
Sim
en N

orderud Jensen
B

uilding an extensible prototype for a cloud based digital tw
in platform

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ri
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Simen Norderud Jensen

Building an extensible prototype for a
cloud based digital twin platform

Master’s thesis in Engineering and ICT
Supervisor: Terje Rølvåg

June 2019

Simen Norderud Jensen

Building an extensible prototype for a
cloud based digital twin platform

Master’s thesis in Engineering and ICT
Supervisor: Terje Rølvåg
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

Digital twin solutions for structural integrity monitoring and predictive main-
tenance is a young and promising �eld, and there has been an increasing
amount of publications on it. There is still much to be desired when it comes
to case-studies though, and a�ordable o�erings for Digital Twin development
are currently lacking.

This thesis aims to lay the groundwork for a platform that could serve the
ability to both develop and use Digital Twins as a cloud computing resource.
This is done by developing and documenting an extensible prototype from
a carefully chosen technology stack. The prototype developed in this thesis,
named Tvilling Digital, is meant to be a stable and extendable platform that
can be built upon in later theses. It uses a self-developed system, named
the blueprint system, to enable easy additions of custom �lters, analyzers,
solvers, and any other tool that takes inputs and returns results. Support
for Functional Mock-up Units and some simple �ltering and spectral analysis
tools has been added through this blueprint system during the project.

In addition to the choice of tools and the development of the prototype, this
thesis will also discuss how the prototype can be further developed to achieve
a full-�edged solution.

i

Sammendrag

Løsninger som benytter Digitale tvillinger for strukturell integritetsovervåk-
ing og prediktivt vedlikehold er et ungt og lovende emne, og det har vært en
økende mengde publikasjoner innenfor det. Det er allikevel kun noen få av
disse som er saksstudier, og det er fortsatt en mangel på rimelige løsninger
for utvikling av digitale tvillinger på markedet.

Denne oppgaven prøver å legge grunnlaget for en plattform som kan tilby
muligheten til å både utvikle og bruke digitale tvillinger som en skyressurs.
Dette gjøres ved å utvikle og dokumentere en utvidbar prototype fra nøye
valgt teknologi. Prototypen utviklet i denne avhandlingen, kalt Tvilling Dig-
ital, er ment å være en stabil og utvidbar plattform som kan bygges på i
senere oppgaver. Den bruker et selvutviklet system, kalt blueprint-systemet,
for å muliggjøre enkle tillegg av tilpassede �ltre, analyseverktøy, løsere og an-
dre verktøy som tar imot data og returnerer resultater. Støtte for Functional
Mock-up Unit og noen enkle �ltrerings- og spektralanalyseværktøy har blitt
lagt til gjennom dette systemet i løpet av prosjektet.

I tillegg til valg av verktøy og utvikling av prototypen, vil denne oppgaven
også diskutere hvordan prototypen kan videreutvikles for å oppnå en ful-
lverdig løsning.

ii

Contents

Abstract i

Sammendrag ii

Table of Contents iv

List of Listings v

List of Figures vi

Glossary vii

1 Introduction 1

1.1 Background and motivation 1
1.2 Problem description . 2
1.3 Outline . 2

2 Background 4

2.1 Digital Twins . 4
2.2 FMI and FMUs . 6
2.3 Cloud computing . 6

3 Method 8

3.1 Technology Research . 8
3.2 Prototyping tools . 13
3.3 Development . 16
3.4 Documentation . 27
3.5 Generation of results . 27

4 Results 30

4.1 Stability . 30
4.2 Latency . 30
4.3 Documentation . 31
4.4 Resulting solution . 31

5 Discussion 35

5.1 Technology used . 35
5.2 Prototyping tools . 36
5.3 Cooperation with other master students 36
5.4 Results . 37
5.5 Future work . 37

iii

6 Summary 43

A Documentation 47

B Last years specialization project 74

iv

List of Listings
1 An example of a settings �le with dynamic generation of secret

key . 16
2 A simple example of an API function for retrieving information. 17
3 blueprint skeleton with comments 22
4 The try_get function with docstring. 33

v

List of Figures
1 Data �ow in a Digital Model according to Kritzinger et al. 2018 5
2 Data �ow in a Digital Shadow according to Kritzinger et al.

2018 . 5
3 Data �ow in a Digital Twin according to Kritzinger et al. 2018 5
4 The components of the Proof of Concept created last year. . . 9
5 An example showing how Apache Kafka can be connected to

multiple processes over multiple nodes/computers to enable
standardized communication between them. 12

6 Screenshot of the web application client created for testing
new features before deployment 14

7 The torsion bar suspension rig used for prototyping. 15
8 Simpli�ed example of request handling. 18
9 Simpli�ed example of data�ow in a Digital Twin using Kafka . 19
10 The startup sequence of a processor. 23
11 The lifecycle of a processor process 26
12 The directory structure of the project 28
13 A heavily simpli�ed example of how data from sensors can be

distributed. The message system and other middlemen are
not shown. 29

14 Example of latency when subscribing to a raw data source. . . 30
15 Example of latency when subscribing to an FMU processor . . 31
16 Example of latency when subscribing to a Butterworth pro-

cessor with a bu�er size of 500 measurements and a sample
spacing of 10ms. 32

17 The generated documentation from the try_get function with
docstring. 32

18 The index page of the generated API documentsion. 32
19 An overview of the relationship between the frontend and the

backend. 34

vi

Glossary

FEDEM A computer program for multibody simulation of mechanical sys-
tems. 1, 7, 9, 10, 13, 28, 31, 33, 35, 36

Tvilling Digital The solution created in this thesis. 2, 7, 9, 10, 16�18, 22,
23, 27, 31, 33�36, 38

WebSocket A computer communications protocol supported by most mod-
ern browsers. 9, 10, 16

Acronyms

API Application Programming Interface. 2, 7, 9, 11, 16, 17, 23, 27, 30, 34

DAQ Data AcQuisition system. 13

DT Digital Twin. 1, 2, 4�9, 13, 17, 18, 36, 38

FE Finite Element. 1, 18, 35, 36

FEM Finite Element Method. 8

FFT Fast Fourier Transform. 1

FMU Functional Mock-up Interface. 5�8, 10, 13, 22, 23, 28, 31�36, 38

LSSA Least-Squares Spectral Analysis. 1, 22

MVP Minimum Viable Product. 10

PoC Proof of Concept. 1, 7�9

UDP User Datagram Protocol. 13

vii

1 Introduction

1.1 Background and motivation

Digital Twin (DT) solutions for structural integrity monitoring and predictive
maintenance is a young and promising �eld. There has been an increasing
amount of publications around both DTs and DT solutions for structural
integrity monitoring and predictive maintenance. Only a few of these were
case-studies though, and only one of the case-studies found tackled real-time
Finite Element (FE) simulations. A�ordable DT solutions for structural in-
tegrity monitoring are also lacking at the moment. Many large companies,
like SAP, GE, SIEMENS, and ANSYS, have invested in DT, but their cur-
rent solutions are expensive, proprietary, and in some cases reliant on their
proprietary ecosystem.

A Proof of Concept (PoC) DT solution for monitoring a torsion bar suspen-
sion rig using FEDEM on a cloud computing resource was developed as a
part of the specialization project last year. The PoC consisted of a physical
torsion bar suspension rig, a DT of the torsion bar suspension rig, and a web
frontend for visualizing the data from the DT in real-time. The DT consisted
of a FE model being simulated in FEDEM and receiving data from the test
rig. The torsion bar suspension rig, which is also used in this project, is
described in section 3.2.2.

The solution created last year performed well but was tailormade for the
torsion bar suspension rig. It would, in other words, be necessary to create
a new system for every unique DT using this method. While much of the
system could be reused, it would still require a signi�cant amount of unnecce-
sary work each time. There were also several desirable features that would
have made the prototype system considerably more useful.

One of the desirable features was integrated �ltering of the incoming data.
Noise in the incoming sensor data can create problems with the FE simula-
tion. Highpass and lowpass �ltering, for example via a Butterworth �lter,
would be extremely helpful for dealing with common noise factors like elec-
tromagnetic interference, which is often periodic. Another desirable feature
was integrated frequency analysis. Frequency analysis, in the form of for
example a simple version of Fast Fourier Transform (FFT) or the more ad-
vanced Least-Squares Spectral Analysis (LSSA), would open the way for a
more advanced understanding of the twins' behaviour. Among the other
desirable features were the ability to trigger actions on speci�c events and
generate reports from old data.

1

I wanted to create the groundwork for a platform that could host multiple
di�erent DT for multiple di�erent users with di�erent needs. Therefore I did
not want to just create tailormade versions of the aforementioned desirable
features and hard-code them into the platform. Instead I decided to develop
a generic way to integrate features like these into the platform easily, without
having to change the platform itself. Users can then decide between using
existing �lters, solvers, etc. with their own parameters or create their own
specialized �ltering, spectral analysis, etc. algorithms and seamlessly inte-
grate them in their DT system on the platform. To achieve this I de�ned the
blueprint system described in section 3.3.5.

A proper user interface with more �exibility in the visualization of the data
was also desirable. In this thesis, I decided to create the Application Pro-
gramming Interface (API) necessary for a frontend instead of adding the
creation of a frontend to the project scope. A frontend, in the form of a
web application, was created for the platform using this API in Sande and
Børhaug 2019. A proper interface with more �exibility in the visualization
is among the features in this web application.

1.2 Problem description

The goal of this master's thesis is to lay the groundwork for a platform that
could serve the ability to both develop and use Digital Twins as a cloud
computing resource.

This will be accomplished by

1. Investigating relevant technologies and de�ning a technology stack for
the platform.

2. Developing an extensible prototype, Tvilling Digital, using the chosen
technology stack.

3. Documenting Tvilling Digital.

4. Discussing how Tvilling Digital can be expanded on to achieve the
aforementioned platform.

1.3 Outline

This section will give a brief outline of the overall structure of the thesis.

Background contains relevant background theory used in the thesis.

2

Method contains description of and discussion around the methods used.
The section starts by discussing the choices for the technology stack and
describing the chosen technologies. It continues by describing the prototyping
tools used. The overall development and documentation of Tvilling Digital is
then described. The section ends by describing how the results in the results
section are generated.

Results contains the results generated.

Discussion contains discussion about the results of the development and
future work. The section starts by discussing the results of the choices done
regarding the technology stack. It continues by discussing how the proto-
typing tools and the cooperation with other master students impacted the
development. The results in the results section are then discussed. The
section ends with a discussion on possible future work.

Summary gives a short summary of the thesis.

3

2 Background

This thesis mainly concerns itself with creating a solution for running DTs.
The inner workings of speci�c types of twins, for example the FE simulations
done using the inverse method in the DT for the O�shore Crane, is not
addressed. Though it was necessary to create some �ltering, wave generation,
and spectral analysis tools to test with and use as examples for the blueprints
described in Section 3.3.5, the theory behind their implementation is not
relevant to the goal of this thesis and is therefore not included.

2.1 Digital Twins

Digital twins were classi�ed as one of the top ten most promising technolog-
ical trends in the next decade by Gartner in 2017 and 2018 and is drawing
increasing attention in the academia (Tao et al. 2019). It is described as an
important part of the Industry 4.0 technologies by several publications, such
as (Roser 2015; Haag and Anderl 2018; Uhlemann, Lehmann, and Steinhilper
2017; Padovano et al. 2018; Schroeder et al. 2016; Grieves 2014; Tao et al.
2019; Ayani, Ganebäck, and Ng 2018; Negri et al. 2019; Schleich et al. 2017;
Borodulin et al. 2017; El Saddik 2018) There are currently many di�erent
understandings of what a digital twin actually is though, as described by for
example Schleich et al. 2017; Kritzinger et al. 2018; Tao et al. 2019.

According to Schleich et al. 2017 the �rst de�nition was probably made by
NASA in their integrated technology roadmap, Shafto et al. 2010, TA11-7.
It was described as

an integrated multi-physics, multi-scale, probabilistic simulation
of a vehicle or system that uses the best available physical models,
sensor updates, �eet history, etc., to mirror the life of its �ying
twin.

This de�nition was only slightly adapted to

an integrated multiphysics, multiscale, probabilistic simulation of
an as-built vehicle or system that uses the best available physical
models, sensor updates, �eet history, etc., to mirror the life of its
corresponding �ying twin

in Glaessgen and Stargel 2012. Not everyone agrees with this de�nition
though.

Kritzinger et al. 2018 classi�ed the use of the term "digital twin" in current
literature into three types based on the level of data integration between the

4

physical asset and digital representation in the described digital twin. Digital
Model (DM), Digital Shadow (DS), and Digital Twin (DT). When there is
no automatic real-time data communication between the physical asset and
the digital representation, as in Figure 1, then the described digital twin is
instead classi�ed as a "digital model". When there is automatic real-time
communication from the physical representation to the digital twin but not
from the digital representation to the physical asset, as in Figure 2, then the
described digital twin is classi�ed as a "digital shadow". Only when there
is an automatic real-time communication both from the physical asset to
the digital representation and from the digital representation to the physical
asset, as in Figure 3, is the described digital twin classi�ed as a proper digital
twin.

Digital Model

Physical asset Digital representationmanual

manual

Figure 1: Data �ow in a Digital Model according to Kritzinger et al. 2018

Digital Shadow

Physical asset Digital representation
automatic

manual

Figure 2: Data �ow in a Digital Shadow according to Kritzinger et al. 2018

Digital Twin

Physical asset Digital representationautomatic

automatic

Figure 3: Data �ow in a Digital Twin according to Kritzinger et al. 2018

This thesis will use the Glaessgen and Stargel 2012 de�nition of a DT, but
extending the solution to supporting the type of DT described in Kritzinger
et al. 2018 is discussed in future work.

5

2.2 FMI and FMUs

The Functional Mock-up Interface (FMI) is a standarized interface for dy-
namic models. FMI is supported by over 100 tools according to fmi-standard
2019b. Models following the FMI standard are called Functional Mock-up
Units (FMU). By creating an FMU from a model it is possible to import
them into FMI compatible programs regardless of the original format of the
models. This is the "model exchange" part of the FMI standard. In addi-
tion to "model exchange" some FMUs also support "co-simulation". Func-
tional Mock-up Interfaces (FMUs) supporting "co-simulation" also includes
a solver for the model. These FMUs can be simulated independently in any
co-simulation compatible program as long as the platform is supported by the
solver binaries included in the FMU. The FMU blueprint is used to simulate
using these co-simulation compatible FMUs.

2.3 Cloud computing

Cloud computing is a model that enables on-demand availability of comput-
ing resources (Mell, Grance, et al. 2011, p. 2).

2.3.1 Service models

Popular service models for cloud computing are Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS
gives the users access to the cloud provider's applications running on the
providers cloud infrastructure. In PaaS the users are instead providing the
applications themselves, while in IaaS they are also managing fundamental
computing resources themselves. A further developed version of Tvilling
Digital could potentially provide DT development and use to users using
the SaaS model, possibly in a similar way to the Digital Twin as a Service
(DTaaS) model described in Borodulin et al. 2017.

2.3.2 Scalability

Scalability is an important part of cloud computing. In cloud computing
there are two ways for a software to scale:(Furht and Escalante 2010, p. 358)

1. Vertical scaling: by increasing the resources of the node(s) the software
runs on.

2. Horizontal scaling: by increasing the number of nodes the software runs
on.

6

Scalability is important if the software is to be used by a large number of
people, for example if it is used to create a SaaS. It can also be important for
reducing the resources used. Software that is able to scale horizontally could,
for example, have a dynamic amount of nodes. That would allow them to use
fewer resources by using fewer nodes when the resources are not necessary.
They could instead be granted more nodes dynamically when the increased
amount of resources is necessary.

7

3 Method

The prototype in this thesis, Tvilling Digital, is made from scratch. The
possibility of extending the PoC from the specialization project last year
was considered. It ultimately did not seem like it would be less work than
starting from scratch, and it would have put a restriction on technology
choices. Unknown problems in the PoC could also be problematic for the
robustness of Tvilling Digital if present. As Tvilling Digital is intended to be
built upon later, potentially becoming a full-�edged cloud solution for DT,
the focus has been placed on making a stable and extendable base system
instead of making as many features as possible. It should instead be as easy
as possible to extend Tvilling Digital with new features in later projects.

3.1 Technology Research

A technology stack, the technologies to be used for the project, had to be
chosen before the development of the prototype could start. The required
technology stack chosen consisted of an operating systems, a programming
language, a web framework, and a messaging system. A web framework was
needed to create a web API that could be used for communication with the
frontend, a web application created in Sande and Børhaug 2019. A messaging
system was required to keep the internal �ow of data standardized.

Open-source solutions have been prioritized over proprietary solutions when
available to make Tvilling Digital more future-proof. If the developers of
open-source solutions stop development it is still possible to maintain the
solutions along with the application and continue using it. This is in contrast
to proprietary solutions where even a licensing issue can be enough to prevent
all usage of and development on an application until the proprietary solution
is replaced. I also have a much better experience debugging open-source
solutions since I am able to see what actually happens in them, unlike most
proprietary solutions.

3.1.1 Operating system

The FMUs created by the version of FEDEM that was available did not in-
clude binaries for any other operating system than Windows. This, combined
with the fact that only Windows versions of FEDEM was available to run
simulations directly on, made other operating systems impractical for run-
ning FEDEM simulations. Since I did not want to complicate the setup and
administration too much, I wanted to be able to run the entire application on
the same computer when developing. Windows was consequently chosen as

8

the operating system for the development of Tvilling Digital. Nevertheless, I
decided to ensure that Tvilling Digital also supported Linux so that further
development will be possible on Linux if FMUs with Linux support is used.

3.1.2 Programming language

As can be seen on Figure 4 the PoC DT solution that was created last
year as part of the specialization project was made using a combination of
python, javascript, and typescript. A python application was responsible
for receiving data from the torsion bar suspension rig, using FEDEM to
simulate the torsion bar suspension rig with the Finite Element Method
(FEM) and then sending the results to a node.js application via UDP. A
node.js application was written in javascript and was responsible for serving
the web frontend and transmitting the data from the python application to it.
The web frontend was made using a combination of javascript and typescript.
This thesis focuses on the backend, namely the role of the python application
and the data transmission role of the node.js application.

Physical twin Python application

Fedem

Node.js application
(Javascript)

Web application
(Javascript and Typescript)

sensor data

sensor data simulation results

simulation results

simulation results

Figure 4: The components of the Proof of Concept created last year.

Python has multiple libraries available for the type of data transmission done
by the node.js application in the PoC, some of which are discussed in 3.1.3.
It also has an actively developed open-source library for interfacing with
FMUs that is suggested by the o�cial FMI standards page (fmi-standard
2019a). The only other languages with libraries mentioned there are C and
C++. None of the other libraries listed with o�cial Co-Simulation import
support on the supported tools page1 were viable either. Since creating a
FMU library from scratch probably would have been at least a master thesis
on its own I was left with Python, C or C++ as the most viable alternatives.

In addition to having a pre-existing way to interface with FMUs, Python
is well known among students at NTNU. It is important that the language

1The o�cial list of FMU tools on fmi-standard: https://fmi-standard.org/tools/

9

https://fmi-standard.org/tools/

is as e�cient to develop as possible, not only for this thesis but also for
other theses with other students. It seems likely that future students also
have more experience with Python than C or C++ since many more of
the relevant courses have featured Python these last few years. Python with
numpy and matplotlib is also much closer to Matlab, than C or C++ is. This
is noteworthy because all the introductory programming courses at NTNU
at the moment uses either Matlab or Python.

Python is also the fourth most popular language with 41.7% of developers
responded that they were using it in the 2019 Stack Over�ow survey, while
both C and C++ have less than 25% (Stack Over�ow 2019). It is also the
second most loved language in the survey with 73.1% expressing interest in
continuing to develop in it, much higher than the 52.0% C++ had or the
42.5% C had. Lastly, it had two web frameworks among the ten most used
web frameworks in the survey, while C and C++ had none.

The fact that Python can be run dynamically and does not need to be com-
piled like C and C++ is also a signi�cant bene�t. Setting up and maintaining
a build process has cost me much time in both C and C++ projects earlier.
In my experience, I have also been able to develop faster in Python than C
or C++, partially because Python is more concise with less boilerplate code.

C and C++ did have some advantages over Python, though. First and fore-
most, C and C++ o�er better performance than python, especially when it
comes to parallel execution. Python is bound by the Global Interpreter Lock
(GIL)2 which, to put it simply, means that multiple threads can't execute
python code at the same time. This makes it possible for a thread to poten-
tially freeze the entire application, which would create problems for the DTs.
To prevent this, and to make use of multiple processor cores, it is necessary
to create subprocesses instead. This increases the complexity of the software
signi�cantly and creates an extra performance overhead.

In spite of the problems with performance and the GIL, Python still seemed
like a less complex alternative than C or C++. In addition to this, the fact
that the FEDEMAPI was in Python and that most of the backend in the PoC
from last years specialization project was in Python also contributed making
Python seem like the best choice. I, therefore, decided to create Tvilling
Digital in Python. The blueprints can still be developed in any language as
long as they expose an interface as described in section 3.3.5 though.

2The Python documentation for the GIL: https://wiki.python.org/moin/

GlobalInterpreterLock

10

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

3.1.3 Web framework

The only viable ways to transfer data to a web application with the through-
put, frequency, and latency necessary for this type of application was using
WebSocket, HTTP Streaming, or WebRTC. WebRTC is primarily meant for
communication between web applications, and there is currently no stable
python libraries supporting it. HTTP Streaming does not support sending
raw binary data, only text, which would create a 33% byte overhead (Grig-
orik 2015, ch. 16). WebSocket, on the other hand, seemed perfect for this
use-case, especially since using WebSocket worked well during the special-
ization project last year. There are multiple libraries supporting WebSocket
available for Python. The most used libraries were aiohttp, websockets, and
Django Channels.

The websockets library did not have proper support for standard HTTP
interaction (Augustin 2017), and was therefore not suited for this project.
Django channels has excellent support for standard HTTP interaction in
addition to WebSocket and has powerful tools for database management.
There was a lot of friction when trying to set it up properly and create a
Minimum Viable Product (MVP) using it though, and it also required a lot of
boilerplate code. Django channels was eventually abandoned after spending
a signi�cant amount of time trying to make the MVP work properly.

Aiohttp was, on the other hand, much easier to create an MVP in. There
were no issues with getting it set up, and the MVP created worked with-
out problems. Aiohttp also had support libraries for the two most popular
messaging systems, Apache Kafka (through aiokafka) and Redis (through
aioredis). Aiohttp was therefore chosen as the web framework for Tvilling
Digital.

3.1.4 Messaging system

The platform should be able to run as multiple processes and eventually
even on multiple machines at the same time. It would, therefore, be advan-
tageous to have a structured messaging system for communication between
the individual processes. Message brokers like the open-source Apache Kafka,
RabbitMQ, and Redis (through the recently released Stream data type) seem
ideal for the job. With a messaging broker the processes do not have to com-
municate with each other directly, but can instead publish to and subscribe
to message queues in the broker, as seen in Figure 5. The broker will then
handle the actual message transmission. This makes it considerably easier
to structure Tvilling Digital, as the processes do not have to concern them-

11

selves with the communication aspect. They can simply retrieve data from
the topics(Apache Kafka)/queues(RabbitMQ)/streams(Redis) they are inter-
ested in, and they can also output their results into a new topic/queue/stream
as in Figure 9. There are some di�erences between these message brokers,
though.

Kafka broker node

Kafka broker node

Node

Node

topic

topic

topic

Tvilling Digital process

Tvilling Digital process

Tvilling Digital process

Figure 5: An example showing how Apache Kafka can be connected to mul-
tiple processes over multiple nodes/computers to enable standardized com-
munication between them.

Redis is primarily a key-value store3 where values of di�erent types are
stored and retrieved by keys in the form of a binary sequence. The Re-
dis stream datatype4 that can be used for message broking is one of many
useful datatypes available, like strings, lists, or sets. Redis could potentially
be used as a common data store for the processes in addition to brokering
messages. The stream datatype is still quite new though, with an o�cial
release in October 20185, and the Redis library for aiohttp (aioredis) did not
yet support it. Neither did the newest windows version of Redis, which was
a problem as I had to use windows for the FEDEM FMUs. Being so new
also meant that there was very little documentation and available and that it

3The o�cial Redis FAQ: https://redis.io/topics/faq
4The o�cial intro to Redis Streams: https://redis.io/topics/streams-intro
5The Redis stream release post: https://redislabs.com/blog/

redis-5-0-is-here/

12

https://redis.io/topics/faq
https://redis.io/topics/streams-intro
https://redislabs.com/blog/redis-5-0-is-here/
https://redislabs.com/blog/redis-5-0-is-here/

was not as battle-tested as Apache Kafka or RabbitMQ. Redis stream could
be an alternative in later iterations of the system though.

Between Apache Kafka and RabbitMQ, Apache Kafka seemed like the best �t
for this project. Kafka is better suited for the kind of high throughput needed
for this type of system, while RabbitMQ is a more general purpose solution
according to a blog post by the developers of RabbitMQ6. RabbitMQ also
does not persist the messages, unlike Apache Kafka. There is also a support
library for using Apache Kafka in aiohttp, which RabbitMQ does not have.
Though Apache Kafka was chosen in this thesis, the system is created in such
a way that it should not be too much work to change the messaging system
later.

3.2 Prototyping tools

3.2.1 Prototyping web application client

A simple web application client, shown in Figure 6, for prototyping how the
API could be used by a frontend was created to ease the development. The
prototyping frontend was continuously updated along with the digital twin
software and was used to test changes in the software before they were made
available to Sande and Børhaug 2019.

3.2.2 The torsion bar suspension rig

The torsion bar bar suspension rig, seen on Figure 7, was used for the DT
prototyping. It has eight sensors:

1. Load Cell

2. Displacement

3. Accelerometer

4. 0° Strain Gauge

5. +45° Rosette

6. 90° Rosette

7. -45° Rosette

8. +45° in Radius

6Blog post by the developers of RabbitMQ: https://content.pivotal.io/blog/

understanding-when-to-use-rabbitmq-or-apache-kafka

13

https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka

Figure 6: Screenshot of the web application client created for testing new
features before deployment

14

An HBM Data AcQuisition system (DAQ) is used to sample the voltage
measurements from the sensors which are then sent to the installed com-
puter via ethernet. The DAQ software Catman is used to map these voltage
measurements to corresponding physical values. The results are then sent to
the server as bytes using User Datagram Protocol (UDP).

An FMU was created from the rig using FEDEM. This FMU was used for
most of the prototyping related to FMU simulations, both the early proto-
typing and when developing the blueprint-processor system and the FMU
blueprint. The rig was also used for testing other processors with real-world
data after testing them for correctness with the sinus and ramp processors.
All of this is described in more detail in Appendix B, the report from last
years specialization project, which also used the torsion bar suspension rig.

Figure 7: The torsion bar suspension rig used for prototyping.

15

3.3 Development

3.3.1 Con�guration

Con�guration of the application is done by loading attributes from a user
speci�ed �le and loading them into a Settings object. The Settings object
is then made available through the system. A YAML7 �le was used in early
stages of development, but I eventually ended up using a python �le instead.
The python �le can then be dynamically loaded, so that not only can python
objects be put directly in the �le instead of parsed, but it is also possible
to dynamically generate settings values at import time as seen on Listing 1
where a new secret key is generated each time the system is run. The secret
key is used for encrypting the cookies used by the API.

1 import base64

2 import logging

3

4 from cryptography.fernet import Fernet

5

6 HOST = '0.0.0.0'

7 PORT = 1337

8

9 UDP_ADDR = ('0.0.0.0', 7331)

10

11 KAFKA_SERVER = 'localhost:9094'

12

13 FMU_DIR = 'files/fmus'

14 FMU_MODEL_DIR = 'files/fmu_models'

15 MODEL_DIR = 'files/models'

16 DATASOURCE_DIR = 'files/datasources'

17 BLUEPRINT_DIR = 'files/blueprints'

18 PROCESSOR_DIR = 'files/processors'

19

20 SECRET_KEY = base64.urlsafe_b64decode(Fernet.generate_key())

21

22 LOG_LEVEL = logging.INFO

Listing 1: An example of a settings �le with dynamic generation of secret
key

7The YAML website: https://YAML.org/

16

https://YAML.org/

3.3.2 API

The API was exposed using aiohttp routes. The relevant functions were
added to an aiohttp routes object by decorating them (a way to wrap a
function in another function in Python) as in Listing 2. The routes object
is then added to the applications router object which calls the function and
returns the results when it receives matching http requests as can be seen
in Figure 8. The real-time data is sent through WebSocket. The WebSocket
connection used is made when a request is sent by a supported client to the
index route of the API and kept open until the client disconnects. A client
can have multiple WebSocket connections at the same time and the data the
client has subscribed to will then be sent to all of them. An example of this is
if the prototyping web application client mentioned in section 3.2.1 is opened
in multiple browser tabs, which will result in all of them receiving the same
data.

To make the API easier to use during development, it was necessary to add
some form of documentation available in it. This was done by extending the
aiohttp routes logic to generate an additional documentation page from the
functions docstring each time a function is added to routes. This page was
then reachable on the same URL as the API call, except that it had /docs/

prepended. The documentation page for http://tvilling.digital/processors/
would for example be available on http://tvilling.digital/docs/processors/.

1 @routes.get('/processors/{id}/status', name='processor_status')

2 async def processor_status(request: web.Request):

3 """Updates and returns the current status of the processor"""

4 processor_id = request.match_info['id']

5 if processor_id not in request.app['processors']:

6 raise web.HTTPNotFound()

7 processor_instance = request.app['processors'][processor_id]

8 status = await retrieve_processor_status(

9 request.app, processor_instance

10)

11 return web.json_response(status, dumps=dumps)

Listing 2: A simple example of an API function for retrieving information.

3.3.3 Data �ow

As discussed in Section 3.1.4, Apache Kafka was used for transmiting data
internally in Tvilling Digital. The data that is to be transmitted from a

17

user
app router processor_status

"/processors/testrig_fft/status"

request

router parses "/processors/testrig_fft/status"
and it matches "/processors/{id}/status"

request

processor_status retrieves id
from request as "testrig_fft"

status of "testrig_fft"

status of "testrig_fft"

status of "testrig_fft"

Figure 8: Simpli�ed example of request handling.

process is placed in a speci�c topic, which is kind of like a category, in Kafka.
Other processes can then choose to receive data from that topic. Any new
data added to the topic by the �rst process is then received by those processes.
There is, in theory, no limit to the number of processes that can receive data
from a topic. The API of Tvilling Digital currently allows clients to receive
data from any topics with data from datasources or processors. A simpli�ed
example of data �ow for a simple DT can be seen in Figure 9.

3.3.4 Datasources

The datasources in Tvilling Digital are created to make it easy receive data
from multiple di�erent sources in di�erent formats without it a�ecting the
other components. The datasources receive raw data from external sources
and are responsible for processing it into a standardized format used inter-
nally in Tvilling Digital. Data received and processed in the datasources are
then, through Kafka, made available directly in the API and as sources of
data for the processors described in the following section. This separation of
concerns makes it easier not only to add new types of external data sources
but also to add new features that use this data, as they only have to concern
themselves with one type of data format.

18

Digital twin

Kafka cluster

Datasource

Filter processor

Fmu processor
API

Raw data

Filtered data

Simulation data

Sensors

Clients

Figure 9: Simpli�ed example of data�ow in a Digital Twin using Kafka

19

The processors output results are also standardized to the same format as
the datasources so that there is no di�erence in parsing between receiving
data directly from a datasource and from a processor.

3.3.5 Blueprint system de�nition

The blueprint system was de�ned to make development of the API easier by
making the data processing, including the implementation of digital twins, as
generic as possible. Blueprints in the blueprint system de�ne the inner work-
ings of the data processors. Data processors are responsible for all the data
processing that form DTs in Tvilling Digital, including FE simulations, �lter-
ing, and spectral analysis. In short, they turn the data from the datasources
into information the user can make use of. Processors are instantiated from
blueprints in the blueprint system as shown in Figure 10.

Blueprints can in principle be any kind of algorithm, script, application, etc,
but has to expose a python interface to the Tvilling Digital. The interface
has to be de�ned in an __init__.py �le in the root of the blueprint and has
to follow some rules. Most importantly it must contain a class named P with
the attributes listed below.

� They must have iterables named input_names and output_names or
inputs and outputs. These must be populated after the __init__

method is �nished.

� input_names and output_names must be a mapping from an
input_ref or output_ref respectively (for example a list or tuple
where the indices are the refs)

� inputs and outputs must my an iterable where each element has
a name attribute and a valueReference attribute that represents
the input_ref or output_ref respectively for the name.

� The __init__ method should initialize the processor without actu-
ally starting it. Can have an arbitrary amount of custom parameters,
for example model �le or bu�er size. These parameters can have de-
fault values. Can change inputs and outputs or input_names and
output_names.

� The start method is an optinal method that is called before the �rst
time any of set_inputs, get_outputs, or step is called. Can have an
arbitrary amount of custom parameters. These parameters can have
default values.

20

� The set_inputsmethod should handle incoming data to the processor.

� The get_outputs method should return current results.

� The step method should perform a calculation/step in the simula-
tion/etc.

� The stop method is an optional method that will be called before the
processor process is stopped. Should gracefully stop the processor if
necessary.

For a more practical example see listing 3

3.3.6 Blueprint system implementation

The blueprint system works by importing the __init__.py �le dynamically
in the processor process. This is done by leveraging the implementation
of Pythons library import functionality, importlib 8. After importing the
blueprint into the processor process the P class (as seen in Listing 3) in the
blueprint is instantiated and used by the processor. The P class is instanti-
ated with arguments given by the user. These are given as a JSON object
called init_params when creating the processor from the blueprint. The
required initialization parameters will vary between blueprints though. It is,
therefore, necessary to expose the required parameters to the client before
importing the blueprint.

The ast 9 module in Python is used to extract documentations strings and
function parameters from the blueprints. The __init__.py �les describing
the blueprints are parsed into Abstract Syntax Trees, By navigating through
and extracting from these trees the blueprint system is able to retrieve rele-
vant information from the blueprints without having to import them.

3.3.7 Blueprints created

Some blueprints using the blueprint system were created as part of this thesis.
The created blueprints are listed below.

1. FMU

The FMU blueprint uses the FMPy10 library to simulate FMUs.

8The documentation for the Python importlib package: https://docs.python.org/

3/library/importlib
9The documentation for the Python ast module: https://docs.python.org/3/

library/ast
10The library used to simulate FMUs: https://github.com/CATIA-Systems/FMPy

21

https://docs.python.org/3/library/importlib
https://docs.python.org/3/library/importlib
https://docs.python.org/3/library/ast
https://docs.python.org/3/library/ast
https://github.com/CATIA-Systems/FMPy

1 class P:

2 # A tuple (or any iterable) with objects containing the name and

3 # a reference value for each input

4 inputs = (input1, input2, etc)

5 # A tuple (or any iterable) with objects containing the name and

6 # a reference value for each output

7 outputs = (output1, output2, etc)

8

9 def __init__(self, an_init_arg, another_init_arg='some_value'):

10 """Initialize the instance using the provided args

11

12 Can change inputs and outputs tuple

13 """

14

15 def start(self, start_time, a_start_arg, another_start_art='a_value'):

16 """Start (optional)"""

17

18 def set_inputs(self, input_refs, input_values):

19 """Receive new input data"""

20

21 def step(self, timestamp):

22 """Do a calculation"""

23

24 def get_outputs(self, output_refs):

25 """Return results"""

26

27 def stop(self):

28 """Stops the blueprint instance

29

30 An optional stop method that will be called before force-

31 quitting the processor process if present.

32 """

Listing 3: blueprint skeleton with comments

22

Separate process

Processor manager

Blueprint instance

Processor Kafka

init()

create Processor manager

__init__() Blueprint instance

retrieve_status()

status request (through pipe)

Waits for result asynchronously

Processor process initialization

status (through pipe)

status

start()

Starts when startup signal is received

startup signal (through pipe)

start()

retrieve_status()

status request (through pipe)

Waits for result asynchronously

Processor process startup

status (through pipe)

status

loop

data

results

Figure 10: The startup sequence of a processor.

23

2. Butterworth

The Butterworth blueprint uses the Butterworth �lter in SciPy11 to
�lter incoming data.

3. FFT

The FFT blueprint uses the FFT functionality in SciPy11 to do a spec-
tral analysis of incoming data. It can be used for spectral analysis when
the incoming data is evenly spaced.

4. Lombscargle

The Lombscargle blueprint uses the Lombscargle functionality in SciPy11

to do a LSSA of incoming data. It can be used for spectral analysis
when the incoming data is not evenly spaced.

5. Event trigger

The event trigger blueprint will output the given inputs only after a
speci�ed event has happened. It could be used to limit resource usage
by only processing data after something relevant has happened.

6. Step

The step blueprint will output a speci�ed value until a speci�ed time,
and will then output another speci�ed value. It is used to test the
correctness of the other processors.

7. Sinus

The sinus blueprint will output the sum of an arbitrary amount of
speci�ed sinus waves. It is used to test the correctness of the other
processors.

3.3.8 Multiprocessing

Because Tvilling Digital had to be able to run multiple CPU intensive tasks
at the same time, it was necessary to add multiprocessing functionality to it.
This is done not only to utilize multiple cores but also to side-step Pythons
Global Interpreter Lock (GIL) so that the processors can run in parallel
without having to wait for their turn (Foundation 2019). Tvilling Digital is
already asynchronous through the async/await of Python, which is necessary
for aiohttp, but that is not enough to sidestep the GIL or utilize multiple

11The tools used for �ltering and spectral analysis: https://scipy.org/

24

https://scipy.org/

processor cores. This is instead achieved using the Python multiprocessing

package 12.

After the blueprints are instantiated inside a multiprocessing.Process the
multiprocessing.Pipe module is used to communicate with the process
from the main thread. The messages are sent as pickled dictionaries with
a type and a value item. Based on the content of type, which could for
example be "status" , the contents of value is used in various ways. This
can be seen in more detail in Figure 11. If the blueprint throws any exceptions
the process will catch them, send them as a message through the pipe and
then stop as can be seen in Figure 11.

3.3.9 Project structure

The �les and directories of the project are structured as seen on �gure 12.
The source code of Tvilling Digital is placed in the src/ folder. The source
code is then organized into modules, where API endpoints are placed in
views.py �les and the code for the inner workings of Tvilling Digital is
placed in models.py �les. In addition to these there is also kafka.py �le
which is used for sending data from Apache Kafka to the API, the utils.py
�le which contains various utility code and server.py which is responsible
for initializing Tvilling Digital. Outside of the src/ �le there is also the
main.py �le which contains the code for running the server.py �le from the
command line.

The settings.py �le contains the con�guration used when starting Tvilling
Digital, requirements.txt contains the a list of required python libraries,
and .gitignore is used to make git ignore certain �les and directories. There
is also the html/ folder which contains the web application created for pro-
totyping and the docs/ which contains the documentation generation con-
�guration and output. Lastly the files/ folder contains all the �les used
and generated by the application, including FMUs, blueprints, and saved
parameters. The processors/ and datasources/ folders contains con�g-
urations in JSON format for processors and datasources respectively. The
processors/ folder also contains the folders the processors run in and the
�les the processors generate (for example where the FMU contents are ex-
tracted when creating a processor from the FMU blueprint. fmus/ contains
FMUs and fmu_models/ contains 3D models for 3D visualization of geomet-
ric FMUs. Lastly the blueprints/ folder contains all the blueprints. Each

12The python multiprocessing package: https://docs.python.org/3/library/

multiprocessing

25

https://docs.python.org/3/library/multiprocessing
https://docs.python.org/3/library/multiprocessing

Send message with current status

Type status

Wait for message
Type start

The processor is running

yes

Type status

Send message with
current status

yes

Type inputs

Set inputs
from value

yes

Type outputs

Set outputs
from value

yes

Type stop

Call stop

Has message

Check pipe for message
No message

Process new data from kafka and send results to kafka

Error

Start blueprint and connect to kafka
Error

Initialize itself and blueprint
Error

Send message with error

Figure 11: The lifecycle of a processor process

26

blueprint has its own folder with arbitrary content, except that all blueprints
must have a __init__.py �le as described in Section 3.3.5.

A heavily simpli�ed example of how the data �ows from the physical twin
through the application and to the API is shown in Figure 13. Kafka has been
excluded from the �gure to reduce clutter. As seen on the �gure, Tvilling
Digital uses one datasource for each physical twin. An arbitrary amount of
processors can then receive data from a datasource. An arbitrary amount of
processors can again receive data from any of these processors and so on. All
of these datasources and processors will also share the data directly with the
API, so clients can subscribe to all data from the raw data in the datasources,
through the �ltered or half-processed data in the chained processors to the
�nal results at the end of processor chains.

3.4 Documentation

Python has built in support for writing documentation directly in the code
called docstring 13. Tvilling Digital has been heavily documented using these
docstrings. This should make it much easier to reason about the various parts
of the system when reading through the code. These docstrings are also used
when generating the API documentation on /docs/ and the blueprint doc-
umentation shown when retrieving blueprints in the API. Documentation
in the form of a pdf, as seen in Appendix A, is also generated from these
docstrings. The documentation in Appendix A is generated using the docu-
mentation tool sphinx 14. Because the documentation is written directly in
the code as docstrings with the external documentation generated from it,
it should be much easier to keep the documentation updated when Tvilling
Digital is further developed.

3.5 Generation of results

3.5.1 Calculation of latency

To calculate the latency of the data, the time on the DAQ on the digital twin
is �rst synced to match the time on the computer where the latency will be
tested. The latency is then calculated by comparing the timestamp of the
most recent data in the browser with the current time on the computer when
analyzing it in the web frontend used for testing.

13Python glossary: https://docs.python.org/3/glossary.html#term-docstring
14The website for the documentation tool used: http://www.sphinx-doc.org

27

https://docs.python.org/3/glossary.html#term-docstring
http://www.sphinx-doc.org

ROOT
docs/
files/
blueprints/
a_blueprint/
__init__.py
another_blueprint/
__init__.py
a_file_used_by_the_blueprint
a_folder_used_by_the_blueprint/

...
datasources/
fmu_models/
fmus/
models/
processors/

html/
src/
blueprints/
__init__.py
views.py
clients/
__init__.py
models.py
datasources/
__init__.py
models.py
views.py
fmus/
__init__.py
views.py
processors/
__init__.py
models.py
views.py
kafka.py
server.py
utils.py
views.py
.gitignore
main.py
requirements.txt
settings.py

Figure 12: The directory structure of the project

28

A Physical Twin

Another Physical Twin

Solution

A Digital Twin

Another Digital Twin

Yet another Digital Twin

sensors DAQ

sensors DAQ

Datasource

Datasource

API

Filtering processor FMU processor

FMU processor

Filtering processor FMU processor

Figure 13: A heavily simpli�ed example of how data from sensors can be
distributed. The message system and other middlemen are not shown.

29

4 Results

4.1 Stability

Due to time constraints I have not been able to test the stability of the appli-
cation over a longer time period than two days in a row uninterrupted. The
solution did not have any stability issues or signs of memory leaks during
these two days though. The processor system is made in such a way that if a
processor crashes, it will not a�ect the rest of the system. There are never-
theless some problems with the FEDEM FMUs when running for extended
periods of time. They gradually use more and more memory while simulat-
ing, which could potentially �ll up the whole disk space and bring down the
whole solution. This would have to be �xed in FEDEM before these FMUs
could be used for inde�nite amounts of time without stopping.

4.2 Latency

The latency when receiving data from a datasource object without using a
processor is usually between 100ms and 200ms, as on Figure 14.

Figure 14: Example of latency when subscribing to a raw data source.

There is an additional latency of about 100ms for results data from simu-
lations of the test rig in a FEDEM FMU using the FMU blueprint when
simulating 100 steps per second as can be seen on Figure 15. There can be
some latency spikes if the simulation is somehow slowed down, through for
example high processor usage by another process on the computer, because

30

the simulation will currently not skip any data. The FMU processor will
then have to catch up to the newest data by simulating faster than real-time.
If the FMU processor described earlier is arti�cially halted through pausing
the process for 2-3 seconds, it requires somewhere between a half second and
one second to reach below 300ms latency again.

Figure 15: Example of latency when subscribing to an FMU processor

Some of the processors, like the Butterworth processor, will have an addi-
tional delay because they need to gather multiple samples before processing.
They have to �ll up a bu�er �rst before they can calculate the output using
the bu�er. As an extreme example, if they have a bu�er size of 500 measure-
ments with a spacing of 10ms, they will have an additional 5000ms delay as
can be seen in Figure 16.

4.3 Documentation

The documentation is found in the code as docstrings. An example of such a
docstring can be seen in listing 4. The generated docs from listing 4 is shown
in �gure 17 The rest of the generated documentation is shown in Appendix
A. An example of what the API documentation looks like in the browser can
be seen in �gure 18

4.4 Resulting solution

A complete cloud solution with the results of this thesis as the backend
and the results of Sande and Børhaug 2019 as the frontend, as shown in

31

Figure 16: Example of latency when subscribing to a Butterworth processor
with a bu�er size of 500 measurements and a sample spacing of 10ms.

Figure 17: The generated documentation from the try_get function with
docstring.

Figure 18: The index page of the generated API documentsion.

32

1 def try_get(post, key, parser=None):

2 """

3 Attempt to get the value with key from post.

4

5 :param post: The post request the value will be retrieved from

6 :param key: Key used to retrieve the value

7 :param parser: Will be used to parse the retrieved value if given

8 :return: The retrieved and parsed value.

9 Returns the first value if more than one value is found.

10 :raise web.HTTPUnprocessableEntity: If a value with the given key

11 is not found

12 :raise web.HTTPBadRequest: If parsing of the value failed

13 """

14 try:

15 value = post[key]

16 if parser:

17 try:

18 return parser(post[key])

19 except ValueError:

20 raise web.HTTPBadRequest(

21 reason=f'The value {value} from {key}' +

22 f' was not parsable as {parser.__name__}'

23)

24 return value

25 except KeyError:

26 raise web.HTTPUnprocessableEntity(reason=f'{key} is missing')

Listing 4: The try_get function with docstring.

33

Figure 19, was created. The backend development process and the creation
of the API used by the frontend is described in section 3.3. The development
of a frontend using the API created in this thesis and the results of that
development are described in that thesis.

Digital Twin cloud solution

Frontend (developed in Sande and Borhaug 2019)

Backend (developed in this thesis) Physical Twin

Users

Uses

Uses

Data from

Figure 19: An overview of the relationship between the frontend and the
backend.

34

5 Discussion

5.1 Technology used

As discussed in section 3.1 I decided to use Windows as the operating system,
Python as the programming language, aiohttp as the web framework and
kafka as the messaging system. This ended up working very well, but there
were some issues which could potentially be worth looking into.

Installation and setup of some of the tools turned out to be noticeably harder
in Windows than on Arch Linux where they were originally tested at the
start of the project. Redis, for example, was straightforward to get up and
running on Arch Linux when testing messaging systems there as it was readily
available from the built-in package manager. A couple of commands and a
few minutes of waiting was all that was needed for the newest stable version
of Redis to be installed and ready to use. The experience on Windows was
very di�erent. The newest versions of Redis available for Windows was from
2016, two years before the release of the stream datatype which was essential
if Redis was to be used for this project. It could have been possible to run
Redis on the Windows Subsystem for Linux, which is a compatibility layer for
running Linux executables, but this has a negative impact on performance
and could potentially create new issues. This was part of the reason why
Kafka was chosen instead of Redis as a messaging system.

There was also a few issues with using Apache Kafka on Windows. Because
Apache Kafka runs on the Java Virtual Machine it was possible to use the
same binary �les as other operating systems on Windows also. This made
installation easy, but the startup process when using Kafka for development
was unnecessarily cumbersome. Zookeeper (which Apache Kafka depends
on) and Apache Kafka had to be started manually from the command line
each time, in contrast to the automatic startup as a service on Linux. The
most critical issue was with stability, though. This is not an issue when
Tvilling Digital is deployed, because Zookeeper and Kafka do not have to
run on the same computer as the rest of the system, but when developing
it is much easier to run everything on the same computer. If the FEDEM
FMUs later becomes available for Linux it could be worth looking into using
Linux instead.

Apart from the issues known beforehand, discussed in section 3.1, there were
no issues with Python or aiohttp during development.

35

5.2 Prototyping tools

Both the web application created for testing the API and the torsion bar
suspension rig used for testing the solution with real data has been really
useful. The web application made experimenting with new features and
verifying that everything worked much easier than it would have been without
it. The web application did become relatively messy towards the end of the
project, but this was not a problem since it was only meant for personal use.
Even though it was a signi�cant amount of work to create and update it, it
turned out to be worth it thanks to the boost in productivity from how easy
it made testing and veri�cation. An alternative to the web application could
have been to use integration testing and maybe also unit testing instead.
This could have enabled automated testing, in contrast to how changes have
to be tested manually through the web application in the current version.
I appreciated being able to test the changes in more practical use through
the web application though. It would, in my opinion, be harder to reason
about how changes would impact the users of the API when only running
automated tests. An even better solution could have been to use both the
web application and automated tests.

The Torsion bar suspension rig was also very useful. It made it easy to
test with real data produced in real-time instead of having to generate and
record data beforehand. The displacement sensor, which generated the dis-
placement value used as input to the FMU of the torsion bar suspension rig,
was somewhat inaccurate and had a high amount of noise though. A better
sensor for displacement would have made correctness testing much easier.
This was not a huge problem for this thesis but could be worth looking into
for later projects using the torsion bar suspension rig.

5.3 Cooperation with other master students

This thesis focused on creating a backend with an API for frontends, and
not the frontend itself. The frontend was instead developed in Sande and
Børhaug 2019. An important part of the API development was, therefore, the
communication with them. Just developing the API without accommodating
their needs and simply relying on the API documentation for communicating
how the API should be used would not have been su�cient. It was also
necessary to cooperate with Johansen 2019, who worked on the O�shore
Crane, to get an FMU of the O�shore Crane for the project.

The fact that all of us shared o�ce space helped greatly with the communica-
tion. When features were worked on in Sande and Børhaug 2019 that utilized

36

new API featuers, they could very quickly ask for for help, clari�cation on
the documentation, new API featuers, or even bug �xes if a bug were found.
I could then respond to them and if necessary update the documentation
or API immediately, which was a huge boost to the productivity. If they
for example wanted additional information included in a speci�c response
from the server, so that they did not have to send an additional request to
retrieve it separately, this could be done very quickly without forcing anyone
to leave their chairs. It also allowed me to get much faster feedback on new
API features and made it easy to discuss potential new changes with them
before implementing the changes. It also made it easier to communicate with
Johansen 2019 when working on the FMU of the O�shore Crane simulation
developed there.

5.4 Results

5.4.1 Latency

The latency shown in section 4.2 seems to be acceptable for this kind of
application. There may be some use-cases which require less than 100ms
latency, but when it comes to structural integrity monitoring and predictive
maintenance, a latency of less than a second should not be a problem. The
over 5000ms of latency in Figure 16 is of as mentioned in section 4.2 only
an extreme example of a possible combination of sample spacing and bu�er
size.

The latency and the latency variation was larger than it could have been
though. This is because the data at various parts of Tvilling Digital was put
in bu�ers and sent when the bu�ers reach a certain size instead of sending
the data immediately. Though it negatively impacted the latency, this im-
proved performance drastically. The CPU use of the datasources was in fact
reduced with more than 90%. The latency does not have any impact on the
correctness of the processors, for example the simulations, as they use the
timestamp included in the data. The time used will therefore always be the
time the original sensor values were measured unless a processor speci�cally
changes it to something else.

5.5 Future work

Even though much work has been done on Tvilling Digital, there is still much
more work to be done before Tvilling Digital is ready for deployment. Poten-
tial options for future work on Tvilling Digital is discussed in the following
subsections.

37

5.5.1 Performance improvements

There is still room for performance improvements, especially when it comes
to chaining multiple data processors. While Kafka itself is very performant
the kafka-python library (and consequently also the aiokafka library) seems
to have problems handling the number of messages desired for real-world
software with a large amount of data processors. This is especially true for
high-frequency data. A better solution for bu�ering the data before sending,
or potentially even a replacement of the library could potentially improve
the performance greatly. Horizontal scaling, as described in the next section,
would also help by reducing the number of messages a single instance from
the kafka-python library has to handle.

5.5.2 Horizontal scaling

Time restraints at the �nal stages of the project made it necessary to sacri�ce
the ability of Tvilling Digital to scale horizontally in a clean way. Restoring
the horizontal scaling capability could be an important improvement to the
software since there is a limit to how much software can scale vertically. The
FEDEM FMUs, for example, requires a lot of resources, especially the more
complex simulations and at high frequencies. Running a high number of
these simulations at the same time would therefore not be feasible as long
as horizontal scaling capability is missing. Horizontal scaling capability is
therefore important to add for it to be feasible to serve it as a service to a
large number of users at the same time.

Most of the current version of Tvilling Digital is already suitable for horizon-
tal scaling. What remains to be done to achieve horizontal scaling capability
is to replace the usage of the aiohttp Application instance for interaction
between the API and the other parts of Tvilling Digital. The communication
of data to the API is suited for horizontal scaling because of the way Apache
Kafka is used, which is described in section 3.3.3. The interaction between
the API and the other parts of Tvilling Digital, which is actions like start-
ing a processor, stopping a datasource, changing the outputs of a processor,
etc., could be done in a similar fashion. An external data storage could be
added, and interactions would then be done by making the relevant parts of
Tvilling Digital listen to changes of certain values in the storage, which could
be changed through the API. This type of indirect interaction would make
horizontal scaling possible.

38

5.5.3 Security and authorization

Security has not been in focus during the creation of Tvilling Digital and
there is currently no authorization system as these are out of scope of this
thesis. An authorization system and a proper security review is critical be-
fore, for example, SaaS would be possible. The system does check most of the
input through the API, but as securing the system was outside of the scope
of this thesis this is not guaranteed. There could, for example, be problems
with the FMU processors accessing arbitrary �les based on the fmu input pa-
rameter. The system is also vulnerable to Cross-site request forgery (CSRF).
Critical actions, for example deleting processors, are done using GET instead
of POST. This is not currently a problem since there is not authentication
anyway, but it must be �xed if authentication is to be implemented. GET
is currently used instead of POST on some critical actions because it made
testing through the browser much easier. Actions could be tested by simply
navigating to an URL instead of crafting a POST request through an exter-
nal tool. This is easily �xed, but doing so may break current usage of the
API by others.

5.5.4 Creation of more blueprints

The current blueprints, except for the FMU blueprint, are mostly made for
testing the system. More and better blueprints would be an important im-
provement. Some useful blueprints are:

� Improved versions of existing blueprints

� A blueprint for accumulating values, which when combined with other
blueprints could be used for real-time fatigue calculations

� A blueprint for using the FEDEM solver directly without an FMU.
It would make testing models in the system much faster as the FMU
generation usually takes a long time

There is also a lot of potential with a feature enabling users to create their
own processors through the system.

It could also be worth looking into implementing these as FMUs instead of
blueprints. All the work currently done by processors could potentially be
done using FMUs through the FMU blueprint instead if the FMU blueprint
is extended. There is also a lot of potential in implementing a feature that
would enable users to create their own FMUs inside Tvilling Digital.

39

5.5.5 Bi-directional communication

A potential improvement to Tvilling Digital is bi-directional communica-
tion between the physical and the digital twin as described by Kritzinger
et al. 2018. It would require new physical research objects that could ben-
e�t from this bi-directional communication. Windmills could, for example,
automatically adjust itself (blades, generator etc.) or even shut down based
on real-time data from the simulation in the digital twin.

5.5.6 Extraction of geometric models from FEDEM FMUs

Automatic extraction and conversion of geometric models from FEDEM
FMUs would make it easier to add new FMUs. Currently, the geometric
models have to be extracted and converted manually and placed in a direc-
tory on the server. A solution for extracting these automatically was created
in Johansen 2019. This solution could potentially be integrated into Tvilling
Digital.

5.5.7 Testing with FMUs using di�erent solvers

Tvilling Digital has not yet been tested with other FMUs than FEDEM
generated FMUs. While it should not be a problem to use FMUs generated
by di�erent applications, it could be bene�cial to test this properly in case
the FEDEM FMUs in some way deviates from the FMI standard.

5.5.8 Potential issues with FEDEM

While testing with an FMU generated from the O�shore Crane in Johansen
2019 a potential issue with the correctness of the simulation when variable
timesteps were used surfaced. It seemed like the calculated forces were lower
than they had been with �xed timesteps. As this was late in the project and
potential issues with the FE simulation was out of the scope of this thesis, I
did not investigate this beyond ensuring that it was not a problem with the
data sent to the FMU or the way the results were retrieved. This potential
issue could be worth looking into.

In addition to this, there was also a couple of instances where the FEDEM
generated FMUs refused to start because of licensing issues with the FEDEM
solver, probably because the solver was unable to reach the licensing server.
Some form of solution to this would be bene�cial.

40

5.5.9 Support for DT development

Tvilling Digital has been created with support for running DTs. This is
an important �rst step in supporting DT development on the platform, but
I would estimate that there is still multiple master's theses worth of work
left. A way for users to create their own blueprints on Tvilling Digital is a
potential next step. DTs would be developed as blueprints, and specialized
tools for creating blueprints could then be created. One such specialized
tool is a Computer-Aided Design (CAD) tool that could be used to create
geometric models and choose a FE solver. A blueprint would then be created
from the combination of the chosen FE solver and the geometric model. The
blueprint could then be used in the current blueprint system.

5.5.10 Improvement of the blueprint system

Even though a signi�cant amount of work has been put into the blueprint
system, it is still not without possible improvements. The blueprint parser,
for example, still has problems parsing default arguments that are expressions
instead of simple values. This is currently not a signi�cant problem, but it
could be restricting when developing more advanced blueprints.

More advanced blueprints would also bene�t from the inclusion of possible
choices (on some parameters), type, parameter speci�c docs, etc. This can
already be seen in the FMU blueprint, where the fmu parameter ideally would
have included the possible FMUs to choose from. The API users working on
the frontend (Sande and Børhaug 2019) had to retrieve these from the /fmus/
instead, which is not an optimal solution. If the API provided the type of the
parameters, it would also be possible for a frontend to provide input widgets
that are better suited for the individual parameters. Input widgets could also
be improved by including docs for each parameter individually. The docs for
the parameters are currently a part of the method docs instead.

A way to interact with processors dynamically could also be a signi�cant
improvement to the blueprint system. The blueprint system currently only
supports interaction with the inputs and outputs of a processor after startup.
Being able to change parameters while the processor is running would make
the blueprint system even more powerful. It would, for example, make tweak-
ing a butterworth processor much easier by getting instant feedback when
changing the order, cuto� frequency, etc. without having to restart the pro-
cessor. This should be relatively easy to implement by adding, for example,
a new method called set_params to the blueprint system and implementing
it in a similar manner as the existing start method. It could also be possible

41

to switch the start method with a similar method that is callable multiple
times in a processors lifecycle, though this could make it harder for blueprints
to know when they are actually started. Adding a method to the blueprint
system where the blueprint could return additional status data, extending
the status command to use it could also be helpful.

I imagine there is also a lot of other potential improvements and additions
possible.

42

6 Summary

The goal of this master's thesis was to lay the groundwork for a platform
that could serve the ability to both develop and use Digital Twins as a cloud
computing resource. Relevant technologies for the creation of this platform
has been investigated, and a technology stack has been de�ned. An extensible
prototype, Tvilling Digital, was developed using the de�ned technology stack
and a �exible system for adding �lters, solvers, etc. called the blueprint
system was developed. The FMU blueprint was created for running FMUs,
and Tvilling Digital should in theory be able to run arbitrary DTs as long as
blueprints are created for new types. Documentation both in the code, the
API and in Appendix A was added. A discussion of how the prototype can
be expanded on later has been done in section 5.5. There is still a signi�cant
amount of work, probably equivalent to multiple master's theses, before a
full-�edged solution for both developing and running arbitrary digital twins
is accomplished. The work done in this thesis should serve as a good starting
point, though.

43

References

Augustin, Aymeric (Sept. 30, 2017). GitHub - aaugustin/websockets: Library
for building WebSocket servers and clients in Python. url: https : / /
github.com/aaugustin/websockets#why-shouldnt-i-use-websockets.

Ayani, M., M. Ganebäck, and Amos H.C. Ng (2018). �Digital Twin: Applying
emulation for machine reconditioning�. In: Procedia CIRP 72. 51st CIRP
Conference on Manufacturing Systems, pp. 243�248. issn: 2212-8271. doi:
https://doi.org/10.1016/j.procir.2018.03.139. url: http://www.
sciencedirect.com/science/article/pii/S2212827118302968.

Borodulin, Kirill et al. (2017). �Towards Digital Twins Cloud Platform: Mi-
croservices and Computational Work�ows to Rule a Smart Factory�. In:
Proceedings of the10th International Conference on Utility and Cloud Com-
puting. UCC '17. Austin, Texas, USA: ACM, pp. 209�210. isbn: 978-1-
4503-5149-2. doi: 10.1145/3147213.3149234. url: http://doi.acm.
org/10.1145/3147213.3149234.

El Saddik, A. (Apr. 2018). �Digital Twins: The Convergence of Multimedia
Technologies�. In: IEEE MultiMedia 25.2, pp. 87�92. issn: 1070-986X. doi:
10.1109/MMUL.2018.023121167.

fmi-standard (May 11, 2019a). Downloads | Functional Mock-up Interface.
url: https://fmi-standard.org/downloads/.

� (May 11, 2019b). Functional Mock-up Interface. url: https : / / fmi -
standard.org/.

Foundation, Python Software (June 2019). multiprocessing � Process-based
parallelism � Python 3.7.3 documentation. url: https://docs.python.
org/3/library/multiprocessing.html.

Furht, Borivoje and Armando Escalante (2010). Handbook of cloud comput-
ing. Vol. 3. Springer.

Glaessgen, Edward and David Stargel (2012). �The Digital Twin Paradigm
for Future NASA and U.S. Air Force Vehicles�. In: 53rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference. doi: 10.2514/
6.2012-1818. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.
2012-1818. url: https://arc.aiaa.org/doi/abs/10.2514/6.2012-
1818.

Grieves, Michael (2014). �Digital twin: Manufacturing excellence through
virtual factory replication�. In: White paper, pp. 1�7.

Grigorik, Ilya (Sept. 2015). High Performance Browser Networking. Ed. by
Melanie Yarbrough Courtney Nash. 3rd ed. O'Reilly Media, Inc. isbn:
978-1449344764.

Haag, Sebastian and Reiner Anderl (2018). �Digital twin � Proof of con-
cept�. In: Manufacturing Letters 15. Industry 4.0 and Smart Manufactur-

44

https://github.com/aaugustin/websockets#why-shouldnt-i-use-websockets
https://github.com/aaugustin/websockets#why-shouldnt-i-use-websockets
https://doi.org/https://doi.org/10.1016/j.procir.2018.03.139
http://www.sciencedirect.com/science/article/pii/S2212827118302968
http://www.sciencedirect.com/science/article/pii/S2212827118302968
https://doi.org/10.1145/3147213.3149234
http://doi.acm.org/10.1145/3147213.3149234
http://doi.acm.org/10.1145/3147213.3149234
https://doi.org/10.1109/MMUL.2018.023121167
https://fmi-standard.org/downloads/
https://fmi-standard.org/
https://fmi-standard.org/
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1818
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1818

ing, pp. 64�66. issn: 2213-8463. doi: https://doi.org/10.1016/j.
mfglet.2018.02.006. url: http://www.sciencedirect.com/science/
article/pii/S2213846318300208.

Johansen, Christian (2019). �Digital Twin of o�shore knucle boom crane�.
Master's thesis. Norwegian University of Science and Technology.

Kritzinger, Werner et al. (2018). �Digital Twin in manufacturing: A cate-
gorical literature review and classi�cation�. In: IFAC-PapersOnLine 51.11.
16th IFAC Symposium on Information Control Problems in Manufacturing
INCOM 2018, pp. 1016�1022. issn: 2405-8963. doi: https://doi.org/
10.1016/j.ifacol.2018.08.474. url: http://www.sciencedirect.
com/science/article/pii/S2405896318316021.

Mell, Peter, Tim Grance, et al. (2011). �The NIST de�nition of cloud com-
puting�. In: url: http://faculty.winthrop.edu/domanm/csci411/
Handouts/NIST.pdf.

Negri, Elisa et al. (2019). �FMU-supported simulation for CPS Digital Twin�.
In: Procedia Manufacturing 28. 7th International conference on Change-
able, Agile, Recon�gurable and Virtual Production (CARV2018), pp. 201�
206. issn: 2351-9789. doi: https://doi.org/10.1016/j.promfg.2018.
12.033. url: http://www.sciencedirect.com/science/article/pii/
S2351978918313763.

Padovano, Antonio et al. (2018). �A Digital Twin based Service Oriented
Application for a 4.0 Knowledge Navigation in the Smart Factory�. In:
IFAC-PapersOnLine 51.11. 16th IFAC Symposium on Information Control
Problems in Manufacturing INCOM 2018, pp. 631�636. issn: 2405-8963.
doi: https://doi.org/10.1016/j.ifacol.2018.08.389. url: http://
www.sciencedirect.com/science/article/pii/S2405896318315143.

Roser, Christoph (2015). Illustration of Industry 4.0, showing the four "in-
dustrial revolutions" with a brief English description. Christoph Roser at
AllAboutLean.com. url: https://upload.wikimedia.org/wikipedia/
commons/c/c8/Industry_4.0.png.

Sande, Odd Harald Sjursen and Andreas Børhaug (2019). �Developing a
Client for a Digital Twin Cloud Platform�. Master's thesis. Norwegian Uni-
versity of Science and Technology.

Schleich, Benjamin et al. (2017). �Shaping the digital twin for design and pro-
duction engineering�. In: CIRP Annals 66.1, pp. 141�144. issn: 0007-8506.
doi: https://doi.org/10.1016/j.cirp.2017.04.040. url: http://
www.sciencedirect.com/science/article/pii/S0007850617300409.

Schroeder, Greyce N. et al. (2016). �Digital Twin Data Modeling with Au-
tomationML and a Communication Methodology for Data Exchange�. In:
IFAC-PapersOnLine 49.30. 4th IFAC Symposium on Telematics Applica-
tions TA 2016, pp. 12�17. issn: 2405-8963. doi: https://doi.org/10.

45

https://doi.org/https://doi.org/10.1016/j.mfglet.2018.02.006
https://doi.org/https://doi.org/10.1016/j.mfglet.2018.02.006
http://www.sciencedirect.com/science/article/pii/S2213846318300208
http://www.sciencedirect.com/science/article/pii/S2213846318300208
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
http://www.sciencedirect.com/science/article/pii/S2405896318316021
http://www.sciencedirect.com/science/article/pii/S2405896318316021
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://doi.org/https://doi.org/10.1016/j.promfg.2018.12.033
https://doi.org/https://doi.org/10.1016/j.promfg.2018.12.033
http://www.sciencedirect.com/science/article/pii/S2351978918313763
http://www.sciencedirect.com/science/article/pii/S2351978918313763
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.389
http://www.sciencedirect.com/science/article/pii/S2405896318315143
http://www.sciencedirect.com/science/article/pii/S2405896318315143
https://upload.wikimedia.org/wikipedia/commons/c/c8/Industry_4.0.png
https://upload.wikimedia.org/wikipedia/commons/c/c8/Industry_4.0.png
https://doi.org/https://doi.org/10.1016/j.cirp.2017.04.040
http://www.sciencedirect.com/science/article/pii/S0007850617300409
http://www.sciencedirect.com/science/article/pii/S0007850617300409
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115

1016/j.ifacol.2016.11.115. url: http://www.sciencedirect.com/
science/article/pii/S2405896316325538.

Shafto, Mike et al. (May 2010). �Modeling, Simulation, Information Technol-
ogy and Processing Roadmap�. In:

Stack Over�ow (2019). Stack Over�ow Developer Survey 2019. url: https:
//insights.stackoverflow.com/survey/2019.

Tao, F. et al. (Apr. 2019). �Digital Twin in Industry: State-of-the-Art�. In:
IEEE Transactions on Industrial Informatics 15.4, pp. 2405�2415. issn:
1551-3203. doi: 10.1109/TII.2018.2873186.

Uhlemann, Thomas H.-J., Christian Lehmann, and Rolf Steinhilper (2017).
�The Digital Twin: Realizing the Cyber-Physical Production System for
Industry 4.0�. In: Procedia CIRP 61. The 24th CIRP Conference on Life
Cycle Engineering, pp. 335�340. issn: 2212-8271. doi: https://doi.org/
10.1016/j.procir.2016.11.152. url: http://www.sciencedirect.
com/science/article/pii/S2212827116313129.

46

https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.115
http://www.sciencedirect.com/science/article/pii/S2405896316325538
http://www.sciencedirect.com/science/article/pii/S2405896316325538
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/https://doi.org/10.1016/j.procir.2016.11.152
http://www.sciencedirect.com/science/article/pii/S2212827116313129
http://www.sciencedirect.com/science/article/pii/S2212827116313129

A Documentation

47

Tvilling Digital

Simen Norderud Jensen

Jun 11, 2019

CONTENTS:

1 main module 1

2 src package 3
2.1 Subpackages . 3

2.1.1 src.blueprints package . 3
2.1.1.1 Submodules . 3
2.1.1.2 src.blueprints.views module . 3

2.1.2 src.clients package . 4
2.1.2.1 Submodules . 4
2.1.2.2 src.clients.models module . 4
2.1.2.3 src.clients.views module . 4

2.1.3 src.datasources package . 4
2.1.3.1 Submodules . 4
2.1.3.2 src.datasources.models module . 4
2.1.3.3 src.datasources.views module . 5

2.1.4 src.fmus package . 7
2.1.4.1 Submodules . 7
2.1.4.2 src.fmus.views module . 7

2.1.5 src.processors package . 7
2.1.5.1 Submodules . 7
2.1.5.2 src.processors.models module . 7
2.1.5.3 src.processors.views module . 9

2.2 Submodules . 10
2.3 src.kafka module . 10
2.4 src.server module . 11
2.5 src.utils module . 11
2.6 src.views module . 12
2.7 Module contents . 13

3 blueprints package 15
3.1 Submodules . 15
3.2 blueprints.fmu module . 15

4 Indices and tables 17

Python Module Index 19

Index 21

i

ii

CHAPTER

ONE

MAIN MODULE

The start point of the application.

class main.Settings(settings_module)
Bases: object

A class for holding the application settings

main.main(args)
Start the application.

Will be called with command line args if the file is run as a script

1

Tvilling Digital

2 Chapter 1. main module

CHAPTER

TWO

SRC PACKAGE

2.1 Subpackages

2.1.1 src.blueprints package

2.1.1.1 Submodules

2.1.1.2 src.blueprints.views module

async src.blueprints.views.blueprint_detail(request: aiohttp.web_request.Request)
Get detailed information for the blueprint with the given id

async src.blueprints.views.blueprint_list(request: aiohttp.web_request.Request)
List all uploaded blueprints.

Append a blueprint id to get more information about a listed blueprint.

src.blueprints.views.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None, de-
fault=<function make_serializable>, sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

async src.blueprints.views.retrieve_method_info(class_body, method_name,
params_ignore=1) → Tuple[str,
List]

Retrieves docs and parameters from the method

Parameters

• class_body – the body of the class the method belongs to

• method_name – the name of the method

• params_ignore – how many of the first params to ignore, defaults to 1 (only ignore self)

Returns a tuple containing both the docstring of the method and a list of parameters with name and
default value

3

Tvilling Digital

2.1.2 src.clients package

2.1.2.1 Submodules

2.1.2.2 src.clients.models module

class src.clients.models.Client
Bases: object

Handles connections to a clients websocket connections

async close()
Will close all the clients websocket connections

dict_repr()→ dict
Returns a the number of connections the client has

async receive(topic, bytes)
Asynchronously transmit data to the clients websocket connections

Will add the data to the buffer and send it when the buffer becomes large enough

Parameters

• topic – the topic the data received from

• bytes – the data received as bytes

2.1.2.3 src.clients.views module

async src.clients.views.client(request: aiohttp.web_request.Request)
Show info about the client sending the request

src.clients.views.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None, de-
fault=<function make_serializable>, sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

2.1.3 src.datasources package

2.1.3.1 Submodules

2.1.3.2 src.datasources.models module

class src.datasources.models.UdpDatasource(addr: Tuple[str, int], input_byte_format: str,
input_names: List[str], output_refs: List[int],
time_index: int, topic: str = None)

Bases: object

Represents a single UDP datasource

class src.datasources.models.UdpReceiver(kafka_addr: str)
Bases: asyncio.protocols.DatagramProtocol

Handles all UDP datasources

4 Chapter 2. src package

Tvilling Digital

connection_lost(exc: Optional[Exception])→ None
Called when the connection is lost or closed.

The argument is an exception object or None (the latter meaning a regular EOF is received or the connec-
tion was aborted or closed).

connection_made(transport: asyncio.transports.BaseTransport)→ None
Called when a connection is made.

The argument is the transport representing the pipe connection. To receive data, wait for data_received()
calls. When the connection is closed, connection_lost() is called.

datagram_received(raw_data: bytes, addr: Tuple[str, int])→ None
Filters, transforms and buffers incoming packets before sending it to kafka

error_received(exc: Exception)→ None
Called when a send or receive operation raises an OSError.

(Other than BlockingIOError or InterruptedError.)

get_sources()
Returns a list of the current sources

set_source(source_id: str, addr: Tuple[str, int], topic: str, input_byte_format: str, input_names:
List[str], output_refs: List[int], time_index: int)→ None

Creates a new datasource object and adds it to sources, overwriting if necessary

Parameters

• source_id – the id to use for the datasource

• addr – the address the datasource will send from

• topic – the topic the data will be put on

• input_byte_format – the byte_format of the data that will be received

• input_names – the names of the values in the data that will be received

• output_refs – the indices of the values that will be transmitted to the topic

• time_index – the index of the value that represents the time of the data

src.datasources.models.generate_catman_outputs(output_names: List[str], output_refs,
single: bool = False)→ Tuple[List[str],
List[int], str]

Generate ouput setup for a datasource that is using the Catman software

Parameters

• single – true if the data from Catman is single precision (4 bytes each)

• output_names – a list of the names of the input data

2.1.3.3 src.datasources.views module

async src.datasources.views.datasource_create(request: aiohttp.web_request.Request)
Create a new datasource from post request.

Post parameters:

• id: the id to use for the source

• address: the address to receive data from

• port: the port to receive data from

2.1. Subpackages 5

Tvilling Digital

• output_name: the names of the outputs Must be all the outputs and in the same order as in the byte stream.

• output_ref: the indexes of the outputs that will be used

• time_index: the index of the time value in the output_name list

• byte_format: the python struct format string for the data received. Must include byte order (https://docs.
python.org/3/library/struct.html?highlight=struct#byte-order-size-and-alignment) Must be in the same or-
der as name. Will not be used if catman is true.

• catman: set to true to use catman byte format byte_format is not required if set

• single: set to true if the data is single precision float Only used if catman is set to true

returns redirect to created simulation page

async src.datasources.views.datasource_delete(request: aiohttp.web_request.Request)
Delete the datasource

async src.datasources.views.datasource_detail(request: aiohttp.web_request.Request)
Information about the datasource with the given id. To delete the datasource append /delete To subscribe to the
datasource append /subscribe To start the datasource append /start To stop the datasource append /stop

async src.datasources.views.datasource_list(request: aiohttp.web_request.Request)
List all datasources.

Listed datasources will contain true if currently running and false otherwise. Append an id to get more informa-
tion about a listed datasource. Append /create to create a new datasource

async src.datasources.views.datasource_start(request: aiohttp.web_request.Request)
Start the datasource

async src.datasources.views.datasource_stop(request: aiohttp.web_request.Request)
Stop the server from retrieving data from the datasource with the given id.

async src.datasources.views.datasource_subscribe(request: aio-
http.web_request.Request)

Subscribe to the datasource with the given id

async src.datasources.views.datasource_unsubscribe(request: aio-
http.web_request.Request)

Unsubscribe to the datasource with the given id

src.datasources.views.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None, de-
fault=<function make_serializable>, sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

src.datasources.views.try_get_source(app, topic)
Attempt to get the datasource sending to the given topic

Raises an HTTPNotFound error if not found.

6 Chapter 2. src package

Tvilling Digital

2.1.4 src.fmus package

2.1.4.1 Submodules

2.1.4.2 src.fmus.views module

src.fmus.views.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, al-
low_nan=True, cls=None, indent=None, separators=None, default=<function
make_serializable>, sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

async src.fmus.views.fmu_detail(request: aiohttp.web_request.Request)
Get detailed information for the FMU with the given id

Append /models to get the 3d models if any

async src.fmus.views.fmu_list(request: aiohttp.web_request.Request)
List all uploaded FMUs.

Append an FMU id to get more information about a listed FMU.

async src.fmus.views.fmu_model(request: aiohttp.web_request.Request)
Get a 3d model belonging to the FMU if it exists

async src.fmus.views.fmu_models(request: aiohttp.web_request.Request)
List the 3d models belonging to the FMU if any exists

Append the models id the get a specific model

2.1.5 src.processors package

2.1.5.1 Submodules

2.1.5.2 src.processors.models module

class src.processors.models.Processor(processor_id: str, blueprint_id: str, blueprint_path:
str, init_params: dict, topic: str, source_topic:
str, source_format: str, min_input_spacing: float,
min_step_spacing: float, min_output_spacing: float,
processor_root_dir: str, kafka_server: str)

Bases: object

The main process endpoint for processor processes

retrieve_status()
Retrieves the status of the processor process

Can only be called after initialization. Should be run in a separate thread to prevent the connection from
blocking the main thread :return: the processors status as a dict

set_inputs(input_refs, measurement_refs, measurement_proportions)
Sets the input values, must not be called before start

Parameters output_refs – the indices of the inputs that will be used

set_outputs(output_refs)
Sets the output values, must not be called before start

Parameters

2.1. Subpackages 7

Tvilling Digital

• input_refs – the indices of the inputs that will be used

• measurement_refs – the indices of the input data values that will be used. Must be
in the same order as input_ref.

• measurement_proportions – list of scales to be used on values before inputting
them. Must be in the same order as input_ref.

start(input_refs, measurement_refs, measurement_proportions, output_refs, start_params)
Starts the process, must not be called before init_results

Parameters

• input_refs – the indices of the inputs that will be used

• measurement_refs – the indices of the input data values that will be used. Must be
in the same order as input_ref.

• measurement_proportions – list of scales to be used on values before inputting
them. Must be in the same order as input_ref.

• output_refs – the indices of the inputs that will be used

• start_params – the processors start parameters as a dict

Returns the processors status as a dict

async stop()
Attempts to stop the process nicely, killing it otherwise

class src.processors.models.Variable(valueReference: int, name: str)
Bases: object

A simple container class for variable attributes

src.processors.models.processor_process(connection: multiprocess-
ing.connection.Connection, blueprint_path:
str, init_params: dict, processor_dir: str, topic:
str, source_topic: str, source_format: str,
kafka_server: str, min_input_spacing: float,
min_step_spacing: float, min_output_spacing:
float)

Runs the given blueprint as a processor

Is meant to be run in a separate process

Parameters

• connection – a connection object to communicate with the main process

• blueprint_path – the path to the blueprint folder

• init_params – the initialization parameters to the processor as a dictionary

• processor_dir – the directory the created process will run in

• topic – the topic the process will send results to

• source_topic – the topic the process will receive data from

• source_format – the byte format of the data the process will receive

• kafka_server – the address of the kafka bootstrap server the process will use

• min_input_spacing – the minimum time between each input to the processor

8 Chapter 2. src package

Tvilling Digital

• min_step_spacing – the minimum time between each step function call on the proces-
sor

• min_output_spacing – the minimum time between each results retrieval from the pro-
cessor

Returns

2.1.5.3 src.processors.views module

src.processors.views.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None, de-
fault=<function make_serializable>, sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

async src.processors.views.processor_create(request: aiohttp.web_request.Request)
Create a new processor from post request.

Post params:

• id:* id of new processor instance max 20 chars, first char must be alphabetic or underscore, other chars
must be alphabetic, digit or underscore

• blueprint:* id of blueprint to be used max 20 chars, first char must be alphabetic or underscore, other chars
must be alphabetic, digit or underscore

• init_params: the processor specific initialization variables as a json string

• topic:* topic to use as input to processor

• min_output_interval: the shortest time allowed between each output from processor in seconds

async src.processors.views.processor_delete(request: aiohttp.web_request.Request)
Delete the processor with the given id.

async src.processors.views.processor_detail(request: aiohttp.web_request.Request)
Get detailed information for the processor with the given id

Append /subscribe to subscribe to the processor Append /unsubscribe to unsubscribe to the processor Append
/stop to stop the processor Append /delete to delete the processor Append /outputs to get the outputs of the
processor Append /inputs to get the inputs of the processor Append /status to update and get the status of the
processor

async src.processors.views.processor_inputs_update(request: aio-
http.web_request.Request)

Update the processor inputs

Post params:

• input_ref: reference values to the inputs to be used

• measurement_ref: reference values to the measurement inputs to be used for the inputs. Must
be in the same order as input_ref.

• measurement_proportion: scale to be used on measurement values before inputting them. Must
be in the same order as input_ref.

async src.processors.views.processor_list(request: aiohttp.web_request.Request)
List all created processors.

Returns a json object of processor id to processor status objects.

Append a processor id to get more information about a listed processor. Append /create to create a new processor
instance Append /clear to delete stopped processors

2.1. Subpackages 9

Tvilling Digital

async src.processors.views.processor_outputs_update(request: aio-
http.web_request.Request)

Update the processor outputs

Post params:

• output_ref: reference values to the outputs to be used

async src.processors.views.processor_start(request: aiohttp.web_request.Request)
Start a processor from post request.

Post params:

• id:* id of processor instance max 20 chars, first char must be alphabetic or underscore, other chars must
be alphabetic, digit or underscore

• start_params: the processor specific start parameters as a json string

• input_ref: list of reference values to the inputs to be used

• output_ref: list of reference values to the outputs to be used

• measurement_ref: list of reference values to the measurement inputs to be used for the inputs. Must be in
the same order as input_ref.

• measurement_proportion: list of scales to be used on measurement values before inputting them. Must be
in the same order as input_ref.

async src.processors.views.processor_status(request: aiohttp.web_request.Request)
Updates and returns the current status of the processor

async src.processors.views.processor_stop(request: aiohttp.web_request.Request)
Stop the processor with the given id.

async src.processors.views.processor_subscribe(request: aiohttp.web_request.Request)
Subscribe to the processor with the given id

async src.processors.views.processor_unsubscribe(request: aio-
http.web_request.Request)

Unsubscribe to the processor with the given id

async src.processors.views.processors_clear(request: aiohttp.web_request.Request)
Delete data from all processors that are not running

async src.processors.views.retrieve_processor_status(app, processor_instance)
Retrieve the initialization results from a processor

Will put the results in app[‘topics’] and return them.

2.2 Submodules

2.3 src.kafka module

async src.kafka.consume_from_kafka(app: aiohttp.web_app.Application)
The function responsible for delivering data to the connected clients.

10 Chapter 2. src package

Tvilling Digital

2.4 src.server module

async src.server.cleanup_background_tasks(app)
A method to be called on shutdown, closes the WebSocket, Kafka, and UDP connections

src.server.init_app(settings)→ aiohttp.web_app.Application
Initializes and starts the server

async src.server.start_background_tasks(app)
A method to be called on startup, initiates the Kafka and UDP connections

2.5 src.utils module

class src.utils.RouteTableDefDocs
Bases: aiohttp.web_routedef.RouteTableDef

A custom RouteTableDef that also creates /docs pages with the docstring of the functions.

static get_docs_response(handler)
Creates a new function that returns the docs of the given function

route(method: str, path: str, **kwargs) → Callable[[Union[aiohttp.abc.AbstractView,
Callable[[None], Awaitable[None]]]], Union[aiohttp.abc.AbstractView, Callable[[None],
Awaitable[None]]]]

Adds the given function to routes, then attempts to add the docstring of the function to /docs

src.utils.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=<function make_serializable>,
sort_keys=False, **kw)

A version of json.dumps that uses make serializable recursively to make objects serializable

async src.utils.find_in_dir(filename, parent_directory=”)
Checks if the given file is present in the given directory and returns the file if found. Raises a HTTPNotFound
exception otherwise

async src.utils.get_client(request)
Returns the client object belonging to the owner of the request.

src.utils.make_serializable(o)
Makes the given object JSON serializable by turning it into a structure of dicts and strings.

src.utils.try_get(post, key, parser=None)
Attempt to get the value with key from post.

Parameters

• post – The post request the value will be retrieved from

• key – Key used to retrieve the value

• parser – Will be used to parse the retrieved value if given

Returns The retrieved and parsed value. Returns the first value if more than one value is found.

Raises

• web.HTTPUnprocessableEntity – If a value with the given key is not found

• web.HTTPBadRequest – If parsing of the value failed

2.4. src.server module 11

Tvilling Digital

async src.utils.try_get_all(post, key, parser=None)
Attempt to get all values with the given key from the given post request. Attempts to parse the values using the
parser if a parser is given. Raises a HTTPException if the key is not found or the parsing fails.

src.utils.try_get_topic(post)
Attempt to get the topic value from the given post request. Attempts to validate the topic value with the topic
validator strings if found. Raises a HTTPException if the key is not found or the validation fails.

src.utils.try_get_validate(post, key)
Attempt to get the value with the given key from the given post request. Returns the first value if more than one
value is found. Attempts to validate the value with the validator strings if found. Raises a HTTPException if the
key is not found or the validation fails.

2.6 src.views module

async src.views.history(request: aiohttp.web_request.Request)
Get historic data from the given topic

get params: - start: the start timestamp as milliseconds since 00:00:00 Thursday, 1 January 1970 - end: (optinoal)
the end timestamp as milliseconds since 00:00:00 Thursday, 1 January 1970

async src.views.index(request: aiohttp.web_request.Request)
The API index

A standard HTTP request will return a sample page with a simple example of api use. A WebSocket request
will initiate a websocket connection making it possible to retrieve measurement and simulation data.

Available endpoints are - /client for information about the clients websocket connections - /datasources/ for
measurement data sources - /processors/ for running processors on the data - /blueprints/ for the blueprints used
to create processors - /fmus/ for available FMUs (for the fmu blueprint) - /models/ for available models (for the
fedem blueprint) - /topics/ for all available data sources (datasources and processors)

async src.views.models(request: aiohttp.web_request.Request)
List available models for the fedem blueprint

async src.views.session_endpoint(request: aiohttp.web_request.Request)
Only returns a session cookie

Generates and returns a session cookie.

async src.views.subscribe(request: aiohttp.web_request.Request)
Subscribe to the given topic

async src.views.topics(request: aiohttp.web_request.Request)
Lists the available data sources for plotting or processors

Append the id of a topic to get details about only that topic Append the id of a topic and /subscribe to subscribe
to a topic Append the id of a topic and /unsubscribe to unsubscribe to a topic Append the id of a topic and
/history to get historic data from a topic

async src.views.topics_detail(request: aiohttp.web_request.Request)
Show a single topic

Append /subscribe to subscribe to the topic Append /unsubscribe to unsubscribe to the topic Append /history to
get historic data from a topic

async src.views.unsubscribe(request: aiohttp.web_request.Request)
Unsubscribe to the given topic

12 Chapter 2. src package

Tvilling Digital

2.7 Module contents

2.7. Module contents 13

Tvilling Digital

14 Chapter 2. src package

CHAPTER

THREE

BLUEPRINTS PACKAGE

3.1 Submodules

3.2 blueprints.fmu module

A blueprint for running FMUs.

class files.blueprints.fmu.P(fmu=’testrig.fmu’)
The interface between the application and the FMU

start(start_time, time_step_input_ref=’-1’)
Starts the FMU

Parameters

• start_time – not used in this blueprint

• time_step_input_ref – optional value for custom time_step input

files.blueprints.fmu.prepare_outputs(output_refs)
Create FMUPy compatible value references and outputs buffer from output_refs

Parameters output_refs – list of output indices

Returns tuple with outputs buffer and value reference list

15

Tvilling Digital

16 Chapter 3. blueprints package

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

17

Tvilling Digital

18 Chapter 4. Indices and tables

PYTHON MODULE INDEX

f
files.blueprints.fmu, 15

m
main, 1

s
src, 13
src.blueprints.views, 3
src.clients.models, 4
src.clients.views, 4
src.datasources.models, 4
src.datasources.views, 5
src.fmus.views, 7
src.kafka, 10
src.processors.models, 7
src.processors.views, 9
src.server, 11
src.utils, 11
src.views, 12

19

Tvilling Digital

20 Python Module Index

INDEX

B
blueprint_detail() (in module

src.blueprints.views), 3
blueprint_list() (in module src.blueprints.views),

3

C
cleanup_background_tasks() (in module

src.server), 11
Client (class in src.clients.models), 4
client() (in module src.clients.views), 4
close() (src.clients.models.Client method), 4
connection_lost()

(src.datasources.models.UdpReceiver method),
4

connection_made()
(src.datasources.models.UdpReceiver method),
5

consume_from_kafka() (in module src.kafka), 10

D
datagram_received()

(src.datasources.models.UdpReceiver method),
5

datasource_create() (in module
src.datasources.views), 5

datasource_delete() (in module
src.datasources.views), 6

datasource_detail() (in module
src.datasources.views), 6

datasource_list() (in module
src.datasources.views), 6

datasource_start() (in module
src.datasources.views), 6

datasource_stop() (in module
src.datasources.views), 6

datasource_subscribe() (in module
src.datasources.views), 6

datasource_unsubscribe() (in module
src.datasources.views), 6

dict_repr() (src.clients.models.Client method), 4
dumps() (in module src.blueprints.views), 3

dumps() (in module src.clients.views), 4
dumps() (in module src.datasources.views), 6
dumps() (in module src.fmus.views), 7
dumps() (in module src.processors.views), 9
dumps() (in module src.utils), 11

E
error_received() (src.datasources.models.UdpReceiver

method), 5

F
files.blueprints.fmu (module), 15
find_in_dir() (in module src.utils), 11
fmu_detail() (in module src.fmus.views), 7
fmu_list() (in module src.fmus.views), 7
fmu_model() (in module src.fmus.views), 7
fmu_models() (in module src.fmus.views), 7

G
generate_catman_outputs() (in module

src.datasources.models), 5
get_client() (in module src.utils), 11
get_docs_response()

(src.utils.RouteTableDefDocs static method),
11

get_sources() (src.datasources.models.UdpReceiver
method), 5

H
history() (in module src.views), 12

I
index() (in module src.views), 12
init_app() (in module src.server), 11

M
main (module), 1
main() (in module main), 1
make_serializable() (in module src.utils), 11
models() (in module src.views), 12

21

Tvilling Digital

P
P (class in files.blueprints.fmu), 15
prepare_outputs() (in module

files.blueprints.fmu), 15
Processor (class in src.processors.models), 7
processor_create() (in module

src.processors.views), 9
processor_delete() (in module

src.processors.views), 9
processor_detail() (in module

src.processors.views), 9
processor_inputs_update() (in module

src.processors.views), 9
processor_list() (in module src.processors.views),

9
processor_outputs_update() (in module

src.processors.views), 10
processor_process() (in module

src.processors.models), 8
processor_start() (in module

src.processors.views), 10
processor_status() (in module

src.processors.views), 10
processor_stop() (in module src.processors.views),

10
processor_subscribe() (in module

src.processors.views), 10
processor_unsubscribe() (in module

src.processors.views), 10
processors_clear() (in module

src.processors.views), 10

R
receive() (src.clients.models.Client method), 4
retrieve_method_info() (in module

src.blueprints.views), 3
retrieve_processor_status() (in module

src.processors.views), 10
retrieve_status()

(src.processors.models.Processor method),
7

route() (src.utils.RouteTableDefDocs method), 11
RouteTableDefDocs (class in src.utils), 11

S
session_endpoint() (in module src.views), 12
set_inputs() (src.processors.models.Processor

method), 7
set_outputs() (src.processors.models.Processor

method), 7
set_source() (src.datasources.models.UdpReceiver

method), 5
Settings (class in main), 1

src (module), 13
src.blueprints.views (module), 3
src.clients.models (module), 4
src.clients.views (module), 4
src.datasources.models (module), 4
src.datasources.views (module), 5
src.fmus.views (module), 7
src.kafka (module), 10
src.processors.models (module), 7
src.processors.views (module), 9
src.server (module), 11
src.utils (module), 11
src.views (module), 12
start() (files.blueprints.fmu.P method), 15
start() (src.processors.models.Processor method), 8
start_background_tasks() (in module

src.server), 11
stop() (src.processors.models.Processor method), 8
subscribe() (in module src.views), 12

T
topics() (in module src.views), 12
topics_detail() (in module src.views), 12
try_get() (in module src.utils), 11
try_get_all() (in module src.utils), 11
try_get_source() (in module

src.datasources.views), 6
try_get_topic() (in module src.utils), 12
try_get_validate() (in module src.utils), 12

U
UdpDatasource (class in src.datasources.models), 4
UdpReceiver (class in src.datasources.models), 4
unsubscribe() (in module src.views), 12

V
Variable (class in src.processors.models), 8

22 Index

B Last years specialization project

74

Project Thesis

Cloud Software For Digital Twin Modeling And

Monitoring

Christian Johansen, Simen Norderud Jensen, Andreas Børhaug,
Odd Harald Sjursen Sande, Kia Brekke

Fall 2018

Summary

The objective of the project is to explore and decide upon possible solutions
to create a cloud-based digital twin solution with FEDEM software assisting
in simulation and processing of FE models. The development of the project
has been in cooperation with SAP and Ceetron, under supervision of MTP
represented by Terje Rølv̊ag and Bjørn Haugen.

A user guide has been made to facilitate a quick-start in new environments,
or as documentation together with the system overview. A prototype con-
taining the key features required has been developed. The chosen solution
is based on a local server receiving relevant data from a data acquisition
system. The data is received by a server and analysed with FEDEM. The
FE results are forward to a web application where motion of the asset is
reproduced in a 3D model.

i

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2

2 Requirements 3

3 System Overview 5
3.1 Physical Twin . 6
3.2 Data Acquisition Software 6
3.3 Server . 8

3.3.1 Courier Script . 8
3.3.2 FEDEM . 11
3.3.3 Web Application . 12

4 Web Application Prototype 23

5 User guide 25
5.1 Ethernet . 25
5.2 Catman configuration for Torsion Bar Suspension Rig 25

5.2.1 Initialisation and Calibration 25
5.2.2 Remote Connection 26
5.2.3 Storage . 27
5.2.4 Transfer . 28
5.2.5 Create New Project (OPTIONAL) 29

5.3 Server . 31

6 Discussion and Evaluation 33
6.1 Technologies . 33

6.1.1 Data Acquisition System 33
6.1.2 Server Architecture . 34
6.1.3 Data Communication 34
6.1.4 Visualisation tools . 34

6.2 Challenges and limitations 35
6.3 Scalability . 36

6.3.1 Adding a new digital twin 36
6.4 Further work . 37

7 Conclusion 39

ii

Appendices 40

A Torsion Bar Suspension Rig Manual 40

B Software Packages 49
B.1 Node Packages . 49
B.2 Python Modules . 49

iii

List of Figures

1 System overview . 5
2 Digital Twin . 24
3 Remote Connection in Catman 26
4 Storage management in Catman 27
5 Transfer management in Catman 28
6 New Project in Catman AP (1) 29
7 New Project in Catman AP (2) 30
8 New Project in Catman AP (3) 31

Listings

1 RigSolver.py . 9
2 index.js . 12
3 index.html . 14
4 usg.ts . 19

iv

1 Introduction

The purpose of this project is to explore, test and evaluate possibilities
regarding cloud based software solutions for Digital Twins using the FEDEM
software for simulation and processing. The development of the project
has been in cooperation with SAP and Ceetron, under supervision of MTP
represented by Terje Rølv̊ag and Bjørn Haugen.

1.1 Background

The concept behind digital twins is to have a software replica of a physical
object or process (physical twin) that can be used to better understand the
system. However, the term is used loosely and its meaning varies depending
on the physical twin it is representing. In this project a digital twin refers to
a finite element (FE) model of a physical asset that through FE simulations,
based on sensor data, can replicate the assets behaviour in real-time.

Multiple industries are looking to make use of digital twins because the de-
velopment of the Internet of Things (IoT) has made sensors less expensive.
The main use cases are predictive maintenance and monitoring of structural
integrity. Benefits include better lifetime estimation, less need for on-site
maintenance inspections and overall cost saving. To that purpose software
companies are working on improving and creating new digital twin solutions
to meet the demands of these industries. However, currently there are no
non-proprietary digital twin solutions accessible. The Department of Me-
chanical and Industrial Engineering (MTP) at NTNU has a goal to develop
a cloud based software solution that supports the digital twin applications
both NTNU and SAP are currently developing. This project thesis lays the
ground work for developing such software.

1

1.2 Problem Formulation

There are three main objectives in this project.

1. Write functional requirements for development of digital twin software.
These should be based on hands-on experience and knowledge about
technology.

2. Identify and select state-of-the-art software solutions. This includes
exploration and evaluation based on usability, cost and ability to sat-
isfy the functionality requirements.

3. Develop a prototype to test how well the requirements can be satisfied
with the chosen solution.

This report will present the requirements, a system overview and a user
manual on how to set up some of the parts. Furthermore, the results from
prototypes developed will be displayed and explained. Finally there will be
a discussion around technology options, challenges and further work.

2

2 Requirements

This section describes the different components needed for the digital twin
cloud software, and the desired functionality that the end-user can experi-
ence.

Minimum Functionality Requirements

Physical twin
1. Measure relevant physical attributes
2. Transmit data to external server

Server
1. Receive measurement data
2. Sensor based real-time FE simulation and analysis
3. Transmit results to clients

Client
1. Be available through a browser
2. Visualise data from server in real-time
3. Save data from server to local file-system

Desired Functionality

• Real-time 2D plot of sensor data
• Real-time transformation of 3D model mirroring the physical

twin
• Real-time video stream of the physical twin
• Stress analysis visualisation
• Fatigue analysis (S-N Curve)
• Possibility to save sensor values for further analysis
• Fast Fourier Transform
• Rewind in 3D visualisation and live-plot in case of interesting

events

3

Hardware Components for Physical Twin

• Sensors
• Data Acquisition Board
• Computer(s)

4

3 System Overview

This section describes the system, including the physical asset, as is.

Figure 1: System overview

5

3.1 Physical Twin

The physical twin used in this project is the Torsion Bar Suspension Rig,
which is equipped with eight sensors:

1. Load Cell

2. Displacement

3. Accelerometer

4. 0° Strain Gauge

5. +45° Rosette

6. 90° Rosette

7. −45° Rosette

8. +45° in Radius

The sensor values are sampled with an HBM data acquisition board and
transferred to a computer located on the rig using an ethernet connection.
More detailed information on the Torsion Bar Suspension Rig is included in
appendix A.

3.2 Data Acquisition Software

The samples arriving to the computer on the Torsion Bar Suspension Rig
are captured using the data acquisition software Catman. Catman is then
used to map the samples values from voltage to the corresponding physical
measurements. After the data is processed it is sent to the server using the
remote connection option. This allows for sending data over the internet
using the user datagram protocol (UDP). The remote connection option
sends the data as a byte stream of 104 bytes for each time step. The mapping
of the values to the bytes is shown in table 1.

6

Variable Bytes

ID [0:1]

Number of channels [2:3]

Sequence counter [4:7]

Time 1 - default sample rate [8:15]

Time 1 - slow sample rate [16:23]

Time 1 - fast sample rate [24:31]

Load [N] [32:39]

Displacement [mm] [40:47]

AccelerometerX [48:55]

0 Degrees Transvers on Axle [56:63]

Rosett +45 Degrees Along Axle [64:71]

Rosett 90 Degrees Along Axle [72:79]

Rosett -45 Degrees Along Axle [80:87]

Radius +45 Degrees Along Axle [88:95]

MX840A 0 hardware time default sample rate [96:103]

Table 1: Catman Output Format for rigTimestamp.MEP

7

3.3 Server

The server hosts the software used to represent the digital twin. For this
project a virtual machine (VM) with Windows Server 2016 has been pro-
vided by NTNU IT. The following sections describe the components on the
server in more detail.

3.3.1 Courier Script

The Python script (RigSolver.py) works as a courier between the physical
twin, FEDEM and the web application. It receives sensor data from the
physical twin and forwards this to FEDEM. When FEDEM is done with the
dynamic analysis the results are returned and sent to the web application.

The code for RigSolver.py can be found in listing 1. The main functionality
of the code is described below:

1. Initiate communication with the Torsion Bar Suspension Rig and the
Web Application (Line 10-13)

2. Initiate communication with FEDEM solver (Line 16-20)

3. Listen for new sensor data from the Torsion Bar Suspension Rig (Line
26)

4. Unpack the sensor data to a FEDEM-friendly format (Line 30 and 33)

5. Solve dynamic analysis (Line 46)

6. Get transformation data (Line 49)

7. Send transformation data and time stamp to the web application (Line
58)

8

1 import s t r u c t
2 import socke t
3

4 from fedem . fedemdl l . vpmSolverRun import VpmSolverRun
5

6# DT setup parameters
7 fedem model path = ’ TestRig . fmm ’
8

9# Conf igure UDP Socket
10PHYSICAL TWIN ADDRESS = (” 0 . 0 . 0 . 0 ” , 7331)
11WEB SERVER ADDRESS = (” l o c a l h o s t ” , 8001)
12 sock = socket . socke t (socke t .AF INET, socket .SOCKDGRAM)
13 sock . bind (PHYSICAL TWIN ADDRESS)
14

15# In i t a t e VpmSolverRun ob j e c t
16 with VpmSolverRun (fedem model path) as twin :
17

18 # I n i t i a l i z a t i o n o f s o l v e r (Needed f o r fedem func t i on s)
19 f o r n in range (2) :
20 twin . so lveNext ()
21

22 # Continous ly r e c e i v e data , so lve , and forward r e s u l t through
UDP

23 whi le (True) :
24

25 # Receive datagram
26 data , = sock . recvfrom (32000)
27

28 # Unpack disp lacement in mm from bytes 40 :48 o f datagram
29 # Mult ip ly with 0 .001 to go from mi l l ime t e r s to meters
30 disp lacement = 0.001∗ s t r u c t . unpack (’<d ’ , data [4 0 : 4 8]) [0]
31

32 # Rounding up the disp lacement value
33 rounded disp lacement=round (displacement , 4)
34

35 # Print the s enso r va lue
36 pr in t (” Sensor va lue : {} meters ” . format (rounded disp lacement))
37

38 # Get cur rent time . Needed f o r Fedem
39 time = twin . getCurrentTime ()
40

41 # Connects s enso r input to c o r r e c t channel (Model s p e s i f i c)
42 # Set ext func channel ’2 ’ as time ’ time ’ with data ’

rounded disp lacement ’ .
43 twin . setExtFunc (1 , time , rounded disp lacement)
44

45 # Solves dynamic ana l y s i s f o r t h i s time step based on senso r
input

46 twin . so lveNext ()

9

47

48 # Get t rans fo rmat ion data f o r a l l t r i a d s and par t s
49 trans format ionData = twin . s a v e t r an s f o rma t i on s t a t e ()
50

51 # Retr i eve timestamp from re c e i v ed datagram
52 timestamp = data [9 6 : 1 0 4]
53

54 # Assemble message with timestamp and trans format ionData
55 message = timestamp + transformat ionData
56

57 # Sends timestamp and trans fo rmat ion data to web c l i e n t
58 sock . sendto (message , WEB SERVER ADDRESS)

Listing 1: RigSolver.py

10

3.3.2 FEDEM

FEDEM is used to run dynamic analysis on the FE-model of the physical
twin. The analysis is based on the sensor input from the physical twin and
outputs transformation data for the triads and parts in the model. This is
made possible by the external functions option in FEDEM. The output is
an array containing the data type double. The format of the output array
is shown in table 2.

Variable Element

Time step [0]

Time [1]

Step length [2]

Triad/Part [3:17]

Triad/Part [18:32]
...

...

Triad/Part [End-14:End]

Table 2: Transformation Data array

Each sub array ”Triad/Part” is on the format shown in table 3. ”Object-
Type” equals ”1” for triads and ”2” for parts.

Variable Element

ObjectType [0]

BaseID [1]

Rotation Matrix


2 3 4
5 6 7
8 9 10


 [2:10]

Translation vector


11
12
13


 [11:13]

Table 3: Triad/Part Transformation Data array

FEDEM is also used to create the surface model used for 3D visualisation
from a volume model of the Torsion Bar Suspension Rig.

11

3.3.3 Web Application

The Node.js script index.js (Listing 2) receives the transformation data
from RigSolver.py (Listing 1) and parses it. It uses socket.io to send
the relevant parsed data via WebSockets to index.html (Listing 3).

The code for index.js can be found in listing 2. The main functionality of
the code is described below:

1. Initialise HTTP server (Line 10-12 and 17-20)

2. Serve files required by visualisation module (Line 14-15)

3. Parse and forward incoming data (Line 32-60)

4. Listen for new data (Line 63)

1 // Import and i n i t i a l i s e l i b r a r i e s
2 const expre s s = r equ i r e (’ expre s s ’) ;
3 const app = expre s s () ;
4 const http = r equ i r e (’ http ’) . Server (app) ;
5 const i o = r equ i r e (’ socke t . i o ’) (http) ;
6 const dgram = requ i r e (’ dgram ’) ;
7 const s t r u c t = r equ i r e (’ python−s t r u c t ’) ;
8

9 // Serve index . html when use r s v i s i t s the page
10 app . get (’ / ’ , f unc t i on (req , r e s) {
11 r e s . s endF i l e (dirname + ’ / index . html ’) ;
12 }) ;
13

14 app . use (’ / cee t ron ’ , expre s s . s t a t i c (’ c ee t ron ’)) ;
15 app . use (’ / j s ’ , expre s s . s t a t i c (’ j s ’)) ;
16

17 // Star t the http s e r v e r f o r s e rv ing index . html
18 http . l i s t e n (1337 , func t i on () {
19 conso l e . l og (’ l i s t e n i n g on ∗ : 1337 ’) ;
20 }) ;
21

22 // Create socke t l i s t e n i n g f o r new data from so l v e r
23 fedemSocket = dgram . c r ea t eSocke t (’ udp4 ’) ;
24

25 // Pr int to conso l e when ready to l i s t e n f o r new data
26 fedemSocket . on (’ l i s t e n i n g ’ , f unc t i on () {
27 const address = fedemSocket . address () ;
28 conso l e . l og (’ l i s t e n i n g on ’ + address . address + ’ : ’ +

address . port) ;
29 }) ;

12

30

31 // Function f o r par s ing new data from so l v e r
32 fedemSocket . on (’ message ’ , f unc t i on (message , remote) {
33

34 // Extract timestamp from message
35 const timestamp = s t r u c t . unpack (’<d ’ , message) [0] ∗ 1 0 0 0 ;
36

37 // I t e r a t e over the bytes from the s o l v e r
38 // Skip the timestamp and the f i r s t 3 doubles (24 bytes)
39 // The bytes r ep r e s en t s an array o f doubles with a s i z e o f 8

bytes each
40 // I t e r a t e over the remaining doubles , 14 doubles at a time

(112 bytes)
41 f o r (var i = 32 ; i < message . length −111; i += 112) {
42 // Read the baseId as the second o f the 14 doubles
43 const baseId = s t r u c t . unpack (’<d ’ , message . s l i c e (i +8)) ;
44 i f (baseId [0] === 318) {
45 // Read the v e r t i c a l d i sp lacement o f the element

from the message
46 const d i sp lacement = s t r u c t . unpack (’<d ’ , message .

s l i c e (i + 96)) [0] ;
47 // Send the v e r t i c a l d i sp lacement to the c l i e n t
48 i o . emit (’new data ’ , [timestamp , d isp lacement]) ;
49 } e l s e i f (baseId [0] === 316) {
50 const t = s t r u c t . unpack (’<12d ’ , message . s l i c e (i +16))

;
51 const m = [
52 t [0] , t [1] , t [2] , 0 ,
53 t [3] , t [4] , t [5] , 0 ,
54 t [6] , t [7] , t [8] , 0 ,
55 t [9] , t [1 0] , t [1 1] , 1
56] ;
57 i o . emit (’ t rans fo rmat ion ’ , m) ;
58 }
59 }
60 }) ;
61

62 // Star t l i s t e n i n g f o r new data from s o l v e r
63 fedemSocket . bind (8001 , ’ 0 . 0 . 0 . 0 ’) ;

Listing 2: index.js

13

index.html (Listing 3) is used to plot the sensor data in the browser client
and display a 3D model of the torsion bar suspension rig that replicates the
movement of the asset. Socket.io is used to receive data sent by index.js
(listing 2), Ceetron Cloud Components is used for 3D graphics and plotly

is used for plotting.

The code for index.html can be found in listing 3. The main functionality
of the code is described below:

1. Add toolbox for configuring 3D model draw style (Line 11-23)

2. Initialise connection to HTTP server (Line 34)

3. Initialise 3D visualisation from usg.ts (Listing 4) (Line 37-76)

4. Initialise plot (Line 85-98)

5. Plot live datastream (Line 103-115)

6. Update 3D model (Line 17-124)

7. Add save functionality (Line 126-152)

1< ! doctype html>
2<html lang=”en”>
3<head>
4 < t i t l e>Dig i t a l Twin</ t i t l e>
5 < l i n k r e l=” s t y l e . c s s ”>
6 <s c r i p t s r c=”/ socket . i o / socket . i o . j s ”></ s c r i p t>
7 <s c r i p t s r c=” https : // cdn . p l o t . l y / p lo t l y−l a t e s t . j s ” cha r s e t=”

utf−8”></ s c r i p t>
8</head>
9<body s t y l e=”margin : 0 ; he ight :100 vh ; d i sp l ay : g r id ; g r i d :

minmax(400px , 50%) minmax(200px , 50%) / minmax(400px , 100%)”>
10

11<div s t y l e=” d i sp l ay : f l e x ”>
12 <div id=” chartConta iner ” s t y l e=”width : 100%”></ div>
13 <div s t y l e=” d i sp l ay : f l e x ; f l e x−d i r e c t i o n : column”>
14 <button on c l i c k=” save () ”>Save</button>
15 <div s t y l e=” f l e x−grow : 1”></ div>
16 Model S ty l e
17 <button on c l i c k=”myApp. setDrawStyle (’ su r face ’) ”>Sur face<

/button>
18 <button on c l i c k=”myApp. setDrawStyle (’ sur face mesh ’) ”>

Sur face Mesh</button>
19 <button on c l i c k=”myApp. setDrawStyle (’ out l ine mesh ’) ”>

Outl ine Mesh</button>

14

20 <button on c l i c k=”myApp. setDrawStyle (’ l i n e s ’) ”>Lines</
button>

21 <button on c l i c k=”myApp. setDrawStyle (’ po ints ’) ”>Points</
button>

22 <button on c l i c k=”myApp. setDrawStyle (’ ou t l i n e ’) ”>Outl ine<
/button>

23 </ div>
24</ div>
25

26<div s t y l e=” l i n e−he ight : 0”>
27 <canvas id=”CeetronCanvas”></ canvas>
28</ div>
29

30<s c r i p t s r c=” cee t ron / r equ i r e . j s ”></ s c r i p t>
31<s c r i p t>
32

33 // I n i t i a l i s e connect ion to s e r v e r
34 var socket = i o () ;
35

36 // I n i t i a l i s e USG module
37 var myApp = nu l l ;
38 r e qu i r e ([” j s /usg”] , f unc t i on (appModule) {
39 myApp = appModule . startApp (”CeetronCanvas”) ;
40

41 // Retr i eve arm geometry
42 var oReq = new XMLHttpRequest () ;
43 oReq . onload = armLoaded ;
44 oReq . open (” get ” , ”/ j s /arm . j son ” , t rue) ;
45 oReq . send () ;
46 }) ;
47

48 f unc t i on armLoaded (e) {
49 // Send arm geometry to v i s u a l i s e r
50 data = JSON. parse (t h i s . responseText) ;
51 myApp. addArmGeometry (data) ;
52

53 // Retr i eve t o r s i o n rod geometry
54 var oReq = new XMLHttpRequest () ;
55 oReq . onload = rodLoaded ;
56 oReq . open (” get ” , ”/ j s /TorsionRod . j son ” , t rue) ;
57 oReq . send () ;
58 }
59

60 f unc t i on rodLoaded (e) {
61 // Send t o r s i o n rod geometry to v i s u a l i s e r
62 data = JSON. parse (t h i s . responseText) ;
63 myApp. addRodGeometry (data) ;
64

65 // Retr i eve frame geometry

15

66 var oReq = new XMLHttpRequest () ;
67 oReq . onload = frameLoaded ;
68 oReq . open (” get ” , ”/ j s /Frame . j son ” , t rue) ;
69 oReq . send () ;
70 }
71

72 f unc t i on frameLoaded (e) {
73 // Send frame geometry to v i s u a l i s e r
74 data = JSON. parse (t h i s . responseText) ;
75 myApp. addFrameGeometry (data) ;
76 }
77

78 // Store r e f e r e n c e to conta ine r f o r p l o t
79 var graphContainer = document . getElementById (’ chartContainer

’) ;
80

81 // Container f o r d i sp lacement p l o t data
82 var d i sp lacements = {x : [[]] , y : [[]] } ;
83

84 // I n i t i a l i s e p l o t
85 Plo t l y . newPlot (
86 graphContainer ,
87 [{ y : [] }] ,
88 {
89 t i t l e : ’ Displacement ’ ,
90 xax i s : {
91 t i t l e : ’ Displacement (mm) ’
92 } ,
93 yax i s : {
94 t i t l e : ’Timestamp ’
95 }
96 } ,
97 { r e spon s i v e : t rue }
98) ;
99

100 // Counter f o r how many data po in t s has been r e c e i v ed
101 var dataRecievedCount = 0 ;
102

103 // Update p l o t with new data f o r every 100 new data po in t s
104 socke t . on (’ new data ’ , f unc t i on (msg) {
105 di sp lacements . x [0] . push (new Date (msg [0])) ;
106 di sp lacements . y [0] . push (msg [1]) ;
107 // I f 100 data po in t s r e c i e v ed s i n c e l a s t update
108 i f (dataRecievedCount++ % 100 === 0) {
109 // Remove po in t s r e c e i v ed more than 1000 po in t s ago
110 di sp lacements . x [0] = di sp lacements . x [0] . s l i c e

(−100000) ;
111 di sp lacements . y [0] = di sp lacements . y [0] . s l i c e

(−100000) ;

16

112 // Update p l o t
113 Plo t l y . r e s t y l e (graphContainer , d i sp lacements) ;
114 }
115 }) ;
116

117 // Update t rans fo rmat ion o f model f o r every 100 new data
po in t s

118 socke t . on (’ t rans format ion ’ , f unc t i on (msg) {
119 i f (dataRecievedCount % 100 === 0) {
120 i f (myApp !== nu l l) {
121 myApp. updateDisplacement (msg) ;
122 }
123 }
124 }) ;
125

126 // Create download d i a l o g f o r cu r r en t l y p l o t t ed data
127 f unc t i on save () {
128 var saveData = ”Timestamp , d isp lacement (mm) \ r \n” ;
129 f o r (var i = 0 ; i < di sp lacements . x [0] . l ength ; i++) {
130 saveData += disp lacements . x [0] [i] . valueOf () + ” , ” +

disp lacements . y [0] [i] + ”\ r \n”
131 }
132 download (saveData , ” twin ” + new Date () . toISOStr ing () +

” . csv ” , ” t ext / csv ”) ;
133 }
134

135 // Downloading data to a f i l e
136 f unc t i on download (data , f i l ename , type) {
137 var f i l e = new Blob ([data] , { type : type }) ;
138 i f (window . nav igator . msSaveOrOpenBlob) // IE10+
139 window . nav igator . msSaveOrOpenBlob (f i l e , f i l ename) ;
140 e l s e { // Others
141 var a = document . createElement (”a”) ,
142 u r l = URL. createObjectURL (f i l e) ;
143 a . h r e f = ur l ;
144 a . download = f i l ename ;
145 document . body . appendChild (a) ;
146 a . c l i c k () ;
147 setTimeout (func t i on () {
148 document . body . removeChild (a) ;
149 window .URL. revokeObjectURL (u r l) ;
150 } , 0) ;
151 }
152 }
153</ s c r i p t>
154</body>
155</html>

Listing 3: index.html

17

The module usg.ts (Listing 4) is used to visualise movement in the torsion
bar suspension rig through a 3D model. The model is translated and ro-
tated according to the transformation given in the update method (which
is calculated in the FEDEM solver). The drawing style of the geometry is
changed through the setDrawStyle method.

The code for usg.ts can be found in listing 4. The main functionality of the
code is described below:

1. Import Ceetron USG module used for creating, transforming and dis-
playing the geometry. (Line 1)

2. Initialisation (Line 4-10)

3. Define class used to handle the visualisation (Line 13-141)

4. Initialise the visualisation state (Line 16-50)

5. Create the geometry representing the torsion arm (Line 65-70)

6. Create the geometry representing the torsion rod (Line 72-86)

7. Create the geometry representing the frame (Line 88-94)

8. Display statistics about the geometry in bottom left corner (Line 96-
111)

9. Update arm geometry according to transformation (from FEDEM)
(Line 113-127)

10. Change the drawing style of the visualisation (Line 130-141)

18

1 import ∗ as cee from ” . . / cee t ron /CeeCloudClientComponent” ;
2

3 // I n i t i a l i s e r f o r Ceetron module o f app l i c a t i o n
4 export func t i on startApp (canvasElementId : s t r i n g) : App {
5 l e t canvas = document . getElementById (canvasElementId) ;
6 i f (! (canvas i n s t an c e o f HTMLCanvasElement)) {
7 throw (”Could not get canvas element ”) ;
8 }
9 re turn new App(canvas) ;

10 }
11

12 // Class conta in ing Ceetron Cloud Cl i en t Component s t a t e
13 export c l a s s App {
14

15 // Ceetron Cloud Cl i en t Component s t a t e
16 pr i va t e c l oudSe s s i on : cee . CloudSess ion ;
17 pr i va t e view : cee . View ;
18 pr i va t e model : cee . usg . UnstructGridModel ;
19 pr i va t e s t a t e : cee . usg . State ;
20

21 // Canvas conta in ing v i s u a l i s a t i o n
22 pr i va t e canvas : HTMLCanvasElement ;
23

24 con s t ruc to r (canvas : HTMLCanvasElement) {
25 t h i s . canvas = canvas ;
26

27 // I n i t i a l i s e Ceetron Cloud Cl i en t Component
28 t h i s . c l oudSe s s i on = new cee . CloudSess ion () ;
29 l e t v iewer = th i s . c l oudSe s s i on . addViewer (canvas) ;
30 i f (! v iewer) {
31 throw (”No WebGL support ”) ;
32 }
33 t h i s . view = viewer . addView () ;
34 t h i s . model = new cee . usg . UnstructGridModel () ;
35 t h i s . view . addModel (t h i s . model) ;
36 t h i s . s t a t e = th i s . model . addState () ;
37 t h i s . s t a t e . geometry = new cee . usg . Geometry () ;
38

39 // Hide infoBox i n i t i a l l y
40 t h i s . view . over l ay . i n f oBoxVi s i b l e = f a l s e ;
41

42 // L i s t en f o r r e s i z e events
43 window . addEventListener (’ r e s i z e ’ , () => t h i s .

handleWindowResizeEvent ()) ;
44

45 // Manually run r e s i z e func t i on once
46 t h i s . handleWindowResizeEvent () ;
47

48 // Update view every browser frame

19

49 window . requestAnimationFrame ((time : number) => t h i s .
myAnimationFrameCallback (time)) ;

50 }
51

52 // Adjust view dimension (c a l l e d when window i s r e s i z e d)
53 pr i va t e handleWindowResizeEvent () {
54 l e t canvasWidth = window . innerWidth ;
55 l e t canvasHeight = th i s . canvas . parentElement .

o f f s e tHe i gh t ;
56 t h i s . c l oudSe s s i on . getViewerAt (0) . r e s i z eV i ewe r (

canvasWidth , canvasHeight) ;
57 }
58

59 // Update view (c a l l e d every browser frame)
60 pr i va t e myAnimationFrameCallback (highResTimestamp : number) {
61 t h i s . c l oudSe s s i on . handleAnimationFrameCallback (

highResTimestamp) ;
62 window . requestAnimationFrame ((time : number) => t h i s .

myAnimationFrameCallback (time)) ;
63 }
64

65 // Create the t o r s i o n arm geometry
66 addArmGeometry (data) {
67 l e t geometry = th i s . s t a t e . geometry . addPart () ;
68 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .

elementTypeArr , data . elementNodeIndexArr) ;
69 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 1 , . 1 , . 1) ;
70 }
71

72 // Create the t o r s i o n rod geometry
73 addRodGeometry (data) {
74 l e t geometry = th i s . s t a t e . geometry . addPart () ;
75 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .

elementTypeArr , data . elementNodeIndexArr) ;
76 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 8 , . 8 , . 8) ;
77

78 // Transform to g l oba l coo rd ina te system
79 const c = cee .Mat4 . fromElements (
80 1 , 0 , 0 , −0.02407066 ,
81 0 , 1 , 0 , −0.02722985 ,
82 0 , 0 , 1 , 0 .27199998 ,
83 0 , 0 , 0 , 1
84) ;
85 t h i s . s t a t e . setPartTransformationAt (1 , c) ;
86 }
87

88 // Create the frame geometry
89 addFrameGeometry (data) {
90 l e t geometry = th i s . s t a t e . geometry . addPart () ;

20

91 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .
elementTypeArr , data . elementNodeIndexArr) ;

92 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 2 , . 2 , . 7) ;
93 t h i s . s h owS t a t i s t i c s (t h i s . s t a t e . geometry) ;
94 }
95

96 pr i va t e s howS t a t i s t i c s (geometry) {
97 // Generate s t a t i s t i c s on geometry
98 l e t nodeCount = 0 ;
99 l e t elementCount = 0 ;

100 f o r (l e t part o f geometry . getPartArray ()) {
101 nodeCount += part . mesh . nodeCount ;
102 elementCount += part . mesh . elementCount ;
103 }
104

105 // Log generated s t a t i s t i c s
106 conso l e . l og (” I n i t i a l s t a t e loaded , nodeCount=” +

nodeCount + ” , elementCount=” + elementCount) ;
107

108 // Draw generated s t a t i s t i c s in bottom r i gh t corner
109 t h i s . view . over l ay . i n f oBoxVi s i b l e = true ;
110 t h i s . view . over l ay . setInfoBoxContent (‘ Elements : ${

elementCount} e lements \nNodes : ${nodeCount} nodes ‘) ;
111 }
112

113 updateDisplacement (trans format ionMatr ix : number []) {
114 // Create Ceetron matrix from trans fo rmat ion data
115 const m = cee .Mat4 . fromArray (trans format ionMatr ix) ;
116

117 const loca lToGlobalTrans format ion = cee .Mat4 .
fromElements (

118 1 , 0 , 0 , −0.00000001 ,
119 0 , 1 , 0 , −0.00000000 ,
120 0 , 0 , 1 , 0 .00199997 ,
121 0 , 0 , 0 , 1
122) ;
123 const t rans fo rmat ion = cee .Mat4 . mult ip ly (m,

loca lToGlobalTrans format ion) ;
124

125 // Apply t rans fo rmat ion to armGeometry
126 t h i s . s t a t e . setPartTransformationAt (0 , t rans fo rmat ion) ;
127 }
128

129 // Change drawing s t y l e f o r geometr i e s
130 setDrawStyle (ds : s t r i n g) {
131 const geometry = th i s . model . getStateAt (0) . geometry ;
132 f o r (l e t part o f geometry . getPartArray ()) {
133 i f (ds === ” su r f a c e ”) part .

s e t t i n g s . drawStyle = cee . usg . DrawStyle .SURFACE;

21

134 e l s e i f (ds === ” sur face mesh ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .
SURFACEMESH;

135 e l s e i f (ds === ” out l ine mesh ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .
SURFACE OUTLINE MESH;

136 e l s e i f (ds === ” l i n e s ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle . LINES ;

137 e l s e i f (ds === ” po in t s ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .POINTS;

138 e l s e i f (ds === ” ou t l i n e ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .OUTLINE;

139 }
140 }
141 }

Listing 4: usg.ts

22

4 Web Application Prototype

The web application prototype is available at
http://tvilling.digital:1337 when connected to the NTNU network.
Figure 2 shows a digital representation of the physical asset.

The upper half of the web browser consists of a live 2D plot of the torsion
arm displacement. Extra functionality for the plot window such as zoom and
pan can be found in the toolbox at the top-right of the plotting window. To
the right of the toolbox there is a save button. By pressing this button you
can download a CSV-file to your own computer containing the previous 100
000 data points and their associated timestamp. The timestamp is saved
using the Unix time standard, which is number of seconds elapsed since
1st of January 1970. A visualisation of the torsion bar suspension rig is
shown on the bottom half. A model of the torsion bar suspension rig moves
according to the movement of the torsion arm calculated in FEDEM. It is
possible to change the zoom and camera position by scrolling and dragging,
and the draw style can be changed with the buttons above on the right.

23

Figure 2: Digital Twin

24

5 User guide

This section is a user guide on how to setup the digital twin cloud software
with the Torsion Bar Suspension Rig. Each subsection describes a part of
the system and how to configure it.

5.1 Ethernet

The computer on the Torsion Bar Suspension Rig needs to be connected to
the data acquisition board and with the WIN.NTNU.NO network through
a common ethernet connection. This can be achieved by using an ether-
net switch. On the Torsion Bar Suspension Rig the ethernet connection is
already set up.

5.2 Catman configuration for Torsion Bar Suspension Rig

NOTE:

• The username and password for the computer is written on top of it

• Catman must be run in Administrator mode for the remote connection
to work properly

5.2.1 Initialisation and Calibration

First navigate to the directory: C:\Users\labuser\Documents \HBM RIGG
TEST\ and run the file riggTimestamp.MEP. This will open Catman with
the correct setup. Next you need to calibrate the sensors. The calibration
procedure is explained in the Torsion Bar Suspension Rig Manual found in
appendix A.
NOTE: This manual is designed for the project file RIGGOPPSETT.MEP and
some of the functionality it describes is not available for the project file
riggTimestamp.MEP.

25

5.2.2 Remote Connection

To set up the remote connection to the server you need to:
Go to DAQJobs in the header > Choose Advanced and then Remote.
The window should look like figure 3.
In this window you need to:

• Check the option for UDP output active

• Fill in the server port number (7331)

• Choose the format 8 Byte Single precision

• Choose Send to single address and fill in the IP-address of the server
(tvilling.digital or 10.212.25.104)

Figure 3: Remote Connection in Catman

26

5.2.3 Storage

If not specified, Catman will locally store all data recorded. To avoid this:
Go to DAQJobs in the header > Choose Storage and then Local data
storage and saving > Click on Data saving and choose None (test mode).
The window should look like figure 4.

Figure 4: Storage management in Catman

27

5.2.4 Transfer

The size and frequency of data transmissions can be managed. To do this
you need to:
Go to DAQJobs in the header > Choose Advanced and then Data trans-
fer and error handling.
The window should look like figure 5.

Figure 5: Transfer management in Catman

28

5.2.5 Create New Project (OPTIONAL)

To create a new project file (.MEP): open Catman AP (See figure 6) > Click
on ”Select device type, interface and additional hardware options”
> In this new window (See figure 7) Click on Hardware time channels,
choose Create hardware time channels and click OK > Click on Start
a new DAQ project > In this new window (See figure 8) click Connect.

Note that the data acquisition board must be connected to the sensors and
the computer with Catman for this to work properly.

Figure 6: New Project in Catman AP (1)

29

Figure 7: New Project in Catman AP (2)

30

Figure 8: New Project in Catman AP (3)

5.3 Server

This section explains how to set up the cloud software on the server from
scratch.
NOTE:

• Before you start you need to install Python and Node with NPM on
the server.

• The servers Firewall may have to be configured to allow for UDP
communication on ports 8001 and 7331, and TCP communication on
port 1337.

• To gain access to the folder DT Example you must sign a
non-disclosure agreement (NDA) with SAP.

• The udpplotter can be retrieved from the Github repository:
”https://github.com/simennj/udpplotter”. It is currently private be-
cause of license restrictions.

• You need to start a job in Catman for the plotting to commence. To
do so simply press the Start-button found in the top-left corner in
the Catman window.

31

• Catman has to be set up to send the data to the new server, see 5.2.2.

Procedure:

1. Install all necessary Python packages. A complete list of the packages
can be found in Appendix B.

2. Navigate to the directory of the udpplotter folder (see notes) in the
terminal and type npm install.

3. Run the web application by typing node index.js in the terminal.

4. In a new terminal window navigate to the DT Example folder (see
notes) and run the command: python RigSolver.py

The server should now be set up properly. If you have configured the rest of
the system according to sections 5.1 and 5.2 you should now be able open the
web application if you type localhost:1337 in the server’s web browser. If
the firewall is set up correctly, the web application should then be available
on <server address>:1337 on other computers.

32

6 Discussion and Evaluation

6.1 Technologies

6.1.1 Data Acquisition System

A data acquisition system consists of three parts: sensors, data acquisition
boards and data acquisition software. The sensors capture and quantify
a physical phenomena through a voltage which is then sampled by a data
acquisition board. The samples are read by the data acquisition software
and the voltage value is translated into a corresponding engineering unit.
Examples of DAQ software is Catman by HBM and LabVIEW by National
Instruments.

At the beginning of the project, a previous setup was available using a data
acquisition board from HBM and Catman, and there was no immediate
need for changes. However, in the early stages of the project the license for
Catman expired. An alternative to purchasing license based data acquisition
software is to develop an in-house software solution. In addition to cost
savings, an in-house software solution is more transparent and can offer
more control than Catman. The possibility of an in-house software solution
was explored and a prototype was developed. This prototype was able to
retrieve raw data from the data acquisition board.

While the prototype is able to retrieve the raw data from the board, there are
still two obstacles. The first is interpreting data from the data acquisition
board; what values are received and which sensor they originate from. The
second is mapping the voltage values to an engineering unit. Both of these
issues require access to documentation of the sensors and the data acquisition
board in order to be solved.

At that point there were two clear ways forward, either continue working on
the prototype or renewing the Catman license. After discussing the options
with Terje Rølv̊ag it was decided to renew the Catman licence. This was due
to time constraints and uncertainty of successfully finishing the prototype
without access to the proper documentation. However, we would like to
stress that the digital twin cloud software is not locked to Catman.

The choice of data acquisition solution should be assessed in the case of in-
strumenting a new physical asset. As long as the solution is able to send the
measured values as doubles through UDP, it should be compatible with the

33

digital twin solution. This could potentially reduce costs spent on hardware
and software licenses.

6.1.2 Server Architecture

One of the sub-goals of the project is to be able to host digital twin soft-
ware externally in an application. During development, two options have
been considered: Self hosting and renting space at cloud computing service
companies such as Amazon Web Services (AWS), Microsoft Azure or NTNU
IT. Hosting at a cloud service required less work than self hosting and was
therefore preferable. After researching the cloud services we discovered that
while AWS and Azure are expensive, hosting at NTNU IT would not cost
anything and still provide the necessary features. The chosen solution was
to host a local VM provided by NTNU IT.

6.1.3 Data Communication

Two protocols for sending raw data over the internet were considered: Trans-
mission Control Protocol (TCP) and User Datagram Protocol (UDP). An
assessment was done in order to choose which would be the best for the
digital twin cloud software. For this project, the most important difference
between the protocols is that UDP simply sends the packets without check-
ing if they are received while TCP re-sends the packet if it is not received.
It was decided after discussions with Terje Rølv̊ag that in the case of a
lost packet it would be better to continue transmitting new packets instead
of halting the stream to re-transmit the lost packet. The need for a high
throughput with as little delay as possible is deemed more important than
the occasional loss of a packet. Since the latter has no noticeable effect on
the simulation, UDP was chosen as the data communication protocol.

6.1.4 Visualisation tools

There is a large number of visualisation tools for web development available
that offer 2D graphics, both open-source and closed-source. However, for
the digital twin cloud software we needed a tool that could make a 2D-plot
of a live data-stream, without stuttering. To avoid losing time on issues
regarding licenses, open-source libraries were prioritised. After research and

34

testing, the JavaScript library Plotly was chosen. Other tools were re-
viewed, but due to the successful implementation of Plotly we chose not
to go any further with other options.

The number of visualisation tools for web development that offer 3D graphics
is more limited. There are a few open-source libraries such as BabylonJS

and Three.js specifically made for 3D graphics, but they do not support
FE-models. We were introduced to the company Ceetron by Terje Rølv̊ag
which offers several tools for visualisation and post-processing of FE-models.
A meeting was arranged with Ceetron and SAP in late November to discuss
how we could use Ceetron software in our web application to visualise and
animate the FE-model results. For this purpose it was suggested that we
make use of the Unstruct Surface Grid (USG) model functionality found
in Ceetron Cloud Components.

Ceetron also suggested an alternative solution. It required an additional
server component, and was more complex. USG was therefore chosen since
the additional functionality from the other solution was not required for this
project. Swapping to the more complete solution was described as being a
feasible option, if functionality not offered in USG is required in the future.

6.2 Challenges and limitations

In the beginning of this project we were introduced to three different physical
assets: The Torsion Bar Suspension Rig, a crane located at MTP labora-
tories at Valgrinda and Lerkendal stadium. All three physical assets lacked
the necessary hardware components for this project. The computer located
on the Torsion Bar Suspension Rig had recently broken down, but a new
one had been ordered. The crane at Valgrinda lacked a data acquisition
board and a computer, while Lerkendal stadium lacked all the hardware
components. In order to start prototyping as soon as possible we decided
to start working with the Torsion Bar Suspension Rig since it required the
least time to get up and running. In addition it was the asset that was most
accessible and complete.

Digital Twin as a field and as a concept is still in the process of being es-
tablished and developed. As a result, there are very few ’best practices’
available. In discovering what tools to employ there was thus very little
documentation regarding how to utilise them. This extended to FEDEM
and Catman, where the complexity of the programs and lack of proper doc-

35

umentation of the relevant functionality have been a challenge. An example
of this was during our first attempt at streaming the incoming data through
FEDEM. The Dynamic Link Library (DLL) for the FEDEM solver exposed
only the name of the functions with no explanation of their input parame-
ters, types or purposes. Since there was no documentation or header files
available we were unable to use it directly and had to use a wrapper from
SAP, which was not immediately available. Catman had similar issues with
documentation, especially regarding the physical wiring needed for the re-
mote connection option. It was eventually solved by trial and error.

Another challenge was selecting which tools to employ and when. While
there is no established best practice in cloud software for digital twins, there
are plenty of tools that advertise as being helpful. There are many streaming
analytics tools which claim to ’process continuous streams of event data in
real time and act on the results’. During development, some of these tools
were tested (SAP Analytics Cloud for instance). However it was decided
that for now we would not utilise these tools as most of the analysis needed
could be handled by simple statistics and plots.

6.3 Scalability

The server currently runs on a virtual machine with limited resources. This
puts a limit on how many processes and script jobs that can run simultane-
ously. Consequently, in order to support a larger user base than the MTP
department, one would need more space and processing power, especially
if more complex analytic tools are needed later on. These tools will likely
require the ability and space to store historical data, as currently data may
only be stored client side.

Additional resources could be granted from NTNU IT if necessary. Moving
the solution to a different host with more resources is also possible.

6.3.1 Adding a new digital twin

Our digital twin cloud software is tailored towards the Torsion Bar Suspen-
sion Rig and there is currently no functionality to simply add new models.
Most of the code on the server can be reused (Listing 1, 2, 3 and 4) for a
new model. However, there are lines of code that are model specific and
these will mainly depend on:

36

• Number and types of sensors

• Output format for sensor data (See table 1)

• Configuration of external functions in FEDEM model

• Which values should be plotted

Should the new physical asset in question be equipped with another data
acquisition system than described in section 6.1.1 this should not present a
problem. As long as the data acquisition system uses UDP to send sensor
values as a byte stream, the system will work with only minor adjustments
on the server side.

6.4 Further work

As mentioned in section 6.2 there were two additional assets that could be
used. An advisable task would be to instrument at least one of these assets.
This will be beneficial for two reasons: First, if the instrumentation process
is documented well, the documentation can be used as guide for setting up
data acquisition systems for other physical assets later. Second, it will make
it possible to test the robustness and scalability of the current digital twin
cloud software.

A live video stream of the physical twin in the client is a requested feature.
This feature would make it easier to verify that the digital twin behaves the
same way as the physical. The system currently requires a computer at the
site of the physical twin. Therefore, a solution is to connect a camera to the
computer and send the live stream to the server in a similar fashion as the
sensor data.

Another requested feature is event triggers to reduce the amount of unin-
teresting data received. In digital twins, only some of the behaviour will be
of relevance, i.e during activity and under stress.

Currently the web application is tailored to visualise the Torsion Bar Sus-
pension Rig. In the future, a more flexible visualisation setup is desired to
make transition between different digital twins simpler for both the user and
the developer. The visualisation should also be expanded to show deforma-
tion and stress in the form of colour change in the 3D model. The stress
could in addition be visualised by a S-N curve as part of Fatigue analysis,
however that would likely be separate from the current visualisation.

37

For digital twins equipped with accelerometers, a key feature to implement
would be Fast Fourier Transform. This enables frequency analysis of the
asset and can be used to detect structural changes. In addition it can be
used to verify the precision of the FE model.

38

7 Conclusion

Cloud-based solutions for digital twin modelling have been explored and an
environment has been established for developing a software solution. Re-
quirements have been specified for developing a cloud based digital twin
software solution. A prototype based on the torsion bar suspension rig has
been created showcasing and satisfying most of the major points of the re-
quirements. A user guide for how to setup each component of the prototype
is available for reproducing or referencing the current system. Steps have
been outlined for further iteration on this prototype to move towards a com-
plete digital twin cloud solution.

39

Appendices

A Torsion Bar Suspension Rig Manual

40

B Software Packages

B.1 Node Packages

• python-struct

• dgram

• express

• http

• socket.io

B.2 Python Modules

• struct

• socket

• vpmSolverRun

• vpmSolver

49

Sim
en N

orderud Jensen
B

uilding an extensible prototype for a cloud based digital tw
in platform

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ri
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Simen Norderud Jensen

Building an extensible prototype for a
cloud based digital twin platform

Master’s thesis in Engineering and ICT
Supervisor: Terje Rølvåg

June 2019

	Abstract
	Sammendrag
	Table of Contents
	List of Listings
	List of Figures
	Glossary
	Introduction
	Background and motivation
	Problem description
	Outline

	Background
	Digital Twins
	FMI and FMUs
	Cloud computing

	Method
	Technology Research
	Prototyping tools
	Development
	Documentation
	Generation of results

	Results
	Stability
	Latency
	Documentation
	Resulting solution

	Discussion
	Technology used
	Prototyping tools
	Cooperation with other master students
	Results
	Future work

	Summary
	Documentation
	Last years specialization project

