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Summary

This master thesis looks at how failure spreads across a network. A simple model for
failure and repair dynamics is implemented to simulate cascading failure. In it network
components are disturbed and can fail if they have failing neighbours. Failed nodes are
repaired with probability depending on the total repair capacity for the system.

The differential equation for the model has been analyzed using mean-field approxima-
tion and graphical analysis by Eran Reches (Reches, 2019). The analysis suggests some
critical parameter values that determine whether the system crashes or not. Simulations
are run to investigate if these parameter values have the same end-state in the stochastic
simulations.

Results from the stochastic simulations show that the analysis can predict the presence
of “good” and “bad” steady states in the system. Dividing time steps into smaller dt
also makes the simulations approach the predicted value for both these steady states and
threshold that divides them.

The results of simulations on different types of networks show that scale-free networks are
more vulnerable than random networks, and that regular grids are more robust to cascading
failure. These results are in keeping with previous studies.
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Sammendrag

Denne masteroppgaven ser på hvordan feil sprer seg gjennom et nettverk. En enkel mod-
ell for feil- og reparasjonsdynamikk blir implementert for å simulere feilspredning. I
modellen blir nettverkskomponenter forstyrret og kan ødelegges av å ha ødelagte naboer.
Sannsynligheten for at en ødelagt komponent blir reparert er avhengig av systemets totale
reparasjonskapasitet.

Differensialligningen for modellen har blitt analysert ved bruk av “mean-field approxima-
tion” og grafisk analyse av Eran Reches (Reches, 2019). Resultatene fra analysen indikerer
noen kritiske parameterverdier som kan avgjøre om systemet vil bryte sammen eller ikke.
Simuleringer blir kjørt for å undersøke om disse parameterverdiene gir samme utfall i de
stokastiske simuleringene.

Resultater fra de stokastiske simuleringene viser at analysen kan forutse forekomst av
“gode” og “dårlige” utfall i systemet. Ved å dele tidssteg i mindre deler dt går også simu-
leringsresultatene mot de verdiene for disse utfallene som ble forutsett av analysen.

Resultatene fra simuleringene på ulike typer nettverk viser at “scale-free networks” er
mer sårbare enn “random networks”, og at “grids” er mer robust mot kaskadefeil. Dette
stemmer overens med tidligere studier.
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1 | Introduction

In this chapter an introduction to the topic and scope of the thesis is given.

1.1 Background and Motivation

Network science is the study of complex network systems such as railroad networks,
power-grids, social networks and neural networks. Anything that can be represented as
a number of components or nodes with some connection, or link, between them can be
considered a network. An important area of research within the field has been aiming to
understand how something, be it a meme, a disease, or a power outage, spreads across a
network. Typically using some dynamic model of how the failure of a node or an edge
will affect the rest of the system, with specific interest in identifying what differentiates
the cases where the failure is contained from the cases of cascading failure.

Useful information about networks can be gained from investigating dynamic network fail-
ure models. An example is the simulation of the spread of the 2009 swine flu pandemic.
Using Monte Carlo simulations and a network of human mobility the scientists were able
to predict how the disease would spread (Balcan et al., 2009). Such knowledge of if, when
and where an infection will peak can be used to prevent diseases from spreading, for ex-
ample by identifying to whom vaccines should be distributed. Studies on the subject have
found that it is more effective to isolate large cities than to shut down strong travel edges
(Hufnagel et al., 2004). Similarly, simulations of power outages can be used to identify
weak spots in a power grid. After a major power grid failure in North America in 1996, a
new model for simulating such failures was developed, and led to better understanding of
how to reinforce the network (Kosterev et al., 1999).

This thesis presents a dynamic network failure model where components can fail if they
have a failed neighbour. Their chance of failure depends on the ratio of failed neighbours
to the total number of neighbours, and the sensitivity of the system. A repair rate is
introduced and aims to mimic the presence of a fixed number of repair crews. All the
crews are available to fix broken nodes, but if the number of broken nodes exceeds the
number of repair crews, the repair crews will be randomly distributed among the broken
nodes. The dynamics of the differential equation for the model has been analyzed by

1



Chapter 1. Introduction

Eran Reches. Using mean-field approximations and graphical analysis of the differential
equation he identified some critical value-combinations for the repair capacity and the
sensitivity of nodes (Reches, 2019). These parameter values can determine if the system
is able to stabilize on a functional level, or if a cascade happens.

1.2 Objectives

The aim of this thesis is to present and study a dynamic network failure model with a
repair rate. The model will be implemented and results from stochastic simulations will
be presented, discussed and compared with theoretical analyses of the dynamics.

Some questions that will be attempted answered are

• Do the theoretical analyses give a good approximation of the stochastic simula-
tions?.

• How can any potential differences between the stochastic simulations and the-
oretical analysis be explained?

• What are the features of our model?

1.3 Approach

A simulation of a dynamic model for failure cascades in networks is written in Python
utilizing the NetworkX package (Hagberg et al., 2008). The specific dynamics will be
presented in detail in chapter 3. Stochastic simulations will be run with different initial
conditions on different networks, and the results will be considered and compared with
the theoretical analysis.

The main result from the simulations will be the average number of failed nodes as a
function of time.

1.4 Structure of the Report

Chapter 1: Introduction gives an introduction to the topic and scope of the thesis.

Chapter 2: Theory gives a more thorough explanation of the subject of networks, cas-
cading failure and graphical analysis of differential equations.

Chapter 3: Methods gives a description of our model along with a summary of the anal-
ysis performed by Eran Reches (Reches, 2019). The implementation and how simulations
were run is described.

In Chapter 4: Results the results from the simulations is presented, and attempts are made
to locate fixed points for the simulations.

2



1.4 Structure of the Report

In Chapter 5: Discussion the model and the results from the simulations are discussed
and the questions stated in the introduction are attempted answered.

Chapter 6: Conclusion gives a short summary of the findings in this thesis.

3



Chapter 1. Introduction
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2 | Theory

In this chapter an introduction to network theory and graphical dynamics analysis is given.
Some definitions and terms that will be assumed familiar in the rest of the thesis is pre-
sented and explained. There will also be a presentation of some previous works on the
subject of cascading failures in networks.

2.1 Network Properties

In this section some basic terms used to describe networks are explained. The web-book
Network Science by Albert-László Barabási (Barabási, 2016) is the theoretical basis for
this section, and a more in-depth explanation of the topic can be found there. This section
is also based on the theory chapter of my project thesis (Jensen, 2018).

A network is a collection of components or nodes that are connected with edges or links.
A complex network (Figure 2.1c) is one that has an intricate topology, as opposed to for
example a complete graph (Figure 2.1b), where every node is connected to every node,
or a mesh-graph or grid (Figure 2.1a), where the nodes and edges form a regular lattice
pattern. Networks found in the real world are typically complex (Barabási and Albert,
1999; Strogatz, 2001), and some examples are neurons and synapses in a brain, power
grids, the internet, transportation networks or the World-Wide-Web.

(a) Grid. (b) Complete network. (c) Complex network.

Figure 2.1: Different types of networks.

The degree of a node in a network tells you how many neighbours it has—how many
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Chapter 2. Theory

nodes it has a direct link to. In a friendship-network the degree of a person-component
will be the number of friends it has. An often used descriptor of a network is its aver-
age degree, 〈k〉. In the literature, different network topologies are typically described by
their degree distribution, meaning the probability distribution of node degrees over the
whole network. Figures 2.2, 2.3 and 2.4 show different networks along with their degree
distributions.

Two nodes are connected if there is a path between them, and a network is connected if
there is a path from every node to every node. Notice that a path does not have to be direct,
like an edge or link, but can go via other nodes. The network in Figure 2.3 is disconnected,
where 4 nodes have a degree of zero, these have no connection to the giant component
that makes up the rest of the network.

The diameter of a network is the longest shortest path between any two nodes. In a
complete network, like the one in Figure 2.1b, the diameter is one since there is a direct
link from every node to every node. The network in Figure 2.3 has an infinite diameter
since it is disconnected, but the diameter of the giant component is 6.

One characteristic of most real-world networks is that they are sparse, meaning that if two
random nodes are selected, the probability of an edge between them is low. They also
tend to have relatively small diameters compared to the number of nodes and edges. This
is known as the small-world phenomenon, referring to the Small World experiment by
Stanley Milgram (Milgram, 1967). In this famous experiment letters containing a target
person were sent to different residents in the U.S. Instructions were given to forward it
to a person they knew that was more likely to know the target. The average path length
for the letters that actually made it to the target was between 5 and 6, indicating a short
path between nodes in the social network of the U.S.—it’s a small world! The small-world
property is typically defined as 〈d〉 ∝ 〈k〉

N .

The small-world property can be explained by the presence of cliques and hubs in the
networks (Barabási and Albert, 1999; Strogatz, 2001). Cliques are sub-networks where
almost every node has a link between them. Hubs are nodes with very high degree, far
beyond the average degree of the system. In a social network a clique would be a school
class or a work place, and a hub would be a celebrity or a politician.

2.1.1 Different Types of Networks

A very basic type of network is the regular grid where every node has the same degree,
except the nodes on the edge of the network. Figure 2.2 shows a grid network of 100
nodes along with its degree distribution. A grid network has a very homogeneous degree
distribution—almost all nodes have the same degree and the standard deviation is very
small. Grids do not have the small-world property.

Another type of network that will be used a lot in this thesis is the random network. It is
generated by giving some probability that each pair of nodes are neighbours. The resulting
network does not have hubs, but it does have a high amount of cliques, which gives it
the small-world property. Like the grids, the random networks have quite homogeneous

6



2.1 Network Properties

Figure 2.2: A grid of 100 nodes and 180 edges along with its degree distribution. This network has
a diameter of 18. Nodes are sized relative to their degree.

Figure 2.3: A random network of 100 nodes and 216 edges along with its degree distribution. This
network has an infinite diameter as it is disconnected. Its giant component has a diameter of 6.
Nodes are sized relative to their degree.

7



Chapter 2. Theory

degree distribution, namely a binomial distribution. An example of a random network
along with its degree distribution can be seen in Figure 2.3.

As it turns out, random networks and grids are seldom seen in real-world network systems,
where the degree distribution typically more resembles a power-law. These networks are
called scale-free networks and are often referred to as having a heterogeneous degree
distribution—where most nodes are far from the average degree. Both cliques and hubs
are present in these networks, typically giving them even shorter diameters than random
networks. An example can be seen along with its degree distribution in Figure 2.4.

Figure 2.4: A scale-free network of 100 nodes and 196 edges along with its degree distribution.
This network has a diameter of 5. Nodes are sized relative to their degree.

2.2 Cascading Failures in Networks

In this section network failure is considered and the difference between static and dynamic
failure is explained. A closer look will be taken at two dynamic models for cascading
failures in networks. Parts of this section are taken from my project thesis on the same
topic (Jensen, 2018).

As briefly mentioned in the introduction, one way to view network robustness is to look at
static properties of the networks, and consider how different network architectures handle
the failure of a random subset of nodes. The World-Wide-Web is an example of a network
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2.2 Cascading Failures in Networks

(a) Network with hubs.
(b) The green hub fails, and the network is frag-
mented into bits.

Figure 2.5: Networks with hubs (a) are vulnerable to attack on the nodes. In (b) the effect of failure
of the green hub is illustrated. The network is fragmented into 20 separate parts. The blue nodes are
single nodes that will be completely separated from the network. The cyan and magenta nodes are
small networks that will also be separate. The red nodes represent the remaining giant component
which is now less than half the size of the original network.

where these studies would be applicable. There is no dynamic load redistribution when a
web-page is removed, it only affects the links to and from the page, as well as the page
itself. The question to answer has typically been how many random nodes can be removed
before the network is fragmented into disconnected components, or before there are pages
on the web that are no longer reachable from anywhere (see Figure 2.5).

These studies have yielded the result that the typical real-world networks are very robust
to random node failure. This is because most nodes and edges are not essential for the
connectedness of the network and the chances of selecting a hub randomly is negligible.
They are however more vulnerable to deliberate attacks on the hubs, as their failure may
greatly increase average travel distances in the network or even disconnect it as seen in
Figure 2.5 (Albert et al., 2000). Random networks are less resilient against random failures
compared to scale-free networks, but it is also impossible to find especially vulnerable
nodes to attack (Erdos and Renyi, 1959).

The model that is investigated in this thesis simulates how the random failure of a node
can spread through the network, potentially causing a cascade of failure through the net-
work. This type of model is applicable when the removal of nodes or links in the network
creates a disturbance of the remaining nodes and edges, potentially causing new nodes to
fail. This could be the case for example in a power-transmission grid where power-load
is redistributed across the grid in the case of failure. Or the internet where routers trans-
mit information, and failures may cause congestion in neighbouring nodes. This type of
dynamic network failure model has been studied previously, and the results have shown
the extreme vulnerability of networks with hubs when spreading to neighbouring nodes is
made possible (Motter and Lai, 2002; Crucitti et al., 2004; Strogatz, 2001; Schläpfer and
Shapiro, 2009).

9



Chapter 2. Theory

The paper Cascade-based attacks on complex networks by Adilson E. Motter and Ying-
Cheng Lai from 2002 presents a model for dynamic network failure. At each time step one
load unit is transmitted from every node to every node through the shortest path between
them. Each node has a capacity proportional to its starting load. In the simulation one
random node fails, and all the shortest paths that pass through that node has to be re-
routed through new shortest paths in the network. Any nodes in the new shortest-paths
gets an increase of load, and if their capacity is surpassed they fail, leading to new load
redistributions and possibly new node failures.

With this model, the failure will either be contained in a new state of equilibrium as the
load is redistributed to nodes that can handle it, or it will cause a cascade of failure through
the network. As would be expected, hubs are vulnerable, as they likely have many short-
est paths that go through them. The researches found that even when the node capacity
was set to twice the initial load, an attack on a hub would lead to a 20 % reduction of the
network. When simulations were initiated by the failure of a random node, the network
reduction was insignificant. They concluded that real-world networks have evolved natu-
rally to be robust to random failure, but that when failure spreading is possible, they are
extremely vulnerable to attack on even a single important node, potentially causing not
only a fragmentation of the network (as may be the case in static models), but a complete
failure.

Another model for dynamic network failure is the Susceptible-Infected (SI) Network
Model used in epidemic modeling (Barabási, 2016). In a population of N individuals
a new disease is about to break out. Initially one individual is infected (I) and all the others
are susceptible (S). At each time step, every infected node has a chance of transmitting the
disease to anyone it comes in contact with (it’s neighbouring nodes).

In the SI model the disease will reach all nodes at some point, so any protective features
of the topology of the network will only affect how quickly this happens. Again the hubs
play an important role, but in addition to them being “super-spreaders” as in the previous
model, they are also much more susceptible than other nodes—they are much more likely
to be neighbours with an infected node. So in this model, it makes little matter if the
infection (or failure) starts in a low- or high-degree node, as a hub will be reached within
a few steps either way. The deciding factor for the speed of spreading is the network
topology, with the presence of hubs showing detrimental effects on the failure rate. This
effect is different from some other network failure models, where hubs can be protective
factors—at least when they are not specifically targeted initially.

The SI model is sometimes expanded to include a recovery rate, which recovers infected
individuals either back to a state of susceptible (S), or to a new state of recovered (R)
and no longer susceptible. These expansions are known as the SIS and SIR models re-
spectively. In the SI model all individuals will be infected eventually, but by introducing
the possibility of recovery in the SIS model, there are two possible outcomes of a disease
breakout. The recovery rate may be large enough to outperform the infection rate and then
result in a disease free end state. Alternatively, the recovery rate is not large enough, and
the disease spreading will be similar to that of the SI-model. The difference is that instead
of ending at all infected nodes, it ends at some steady-state fraction of the population in-

10



2.3 Graphical Analysis of Differential Equations

fected where there is equilibrium between the number of infected and cured individuals.
With the introduction of the new state of recovered (R) (and no longer susceptible), the
only possible end state is that all individuals have recovered. The question to answer then
becomes how many individuals the infection gets to before it dies out.

2.3 Graphical Analysis of Differential Equations

This section contains a brief presentation of the necessary background to understand the
theoretical analysis of the model. The theoretical basis of this section is chapters 2 and
3 in the book Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering by Steven H. Strogatz (Strogatz, 2015).

Figure 2.6: Plot of x vs. dx
dt

for dx
dt

= sinx. Flow is towards the stable fixed points in red and away
from the unstable fixed points in blue.

Some non-linear differential equations are difficult or even impossible to solve analytically.
In addition, the analytical solution, if it exists, can be difficult to interpret. These equations
can be analyzed by using a more graphical approach. Start with a first-order differential
equation, ẋ = f(x), and plot ẋ versus x. The resulting graph can be used to sketch a
vector field on the x-axis; where ẋ is positive the flow is to the right, and where it is
negative the flow is to the left. When ẋ = 0 there is a fixed point that is stable if the
flow on both sides are towards it, or unstable if the flow is away from it. Figure 2.6
shows a graphical analysis of dx

dt = sinx. Even though this sketch gives little quantitative
information between the fixed points, the direction of the flow is easily extracted and is
showed by the arrows. The red dots represent stable fixed points at xstable = ±π and
unstable fixed points at xunstable = 0 and xunstable = ±2π.

On the fixed points there is no flow in either direction, and the stable fixed points represent

11



Chapter 2. Theory

steady-state values for the system. But in real systems that are being modeled by a differ-
ential equation, the flow will never exactly hit an unstable fixed point. Instead, it functions
as a threshold, for example between two stable fixed points. In the case of cascading fail-
ures in a network, there may be a stable fixed point at no failed nodes and all failed nodes,
and between them there will be an unstable fixed point. This point will then function as
a threshold—exceed it and the failure will cascade into total system failure—stay below
it, and the system will move towards the “good” stable fixed point where everything is in
working order.

(a) The parameter a is positive
and there are no fixed points.
The flow is to the right.

(b) The parameter a is zero and
there is a half stable fixed point
at the origin. The flow is still
all to the right.

(c) The parameter a is negative
and there are two fixed points.
One stable at x < 0 and one
unstable at x > 0.

Figure 2.7: Bifurcation in dx
dt

= x2 + a as the parameter a is lowered.

Half stable fixed points also exist, and can show up when bifurcation happens. A bifurca-
tion is when a parameter in the differential equation is adjusted so that there is a qualitative
change in the dynamics of the system. For example if a fixed point is created or destroyed
or changes its stability. Figure 2.7 shows a graphical analysis of the differential equation
ẋ = x2 + a. Initially the parameter a is positive, and there are no fixed points. When a
is lowered until the graph of ẋ touches the x-axis, a half-stable fixed point is created. Fur-
ther lowering a yields two fixed points (one stable, one unstable) where before there were
none. Changing a below the point where the bifurcation occurs has completely altered the
behavior of the system. This point is sometimes refered to as the bifurcation point or
bifurcation value.

Identifying values of the parameters that result in bifurcations can show the possible qual-
itatively different ways the system can act, and can be used to draw up a phase space dia-
gram. An example of this can be seen in Figure 3.7 where the different value-combinations
of the parameters α and g̃ determine what qualitative behavior the system will have. If
α = 2 and g̃ = 0.2 the system has four fixed points. Two unstable ones, US, and two
stable ones, S.

12



3 | Methods

In this chapter our model for cascading failure is described. A summary of the mathe-
matical analysis of the model that Eran Reches did is given (Reches, 2019). Then the
implementation of the model and the simulations is described in detail.

3.1 The Model - A Generalized SIS Model

In this model failure spreads across a network with N nodes. Each node xi can be func-
tioning, having a value of xi = 0, or failed having a value of xi = 1. If two nodes xi and
xj are neighbours, then Aij = 1, otherwise Aij = 0.

On each time step every working node will have some chance of failure and each failed
node will have some chance of being repaired. These probabilities are given by:

P(failure) =

(∑N
j=1 xjAij∑N
j=1Aij

) 1
α

, (3.1)

where α will be referred to as the sensitivity of the system, and

P(repair) =
g

1 +Nx
. (3.2)

where g represents the repair capacity of the system. The x can be viewed as the relative
fraction of infected nodes or the average response of the network given by:

x =
1

N

N∑
j=1

xj .

The model will be referred to either just as our model or a generalized SIS model.

13



Chapter 3. Methods

3.2 Theoretical Analysis - The Phase Space

This section is a summary of the analyses that were performed by Eran Reches (Reches,
2019).

The model as presented in section 3.1 can be written as a continuous differential equa-
tion:

dxi
dt

= − g

1 +Nx︸ ︷︷ ︸
repairing term

xi + (1− xi)

(∑N
j=1 xjAij∑N
j=1Aij

) 1
α

︸ ︷︷ ︸
failure term

.

Here each node xi has a value ranging from 0 to 1, functional and failed respectively. N
is the number of nodes in the network, x = 1

N

∑N
j=1 xj is the average response of the

network (the fraction of failed nodes), α is the sensitivity measure, and g is the repair
capacity.

When studying stochastic models with a large number of individual components that inter-
act, mean field approximations are a useful tool to simplify the model. Instead of having
to deal with each individual component, an assumption is made that the component values
can be approximated to the system average. Using mean-field dynamics the equation is
simplified by setting the xi to their average value x. The resulting differential equation
describes the average behavior of the model as follows:

dx

dt
= − gx

1 +Nx︸ ︷︷ ︸
h1(x)

+(1− x)x 1
α︸ ︷︷ ︸

h2(x)

. (3.3)

A fixed point can be found wherever dx
dt = 0, which is where h1(x) = h2(x). There will

be flow to the right when h1(x) < h2(x) and flow to the left when h1(x) > h2(x).

Figure 3.1: α = 0.25, g = 0.25 and N = 1. One “good” stable fixed point at x = 0.
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3.2 Theoretical Analysis - The Phase Space

Figure 3.2: α = 0.33, g = 0.25 and N = 1. One “good” stable fixed point at x = 0, and one
half-stable fixed point at x ≈ 0.7.

Figure 3.3: α = 0.45, g = 0.25 and N = 1. One “good” stable fixed point at x = 0, one unstable
fixed point at x ≈ 0.35, and one “bad” stable fixed point at x ≈ 0.8.

Figures 3.1, 3.2 and 3.3 shows the different fixed points that can show up when α < 1. The
shaded area marks the x-values that are possible in our model. In Figure 3.1 the sensitivity
is so low that the only fixed point is the “good” stable fixed point (red) at x = 0 (no failed
nodes) and all flow is to the left. In Figure 3.2 a bifurcation happens. Figure 3.3 shows
the resulting “bad” stable fixed point in red and the unstable fixed point that functions as a
threshold for the flow in blue.

Figures 3.4, 3.5a and 3.6a show the qualitatively different states when α > 1. In Figure 3.4
the repair rate is so low that the only stable fixed point is the “bad” one near total system
failure. As repair capacity is increased, two new fixed points show up. One unstable at
around x = 0.1, and one stable close to the origin can be seen better in Figure 3.5b.

As repair capacity is further increased like in Figure 3.6a, another bifurcation makes the
“bad” stable fixed point and the threshold disappear. Now only the “good” stable point
close to the origin remains along with the unstable point at x = 0 (Figure 3.6b).

These different possible outcomes are summarized in the phase space shown in Figure 3.7.
This Figure is from Eran Reches’ unpublised analysis Generalized SI Model: Including
Sensitivity (Reches, 2019). There is always a fixed point at the origin, and it is marked in
red. The parameter g̃ = g

N is used instead of g to limit it between 0 and 1.
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Chapter 3. Methods

Figure 3.4: α = 2, g = 5, N = 100. One unstable fixed point at x = 0, and one “bad” stable fixed
point at x ≈ 0.95.

(a) Four fixed points. (b) Zoom in at origin.

Figure 3.5: α = 2, g = 30, and N = 100. One unstable fixed point at x = 0, one “good” stable
fixed point at x ≈ 0, one unstable fixed point at x ≈ 0.1, and one “bad” stable fixed point at x ≈ 0.6.

(a) Two fixed points. (b) Zoom in at origin.

Figure 3.6: α = 2, g = 50, and N = 100. One unstable fixed point at x = 0, and one “good”
stable fixed point at x ≈ 0.
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3.3 Probing the Phase Space

Figure 3.7: Phase space. Figure from the unpublished analysis of Eran Reches (Reches, 2019).

3.3 Probing the Phase Space

The following procedure will be repeated for different values of the sensitivity α and the
repair capacity g̃ to look for different fixed points.

• Set initial values for N , α, g̃.
• Values are chosen for x ranging from 0 to 1 step-wise.
• Simulations are run for all the different values of x until they reach a steady state.
• The different steady states are recorded.
• The x are plotted against time to identify thresholds.

Steady states represent stable fixed points in the phase space. Thresholds represent unsta-
ble fixed points. Some of the points may be impossible to find in the simulations, such
as the unstable fixed point at zero for α > 1. Mainly the stable fixed points referred to
as the “good” and the “bad”, along with the threshold between them will be attempted
found. The “good” stable fixed point refers to the stable fixed point at x = 0 or at x ≈ 0.
The “bad” stable fixed point refers to the stable fixed point where most of the network has
failed.

To simulate continuous time, many of the simulations will also be run with the time steps
divided into smaller dt. The failure chance and repair chance in equations 3.1 and 3.2 will

17



Chapter 3. Methods

then be calculated by multiplying with dt as follows:

P(failure) =

(∑N
j=1 xjAij∑N
j=1Aij

) 1
α

· dt, (3.4)

and

P(repair) =
g

1 +Nx
· dt. (3.5)

3.4 Resources

The simulation of the model is written in Python and run on networks generated using
NetworkX. NetworkX is a Python package for creation and analysis of complex networks
(Hagberg et al., 2008).

All figures of networks in this thesis are made using networks generated in NetworkX, and
drawn using the Python library Matplotlib (Hunter, 2007).

3.5 Implementation

3.5.1 Network Generation

When networks are generated a built-in function in NetworkX is used. For random net-
works, especially those of lower average degree, there is no guarantee that the networks
generated are connected. This can cause problems in the simulations, since a failure initi-
ated in a disconnected component will never reach the whole network. To avoid this pos-
sible source of error only the giant component is kept after the network is generated. This
will increase the average degree of the network somewhat, since nodes are removed, but
not edges. Algorithm 1 shows the pseudo code of how networks were generated.

The create_network function takes as input:

• N: the number of nodes in the network.
• degree: the average degree in the network.

The function outputs:

• G: the network the simulation is to be run on.
• N: the number of nodes in the network.

18



3.5 Implementation

Algorithm 1: Pseudo code for network generation.

3.5.2 Simulations

Algorithm 2 shows the pseudo code of a single simulation on a network. Algorithm 3
shows how many simulations were run in order to look at averages.

The simulation function takes as input:

• G: the network the simulation is to be run on.
• N: the number of nodes in the network.
• g: the parameter g in equation 3.2.
• alpha: the parameter α in equation 3.1.
• start_nodes: a list of nodes that are failed at the beginning of the simulation.
• time_steps: how many time steps the simulation should run for.
• dt: how time steps are divided.

The function outputs:

• x: a list that has recorded the fraction of failed nodes at each dt.

The functions calculate_fail_chance and calculate_repair_chance uses the probabilities
stated in equations 3.4 and 3.5 respectively.

The many_simulations function takes as input:

• N: the number of nodes in the network.
• avg_deg: the average degree in the network.
• alpha: the parameter α in equation 3.1.
• g_tilde: used to calculate the parameter g in equation 3.2. g = g̃N
• x: the fraction of failed nodes at the beginning of each simulation.
• time_steps: how many time steps the simulation should run for.
• dt: how time steps are divided.
• realizations: how many different networks the simulation is to be run on.
• triggers: how many simulations are to be run on each network.

The function outputs:

• mean_results: the mean of the outputs from simulation.
• std_results: the standard deviation of the outputs from simulation.
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Algorithm 2: Pseudo code for a simulation.
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3.5 Implementation

Algorithm 3: Pseudo code for many simulations.
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4 | Results

In this chapter the results from the simulations are presented. Some explanation and at-
tempts at locating fixed points is done, but more thorough discussion of what the results
mean is done in chapter 5.

4.1 About the Visualisations

In this thesis two different color schemes are used. In the first color scheme the color red is
used to indicate stable fixed points and steady-states. Blue is used for unstable fixed points
and thresholds. The color coding of simulation results are meant to give an indication to
the fraction of simulations that went to which stable fixed point. If all simulations went to
the same point, the line will be red. If 50 % went up and 50 % down, the line will be blue,
then other fractions are something in between. In the second color scheme the color green
is used together with red to plot simulation results and the color coding of fraction to the
same state no longer applies.

Unless otherwise states all simulation results are averages over 5 triggers on 5 network
realizations. This number was chosen because of limited computational power, but also

(a) Three fixed points. (b) Zoom in at origin.

Figure 4.1: α = 0.5, g = 1000 and N = 10000.
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because simulation results showed quite small variations. The standard deviation is plotted
as a shaded area around the graphs to show this. Only simulations initiated at x close to a
threshold value show large standard deviations. And this is because simulations ended up
at different steady state values.

All simulations are done on networks with approximately 10 000 nodes. The networks
have an average degree of 4, except for the cases when average degree is looked closer at
in sections 4.3 and 5.5. All simulations are done on random networks, except the results
from section 4.5, where grids and scale-free networks are used.

4.2 Low Sensitivity (α = 0.5)

This section looks at simulations done with α = 0.5 on random networks of N ≈ 10000
nodes.

4.2.1 Low Repair Capacity (g̃ = 0.1)

From the phase space presented in section 3.2 in Figure 3.7 the fixed points predicted by
analysis can be found. A 10 000 node network with g̃ = 0.1 and α = 0.5 is expected to
have a “good” stable fixed point at the origin and another “bad” stable fixed point near the
total failure of the system. Between them is an unstable fixed point. h1(x) and h2(x) from
equation 3.3 for this case is plotted in Figure 4.1. The unstable fixed point is at x ≈ 0.42
and the stable fixed point is at x ≈ 0.87. Figure 4.1b is zoomed in on the origin to show

α = 0.5, g̃ = 0.1

Figure 4.2: Simulations with dt = 1. Shaded area show standard deviation.
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that the two lines of h1(x) and h2(x) do in fact intersect at zero, which results in the stable
fixed point there.

Figure 4.2 shows results from simulations run on random networks of 10 000 nodes, av-
erage degree 4, α = 0.5, g̃ = 0.1 and dt = 1. The initial values of x are from 0.05 to
1.0 with increments of 0.05. The values of the fixed points predicted by the analysis are
marked with stipled lines. The results from these simulations indicate that the “bad” stable

α = 0.5, g̃ = 0.1

Figure 4.3: Simulations with dt = 0.5. Shaded area show standard deviation.

α = 0.5, g̃ = 0.1

Figure 4.4: Simulations with dt = 0.1. Shaded area show standard deviation.
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fixed point is around x ≈ 0.8, and the unstable fixed point is somewhere in the interval
x = (0.45, 0.55).

The same simulations were run again with dt = 0.5. Figure 4.3 shows the results. The
“bad” stable fixed point is still at around x ≈ 0.8. The interval where the unstable fixed
point is located is somewhat narrower here. All simulations initiated at x = 0.5 went up
too the “bad” stable fixed point, and all simulations started at x = 0.45 went down to the
“good” stable fixed point. This indicates that the unstable fixed point is somewhere in the
interval x = (0.45, 0.50).

A further decrease of dt was attempted. Figure 4.4 show results from simulations where
dt = 0.1. Now the unstable fixed point is likely located in the interval x = (0.40, 0.50),
as simulations started at x = 0.45 were the only ones that split both ways.

4.2.2 Locating the Unstable Fixed Point

In order to more finely locate the unstable fixed point, or the threshold x-value, more
simulations were run started near the probable locations found in the preceding subsection
4.2.1.

Figure 4.5 show simulations where dt = 1 and x ranges from 0.45 to 0.54 with increments
of 0.01. Two of the initial x-values showed a split in their steady-state value: x = 0.50
and x = 0.51. 44 % of the simulations started at x = 0.51 went to the “good” stable fixed
point, and 56 % went up to the “bad”, making x ≈ 0.51 a strong contender for the location
of the unstable fixed point.

Results from simulations for dt = 0.5 is shown in Figure 4.6. x ranges from 0.45 to 0.49

α = 0.5, g̃ = 0.1

Figure 4.5: Simulations with dt = 1. x ranges from 0.45 to 0.54.
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α = 0.5, g̃ = 0.1

Figure 4.6: Simulations with dt = 0.5. x ranges from 0.45 to 0.49.

with increments of 0.01. The threshold seems to be located somewhere close to x ≈ 0.47,
where 68 % of simulations went to the “good” stable fixed point and 32 % went to the
“bad” stable fixed point.

Results from simulations for dt = 0.1 is shown in Figure 4.7. x ranges from 0.42 to 0.47
with increments of 0.01. The threshold seems to be located somewhere close to x ≈ 0.45
and x ≈ 0.44. Simulations started at these values had 68 % and 32 % end up in the “good”

α = 0.5, g̃ = 0.1

Figure 4.7: Simulations with dt = 0.1. x ranges from 0.42 to 0.49.
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state, respectively.

Having taken a closer look at the threshold x-values for different dt, there is no longer
any overlap between the likely locations. What is seen instead is that the x-value of the
threshold seems to approach the predicted unstable fixed point as dt gets smaller. Why
this happens is discussed in section 5.3. Why simulations at higher dt have a tendency to
“jump” down and not up is also discussed.

4.2.3 Locating the “Bad” Stable Fixed Point

Continuing to look at the case of α = 0.5, g̃ = 0.1 on random networks of 10 000 nodes,
an attempt is made to find the x-value of the “bad” stable fixed point.

Figure 4.8 shows simulations started at x = 0.8 that all went to the “bad” steady state. As
dt is decreased, the stabilisation seems to happen closer and closer to the predicted stable
fixed point. For dt = 1 the value seems to be x ≈ 0.82, increasing as dt is decreased up
to x ≈ 0.83 for dt = 0.1.

As with the locating of the unstable fixed point in section 4.2.2, the simulations show a
tendency to get closer to the predicted x-value as dt is decreased. Further discussion on
can be found in section 5.3.

α = 0.5, g̃ = 0.1

Figure 4.8: dt varies. x = 0.8.

4.2.4 Increasing the Repair Capacity (g̃ > 0.1)

Still considering α = 0.5 on 10 000 node random networks, the value of g̃ is increased
to 0.15. In the phase space in Figure 3.7 this is close to the bifurcation where the “bad”
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stable fixed point disappears, making the dynamics more similar to the SI-model where all
simulations go to the “good” stable fixed point at zero. Figure 4.9 shows the prediction for
this case, where there is one stable fixed point at the origin, and one half-stable fixed point
around x ≈ 0.67. Because this second fixed point is half stable, all flow is down towards
the “good” stable fixed point.

Figure 4.9: α = 0.5, g = 1500, N = 10000. One “good” stable fixed point at x = 0, and one
half-stable fixed point at x ≈ 0.65

Figure 4.10 shows results from simulations run on random networks of 10 000 nodes,
average degree 4, α = 0.5, g̃ = 0.15 and dt = 0.1. The initial values of x are from 0.05 to
1.0 with increments of 0.05. The results from these simulations indicate exactly what was
predicted by the analysis: the “bad” stable fixed point has vanished, and all simulations go
down to x = 0.

The general tendency of simulations to “jump” down and not up is also present when the
bifurcation point is to be located. Figure 4.11 shows simulations started with α = 0.5,

α = 0.5, g̃ = 0.15

Figure 4.10: Simulations with dt = 0.1. Shaded area show standard deviation.
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g̃ = 0.13 and dt = 1. The analysis predicts the prescense of a “bad” stable fixed point
here, but with bigger dt, the value of g̃ can be lower than the predicted value of 0.15, and
still have all simulations go down to x = 0. The bifurcation when the “bad” stable fixed
point vanishes happens at lower value of g̃. This is discussed further in section 5.3.

α = 0.5, g̃ = 0.13

Figure 4.11: Simulations with dt = 1. dt is too big to locate the “bad” stable fixed point. Shaded
area show standard deviation.

α = 0.5, g̃ = 0.1

Figure 4.12: Networks of average degree 8 and 12. dt = 1.
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4.3 Changing Average Degree

Some simulations were run on networks with different degrees. Figure 4.12 show results
from simulations on 10 000 node networks with α = 0.5, g̃ = 0.1 and networks of
average degree of 8 and 12. The simulations were started at initial x-values from 0.2 to
1 with increments of 0.2. There is a small tendency for the simulations on lower average
degree networks to take longer to reach the steady states. Also a bigger fraction of the
simulations on average degree 8 seem to go down to the “good” stable fixed point than
those of average degree 12. Some thoughts on why this happens can be found in section
5.5.

4.4 High Sensitivity (α = 2)

The phase space from the analysis can be seen in section 3.2 in Figure 3.7. A 10 000 node
network with g̃ = 0.2 and α = 2 is expected to have four fixed points. Figure 4.13a shows
a plot of h1(x) and h2(x) from equation 3.3 for these values. Only three of the fixed points
are visible, because the unstable fixed point at x = 0 is so close to the “good” stable fixed
point at x ≈ 0. How these fixed points near the origin come to be is visualized better in the
analysis section 3.2 in Figure 3.5b. For the practical purposes of the simulation it is not
that important, since these fixed points are not possible to locate with the computational
power available for this thesis.

The unstable fixed point is at x ≈ 0.05 and the “bad” stable fixed point is at x ≈ 0.78.
Further increasing the repair capacity to g̃ = 0.3 is seen in Figure 4.13b. This moves the
threshold up to x ≈ 0.12 and the “bad” point down to x ≈ 0.62.

Simulation results with g̃ = 0.2, α = 2 and dt = 0.1 are shown in Figure 4.14. The
“bad” steady state seems to be at around x = 0.75, and the unstable fixed point at x-values
between 0.15 and 0.2.

(a) g̃ = 0.2. (b) g̃ = 0.3.

Figure 4.13: α = 2, N = 10000. Four fixed points. “Bad” stable fixed point and unstable fixed
point move closer together as g̃ is increased.
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α = 2, g̃ = 0.2

Figure 4.14: Simulations with dt = 0.1. Shaded area show standard deviation.

α = 2, g̃ = 0.3

Figure 4.15: Simulations with dt = 0.1. “Bad” stable fixed point is not found. Shaded area show
standard deviation.

Simulation results with g̃ = 0.3 and dt = 0.1 are shown in Figure 4.15. According to
the analysis, this scenario will have a “bad” steady state around x = 0.62 (see Figure
4.13b), but all simulations went down to the “good” steady state at x = 0. An attempt
was made at studying this further by running simulations with dt = 0.01. This is at the
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α = 2, g̃ = 0.3

Figure 4.16: Simulations with dt = 0.01. With very small dt, the “bad” stable fixed point shows
up, but at lower x-value than predicted. Shaded area show standard deviation.

limit of the computational power available for this thesis, so only 1 trigger was run on 2
realizations for each initial x-value. The results can be seen in Figure 4.16. Even with so
few simulations it is clear that some stable fixed point has appeared around x = 0.45, with
an unstable threshold close to x ≈ 0.4. A discussion of this tendency for the simulations
to “jump” down to the “good” final state can be found in section 5.3.

4.5 Other Networks

Simulations were also run on scale-free networks of 10 000 nodes with α = 0.5, g̃ =
0.1, and dt = 0.1. Simulations were started with x-values ranging from 0.05 to 1 with
increments of 0.05. The results are shown in Figure 4.17. All simulations seem to do a big
failure “jump” in the first time-step. This tendency is discussed in section 5.4. Ignoring
the jump, the simulations look quite similar to the same simulations on random networks
seen in Figure 4.4, but with the likely threshold x-value a little higher.

Simulations were also run on grids of 10 000 nodes with α = 0.5, g̃ = 0.1, and dt = 0.1.
Simulations were started with x-values ranging from 0.05 to 1 with increments of 0.05.
The results are shown in Figure 4.18. These results look very different from all the other
simulations done on both random and scale-free networks. The simulations would have to
be run for longer to make sure, but there is a possibility that there is no “bad” stable fixed
point, and that all simulations slowly decrease their fraction of infected nodes down to
zero. Alternatively, the “bad” stable fixed point is there, but with the unstable fixed point
very close to it, making it hard to reach the “bad” state.
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α = 0.5, g̃ = 0.1

Figure 4.17: Simulations on scale-free networks with dt = 0.1.

α = 0.5, g̃ = 0.1

Figure 4.18: Simulations on grids with dt = 0.1
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5 | Discussion

In this chapter the model itself, and the results from the simulations are discussed. An
attempt is made to answer the questions stated in the introduction in section 1.2.

5.1 Features of our Model

Like with the SIS/SIR models for epidemiology, there is no accumulation of load in our
model. Nodes only fail if they have one or more failed neighbours and the failure is
independent on whether its neighbour was the first to fail or not. In practice this means
that the weight of, or disturbance from, a failed component is only picked up by its closest
neighbours, and is not redistributed across the whole network, as was the case with the
model from the 2002 paper by Adilson E. Motter and Ying Cheng Lai (see section section
2.2). This feature might not translate well to the kinds of real-world situations where
redistribution of load is an essential part of node failure like routers failing on the internet
or power stations failing in the power grid. Our model instead considers how nodes are
disturbed simply by having failing neighbours, which will be the case for example for
sickness spreading and weeds.

The failure term of our model (equation 3.1) is similar to the SI-model which was pre-
sented in section 2.2 where failure can only spread to neighbours of failed nodes. One
important difference is that nodes in our model are protected in proportion to their degree.
So while hub nodes will be neighbour to a failed node quickly, making them vulnerable,
they are still protected by their large number of neighbours. Our model also has the sensi-
tivity parameter α which can amplify or dampen the failure chances of nodes.

The repairing term in our model (Equation 3.2) simulates a fixed number of repairing
units limited by the repair capacity g. All the repairing units are available to fix broken
nodes, but as more and more nodes fail, x→ 1 and the function g

1+Nx saturates on g
N and

approximately g nodes can be repaired on each step. In a real-world system, this could
be the case if there are a number of available repair crews on stand-by, ready to step in as
components fail, but left to play catch-up if the system crash is too big. The repair chance
is equal for all nodes—any failed node has exactly the same chance of being repaired. The
failure rate does not share this property. Only nodes that are in the frontier of the failure
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can fail, and any node with all neighbours failed will fail on the next time step. And while
this is not true when time-steps is divided into dt, it is still true on average.

5.2 The “Jump” of the First Time-Step - A Weakness of
the Simulations

Many of the simulations show a failure bump on the first time step, as can be seen in Figure
4.2. Figure 5.3 also shows that there is something about the first time step that makes more
nodes fail. This is a weakness of the simulations, and it is likely caused by the fact that
the nodes that are failed initially are random, while the failure-mechanism is not random.
This means that initially there will be more nodes that are particularly vulnerable than if
the simulation had reached the same fraction of failed nodes x naturally. This hypothesis is
strengthened by the fact that this jump is much bigger on the simulations on the scale-free
networks (see Figure 4.17) where a bigger fraction of the nodes have a low degree and are
extra vulnerable.

When the fraction of initial failed nodes x is set for the simulation. The first x ·N nodes
in the network of N nodes are selected. The way random and scale-free networks are
generated, this results in a random selection of nodes in the networks. For grids however,
the first x ·N nodes in the network are all neighbours. This means that the failure frontier
will be unnaturally small, and fewer than predicted nodes will fail, resulting in a repairing
bump instead as seen in Figure 4.18.

This “jump” on the first time-step is a weakness of the simulations, and though somewhat
reduced when dt is decreased, it can still be seen for example in Figure 4.4 where dt =
0.1.

5.3 The Difference dt Makes

The simulations in this thesis are done in a step-wise fashion, meaning that first all nodes
eligible for failure are tested, and some fraction of them fail, then all nodes eligible for
repair are tested, and some fraction of them are repaired. After this the value of x is
recorded, and the simulation goes back to step one. The fluctuations caused by this step-
wise process is what the smaller dt are meant to counter-act.

Figure 5.1 shows the effect smaller dt have on the repair rate (Equation 3.2) in green and
the failure rate (Equation 3.1) in red. What is found is that the repair is not significantly
affected by the value of dt. If g̃ = 0.1 one tenth of the network will be repaired each
full time-step, and the network will be completely repaired in ten time-steps. The failure
rate, however, is affected by the introduction of dt. As dt is decreased, the failure rate
steepens for middle range values of x. The number of time-steps until complete failure is
not changed significantly, because the failure rate flattens out once x approaches 1.
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α = 0.5, g̃ = 0.1

Figure 5.1: Simulations with only the fail term where α = 0.5, and only the repair term with
g̃ = 0.1 were run with different dt.

The effect changing dt has on the failure rate can be explained by the fact that the only
nodes that can fail at any time are the ones in the frontier of the failure (neighbours to
failed nodes that have not failed yet themselves). Making dt smaller, the frontier is updated
more frequently, and when looking at only the failure term, this update means an increase
in the number of nodes vulnerable to failure. If the time-steps are divided, more nodes
will have had the chance to “throw the dice” before the end of the time-step. This does
not happen with the repair rate. The number of nodes eligible for repair may change more
often as dt is decreased, but the number of nodes that will be repaired does not depend
on how many nodes are eligible, it is constant for all x-values (except when fewer than g
nodes are failed).

5.4 The Tendency to “Jump” Down

Figures 4.2 and 4.4 indicated that the x-value for the unstable fixed point is decreased as
dt is decreased. This tendency to “jump” down to the “good” stable fixed point for higher
values of dt was also seen when g̃ was close to the bifurcation point in Figures 4.15 and
4.16. This “jump” is never seen the other way (with an unexpected leap to the “bad” stable
fixed point), indicating that it is caused by some property of the system, and are not just
random fluctuations in the simulations.

Figure 5.2 show the first four time-steps of simulations with the same initial conditions
started at x = 0.45 and with dt = 1 and dt = 0.1. The simulations with dt = 1 are headed
down to the “good” stable fixed point, while the simulations with dt = 0.1 are headed up
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α = 0.5, g̃ = 0.1

Figure 5.2: Simulations with dt = 1, and dt = 0.1). Zoom in on first few time steps. Red shade is
number of nodes failed on each dt. Green shade is number of nodes repaired on each dt.

α = 0.5, g̃ = 0.1

Figure 5.3: Fraction of nodes failed and repaired on each dt for different dt.

to the “bad” stable fixed point. The red shaded areas show the number of nodes that fail
on each time-step and the green shaded area shows repair. Figure 5.3 shows the number
of nodes failed and repaired on each time step. After one elapsed time-step the number of
repaired nodes exceeds the number of failed nodes for dt = 1, but not for dt = 0.1, even
though simulations were started with the same x, α and g̃.
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α = 0.5, g̃ = 0.1

Figure 5.4: Simulations with only the fail term where α = 0.5, and only the repair term with
g̃ = 0.1 were run with dt = 0.1.

α = 0.5, g̃ = 0.1

Figure 5.5: Simulations with only the fail term where α = 0.5, and only the repair term with
g̃ = 0.1 were run with dt = 0.1. Fraction of nodes failed and repaired on each dt for different dt.

The tendency to “jump” down is likely caused by the fact that failure depends on the
fraction of failed nodes, while repair does not. Figure 5.5 show that the number of nodes
repaired on each time steps peaks around time-step 30. At time step 30 in Figure 5.4
the value of x is approximately 0.5—half the network has failed. This means that at x-

39



Chapter 5. Discussion

values lower than this, the number of nodes repaired on each time-step or dt decreases as
x decreases.

So if x is below 0.5 and at one time-step or dt there happen to be repaired a few more
nodes than the expected average, it will reduce the x by a little more than the analysis
predicts. Then the next time failure is calculated, fewer nodes will fail as a result, creating
a reinforcing effect. Bigger dt will increase the chance of this happening, as a “jump”
produced by the repairing of nodes at each dt can be so big that it jolts the system out of
its path. Smaller dt will be less likely to have big enough jumps.

This tendency to “jump” down, is also the reason why in Figure 4.15 where dt = 0.1, the
“bad” stable fixed point disappeared at a lower value of g̃ than predicted. Then as dt was
further reduced to 0.01, the fixed point reappeared in Figure 4.16.

5.5 Changing the Average Degree

When comparing results of simulations on networks of different average degree, 〈k〉, there
is one important thing to note. The way random networks are generated in the implemen-
tation done for this thesis, only the giant component is kept, meaning that some nodes are
deleted (see algorithm 1 in section 3.5). Since almost all simulations have been done on
networks of the same average degree, namely 4, this has not been a problem, as the same
amount of nodes were removed from each network. However, the connectedness of a ran-
dom network changes with degree, and networks of average degrees higher than lnN will
be fully connected. Using the code in algorithm 1 would result in networks of different
sizes. This is a weakness in the simulations, and because of this, the comparison between
networks of different average degree is done with average degree 8 and 12.

Increasing the average degree, of the network will decrease average travel distances, mak-
ing it theoretically possible for the failure to spread more quickly, but at the same time the
presence of more edges are a protective factor to each individual node. As with changing
dt, the changing of average degree does not affect the repair rate.

Figure 5.6 shows simulations with only the failure term on 10 000 node random networks
with 〈k〉 = 8 and 〈k〉 = 12. The failure rate starts out slower when 〈k〉 = 12, but as x
grows, the rate becomes steeper and starts failing faster than the 〈k〉 = 8 networks. The
time until total failure is not affected much by an increasing average degree. The effect
may be seen more clearly in Figure 5.7, where the fraction of failed nodes per time-step is
plotted. At around time-step 15 the failure rates are the same. This is close to the x-value
of the predicted unstable fixed point. Which means that the networks of higher average
degree fail more quickly above the unstable fixed point, and more slowly below. So the
simulations on 〈k〉 = 12 should reach their stable fixed points faster, this is what Figure
4.12 from the results chapter shows (4.3).
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α = 0.5

Figure 5.6: Simulations with only the fail term where average degree of 8 and 12 is compared.

α = 0.5

Figure 5.7: Number of nodes failed on each dt for simulations with only the fail term where average
degree of 8 and 12 is compared.

5.6 Consequences of the Mean Field Approximation

Using mean field approximations, in effect it is assumed that all nodes are the same, and
that all nodes are the average. In terms of the degrees of nodes these things seem like
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reasonable approximations for random networks and grids with their rather homogeneous
degree distributions. Less so for scale-free network, where not only are the nodes not
all the same degree, almost none of them are average. However, when all nodes are set
to the system average x-value, it is also assumed that all nodes have the same chance to
be neighbour to each failed node. This is not true for grids where the nodes are very
predictably interconnected. Two neighbours of a node are much more likely to also be
each others neighbours, than two randomly selected nodes in the network. This tendency
is not found in random networks and scale-free networks, making this assumption better
for these networks.

The average degree of a network also matters for the mean field approximation. Relative
fluctuations around the average will be bigger when the average degree of the network
is smaller, so there will be relatively bigger fluctuations away from the average. This
makes networks of higher average degree fit better with the assumption that every node
is the average. Figure 4.12 shows that networks of higher degree reach the fixed points
faster.

5.7 Other Networks

The simulations on grids in Figure 4.18 show that the simulations tend to go to the “good”
stable fixed point even when started high above the predicted unstable fixed point. In
fact, for this value of g̃, it is not absolutely certain that there is a “bad” stable fixed point.
These results are in keeping with studies that have found mesh-like networks to have an
ideal architecture for surviving deliberate attacks (Baran, 1964). No single node failure
has a devastating effect on the connectedness of the network, as the failure of one node
can maximally affect four other nodes. That grids take a long time to fail, can also be
explained by the fact that the diameter of a grid is much larger than that of random and
scale-free networks.

Figure 4.17 show the results from simulations on scale-free networks. The results are
quite similar to those seen with random networks, but the threshold x-value is higher on
the scale free networks than on random networks. That scale-free networks are more
vulnurable than random networks when failure dynamics are considered is well established
in the literature (Motter and Lai, 2002; Crucitti et al., 2004; Strogatz, 2001; Schläpfer and
Shapiro, 2009).
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Our model for cascading failure show simulation results that are in keeping with previous
studies on the subject. Scale-free networks are more vulnerable than random networks,
and regular grids are robust to cascading failure.

Results from the stochastic simulations show that the phase space from the analysis can
predict the presence of stable and unstable fixed points for given values of α and g̃.

Plotting h1(x) and h2(x) from equation 3.3 can also be used to find the approximate x-
value of these fixed points. Stochastic simulations show a tendency to “jump” down to
the “good” stable fixed point at lower x-values than predicted. Dividing time steps into
smaller dt lessens this tendency and makes the simulations approach the predicted values
for both the stable and unstable fixed points.

Networks of high average degree seem to reach their steady state slightly faster than lower
degree networks. They have lower failure rate below the unstable fixed point and higher
rate above it.

43



Chapter 6. Conclusion

44



Bibliography

Albert, R., Jeong, H., Barabási, A.-L., 2000. Error and attack tolerance of complex net-
works. Nature 406 (July), 378–382.

Balcan, D., Hu, H., Goncalves, B., Bajardi, P., Poletto, C., Ramasco, J. J., Paolotti, D.,
Perra, N., Tizzoni, M., Van den Broeck, W., Colizza, V., Vespignani, A., 12 2009.
Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a
Monte Carlo likelihood analysis based on human mobility. BMC Medicine 7 (1), 45.

Barabási, A.-L., 2016. Network Science. Cambridge University Press, Cambridge.
URL http://networksciencebook.com/

Barabási, A.-L., Albert, R., 1999. Emergence of scaling in random networks. Science
286 (5439), 509–512.

Baran, P., 1964. Introduction to Distributed Communications Networks. RAND Corpora-
tion, Santa Monica, CA.

Crucitti, P., Latora, V., Marchiori, M., 2004. Model for cascading failures in complex
networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Inter-
disciplinary Topics 69 (4), 4.

Erdos, P., Renyi, A., 1959. On random graphs I. Publicationes Mathematicae (Debrecen)
6, 290–297.

Hagberg, A. A., Schult, D. A., Swart, P. J., 2008. Exploring network structure, dynam-
ics, and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (Eds.),
Proceedings of the 7th Python in Science Conference. Pasadena, CA USA, pp. 11–15.

Hufnagel, L., Brockman, D., Geisel, T., 2004. Forecast and control of epidemics in a
globalized world. Proceedings of the National Academy of Sciences 101 (42), 15124–
15129.

Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9 (3), 90–95.

Jensen, P. H., 2018. Modelling Cascading Failure in Complex Networks. Project Thesis,
Department of Mechanical and Industrial Engineering, NTNU.

45

http://networksciencebook.com/


Kosterev, D. N., Taylor, C. W., Fellow, W., 1999. Model validation for the August 10, 1996
WSCC system outage.pdf. IEEE Transactions on Power Systems 14 (3), 967–979.

Milgram, S., 1967. The Small World Problem. Psychology Today 2, 60–67.

Motter, A. E., Lai, Y. C., 2002. Cascade-based attacks on complex networks. Physical
Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
66 (6), 4.

Reches, E., 2019. Generalized SI Model: Including Sensitivity. Private communication.

Schläpfer, M., Shapiro, J. L., 2009. Modeling failure propagation in large-scale engineer-
ing networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering 5 LNICST (PART 2), 2127–2138.

Strogatz, S. H., 2001. Exploring complex networks. Nature 410, 268–276.

Strogatz, S. H., 2015. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. Westview Press.

46


