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Abstract

This paper proposes a one-shot six-channel multispectral color image acquisition system using a stereo camera
and a pair of optical filters. The two filters from the best pair, selected from among readily available filters such
that they modify the sensitivities of the two cameras in such a way that they produce optimal estimation of
spectral reflectance and/or color, are placed in front of the two lenses of the stereo camera. The two images
acquired from the stereo camera are then registered for pixel-to-pixel correspondence. The spectral reflectance
and/or color at each pixel on the scene are estimated from the corresponding camera outputs in the two images.
Both simulations and experiments have shown that the proposed system performs well both spectrally and
colorimetrically. Since it acquires the multispectral images in one shot, the proposed system can solve the
limitations of slow and complex acquisition process, and costliness of the state of the art multispectral imaging
systems, leading to its possible uses in widespread applications.

Introduction
With the development and advancement of digital cam-
eras, acquisition and use of digital images have increased
tremendously. Conventional image acquisition systems,
which capture images into three color channels, usually
red, green and blue, are by far the most commonly used
imaging systems. However, these suffer from several
limitations: these systems provide only color image, suf-
fer from metamerism and are limited to visual range,
and the captured images are environment dependent.
Spectral imaging addresses these problems. Spectral
imaging systems capture image data at specific wave-
lengths across the electromagnetic spectrum. Based on
the number of bands, spectral imaging systems can be
divided into two major types: multispectral and hyper-
spectral. There is no fine line separating the two; how-
ever, spectral imaging systems with more than 10 bands
are generally considered as hyperspectral, whereas with
less than 10 are considered as multispectral. Hyperspec-
tral imaging deals with imaging narrow spectral bands
over a contiguous spectral range and produces the spec-
tra of all pixels in the scene. Hyperspectral imaging sys-
tems produce high measurement accuracy; however, the

acquisition time, complexity and cost of these systems
are generally quite high compared to multispectral sys-
tems. This paper is mainly focused on multispectral
imaging. Multispectral imaging systems acquire images
in relatively wider and limited spectral bands. They do
not produce the spectrum of an object directly, and they
rather use estimation algorithms to obtain spectral func-
tions from the sensor responses. Multispectral imaging
systems are still considerably less prone to metamerism
[1] and have higher color accuracy, and unlike conven-
tional digital cameras, they are not limited to the visual
range, rather they can also be used in near infrared,
infrared and ultraviolet spectrum as well [2-5] depend-
ing on the sensor responsivity range. These systems can
significantly improve the color accuracy [6-10] and
make color reproduction under different illumination
environments possible with reasonably good accuracy
[11]. Multispectral imaging has wider application
domains, such as remote sensing [12], astronomy [13],
medical imaging [14], analysis of museological objects
[15], cosmetics [16], medicine [17], high-accuracy color
printing [18,19], computer graphics [20] and multimedia
[21].
Despite all these benefits and applicability of multi-

spectral imaging, its use is still not so wider. This is
because of the limitations of the current state of the art
multispectral imaging systems. There are different types
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of multispectral imaging systems, most of them are fil-
ter-based which use additional filters to expand the
number of color channels, and our interest in this paper
is also in this type. In a typical filter-based imaging sys-
tem, a set of either traditional optical filters in a filter
wheel or a tunable filter [22-24] capable of many differ-
ent configurations is employed. These multispectral ima-
ging systems acquire images in multiple shots. A sensor
used in a multispectral system may be a linear array as
in CRISATEL [25] where the images are acquired by
scanning line-by-line. With a matrix sensor (CCD or
CMOS) like in a monochrome camera, a whole image
scene can be captured at once without the need of scan-
ning [23,26], but this still requires multiple shots, one
channel at a time. A high quality trichromatic digital
camera in conjunction with a set of appropriate optical
filters makes it possible to acquire unique spectral infor-
mation [4,27-32]. This method enables three channels of
data to be captured per exposure as opposed to one.
With a total of n colored filters, there are 3n + 3 camera
responses for each pixel (including responses with no
colored filters), correspondingly giving rise to a 3n + 3
channel multispectral images. This greatly increases the
speed of capture and allows the use of technology that
is readily and cheaply available. Such systems can be
easily used even without much specialized knowledge.
Nonetheless, multiple shots are still necessary to acquire
a multispectral color image. Several systems have been
proposed aiming to circumvent multi-shot requirements
for a multispectral image acquisition.
Hashimoto [33] proposed a two-shot 6-band still

image capturing system using a commercial digital cam-
era and a custom color filter. The system captures a
multispectral image in two shots, one with and one
without the filter, thus resulting in a 6-channel output.
The filter is custom designed in such a way that it cuts
off the left side (short wavelength domain) of the peak
of original spectral sensitivity of blue and red, and also
cuts off the right side (long-wavelength domain) of the
green. The proposed 6-channel system claimed to pro-
duce high color accuracy and wider color range. The
problem with this system is that it still needs two shots
and is, therefore, incapable of capturing scenes in
motion.
Ohsawa et al. [34] proposed a one-shot 6-band HDTV

camera system. In their system, the light is divided into
two optical paths by a half-mirror and is incident on
two conventional CCD cameras after transmission
through the specially designed interference filters
inserted in each optical path. The two HDTV cameras
capture three-band images in sync to compose each
frame of the six band image. The total spectral sensitiv-
ities of the six band camera are the combination of
spectral characteristics of the optical components: the

objective lens, the half-mirror, the IR cutoff filter, the
interference filters, the CCD sensors, etc. This system
needs custom designed filters and complex optics mak-
ing it still far from being practical.
Even though our focus is mainly on filter-based sys-

tems, some other non-filter-based systems proposed for
faster multispectral acquisitions are worth mentioning
here. Park et al. [35] proposed multispectral imaging
using multiplexed LED illumination with computer-con-
trolled switching, and they claimed to produce even
multispectral videos of scenes at 30 fps. This is an alter-
native strategy for multispectral capture more or less on
the same level with using colored filters, although not
useful for uncontrolled illumination environments.
Three-CCD camera-based systems offering 5 or 7 chan-
nels from FluxData Inc. [36] are available in the market.
But, high price could be a concern for its common use.
Langfelder et al. [37] proposed a filter-less and demo-
saicking-less color sensitive device that use the trans-
verse field detectors or tunable sensitivity sensors.
However, this is still in the computational stage at the
moment.
In this paper, we have proposed a fast and practical

solution to multispectral imaging with the use of a digi-
tal stereo camera or a pair of commercial digital cam-
eras joined in a stereoscopic configuration, and a pair of
readily available optical filters. As the two cameras are
in a stereoscopic configuration, the system allows us to
capture 3D stereo images also. This makes the system
capable of acquiring both the multispectral and 3D
stereo data simultaneously.
The rest of the paper is organized as follows. We first

present the proposed system along with its design, opti-
mal filer selection, estimation methods and evaluation.
The proposed system has been investigated through
computational simulation, and an experimental study
has been carried out by investigating the performance of
the system constructed. The simulation and experimen-
tal works and results are discussed next. Finally, we pre-
sent the conclusion of the paper.

Proposed multispectral imaging with a stereo
camera
Design and model
The multispectral imaging system we propose here is
constructed from a stereo camera or two modern digital
(RGB) cameras in a stereoscopic configuration, and a
pair of appropriate optical filters in front of each camera
of the stereo pair. Depending upon the sensitivities of
the two cameras, one or two appropriate optical filters
are selected from among a set of readily available filters,
so that they will modify the sensitivities of one or two
cameras to produce six channels (three each contributed
from the two cameras) in the visible spectrum so as to
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give optimal estimation of the scene spectral reflectance
and/or the color. The two cameras need not be of same
type, instead, any two cameras can be used in a stereo-
scopic configuration, provided the two are operated in
the same resolution. One-shot acquisition can be made
possible by using two cameras with a sync controller
available in the market. The proposed multispectral sys-
tem is a faster, cheaper and practical solution, as it is
the one-shot acquisition which can be constructed from
even commercial digital cameras and readily available
filters. Since the two cameras are in a stereoscopic con-
figuration, the system is also capable of acquiring 3D
image that provides added value to the system. 3D ima-
ging in itself is an interesting area of study, and could
be a large part of the study. This paper, therefore,
focuses mainly on multispectral imaging, and 3D ima-
ging has not been considered within its scope. Figure 1
illustrates a multispectral-stereo system constructed
from a modern digital stereo camera - Fujifilm FinePix
REAL 3D W1 (Fujifilm 3D) and two optical filters in
front of the two lenses. We have used this system in our
experimental study.
Selection of the filters can be done computationally

using a filter selection method presented below in this
section. The two images captured with the stereo cam-
era are registered for the pixel-to-pixel correspondence
through an image registration process. As an illustration,
a simple registration method has been presented in this
paper below. The subsequent combination of the images
from the two cameras provides a six channel multispec-
tral image of the acquired scene.
In order to model the proposed multispectral system,

let si denote the spectral sensitivity of the ith channel, t
is the spectral transmittance of the selected filter, L is
the spectral power distribution of the light source, and
R is the spectral reflectance of the surface captured by
the camera. As there is always acquisition noise intro-
duced into the camera outputs, let n denotes the

acquisition noise. The camera response corresponding
to the ith channel Ci is then given by the multispectral
camera model as

Ci = STi Diag(L)R + ni; i = 1, 2, . . . ,K, (1)

where Si = Diag(t)si, ni is the channel acquisition
noise, and K is the number of channels, which is 6 here
in our system. For natural and man-made surfaces
whose reflectance are more or less smooth, it is recom-
mended to use as few channels as possible [38] and we
study here with the proposed six channel system.

Optimal filters selection
Now, the next task at hand is on how to select an opti-
mal filter pair for the construction of a proposed multi-
spectral system. Several methods have been proposed
for the selection of filters, particularly for multi-shot-
based multispectral color imaging [26,39-41]. In our
study, as we have to choose just two filters from a set of
filters, the exhaustive search method is feasible and a
logical choice because of its guaranteed optimal results.
For selecting k (here k = 2) filters from the given set of

n filters, the search requires P(n, k) = n!
(n−k)! permuta-

tions. When two same type of cameras (assuming the
same spectral sensitivities) are used, the problem
reduces to combinations instead of permutations, i.e.,
C(n, k) = n!

k!(n−k)! combinations. The feasibility of the

exhaustive search method thus depends on the number
of sample filters. However, in order to extend the usabil-
ity of this method for considerably large number of fil-
ters, we introduce a secondary criterion which excludes
all infeasible filter pairs from computations. This criter-
ion states that the filter pairs that result in a maximum
transmission factor of less than forty percent and less
than ten percent of the maximum transmission factor in
one or more channels are excluded.
For a given pair of camera, a pair of optimal filters is

selected using this filter selection algorithm and the sec-
ondary criterion through simulation, and the perfor-
mance is then investigated experimentally.

Spectral reflectance estimation and evaluation
The estimated reflectance (R̃) is obtained for the corre-
sponding original reflectance (R) from the camera
responses for the training and test targets C(train) and C
respectively, using different estimation methods. Train-
ing targets are the database of surface reflectance func-
tions from which basis functions are generated and test
targets are used to validate the performance of the
device. There are many estimation algorithms proposed
in the literature[28,30,42-46]. It is not our primary goal
to make comparative study of different algorithms.
However, we have tried to investigate the performance

Figure 1 Illustration of a multispectral-stereo system
constructed from Fujifilm 3D camera and a pair of filters
placed on top of the two lenses.
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of the proposed system with methods based on three
major types of models: linear, polynomial and neural
network. These models are described briefly below:

• Linear Model: A linear-model approach formu-
lates the problem of the estimation of a spectral
reflectance R̃ from the camera responses C as find-
ing a transformation matrix (or reconstruction
matrix) Q that reconstructs the spectrum from the K
measurements as follows:

R̃ = QC. (2)

The matrix Q that minimizes a given distance metric
d(R, R̃) or that maximizes a given similarity metric

s(R, R̃) is determined. Linear regression (LR) method
determines Q from the training data set using the
pseudo-inverse:

Q = R(train)C
+. (3)

The pseudo-inverse C+ may be difficult to compute
and when the problem is ill-posed, it may not even
give any inverse, so it may need to be regularized
(see “Regularization” later).
There are several approaches proposed [28,42] which
approximate R by linear combination of a small
number of basis functions:

R ≈ Bw, (4)

where B is a matrix containing the basis functions
obtained from the training data set, and w is a
weight matrix. Different approaches have been pro-
posed for computing w. We present and use the
method proposed by Imai and Berns (IB) [28] which
was found to be relatively more robust to noise.
This method assumes a linear relationship between
camera responses and the weights that represent
reflectance in a linear model:

w = MC, (5)

where M is the transformation matrix which can be
determined empirically via a least-square fit as

M = wC+. (6)

w is computed from Equation 4 as

w = B−1R(train) = BTR(train). (7)

The reflectance of the test target is then estimated
using

R̃ = Bw = BMC(test) = BwC+
(train)C(test) = BBTR(train)C

+
(train)C(test). (8)

• Polynomial Model (PN): With this model, the
reflectance R of the characterization data set is
directly mapped from the camera responses C
through a linear relationship with the n degree poly-
nomials of the camera responses [45,47]:

R(λ1) = m11C1 +m12C2 +m13C3 +m14C1C2 + · · ·
R(λ2) = m21C1 +m22C2 +m23C3 +m24C1C2 + · · ·

...
...

R(λN) = mN1C1 +mN2C2 +mN3C3 +mN4C1C2 + · · ·

(9)

It can be written in a matrix form as

R = MCp, (10)

where M is the matrix formed from the coefficients,
and Cp is the polynomial vector/matrix from n
degree polynomials of the camera responses as
(C1,C2,C3,C2

1,C1C2,C1C3,C2C3, . . .)T. The polyno-
mial degree n is determined through optimization
such that the estimation error is minimized. Com-
plete or selected polynomial terms (for example,
polynomial without crossed terms) could be used
depending on the application. Transformation matrix
M is determined from the training data set using

M = RC+
p(train). (11)

Substituting the computed matrix M in Equation 10,
the reflectance of the test target is estimated as

R̃(test) = RC+
p(train)Cp(test). (12)

Since non-linear method of mapping camera
responses onto reflectance values may cause over-fit-
ting the characterization surface, regularization can
be done as described in the subsection below to
solve this problem.
• Neural Network Model (NN): Artificial neural
networks simulate the behavior of many simple pro-
cessing elements present in the human brain, called
neurons. Neurons are linked to each other by con-
nections called synapses. Each synapse has a coeffi-
cient that represents the strength or weight of the
connection. Advantage of the neural network model
is that they are robust to noise. A robust spectral
reconstruction algorithm based on hetero-associative
memories linear neural networks proposed by Man-
souri [46] has been used.
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The neural network is trained with the training data
set using Delta rule also known as Widrow-Hoff
rule. The rule continuously modifies weights w to
reduce the difference (the Delta) between the
expected output value e and the actual output o of a
neuron. This rule changes the connection weights in
the way that minimizes the mean squared error of
the neuron between an observed response o and a
desired theoretical one like:

wt+1
ij = wt

ij + η(ej − oj)xi = wt
ij + �wij, (13)

where e is the expected response, t is the number of
iteration, and h is a learning rate. The weights w
thus computed is finally used to estimate the reflec-
tance of the test target using

R̃ = wC(test). (14)

In addition to the methods described previously, we
have also tested some other methods like Maloney and
Wandell, and Least-Squares Wiener; however, they are
not included as they are considerably less robust to
noise.
The estimated reflectances are evaluated using spectral

as well as colorimetric metrics. Two different metrics:
GFC (Goodness of Fit Coefficient)[48] and RMS (Root
Mean Square) error have been used as spectral metrics,
and �E∗

ab (CIELAB Color Difference) as the colorimetric
metric. These metrics are given by the equations:

GFC =

n∑
i=1

R(λi)R̃(λi)√
n∑
i=1

R(λi)
2

√
n∑
i=1

R̃(λi)
2

(15)

RMS =

√√√√1
n

n∑
i=1

[
R(λi) − R̃(λi)

]2
(16)

�E∗
ab =

√
(�L∗)2 + (�a∗)2 + (�b∗)2 (17)

The GFC ranges from 0 to 1, with 1 corresponding to
the perfect estimation. The RMS and �E∗

ab are positive
values from 0 and higher, with 0 corresponding to the
perfect estimation.

Regularization
Regularization introduces additional information in an
inverse problem in order to solve an ill-posed problem
or to prevent over-fitting. Non-linear method of map-
ping camera responses onto reflectance values is the
potential for over-fitting the characterization surfaces.

Over-fitting is caused when the number of parameters
in the model is greater than the number of dimensions
of variation in the data. Among many regularization
methods, Tikhonov regularization is the most commonly
used method of regularization which tries to obtain reg-
ularized solution to Ax = b by choosing x to fit data b
in least-square sense, but penalize solutions of large
norm [49,50]. The solution will then be the minimiza-
tion problem:

xα = argmin||Ax − b||2 + α||x||2 (18)

= (ATA + αI)−1ATb (19)

where a > 0 is called the regularization parameter
whose optimal values are determined through optimiza-
tion for minimum estimation errors.

Registration
In order to have accurate estimation of spectral reflec-
tance and/or color in each pixel of a scene, it is very
important for the two images to have accurate pixel-to-
pixel correspondence. In other words, the two images
must be properly aligned. However, the stereo images
captured from the stereo camera are not aligned. We,
therefore, need to align the two images from the stereo
pair, the process known as image registration. Different
techniques could be used for the registration of the
stereo images. One technique could be the use of a
stereo-matching algorithm [51-54]. Here, we go for a
simple manual approach [55]. In this method, we select
some (at least 8) corresponding points in the two images
as control points, considering the left image as the base/
reference image and the right image as the unregistered
image. Based on the selected control points, an appro-
priate transformation that properly aligns the unregis-
tered image with the base image is determined. And
then, the unregistered image is registered using this
transformation. Irrespective of the registration method,
the problem of occlusion might occur in the stereo
images due to the geometrical separation of the two
lenses of the stereo camera. As we use central portion
of the large patches, this simple registration method
works well for our purpose. However, we should note
that the correct registration is very important for accu-
rate reflectance estimation. If there is misregistration
leading to the incorrect correspondence in the two
images, this may lead to wide deviation in the reflec-
tance estimation especially in and around the edges
where the image difference could be significantly large.

Experiments
The proposed multispectral system has been investi-
gated first with simulation and then validated
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experimentally. This section presents the simulation and
experimental setups and results obtained.

Simulation setup
Simulation has been carried out with different stereo
camera pairs whose spectral sensitivities are known or
measured. The simulation takes a pair of filters one at a
time, computes the camera responses using Equation 1,
obtains the estimated spectral reflectance using four dif-
ferent spectral estimation methods and evaluates the
estimation errors (spectral and colorimetric) as dis-
cussed previously. Similarly, the spectral reflectances are
also estimated with 3-channel systems, where one cam-
era (left or right) from the stereo is used.
As there is always acquisition noise introduced into

the camera outputs, in order to make the simulation
more realistic, simulated random shot noise and quanti-
zation noise are introduced. Recent measurements of
noise levels in a trichromatic camera suggest that the
realistic levels of shot noise are between 1 and 2% [56].
Therefore, 2% normally distributed Gaussian noise is
introduced as a random shot noise in the simulation.
And, 12-bit quantization noise is incorporated by
directly quantizing the simulated responses after the
application of the shot noise.
The simulation study has been conducted with a pair

of Nikon D70 cameras, Nikon D70 and Canon 20D pair,
and Fujifilm 3D stereo camera. Previously measured
spectral sensitivities of the Nikon D70 and Canon 20D
cameras are used, and those of the Fujifilm 3D camera
are measured using Bentham TMc300 monochromator.
Figure 2 shows these spectral sensitivities. Two hundred
and sixty-five optical filters of three different types: exci-
ter, dichroic, and emitter from Omega are used.

Transmittances of the filters available in the company
web site [57] have been used in the simulation. Rather
than mixing filters from different vendors, one vendor
has been chosen as a one-point solution for the filters,
and the Omega has been chosen as they have a large
selection of filters, and data are available online. Sixty-
three patches of the Gretag Macbeth Color Checker DC
have been used as the training target; and one hundred
and twenty-two patches remained after omitting the
outer surrounding achromatic patches, multiple white
patches at the center, and the glossy patches in the S-
column of the DC chart have been used as the test tar-
get. The training patches have been selected using linear
distance minimization method (LDMM) proposed by
Pellegri et al. [58]. A color whose associated system out-
put vector has maximum norm among all the target col-
ors is selected first. The method then chooses the colors
of the training set iteratively based on their distances
from those already chosen; the maximum absolute dif-
ference is used as the distance metric.
The same spectral power distribution of the illuminant

and the reflectances of the color checkers measured and
used in the experiment later are used in the simulation.
The spectral reflectances are estimated using the four
estimation methods: LR, IB, PN and NN methods
described previously. The type and the degree of poly-
nomials in PN method are determined through optimi-
zation for minimum estimation errors, and we found
that the 2 degree polynomials without cross-terms pro-
duce the best results. The estimated reflectances are
evaluated using three evaluation metrics: GFC, RMS and
�E∗

ab described previously. CIE 1964 10° color matching
functions are used for color computation as it is the
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Figure 2 Normalized spectral sensitivities of the cameras:a Nikon D70 (solid) and Canon 20D (dotted). b Fujifilm 3D (Left - solid, Right -
dotted).
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logical choice for each color checker patches subtends
more than 2° from the lens position. The best pair of fil-
ters is exhaustively searched as discussed in the Optimal
Filters Selection section, according to each of the evalua-
tion metrics, from among all available filters with which
the multispectral system can optimally estimate the
reflectances of the 122 test target patches. The results
corresponding to the minimum mean of the evaluation
metrics are obtained. To speed up the process, the filter
combinations not fulfilling the criterion described in the
same section are skipped. The 265 filters lead to more
than 70,000 possible permutations (for two different
cameras). The criterion introduced reduces the proces-
sing down to less than 20,000 permutations.

Simulation results
The simulation selects optimal pairs of filters from
among the 265 filters for the three camera setups
depending on the estimation methods and the evalua-
tion metrics. Table 1 shows these selected filters along
with the statistics (maximum/minimum, mean and stan-
dard deviation) of estimation errors in all the cases for
both the 6-channel and the 3-channel systems. These
filters selected by the simulation are considered optimal
and used as the basis of selection of filters to be used in
the construction of the proposed multispectral system in
the experiments. The NkonD70, Canon20D and Left
camera of Fujifilm 3D are used for the simulation of the
3-channel systems.
In the simulation of the NikonD70-NikonD70 camera

system, the IB and the LR methods selected the filter
pair (XF2077-XF2021), the PN selected the filter pair
(XF2021-XF2203), and the NN picked the filter pair
(XF2009-XF2021) for the maximum GFC, with the aver-
age mean value of 0.998. For the minimum RMS, the
IB, the LR and the NN selected the filter pair (XF2009-
XF2021), while the PN selected the filter pair (XF2010-
XF2021) with the average mean value of 0.013. All four
methods selected the filter pair (XF2014-XF2030) for
the minimum �E∗

ab with the average mean error value of
0.387. The average mean values of GFC, RMS and �E∗

ab
from all four methods (IB,LR,PN and NN) for the 3-
channel system (NikonD70) are 0.989, 0.033 and 2.374,
respectively.
With the NikonD70-Canon20D camera system, the IB

and the LR selected the filter pair (XF2010-XF2021),
and the PN and the NN selected the filter pair (XF2009-
XF2021) for the maximum GFC, with the average mean
value of 0.998. For the minimum RMS, the IB, the LR
and the NN picked the filter pair (XF2009-XF2021),
while th PN selected the filter pair (XF2203-XF2021)
with the average mean value of 0.013. Similarly, the IB
and the NN selected the filter pair (XF2021-XF2012),

and the LR and the PN picked the filter pair (XF2040-
XF2012) for the minimum �E∗

ab with the average value
of 0.403. The average values of GFC, RMS and �E∗

ab
from all four methods for the 3-channel system
(Canon20D) are 0.99, 0.031 and 3.944, respectively.
Similarly, with the Fujifilm 3D camera system, the IB,

the LR and the PN selected the filter pair (XF2026-
XF1026), and the NN selected the filter pair (XF2021-
XF2203) for the maximum GFC, with the average mean
value of 0.998. For the minimum RMS, the IB, the LR
and the PN picked the filter pair (XF2058-XF2021),
while the NN picked the filter pair (XF2203-XF2021)
with the average mean value of 0.013. And, for the mini-
mum �E∗

ab, the IB and the LR selected the filter pair
(XF2021-XF2012), and the PN and the NN selected the
filter pair (XF2021-XF2030) with the average mean
value of 0.448. The average values of GFC, RMS and
�E∗

ab from all four methods for the 3-channel system
(left camera) are 0.99, 0.031 and 3.522, respectively.
Now, we would like to illustrate the filters and the

resulting 6-channel sensitivities of the simulated multi-
spectral imaging systems. As we have seen, for a given
camera system, different methods selected different filter
pairs depending on the estimation method and the eva-
luation metric. However, the shapes of the filter pairs
and the resulting effective channel sensitivities are very
much similar. Therefore, in order to avoid excessive
number of figures, instead of showing figures for all
cases, we are giving the figures for the Fujifilm 3D cam-
era system as illustrations, as our experiments have been
performed with this system along with the filter pair
(XF2021-XF2030) selected by the neural network
method for minimum color error. Figure 3a shows the
transmittances of this filter pair, and Figure 3b shows
the resulting 6-channel normalized effective spectral
sensitivities of the multispectral system. Figure 4 shows
the estimated spectral reflectances with this system
along with the measured reflectances of randomly
picked 9 patches from among the 122 test patches
selected as described previously in the Simulation Setup
section. The patch numbers are given below the graphs.
Figure 5 shows the estimated spectral reflectances
obtained with the 3-channel system for the same 9 test
patches, also along with the measured reflectance.

Experimental setup
We have conducted experiments with the multispectral
system constructed from the Fujifilm 3D stereo camera
and the filter pair (XF2021-XF2030) selected as an opti-
mal from the simulation as described previously, by the
neural network estimation method for the minimal
�E∗

ab. The optimal filters selected by the simulation pre-
viously have been considered as the basis for choosing
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Table 1 Statistics of estimation errors produced by the simulated systems

System Metric NikonD70-NikonD70 NikonD70-Canon20D Fujifilm 3D

IB LR PN NN IB LR PN NN IB LR PN NN

3-Channel GFC Min 0.879 0.878 0.896 0.879 0.896 0.895 0.903 0.895 0.890 0.890 0.898 0.890

Mean 0.989 0.989 0.989 0.989 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990

STD 0.018 0.018 0.016 0.018 0.016 0.016 0.015 0.016 0.016 0.017 0.015 0.017

RMS Max 0.189 0.191 0.184 0.189 0.156 0.156 0.153 0.156 0.151 0.153 0.149 0.152

Mean 0.034 0.034 0.032 0.034 0.031 0.031 0.029 0.031 0.031 0.031 0.029 0.031

STD 0.027 0.027 0.025 0.027 0.023 0.023 0.022 0.023 0.023 0.023 0.021 0.023

�E∗
ab Max 13.458 13.708 11.437 13.453 19.077 19.068 15.088 19.068 16.336 16.383 13.305 16.321

Mean 2.315 2.543 2.326 2.313 3.946 3.946 3.938 3.946 3.500 3.529 3.560 3.499

STD 2.476 2.570 2.154 2.481 3.785 3.783 3.212 3.783 3.373 3.391 2.838 3.370

For maximum GFC

6-Channel GFC Min 0.957 0.957 0.947 0.961 0.959 0.959 0.962 0.963 0.966 0.966 0.965 0.944

Mean 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998

STD 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005

RMS Max 0.048 0.048 0.053 0.045 0.046 0.046 0.043 0.043 0.041 0.041 0.042 0.056

Mean 0.013 0.013 0.012 0.013 0.013 0.013 0.012 0.013 0.014 0.014 0.013 0.014

STD 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.008

�E∗
ab Max 5.943 6.047 2.310 4.813 7.418 7.507 4.963 6.060 7.633 7.632 7.961 1.702

Mean 1.093 1.095 0.550 1.175 1.198 1.200 1.306 1.420 1.185 1.185 1.163 0.511

STD 1.045 1.055 0.404 0.919 1.230 1.239 0.991 1.105 0.908 0.908 0.942 0.307

Filter pair XF2077
XF2021

XF2077
XF2021

XF2021
XF2203

XF2009
XF2021

XF2010
XF2021

XF2010
XF2021

XF2009
XF2021

XF2009
XF2021

XF2026
XF1026

XF2026
XF1026

XF2026
XF1026

XF2021
XF2203

For minimum RMS

GFC Min 0.961 0.961 0.952 0.961 0.963 0.963 0.953 0.963 0.935 0.935 0.934 0.938

Mean 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998

STD 0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.004 0.006 0.006 0.007 0.006

RMS Max 0.045 0.045 0.050 0.045 0.043 0.043 0.049 0.043 0.062 0.062 0.063 0.060

Mean 0.013 0.013 0.012 0.013 0.013 0.013 0.012 0.013 0.013 0.013 0.013 0.014

STD 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.010 0.010 0.010 0.009

�E∗
ab Max 4.793 4.793 5.136 4.813 6.056 6.079 3.615 6.060 6.473 6.518 5.953 2.965

Mean 1.176 1.176 0.955 1.175 1.421 1.421 0.599 1.420 1.513 1.513 1.358 0.857

STD 0.972 0.972 0.899 0.919 1.177 1.186 0.530 1.105 1.274 1.278 1.171 0.535

Filter pair XF2009
XF2021

XF2009
XF2021

XF2010
XF2021

XF2009
XF2021

XF2009
XF2021

XF2009
XF2021

XF2203
XF2021

XF2009
XF2021

XF2058
XF2021

XF2058
XF2021

XF2058
XF2021

XF2203
XF2021

For minimum �E∗
ab

GFC Min 0.936 0.936 0.933 0.931 0.947 0.943 0.942 0.948 0.943 0.943 0.943 0.944

Mean 0.998 0.998 0.998 0.997 0.998 0.997 0.998 0.998 0.998 0.998 0.998 0.998

STD 0.006 0.006 0.007 0.007 0.005 0.006 0.006 0.005 0.005 0.005 0.006 0.005

RMS Max 0.062 0.062 0.062 0.065 0.054 0.075 0.075 0.053 0.057 0.058 0.058 0.057

Mean 0.014 0.014 0.013 0.016 0.014 0.016 0.015 0.015 0.015 0.014 0.013 0.015

STD 0.010 0.010 0.010 0.010 0.008 0.011 0.012 0.008 0.008 0.008 0.009 0.008

�E∗
ab Max 0.832 0.892 1.006 1.635 1.445 1.720 1.570 1.860 1.663 2.028 2.773 1.575

Mean 0.371 0.387 0.396 0.394 0.369 0.419 0.416 0.409 0.404 0.487 0.500 0.400

STD 0.188 0.193 0.200 0.233 0.237 0.306 0.312 0.310 0.248 0.322 0.407 0.270

Filter pair XF2014
XF2030

XF2014
XF2030

XF2014
XF2030

XF2014
XF2030

XF2021
XF2012

XF2040
XF2012

XF2040
XF2012

XF2021
XF2012

XF2021
XF2012

XF2021
XF2012

XF2021
XF2030

XF2021
XF2030

The maximum mean GFC, and the minimum mean RMS and�E∗
ab values from among the different estimation methods are shown in bold.
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the filters for the experiment. As we have already seen,
different estimation algorithms pick different filter pairs
which also depend on the evaluation metrics. However,
the shapes of the filter pairs selected and the resulting
6-channel sensitivities look very much similar. The
results from the all four methods and the three metrics
are also quite similar as can be seen in the Table 1.
Results also show that minimizing �E∗

ab also produces
more or less similar mean GFC and RMS values with all
four methods for all three camera setups. We, therefore,
decided to go for the filter pair (XF2021-XF2030) that
produced the minimum �E∗

ab by the neural network
method. The multispectral camera system has been built
by placing the XF2021 filter in front of the left lens and
the XF2030 filter in front of the right lens of the cam-
era. Throughout the whole experiment, the camera has
been set to a fixed configuration (mode: manual, flash:
off, ISO: 100, exposure time: 1/60s, aperture: F3.7, white
balance: fine, 3D file format: MPO, image size: 3648 ×
2736). The left camera has been used for the 3-channel
system.
The spectral sensitivities of the Fujifilm 3D were mea-

sured using the Bentham TMc300 monochromator, and
the monochromatic lights have been measured with the
calibrated photo diode provided with the monochroma-
tor. The spectral power distribution of the light source
(Daylight D50 simulator, Gretag Macbeth SpectraLight
III) under which the experiments have been carried out
has been measured with the Minolta CS-1000 spectrora-
diometer. The transmittances of the filters have also
been measured with the spectroradiometer. Figure 6
shows the measured transmittances of the filter pair
(XF2021-XF2030). We can see some differences in the
shapes of the filters from the one used in the simulation

with the transmittance data provided by the manufac-
turer (see Figure 3a).
In order to investigate the performance of the system,

as in the simulation, the same 63 patches of the Gretag
Macbeth Color Checker DC has been used as the train-
ing target and 122 patches have been used as the test
target. Spectral reflectances of the color chart patches
have been measured with the X-Rite Eye One Pro spec-
trophotometer. Both the left and the right cameras have
been corrected for linearity, DC noise and non-
uniformity.
The system then acquired the images of the color

chart. To minimize the statistical error, each acquisition
has been made 10 times and the averages of these 10
acquisitions are used in the analysis. The images from
the left and the right cameras are registered using the
method discussed earlier, and the 3-channel and the 6-
channel responses for each patch are obtained by chan-
nel wise averaging of the central area of certain size
from the patch. The camera responses thus obtained are
then used for spectral estimations using the same four
different estimation methods, and the spectral and the
colorimetric estimation errors are evaluated similarly as
in the simulation.

Experimental results
The statistics of estimation errors obtained from the
experiment with both the 6-channel and the 3-channel
systems for all the four estimation methods and the three
evaluation metrics are given in Table 2. We can see that
all the four methods produce almost the similar results.
For instance, the NN method produces the mean GFC,
RMS and �E∗

ab values of 0.992,0.036 and 4.854, respec-
tively, with the 6-channel system. The corresponding
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Figure 3 a An optimal pair of filters selected for Fujifilm 3D camera system by the neural network method for the minimum �E∗
ab,

and the resulting, b 6-channel normalized sensitivities.
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Figure 4 Estimated and measured spectral reflectances of 9 randomly picked test patches obtained with the simulated 6-channel
multispectral system.
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Figure 5 Estimated and measured spectral reflectances of the 9 test patches obtained with the simulated 3-channel system.
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mean metric values produced with the NN method for the
3-channel system are 0.988, 0.063 and 9.126, respectively.
To illustrate the results graphically, the estimated

spectral reflectance of the same 9 test patches used in
the simulation above along with the measured reflec-
tance are shown in Figure 7. Similarly, Figure 8 shows
the estimated and measured reflectances of the same
patches obtained with the 3-channel system.

Discussion on the results
We have investigated the proposed multispectral system
with both the simulation and the real experiments. The
simulation determines the optimal pair of filters from
among 265 filters for a given camera setup. The results
show that the selected optimal filter pairs depend on the
evaluation metric used (GFC, RMS and �E∗

ab). This is
quite expected as colorimetric optimization not necessa-
rily optimize spectrally and vice versa; since more than
one spectrum can produce the same color, the phenom-
enon known as metamerism. For a given camera setup
and a selected metric, most of the estimation methods
selected the same pair of filters. Even though some
others selected the different pairs, we find that they are
very similar in the type and the shape, and hence, all

four methods produce similar performances. The results
also show similar performances from both the spectral
metrics GFC, and RMS.
The simulation results show that the proposed 6-

channel multispectral system outperforms classical 3-
channel camera systems, both spectrally and colorime-
trically. The improvements are significant, for instance,
with the increase in the mean GFC from 0.99 to 0.998,
decrease in the RMS error from 0.031 down to 0.014
and decrease in the �E∗

ab from 3.499 down to 0.4 in the
case of Fujifilm 3D with the neural network method.
The results are similar with the other camera systems
and the estimation methods. It is to be noted that the
improvement strictly depends on the choice of the fil-
ters; badly chosen filters may lead to the system which
might fail to work better. The estimated spectral reflec-
tances with the 6-channel system, as can be seen in the
Figure 4, is significantly closer to the original ones com-
pared to the estimation results in the case of 3-channel
system shown in the Figure 5. The simulation results,
thus, show promising results clearly indicating that the
proposed system built with two RGB cameras or a
stereo camera and a pair of appropriate filters can func-
tion well as a multispectral system.
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Figure 6 Measured transmittances of the pair of filters used in the experiment.
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Encouraged by the promising results from the simula-
tion, we performed real experiments for validation. As
explained previously, the experiments have been carried
out with the multispectral system built with the Fujifilm

3D camera and the optimal filter pair (XF2021-XF2030)
selected by the simulation for minimum �E∗

ab with the
neural network method. Experimental results also show
that the proposed 6-channel multispectral system con-
sistently performs better than the 3-channel system both
spectrally and colorimetrically in terms of mean metric
values. As in the simulation, all four estimation methods
produced better results for all three metrics with the 6-
channel multispectral system than with the 3-channel
system. For instance, in case of Fujifilm 3D camera sys-
tem, GFC is increased from 0.988 to 0.992, RMS is
reduced from 0.063 down to 0.036, and �E∗

ab is reduced
from 9.126 down to 4.854 with the neural network
method. All other estimation methods also produced
similar results. The minimum value 4.733 of �E∗

ab
obtained with the PN method is still quite high and
considerably higher than the simulation result. One rea-
son could be the limited noise consideration in the
simulation model, where we used the random shot noise
and the quantization noise only, whereas in reality there
could be many other noises that come into play in real
cameras. We have investigated the influence of noise on
the performance in the simulation with the Fujifilm 3D
camera, and we found that �E∗

ab increases almost line-
arly with the increase in the percentage of shot noise
from 0 to 20%. Also, we have already seen some differ-
ences in the measured filter transmittances from the
ones used in the simulation. In order to see the perfor-
mance change, we have done simulation again this time

Table 2 Statistics of estimation errors produced by the
experimental system

System Metric IB LR PN NN

3-Channel GFC Min 0.868 0.868 0.772 0.868

Mean 0.988 0.988 0.982 0.988

STD 0.018 0.018 0.037 0.018

RMS Max 0.171 0.171 0.161 0.171

Mean 0.063 0.063 0.051 0.063

STD 0.034 0.034 0.031 0.034

�E∗
ab Max 23.665 23.664 24.931 23.664

Mean 9.126 9.126 8.582 9.126

STD 4.520 4.520 4.741 4.520

6-Channel GFC Min 0.885 0.884 0.898 0.870

Mean 0.992 0.992 0.993 0.992

STD 0.013 0.013 0.012 0.014

RMS Max 0.160 0.161 0.154 0.165

Mean 0.036 0.036 0.036 0.036

STD 0.023 0.023 0.023 0.023

�E∗
ab Max 15.033 14.773 13.358 12.135

Mean 5.069 5.030 4.733 4.854

STD 2.680 2.655 2.527 2.595

The maximum mean GFC, and the minimum mean RMS and�E∗
ab values

from among the different estimation methods are shown in bold.
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Figure 7 Estimated and measured spectral reflectances of the 9 test patches obtained with the experimental 6-channel multispectral
system.
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with the measured transmittances of the filters and this
produces the �E∗

ab of 1.428 with the same neural net-
work method that produced the minimum value of 0.4
in the previous simulation. This also explains some
higher values in the experimental results. We should
note here that the performance of the system highly
depends on the filters and their correct transmittance
values. Moreover, we have to note that the Fujifilm 3D
camera we used has limited control; there is no manual
focus and the camera does not support the raw data. It
has its own white balancing and interpolation algo-
rithms. Even though we have used the fixed setting of
the camera during the whole experiment including the
characterization and all image acquisitions, the acquired
images are still subject to built-in preprocessing and
optical changes. This might also have influenced the
results leading to higher estimation errors. We believe
that the performance can surely be improved with more
controllable camera.

Conclusion
In this paper, we have proposed a one-shot multispec-
tral imaging system built with a stereo camera. The pro-
posed system is simple to construct from commercial
off-the-shelf digital cameras, and a pair of filters selected
from readily available filters in the market. The system,
therefore, could be a fast, practical and cheaper solution
to multispectral imaging, useful in a variety of applica-
tions. Both the simulation and experimental results

show that the proposed 6-channel multispectral system
performs significantly better than the traditional 3-chan-
nel cameras both spectrally and colorimetrically. More-
over, stereo configuration allows acquiring stereo 3D
images simultaneously along with the multispectral
image, and this could be an interesting further work.
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