent the two types of test cases,
i.e., memory-bound and GPU-bound. Figure 6 shows the
performance improvements in applications MM and BS
obtained under different frequency scaling factors (α௖ and α௠).
It can be seen from Figure 6(a) that an inflection point occurs in
the frequency scaling factor α௖ plot between 0.4 and 0.45 for
processors when the performance of MM rapidly declines. The
reason for this is that MM is a computation-intensive
application. When the processor works at a high frequency, the
bottleneck during program execution frequency of the
processor decreases to a certain extent, the bottleneck during
the execution of application MM is found in the processors but
not in memory. Under this circumstance, the performance of
the application decreases if the frequency of the processor
continues to be lowered. Therefore, the optimal frequency
scaling factor of the MM application program is supposed to
occur at the inflection point. As seen from Table 2, the optimal
frequency scaling factors of GPU processors in MM
application are theoretically calculated as 0.42 and 0.46 by
using the algorithm for optimizing dynamic energy
consumption based on the adaptively adjusted distance of
software prefetching. The results are attained when the register
and the shared memory are applied for prefetching-based
optimization. The results show an insignificant discrepancy
with the optimal frequency scaling factor 0.40 ≤ α௖ ≤ 0.45 for
processors tested on a true platform. In Figure 6(b), it can be
seen that, for application BS, the performance exhibits a linear
relationship with the frequency of processors for most α௠. It is
because application BS is memory-intensive. In this case, the
bottleneck of program operation is attributed to computation
and therefore reducing the frequency of GPU processors
certainly decreases the performance. Thus, under this
circumstance, it is necessary to guarantee the performance and
lower the energy consumption by decreasing the memory
frequency. As shown in the figure, on the condition that α௠ is
low enough, that is, α௠= 0.2, the bottleneck during program
operation is transformed. In this context, reducing the
frequency of GPU processors by a small amount cannot
significantly influence program performance, therefore, it can
be judged that the optimal frequency scaling factor for
application BS is α௠= 0.2, which differs by about 10%, from
the theoretical optimal frequency scaling factors (0.35 and
0.33): this further validates the effectivenesses of the model for
energy consumption and the algorithm for optimizing dynamic
energy consumption.

VIII. CONCLUSION AND FUTURE WORK

The opportunities of task partition and software prefetching
for energy optimization of a CPU-GPU heterogeneous
embedded system are analyzed through the communication–
computing pipeline spatio-temporal diagram. Furthermore, a
model for energy optimization of a homogeneous multi-GPU
system is established. Based on the model, an algorithm for
optimizing dynamic energy consumption of a homogeneous
multi-GU architecture based on the adaptively adjusted
distance of software prefetching is proposed. The algorithm is
used for energy optimization of parallel programs. The test
result showed that, under the two prefetching strategies
(register and shared memory), the dynamic energy
consumptions separately decreased by 22.1% and 21.8% (at
most) on the premise of maintaining the program performance
through frequency scaling of processors and memories.

Parallel programs exhibit various problems (such as load
imbalance and data dependence) during actual executions, so it
is difficult to establish models capable of exploring the energy
optimization of parallel programs. For this reason, future work
will focus on the investigation of the characteristics of program
parallelism in order to conduct energy analysis and
optimization thereof.

ACKNOWLEDGMENT

This work was sponsored in part by National Natural Science
Foundation of China (grant number 61672168, 61672172,
U1801263, U1701262, 61300029, 61772143, 61803093),
National High-Resolution Earth Observation Major Project
(83-Y40G33-9001-18/20), Guangdong Provincial Key
Laboratory of Cyber-Physical System (2016B030301008)

REFERENCES
[1] Y. L. Zhu, D. Pan, Z. W. Li, H. Liu, Y. Zhao, Z. Y. Lu, and Z. Y. Sun.

“Employing multi-GPU power for molecular dynamics simulation: an
extension of GALAMOST,” Molecular Physics, vol.116, no.7-8, pp.1-13,
2018.

[2] L. Chao, Y. S. Fei, L. W. Zhang, A.A. Ding, L. Pei, S. Mukherjee, and D.
Kaeli. “Power analysis attack of an AES GPU implementation,” Journal
of Hardware & Systems Security, vol.2, no.1, pp.69-82, 2018.

[3] Y. Yi, X. Ping, J. F. Kong, and H. Y, Zhou. “A GPGPU compiler for
memory optimization and parallelism management,” ACM SIGPLAN
Notices, vol. 45, no.86-97, pp.86-97, 2010.

[4] H. M. Roudsari, A. Jalilian, S. Jamali. “Flexible fractional compensating
mode for railway static power conditioner in V/v traction power supply
system,” IEEE Transactions on Industrial Electronics, vol. pp, no.99,
pp.1-1, 2018.

[5] Z. W. Wang, L. L. Cheng, W. Q. Zhao and N. X. Xiong. “An
architecture-level graphics processing unit energy model,” Concurrency
and Computation: Practice and Experience, vol. 28, no.10, pp.2795-2810,
2016.

[6] C. Cen, K. Li, A. Ouyang, T. Zhuo, and K. Li. “GFlink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big data,”
International Conference on Parallel Processing, pp.1-1, 2016.

[7] Z. W. Wang, W. Q. Zhao, H. Wang, and L. L. Cheng. “Three-level
performance optimization for heterogeneous embedded systems based on
software prefetching under power constraints,” Future Generation
Computer Systems, vol.86, pp.51-58, 2018.

[8] S. M. Cheng, P. B. Gibbons, T. C. Mowry. “Improving index
performance through prefetching,” Proceedings of ACM SIGMOD Conf,
vol.30, no.2, pp.235-246, 2001.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

[9] T. Mowry, A. Gupta. “Tolerating latency through software-controlled

prefetching in shared-memory multiprocessors,” Journal of Parallel and
Distributed Computing, vol.12, no.2, pp.87-106, 1991.

[10] M. Payami, E. Azarkhish, I. Loi, and L. Benini. “A hybrid instruction
prefetching mechanism for ultra low-power multi-core clusters,” IEEE
Embedded Systems Letters. vol. PP, no. 99, pp.1-1, 2017.

[11] Y. Zhou, S. Taneja, C. W. Zhang, and X. Qin. “GreenDB:
energy-efficient prefetching and caching in database Clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, no.99, pp.1-1,
2018.

[12] D. N. Agarwal, S. N. Pamnani, Q. Gang, and D. Yeung. “Transferring
performance gain from software prefetching to energy reduction,” IEEE
International Symposium on Circuits & Systems, pp.1-4, 2004.

[13] J. Chen, Y. Y. Ke. “A dynamic power management mechanism for
embedded system with micro-kernel operating system,” Applied
Mechanics and Materials, vol.325-326, pp.916-921, 2013.

[14] A. C. Klaiber, H. M. Levy. “An architecture for software-controlled data
prefetching,” ACM SIGARCH Computer Architecture News, vol. 19, no.
3, pp. 43-53,1991.

[15] T. C. Mowry, M. S. Lam, A. Gupta. “Design and evaluation of a compiler
algorithm for prefetching,” International Conference on Architectural
Support for Programming languages and Operating Systems, New York,
NY, USA, pp.62-73,1992.

[16] K. Li. “Performance analysis of power-aware task scheduling algorithms
on multiprocessor computers with dynamic voltage and speed,” IEEE
Transactions on Parallel and Distributed Systems, vol. 19, no. 11, pp.
1484-1497, 2008.

[17] K. Li. “Energy efficient scheduling of parallel tasks on multiprocessor
computers,” Journal of Supercomputing, vol. 60, no. 2, pp. 223-247,
2012.

[18] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, and F. Zhao.
“Energy-optimal software partitioning in heterogeneous multiprocessor
embedded systems,” In Proceedings of the 45th annual design automation
conference. New York, NY, USAM, pp.191-196, 2008.

[19] T. D. Burd, R. W. Brodersen. “Energy efficient CMOS microprocessor
design,” Twenty-Eighth Hawaii International Conference on System
Sciences, pp. 288-297,1995.

[20] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.
“Analyzing CUDA workloads using a detailed GPU simulator,” IEEE Intl
Symp Performance Analysis of Systems & Software, pp.163-174, 2009.

[21] D. Brooks, V. Tiwari, M. Martonosi. “Wattch: A framework for
architectural-Level power analysis and optimizations” IEEE
International Symposium on Computer Architecture, pp. 83-94, 2000.

[22] K. Ramaniz, A. Ibrahim, S. Dan, “PowerRed: a flexible modeling
framework for power efficiency exploration in GPUs,” Worskshop on
Gpgpu, pp.1-8, 2007.

[23] Š.Tajana, B. Luca, D. M. Govanni. “Cycle-accurate simulation of energy
consumption in embedded systems”. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference. New York, NY, USA, pp.
867–872, 1999.

Zhuowei Wang received the Ph.D. degree in
computer system architecture form Wuhan
University, Wuhan, China, in 2012. She is now
associate professor of the institute of computers
at Guangdong University of Technology. Her
research interests focus on high performance
computing, low power optimization, distributed
systems and etc.

Lianglun Cheng is now a professor of institute of
computer in Guangdong University of
Technology. He has a master degree in
automation from Huazhong University of Science
and Technology. He receives the Ph.D. degree in
machinery manufacturing and automation, from
Changchun Institute of Optical Precision
Machinery and Physics, Chinese Academy of
Sciences. His research interests focus on IOT,
CPS and sensor networks etc.

Hao Wang (M’07) is an associate professor in
the Department of Computer Science in
Norwegian University of Science & Technology,
Norway. He has a Ph.D. degree and a B.Eng.
degree, both in computer science and
engineering, from South China University of
Technology. His research interests include big
data analytics, industrial internet of things, high
performance computing, safety-critical systems,
and communication security. He has published
100+ papers in reputable international journals

and conferences. He served as a TPC co-chair for IEEE DataCom 2015,
IEEE CIT 2017, ES 2017, a senior TPC member for CIKM 2019, and
reviewers for journals such as IEEE TKDE, TII, TBD, TETC, T-IFS, IoTJ,
TCSS, and ACM TOMM, TIST. He is a member of IEEE IES Technical
Committee on Industrial Informatics.

Wuqing Zhao received the Ph.D. degree in
Wuhan University. He is now senior engineer in
CSG Digital Power Grid Research Institute Co.,
Ltd. (DGRI). He is especially interested in data
grid, cloud computing and etc.

Xiaoyu Song (M’99–SM’04) received the Ph.D.
degree from the University of Pisa, Italy, in 1991.
From 1992 to 1998, he was on the faculty at the
University of Montreal, Canada. He joined the
Department of Electrical and Computer
Engineering at Portland State University in 1998,
where he is now a professor. He was an editor of
IEEE Transactions on VLSI Systems and IEEE
Transactions on Circuits and Systems. He was
awarded an Intel Faculty Fellowship from 2000 to

2005. His research interests include formal methods, design automation,
embedded systems and emerging technologies.

