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a b s t r a c t 

Batch processes play a vital role in the chemical industry, but are difficult to control due to highly non- 

linear behaviour and unsteady state operation. Nonlinear model predictive control (NMPC) is therefore 

one of the few promising approaches. Batch process models are however often affected by uncertainties, 

which can lower the performance and cause constraint violations. In this paper we propose a shrinking 

horizon NMPC algorithm accounting for these uncertainties to optimize a probabilistic objective subject 

to chance constraints. At each sampling time only noisy output measurements are observed. Polynomial 

chaos expansions (PCE) are used to express the probability distributions of the uncertainties, which are 

updated at each sampling time using a PCE state estimator and exploited in the NMPC formulation. The 

approach considers feedback by using time-invariant linear feedback gains, which alleviates the conser- 

vativeness of the approach. The NMPC scheme is verified on a polymerization semi-batch reactor case 

study. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Batch processes are used in many sectors in the chemical in-

dustry due to their inherent flexibility to produce multiple prod-

ucts and deal with variations in feedstock, product specifications,

and market demand. Batch processes are difficult to control due to

frequently highly nonlinear behaviour and unsteady state operation

leading to an increased acceptance of advanced control methods in

industry ( Nagy and Braatz, 2003 ). Model predictive control (MPC)

is a popular advanced control method for multivariate plants with

process constraints. At each sampling time MPC solves an optimal

control problem (OCP) based on a dynamic plant model to evaluate

a finite sequence of control actions ( Maciejowski, 2002 ). Feedback

is introduced to this procedure through the state update. Nonlinear

MPC (NMPC) employs a nonlinear dynamic model to deal with sys-

tems that display strong nonlinear behaviour. In particular, the use

of first principles models has become feasible due to the advent of

improved optimization methods ( Cao, 2005 ). 

Many dynamic model predictions however are affected by sig-

nificant uncertainties, such as parametric uncertainties, distur-

bance noise, or state estimation errors. This may have an adverse

effect on the control performance of the MPC and may lead to
constraint violations. While the feedback introduced from the state 
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pdate gives MPC some degree of robustness with regards to un-

ertainties, this is often not enough and hence explicit consid-

ration of these uncertainties in the MPC formulation is crucial

 Mesbah, 2016 ). Robust NMPC (RNMPC) assumes the uncertainties

resent to lie in a bounded set ( Bemporad and Morari, 1999 ). RN-

PC approaches include tube-based NMPC ( Mayne et al., 2011 )

nd min-max NMPC ( Chen et al., 1997 ). These approaches allow

uarantees on stability and performance in the worst-case realiza-

ion of the uncertainties, which however may have a very small

hance of occurrence and hence the solution may be overly con-

ervative. Alternatively, stochastic NMPC (SNMPC) methods have

een proposed, which assume the uncertainties to follow known

robability density functions (pdf). Constraints and objective are

ormulated probabilistically. This allows for a pre-defined level of

onstraint violations in probability alleviating the issue of RNMPC

y trading-off risk with closed-loop performance ( Mesbah et al.,

014 ). 

Several SNMPC approaches have been proposed. Assuming the

ncertainties to have only finite number of realizations, multi-

tage stochastic nonlinear programming approaches can be used to

etermine the exact solution ( Lucia et al., 2013 ). Given this restric-

ion, stochastic stability and recursive feasibility have been proven

 Patrinos et al., 2014 ). For continuous stochastic uncertainties on

he other hand it is difficult to propagate the uncertainties without

eing prohibitively expensive. An easy solution to this problem is

iven by successive linearization of the nonlinear dynamic system

s in extended Kalman filter based NMPC ( Lee and Ricker, 1994 ).

https://doi.org/10.1016/j.compchemeng.2019.04.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2019.04.021&domain=pdf
mailto:eric.bradford@ntnu.no
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n Bradford and Imsland (2018a) stochastic averaging is applied

sing the unscented transformation (UT). While both approaches

re computationally cheap, they are only applicable to moderately

onlinear systems. In Sehr and Bitmead (2017) the particle filter

quations are used to estimate the required statistics. This SNMPC

lgorithm however becomes quickly prohibitive in complexity due

o the required number of samples. Similarly, in Maciejowski et al.

2007) Markov Chain MC is used instead with similar restrictions.

n Alamir (2018) a supervised clustering algorithm is proposed to

educe the number of samples required to estimate the relevant

tatistical properties required, which however remains computa-

ionally expensive. For continuous-time dynamic systems Fokker–

lanck equations have been used in Buehler et al. (2016) to prop-

gate the pdfs of the uncertain variables. This approach is how-

ver quite expensive, since it requires the online solution of par-

ial differential equations. In Weissel et al. (2009) it is proposed to

se Gaussian mixtures for uncertainty propagation, in which most

f the calculations are carried out offline. While this is generally

uite efficient, it is only applicable for control actions from a dis-

rete set and low dimensional systems. Alternatively, the statistics

an be estimated using regression approaches such as polynomial

haos expansions (PCE) ( Fagiano and Khammash, 2012 ) or Gaussian

rocesses ( Bradford and Imsland, 2018c ). While these methods are

onsiderably more efficient than MC sampling, they are only appli-

able for moderate dimensional problems due to exponential scal-

ng with the number of uncertain parameters. In a similar fashion

ower series expansions (PSE) have been employed, which use a

aylor expansion of the dynamic system to propagate the uncer-

ainties with similar advantages and disadvantages as using PCEs.

hile PSEs have been shown to have comparable accuracy to the

CE approach with the same polynomial order, it is difficult to ex-

end to polynomial approximation of PSEs to orders higher than

 ( Kimaev and RicardezSandoval, 2017 ). Much of the work in SN-

PC has been restricted to full state feedback with some excep-

ions. The UT work in Bradford and Imsland (2018a) uses the Un-

cented Kalman filter equations for state estimation, a probabilis-

ic high-gain observer has been proposed in Homer and Mhaskar

2018) for state estimation in conjunction with a continuous-time

NMPC formulation, and lastly in Sehr and Bitmead (2017) particle

lter equations were used for both propagation and state estima-

ion. 

In particular, PCE has received a lot of interest for SNMPC. PCEs

re used to estimate the statistics online by building a stochas-

ic surrogate model. This surrogate is then used in Fagiano and

hammash (2012) to approximate objective and constraints in ex-

ectation. The work was then further extended in Mesbah et al.

2014) to include chance constraints by using Chebychev’s inequal-

ty. Streif et al. (2014) samples instead the PCE directly and ap-

roximates the chance constraints using the empirical distribu-

ion function, which is less conservative, but also computation-

lly more expensive. PCE is often computationally too expensive

or time-invariant uncertainties. The problem of time-varying ad-

itive noise ( Bavdekar and Mesbah, 2016b ) and time-varying non-

dditive noise ( Paulson and Mesbah, 2017 ) has been addressed

y employing conditional probability rules. In Bradford and Ims-

and (2018b) feedback is considered in the control formulation us-

ng parametrized control policies to significantly lessen the con-

ervativeness of the approach. PCE has also been used to great

uccess for state estimation. Dutta and Bhattacharya (2010) use

inear update rules considering higher-order moments. By sam-

ling the PCE it can be updated directly using Bayes theorem as

hown in Madankan et al. (2013) . Similarly, Bavdekar and Mes-

ah (2016a) applies Bayes rule, however the approach accounts for

ime-varying additive disturbances and in addition uses the PCE for

ncertainty propagation. In Bradford et al. (2019a) a PCE SNMPC

lgorithm was extended to the case of output feedback by using
he state estimator proposed in Madankan et al. (2013) , while in

radford et al. (2019b) a similar approach is proposed considering

n addition additive disturbance noise. 

For batch processes we are often interested in constraints in-

olving the end-product quality leading to a shrinking horizon

MPC (sh-NMPC) formulation, where the prediction horizon is

qual to the final batch time. In Valappil and Georgakis (2002) a

h-NMPC algorithm using min-max successive linearization is pro-

osed. Nagy and Braatz (2003) use an extended Kalman filter

ased sh-NMPC approach to account for parametric uncertain-

ies and state estimation errors. The real-time implementation of

 sh-NMPC for industrial applications is studied in Nagy et al.

2007) . Mesbah et al. (2011) compares various optimization algo-

ithms for sh-NMPC applied to a crystallization process. Nayhouse

t al. (2015) employs a sh-NMPC algorithm to control the crystal

rowth and size distribution of ibuprofen. The multi-stage SNMPC

lgorithm has been extensively applied to batch processes ( Lucia

t al., 2013 ), while the PCE based SNMPC algorithms have been

pplied to sh-NMPC crystallization problems ( Mesbah et al., 2014 ).

n Rasoulian and Ricardez-Sandoval (2015) the evolution of a thin-

lm deposition process based on partial differential equations is

ontrolled using a sh-NMPC implementation, for which the uncer-

ainties are considered using PSEs. 

In this paper we extend the previous work using a PCE based

h-SNMPC for batch processes ( Bradford et al., 2019a; 2019b; Mes-

ah et al., 2014 ) in the output feedback case. PCEs are utilised,

ince for moderate dimensional problems these have been shown

o give accurate estimates of the statistics required for relatively

ow number of samples compared to other sampling approaches

 Lee and Chen, 2009 ). It was shown in Bradford and Imsland

2018b) that feedback needs to be included in the nonlinear PCE

PC formulation to not be overly conservative, which however has

een otherwise ignored in such formulations. We propose to use

ime-invariant linear feedback gains to accomplish this, which are

ptimized over in addition to the open-loop control actions. The

eedback only affects the predictions of the MPC, but are not them-

elves implemented outside of the MPC formulation. The paramet-

ic and state uncertainties are given by PCEs. It is assumed that at

ach sampling time only noisy output measurements are available,

uch that a nonlinear state estimator is used to update the PCE

epresentations of the states and parameters. These representations

re then efficiently exploited in the PCE based sh-SNMPC formula-

ion to follow both path and end-point chance constraints to op-

imize an economic objective. The presence of time-varying addi-

ive disturbance noise is taken into account using the law of total

xpectation. The algorithm is verified on a challenging case study

f a semi-batch reaction involving the production of the polymer

olypropylene glycol. The aim is to directly minimize the required

atch time subject to both safety and end-product constraints. The

aper is comprised of the following sections. In Section 2 back-

round information is given. In Section 3 a general problem def-

nition is stated. In Section 4 the PCE state estimator is outlined,

hile in Section 5 we introduce the PCE sh-SNMPC formulation.

ection 6 defines the algorithm using both the PCE state estima-

or and the PCE sh-SNMPC. Section 7 defines the case study to be

olved, for which the results are shown and discussed in Section 8 .

astly, conclusions are given in Section 9 . 

. Background 

.1. Introduction to polynomial chaos expansions 

In this section we briefly outline PCEs specific for our purposes.

or a more general review of PCEs, please refer to Xiu and Karni-

dakis (2003) , Eldred and Burkardt (2009) and O’Hagan (2013) . A

CE is a method to represent an arbitrary random variable γ with
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finite second order moments as a function of random variables ξ

with a known distribution. The random variable γ is expanded

onto an orthogonal polynomial basis, which can be expressed as

follows: 

γ ( ξ) = 

∑ 

α∈ N n ξ
a αφα( ξ) (1)

where ξ ∈ R 

n ξ is called the germ , φα : R 

n ξ → R are known mul-

tivariate polynomials comprising the basis with corresponding ex-

pansion coefficients a α and multidimensional summation indices

α ∈ N 

n ξ . 

The probability distribution of the germ ξ is a modelling choice.

Without loss of generality we assume ξ to follow a standard nor-

mal distribution with zero mean and unit variance, i.e. ξ ∼ N (0 , I ) .

The multivariate polynomials in Eq. (1) are given as a tensor prod-

uct of univariate polynomials of the components of ξ: 

φα = 

n ξ∏ 

i =1 

φαi 
(ξi ) (2)

where φαi 
: R → R are univariate polynomials of ξ i of order αi . The

multidimensional index α = [ α1 , . . . , αn ξ ] is hence used to define

the degree of each univariate polynomial and the total order of the

multivariate polynomial φα is consequently given as | α| = 

∑ n ξ
i =1 

αi .

The univariate polynomials φαi 
are chosen to satisfy an orthog-

onality property according to the probability distribution of ξi ,

which in our case for standard normal distributions leads to Her-

mite polynomials: 

φαi 
(ξi ) = (−1) αi exp 

(
1 

2 

ξ 2 
i 

)
d αi 

dξαi 

i 

exp 

(
−1 

2 

ξ 2 
i 

)
(3)

The multivariate polynomials built in this way according to Eqs.

(2) and (3) have the following useful orthogonality property, which

can be defined by the following inner product: 

〈 φα( ξ) φβ( ξ) 〉 = E [ φα( ξ) φβ( ξ)] = 

∫ 
φα( ξ) φβ( ξ) p( ξ) d ξ

= τ 2 
αδαβ (4)

where p( ξ) is the pdf of ξ, δαβ is the Kronecker delta, i.e. δαβ =
1 iff α = β otherwise δαβ = 0 . The normalization constant τ 2 

α is

dependent on the chosen family of polynomials and often known

in practice. 

Generally to use Eq. (1) , it needs to be truncated. Keeping all

terms up to a total order of m : 

γ ( ξ) ≈
∑ 

0 ≤| α|≤m 

a αφα( ξ) = a T φ( ξ) (5)

where a ∈ R 

L and φ( ξ) : R 

n ξ → R 

L are vectors of the coefficients

and polynomials of the truncated expansion respectively. The trun-

cated series consists of L = 

(n ξ+ m )! 

n ξ! m ! terms. 

Often the coefficients a of the truncated PCE expansion in Eq.

(5) are unknown and need to be determined using samples of γ .

In this work we use the non-intrusive spectral projection approach

based on the orthogonality property in Eq. (4) and the definition

of the truncated series in Eq. (5) : 

a j = 

〈 γ ( ξ) φα j 
( ξ) 〉 

τ 2 
α j 

= 

1 

τ 2 
α j 

∫ 
γ ( ξ) φα j 

( ξ) p( ξ) d ξ (6)

where a j refers to the j th coefficient of a with a corresponding α j 

multidimensional summation index. 

The integral in Eq. (6) can be approximated using sampling.

Quadrature methods are commonly used due to their improved

convergence rates compared to crude MC. In the case of standard
ormal distributed germs Gauss-Hermite quadrature rules are em-

loyed, which approximate the integral in Eq. (6) as: 

 

γ ( ξ) φα j 
( ξ) p( ξ) d ξ ≈

N q ∑ 

q =1 

w q γ ( ξq ) φα j 
( ξq ) (7)

here N q is the total number of quadrature points and ξq are the

ample points with corresponding weights w q given by the Gauss–

ermite quadrature rule. 

This procedure leads to the following sample estimate ˆ a of the

oefficient vector a : 

ˆ 
 = (w ( �) T �( �)) T ∗ τ−2 (8)

here ∗ denotes element-wise multiplication, � = [ ξ1 , . . . , ξN q ] 
T ∈

 

N q ×n ξ represents the quadrature sample design, the response

ector is given by � = [ γ ( ξ1 ) , . . . , γ ( ξN q ] 
T ∈ R 

N q , w ( �) =
 w 1 γ ( ξ1 ) , . . . , w N q γ ( ξN q )] T ∈ R 

N q , τ−2 = [ τ−2 
α1 

, . . . , τ−2 
αL 

] T ∈ R 

L

nd �( �) = [ φ( ξ1 ) , . . . , φ( ξN q )] T ∈ R 

N q ×L . 

So far we have limited ourselves to single dimensional ran-

om variable representations using PCEs, which can however eas-

ly be extended to multivariate random variables. Let a multivari-

te stochastic variable be given by γ( ξ) = [ γ1 ( ξ) , . . . , γn γ ( ξ)] T ∈
 

n γ = n ξ with coefficients collected in A = [ a 1 , . . . , a n γ ] ∈ R 

L ×n ξ ,

here we have assumed that each PCE is parametrized in terms of

tandard normal variables ξ with the same dimension as γ(·) . We

urther let each component of γ( ξ) be given by a truncated PCE

ith the same truncation order m and hence the same number of

erms L . 

Statistical moments are an important characterization of ran-

om variables. Assuming the multivariate random variable to be

iven by PCEs as defined above, the statistical moments are func-

ions of the PCE coefficients A and can be defined as: 

 r (A ) = 

∫ n ξ∏ 

i =1 

γ r i 
i 
( ξ) p( ξ) d ξ (9)

here r ∈ R 

n ξ is a vector defining the moments with a total order

 = 

∑ n ξ
i =1 

r i . 

Substituting the definition of the PCEs in Eq. (5) into Eq. (9) we

rrive at ( Dutta and Bhattacharya, 2010 ): 

 r (A ) = 

∫ n ξ∏ 

i =1 

(a T i φ( ξ)) r i p( ξ) d ξ (10)

Using Eq. (10) and the orthogonality property in Eq. (4) it can

e shown that the mean values and covariances of γ are given by:

γi = E [ γi ] = a i 1 (11)

γ

i j 
= E [(γi − μγi )(γ j − μγ j )] = 

L ∑ 

s =2 

L ∑ 

t=2 

a is a jt 〈 φαs 
φαt 

〉 (12)

here μγi is the mean of γ i and �γ is the covariance matrix of

. Note that 〈 φαs φαt 〉 does not depend on the coefficients a and

an hence be pre-computed. The diagonal of Eq. (12) define the

ariances of γ . 

.2. Uncertainty propagation using PCEs 

In this section we illustrate how PCEs can be used to effi-

iently propagate uncertainties through nonlinear functions using

on-intrusive spectral projection as introduced in the previous sec-

ion. Let an arbitrary nonlinear function q ( · ) of a random variable

( ξ) be given by: 

p = q ( γ(ξ)) (13)

here ξ is the germ random variable parametrizing a random vari-

ble γ(ξ) as shown in the previous section. 
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The variable p is now a random variable as well parametrized

y the germ ξ and the aim in this section is to determine its cor-

esponding truncated PCE expansion. It should be noted that the

CE truncation order of p and γ(ξ) can be dissimilar. To accom-

lish this we generate samples of ξ with corresponding weights

sing the Gauss-Hermite rule and evaluate p at those points. The

CE coefficients of p can then be determined using Eq. (8) as fol-

ows: 

ˆ 
 q = w ( �q ) 

T �( �) ∗ τ−2 (14)

here w ( �) = [ w 1 q ( γ( ξ1 )) , . . . , w N q q ( γ( ξN q ))] T with �q =
 q ( γ( ξ1 )) , . . . , q ( γ( ξN q )] T . The remaining terms are defined in

q. (8) . 

Once the approximate coefficients ˆ a q have been determined, we

an use Eqs. (11) and (12) to obtain mean and variance estimates

or p as follows: 

p = E [ p] ≈ ˆ a q 1 (15) 

p = E [(p − E [ p]) 2 ] ≈
L ∑ 

s =2 

ˆ a 2 qs 〈 φ2 
αs 

〉 (16) 

From the above procedure only the response vector �q and

 ( �q ) = [ w 1 q ( γ( ξ1 )) , . . . , w N q q ( γ( ξN q ))] T depend on the values of

 and hence the remaining terms can be pre-computed. We can

herefore view this as a function for which a response vector �q 

eturns estimates of mean and variance of a nonlinear transforma-

ion, which we will denote as: 

p ≈ μPCE 
ζ ( �q ) (17) 

p ≈ σ PCE 
ζ ( �q ) (18) 

here ζ = { m, w , n ξ, �} is a collection of variables defining the

ean and variance function, m is the total order of truncation

f the PCE approximation of p , w is a vector of Gauss–Hermite

eights, n ξ the dimensionality of ξ, and � is the sample design

f ξ from the Gauss-Hermite rule. 

Note that this approach to determine the statistics of p can be

mployed as long as clearly defined input-output data pairs are

vailable utilising Eq. (16) to evaluate the required coefficients. A

losed-form expression as shown in Eq. (13) is not necessarily re-

uired. 

.3. Laws of total expectation and total variance 

PCEs are an efficient way to represent time-invariant probabili-

ies, but become quickly prohibitive in complexity for time-varying

ncertainties. This is because each instance of a time-varying un-

ertainty would require its own dimension in the germ distribution

, which scales exponentially with the number of terms L required

n the PCE expansion, see Eq. (5) . We therefore use the laws of

otal expectation and covariance to deal with the uncertainties in

urn, i.e. using PCEs for the time-invariant uncertainties and utilis-

ng linearization for the time-varying uncertainties. In this section

e introduce these laws. 

Let γ and ω be arbitrary random variables and q an arbitrary

unction of these random variables, then according to the law of

otal expecation we have: 

 [ q ( γ, ω )] = E ω 

[ E γ[ q ( γ, ω ) | ω ]] (19)

The law of total variance can be stated as: 

ar [ q ( γ, ω )] = E ω 

[ Var γ[ q ( γ, ω ) | ω ]] 

+ Var ω 

[ E γ[ q ( γ, ω ) | ω ]] (20) 

i  
Now we aim to use linearization to account for γ and PCE

or ω to approximate the expectation and variance of q ( γ, ω ) .

sing linearization first we arrive at the following simplified

xpressions: 

 [ q ( γ, ω )] ≈ E ω 

[ q ( μγ, ω )] (21) 

ar [ q ( γ, ω )] ≈ E ω 

[ Q ( ω ) �γ Q ( ω ) T ] + Var ω 

[ E γ[ q ( μγ, ω ) | ω ]] 
(22) 

here μγ is the mean of γ, �γ denotes the covariance of γ and

 ( ω ) = 

∂q 
∂ γ

| μγ, ω 

is the Jacobian of q ( · ) with respect to γ evalu-

ted at μγ and ω . 

Next using the PCE Eqs. (17) and (18) for ω we arrive at: 

 [ q ( γ, ω )] ≈ μPCE 
ζ ( �q 

μ) (23) 

ar [ q ( γ, ω )] ≈ μPCE 
ζ ( �q 

σ ) + σ PCE 
ζ ( �q 

μ) (24) 

here �q 
μ = [ q ( μγ, ω 1 ) , . . . , q ( μγ, ω N q )] and �q 

σ = [ Q ( ω 1 ) �γQ

( ω 1 ) 
T , . . . , Q ( ω N q ) �γQ ( ω N q ) 

T ] . 

Here we have shown how two separate random variables ω

nd γ can be dealt with separately. In particular, regarding γ as

ime-varying it was accounted for using linearization, while as-

uming ω as time-invariant was considered using PCEs. 

.4. Chance constraint reformulation using Chebyshev’s inequality 

Let γ be a random variable, for which we have a chance con-

traint as follows: 

 (γ ≤ 0) ≥ 1 − ε (25) 

Often the exact evaluation of Eq. (25) is difficult due to the inte-

ral definition of the probability function. Instead, we are however

ble to estimate the mean and variance of γ . Using Chebychev’s

nequality the probability constraints in Eq. (25) can be robustly

ransformed to the following equation ( Mesbah et al., 2014 ): 

γ + κε

√ 

σγ ≤ 0 (26) 

here μγ and σγ are the mean and variance of γ respectively

nd κε = 

√ 

1 −ε
ε . Note the robust reformulation now only depends

n the mean and variance of γ as required. 

. Problem definition 

The dynamic system in this paper is assumed to be given by

 discrete-time nonlinear equation system with stochastic parame-

ers and additive disturbance noise: 

 t+1 = f (x t , u t , θt ) + w 

x 
t , x 0 = x 0 ( ξ) (27) 

 t = h (x t , θt ) + νt (28) 

t+1 = θt + w 

θ
t , θ0 = θ0 ( ξ) (29) 

here t is the discrete time, x ∈ R 

n x are the system states, θ ∈
 

n θ are parametric uncertainties, u ∈ R 

n u denote the control in-

uts, f : R 

n x × R 

n u × R 

n θ → R 

n x represents the nonlinear dynamic

ystem for the states, y ∈ R 

n y denote the measurements and h :

 

n x × R 

n θ → R 

n y are the output equations. Both the states x and

he measurements y are assumed to be affected by normally dis-

ributed zero mean additive noise denoted by w 

x and ν with

nown covariance matrices �ν and �x 
w 

respectively. In addition,

he parametric uncertainties θ are also assumed to be affected

y zero mean normally distributed additive disturbance noise to

ccount for possible time variation denoted by w 

θ with corre-

ponding covariance matrix �θ
w 

. The initial condition x 0 and the

nitial parametric uncertainties θ are assumed to follow PCEs
0 
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represented by x 0 ( ξ) and θ0 ( ξ) respectively parametrized by ξ ∈
R 

n x + n θ ∼ N (0 , I ) . For more information refer to Section 2.1 . These

PCEs express the initial uncertainty of θ and x , which will usually

represent a relatively broad distribution with large variances. Note

by directly adding a disturbance term d t ∈ R 

n x given by a PCE to

Eq. (27) , we could account for plant-model mismatch and update

this mismatch using the filter introduced in Section 4 . 

In the following sections we will work with joint vectors of

states and parametric uncertainties for simplification, which we

will denote by x ′ = [ x , θ] T ∈ R 

n 
x ′ = n x + n θ . The nonlinear equation

system for x ′ can then be expressed as: 

x 

′ 
t+1 = f ′ (x 

′ 
t , u t ) + w t , x 

′ 
0 = x 

′ 
0 ( ξ) (30)

y t = h (x 

′ 
t ) + νt (31)

where f ′ (x ′ t , u t ) = [ f (x ′ t , u t ) , θt ] 
T , w = [ w 

x , w 

θ] T with cor-

responding covariance matrix �w 

= diag ( �x 
w 

, �θ
w 

) and

x ′ 
0 
( ξ) = [ x 0 ( ξ) , θ0 ( ξ)] T . 

The aim in this paper is the development of an algorithm for

the dynamic equation system stated above for batch processes.

Generally the objective to be minimized depends on the proper-

ties of the final product at the end of the batch, such that the con-

trol problem commonly has a finite-horizon leading to a sh-NMPC

formulation ( Nagy and Braatz, 2003 ). We assume the objective to

have the following form: 

J(N, x 

′ 
0 ( ξ) , U N ) = E [ J d (N, x 

′ 
0 ( ξ) , U N )] , J d (N, x 

′ 
0 ( ξ) , U N ) 

= M (x 

′ 
N ) + 

N−1 ∑ 

t=0 

L (x 

′ 
t , u t ) (32)

where N is the time horizon, M : R 

n 
x ′ → R is the Mayer term, L :

R 

n 
x ′ ×n u → R is the Lagrange term, and U N = [ u 0 , . . . , u N−1 ] ∈ R 

n u ×N 

are the control actions that need to be determined. 

The objective is taken as the expectation of a nonlinear function

with a Mayer and Lagrange term, i.e. the objective is to minimize

the expected value of J d (N, x ′ 
0 
( ξ, U N ) given the initial PCE x ′ 

0 
( ξ)

and the dynamic system stated in Eqs. (30) and (31) . 

The minimization of the objective is subject to both the adher-

ence of path constraints and terminal constraints. The control in-

puts are subject to hard constraints expressed by the set U . For

batch processes common path constraints are safety limits on the

reactor temperature and terminal constraints are commonly a min-

imum product quality to be reached. The constraints can be stated

as follows: 

P [ g j (x 

′ 
t , u t ) ≤ 0] ≥ 1 − ε ∀ (t, j) ∈ { 1 , . . . , N} × { 1 , . . . , n g } (33)

P [ g N j (x 

′ 
N ) ≤ 0] ≥ 1 − ε ∀ j ∈ { 1 , . . . , n 

N 
g } (34)

u t ∈ U ∀ t ∈ { 0 , . . . , N − 1 } (35)

where g j : R 

n 
x ′ ×n u → R are the path constraint functions, g N 

j 
:

R 

n 
x ′ → R are the terminal constraint functions and ε is the proba-

bility of constraint violation. 

The constraints are given as so-called chance-constraints due

to the presence of the stochastic uncertainties in both the ini-

tial condition x ′ 
0 

and the disturbance noise. Each constraint in

Eqs. (33) and (34) should be violated at most by a low probabil-

ity of ε despite the stochastic uncertainties present to maintain

feasibility. 

4. Polynomial chaos expansion state estimation 

In this section we introduce a nonlinear state estimator to up-

date a prior probability distribution of the state x ′ given by a
CE using the available measurements from Eq. (28) . The nonlin-

ar filter is similar to the one given in Madankan et al. (2013) and

ühlpfordt et al. (2016) , however these works do not consider ad-

itive disturbance noise. We assume we are at sampling time t

nd wish to update the PCE representation of the uncertainties

iven the newly available measurements. Let D t = { y 1 . . . , y t } be

he available measurements up to time t . In particular Bayes’ rule

s used recursively for the update of x ′ using D t : 

p(x 

′ 
t | D t ) = 

p(x 

′ 
t | D t−1 ) p(y t | x 

′ 
t , D t−1 ) 

p(y t | D t−1 ) 
(36)

For convenience we denote N ( γ| μγ, �γ) as the normal proba-

ility density of a random variable γ with mean μγ and covariance

γ: 

 ( γ| μγ, �γ) = det ( 2 π�γ) 
− 1 

2 exp 

(
− 1 

2 
( γ − μγ) T �−1 

γ ( γ − μγ) 
)

(37)

The terms on the RHS of Eq. (36) are dependent on the dynamic

ystem introduced in Section 3 and are defined below in turn. 

.1. p(x ′ t | D t−1 ) 

Prior distribution of x ′ t given the previous measurements D t−1 ,

hich can be expressed as: 

p(x 

′ 
t | D t−1 ) = 

∫ 
p(x 

′ 
t | x 

′ 
t−1 ) p(x 

′ 
t−1 | D t−1 ) dx 

′ 
t−1 (38)

here p(x ′ t | x ′ t−1 ) = N (x ′ t | f ′ (x ′ t−1 , u t−1 ) , �w 

) is a multivariate nor-

al pdf with mean given by the dynamics defined in Eq. (27) and

he covariance by the disturbance noise evaluated at x ′ t . It should

e noted that without disturbance noise p(x ′ t | D t−1 ) = 

∫ 
δ(x ′ t −

 

′ (x ′ 
t−1 

, u t−1 )) p(x ′ 
t−1 

| D t−1 ) dx ′ 
t−1 

. 

.2. p(y t | x ′ t , D t−1 ) 

The pdf of the current measurement y t given x ′ t , which can be

tated as follows: 

p(y t | x 

′ 
t , D t−1 ) = N (y t | h (x 

′ 
t ) , �ν) (39)

.3. p(y t | D t−1 ) 

Total probability of observation y t given previous measurements

an be expressed as: 

p(y t | D t−1 ) = 

∫ 
p(y t | x 

′ 
t , D t−1 ) p(x 

′ 
t | D t−1 ) dx 

′ 
t (40)

If we take both sides of Eq. (36) times 
∏ n ξ

j=1 
( x ′ t j ) 

r j and integrate

ver both sides with respect to x ′ t we obtain: 

 

+ 
r = 

∫ ∏ n ξ
j=1 

( x ′ t j ) r j p(y t | x 

′ 
t , D t−1 ) p(x 

′ 
t | D t−1 ) dx 

′ 
t 

p(y t | D t−1 ) 
(41)

here from Eq. (36) M 

+ 
r = 

∫ ∏ n ξ
j=1 

( x ′ t j ) 
r j p(x ′ t | D t ) dx ′ t and k =

 n ξ
j=1 

r j . Now by definition M 

+ 
r refers to the various k th order mo-

ents of the updated distribution of x ′ t , p(x ′ t | D t ) . 

In our case the uncertainties of x ′ t are given by PCEs, which we

ave so far not taken advantage of. Let x ′ 
t−1 

( ξ) refer to the pre-

iously estimated PCEs of x ′ t using the measurements up to time

 − 1 , i.e. x ′ 
t−1 

( ξ) refers to x ′ 
t−1 

| D t−1 . The RHS of Eq. (41) is ap-

roximated using sampling. The probability distribution x ′ 
t−1 

( ξ) is

eadily sampled by generating samples of ξ, which is known to

ollow a standard normal distribution. In addition, we also require
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amples of the disturbance w to estimate the integral in Eq. (38) .

n this work we used Latin hypercube sampling with the inverse

ormal cumulative transformation, which has an improved conver-

ence over crude MC, see Stein (1987) for more information. The

ample approximation of the total probability in Eq. (40) can be

tated as: 

= 

1 

N 

SE 
s 

N SE 
s ∑ 

s =1 

N (y t | h ( x 

′ 
t 
(s ) 

) , �ν) (42)

here α is the sample estimate of p(y t | D t−1 ) , x ′ t 
(s ) =

 (x t−1 ( ξs ) , u t−1 ) + w s , N 

SE 
s is the sample size, ξs ∼ N (0 , I ) ,

nd w s ∼ N (0 , �w 

) are the sample points. 

Using the sample estimate in Eq. (42) and applying a further

ample estimate to Eq. (41) we obtain: 

 

(s )+ 
r = 

∑ N SE 
s 

s =1 

∏ n ξ
j=1 

( x ′ t 
(s ) 
j ) r j N (y t | h ( x 

′ 
t 
(s ) 

) , �ν) 

αN 

SE 
s 

(43) 

here M 

(s )+ 
r is an approximation of the RHS of Eq. (41) . 

To update x ′ t−1 ( ξ) to x ′ t ( ξ) we match the moments defined in

q. (43) with those of the PCE x ′ t ( ξ) , which are a function of its

oefficients as shown in Eq. (10) . The PCE is then fitted by solving

 nonlinear least-squares optimization problem: 

ˆ 
 t = arg min 

A t 

∑ 

k ≤m 

SE 

|| M 

+ 
r (A t ) − M 

(s )+ 
r || 2 2 (44)

here k = 

∑ n ξ
j=1 

r j was defined above as the order of the mo-

ents and hence m 

SE defines the total order of moments we

im to match. M 

+ 
r (A t ) is parametrized by A t as shown in Eq.

10) . The estimated coefficients ˆ A t then define the updated PCE

 

′ 
t ( ξ) as required, which approximately represents the probabil-

ty distribution of x ′ t | D t . The overall procedure to update an ini-

ial PCE expansion x ′ t−1 ( ξ) to x ′ t ( ξ) is summarised in Algorithm 1

elow. 

lgorithm 1 PCE state estimation 

nput : y t , f 
′ (x ′ , u ) , h (x ′ ) , �ν, �w 

, x ′ 
t−1 

( ξ) , m 

SE , N 

SE 
s 

1. Generate N 

SE 
s Gaussian distributed Latin hypercube samples of

ξ and w . 

2. Using these samples approximate α in Eq. 42. 

3. Using the samples and α approximate the moments with an

order of m 

SE or less in Eq. 43. 

4. Solve the optimization problem in Eq. 44 to obtain the updated

coefficients that yield x ′ t ( ξ) . 

utput : x ′ t ( ξ) 

. Polynomial chaos expansion model predictive control 

In this section we introduce the PCE based sh-SNMPC formu-

ation used to solve the problem defined in Section 3 using the

ynamic equation system for the joint state vector in Eqs. (30) and

31) . We assume we are at sampling time t and we are given a

urrent PCE approximation of x ′ t | D t denoted by x ′ t ( ξ) from the PCE

tate estimator, which accounts for our current uncertainty of the

nitial condition given the available measurements, see Section 4 .

o approximate the chance constraints and the objective it is not

nly necessary to propagate the uncertainty of the initial condi-

ion x ′ t ( ξ) , but also the uncertainty of the additive disturbance

oise. 
.1. Control policy parametrization 

A common issue of MPC under uncertainty is the fact that

pen-loop uncertainties grow unboundedly leading to control ac-

ions that are exceedingly conservative, since the feedback through

he state update is disregarded. Eventually the OCP will become in-

easible with a large enough prediction horizon ( Yan and Bitmead,

005 ). Therefore, to ensure reasonable predictions of the uncer-

ainty feedback needs to be incorporated in the optimal control

ormulation. Optimization over general causal feedback policies is

owever often intractable ( Bertsekas, 2011 ), such that the opti-

ization is restricted over a class of parametrized feedback poli-

ies ( Goulart et al., 2006 ). In this paper we employ the following

arametrization of the control input: 

 k = v k + K (y k − μy , k ) (45)

here v k ∈ R 

n u are the mean of the applied control inputs, K ∈
 

n u ×n y are linear time-invariant feedback gains and μy , k denotes

he mean of y k . 

This is a relatively common form to parametrize the control

olicy, where v k corresponds to the control inputs of the nominal

ystem, whereas K is times by the difference of the real system

utputs to the nominal system outputs for correction. This control

arametrization is for example used in Nagy and Braatz (2004) to

esign a linear feedback gain for batch processes. The importance

o account for feedback is highlighted in Fig. 1 . A stochastic OCP

as solved twice once optimizing over a linear time-invariant

eedback gain in addition to the open-loop control actions shown

n the left-hand side and once over only the open-loop control

ctions shown on the right-hand side subject to an adiabatic tem-

erature constraint. As can be seen on the left-hand side the adi-

batic temperature trajectories are considerably narrower than on

he right-hand side and hence accounting for feedback leads to a

onsiderably less conservative OCP solution. 

.2. Uncertainty propagation 

For the uncertainty propagation in the sh-SNMPC formulation

e use the results in Sections 2.2 –2.3 . In this section we outline

ecursive equations to obtain the required mean and variances of

he objective, constraints and outputs from an initial time t to a

nal shrinking time horizon N 

sh to formulate the MPC problem.

he uncertainty represented by the PCE x ′ t ( ξ) is accounted for us-

ng the PCE Eqs. (17) and (18) , while the additive disturbance noise

rom the states and measurements are considered using lineariza-

ion. The overall mean and variance of the objective and chance

onstraints are then determined using the laws of total expecta-

ion and variance as shown in Section 2.3 . 

Let μx ′ ,k ( ξ) correspond to the mean and �x ′ ,k ( ξ) to the covari-

nce of x ′ 
k 

given ξ defined as: 

x ′ ,k ( ξ) = E [ x 

′ 
k | ξ] (46) 

x ′ ,k i j ( ξ) = E 

[
( x 

′ 
k i 

− E [ x 

′ 
k i 

])( x 

′ 
k j 

− E [ x 

′ 
k j 

]) | ξ] (47) 

We propagate the uncertainty of μx ′ ,k ( ξ) and �x ′ ,k ( ξ) from the

dditive disturbances using linearization for the dynamic equation

ystem in Eqs. (30) and (31) , which yields: 

x ′ ,k +1 ( ξ) = f ′ ( μx ′ ,k ( ξ) , μu k 
( ξ)) , μx ′ , 0 ( ξ) = x 

′ 
t ( ξ) (48) 

x ′ ,k +1 ( ξ) = A k ( ξ) �x ′ ,k ( ξ) A k ( ξ) T + B k ( ξ) �u ,k ( ξ) B ( ξ) T 

+ 2 A k ( ξ) �x ′ u ,k ( ξ) B k ( ξ) T , �x ′ , 0 ( ξ) = 0 (49) 

here A k ( ξ) = 

∂f ′ 
∂x ′ | μx ′ ,k ( ξ) , μu k 

( ξ) , and B k ( ξ) = 

∂f ′ 
∂u 

| μ
x ′ ,k ( ξ) , μu k 

( ξ) are

acobian matrices of f ′ ( x ′ , u ) with respect to x ′ and u respectively
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Fig. 1. OCP adiabatic temperature trajectories accounting for linear time-invariant feedback on the left-hand side and not accounting for feedback on the right-hand side. 
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evaluated at x ′ = μx ′ ,k ( ξ) and u = μu k 
( ξ) = v k + K (h ( μx ′ ,k ( ξ)) −

μy k 
) . Let each component of μy k 

be given by μy k i 
= μPCE 

ζ
( �

y k i 
μ,k 

) ,

which is defined later in Eq. (61) . 

For the control policy parametrization in Eq. (45) the covariance

matrices �u ,k ( ξ) and �x ′ u ,k ( ξ) can be expressed as: 

�u ,k ( ξ) = K 

(
H k ( ξ) �x ′ ,k ( ξ) H k ( ξ) T + �ν

)
K 

T (50)

�x ′ u ,k ( ξ) = �x ′ ,k ( ξ) H k ( ξ) T K 

T (51)

where H k ( ξ) = 

∂h 
∂x ′ | μx ′ ,k ( ξ) is the Jacobian matrix of h ( x ′ ) evaluated

at x ′ = μx ′ ,k ( ξ) . 

From Eq. (48) we obtain μx ′ ,k ( ξ) recursively for all k ∈
{ 1 , . . . , N 

sh } , while Eq. (49) gives us �x ′ ,k ( ξ) recursively for all k ∈
{ 1 , . . . , N 

sh } . The objective, output measurements, and constraint

functions are however assumed to be nonlinear functions of these,

see Section 3 . We therefore require further simplification to es-

timate the required statistics to formulate the SNMPC problem.

Using further linearization these quantities can be determined as

follows: 

E [ J d (N 

sh , x 

′ 
t ( ξ) , U N sh ) | ξ] ≈ J d (N 

sh , x 

′ 
t ( ξ) , U N sh ) (52)

E [ g j (x 

′ 
k , u k ) | ξ] ≈ g j ( μx ′ ,k ( ξ) , μu k 

( ξ)) (53)

E [ g N j (x 

′ 
N sh ) | ξ] ≈ g N j ( μx ′ ,N sh ( ξ)) (54)

E [ y k | ξ] ≈ h ( μx ′ ,k ( ξ)) (55)

Var [ g j (x 

′ 
k , u k ) | ξ] ≈ G j k 

( ξ) �x ′ ,k ( ξ) G j k 
( ξ) T (56)

Var [ g N 
sh 

j (x 

′ 
N sh ) | ξ] ≈ G 

N 
j ( ξ) �x ′ , N sh ( ξ) G 

N 
j ( ξ) T (57)

where G j k 
( ξ) = 

∂g j 
∂x ′ | μx ′ ,k ( ξ) , μu k 

( ξ) is the Jacobian matrix of g j ( x 
′ ,

u ) evaluated at x ′ = μx ′ ,k ( ξ) and u = μu k 
( ξ) and G 

N 
j 
( ξ) =

∂g N 
j 

∂x ′ | μx ′ ,N sh ( ξ) is the Jacobian matrix of g N 
j 

evaluated at x ′ =
μx ′ ,N sh ( ξ) . 

We now have the means and variances of the objective, con-

straint functions and outputs accounting for the additive distur-

bance noise, but ignoring the uncertainty from the initial condi-

tion x ′ t ( ξ) . As highlighted the means and variances, and their re-

spective terms are all functions of x ′ t ( ξ) and in turn of ξ on which

they are conditioned. To obtain the overall means and variances
equired we use the laws of total expectation and variance as

hown in Section 2.3 . This is accomplished by creating a Gauss-

ermite sample design of ξ, which we will denote as � =
 ξ1 , . . . , ξN q ] with N q quadrature points. Obtaining the respective

esponse vectors � for the conditional means and variances in Eqs.

52) –(57) for these samples and applying the PCE mean and vari-

nce estimates from Section 2.2 , the overall variances and expec-

ations are given by: 

 [ J d (N 

sh , x 

′ 
t ( ξ) , U N sh )] ≈ μPCE 

ζNMPC 
( �J d 

μ) (58)

 [ g j (x 

′ 
k , u k )] ≈ μPCE 

ζNMPC 
( �

g j 
μ,k 

) (59)

 [ g N j (x 

′ 
N sh )] ≈ μPCE 

ζNMPC 
( �

g N 
j 

μ ) (60)

 [ y k i ] ≈ μPCE 
ζNMPC 

( �
y k i 
μ,k 

) (61)

ar [ g j (x 

′ 
k , u k )] ≈ μPCE 

ζNMPC 
( �

g j 
σ,k 

) + σ PCE 
ζNMPC 

( �
g j 
μ,k 

) (62)

ar [ g N j (x 

′ 
N sh )] ≈ μPCE 

ζNMPC 
( �

g N 
j 

σ ) + σ PCE 
ζNMPC 

( �
g N 

j 

μ ) (63)

here �
y k i 
μ,k 

= [ h ( μx ′ ,k ( ξ1 )) , . . . , h ( μx ′ ,k ( ξN q ))] , 

�J d 

μ = [ J d (N 

sh , x ′ t ( ξ1 ) , U N sh ) , . . . , J 
d (N 

sh , x ′ t ( ξN q ) , U N sh )] T , 

�
g j 
μ,k 

= [ g j ( μx ′ ,k ( ξ1 ) , μu k 
( ξ1 )) , . . . , g j ( μx ′ ,k ( ξN q ) , μu k 

( ξN q ))] , 

�
g N 

j 
μ = [ g N 

j 
( μx ′ ,N sh ( ξ1 )) , . . . , g 

N 
j 
( μx ′ ,N sh ( ξN q ))] , 

�
g j 
σ,k 

= [ G j k 
( ξ) �x ′ ,k ( ξ1 ) G j k 

( ξ1 ) 
T , . . . , G j k 

( ξ) �x ′ ,k ( ξN q ) G j k 
( ξN q ) 

T ] 

nd 

�
g N 

j 
σ = [ G 

N 
j 
( ξ1 ) �x ′ ,N sh ( ξ1 ) G 

N 
j 
( ξ) T , . . . , G 

N 
j 
( ξ) �x ′ ,N sh ( ξN q ) G 

N 
j 
( ξN q ) 

T ] .

Note that each sample of ξ corresponds to a separate initial

ondition and hence a separate nonlinear equation system given

y Eq. (30) . In essence the PCE methodology generates separate

amples of the initial condition, which each correspond to a dis-

inctive nonlinear dynamic system that are propagated individu-

lly together with their linearized variance approximations. From

hese samples the overall means and variances are then deter-

ined from the coefficients of the PCE expansion as shown in

ections 5.2 and 2.3 . ζNMPC = { m NMPC , w NMPC , n ξ = n x ′ , �NMPC } de-

nes in this context the variables of the PCE mean and variance

unction, see Section 5.2 , which are the order of truncation of the

CE approximation, the Gauss-Hermite weights, the dimensionality

f n ξ given by the number of states and uncertain parameters, and

astly the Gaussian-Hermite sample design. Next we formulate the

h-SNMPC problem based on the above equations. 
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Fig. 2. F is the monomer feedrate, V and T are the volume and temperature of the 

liquid in the reactor respectively, W is water, M is the monomer, D n and G n are the 

dormant and active product chains with length n respectively. 
.3. Chance constraint reformulation 

In Section 5.2 we show how to obtain estimates of the mean

nd variance of the objective and constraint functions. While this

s sufficient to approximate the objective defined in Section 3 , we

till require estimates for the chance constraints defined in Eqs.

33) and (34) . In Section 2.4 it was shown how Chebyshev’s in-

quality can be used to robustly reformulate chance constraints

xploiting only mean and variance of the constrained variable,

hich leads to the following robust reformulations of Eqs. (33) and

34) using the estimates of mean and variances given in Eqs. (59) –

63) : 

PCE 
ζNMPC 

( �
g j 
μ,k 

) + κε

√ 

μPCE 
ζNMPC 

( �
g j 
σ,k 

) + σ PCE 
ζNMPC 

( �
g j 
μ,k 

) ≤ 0 (64) 

PCE 
ζNMPC 

( �
g N 

j 

μ ) + κε

√ 

μPCE 
ζNMPC 

( �
g N 

j 

σ ) + σ PCE 
ζNMPC 

( �
g N 

j 

μ ) ≤ 0 (65) 

here κε = 

√ 

1 −ε
ε . 

.4. Stochastic nonlinear optimal control formulation 

In this section we formulate the stochastic optimal control

roblem to be solved in a shrinking horizon fashion at each sam-

ling time t given a probability distribution of the initial condi-

ion represented by its PCE x ′ t ( ξ) and the dynamic equation sys-

em defined in Section 3 . The formulation is based on the propa-

ation equations outlined in Section 5.2 and the reformulations of

he chance constraints in Section 5.3 . We optimize over both open-

oop control actions v k and a time-invariant feedback control gain

 to account for feedback. The overall formulation can be stated as

ollows: 

minimize 
V 

N sh , K 
μPCE 

ζNMPC 
( �J d 

μ) 

subject to 

μPCE 
ζNMPC 

( �
g j 
μ,k 

) + κε

√ 

μPCE 
ζNMPC 

( �
g j 
σ,k 

) + σ PCE 
ζNMPC 

( �
g j 
μ,k 

) ≤ 0 

μPCE 
ζNMPC 

( �
g N 

j 

μ ) + κε

√ 

μPCE 
ζNMPC 

( �
g N 

j 

σ ) + σ PCE 
ζNMPC 

( �
g N 

j 

μ ) ≤ 0 

μu k 
( ξi ) = v k + K (h ( μx ′ ,k ( ξi )) − μy k 

) ∈ U 

μ
(i ) 
x ′ , 0 = x 

′ 
t ( ξi ) 

here V N sh = [ v 0 , . . . , v N sh −1 ] 
T is a matrix of open-loop control ac-

ions. It should be noted that the initial control input is given by

 0 , which is the output of the MPC algorithm. The initial mea-

urement is known and hence feedback does not apply for the

rst control action in the problem above, i.e. h ( μx ′ ,k ( ξi )) = μy 0 
∀ i ∈

 1 , . . . , N q } . The linear feedback gain K is only used to lead to more

ealistic future predictions. 

. Algorithm 

In this section we state the algorithm to solve the problem de-

ned in Section 3 . Initially at time t = 0 we are given a probabil-

ty distribution represented by a PCE of x ′ denoted by x ′ 0 ( ξ) . In

ddition, we define the DAE system to be controlled by f ( x ′ , u )

nd their measurement equation h ( x ′ ), and the corresponding ad-

itive disturbances defined by the covariance matrices �ν and �w 

.

he overall time horizon N needs to be given, which is also equal

o the number of control inputs. Further, we define the objec-

ive J d (N, x ′ 0 ( ξ) , u N ) with path g j (x ′ t , u t ) and terminal constraints

 

N 
j 
(x ′ 

N 
) with a corresponding chance of constraint violation ε given
∀ (k, j) ∈ { 1 , . . . , N 

sh } × { 1 , . . . , n g } 

∀ j ∈ { 1 , . . . , n 

N 
g } 

∀ k ∈ { 0 , . . . , N 

sh − 1 } 
∀ i ∈ { 1 , . . . , N q } (66) 

n overall time horizon of N . We define m SE and N 

SE 
s as the order

o be matched in the state estimator, while N 

SE 
s denotes the num-

er of samples to approximate the moments in the state estimator,

ee Algorithm 1 in Section 4 . Lastly, ζ NMPC is required to define the

CE approximation of the sh-SNMPC in Section 5 . Overall we sug-

est to represent the states x ′ at each sampling time t using PCEs

ntroduced in Section 2.1 . The SNMPC algorithm exploits this un-

ertainty description to control the dynamic system in Section 3 .

he available measurements are utilised to update the PCE repre-

entation recursive as outlined in Section 4 . The overall algorithm

s given below as Algorithm 2 . 

lgorithm 2 Output feedback PCE sh-SNMPC 

nput : f ′ (x ′ , u ) , h (x ′ ) , �ν, �w 

, x ′ 0 ( ξ) , m SE , N 

SE 
s , N, ζNMPC 

nitialize : N 

sh := N 

or each sampling time t = 0 , 1 , 2 , . . . , N − 1 do 

1. Solve the PCE SNMPC problem in Eq. 66 with x ′ t ( ξ) and 

time horizon N 

sh . 

2. Apply the first optimal control action v 0 to the plant. 

3. Measure y t+1 . 

4. Apply PCE filter to update x ′ t ( ξ) to x ′ 
t+1 

( ξ) using y t+1 . 

5. Set N 

sh := N 

sh − 1 . 
nd 

. Case study 

The algorithm outlined in Section 6 is applied to a challeng-

ng polymerization semi-batch reactor case study. The reactor pro-

uces the polymer polypropylene glycol from the monomer propy-

ene oxide (PO). A schematic of the process is shown below in

ig. 2 . 

.1. Semi-batch reactor model 

A complex model for this process has been proposed in Nie

t al. (2013a) , which uses a separate balance equation for each
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Table 1 

Parameter values for dynamic model defined in Eqs. (67) and (68) taken from Nie et al. 

(2013a) . 

Parameter Value Units Description 

MW PO 58.08 kg/kmol Molecular weight of PO 

�H p −92048 kJ/kmol Enthalpy of reaction for propagation reaction 

A t 950410 m 

3 /kmol/s Pre-exponential factor of transfer kinetic constant 

E Ap 69172 kJ/kmol Activation energy of propagation reaction 

E At 105018 kJ/kmol Activation energy of transfer reaction 

n C 2.0 kmol Amount of catalyst 

R 8.314 kJ/kmol/K Universal gas constant 

γ 0 10 kmol Zeroth polymer moment (Methanol) 
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specific chain length. This model was employed in Jung et al.

(2015) for crude NMPC and in Jang et al. (2016) for multi-stage ro-

bust NMPC. The computational times reported were approximately

in the range of 30 s to minutes, which is relatively high and can

be attributed to the relative complexity of the dynamic model in

Nie et al. (2013a) . In particular the high dimensionality of the

state would cause issues with the proposed methodology due to

the scaling of PCEs, see Section 2.1 . To reduce the dimensionality

and complexity of the model we therefore applied the so-called

“method of moments” ( Nie et al., 2013b ). This leads to balance

equations describing the moments of the polymer as opposed to

the concentration of each specific chain length, which is commonly

sufficient to estimate key performance indicators. Further, we dis-

regard the balance equations for the unsaturated polymer chain

length and in addition assume that there are only trace amounts of

water or methanol present. This means that hydrolysis only takes

place in negligible amounts and hence can be ignored. In the origi-

nal dynamic model perfect temperature control was assumed. Due

to the relative importance of temperature control with regards to

safety, we added an energy balance. The modified ordinary differ-

ential equation system consists of 4 balance equations and can be

stated as follows: 

˙ m = F MW PO m (0) = m 0 ( ξ) (67a)

˙ T = 

(−�H p ) k p n C PO 

V mC pb 

− UA (T − T C ) 

mC pb 

− F MW PO C p f (T − T f ) 

mC pb 

T (0) = T 0 ( ξ) (67b)

˙ PO = F − n C (k p + k t ) PO 

V 

PO (0) = PO 0 ( ξ) (67c)

˙ γ1 = 

k p n C PO 

V 

γ1 (0) = γ1 0 ( ξ) (67d)

where m is the liquid mass in the reactor in [kg], F is the feed rate

of the monomer in [kmol/ s ], T is the temperature of the reactor in

[ K ], PO is the amount of monomer in [kmol] and γ 1 is the first

moment and hence the average molecular weight of the polymer

chains in [kmol], MW PO is the molecular weight of PO in [kg/kmol],

�H p is the enthalpy of the propagation reaction in [kJ/kmol], k p is

the kinetic constant of the propagation equation in [m 

3 /kmol/s],

n C is the amount of catalyst in [kmol], V is the volume of the liq-

uid in the reactor in m 

3 , C pb and C pf are the heat capacities of the

bulk liquid and the monomer feed respectively in [kJ/kg/K], k t is

the transfer kinetic constant in [m 

3 /kmol/s], T C is the cooling water

temperature in [K] and UA is the overall heat transfer coefficient in

[kJ/K]. 

The kinetic constants are given by Arrhenius equations as func-

tions of temperature, while the heat capacities C pb and C pf are also
unctions of temperature Nie et al. (2013a) : 

 p = A p exp (−E Ap /RT ) (68a)

 t = A t exp (−E At /RT ) (68b)

 p f = 0 . 92 + 8 . 871 × 10 

−3 T − 3 . 1 × 10 

−5 T 2 + 4 . 78 × 10 

−8 T 3 

(68c)

 pb = 1 . 1 + 2 . 72 × 10 

−3 T (68d)

Two parameters in the above model are assumed to be uncer-

ain: A p and UA . The remaining values of parameters to define Eqs.

67) and (68) are given in Table 1 . Note that for the assumptions

ade the amount of the zeroth polymer moment γ 0 in the reactor

s fixed, since no hydrolysis takes place. 

The control inputs are given by the monomer feed rate F

nd the cooling water temperature T C . In compact form we can

rite x = [ m, T , PO , γ1 ] 
T , u = [ F , T C ] 

T and θ = [ A p , UA ] T . The corre-

ponding joint vector is then given by x ′ = [ m, T , PO , γ1 , A p , UA ] T .

he continuous-time dynamic system we denote by f̄ ′ (x ′ , u ) =
 ˙ m , ˙ T , ˙ PO , ˙ γ1 , 0 , 0] T . 

We assume that reactor temperature T and the amount of

onomer PO are measured at each sampling time with y =
 T , PO ] T . The measurement equation h ( · ) is given as follows: 

 (x 

′ ) = [ T , PO ] T (69)

The initial uncertainty of the states x and the uncertain param-

ters θ is given by their respective initial PCEs, which are defined

s: 

 0 ( ξ) = 1538 (70a)

 O 0 ( ξ) = 10 + ξ2 (70b)

 0 ( ξ) = 378 . 15 + 4 ξ3 (70c)

1 0 ( ξ) = 10 + 0 . 5 ξ4 (70d)

 P 0 ( ξ) = 10 + ξ5 (70e)

A 0 ( ξ) = 15 + 4 ξ6 (70f)

The overall initial PCE is now given by x ′ 
0 
( ξ) =

 m 0 ( ξ) , P O 0 ( ξ) , T 0 ( ξ) , γ1 0 ( ξ) , A P 0 ( ξ) , UA 0 ( ξ)] T . The PCEs of x ′
iven by x ′ ( ξ) have a truncation order of 2. 

The additive disturbance and measurement noise is defined by

heir respective covariance matrices, which were set to: 

w 

= diag (1 , 10 

−3 , 1 , 2 . 5 × 10 

−1 , 5 × 10 

−2 , 2 × 10 

−1 ) (71)

ν = diag (0 . 25 , 1 × 10 

−3 ) (72)
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.2. Problem set-up 

The time horizon N was set to 8 with a variable continuous

ime of t batch . Given the dynamic system in Eq. (67) we define the

bjective and constraints in this section to define a problem as the

ne given in Section 3 . The control algorithm aims to minimize the

equired batch time t batch with a penalty on the control change,

hich can be stated as follows: 

 

d (N, x 

′ 
0 ( ξ) , U N ) = t batch + 

N ∑ 

k =1 

�T 
u k 

R �u k (73)

here �u k 
= u k − u k −1 and R = diag (10 −6 , 10 −4 ) . 

The batch time is defined to describe the discrete-time equation

or a control horizon N : 

 

′ 
t+1 = 

∫ t batch /N 

0 

f̄ ′ (x 

′ 
t , u t ) dt + x 

′ 
t (74)

The minimum of the objective above is subject to two termi-

al constraints and a path constraint. The path constraint aims

o keep the reactor temperature to remain below 420K for safety

easons: 

(x 

′ 
t , u t ) = T − 420 ≤ 0 (75)

The two terminal constraints are given by two product quality

onstraints. Firstly, the batch needs to reach a specified number

verage molecular weight ( NAMW ) in [kg/mol] of 350 defined as

AMW = MW PO 
γ1 
γ0 

. Secondly, the amount of monomer PO in the

nal batch may not exceed 10 0 0ppm. The two end-point product

uality constraint can consequently be stated as: 

 

N 
1 (x 

′ 
N ) = −MW PO 

γ1 

γ0 

+ 350 ≤ 0 (76) 

 

N 
2 (x 

′ 
N ) = 10 

6 ×
(

PO MW PO 

m 

)
− 10 0 0 ≤ 0 (77) 

The chance of constraint violation was set to ε = 0 . 05 for the

onstraints defined above. The monomer feed rate and the cooling

ater temperature were constrained as follows: 

 ≤ F ≤ 0 . 01 (78) 

98 . 15 ≤ T C ≤ 423 . 15 (79) 

.3. Solution approach 

To solve the case study we need to discretize the continuous-

ime equation system outlined in Eq. (67) to obtain the required

iscrete-time equation used in the problem definition in Section 3 .

or the discredization we applied orthogonal Radau collocation

 Biegler, 2010 ). Each control interval is modelled by one polyno-

ial with an overall degree of 5. Further, we require linearization

atrices for the states and control inputs for the discrete time

ystem to propagate the additive disturbance noise as outlined in

ection 5.2 , which are given as follows ( Kristoffersen and Holden,

017 ): 

 k ( ξ) = exp 

(
∂ ̄f ′ 
∂x 

′ | x ′ = μx ′ ,k ( ξ) , u k = μu k 
( ξ) 

)
(80a) 

 k ( ξ) = 

(
∂ ̄f ′ 
∂x 

′ | x ′ = μx ′ ,k ( ξ) , u k = μu k 
( ξ) 

)−1 

( A k ( ξ) − I ) 

×
(

∂ ̄f ′ 
∂u 

| 
x ′ = μx ′ ,k ( ξ) , u k = μu k 

( ξ) 

)
(80b) 

The resulting optimization problems for both the PCE sh-

NMPC problem and the PCE state estimator were solved using
asadi ( Andersson et al., 2018 ) to obtain the gradients of the prob-

em using automatic differentiation in conjuncation with IPOPT

 Wächter and Biegler, 2006 ). The ”real” plant model was simu-

ated using IDAS ( Hindmarsh et al., 2005 ). The PCE state estimator

ims to match up to 3 orders with overall 10,0 0 0 samples to esti-

ate the posterior moments, i.e. m SE = 3 and N 

SE 
s = 10 0 0 0 . For the

auss-Hermite samples we use a sparse rule for the weights w and

ample design � as outlined in ( Jia et al., 2012 ) with a polynomial

ccuracy of 3. The PCE of the sh-SNMPC has a truncation order of 2

ith a dimensionality of ξ of 6 corresponding to the dimensional-

ty of x ′ . The parameters for the PCE sh-SNMPC algorithm are then

iven by ζNMPC = [2 , w , 6 , �] . 

. Results and discussions 

In this section we present and discuss the results of the case

tudy outlined in the previous section. For comparison purposes

e compare three different sh-NMPC variations, which are as

ollows: 

• SNMPC with feedback: The algorithm as outlined in

Section 6 optimizing over both a linear feedback gain and

open-loop control actions. 
• SNMPC without feedback: The algorithm as outlined in

Section 6 , but optimizing over only open-loop control actions

and setting the linear feedback gain to zero. 
• Nominal NMPC: A NMPC algorithm based on the same dynamic

model and discredization with the state estimate equal to the

best-estimate given by the mean of the PCE state estimator. Ob-

jective and constraints are deterministic in this case with soft

constraints used for feasibility. 

The sh-SNMPC variations were each run for the economic MPC

roblem minimizing the objective given in Eq. (73) subject to the

afety path constraint in Eq. (75) , and end-point product qual-

ty constraints defined in Eqs. (76) and (77) . Note that the time-

nvariant feedback gain is never actually implemented, since the

rst control action does not depend on it, see the SNMPC formu-

ation in Eq. (66) . Instead, this inclusion of feedback only serves

o obtain more realistic and less conservative predictions. The ac-

ual closed-loop response depends on the feedback from the state

pdate. 

.1. Example scenario 

We first run the three sh-NMPC variations on a single sce-

ario, where we set the initial condition to the following: x ′ 
0 

=
 m 0 , P 0 0 , T 0 , γ1 0 , A P 0 , UA 0 ] 

T = [1538 , 9 . 0 , 385 , 9 . 5 , 7 . 5 , 10] T . This can

e seen as a single realization of the initial PCE stated in Eq. (70).

he results of this are summarised in Figs. 3–11 . In Figs. 3–6 the

rajectories of the four states are shown for each algorithm with

he corresponding state estimate. In addition an error-bar is shown

orresponding to a 95% confidence interval of the state estimate.

n Figs. 7 and 8 the two control inputs are shown respectively for

ach algorithm. Fig. 9 shows the sampling times for each algo-

ithm, which is minimized for the objective and changes at each

ampling interval due to the improved estimates of the uncertain

arameters and states. Lastly, Figs. 10 and 11 illustrate the evolu-

ion of the uncertain parameter probability density functions for

he ”SNMPC with feedback” variation. We can draw the following

onclusions from the graphs depicted: 

• Fig. 5 shows the relative conservativeness of the SNMPC with-

out feedback compared to the nominal NMPC and the SNMPC

with feedback. While the latter two algorithms lead to trajecto-

ries that quickly approach the temperature constraint, the SN-

MPC without feedback first drastically reduces the temperature
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Fig. 3. Scenario trajectories of the reactor mass for each algorithm variation. 

Fig. 4. Scenario trajectories of the amount of monomer for each algorithm variation. 

Fig. 5. Scenario trajectories of the reactor temperature for each algorithm variation. 
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Fig. 6. Scenario trajectories of the first polymer moment for each algorithm variation. 

Fig. 7. Monomer feed rate trajectory for each algorithm variation. 

Fig. 8. Cooling temperature trajectory for each algorithm variation. 
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Fig. 9. Changes in sampling time for each sampling interval and algorithm variation. 

Fig. 10. Probability density function evolution for the propagation pre-exponential factor in the case of SNMPC with feedback. 

Fig. 11. Probability density function evolution for the overall heat transfer coefficient in the case of SNMPC with feedback. 
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in the reactor due to the open-loop growth of the uncertainty.

This is further highlighted in Figs. 7 and 8 , where the SNMPC

without feedback keeps the Monomer feed rate and cooling wa-

ter temperature at its lower bound for much longer than the

other two algorithms. In addition it can be seen that the nom-

inal NMPC overshoots the constraint slightly, while the SNMPC

algorithms keep a reasonable distance to the constraint to pre-

vent this. 
• Fig. 4 shows the evolution of the monomer concentration.

While the nominal NMPC and the SNMPC with feedback

operate at a rather steady amount of monomer until it is

reduced due to the second terminal constraint, the SNMPC

without feedback increases it considerably due to its initial

conservativeness. In addition it can be seen that both SNMPC

algorithms have a longer ”reduction” phase, which is due to

considering the uncertainty in the problem. In fact the nominal

NMPC algorithm contains 90ppm too much of the monomer

in the final batch, while the SNMPC algorithms overshoot the

constraint slightly. 
• In Fig. 6 the evolution of the first polymer moment is shown,

for which similar observations can be made as in Fig. 4 . The

nominal and SNMPC with feedback approach the constraint

steadily, while the SNMPC without feedback takes longer due to

its conservativeness and consequently low feedrate initially, see

Fig. 7 . Again while the nominal NMPC reaches the constraint

exactly, both SNMPC algorithms overshoot the constraint to ac-

count for the uncertainty present. The final batch of the nom-

inal NMPC has an NAMW that consequently is 0.1 kmol too

small. 
• It can be seen that the trajectories have different time lengths.

The longest batch time is given by the SNMPC without feedback

with a time of 6800 seconds due its relatively slow start result-

ing from the initially large open-loop uncertainties. By disre-

garding the uncertainties the nominal NMPC algorithm is able

to have the shortest batch time with 50 0 0 s, which however

leads to it violating both terminal constraints. The SNMPC with

feedback is intermediary with a batch time of 5900 s, since it

considers the uncertainties present but does not have the prob-

lem of open-loop growing uncertainties. 
• In Fig. 9 the variation of the sampling times is shown. The nom-

inal NMPC has relatively consistent sampling times, since the

reduction in uncertainty has no effect on its constraints. The

two SNMPC algorithms on the other hand show an overall re-

duction of the sampling time, since the uncertainty is lowered

from the PCE state estimator update. The SNMPC without feed-
Fig. 12. Probability density of NAMW
back is as expected significantly more conservative initially and

also shows a more dramatic response to the uncertainty reduc-

tion. 
• In Figs. 10 and 11 the probability density functions of the un-

certain parameters A p and UA are shown for SNMPC with feed-

back at different discrete times. In both cases the initial dis-

tribution is very broad and quickly approaches the true value.

Nonetheless even at t = 8 a certain amount of biasness remains

in particular for UA . While this is accounted for in the SNMPC

algorithms, it is ignored by the nominal NMPC algorithm, which

only considers the mean of the distribution. 

.2. Monte Carlo simulations 

Next we run 100 closed-loop MC simulations of the same case

tudy applying the outlined algorithms by sampling the initial con-

ition and the disturbances independently. The results of these MC

imulations are summarised in Figs. 3–8 . Figs. 3–5 show the prob-

bility density estimation of NAMW, the ppm of the monomer and

he batch time respectively. Figs. 6–8 show the temperature tra-

ectories of the 100 MC simulations for SNMPC with feedback, SN-

PC without feedback and the nominal NMPC respectively. Based

n these results the following observations can be made: 

• Fig. 12 shows that for both SNMPC variations the constraint on

the NAMW given by the vertical black line is not violated by

any of the MC simulations despite the uncertainty present. The

nominal NMPC algorithm on the other hand violates the con-

straint in 46% of the closed-loop simulations. 
• Fig. 13 shows again that both SNMPC algorithms do not violate

the constraint on the ppm of the monomer frequently or to a

significant extent. The algorithm SNMPC with feedback violated

this constraint in 3% of the simulations, while without feedback

this constraint was violated in 2% of the simulations. In contrast

the nominal NMPC contained too much monomer in the final

batch in 53% of the simulations. 
• Fig. 14 illustrates the trade-off for the more robust behaviour

from the SNMPC algorithm compared to their deterministic

counterpart. While the nominal NMPC requires an average

batch time of 4900 s, the SNMPC with feedback needs approx-

imately 70 0 0 s on average. The SNMPC without feedback re-

quires the largest batch times on average of 7400 s. In addition,

this illustrates that the feedback leads to a reduction of batch

times of about 5% with the same guarantees. 
• Figs. 15–17 illustrate the improved temperature control of the

SNMPC algorithms compared to the nominal NMPC. While the
 based on 100 MC simulations. 
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Fig. 13. Probability density of part per million of the monomer based on 100 MC simulations. 

Fig. 14. Probability density of the batch times based on 100 MC simulations. 

Fig. 15. Temperature trajectories of 100 MC simulation for SNMPC with feedback. 
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Fig. 16. Temperature trajectories of 100 MC simulation for SNMPC without feedback. 

Fig. 17. Temperature trajectories of 100 MC simulation for nominal NMPC. 

Table 2 

The mean and standard deviation computational times for solving 

the sh-SNMPC OCP from 100 MC simulations. 

sh-NMPC variation Mean (s) Standard deviation (s) 

SNMPC with feedback 11.5 9.8 

SNMPC without feedback 5.7 4.5 

Nominal NMPC 0.27 0.1 
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a  
nominal NMPC violates the temperature control 73% of the

time, the SNMPC without feedback breaks it 30% and with feed-

back 14% of the time. Overall it can be said that the uncertainty

has a small effect on the temperature constraint. The relatively

large number of violations from the SNMPC variants can be

possibly attributed to the inaccuracy of the linearization matri-

ces in Eq. (80), although the extent of the constraint violation

is considerably lower than the nominal NMPC. 
• In Table 2 the computational times of the SNMPC algorithms

and the nominal NMPC are shown. While SNMPC with feed-

back is significantly less conservative, it does require on aver-

age twice the computational time as the SNMPC without feed-

back. The nominal NMPC is as expected 20 times faster, since it

is based on a much smaller optimization problem without sce-
narios and linearization propagation matrices. 
. Conclusions 

In conclusion a new algorithm has been proposed for output

eedback sh-SNMPC for batch processes. The algorithm is able to

ccount for parametric uncertainties, state estimation errors and

dditive disturbance noise. PCEs are utilised to represent the prob-

bility distributions of the states and uncertain parameters, which

re updated at each sampling time using a PCE nonlinear state es-

imator employing noisy output measurements. This PCE represen-

ation is then exploited in a SNMPC formulation, which accounts

or this uncertainty using PCEs and considers the additive distur-

ance noise by employing linearization in conjunction with the

aw of total probability. To reduce the conservativeness the algo-

ithm optimizes not only over open-loop control actions, but also

ver a time-invariant linear feedback gain. The objective and con-

traints were based on general nonlinear functions. The aim was

et to minimise the objective in expectation, while adhering the

onstraints in probability to maintain feasibility. For verification

urposes a semi-batch reactor case study was used, which showed

hat the SNMPC framework is able to control the system despite

he uncertainties on the initial condition and additive disturbance

oise. In particular, ignoring the uncertainty information leads to

pproximately 50% constraint violations of the terminal constraints
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and to 70% violation of the temperature constraint. Further, con-

sidering feedback in the SNMPC formulation leads to on average

5% lower batch times with the same guarantees. 
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