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Abstract Particle based methods can be used for both the simulations of solid and fluid phases in
multiphase medium, such as the discrete-element method for solid phase and the smoothed particle
hydrodynamics for fluid phase. This paper presents a computational method combining these two
methods for solid-liquid medium. The two phases are coupled by using an improved model from
a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows
in a two-dimensional lid-driven cavity. c© 2012 The Chinese Society of Theoretical and Applied
Mechanics. [doi:10.1063/2.1201202]
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Mesh generation is a time-consuming task in com-
putational simulation. Mesh free methods abandon this
concept. Several meshless methods have been devel-
oped for fluid mechanics since 1970s. Among all these
methods, smoothed particle hydrodynamics (SPH) is
one of the earliest methods.It was developed for solv-
ing astro-physical problems.1,2 Later it was also used
for the simulations of different types of fluid flows, be-
cause the movement of particles in astrophysical flows
is similar to those in liquid or gas flows. The idea of the
SPH method is building a set of disordered particles in
a continuum without grid or mesh. Each particle has
an associated mass, momentum and energy. The mo-
tion of the particle is calculated from the integration
of Newton’s second law. A property for each particle
within the flow, such as density, is obtained from an
interpolation of the neighboring particles by using the
following approximate averaging operator, which is also
called kernel function3,4

f(xi) =

∫
Ω

f(x′)δ(x− x′)dx′ ≈
N∑
j=1

f(xj)W (xi − xj , h)Vj , (1)

where δ is the Dirac delta function, W is the smoothing
kernel function and h is the smoothing length defined
the influence area of W , Vj is the space occupied by
the jth particle, Ω is the space of the integral which
contains x, also called support domain and N is the
number of discrete particles in Ω.

Also in 1970s, Cundall developed discrete-element
method (DEM) for the analysis of rock-mechanics
problems5 and then this method was applied to soils.6

Same as that in SPH, the motion of each particle in
DEM is also described by the Newton’s law, that the
sum of all forces acting on it is intergraded over tiny
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time steps to find the particle’s velocity and position.
Comparing with the Eutherian methods for particulate
flows, we can easily capture the key features and details
of the system to provide details which are helpful in the
development of accurate models.7,8 Hence, the DEM al-
gorithm looks similar to SPH because both of them are
numerically intergraded subjected to forces applied by
the neighboring particles. The major difference is that
the inter-particle forces in SPH are derived from the
Navier-Stokes equations and those forces in DEM are
due to particle contact process.9

A lot of researches using DEM to couple with
mesh-based computational fluid dynamics (CFD) tech-
nique, namely Lagrangian (particle-based) and Eule-
rian (mesh-based) methods (La/Eu), to simulate the
liquid-solid flows have been carried out.10,11 The vol-
ume fraction, φ, is an important parameter for coupling
the phases in these simulations, because the drag force
is described as a function of φ.10,12 These researches
cannot get rid of the mesh generation process in the
simulations thoroughly. Ten years ago, Potapov et al.13

showed some simulations of coupling of the SPH and
DEM methods, which is different from the other pre-
vious approaches for liquid-solid flows. The size of the
solid beads in the system are much larger than the inter-
particle spacing for the fluid SPH particles in their sim-
ulations. No-slip boundary conditions were applied to
couple the fluid particles close to the solid surface and
those solid particles composed the beads surface. Re-
cently, Huang et al.14 showed their SPH simulations us-
ing multi-mass particles. This technique makes it easy
to combine the SPH and DEM methods for the solid-
fluid problems with tiny beads.

This paper presents some results of an ongoing
study of solid-liquid flow with tiny solid beads by com-
bining SPH and DEM. It is a Lagrangian-Lagrangian
(La/La) method and no mesh is required more.

Each particle carries individual mass and occupies
individual space in SPH method for single phase. The
density of the ith particle, ρi, in a particulate sys-
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tem can be evaluated by using the summation density
approach4,15

ρi =

N∑
j=1

mjWi,j

/
N∑
j=1

(
mj

ρj

)
Wi,j , (2)

where ρj is the density and mj is the mass of the jth
particle of the N fluid particles supporting domain. It is
well suited for the normalization condition and strictly
ensures the conservation of mass. We have adopted this
approach in this paper.

Based on the summation density approach, the
mass conservation equation and the momentum equa-
tion also can be written in particle form as16,17

dρx1
i

dt
= ρi

N∑
j=1

mjvij

ρj

∂Wij

∂xx2
i

, (3)

and

ρi
dvx1

i

dt
=

N∑
j=1

mjσσσ
x1,x2

j

ρj

∂Wij

∂xx2
i

, (4)

where v is velocity, t is time, σ is stress tensor and
x is coordinate in the kernel function. The stress ten-
sor is made up of two parts, the isotropic pressure and
the viscous stress. If external forces are considered, the
momentum equation Eq. (4) becomes

ρi
dvx1

i

dt
=

N∑
j=1

mjσσσ
x1,x2

j

ρj

∂Wij

∂xx2
i

+

∑
Fext

Vi
. (5)

The external forces include the gravitation and the
solid-fluid interaction.

The motion of each solid bead in a solid-liquid sys-
tem can be described by the Langevin equation, as

m
dv

dt
= F i + FD + F b + F g. (6)

where the four terms on the right hand side are due
to bead-bead contact, drag force and buoyancy force
from the fluid phase, and gravity force. To simplify
the problems, the shapes of the beads are assumed to
be spherical or spheroidal and each particle stands for
a solid bead. A DEM algorithm given by Ramı́rez et
al.18 was chosen in our simulations, that the bead-bead
contact process could be modeled as a spring-dashpot
system. The normal interaction force is the sum of an
elastic term and a viscous term

Fn = F e
n + F d

n = Knδ
ζ
n + ηnδ

ξ
nδ̇n, (7)

where ζ = 3/2,19,20, ξ = 0.5 by dimensionless
analysis,21 δn is the overlap, δn = ri+rj−dij (δn > 0),
Kn is the effective stiffness, ηn is the damping coeffi-
cient, ri,j is the radius of each bead and dij is the dis-
tance between the two centers of the beads. While for
a constant coefficient of restitution (COR) in the nor-
mal direction, e, ζ the details of other coefficients are
described in Refs. 7, 22. The magnitude of tangential

Fig. 1. Location of the particles in the lid-driven square
cavity at t = 0 s. The big dots for solid beads and the
small dots are for fluid particles in the system. The initial
velocities of all particles are zero. The origin of the xy-
coordinate system is located in the lower-left corner of the
cavity.

force, | Ft,i |, is obtained from Coulomb’s friction law
that | Ft,i |= μ | Fn,i |. In the simulations shown in this
paper, e = 0.9 and μ = 0 were selected.

The drag force term in Eq. (6) presents the force on
solid beads due to the velocity relative to the surround-
ing fluids. For a single spherical bead, it can be written
as12

FD
s = 3πdsρfνfφ

β
f (1 + 0.15Re0.678p )(vf − vs), (8)

where Rep is the particle Reynolds number, Rep =
φfds|vf − vs|/νf , ds is the diameter of the solid bead,
ρf is the density, νf is the viscosity of the fluids, the ex-
ponent β varies with the particle Reynolds number, the
subscripts s and f are for solid and fluid particles respec-
tively. In our simulations, the density ρf is obtained by
from Eq. (2) and the velocity of the surrounding fluids
for the solid particle i, vf,i is approached by averaging
the surrounding fluid particles

vi,f =

N∑
j=1

vjmj

/ N∑
j=1

mj (9)

The buoyancy force term is given by

F b
s = (ρf − ρs)Vs · k, (10)

where k is the unit vector paralleling with gravitation.
The aforementioned drag force and the buoyancy

force act on the solid beads, then the equal and op-
posite forces should be acted upon the fluid particles.
Employing the kernel function, we approach these reac-
tions on each fluid particle by

FD,b
f,k = FD,b

s · (Vf,kWk,j)

/ N∑
j=1

Vf,jWi,j . (11)

Adding the fluid-solid interaction to the momentum
equation for fluid phase, we find that Eq. (5) becomes

ρf,i
dvx1

f,i

dt
=

N∑
j=1

mf,jσσσ
x1,x2

j

ρf,j

∂Wij

∂xx2
i

+
F b
f,i + FD

f,i

Vf,i
. (12)
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Fig. 2. Location and velocity profiles of the lid-driven square cavity at different times. Here, the solid dots are for the solid
beads in the system.

Fig. 3. Dimensionless velocity along the vertical central line
of the cavity. The different types of dots are for the solid-
fluid flows at different time. The curve is for a single-phase
fluid flow with the same boundary conditions when it arrives
steady state.

The lid-driven cavity flow is perceived as a text-
book example and usually it is determined qualitatively
in the simplest case of the flow in a two dimensional
(2D) square cavity. The comparison with this classical
phenomena has been used to examine the ability and
efficiency of a simulation method.14,23–26 A simulation
of solid-liquid flow in a 2D lid-driven square cavity is
presented. The simulation region consists of 40 × 40
fluid particles and 20 × 4 solid beads, with shear mov-
ing boundary conditions at the top side and bounce-
back boundary conditions at the left, right and bottom
sides. The diameter of these solid beads is 1 mm, the

Fig. 4. The flow field of fixed and concentrated dense solid
beads, which can be used for simulation of porous materials.

density of the fluid phase is 1 000 kg/m3, and the vis-
cosity νf = 1 000 m2/s. Gravitation is not considered
in the simulations. The square simulational domain is
sketched in Fig. 1 with side length L = 0.01 m and the
velocity of the top boundary, vt, is 0.01 m/s. The mass
of each fluid particle is obtained by

mf,i = ρf,idxdy ·
N∑
j=1

Vs,jWi,j/Vh, (13)

where N is the number of solid particles in the ith par-
ticle’s supporting domain and Vh is space of the sup-
porting domain. For 2D problems, Vh = 3πh2/4, where
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h is the radius of the supporting domain. It is reported
that a prime eddy forms at 0.24L below the lid in the
mid-plane for water flow, when the Reynolds number
is 100, where the Reynolds number Re = Lvt/ν.

27 Be-
cause gravitation is not considered in this simulation,
the buoyancy force also approaches zero.

Figure 2 shows the transient behavior of the parti-
cles in the cavity. The snapshots are taken at six dif-
ferent times: t = 0.05 s, 0.25 s, 0.5 s, 1.0 s, 5.0 s and
10.0 s. As shown in Fig. 2(a), the motion of the solid
beads affects the flow field in the beginning. Because
the motions of those solid beads are caused by the flow
of the fluid phase, there exists a delay between the mo-
tions of these two phases. The quasi-static solid beads
separate the cavity into two chambers and the fluid in
each chamber forms an eddy. The flow field reaches a
steady state gradually and the relative velocity between
the two phases approaches to zero. With the movement
of the solid beads, the two chambers connect to each
other, and these two eddies combine to a prime one.
Figures 2(a)–2(c) present this process. Each particle
in the system is propagating along a closed streamline.
To compare the velocity profiles, another SPH simula-
tion for single-phase liquid flow in the same cavity was
carried out. All the dimensionless velocities along the
vertical central line (x = L/2) at different times are
plotted in Fig. 3, as well as the single-phase liquid flow
at steady state. The dimensionless velocities and coor-
dinate are defined as v∗

x = vx/vt and y∗ = y/L, respec-
tively. From Fig. 3, it also can be seen that the eddy
center of the solid-liquid flow approaches that of the
single-phase liquid flow after 0.5 s in our simulations.

On the other hand, if the mass of the solid particles
were set as great enough, the two chambers shown in
Fig. 2(a) become stable. The convection between the
chambers becomes weak. The performance of the dense
solid phase concentrated in the middle of the simulation
domain is similar to porous materials. Figure 4 shows
the flow field of t = 0.1 s when the density of the solid
phase is set as 108 kg/m3. All the aforementioned sim-
ulation results and theoretical explanations show the
validation of the SPH-DEM coupling technique.

This paper presents a La/La algorithm to simulate
solid-fluid phase flows. The motion of the solid phase is
simulated by using DEM while the fluid aspect is simu-
lated by using SPH. The coupling of the two aspects are
followed from some solid-fluid interaction models for La-
Eu methods. Employing this method, we find that the
sizes of the solid beads are very flexible, namely from
infinite to the same scale as the smooth length in the
SPH aspect, which is helpful to control and balance the
CPU time in the two aspects. The method is verified

by an example of solid-fluid flow in a square lid-driven
cavity.
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